├── .gitignore
├── README.md
├── bert_base
├── __init__.py
└── bert
│ ├── CONTRIBUTING.md
│ ├── LICENSE
│ ├── README.md
│ ├── __init__.py
│ ├── create_pretraining_data.py
│ ├── extract_features.py
│ ├── modeling.py
│ ├── modeling_test.py
│ ├── multilingual.md
│ ├── optimization.py
│ ├── optimization_test.py
│ ├── requirements.txt
│ ├── run_classifier.py
│ ├── run_pretraining.py
│ ├── run_squad.py
│ ├── sample_text.txt
│ ├── tokenization.py
│ └── tokenization_test.py
├── data
├── dataset
│ ├── dev.txt
│ ├── test.txt
│ └── train.txt
└── sample_files
│ ├── 展示预测的示例地址文件.csv
│ └── 手工标记好的示例地址.xlsx
├── other
├── pictures
│ ├── 切分地址要素层级说明.png
│ ├── 单条地址分词效果.png
│ └── 打标签示例.png
├── predict_base.py
└── preprocessing.py
├── predict.py
├── train.py
└── train
├── __init__.py
├── bert_lstm_ner.py
├── conlleval.py
├── helper.py
├── lstm_crf_layer.py
├── models.py
└── tf_metrics.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 地址分词
2 | 网络的发展使得地址数量指数级增长,海量的数据对多个行业都提出了挑战。此项目旨在提供一个基于深度学习的地址分词器,使用监督学习的方式、BERT+BiLSTM+CRF技术,从语义角度对地址进行分词。
3 |
4 | ---
5 | ## 下载与安装
6 | Windows:
7 | - ~~Clone代码(目前github只有代码,模型文件太大,为了方便性,暂时不采取这种方式)~~
8 | - IDE打开(推荐Pycharm)
9 | - 安装必须的package
10 |
11 | ---
12 |
13 | ## 项目结构
14 | ```
15 | └── .
16 | ├── bert_base
17 | ├── bert # Google发布的BERT源码
18 | └── chinese_L-12_H-768_A-12 # BERT模型
19 | ├── data
20 | └── dataset # 用于训练的最终数据集
21 | ├── dev.txt
22 | ├── test.txt
23 | └── train.txt
24 | ├── sample_files # 示例代码中用到的文件
25 | ├── other
26 | ├── pictures # README中用到的图片
27 | ├── predict_base.py # 分词的基础代码
28 | └── preprocessing.py # 预处理的代码,主要用于生成用于训练的最终训练集
29 | ├── output # 存放训练的模型、log以及中间文件
30 | ├── train # 网络结构、计算准确率、超参数指定
31 | ├── predict.py # 示例分词文件
32 | └── train.py # 示例训练文件
33 | ```
34 | ---
35 |
36 | ## 如何运行代码,对地址分词
37 | 目前版本支持对单条地址、excel系列文件(xlsx、csv等)进行分词。根目录下的predict.py主方法中有两段代码,可以根据注释提示运行
38 | - 单条地址分词
39 | - 直接运行根目录下的predict.py,就可以得到结果,结果如下
40 | 
41 | - 对文件中的所有地址进行分词
42 | - 注释掉根目录下的predict.py中 *预测单个文件代码块* ,打开 *预测整个文件代码块* ,运行predict.py
43 | ## 如何使用自己的数据训练模型
44 | ### 概述
45 | 目前项目版本使用监督学习方法,为了保证标签的准确性,我们挑选了不同省份、不同特色的1000多条手工标注的地址进行模型训练。我们将地址分为如下11个地址要素:
46 | 
47 |
48 | 其次按照规定的层级对地址进行打标签操作,如下图:
49 | 
50 |
51 | 有了带标签的数据,结合Google发布的BERT预训练语言模型,就可以构建自己的网络,从而训练自己的模型。
52 |
53 | ### 制作数据集
54 | 深度学习中数据的质量对最终的效果有非常大的影响。除了概述中提到的纯手动打标签的方式。
55 |
56 | 目前比较推荐的方式是:先使用训练好的模型对要训练的数据进行一次分词,人工对得到的结果进行部分检查以及修正,再进行训练。
57 | 原始数据标签文件参考 **data/sample_files/手工标记好的示例地址.xlsx**。
58 |
59 | 最后使用**other/preprocessing.py**中的主方法,生成最终的数据集。作为示例,已经使用**data/sample_files/手工标记好的示例地址.xlsx**生成了最终要使用的数据集,位于**data/dataset**下的dev.txt、test.txt、train.txt。
60 | 该示例中,将所有地址切分成三部分,训练集、测试集以及验证集,占比分别为:60%、20%以及20%
61 |
62 | ### 超参数调整
63 | 训练用到的所有超参数都在 **train/helper.py** 文件中指定,请留意有中文注释的代码,我们挑选了10个常用超参数,可以对其进行修改。
64 | ### 训练
65 | 准备好了数据集、调好了超参数,直接运行**train.py**,模型就会在**train/helper.py**中指定的output_dir中生成。
66 |
67 | 到此,训练结束。
68 |
69 | ---
70 | ## 后记
71 | - 后期代码维护以及升级后,可以直接在[github](https://github.com/SuperMap/address-matching)上拉代码。
72 |
73 | ## 引用
74 | >https://github.com/macanv/BERT-BiLSTM-CRF-NER
--------------------------------------------------------------------------------
/bert_base/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
--------------------------------------------------------------------------------
/bert_base/bert/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # How to Contribute
2 |
3 | BERT needs to maintain permanent compatibility with the pre-trained model files,
4 | so we do not plan to make any major changes to this library (other than what was
5 | promised in the README). However, we can accept small patches related to
6 | re-factoring and documentation. To submit contributes, there are just a few
7 | small guidelines you need to follow.
8 |
9 | ## Contributor License Agreement
10 |
11 | Contributions to this project must be accompanied by a Contributor License
12 | Agreement. You (or your employer) retain the copyright to your contribution;
13 | this simply gives us permission to use and redistribute your contributions as
14 | part of the project. Head over to to see
15 | your current agreements on file or to sign a new one.
16 |
17 | You generally only need to submit a CLA once, so if you've already submitted one
18 | (even if it was for a different project), you probably don't need to do it
19 | again.
20 |
21 | ## Code reviews
22 |
23 | All submissions, including submissions by project members, require review. We
24 | use GitHub pull requests for this purpose. Consult
25 | [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
26 | information on using pull requests.
27 |
28 | ## Community Guidelines
29 |
30 | This project follows
31 | [Google's Open Source Community Guidelines](https://opensource.google.com/conduct/).
32 |
--------------------------------------------------------------------------------
/bert_base/bert/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/bert_base/bert/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/bert_base/bert/__init__.py
--------------------------------------------------------------------------------
/bert_base/bert/create_pretraining_data.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Create masked LM/next sentence masked_lm TF examples for BERT."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import collections
22 | import random
23 |
24 | import tokenization
25 | import tensorflow as tf
26 |
27 | flags = tf.flags
28 |
29 | FLAGS = flags.FLAGS
30 |
31 | flags.DEFINE_string("input_file", None,
32 | "Input raw text file (or comma-separated list of files).")
33 |
34 | flags.DEFINE_string(
35 | "output_file", None,
36 | "Output TF example file (or comma-separated list of files).")
37 |
38 | flags.DEFINE_string("vocab_file", None,
39 | "The vocabulary file that the BERT model was trained on.")
40 |
41 | flags.DEFINE_bool(
42 | "do_lower_case", True,
43 | "Whether to lower case the input text. Should be True for uncased "
44 | "models and False for cased models.")
45 |
46 | flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
47 |
48 | flags.DEFINE_integer("max_predictions_per_seq", 20,
49 | "Maximum number of masked LM predictions per sequence.")
50 |
51 | flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
52 |
53 | flags.DEFINE_integer(
54 | "dupe_factor", 10,
55 | "Number of times to duplicate the input data (with different masks).")
56 |
57 | flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
58 |
59 | flags.DEFINE_float(
60 | "short_seq_prob", 0.1,
61 | "Probability of creating sequences which are shorter than the "
62 | "maximum length.")
63 |
64 |
65 | class TrainingInstance(object):
66 | """A single training instance (sentence pair)."""
67 |
68 | def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
69 | is_random_next):
70 | self.tokens = tokens
71 | self.segment_ids = segment_ids
72 | self.is_random_next = is_random_next
73 | self.masked_lm_positions = masked_lm_positions
74 | self.masked_lm_labels = masked_lm_labels
75 |
76 | def __str__(self):
77 | s = ""
78 | s += "tokens: %s\n" % (" ".join(
79 | [tokenization.printable_text(x) for x in self.tokens]))
80 | s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
81 | s += "is_random_next: %s\n" % self.is_random_next
82 | s += "masked_lm_positions: %s\n" % (" ".join(
83 | [str(x) for x in self.masked_lm_positions]))
84 | s += "masked_lm_labels: %s\n" % (" ".join(
85 | [tokenization.printable_text(x) for x in self.masked_lm_labels]))
86 | s += "\n"
87 | return s
88 |
89 | def __repr__(self):
90 | return self.__str__()
91 |
92 |
93 | def write_instance_to_example_files(instances, tokenizer, max_seq_length,
94 | max_predictions_per_seq, output_files):
95 | """Create TF example files from `TrainingInstance`s."""
96 | writers = []
97 | for output_file in output_files:
98 | writers.append(tf.python_io.TFRecordWriter(output_file))
99 |
100 | writer_index = 0
101 |
102 | total_written = 0
103 | for (inst_index, instance) in enumerate(instances):
104 | input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
105 | input_mask = [1] * len(input_ids)
106 | segment_ids = list(instance.segment_ids)
107 | assert len(input_ids) <= max_seq_length
108 |
109 | while len(input_ids) < max_seq_length:
110 | input_ids.append(0)
111 | input_mask.append(0)
112 | segment_ids.append(0)
113 |
114 | assert len(input_ids) == max_seq_length
115 | assert len(input_mask) == max_seq_length
116 | assert len(segment_ids) == max_seq_length
117 |
118 | masked_lm_positions = list(instance.masked_lm_positions)
119 | masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
120 | masked_lm_weights = [1.0] * len(masked_lm_ids)
121 |
122 | while len(masked_lm_positions) < max_predictions_per_seq:
123 | masked_lm_positions.append(0)
124 | masked_lm_ids.append(0)
125 | masked_lm_weights.append(0.0)
126 |
127 | next_sentence_label = 1 if instance.is_random_next else 0
128 |
129 | features = collections.OrderedDict()
130 | features["input_ids"] = create_int_feature(input_ids)
131 | features["input_mask"] = create_int_feature(input_mask)
132 | features["segment_ids"] = create_int_feature(segment_ids)
133 | features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
134 | features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
135 | features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
136 | features["next_sentence_labels"] = create_int_feature([next_sentence_label])
137 |
138 | tf_example = tf.train.Example(features=tf.train.Features(feature=features))
139 |
140 | writers[writer_index].write(tf_example.SerializeToString())
141 | writer_index = (writer_index + 1) % len(writers)
142 |
143 | total_written += 1
144 |
145 | if inst_index < 20:
146 | tf.logging.info("*** Example ***")
147 | tf.logging.info("tokens: %s" % " ".join(
148 | [tokenization.printable_text(x) for x in instance.tokens]))
149 |
150 | for feature_name in features.keys():
151 | feature = features[feature_name]
152 | values = []
153 | if feature.int64_list.value:
154 | values = feature.int64_list.value
155 | elif feature.float_list.value:
156 | values = feature.float_list.value
157 | tf.logging.info(
158 | "%s: %s" % (feature_name, " ".join([str(x) for x in values])))
159 |
160 | for writer in writers:
161 | writer.close()
162 |
163 | tf.logging.info("Wrote %d total instances", total_written)
164 |
165 |
166 | def create_int_feature(values):
167 | feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
168 | return feature
169 |
170 |
171 | def create_float_feature(values):
172 | feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
173 | return feature
174 |
175 |
176 | def create_training_instances(input_files, tokenizer, max_seq_length,
177 | dupe_factor, short_seq_prob, masked_lm_prob,
178 | max_predictions_per_seq, rng):
179 | """Create `TrainingInstance`s from raw text."""
180 | all_documents = [[]]
181 |
182 | # Input file format:
183 | # (1) One sentence per line. These should ideally be actual sentences, not
184 | # entire paragraphs or arbitrary spans of text. (Because we use the
185 | # sentence boundaries for the "next sentence prediction" task).
186 | # (2) Blank lines between documents. Document boundaries are needed so
187 | # that the "next sentence prediction" task doesn't span between documents.
188 | for input_file in input_files:
189 | with tf.gfile.GFile(input_file, "r") as reader:
190 | while True:
191 | line = tokenization.convert_to_unicode(reader.readline())
192 | if not line:
193 | break
194 | line = line.strip()
195 |
196 | # Empty lines are used as document delimiters
197 | if not line:
198 | all_documents.append([])
199 | tokens = tokenizer.tokenize(line)
200 | if tokens:
201 | all_documents[-1].append(tokens)
202 |
203 | # Remove empty documents
204 | all_documents = [x for x in all_documents if x]
205 | rng.shuffle(all_documents)
206 |
207 | vocab_words = list(tokenizer.vocab.keys())
208 | instances = []
209 | for _ in range(dupe_factor):
210 | for document_index in range(len(all_documents)):
211 | instances.extend(
212 | create_instances_from_document(
213 | all_documents, document_index, max_seq_length, short_seq_prob,
214 | masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
215 |
216 | rng.shuffle(instances)
217 | return instances
218 |
219 |
220 | def create_instances_from_document(
221 | all_documents, document_index, max_seq_length, short_seq_prob,
222 | masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
223 | """Creates `TrainingInstance`s for a single document."""
224 | document = all_documents[document_index]
225 |
226 | # Account for [CLS], [SEP], [SEP]
227 | max_num_tokens = max_seq_length - 3
228 |
229 | # We *usually* want to fill up the entire sequence since we are padding
230 | # to `max_seq_length` anyways, so short sequences are generally wasted
231 | # computation. However, we *sometimes*
232 | # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
233 | # sequences to minimize the mismatch between pre-training and fine-tuning.
234 | # The `target_seq_length` is just a rough target however, whereas
235 | # `max_seq_length` is a hard limit.
236 | target_seq_length = max_num_tokens
237 | if rng.random() < short_seq_prob:
238 | target_seq_length = rng.randint(2, max_num_tokens)
239 |
240 | # We DON'T just concatenate all of the tokens from a document into a long
241 | # sequence and choose an arbitrary split point because this would make the
242 | # next sentence prediction task too easy. Instead, we split the input into
243 | # segments "A" and "B" based on the actual "sentences" provided by the user
244 | # input.
245 | instances = []
246 | current_chunk = []
247 | current_length = 0
248 | i = 0
249 | while i < len(document):
250 | segment = document[i]
251 | current_chunk.append(segment)
252 | current_length += len(segment)
253 | if i == len(document) - 1 or current_length >= target_seq_length:
254 | if current_chunk:
255 | # `a_end` is how many segments from `current_chunk` go into the `A`
256 | # (first) sentence.
257 | a_end = 1
258 | if len(current_chunk) >= 2:
259 | a_end = rng.randint(1, len(current_chunk) - 1)
260 |
261 | tokens_a = []
262 | for j in range(a_end):
263 | tokens_a.extend(current_chunk[j])
264 |
265 | tokens_b = []
266 | # Random next
267 | is_random_next = False
268 | if len(current_chunk) == 1 or rng.random() < 0.5:
269 | is_random_next = True
270 | target_b_length = target_seq_length - len(tokens_a)
271 |
272 | # This should rarely go for more than one iteration for large
273 | # corpora. However, just to be careful, we try to make sure that
274 | # the random document is not the same as the document
275 | # we're processing.
276 | for _ in range(10):
277 | random_document_index = rng.randint(0, len(all_documents) - 1)
278 | if random_document_index != document_index:
279 | break
280 |
281 | random_document = all_documents[random_document_index]
282 | random_start = rng.randint(0, len(random_document) - 1)
283 | for j in range(random_start, len(random_document)):
284 | tokens_b.extend(random_document[j])
285 | if len(tokens_b) >= target_b_length:
286 | break
287 | # We didn't actually use these segments so we "put them back" so
288 | # they don't go to waste.
289 | num_unused_segments = len(current_chunk) - a_end
290 | i -= num_unused_segments
291 | # Actual next
292 | else:
293 | is_random_next = False
294 | for j in range(a_end, len(current_chunk)):
295 | tokens_b.extend(current_chunk[j])
296 | truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
297 |
298 | assert len(tokens_a) >= 1
299 | assert len(tokens_b) >= 1
300 |
301 | tokens = []
302 | segment_ids = []
303 | tokens.append("[CLS]")
304 | segment_ids.append(0)
305 | for token in tokens_a:
306 | tokens.append(token)
307 | segment_ids.append(0)
308 |
309 | tokens.append("[SEP]")
310 | segment_ids.append(0)
311 |
312 | for token in tokens_b:
313 | tokens.append(token)
314 | segment_ids.append(1)
315 | tokens.append("[SEP]")
316 | segment_ids.append(1)
317 |
318 | (tokens, masked_lm_positions,
319 | masked_lm_labels) = create_masked_lm_predictions(
320 | tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
321 | instance = TrainingInstance(
322 | tokens=tokens,
323 | segment_ids=segment_ids,
324 | is_random_next=is_random_next,
325 | masked_lm_positions=masked_lm_positions,
326 | masked_lm_labels=masked_lm_labels)
327 | instances.append(instance)
328 | current_chunk = []
329 | current_length = 0
330 | i += 1
331 |
332 | return instances
333 |
334 |
335 | def create_masked_lm_predictions(tokens, masked_lm_prob,
336 | max_predictions_per_seq, vocab_words, rng):
337 | """Creates the predictions for the masked LM objective."""
338 |
339 | cand_indexes = []
340 | for (i, token) in enumerate(tokens):
341 | if token == "[CLS]" or token == "[SEP]":
342 | continue
343 | cand_indexes.append(i)
344 |
345 | rng.shuffle(cand_indexes)
346 |
347 | output_tokens = list(tokens)
348 |
349 | masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # pylint: disable=invalid-name
350 |
351 | num_to_predict = min(max_predictions_per_seq,
352 | max(1, int(round(len(tokens) * masked_lm_prob))))
353 |
354 | masked_lms = []
355 | covered_indexes = set()
356 | for index in cand_indexes:
357 | if len(masked_lms) >= num_to_predict:
358 | break
359 | if index in covered_indexes:
360 | continue
361 | covered_indexes.add(index)
362 |
363 | masked_token = None
364 | # 80% of the time, replace with [MASK]
365 | if rng.random() < 0.8:
366 | masked_token = "[MASK]"
367 | else:
368 | # 10% of the time, keep original
369 | if rng.random() < 0.5:
370 | masked_token = tokens[index]
371 | # 10% of the time, replace with random word
372 | else:
373 | masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
374 |
375 | output_tokens[index] = masked_token
376 |
377 | masked_lms.append(masked_lm(index=index, label=tokens[index]))
378 |
379 | masked_lms = sorted(masked_lms, key=lambda x: x.index)
380 |
381 | masked_lm_positions = []
382 | masked_lm_labels = []
383 | for p in masked_lms:
384 | masked_lm_positions.append(p.index)
385 | masked_lm_labels.append(p.label)
386 |
387 | return (output_tokens, masked_lm_positions, masked_lm_labels)
388 |
389 |
390 | def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
391 | """Truncates a pair of sequences to a maximum sequence length."""
392 | while True:
393 | total_length = len(tokens_a) + len(tokens_b)
394 | if total_length <= max_num_tokens:
395 | break
396 |
397 | trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
398 | assert len(trunc_tokens) >= 1
399 |
400 | # We want to sometimes truncate from the front and sometimes from the
401 | # back to add more randomness and avoid biases.
402 | if rng.random() < 0.5:
403 | del trunc_tokens[0]
404 | else:
405 | trunc_tokens.pop()
406 |
407 |
408 | def main(_):
409 | tf.logging.set_verbosity(tf.logging.INFO)
410 |
411 | tokenizer = tokenization.FullTokenizer(
412 | vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
413 |
414 | input_files = []
415 | for input_pattern in FLAGS.input_file.split(","):
416 | input_files.extend(tf.gfile.Glob(input_pattern))
417 |
418 | tf.logging.info("*** Reading from input files ***")
419 | for input_file in input_files:
420 | tf.logging.info(" %s", input_file)
421 |
422 | rng = random.Random(FLAGS.random_seed)
423 | instances = create_training_instances(
424 | input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
425 | FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
426 | rng)
427 |
428 | output_files = FLAGS.output_file.split(",")
429 | tf.logging.info("*** Writing to output files ***")
430 | for output_file in output_files:
431 | tf.logging.info(" %s", output_file)
432 |
433 | write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
434 | FLAGS.max_predictions_per_seq, output_files)
435 |
436 |
437 | if __name__ == "__main__":
438 | flags.mark_flag_as_required("input_file")
439 | flags.mark_flag_as_required("output_file")
440 | flags.mark_flag_as_required("vocab_file")
441 | tf.app.run()
442 |
--------------------------------------------------------------------------------
/bert_base/bert/extract_features.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Extract pre-computed feature vectors from BERT."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import codecs
22 | import collections
23 | import json
24 | import re
25 |
26 | from bert_base.bert import modeling
27 | from bert_base.bert import tokenization
28 | import tensorflow as tf
29 |
30 | flags = tf.flags
31 |
32 | FLAGS = flags.FLAGS
33 |
34 | flags.DEFINE_string("input_file", None, "")
35 |
36 | flags.DEFINE_string("output_file", None, "")
37 |
38 | flags.DEFINE_string("layers", "-1,-2,-3,-4", "")
39 |
40 | flags.DEFINE_string(
41 | "bert_config_file", None,
42 | "The config json file corresponding to the pre-trained BERT model. "
43 | "This specifies the model architecture.")
44 |
45 | flags.DEFINE_integer(
46 | "max_seq_length", 128,
47 | "The maximum total input sequence length after WordPiece tokenization. "
48 | "Sequences longer than this will be truncated, and sequences shorter "
49 | "than this will be padded.")
50 |
51 | flags.DEFINE_string(
52 | "init_checkpoint", None,
53 | "Initial checkpoint (usually from a pre-trained BERT model).")
54 |
55 | flags.DEFINE_string("vocab_file", None,
56 | "The vocabulary file that the BERT model was trained on.")
57 |
58 | flags.DEFINE_bool(
59 | "do_lower_case", True,
60 | "Whether to lower case the input text. Should be True for uncased "
61 | "models and False for cased models.")
62 |
63 | flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.")
64 |
65 | flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
66 |
67 | flags.DEFINE_string("master", None,
68 | "If using a TPU, the address of the master.")
69 |
70 | flags.DEFINE_integer(
71 | "num_tpu_cores", 8,
72 | "Only used if `use_tpu` is True. Total number of TPU cores to use.")
73 |
74 | flags.DEFINE_bool(
75 | "use_one_hot_embeddings", False,
76 | "If True, tf.one_hot will be used for embedding lookups, otherwise "
77 | "tf.nn.embedding_lookup will be used. On TPUs, this should be True "
78 | "since it is much faster.")
79 |
80 |
81 | class InputExample(object):
82 |
83 | def __init__(self, unique_id, text_a, text_b):
84 | self.unique_id = unique_id
85 | self.text_a = text_a
86 | self.text_b = text_b
87 |
88 |
89 | class InputFeatures(object):
90 | """A single set of features of data."""
91 |
92 | def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
93 | self.unique_id = unique_id
94 | self.tokens = tokens
95 | self.input_ids = input_ids
96 | self.input_mask = input_mask
97 | self.input_type_ids = input_type_ids
98 |
99 |
100 | def input_fn_builder(features, seq_length):
101 | """Creates an `input_fn` closure to be passed to TPUEstimator."""
102 |
103 | all_unique_ids = []
104 | all_input_ids = []
105 | all_input_mask = []
106 | all_input_type_ids = []
107 |
108 | for feature in features:
109 | all_unique_ids.append(feature.unique_id)
110 | all_input_ids.append(feature.input_ids)
111 | all_input_mask.append(feature.input_mask)
112 | all_input_type_ids.append(feature.input_type_ids)
113 |
114 | def input_fn(params):
115 | """The actual input function."""
116 | batch_size = params["batch_size"]
117 |
118 | num_examples = len(features)
119 |
120 | # This is for demo purposes and does NOT scale to large data sets. We do
121 | # not use Dataset.from_generator() because that uses tf.py_func which is
122 | # not TPU compatible. The right way to load data is with TFRecordReader.
123 | d = tf.data.Dataset.from_tensor_slices({
124 | "unique_ids":
125 | tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
126 | "input_ids":
127 | tf.constant(
128 | all_input_ids, shape=[num_examples, seq_length],
129 | dtype=tf.int32),
130 | "input_mask":
131 | tf.constant(
132 | all_input_mask,
133 | shape=[num_examples, seq_length],
134 | dtype=tf.int32),
135 | "input_type_ids":
136 | tf.constant(
137 | all_input_type_ids,
138 | shape=[num_examples, seq_length],
139 | dtype=tf.int32),
140 | })
141 |
142 | d = d.batch(batch_size=batch_size, drop_remainder=False)
143 | return d
144 |
145 | return input_fn
146 |
147 |
148 | def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
149 | use_one_hot_embeddings):
150 | """Returns `model_fn` closure for TPUEstimator."""
151 |
152 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
153 | """The `model_fn` for TPUEstimator."""
154 |
155 | unique_ids = features["unique_ids"]
156 | input_ids = features["input_ids"]
157 | input_mask = features["input_mask"]
158 | input_type_ids = features["input_type_ids"]
159 |
160 | model = modeling.BertModel(
161 | config=bert_config,
162 | is_training=False,
163 | input_ids=input_ids,
164 | input_mask=input_mask,
165 | token_type_ids=input_type_ids,
166 | use_one_hot_embeddings=use_one_hot_embeddings)
167 |
168 | if mode != tf.estimator.ModeKeys.PREDICT:
169 | raise ValueError("Only PREDICT modes are supported: %s" % (mode))
170 |
171 | tvars = tf.trainable_variables()
172 | scaffold_fn = None
173 | (assignment_map,
174 | initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(
175 | tvars, init_checkpoint)
176 | if use_tpu:
177 |
178 | def tpu_scaffold():
179 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
180 | return tf.train.Scaffold()
181 |
182 | scaffold_fn = tpu_scaffold
183 | else:
184 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
185 |
186 | tf.logging.info("**** Trainable Variables ****")
187 | for var in tvars:
188 | init_string = ""
189 | if var.name in initialized_variable_names:
190 | init_string = ", *INIT_FROM_CKPT*"
191 | tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
192 | init_string)
193 |
194 | all_layers = model.get_all_encoder_layers()
195 |
196 | predictions = {
197 | "unique_id": unique_ids,
198 | }
199 |
200 | for (i, layer_index) in enumerate(layer_indexes):
201 | predictions["layer_output_%d" % i] = all_layers[layer_index]
202 |
203 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
204 | mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
205 | return output_spec
206 |
207 | return model_fn
208 |
209 |
210 | def convert_examples_to_features(examples, seq_length, tokenizer):
211 | """Loads a data file into a list of `InputBatch`s."""
212 |
213 | features = []
214 | for (ex_index, example) in enumerate(examples):
215 | tokens_a = tokenizer.tokenize(example.text_a)
216 |
217 | tokens_b = None
218 | if example.text_b:
219 | tokens_b = tokenizer.tokenize(example.text_b)
220 |
221 | if tokens_b:
222 | # Modifies `tokens_a` and `tokens_b` in place so that the total
223 | # length is less than the specified length.
224 | # Account for [CLS], [SEP], [SEP] with "- 3"
225 | _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
226 | else:
227 | # Account for [CLS] and [SEP] with "- 2"
228 | if len(tokens_a) > seq_length - 2:
229 | tokens_a = tokens_a[0:(seq_length - 2)]
230 |
231 | # The convention in BERT is:
232 | # (a) For sequence pairs:
233 | # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
234 | # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
235 | # (b) For single sequences:
236 | # tokens: [CLS] the dog is hairy . [SEP]
237 | # type_ids: 0 0 0 0 0 0 0
238 | #
239 | # Where "type_ids" are used to indicate whether this is the first
240 | # sequence or the second sequence. The embedding vectors for `type=0` and
241 | # `type=1` were learned during pre-training and are added to the wordpiece
242 | # embedding vector (and position vector). This is not *strictly* necessary
243 | # since the [SEP] token unambiguously separates the sequences, but it makes
244 | # it easier for the model to learn the concept of sequences.
245 | #
246 | # For classification tasks, the first vector (corresponding to [CLS]) is
247 | # used as as the "sentence vector". Note that this only makes sense because
248 | # the entire model is fine-tuned.
249 | tokens = []
250 | input_type_ids = []
251 | tokens.append("[CLS]")
252 | input_type_ids.append(0)
253 | for token in tokens_a:
254 | tokens.append(token)
255 | input_type_ids.append(0)
256 | tokens.append("[SEP]")
257 | input_type_ids.append(0)
258 |
259 | if tokens_b:
260 | for token in tokens_b:
261 | tokens.append(token)
262 | input_type_ids.append(1)
263 | tokens.append("[SEP]")
264 | input_type_ids.append(1)
265 |
266 | input_ids = tokenizer.convert_tokens_to_ids(tokens)
267 |
268 | # The mask has 1 for real tokens and 0 for padding tokens. Only real
269 | # tokens are attended to.
270 | input_mask = [1] * len(input_ids)
271 |
272 | # Zero-pad up to the sequence length.
273 | while len(input_ids) < seq_length:
274 | input_ids.append(0)
275 | input_mask.append(0)
276 | input_type_ids.append(0)
277 |
278 | assert len(input_ids) == seq_length
279 | assert len(input_mask) == seq_length
280 | assert len(input_type_ids) == seq_length
281 |
282 | if ex_index < 5:
283 | tf.logging.info("*** Example ***")
284 | tf.logging.info("unique_id: %s" % (example.unique_id))
285 | tf.logging.info("tokens: %s" % " ".join(
286 | [tokenization.printable_text(x) for x in tokens]))
287 | tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
288 | tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
289 | tf.logging.info(
290 | "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
291 |
292 | features.append(
293 | InputFeatures(
294 | unique_id=example.unique_id,
295 | tokens=tokens,
296 | input_ids=input_ids,
297 | input_mask=input_mask,
298 | input_type_ids=input_type_ids))
299 | return features
300 |
301 |
302 | def _truncate_seq_pair(tokens_a, tokens_b, max_length):
303 | """Truncates a sequence pair in place to the maximum length."""
304 |
305 | # This is a simple heuristic which will always truncate the longer sequence
306 | # one token at a time. This makes more sense than truncating an equal percent
307 | # of tokens from each, since if one sequence is very short then each token
308 | # that's truncated likely contains more information than a longer sequence.
309 | while True:
310 | total_length = len(tokens_a) + len(tokens_b)
311 | if total_length <= max_length:
312 | break
313 | if len(tokens_a) > len(tokens_b):
314 | tokens_a.pop()
315 | else:
316 | tokens_b.pop()
317 |
318 |
319 | def read_examples(input_file):
320 | """Read a list of `InputExample`s from an input file."""
321 | examples = []
322 | unique_id = 0
323 | with tf.gfile.GFile(input_file, "r") as reader:
324 | while True:
325 | line = tokenization.convert_to_unicode(reader.readline())
326 | if not line:
327 | break
328 | line = line.strip()
329 | text_a = None
330 | text_b = None
331 | m = re.match(r"^(.*) \|\|\| (.*)$", line)
332 | if m is None:
333 | text_a = line
334 | else:
335 | text_a = m.group(1)
336 | text_b = m.group(2)
337 | examples.append(
338 | InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
339 | unique_id += 1
340 | return examples
341 |
342 |
343 | def main(_):
344 | tf.logging.set_verbosity(tf.logging.INFO)
345 |
346 | layer_indexes = [int(x) for x in FLAGS.layers.split(",")]
347 |
348 | bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
349 |
350 | tokenizer = tokenization.FullTokenizer(
351 | vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
352 |
353 | is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
354 | run_config = tf.contrib.tpu.RunConfig(
355 | master=FLAGS.master,
356 | tpu_config=tf.contrib.tpu.TPUConfig(
357 | num_shards=FLAGS.num_tpu_cores,
358 | per_host_input_for_training=is_per_host))
359 |
360 | examples = read_examples(FLAGS.input_file)
361 |
362 | features = convert_examples_to_features(
363 | examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer)
364 |
365 | unique_id_to_feature = {}
366 | for feature in features:
367 | unique_id_to_feature[feature.unique_id] = feature
368 |
369 | model_fn = model_fn_builder(
370 | bert_config=bert_config,
371 | init_checkpoint=FLAGS.init_checkpoint,
372 | layer_indexes=layer_indexes,
373 | use_tpu=FLAGS.use_tpu,
374 | use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)
375 |
376 | # If TPU is not available, this will fall back to normal Estimator on CPU
377 | # or GPU.
378 | estimator = tf.contrib.tpu.TPUEstimator(
379 | use_tpu=FLAGS.use_tpu,
380 | model_fn=model_fn,
381 | config=run_config,
382 | predict_batch_size=FLAGS.batch_size)
383 |
384 | input_fn = input_fn_builder(
385 | features=features, seq_length=FLAGS.max_seq_length)
386 |
387 | with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
388 | "w")) as writer:
389 | for result in estimator.predict(input_fn, yield_single_examples=True):
390 | unique_id = int(result["unique_id"])
391 | feature = unique_id_to_feature[unique_id]
392 | output_json = collections.OrderedDict()
393 | output_json["linex_index"] = unique_id
394 | all_features = []
395 | for (i, token) in enumerate(feature.tokens):
396 | all_layers = []
397 | for (j, layer_index) in enumerate(layer_indexes):
398 | layer_output = result["layer_output_%d" % j]
399 | layers = collections.OrderedDict()
400 | layers["index"] = layer_index
401 | layers["values"] = [
402 | round(float(x), 6) for x in layer_output[i:(i + 1)].flat
403 | ]
404 | all_layers.append(layers)
405 | features = collections.OrderedDict()
406 | features["token"] = token
407 | features["layers"] = all_layers
408 | all_features.append(features)
409 | output_json["features"] = all_features
410 | writer.write(json.dumps(output_json) + "\n")
411 |
412 |
413 | def convert_lst_to_features(lst_str, seq_length, tokenizer, logger, is_tokenized=False, mask_cls_sep=False):
414 | """Loads a data file into a list of `InputBatch`s."""
415 |
416 | examples = read_tokenized_examples(lst_str) if is_tokenized else read_line_examples(lst_str)
417 |
418 | _tokenize = lambda x: x if is_tokenized else tokenizer.tokenize(x)
419 |
420 | for (ex_index, example) in enumerate(examples):
421 | tokens_a = _tokenize(example.text_a)
422 |
423 | tokens_b = None
424 | if example.text_b:
425 | tokens_b = _tokenize(example.text_b)
426 |
427 | if tokens_b:
428 | # Modifies `tokens_a` and `tokens_b` in place so that the total
429 | # length is less than the specified length.
430 | # Account for [CLS], [SEP], [SEP] with "- 3"
431 | _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
432 | else:
433 | # Account for [CLS] and [SEP] with "- 2"
434 | if len(tokens_a) > seq_length - 2:
435 | tokens_a = tokens_a[0:(seq_length - 2)]
436 |
437 | # The convention in BERT is:
438 | # (a) For sequence pairs:
439 | # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
440 | # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
441 | # (b) For single sequences:
442 | # tokens: [CLS] the dog is hairy . [SEP]
443 | # type_ids: 0 0 0 0 0 0 0
444 | #
445 | # Where "type_ids" are used to indicate whether this is the first
446 | # sequence or the second sequence. The embedding vectors for `type=0` and
447 | # `type=1` were learned during pre-training and are added to the wordpiece
448 | # embedding vector (and position vector). This is not *strictly* necessary
449 | # since the [SEP] token unambiguously separates the sequences, but it makes
450 | # it easier for the model to learn the concept of sequences.
451 | #
452 | # For classification tasks, the first vector (corresponding to [CLS]) is
453 | # used as as the "sentence vector". Note that this only makes sense because
454 | # the entire model is fine-tuned.
455 | tokens = ['[CLS]'] + tokens_a + ['[SEP]']
456 | input_type_ids = [0] * len(tokens)
457 | input_mask = [int(not mask_cls_sep)] + [1] * len(tokens_a) + [int(not mask_cls_sep)]
458 |
459 | if tokens_b:
460 | tokens += tokens_b + ['[SEP]']
461 | input_type_ids += [1] * (len(tokens_b) + 1)
462 | input_mask += [1] * len(tokens_b) + [int(not mask_cls_sep)]
463 |
464 | input_ids = tokenizer.convert_tokens_to_ids(tokens)
465 |
466 | # Zero-pad up to the sequence length. more pythonic
467 | pad_len = seq_length - len(input_ids)
468 | input_ids += [0] * pad_len
469 | input_mask += [0] * pad_len
470 | input_type_ids += [0] * pad_len
471 |
472 | assert len(input_ids) == seq_length
473 | assert len(input_mask) == seq_length
474 | assert len(input_type_ids) == seq_length
475 |
476 | # logger.debug('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in tokens]))
477 | # logger.debug('input_ids: %s' % ' '.join([str(x) for x in input_ids]))
478 | # logger.debug('input_mask: %s' % ' '.join([str(x) for x in input_mask]))
479 | # logger.debug('input_type_ids: %s' % ' '.join([str(x) for x in input_type_ids]))
480 |
481 | yield InputFeatures(
482 | unique_id=example.unique_id,
483 | tokens=tokens,
484 | input_ids=input_ids,
485 | input_mask=input_mask,
486 | input_type_ids=input_type_ids)
487 |
488 |
489 | def read_tokenized_examples(lst_strs):
490 | """
491 |
492 | :param lst_strs: [[]] 每个子元素为一个序列,子元素的每一个元素为这个序列的一个index
493 | :return:
494 | """
495 | unique_id = 0
496 | # 对lst_list中的数据进行转化为ID
497 | lst_strs = [[tokenization.convert_to_unicode(w) for w in s] for s in lst_strs]
498 | for ss in lst_strs:
499 | text_a = ss
500 | text_b = None
501 | try:
502 | # 这里使用|||对输入的句子进行切分如果存在这个符号,表示输入的是两个句子,即text_a 和text_b, 否则index出错,只会存在test_a
503 | j = ss.index('|||')
504 | text_a = ss[:j]
505 | text_b = ss[(j + 1):]
506 | except ValueError:
507 | pass
508 | yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
509 | unique_id += 1
510 |
511 |
512 | def read_line_examples(lst_strs):
513 | """Read a list of `InputExample`s from a list of strings."""
514 | unique_id = 0
515 | for ss in lst_strs:
516 | line = tokenization.convert_to_unicode(ss)
517 | if not line:
518 | continue
519 | line = line.strip()
520 | text_a = None
521 | text_b = None
522 | m = re.match(r"^(.*) \|\|\| (.*)$", line)
523 | if m is None:
524 | text_a = line
525 | else:
526 | text_a = m.group(1)
527 | text_b = m.group(2)
528 | yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
529 | unique_id += 1
530 |
531 |
532 | if __name__ == "__main__":
533 | flags.mark_flag_as_required("input_file")
534 | flags.mark_flag_as_required("vocab_file")
535 | flags.mark_flag_as_required("bert_config_file")
536 | flags.mark_flag_as_required("init_checkpoint")
537 | flags.mark_flag_as_required("output_file")
538 | tf.app.run()
539 |
--------------------------------------------------------------------------------
/bert_base/bert/modeling_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import collections
20 | import json
21 | import random
22 | import re
23 |
24 | import modeling
25 | import six
26 | import tensorflow as tf
27 |
28 |
29 | class BertModelTest(tf.test.TestCase):
30 |
31 | class BertModelTester(object):
32 |
33 | def __init__(self,
34 | parent,
35 | batch_size=13,
36 | seq_length=7,
37 | is_training=True,
38 | use_input_mask=True,
39 | use_token_type_ids=True,
40 | vocab_size=99,
41 | hidden_size=32,
42 | num_hidden_layers=5,
43 | num_attention_heads=4,
44 | intermediate_size=37,
45 | hidden_act="gelu",
46 | hidden_dropout_prob=0.1,
47 | attention_probs_dropout_prob=0.1,
48 | max_position_embeddings=512,
49 | type_vocab_size=16,
50 | initializer_range=0.02,
51 | scope=None):
52 | self.parent = parent
53 | self.batch_size = batch_size
54 | self.seq_length = seq_length
55 | self.is_training = is_training
56 | self.use_input_mask = use_input_mask
57 | self.use_token_type_ids = use_token_type_ids
58 | self.vocab_size = vocab_size
59 | self.hidden_size = hidden_size
60 | self.num_hidden_layers = num_hidden_layers
61 | self.num_attention_heads = num_attention_heads
62 | self.intermediate_size = intermediate_size
63 | self.hidden_act = hidden_act
64 | self.hidden_dropout_prob = hidden_dropout_prob
65 | self.attention_probs_dropout_prob = attention_probs_dropout_prob
66 | self.max_position_embeddings = max_position_embeddings
67 | self.type_vocab_size = type_vocab_size
68 | self.initializer_range = initializer_range
69 | self.scope = scope
70 |
71 | def create_model(self):
72 | input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
73 | self.vocab_size)
74 |
75 | input_mask = None
76 | if self.use_input_mask:
77 | input_mask = BertModelTest.ids_tensor(
78 | [self.batch_size, self.seq_length], vocab_size=2)
79 |
80 | token_type_ids = None
81 | if self.use_token_type_ids:
82 | token_type_ids = BertModelTest.ids_tensor(
83 | [self.batch_size, self.seq_length], self.type_vocab_size)
84 |
85 | config = modeling.BertConfig(
86 | vocab_size=self.vocab_size,
87 | hidden_size=self.hidden_size,
88 | num_hidden_layers=self.num_hidden_layers,
89 | num_attention_heads=self.num_attention_heads,
90 | intermediate_size=self.intermediate_size,
91 | hidden_act=self.hidden_act,
92 | hidden_dropout_prob=self.hidden_dropout_prob,
93 | attention_probs_dropout_prob=self.attention_probs_dropout_prob,
94 | max_position_embeddings=self.max_position_embeddings,
95 | type_vocab_size=self.type_vocab_size,
96 | initializer_range=self.initializer_range)
97 |
98 | model = modeling.BertModel(
99 | config=config,
100 | is_training=self.is_training,
101 | input_ids=input_ids,
102 | input_mask=input_mask,
103 | token_type_ids=token_type_ids,
104 | scope=self.scope)
105 |
106 | outputs = {
107 | "embedding_output": model.get_embedding_output(),
108 | "sequence_output": model.get_sequence_output(),
109 | "pooled_output": model.get_pooled_output(),
110 | "all_encoder_layers": model.get_all_encoder_layers(),
111 | }
112 | return outputs
113 |
114 | def check_output(self, result):
115 | self.parent.assertAllEqual(
116 | result["embedding_output"].shape,
117 | [self.batch_size, self.seq_length, self.hidden_size])
118 |
119 | self.parent.assertAllEqual(
120 | result["sequence_output"].shape,
121 | [self.batch_size, self.seq_length, self.hidden_size])
122 |
123 | self.parent.assertAllEqual(result["pooled_output"].shape,
124 | [self.batch_size, self.hidden_size])
125 |
126 | def test_default(self):
127 | self.run_tester(BertModelTest.BertModelTester(self))
128 |
129 | def test_config_to_json_string(self):
130 | config = modeling.BertConfig(vocab_size=99, hidden_size=37)
131 | obj = json.loads(config.to_json_string())
132 | self.assertEqual(obj["vocab_size"], 99)
133 | self.assertEqual(obj["hidden_size"], 37)
134 |
135 | def run_tester(self, tester):
136 | with self.test_session() as sess:
137 | ops = tester.create_model()
138 | init_op = tf.group(tf.global_variables_initializer(),
139 | tf.local_variables_initializer())
140 | sess.run(init_op)
141 | output_result = sess.run(ops)
142 | tester.check_output(output_result)
143 |
144 | self.assert_all_tensors_reachable(sess, [init_op, ops])
145 |
146 | @classmethod
147 | def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
148 | """Creates a random int32 tensor of the shape within the vocab size."""
149 | if rng is None:
150 | rng = random.Random()
151 |
152 | total_dims = 1
153 | for dim in shape:
154 | total_dims *= dim
155 |
156 | values = []
157 | for _ in range(total_dims):
158 | values.append(rng.randint(0, vocab_size - 1))
159 |
160 | return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
161 |
162 | def assert_all_tensors_reachable(self, sess, outputs):
163 | """Checks that all the tensors in the graph are reachable from outputs."""
164 | graph = sess.graph
165 |
166 | ignore_strings = [
167 | "^.*/assert_less_equal/.*$",
168 | "^.*/dilation_rate$",
169 | "^.*/Tensordot/concat$",
170 | "^.*/Tensordot/concat/axis$",
171 | "^testing/.*$",
172 | ]
173 |
174 | ignore_regexes = [re.compile(x) for x in ignore_strings]
175 |
176 | unreachable = self.get_unreachable_ops(graph, outputs)
177 | filtered_unreachable = []
178 | for x in unreachable:
179 | do_ignore = False
180 | for r in ignore_regexes:
181 | m = r.match(x.name)
182 | if m is not None:
183 | do_ignore = True
184 | if do_ignore:
185 | continue
186 | filtered_unreachable.append(x)
187 | unreachable = filtered_unreachable
188 |
189 | self.assertEqual(
190 | len(unreachable), 0, "The following ops are unreachable: %s" %
191 | (" ".join([x.name for x in unreachable])))
192 |
193 | @classmethod
194 | def get_unreachable_ops(cls, graph, outputs):
195 | """Finds all of the tensors in graph that are unreachable from outputs."""
196 | outputs = cls.flatten_recursive(outputs)
197 | output_to_op = collections.defaultdict(list)
198 | op_to_all = collections.defaultdict(list)
199 | assign_out_to_in = collections.defaultdict(list)
200 |
201 | for op in graph.get_operations():
202 | for x in op.inputs:
203 | op_to_all[op.name].append(x.name)
204 | for y in op.outputs:
205 | output_to_op[y.name].append(op.name)
206 | op_to_all[op.name].append(y.name)
207 | if str(op.type) == "Assign":
208 | for y in op.outputs:
209 | for x in op.inputs:
210 | assign_out_to_in[y.name].append(x.name)
211 |
212 | assign_groups = collections.defaultdict(list)
213 | for out_name in assign_out_to_in.keys():
214 | name_group = assign_out_to_in[out_name]
215 | for n1 in name_group:
216 | assign_groups[n1].append(out_name)
217 | for n2 in name_group:
218 | if n1 != n2:
219 | assign_groups[n1].append(n2)
220 |
221 | seen_tensors = {}
222 | stack = [x.name for x in outputs]
223 | while stack:
224 | name = stack.pop()
225 | if name in seen_tensors:
226 | continue
227 | seen_tensors[name] = True
228 |
229 | if name in output_to_op:
230 | for op_name in output_to_op[name]:
231 | if op_name in op_to_all:
232 | for input_name in op_to_all[op_name]:
233 | if input_name not in stack:
234 | stack.append(input_name)
235 |
236 | expanded_names = []
237 | if name in assign_groups:
238 | for assign_name in assign_groups[name]:
239 | expanded_names.append(assign_name)
240 |
241 | for expanded_name in expanded_names:
242 | if expanded_name not in stack:
243 | stack.append(expanded_name)
244 |
245 | unreachable_ops = []
246 | for op in graph.get_operations():
247 | is_unreachable = False
248 | all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
249 | for name in all_names:
250 | if name not in seen_tensors:
251 | is_unreachable = True
252 | if is_unreachable:
253 | unreachable_ops.append(op)
254 | return unreachable_ops
255 |
256 | @classmethod
257 | def flatten_recursive(cls, item):
258 | """Flattens (potentially nested) a tuple/dictionary/list to a list."""
259 | output = []
260 | if isinstance(item, list):
261 | output.extend(item)
262 | elif isinstance(item, tuple):
263 | output.extend(list(item))
264 | elif isinstance(item, dict):
265 | for (_, v) in six.iteritems(item):
266 | output.append(v)
267 | else:
268 | return [item]
269 |
270 | flat_output = []
271 | for x in output:
272 | flat_output.extend(cls.flatten_recursive(x))
273 | return flat_output
274 |
275 |
276 | if __name__ == "__main__":
277 | tf.test.main()
278 |
--------------------------------------------------------------------------------
/bert_base/bert/multilingual.md:
--------------------------------------------------------------------------------
1 | ## Models
2 |
3 | There are two multilingual models currently available. We do not plan to release
4 | more single-language models, but we may release `BERT-Large` versions of these
5 | two in the future:
6 |
7 | * **[`BERT-Base, Multilingual`](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip)**:
8 | 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
9 | * **[`BERT-Base, Chinese`](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)**:
10 | Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M
11 | parameters
12 |
13 | See the [list of languages](#list-of-languages) that the Multilingual model
14 | supports. The Multilingual model does include Chinese (and English), but if your
15 | fine-tuning data is Chinese-only, then the Chinese model will likely produce
16 | better results.
17 |
18 | ## Results
19 |
20 | To evaluate these systems, we use the
21 | [XNLI dataset](https://github.com/facebookresearch/XNLI) dataset, which is a
22 | version of [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) where the
23 | dev and test sets have been translated (by humans) into 15 languages. Note that
24 | the training set was *machine* translated (we used the translations provided by
25 | XNLI, not Google NMT). For clarity, we only report on 6 languages below:
26 |
27 |
28 |
29 | | System | English | Chinese | Spanish | German | Arabic | Urdu |
30 | | ------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- |
31 | | XNLI Baseline - Translate Train | 73.7 | 67.0 | 68.8 | 66.5 | 65.8 | 56.6 |
32 | | XNLI Baseline - Translate Test | 73.7 | 68.3 | 70.7 | 68.7 | 66.8 | 59.3 |
33 | | BERT -Translate Train | **81.4** | **74.2** | **77.3** | **75.2** | **70.5** | 61.7 |
34 | | BERT - Translate Test | 81.4 | 70.1 | 74.9 | 74.4 | 70.4 | **62.1** |
35 | | BERT - Zero Shot | 81.4 | 63.8 | 74.3 | 70.5 | 62.1 | 58.3 |
36 |
37 |
38 |
39 | The first two rows are baselines from the XNLI paper and the last three rows are
40 | our results with BERT.
41 |
42 | **Translate Train** means that the MultiNLI training set was machine translated
43 | from English into the foreign language. So training and evaluation were both
44 | done in the foreign language. Unfortunately, training was done on
45 | machine-translated data, so it is impossible to quantify how much of the lower
46 | accuracy (compared to English) is due to the quality of the machine translation
47 | vs. the quality of the pre-trained model.
48 |
49 | **Translate Test** means that the XNLI test set was machine translated from the
50 | foreign language into English. So training and evaluation were both done on
51 | English. However, test evaluation was done on machine-translated English, so the
52 | accuracy depends on the quality of the machine translation system.
53 |
54 | **Zero Shot** means that the Multilingual BERT system was fine-tuned on English
55 | MultiNLI, and then evaluated on the foreign language XNLI test. In this case,
56 | machine translation was not involved at all in either the pre-training or
57 | fine-tuning.
58 |
59 | Note that the English result is worse than the 84.2 MultiNLI baseline because
60 | this training used Multilingual BERT rather than English-only BERT. This implies
61 | that for high-resource languages, the Multilingual model is somewhat worse than
62 | a single-language model. However, it is not feasible for us to train and
63 | maintain dozens of single-language model. Therefore, if your goal is to maximize
64 | performance with a language other than English or Chinese, you might find it
65 | beneficial to run pre-training for additional steps starting from our
66 | Multilingual model on data from your language of interest.
67 |
68 | Here is a comparison of training Chinese models with the Multilingual
69 | `BERT-Base` and Chinese-only `BERT-Base`:
70 |
71 | System | Chinese
72 | ----------------------- | -------
73 | XNLI Baseline | 67.0
74 | BERT Multilingual Model | 74.2
75 | BERT Chinese-only Model | 77.2
76 |
77 | Similar to English, the single-language model does 3% better than the
78 | Multilingual model.
79 |
80 | ## Fine-tuning Example
81 |
82 | The multilingual model does **not** require any special consideration or API
83 | changes. We did update the implementation of `BasicTokenizer` in
84 | `tokenization.py` to support Chinese character tokenization, so please update if
85 | you forked it. However, we did not change the tokenization API.
86 |
87 | To test the new models, we did modify `run_classifier.py` to add support for the
88 | [XNLI dataset](https://github.com/facebookresearch/XNLI). This is a 15-language
89 | version of MultiNLI where the dev/test sets have been human-translated, and the
90 | training set has been machine-translated.
91 |
92 | To run the fine-tuning code, please download the
93 | [XNLI dev/test set](https://s3.amazonaws.com/xnli/XNLI-1.0.zip) and the
94 | [XNLI machine-translated training set](https://s3.amazonaws.com/xnli/XNLI-MT-1.0.zip)
95 | and then unpack both .zip files into some directory `$XNLI_DIR`.
96 |
97 | To run fine-tuning on XNLI. The language is hard-coded into `run_classifier.py`
98 | (Chinese by default), so please modify `XnliProcessor` if you want to run on
99 | another language.
100 |
101 | This is a large dataset, so this will training will take a few hours on a GPU
102 | (or about 30 minutes on a Cloud TPU). To run an experiment quickly for
103 | debugging, just set `num_train_epochs` to a small value like `0.1`.
104 |
105 | ```shell
106 | export BERT_BASE_DIR=/path/to/bert/chinese_L-12_H-768_A-12 # or multilingual_L-12_H-768_A-12
107 | export XNLI_DIR=/path/to/xnli
108 |
109 | python run_classifier.py \
110 | --task_name=XNLI \
111 | --do_train=true \
112 | --do_eval=true \
113 | --data_dir=$XNLI_DIR \
114 | --vocab_file=$BERT_BASE_DIR/vocab.txt \
115 | --bert_config_file=$BERT_BASE_DIR/bert_config.json \
116 | --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
117 | --max_seq_length=128 \
118 | --train_batch_size=32 \
119 | --learning_rate=5e-5 \
120 | --num_train_epochs=2.0 \
121 | --output_dir=/tmp/xnli_output/
122 | ```
123 |
124 | With the Chinese-only model, the results should look something like this:
125 |
126 | ```
127 | ***** Eval results *****
128 | eval_accuracy = 0.774116
129 | eval_loss = 0.83554
130 | global_step = 24543
131 | loss = 0.74603
132 | ```
133 |
134 | ## Details
135 |
136 | ### Data Source and Sampling
137 |
138 | The languages chosen were the
139 | [top 100 languages with the largest Wikipedias](https://meta.wikimedia.org/wiki/List_of_Wikipedias).
140 | The entire Wikipedia dump for each language (excluding user and talk pages) was
141 | taken as the training data for each language
142 |
143 | However, the size of the Wikipedia for a given language varies greatly, and
144 | therefore low-resource languages may be "under-represented" in terms of the
145 | neural network model (under the assumption that languages are "competing" for
146 | limited model capacity to some extent).
147 |
148 | However, the size of a Wikipedia also correlates with the number of speakers of
149 | a language, and we also don't want to overfit the model by performing thousands
150 | of epochs over a tiny Wikipedia for a particular language.
151 |
152 | To balance these two factors, we performed exponentially smoothed weighting of
153 | the data during pre-training data creation (and WordPiece vocab creation). In
154 | other words, let's say that the probability of a language is *P(L)*, e.g.,
155 | *P(English) = 0.21* means that after concatenating all of the Wikipedias
156 | together, 21% of our data is English. We exponentiate each probability by some
157 | factor *S* and then re-normalize, and sample from that distribution. In our case
158 | we use *S=0.7*. So, high-resource languages like English will be under-sampled,
159 | and low-resource languages like Icelandic will be over-sampled. E.g., in the
160 | original distribution English would be sampled 1000x more than Icelandic, but
161 | after smoothing it's only sampled 100x more.
162 |
163 | ### Tokenization
164 |
165 | For tokenization, we use a 110k shared WordPiece vocabulary. The word counts are
166 | weighted the same way as the data, so low-resource languages are upweighted by
167 | some factor. We intentionally do *not* use any marker to denote the input
168 | language (so that zero-shot training can work).
169 |
170 | Because Chinese does not have whitespace characters, we add spaces around every
171 | character in the
172 | [CJK Unicode range](https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_\(Unicode_block\))
173 | before applying WordPiece. This means that Chinese is effectively
174 | character-tokenized. Note that the CJK Unicode block only includes
175 | Chinese-origin characters and does *not* include Hangul Korean or
176 | Katakana/Hiragana Japanese, which are tokenized with whitespace+WordPiece like
177 | all other languages.
178 |
179 | For all other languages, we apply the
180 | [same recipe as English](https://github.com/google-research/bert#tokenization):
181 | (a) lower casing+accent removal, (b) punctuation splitting, (c) whitespace
182 | tokenization. We understand that accent markers have substantial meaning in some
183 | languages, but felt that the benefits of reducing the effective vocabulary make
184 | up for this. Generally the strong contextual models of BERT should make up for
185 | any ambiguity introduced by stripping accent markers.
186 |
187 | ### List of Languages
188 |
189 | The multilingual model supports the following languages. These languages were
190 | chosen because they are the top 100 languages with the largest Wikipedias:
191 |
192 | * Afrikaans
193 | * Albanian
194 | * Arabic
195 | * Aragonese
196 | * Armenian
197 | * Asturian
198 | * Azerbaijani
199 | * Bashkir
200 | * Basque
201 | * Bavarian
202 | * Belarusian
203 | * Bengali
204 | * Bishnupriya Manipuri
205 | * Bosnian
206 | * Breton
207 | * Bulgarian
208 | * Burmese
209 | * Catalan
210 | * Cebuano
211 | * Chechen
212 | * Chinese (Simplified)
213 | * Chinese (Traditional)
214 | * Chuvash
215 | * Croatian
216 | * Czech
217 | * Danish
218 | * Dutch
219 | * English
220 | * Estonian
221 | * Finnish
222 | * French
223 | * Galician
224 | * Georgian
225 | * German
226 | * Greek
227 | * Gujarati
228 | * Haitian
229 | * Hebrew
230 | * Hindi
231 | * Hungarian
232 | * Icelandic
233 | * Ido
234 | * Indonesian
235 | * Irish
236 | * Italian
237 | * Japanese
238 | * Javanese
239 | * Kannada
240 | * Kazakh
241 | * Kirghiz
242 | * Korean
243 | * Latin
244 | * Latvian
245 | * Lithuanian
246 | * Lombard
247 | * Low Saxon
248 | * Luxembourgish
249 | * Macedonian
250 | * Malagasy
251 | * Malay
252 | * Malayalam
253 | * Marathi
254 | * Minangkabau
255 | * Nepali
256 | * Newar
257 | * Norwegian (Bokmal)
258 | * Norwegian (Nynorsk)
259 | * Occitan
260 | * Persian (Farsi)
261 | * Piedmontese
262 | * Polish
263 | * Portuguese
264 | * Punjabi
265 | * Romanian
266 | * Russian
267 | * Scots
268 | * Serbian
269 | * Serbo-Croatian
270 | * Sicilian
271 | * Slovak
272 | * Slovenian
273 | * South Azerbaijani
274 | * Spanish
275 | * Sundanese
276 | * Swahili
277 | * Swedish
278 | * Tagalog
279 | * Tajik
280 | * Tamil
281 | * Tatar
282 | * Telugu
283 | * Turkish
284 | * Ukrainian
285 | * Urdu
286 | * Uzbek
287 | * Vietnamese
288 | * Volapük
289 | * Waray-Waray
290 | * Welsh
291 | * West
292 | * Western Punjabi
293 | * Yoruba
294 |
295 | The only language which we had to unfortunately exclude was Thai, since it is
296 | the only language (other than Chinese) that does not use whitespace to delimit
297 | words, and it has too many characters-per-word to use character-based
298 | tokenization. Our WordPiece algorithm is quadratic with respect to the size of
299 | the input token so very long character strings do not work with it.
300 |
--------------------------------------------------------------------------------
/bert_base/bert/optimization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Functions and classes related to optimization (weight updates)."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import re
22 | import tensorflow as tf
23 |
24 |
25 | def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
26 | """Creates an optimizer training op."""
27 | global_step = tf.train.get_or_create_global_step()
28 |
29 | learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
30 |
31 | # Implements linear decay of the learning rate.
32 | learning_rate = tf.train.polynomial_decay(
33 | learning_rate,
34 | global_step,
35 | num_train_steps,
36 | end_learning_rate=0.0,
37 | power=1.0,
38 | cycle=False)
39 |
40 | # Implements linear warmup. I.e., if global_step < num_warmup_steps, the
41 | # learning rate will be `global_step/num_warmup_steps * init_lr`.
42 | if num_warmup_steps:
43 | global_steps_int = tf.cast(global_step, tf.int32)
44 | warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
45 |
46 | global_steps_float = tf.cast(global_steps_int, tf.float32)
47 | warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
48 |
49 | warmup_percent_done = global_steps_float / warmup_steps_float
50 | warmup_learning_rate = init_lr * warmup_percent_done
51 |
52 | is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
53 | learning_rate = (
54 | (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
55 |
56 | # It is recommended that you use this optimizer for fine tuning, since this
57 | # is how the model was trained (note that the Adam m/v variables are NOT
58 | # loaded from init_checkpoint.)
59 | optimizer = AdamWeightDecayOptimizer(
60 | learning_rate=learning_rate,
61 | weight_decay_rate=0.01,
62 | beta_1=0.9,
63 | beta_2=0.999,
64 | epsilon=1e-6,
65 | exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
66 |
67 | if use_tpu:
68 | optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
69 |
70 | tvars = tf.trainable_variables()
71 | grads = tf.gradients(loss, tvars)
72 |
73 | # This is how the model was pre-trained.
74 | (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
75 |
76 | train_op = optimizer.apply_gradients(
77 | zip(grads, tvars), global_step=global_step)
78 |
79 | new_global_step = global_step + 1
80 | train_op = tf.group(train_op, [global_step.assign(new_global_step)])
81 | return train_op
82 |
83 |
84 | class AdamWeightDecayOptimizer(tf.train.Optimizer):
85 | """A basic Adam optimizer that includes "correct" L2 weight decay."""
86 |
87 | def __init__(self,
88 | learning_rate,
89 | weight_decay_rate=0.0,
90 | beta_1=0.9,
91 | beta_2=0.999,
92 | epsilon=1e-6,
93 | exclude_from_weight_decay=None,
94 | name="AdamWeightDecayOptimizer"):
95 | """Constructs a AdamWeightDecayOptimizer."""
96 | super(AdamWeightDecayOptimizer, self).__init__(False, name)
97 |
98 | self.learning_rate = learning_rate
99 | self.weight_decay_rate = weight_decay_rate
100 | self.beta_1 = beta_1
101 | self.beta_2 = beta_2
102 | self.epsilon = epsilon
103 | self.exclude_from_weight_decay = exclude_from_weight_decay
104 |
105 | def apply_gradients(self, grads_and_vars, global_step=None, name=None):
106 | """See base class."""
107 | assignments = []
108 | for (grad, param) in grads_and_vars:
109 | if grad is None or param is None:
110 | continue
111 |
112 | param_name = self._get_variable_name(param.name)
113 |
114 | m = tf.get_variable(
115 | name=param_name + "/adam_m",
116 | shape=param.shape.as_list(),
117 | dtype=tf.float32,
118 | trainable=False,
119 | initializer=tf.zeros_initializer())
120 | v = tf.get_variable(
121 | name=param_name + "/adam_v",
122 | shape=param.shape.as_list(),
123 | dtype=tf.float32,
124 | trainable=False,
125 | initializer=tf.zeros_initializer())
126 |
127 | # Standard Adam update.
128 | next_m = (
129 | tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
130 | next_v = (
131 | tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
132 | tf.square(grad)))
133 |
134 | update = next_m / (tf.sqrt(next_v) + self.epsilon)
135 |
136 | # Just adding the square of the weights to the loss function is *not*
137 | # the correct way of using L2 regularization/weight decay with Adam,
138 | # since that will interact with the m and v parameters in strange ways.
139 | #
140 | # Instead we want ot decay the weights in a manner that doesn't interact
141 | # with the m/v parameters. This is equivalent to adding the square
142 | # of the weights to the loss with plain (non-momentum) SGD.
143 | if self._do_use_weight_decay(param_name):
144 | update += self.weight_decay_rate * param
145 |
146 | update_with_lr = self.learning_rate * update
147 |
148 | next_param = param - update_with_lr
149 |
150 | assignments.extend(
151 | [param.assign(next_param),
152 | m.assign(next_m),
153 | v.assign(next_v)])
154 | return tf.group(*assignments, name=name)
155 |
156 | def _do_use_weight_decay(self, param_name):
157 | """Whether to use L2 weight decay for `param_name`."""
158 | if not self.weight_decay_rate:
159 | return False
160 | if self.exclude_from_weight_decay:
161 | for r in self.exclude_from_weight_decay:
162 | if re.search(r, param_name) is not None:
163 | return False
164 | return True
165 |
166 | def _get_variable_name(self, param_name):
167 | """Get the variable name from the tensor name."""
168 | m = re.match("^(.*):\\d+$", param_name)
169 | if m is not None:
170 | param_name = m.group(1)
171 | return param_name
172 |
--------------------------------------------------------------------------------
/bert_base/bert/optimization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import optimization
20 | import tensorflow as tf
21 |
22 |
23 | class OptimizationTest(tf.test.TestCase):
24 |
25 | def test_adam(self):
26 | with self.test_session() as sess:
27 | w = tf.get_variable(
28 | "w",
29 | shape=[3],
30 | initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
31 | x = tf.constant([0.4, 0.2, -0.5])
32 | loss = tf.reduce_mean(tf.square(x - w))
33 | tvars = tf.trainable_variables()
34 | grads = tf.gradients(loss, tvars)
35 | global_step = tf.train.get_or_create_global_step()
36 | optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
37 | train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
38 | init_op = tf.group(tf.global_variables_initializer(),
39 | tf.local_variables_initializer())
40 | sess.run(init_op)
41 | for _ in range(100):
42 | sess.run(train_op)
43 | w_np = sess.run(w)
44 | self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
45 |
46 |
47 | if __name__ == "__main__":
48 | tf.test.main()
49 |
--------------------------------------------------------------------------------
/bert_base/bert/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow >= 1.11.0 # CPU Version of TensorFlow.
2 | # tensorflow-gpu >= 1.11.0 # GPU version of TensorFlow.
3 |
--------------------------------------------------------------------------------
/bert_base/bert/run_pretraining.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Run masked LM/next sentence masked_lm pre-training for BERT."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import os
22 | import modeling
23 | import optimization
24 | import tensorflow as tf
25 |
26 | flags = tf.flags
27 |
28 | FLAGS = flags.FLAGS
29 |
30 | ## Required parameters
31 | flags.DEFINE_string(
32 | "bert_config_file", None,
33 | "The config json file corresponding to the pre-trained BERT model. "
34 | "This specifies the model architecture.")
35 |
36 | flags.DEFINE_string(
37 | "input_file", None,
38 | "Input TF example files (can be a glob or comma separated).")
39 |
40 | flags.DEFINE_string(
41 | "output_dir", None,
42 | "The output directory where the model checkpoints will be written.")
43 |
44 | ## Other parameters
45 | flags.DEFINE_string(
46 | "init_checkpoint", None,
47 | "Initial checkpoint (usually from a pre-trained BERT model).")
48 |
49 | flags.DEFINE_integer(
50 | "max_seq_length", 128,
51 | "The maximum total input sequence length after WordPiece tokenization. "
52 | "Sequences longer than this will be truncated, and sequences shorter "
53 | "than this will be padded. Must match data generation.")
54 |
55 | flags.DEFINE_integer(
56 | "max_predictions_per_seq", 20,
57 | "Maximum number of masked LM predictions per sequence. "
58 | "Must match data generation.")
59 |
60 | flags.DEFINE_bool("do_train", False, "Whether to run training.")
61 |
62 | flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
63 |
64 | flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
65 |
66 | flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
67 |
68 | flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
69 |
70 | flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
71 |
72 | flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
73 |
74 | flags.DEFINE_integer("save_checkpoints_steps", 1000,
75 | "How often to save the model checkpoint.")
76 |
77 | flags.DEFINE_integer("iterations_per_loop", 1000,
78 | "How many steps to make in each estimator call.")
79 |
80 | flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
81 |
82 | flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
83 |
84 | tf.flags.DEFINE_string(
85 | "tpu_name", None,
86 | "The Cloud TPU to use for training. This should be either the name "
87 | "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
88 | "url.")
89 |
90 | tf.flags.DEFINE_string(
91 | "tpu_zone", None,
92 | "[Optional] GCE zone where the Cloud TPU is located in. If not "
93 | "specified, we will attempt to automatically detect the GCE project from "
94 | "metadata.")
95 |
96 | tf.flags.DEFINE_string(
97 | "gcp_project", None,
98 | "[Optional] Project name for the Cloud TPU-enabled project. If not "
99 | "specified, we will attempt to automatically detect the GCE project from "
100 | "metadata.")
101 |
102 | tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
103 |
104 | flags.DEFINE_integer(
105 | "num_tpu_cores", 8,
106 | "Only used if `use_tpu` is True. Total number of TPU cores to use.")
107 |
108 |
109 | def model_fn_builder(bert_config, init_checkpoint, learning_rate,
110 | num_train_steps, num_warmup_steps, use_tpu,
111 | use_one_hot_embeddings):
112 | """Returns `model_fn` closure for TPUEstimator."""
113 |
114 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
115 | """The `model_fn` for TPUEstimator."""
116 |
117 | tf.logging.info("*** Features ***")
118 | for name in sorted(features.keys()):
119 | tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
120 |
121 | input_ids = features["input_ids"]
122 | input_mask = features["input_mask"]
123 | segment_ids = features["segment_ids"]
124 | masked_lm_positions = features["masked_lm_positions"]
125 | masked_lm_ids = features["masked_lm_ids"]
126 | masked_lm_weights = features["masked_lm_weights"]
127 | next_sentence_labels = features["next_sentence_labels"]
128 |
129 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
130 |
131 | model = modeling.BertModel(
132 | config=bert_config,
133 | is_training=is_training,
134 | input_ids=input_ids,
135 | input_mask=input_mask,
136 | token_type_ids=segment_ids,
137 | use_one_hot_embeddings=use_one_hot_embeddings)
138 |
139 | (masked_lm_loss,
140 | masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
141 | bert_config, model.get_sequence_output(), model.get_embedding_table(),
142 | masked_lm_positions, masked_lm_ids, masked_lm_weights)
143 |
144 | (next_sentence_loss, next_sentence_example_loss,
145 | next_sentence_log_probs) = get_next_sentence_output(
146 | bert_config, model.get_pooled_output(), next_sentence_labels)
147 |
148 | total_loss = masked_lm_loss + next_sentence_loss
149 |
150 | tvars = tf.trainable_variables()
151 |
152 | initialized_variable_names = {}
153 | scaffold_fn = None
154 | if init_checkpoint:
155 | (assignment_map, initialized_variable_names
156 | ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
157 | if use_tpu:
158 |
159 | def tpu_scaffold():
160 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
161 | return tf.train.Scaffold()
162 |
163 | scaffold_fn = tpu_scaffold
164 | else:
165 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
166 |
167 | tf.logging.info("**** Trainable Variables ****")
168 | for var in tvars:
169 | init_string = ""
170 | if var.name in initialized_variable_names:
171 | init_string = ", *INIT_FROM_CKPT*"
172 | tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
173 | init_string)
174 |
175 | output_spec = None
176 | if mode == tf.estimator.ModeKeys.TRAIN:
177 | train_op = optimization.create_optimizer(
178 | total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
179 |
180 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
181 | mode=mode,
182 | loss=total_loss,
183 | train_op=train_op,
184 | scaffold_fn=scaffold_fn)
185 | elif mode == tf.estimator.ModeKeys.EVAL:
186 |
187 | def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
188 | masked_lm_weights, next_sentence_example_loss,
189 | next_sentence_log_probs, next_sentence_labels):
190 | """Computes the loss and accuracy of the model."""
191 | masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
192 | [-1, masked_lm_log_probs.shape[-1]])
193 | masked_lm_predictions = tf.argmax(
194 | masked_lm_log_probs, axis=-1, output_type=tf.int32)
195 | masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
196 | masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
197 | masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
198 | masked_lm_accuracy = tf.metrics.accuracy(
199 | labels=masked_lm_ids,
200 | predictions=masked_lm_predictions,
201 | weights=masked_lm_weights)
202 | masked_lm_mean_loss = tf.metrics.mean(
203 | values=masked_lm_example_loss, weights=masked_lm_weights)
204 |
205 | next_sentence_log_probs = tf.reshape(
206 | next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
207 | next_sentence_predictions = tf.argmax(
208 | next_sentence_log_probs, axis=-1, output_type=tf.int32)
209 | next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
210 | next_sentence_accuracy = tf.metrics.accuracy(
211 | labels=next_sentence_labels, predictions=next_sentence_predictions)
212 | next_sentence_mean_loss = tf.metrics.mean(
213 | values=next_sentence_example_loss)
214 |
215 | return {
216 | "masked_lm_accuracy": masked_lm_accuracy,
217 | "masked_lm_loss": masked_lm_mean_loss,
218 | "next_sentence_accuracy": next_sentence_accuracy,
219 | "next_sentence_loss": next_sentence_mean_loss,
220 | }
221 |
222 | eval_metrics = (metric_fn, [
223 | masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
224 | masked_lm_weights, next_sentence_example_loss,
225 | next_sentence_log_probs, next_sentence_labels
226 | ])
227 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
228 | mode=mode,
229 | loss=total_loss,
230 | eval_metrics=eval_metrics,
231 | scaffold_fn=scaffold_fn)
232 | else:
233 | raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
234 |
235 | return output_spec
236 |
237 | return model_fn
238 |
239 |
240 | def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
241 | label_ids, label_weights):
242 | """Get loss and log probs for the masked LM."""
243 | input_tensor = gather_indexes(input_tensor, positions)
244 |
245 | with tf.variable_scope("cls/predictions"):
246 | # We apply one more non-linear transformation before the output layer.
247 | # This matrix is not used after pre-training.
248 | with tf.variable_scope("transform"):
249 | input_tensor = tf.layers.dense(
250 | input_tensor,
251 | units=bert_config.hidden_size,
252 | activation=modeling.get_activation(bert_config.hidden_act),
253 | kernel_initializer=modeling.create_initializer(
254 | bert_config.initializer_range))
255 | input_tensor = modeling.layer_norm(input_tensor)
256 |
257 | # The output weights are the same as the input embeddings, but there is
258 | # an output-only bias for each token.
259 | output_bias = tf.get_variable(
260 | "output_bias",
261 | shape=[bert_config.vocab_size],
262 | initializer=tf.zeros_initializer())
263 | logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
264 | logits = tf.nn.bias_add(logits, output_bias)
265 | log_probs = tf.nn.log_softmax(logits, axis=-1)
266 |
267 | label_ids = tf.reshape(label_ids, [-1])
268 | label_weights = tf.reshape(label_weights, [-1])
269 |
270 | one_hot_labels = tf.one_hot(
271 | label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
272 |
273 | # The `positions` tensor might be zero-padded (if the sequence is too
274 | # short to have the maximum number of predictions). The `label_weights`
275 | # tensor has a value of 1.0 for every real prediction and 0.0 for the
276 | # padding predictions.
277 | per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
278 | numerator = tf.reduce_sum(label_weights * per_example_loss)
279 | denominator = tf.reduce_sum(label_weights) + 1e-5
280 | loss = numerator / denominator
281 |
282 | return (loss, per_example_loss, log_probs)
283 |
284 |
285 | def get_next_sentence_output(bert_config, input_tensor, labels):
286 | """Get loss and log probs for the next sentence prediction."""
287 |
288 | # Simple binary classification. Note that 0 is "next sentence" and 1 is
289 | # "random sentence". This weight matrix is not used after pre-training.
290 | with tf.variable_scope("cls/seq_relationship"):
291 | output_weights = tf.get_variable(
292 | "output_weights",
293 | shape=[2, bert_config.hidden_size],
294 | initializer=modeling.create_initializer(bert_config.initializer_range))
295 | output_bias = tf.get_variable(
296 | "output_bias", shape=[2], initializer=tf.zeros_initializer())
297 |
298 | logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
299 | logits = tf.nn.bias_add(logits, output_bias)
300 | log_probs = tf.nn.log_softmax(logits, axis=-1)
301 | labels = tf.reshape(labels, [-1])
302 | one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
303 | per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
304 | loss = tf.reduce_mean(per_example_loss)
305 | return (loss, per_example_loss, log_probs)
306 |
307 |
308 | def gather_indexes(sequence_tensor, positions):
309 | """Gathers the vectors at the specific positions over a minibatch."""
310 | sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
311 | batch_size = sequence_shape[0]
312 | seq_length = sequence_shape[1]
313 | width = sequence_shape[2]
314 |
315 | flat_offsets = tf.reshape(
316 | tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
317 | flat_positions = tf.reshape(positions + flat_offsets, [-1])
318 | flat_sequence_tensor = tf.reshape(sequence_tensor,
319 | [batch_size * seq_length, width])
320 | output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
321 | return output_tensor
322 |
323 |
324 | def input_fn_builder(input_files,
325 | max_seq_length,
326 | max_predictions_per_seq,
327 | is_training,
328 | num_cpu_threads=4):
329 | """Creates an `input_fn` closure to be passed to TPUEstimator."""
330 |
331 | def input_fn(params):
332 | """The actual input function."""
333 | batch_size = params["batch_size"]
334 |
335 | name_to_features = {
336 | "input_ids":
337 | tf.FixedLenFeature([max_seq_length], tf.int64),
338 | "input_mask":
339 | tf.FixedLenFeature([max_seq_length], tf.int64),
340 | "segment_ids":
341 | tf.FixedLenFeature([max_seq_length], tf.int64),
342 | "masked_lm_positions":
343 | tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
344 | "masked_lm_ids":
345 | tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
346 | "masked_lm_weights":
347 | tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
348 | "next_sentence_labels":
349 | tf.FixedLenFeature([1], tf.int64),
350 | }
351 |
352 | # For training, we want a lot of parallel reading and shuffling.
353 | # For eval, we want no shuffling and parallel reading doesn't matter.
354 | if is_training:
355 | d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
356 | d = d.repeat()
357 | d = d.shuffle(buffer_size=len(input_files))
358 |
359 | # `cycle_length` is the number of parallel files that get read.
360 | cycle_length = min(num_cpu_threads, len(input_files))
361 |
362 | # `sloppy` mode means that the interleaving is not exact. This adds
363 | # even more randomness to the training pipeline.
364 | d = d.apply(
365 | tf.contrib.data.parallel_interleave(
366 | tf.data.TFRecordDataset,
367 | sloppy=is_training,
368 | cycle_length=cycle_length))
369 | d = d.shuffle(buffer_size=100)
370 | else:
371 | d = tf.data.TFRecordDataset(input_files)
372 | # Since we evaluate for a fixed number of steps we don't want to encounter
373 | # out-of-range exceptions.
374 | d = d.repeat()
375 |
376 | # We must `drop_remainder` on training because the TPU requires fixed
377 | # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
378 | # and we *don't* want to drop the remainder, otherwise we wont cover
379 | # every sample.
380 | d = d.apply(
381 | tf.contrib.data.map_and_batch(
382 | lambda record: _decode_record(record, name_to_features),
383 | batch_size=batch_size,
384 | num_parallel_batches=num_cpu_threads,
385 | drop_remainder=True))
386 | return d
387 |
388 | return input_fn
389 |
390 |
391 | def _decode_record(record, name_to_features):
392 | """Decodes a record to a TensorFlow example."""
393 | example = tf.parse_single_example(record, name_to_features)
394 |
395 | # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
396 | # So cast all int64 to int32.
397 | for name in list(example.keys()):
398 | t = example[name]
399 | if t.dtype == tf.int64:
400 | t = tf.to_int32(t)
401 | example[name] = t
402 |
403 | return example
404 |
405 |
406 | def main(_):
407 | tf.logging.set_verbosity(tf.logging.INFO)
408 |
409 | if not FLAGS.do_train and not FLAGS.do_eval:
410 | raise ValueError("At least one of `do_train` or `do_eval` must be True.")
411 |
412 | bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
413 |
414 | tf.gfile.MakeDirs(FLAGS.output_dir)
415 |
416 | input_files = []
417 | for input_pattern in FLAGS.input_file.split(","):
418 | input_files.extend(tf.gfile.Glob(input_pattern))
419 |
420 | tf.logging.info("*** Input Files ***")
421 | for input_file in input_files:
422 | tf.logging.info(" %s" % input_file)
423 |
424 | tpu_cluster_resolver = None
425 | if FLAGS.use_tpu and FLAGS.tpu_name:
426 | tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
427 | FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
428 |
429 | is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
430 | run_config = tf.contrib.tpu.RunConfig(
431 | cluster=tpu_cluster_resolver,
432 | master=FLAGS.master,
433 | model_dir=FLAGS.output_dir,
434 | save_checkpoints_steps=FLAGS.save_checkpoints_steps,
435 | tpu_config=tf.contrib.tpu.TPUConfig(
436 | iterations_per_loop=FLAGS.iterations_per_loop,
437 | num_shards=FLAGS.num_tpu_cores,
438 | per_host_input_for_training=is_per_host))
439 |
440 | model_fn = model_fn_builder(
441 | bert_config=bert_config,
442 | init_checkpoint=FLAGS.init_checkpoint,
443 | learning_rate=FLAGS.learning_rate,
444 | num_train_steps=FLAGS.num_train_steps,
445 | num_warmup_steps=FLAGS.num_warmup_steps,
446 | use_tpu=FLAGS.use_tpu,
447 | use_one_hot_embeddings=FLAGS.use_tpu)
448 |
449 | # If TPU is not available, this will fall back to normal Estimator on CPU
450 | # or GPU.
451 | estimator = tf.contrib.tpu.TPUEstimator(
452 | use_tpu=FLAGS.use_tpu,
453 | model_fn=model_fn,
454 | config=run_config,
455 | train_batch_size=FLAGS.train_batch_size,
456 | eval_batch_size=FLAGS.eval_batch_size)
457 |
458 | if FLAGS.do_train:
459 | tf.logging.info("***** Running training *****")
460 | tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
461 | train_input_fn = input_fn_builder(
462 | input_files=input_files,
463 | max_seq_length=FLAGS.max_seq_length,
464 | max_predictions_per_seq=FLAGS.max_predictions_per_seq,
465 | is_training=True)
466 | estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
467 |
468 | if FLAGS.do_eval:
469 | tf.logging.info("***** Running evaluation *****")
470 | tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
471 |
472 | eval_input_fn = input_fn_builder(
473 | input_files=input_files,
474 | max_seq_length=FLAGS.max_seq_length,
475 | max_predictions_per_seq=FLAGS.max_predictions_per_seq,
476 | is_training=False)
477 |
478 | result = estimator.evaluate(
479 | input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
480 |
481 | output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
482 | with tf.gfile.GFile(output_eval_file, "w") as writer:
483 | tf.logging.info("***** Eval results *****")
484 | for key in sorted(result.keys()):
485 | tf.logging.info(" %s = %s", key, str(result[key]))
486 | writer.write("%s = %s\n" % (key, str(result[key])))
487 |
488 |
489 | if __name__ == "__main__":
490 | flags.mark_flag_as_required("input_file")
491 | flags.mark_flag_as_required("bert_config_file")
492 | flags.mark_flag_as_required("output_dir")
493 | tf.app.run()
494 |
--------------------------------------------------------------------------------
/bert_base/bert/sample_text.txt:
--------------------------------------------------------------------------------
1 | This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত
2 | Text should be one-sentence-per-line, with empty lines between documents.
3 | This sample text is public domain and was randomly selected from Project Guttenberg.
4 |
5 | The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors.
6 | Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity.
7 | Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them.
8 | "Cass" Beard had risen early that morning, but not with a view to discovery.
9 | A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets.
10 | The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency.
11 | This was nearly opposite.
12 | Mr. Cassius crossed the highway, and stopped suddenly.
13 | Something glittered in the nearest red pool before him.
14 | Gold, surely!
15 | But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring.
16 | Looking at it more attentively, he saw that it bore the inscription, "May to Cass."
17 | Like most of his fellow gold-seekers, Cass was superstitious.
18 |
19 | The fountain of classic wisdom, Hypatia herself.
20 | As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge.
21 | From my youth I felt in me a soul above the matter-entangled herd.
22 | She revealed to me the glorious fact, that I am a spark of Divinity itself.
23 | A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's.
24 | There is a philosophic pleasure in opening one's treasures to the modest young.
25 | Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street.
26 | Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide;
27 | but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind.
28 | Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now.
29 | His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert;
30 | while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts.
31 | At last they reached the quay at the opposite end of the street;
32 | and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers.
33 | He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him.
34 |
--------------------------------------------------------------------------------
/bert_base/bert/tokenization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Tokenization classes."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import collections
22 | import unicodedata
23 | import six
24 | import tensorflow as tf
25 |
26 |
27 | def convert_to_unicode(text):
28 | """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
29 | if six.PY3:
30 | if isinstance(text, str):
31 | return text
32 | elif isinstance(text, bytes):
33 | return text.decode("utf-8", "ignore")
34 | else:
35 | raise ValueError("Unsupported string type: %s" % (type(text)))
36 | elif six.PY2:
37 | if isinstance(text, str):
38 | return text.decode("utf-8", "ignore")
39 | elif isinstance(text, unicode):
40 | return text
41 | else:
42 | raise ValueError("Unsupported string type: %s" % (type(text)))
43 | else:
44 | raise ValueError("Not running on Python2 or Python 3?")
45 |
46 |
47 | def printable_text(text):
48 | """Returns text encoded in a way suitable for print or `tf.logging`."""
49 |
50 | # These functions want `str` for both Python2 and Python3, but in one case
51 | # it's a Unicode string and in the other it's a byte string.
52 | if six.PY3:
53 | if isinstance(text, str):
54 | return text
55 | elif isinstance(text, bytes):
56 | return text.decode("utf-8", "ignore")
57 | else:
58 | raise ValueError("Unsupported string type: %s" % (type(text)))
59 | elif six.PY2:
60 | if isinstance(text, str):
61 | return text
62 | elif isinstance(text, unicode):
63 | return text.encode("utf-8")
64 | else:
65 | raise ValueError("Unsupported string type: %s" % (type(text)))
66 | else:
67 | raise ValueError("Not running on Python2 or Python 3?")
68 |
69 |
70 | def load_vocab(vocab_file):
71 | """Loads a vocabulary file into a dictionary."""
72 | vocab = collections.OrderedDict()
73 | index = 0
74 | with tf.gfile.GFile(vocab_file, "r") as reader:
75 | while True:
76 | token = convert_to_unicode(reader.readline())
77 | if not token:
78 | break
79 | token = token.strip()
80 | vocab[token] = index
81 | index += 1
82 | return vocab
83 |
84 |
85 | def convert_by_vocab(vocab, items):
86 | """Converts a sequence of [tokens|ids] using the vocab."""
87 | output = []
88 | for item in items:
89 | #modify for oov, using [unk] replace, if you using english language do not change this
90 | # output.append(vocab.[item])
91 | output.append(vocab.get(item, 100))
92 | return output
93 |
94 |
95 | def convert_tokens_to_ids(vocab, tokens):
96 | return convert_by_vocab(vocab, tokens)
97 |
98 |
99 | def convert_ids_to_tokens(inv_vocab, ids):
100 | return convert_by_vocab(inv_vocab, ids)
101 |
102 |
103 | def whitespace_tokenize(text):
104 | """Runs basic whitespace cleaning and splitting on a peice of text."""
105 | text = text.strip()
106 | if not text:
107 | return []
108 | tokens = text.split()
109 | return tokens
110 |
111 |
112 | class FullTokenizer(object):
113 | """Runs end-to-end tokenziation."""
114 |
115 | def __init__(self, vocab_file, do_lower_case=True):
116 | self.vocab = load_vocab(vocab_file)
117 | self.inv_vocab = {v: k for k, v in self.vocab.items()}
118 | self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
119 | self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
120 |
121 | def tokenize(self, text):
122 | split_tokens = []
123 | for token in self.basic_tokenizer.tokenize(text):
124 | for sub_token in self.wordpiece_tokenizer.tokenize(token):
125 | split_tokens.append(sub_token)
126 |
127 | return split_tokens
128 |
129 | def convert_tokens_to_ids(self, tokens):
130 | return convert_by_vocab(self.vocab, tokens)
131 |
132 | def convert_ids_to_tokens(self, ids):
133 | return convert_by_vocab(self.inv_vocab, ids)
134 |
135 |
136 | class BasicTokenizer(object):
137 | """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
138 |
139 | def __init__(self, do_lower_case=True):
140 | """Constructs a BasicTokenizer.
141 |
142 | Args:
143 | do_lower_case: Whether to lower case the input.
144 | """
145 | self.do_lower_case = do_lower_case
146 |
147 | def tokenize(self, text):
148 | """Tokenizes a piece of text."""
149 | text = convert_to_unicode(text)
150 | text = self._clean_text(text)
151 |
152 | # This was added on November 1st, 2018 for the multilingual and Chinese
153 | # models. This is also applied to the English models now, but it doesn't
154 | # matter since the English models were not trained on any Chinese data
155 | # and generally don't have any Chinese data in them (there are Chinese
156 | # characters in the vocabulary because Wikipedia does have some Chinese
157 | # words in the English Wikipedia.).
158 | text = self._tokenize_chinese_chars(text)
159 |
160 | orig_tokens = whitespace_tokenize(text)
161 | split_tokens = []
162 | for token in orig_tokens:
163 | if self.do_lower_case:
164 | token = token.lower()
165 | token = self._run_strip_accents(token)
166 | split_tokens.extend(self._run_split_on_punc(token))
167 |
168 | output_tokens = whitespace_tokenize(" ".join(split_tokens))
169 | return output_tokens
170 |
171 | def _run_strip_accents(self, text):
172 | """Strips accents from a piece of text."""
173 | text = unicodedata.normalize("NFD", text)
174 | output = []
175 | for char in text:
176 | cat = unicodedata.category(char)
177 | if cat == "Mn":
178 | continue
179 | output.append(char)
180 | return "".join(output)
181 |
182 | def _run_split_on_punc(self, text):
183 | """Splits punctuation on a piece of text."""
184 | chars = list(text)
185 | i = 0
186 | start_new_word = True
187 | output = []
188 | while i < len(chars):
189 | char = chars[i]
190 | if _is_punctuation(char):
191 | output.append([char])
192 | start_new_word = True
193 | else:
194 | if start_new_word:
195 | output.append([])
196 | start_new_word = False
197 | output[-1].append(char)
198 | i += 1
199 |
200 | return ["".join(x) for x in output]
201 |
202 | def _tokenize_chinese_chars(self, text):
203 | """Adds whitespace around any CJK character."""
204 | output = []
205 | for char in text:
206 | cp = ord(char)
207 | if self._is_chinese_char(cp):
208 | output.append(" ")
209 | output.append(char)
210 | output.append(" ")
211 | else:
212 | output.append(char)
213 | return "".join(output)
214 |
215 | def _is_chinese_char(self, cp):
216 | """Checks whether CP is the codepoint of a CJK character."""
217 | # This defines a "chinese character" as anything in the CJK Unicode block:
218 | # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
219 | #
220 | # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
221 | # despite its name. The modern Korean Hangul alphabet is a different block,
222 | # as is Japanese Hiragana and Katakana. Those alphabets are used to write
223 | # space-separated words, so they are not treated specially and handled
224 | # like the all of the other languages.
225 | if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
226 | (cp >= 0x3400 and cp <= 0x4DBF) or #
227 | (cp >= 0x20000 and cp <= 0x2A6DF) or #
228 | (cp >= 0x2A700 and cp <= 0x2B73F) or #
229 | (cp >= 0x2B740 and cp <= 0x2B81F) or #
230 | (cp >= 0x2B820 and cp <= 0x2CEAF) or
231 | (cp >= 0xF900 and cp <= 0xFAFF) or #
232 | (cp >= 0x2F800 and cp <= 0x2FA1F)): #
233 | return True
234 |
235 | return False
236 |
237 | def _clean_text(self, text):
238 | """Performs invalid character removal and whitespace cleanup on text."""
239 | output = []
240 | for char in text:
241 | cp = ord(char)
242 | if cp == 0 or cp == 0xfffd or _is_control(char):
243 | continue
244 | if _is_whitespace(char):
245 | output.append(" ")
246 | else:
247 | output.append(char)
248 | return "".join(output)
249 |
250 |
251 | class WordpieceTokenizer(object):
252 | """Runs WordPiece tokenziation."""
253 |
254 | def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
255 | self.vocab = vocab
256 | self.unk_token = unk_token
257 | self.max_input_chars_per_word = max_input_chars_per_word
258 |
259 | def tokenize(self, text):
260 | """Tokenizes a piece of text into its word pieces.
261 |
262 | This uses a greedy longest-match-first algorithm to perform tokenization
263 | using the given vocabulary.
264 |
265 | For example:
266 | input = "unaffable"
267 | output = ["un", "##aff", "##able"]
268 |
269 | Args:
270 | text: A single token or whitespace separated tokens. This should have
271 | already been passed through `BasicTokenizer.
272 |
273 | Returns:
274 | A list of wordpiece tokens.
275 | """
276 |
277 | text = convert_to_unicode(text)
278 |
279 | output_tokens = []
280 | for token in whitespace_tokenize(text):
281 | chars = list(token)
282 | if len(chars) > self.max_input_chars_per_word:
283 | output_tokens.append(self.unk_token)
284 | continue
285 |
286 | is_bad = False
287 | start = 0
288 | sub_tokens = []
289 | while start < len(chars):
290 | end = len(chars)
291 | cur_substr = None
292 | while start < end:
293 | substr = "".join(chars[start:end])
294 | if start > 0:
295 | substr = "##" + substr
296 | if substr in self.vocab:
297 | cur_substr = substr
298 | break
299 | end -= 1
300 | if cur_substr is None:
301 | is_bad = True
302 | break
303 | sub_tokens.append(cur_substr)
304 | start = end
305 |
306 | if is_bad:
307 | output_tokens.append(self.unk_token)
308 | else:
309 | output_tokens.extend(sub_tokens)
310 | return output_tokens
311 |
312 |
313 | def _is_whitespace(char):
314 | """Checks whether `chars` is a whitespace character."""
315 | # \t, \n, and \r are technically contorl characters but we treat them
316 | # as whitespace since they are generally considered as such.
317 | if char == " " or char == "\t" or char == "\n" or char == "\r":
318 | return True
319 | cat = unicodedata.category(char)
320 | if cat == "Zs":
321 | return True
322 | return False
323 |
324 |
325 | def _is_control(char):
326 | """Checks whether `chars` is a control character."""
327 | # These are technically control characters but we count them as whitespace
328 | # characters.
329 | if char == "\t" or char == "\n" or char == "\r":
330 | return False
331 | cat = unicodedata.category(char)
332 | if cat.startswith("C"):
333 | return True
334 | return False
335 |
336 |
337 | def _is_punctuation(char):
338 | """Checks whether `chars` is a punctuation character."""
339 | cp = ord(char)
340 | # We treat all non-letter/number ASCII as punctuation.
341 | # Characters such as "^", "$", and "`" are not in the Unicode
342 | # Punctuation class but we treat them as punctuation anyways, for
343 | # consistency.
344 | if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
345 | (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
346 | return True
347 | cat = unicodedata.category(char)
348 | if cat.startswith("P"):
349 | return True
350 | return False
351 |
352 |
--------------------------------------------------------------------------------
/bert_base/bert/tokenization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import os
20 | import tempfile
21 |
22 | import tokenization
23 | import tensorflow as tf
24 |
25 |
26 | class TokenizationTest(tf.test.TestCase):
27 |
28 | def test_full_tokenizer(self):
29 | vocab_tokens = [
30 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
31 | "##ing", ","
32 | ]
33 | with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
34 | vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
35 |
36 | vocab_file = vocab_writer.name
37 |
38 | tokenizer = tokenization.FullTokenizer(vocab_file)
39 | os.unlink(vocab_file)
40 |
41 | tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
42 | self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
43 |
44 | self.assertAllEqual(
45 | tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
46 |
47 | def test_chinese(self):
48 | tokenizer = tokenization.BasicTokenizer()
49 |
50 | self.assertAllEqual(
51 | tokenizer.tokenize(u"ah\u535A\u63A8zz"),
52 | [u"ah", u"\u535A", u"\u63A8", u"zz"])
53 |
54 | def test_basic_tokenizer_lower(self):
55 | tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
56 |
57 | self.assertAllEqual(
58 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
59 | ["hello", "!", "how", "are", "you", "?"])
60 | self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
61 |
62 | def test_basic_tokenizer_no_lower(self):
63 | tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
64 |
65 | self.assertAllEqual(
66 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
67 | ["HeLLo", "!", "how", "Are", "yoU", "?"])
68 |
69 | def test_wordpiece_tokenizer(self):
70 | vocab_tokens = [
71 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
72 | "##ing"
73 | ]
74 |
75 | vocab = {}
76 | for (i, token) in enumerate(vocab_tokens):
77 | vocab[token] = i
78 | tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
79 |
80 | self.assertAllEqual(tokenizer.tokenize(""), [])
81 |
82 | self.assertAllEqual(
83 | tokenizer.tokenize("unwanted running"),
84 | ["un", "##want", "##ed", "runn", "##ing"])
85 |
86 | self.assertAllEqual(
87 | tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
88 |
89 | def test_convert_tokens_to_ids(self):
90 | vocab_tokens = [
91 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
92 | "##ing"
93 | ]
94 |
95 | vocab = {}
96 | for (i, token) in enumerate(vocab_tokens):
97 | vocab[token] = i
98 |
99 | self.assertAllEqual(
100 | tokenization.convert_tokens_to_ids(
101 | vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
102 |
103 | def test_is_whitespace(self):
104 | self.assertTrue(tokenization._is_whitespace(u" "))
105 | self.assertTrue(tokenization._is_whitespace(u"\t"))
106 | self.assertTrue(tokenization._is_whitespace(u"\r"))
107 | self.assertTrue(tokenization._is_whitespace(u"\n"))
108 | self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
109 |
110 | self.assertFalse(tokenization._is_whitespace(u"A"))
111 | self.assertFalse(tokenization._is_whitespace(u"-"))
112 |
113 | def test_is_control(self):
114 | self.assertTrue(tokenization._is_control(u"\u0005"))
115 |
116 | self.assertFalse(tokenization._is_control(u"A"))
117 | self.assertFalse(tokenization._is_control(u" "))
118 | self.assertFalse(tokenization._is_control(u"\t"))
119 | self.assertFalse(tokenization._is_control(u"\r"))
120 |
121 | def test_is_punctuation(self):
122 | self.assertTrue(tokenization._is_punctuation(u"-"))
123 | self.assertTrue(tokenization._is_punctuation(u"$"))
124 | self.assertTrue(tokenization._is_punctuation(u"`"))
125 | self.assertTrue(tokenization._is_punctuation(u"."))
126 |
127 | self.assertFalse(tokenization._is_punctuation(u"A"))
128 | self.assertFalse(tokenization._is_punctuation(u" "))
129 |
130 |
131 | if __name__ == "__main__":
132 | tf.test.main()
133 |
--------------------------------------------------------------------------------
/data/sample_files/展示预测的示例地址文件.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/data/sample_files/展示预测的示例地址文件.csv
--------------------------------------------------------------------------------
/data/sample_files/手工标记好的示例地址.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/data/sample_files/手工标记好的示例地址.xlsx
--------------------------------------------------------------------------------
/other/pictures/切分地址要素层级说明.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/other/pictures/切分地址要素层级说明.png
--------------------------------------------------------------------------------
/other/pictures/单条地址分词效果.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/other/pictures/单条地址分词效果.png
--------------------------------------------------------------------------------
/other/pictures/打标签示例.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SuperMap/address-matching/be9dd02786533db12583d1d3b2b782af647a6bda/other/pictures/打标签示例.png
--------------------------------------------------------------------------------
/other/predict_base.py:
--------------------------------------------------------------------------------
1 | # encoding=utf-8
2 |
3 | import tensorflow as tf
4 | import numpy as np
5 | import codecs
6 | import pickle
7 | import os
8 | from other.preprocessing import atomization, tokenized
9 |
10 | from train.models import create_model, InputFeatures
11 | from bert_base.bert import tokenization, modeling
12 | from train.helper import get_args_parser
13 |
14 | args = get_args_parser()
15 |
16 | model_dir = args.output_dir
17 | bert_dir = args.bert_path
18 |
19 | is_training = False
20 | use_one_hot_embeddings = False
21 | batch_size = 1
22 |
23 | gpu_config = tf.ConfigProto()
24 | gpu_config.gpu_options.allow_growth = True
25 | sess = tf.Session(config=gpu_config)
26 | model = None
27 |
28 | global graph
29 | input_ids_p, input_mask_p, label_ids_p, segment_ids_p = None, None, None, None
30 |
31 | print('checkpoint path:{}'.format(os.path.join(model_dir, "checkpoint")))
32 | if not os.path.exists(os.path.join(model_dir, "checkpoint")):
33 | raise Exception("failed to get checkpoint. going to return ")
34 |
35 | # 加载label->id的词典
36 | with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'rb') as rf:
37 | label2id = pickle.load(rf)
38 | id2label = {value: key for key, value in label2id.items()}
39 |
40 | with codecs.open(os.path.join(model_dir, 'label_list.pkl'), 'rb') as rf:
41 | label_list = pickle.load(rf)
42 | num_labels = len(label_list) + 1
43 | graph = tf.get_default_graph()
44 | with graph.as_default():
45 | print("going to restore checkpoint")
46 | sess.run(tf.global_variables_initializer())
47 | input_ids_p = tf.placeholder(tf.int32, [batch_size, args.max_seq_length], name="input_ids")
48 | input_mask_p = tf.placeholder(tf.int32, [batch_size, args.max_seq_length], name="input_mask")
49 |
50 | bert_config = modeling.BertConfig.from_json_file(os.path.join(bert_dir, 'bert_config.json'))
51 | total_loss, logits, trans, pred_ids = create_model(
52 | bert_config=bert_config, is_training=False, input_ids=input_ids_p, input_mask=input_mask_p, segment_ids=None,
53 | labels=None, num_labels=num_labels, use_one_hot_embeddings=False, dropout_rate=1.0)
54 |
55 | saver = tf.train.Saver()
56 | saver.restore(sess, tf.train.latest_checkpoint(model_dir))
57 |
58 |
59 | tokenizer = tokenization.FullTokenizer(
60 | vocab_file=os.path.join(bert_dir, 'vocab.txt'), do_lower_case=args.do_lower_case)
61 |
62 |
63 | def convert_id_to_label(pred_ids_result, idx2label):
64 | """
65 | 将id形式的结果转化为真实序列结果
66 | :param pred_ids_result:
67 | :param idx2label:
68 | :return:
69 | """
70 | result = []
71 | for row in range(batch_size):
72 | curr_seq = []
73 | for ids in pred_ids_result[row][0]:
74 | if ids == 0:
75 | break
76 | curr_label = idx2label[ids]
77 | if curr_label in ['[CLS]', '[SEP]']:
78 | continue
79 | curr_seq.append(curr_label)
80 | result.append(curr_seq)
81 | return result
82 |
83 |
84 | def strage_combined_link_org_loc(tokens, tags):
85 | """
86 | 组合策略
87 | :param pred_label_result:
88 | :param types:
89 | :return:
90 | """
91 | def print_output(data, type):
92 | line = []
93 | line.append(type)
94 | for i in data:
95 | line.append(i.word)
96 | # print(', '.join(line))
97 |
98 | params = None
99 | eval = Result(params)
100 | if len(tokens) > len(tags):
101 | tokens = tokens[:len(tags)]
102 | person, loc, org = eval.get_result(tokens, tags)
103 | print_output(loc, 'LOC')
104 | print_output(person, 'PER')
105 | print_output(org, 'ORG')
106 |
107 |
108 | def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
109 | """
110 | 将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
111 | :param ex_index: index
112 | :param example: 一个样本
113 | :param label_list: 标签列表
114 | :param max_seq_length:
115 | :param tokenizer:
116 | :param mode:
117 | :return:
118 | """
119 | label_map = {}
120 | # 1表示从1开始对label进行index化
121 | for (i, label) in enumerate(label_list, 1):
122 | label_map[label] = i
123 | # 保存label->index 的map
124 | if not os.path.exists(os.path.join(model_dir, 'label2id.pkl')):
125 | with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'wb') as w:
126 | pickle.dump(label_map, w)
127 |
128 | tokens = example
129 | # tokens = tokenizer.tokenize(example.text)
130 | # 序列截断
131 | if len(tokens) >= max_seq_length - 1:
132 | tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志
133 | ntokens = []
134 | segment_ids = []
135 | label_ids = []
136 | ntokens.append("[CLS]") # 句子开始设置CLS 标志
137 | segment_ids.append(0)
138 | # append("O") or append("[CLS]") not sure!
139 | label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
140 | for i, token in enumerate(tokens):
141 | ntokens.append(token)
142 | segment_ids.append(0)
143 | label_ids.append(0)
144 | ntokens.append("[SEP]") # 句尾添加[SEP] 标志
145 | segment_ids.append(0)
146 | # append("O") or append("[SEP]") not sure!
147 | label_ids.append(label_map["[SEP]"])
148 | input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式
149 | input_mask = [1] * len(input_ids)
150 |
151 | # padding, 使用
152 | while len(input_ids) < max_seq_length:
153 | input_ids.append(0)
154 | input_mask.append(0)
155 | segment_ids.append(0)
156 | # we don't concerned about it!
157 | label_ids.append(0)
158 | ntokens.append("**NULL**")
159 | # label_mask.append(0)
160 | # print(len(input_ids))
161 | assert len(input_ids) == max_seq_length
162 | assert len(input_mask) == max_seq_length
163 | assert len(segment_ids) == max_seq_length
164 | assert len(label_ids) == max_seq_length
165 | # assert len(label_mask) == max_seq_length
166 |
167 | # 结构化为一个类
168 | feature = InputFeatures(
169 | input_ids=input_ids,
170 | input_mask=input_mask,
171 | segment_ids=segment_ids,
172 | label_ids=label_ids,
173 | # label_mask = label_mask
174 | )
175 | return feature
176 |
177 |
178 | class Pair(object):
179 | def __init__(self, word, start, end, type, merge=False):
180 | self.__word = word
181 | self.__start = start
182 | self.__end = end
183 | self.__merge = merge
184 | self.__types = type
185 |
186 | @property
187 | def start(self):
188 | return self.__start
189 | @property
190 | def end(self):
191 | return self.__end
192 | @property
193 | def merge(self):
194 | return self.__merge
195 | @property
196 | def word(self):
197 | return self.__word
198 |
199 | @property
200 | def types(self):
201 | return self.__types
202 | @word.setter
203 | def word(self, word):
204 | self.__word = word
205 | @start.setter
206 | def start(self, start):
207 | self.__start = start
208 | @end.setter
209 | def end(self, end):
210 | self.__end = end
211 | @merge.setter
212 | def merge(self, merge):
213 | self.__merge = merge
214 |
215 | @types.setter
216 | def types(self, type):
217 | self.__types = type
218 |
219 | def __str__(self) -> str:
220 | line = []
221 | line.append('entity:{}'.format(self.__word))
222 | line.append('start:{}'.format(self.__start))
223 | line.append('end:{}'.format(self.__end))
224 | line.append('merge:{}'.format(self.__merge))
225 | line.append('types:{}'.format(self.__types))
226 | return '\t'.join(line)
227 |
228 |
229 | class Result(object):
230 | def __init__(self, config):
231 | self.config = config
232 | self.person = []
233 | self.loc = []
234 | self.org = []
235 | self.others = []
236 | def get_result(self, tokens, tags, config=None):
237 | # 先获取标注结果
238 | self.result_to_json(tokens, tags)
239 | return self.person, self.loc, self.org
240 |
241 | def result_to_json(self, string, tags):
242 | """
243 | 将模型标注序列和输入序列结合 转化为结果
244 | :param string: 输入序列
245 | :param tags: 标注结果
246 | :return:
247 | """
248 | item = {"entities": []}
249 | entity_name = ""
250 | entity_start = 0
251 | idx = 0
252 | last_tag = ''
253 |
254 | for char, tag in zip(string, tags):
255 | if tag[0] == "S":
256 | self.append(char, idx, idx+1, tag[2:])
257 | item["entities"].append({"word": char, "start": idx, "end": idx+1, "type":tag[2:]})
258 | elif tag[0] == "B":
259 | if entity_name != '':
260 | self.append(entity_name, entity_start, idx, last_tag[2:])
261 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
262 | entity_name = ""
263 | entity_name += char
264 | entity_start = idx
265 | elif tag[0] == "I":
266 | entity_name += char
267 | elif tag[0] == "O":
268 | if entity_name != '':
269 | self.append(entity_name, entity_start, idx, last_tag[2:])
270 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
271 | entity_name = ""
272 | else:
273 | entity_name = ""
274 | entity_start = idx
275 | idx += 1
276 | last_tag = tag
277 | if entity_name != '':
278 | self.append(entity_name, entity_start, idx, last_tag[2:])
279 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
280 | return item
281 |
282 | def append(self, word, start, end, tag):
283 | if tag == 'LOC':
284 | self.loc.append(Pair(word, start, end, 'LOC'))
285 | elif tag == 'PER':
286 | self.person.append(Pair(word, start, end, 'PER'))
287 | elif tag == 'ORG':
288 | self.org.append(Pair(word, start, end, 'ORG'))
289 | else:
290 | self.others.append(Pair(word, start, end, tag))
291 |
292 |
293 | def predict_one(address):
294 | """
295 | do online prediction. each time make prediction for one instance.
296 | you can change to a batch if you want.
297 |
298 | :param line: a list. element is: [dummy_label,text_a,text_b]
299 | :return:
300 | """
301 | def convert(line):
302 | feature = convert_single_example(0, line, label_list, args.max_seq_length, tokenizer, 'p')
303 | input_ids = np.reshape([feature.input_ids], (batch_size, args.max_seq_length))
304 | input_mask = np.reshape([feature.input_mask], (batch_size, args.max_seq_length))
305 | segment_ids = np.reshape([feature.segment_ids], (batch_size, args.max_seq_length))
306 | label_ids =np.reshape([feature.label_ids], (batch_size, args.max_seq_length))
307 | return input_ids, input_mask, segment_ids, label_ids
308 |
309 | global graph
310 | with graph.as_default():
311 | atom_list = atomization(address)
312 | address = tokenized(atom_list)
313 | # print('your input is:{}'.format(sentence))
314 | input_ids, input_mask, segment_ids, label_ids = convert(address)
315 |
316 | feed_dict = {input_ids_p: input_ids,
317 | input_mask_p: input_mask}
318 | # run session get current feed_dict result
319 | pred_ids_result = sess.run([pred_ids], feed_dict)
320 | pred_label_result = convert_id_to_label(pred_ids_result, id2label)
321 | return pred_label_result
322 |
323 |
324 | def participles_sequence(address, sequence):
325 | if len(address) == len(sequence):
326 | B_index = []
327 | for index in range(1, len(sequence)):
328 | if str(sequence[index]).startswith('B'):
329 | B_index.append(index)
330 | B_index.insert(0, 0)
331 | B_index.append(len(sequence))
332 | participles_address = ''
333 | for index in range(len(B_index)-1):
334 | start = B_index[index]
335 | end = B_index[index+1]
336 | participles_address += ''.join(address[start:end])
337 | participles_address += '/'
338 | return participles_address
339 | else:
340 | return "序列长度有误"
341 |
342 |
343 | if __name__ == "__main__":
344 | result = predict_one("内江市隆昌市四川内江市隆昌市李市镇新盛街2栋3单元201")
345 | print(result)
--------------------------------------------------------------------------------
/other/preprocessing.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # @Author : woleto
3 | # @Time : 2020/3/16 11:04
4 | import os
5 | import re
6 | import string
7 | import pandas as pd
8 |
9 | from bert_base.bert import tokenization
10 | from train.helper import get_args_parser
11 |
12 | args = get_args_parser()
13 |
14 |
15 | def atomization(text):
16 | atom_list = list()
17 | my_re = re.compile(r'([a-z0-9]+[-_()]*[a-z0-9]*)', re.I)
18 | parentheses_re = re.compile(r'[(](.*)[)]', re.S)
19 | # used '0' replace NaN before, judge it now
20 | if text == '0':
21 | return atom_list
22 | while len(text) > 0:
23 | if ('\u4e00' <= text[0] <= '\u9fff') or (text[0] in string.punctuation):
24 | atom_list.append(text[0])
25 | text = text[1:]
26 | elif text[0] == '(':
27 | element = re.search(parentheses_re, text).group(0)
28 | # atom_list[-1] = atom_list[-1] + element
29 | text = text[len(element):]
30 | else:
31 | try:
32 | id_tuple = re.search(my_re, text).span()
33 | start_index = id_tuple[0]
34 | end_index = id_tuple[1]
35 | atom_list.append(text[start_index:end_index])
36 | text = text[end_index:]
37 | except AttributeError:
38 | atom_list.append(text[0])
39 | text = text[1:]
40 | return atom_list
41 |
42 |
43 | def tokenized(atomization_list):
44 | """
45 | second step, process data that after atomization()
46 | :param atomization_list:
47 | :return:
48 | """
49 | tokenized_list = []
50 | tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
51 | for element in atomization_list:
52 | if element == '(':
53 | break
54 | token_list = tokenizer.tokenize(element)
55 | tokenized_list.append(token_list[0])
56 | return tokenized_list
57 |
58 |
59 | def get_BMSE_by_length(length):
60 | if length <= 0:
61 | return list()
62 | elif length == 1:
63 | return list(["S"])
64 | elif length == 2:
65 | return list(["B", "E"])
66 | else:
67 | bmse_list = list(["B"])
68 | for index in range(length - 2):
69 | bmse_list.append("M")
70 | bmse_list.append("E")
71 | return bmse_list
72 |
73 |
74 | class AddressDataset(object):
75 | def __init__(self, file_path, dataset_save_dir):
76 | self.file_path = file_path
77 | self.dataset_save_dir = dataset_save_dir
78 | self.labels = ['province', 'city', 'county', 'town', 'road', 'landmark', 'number', 'poi', 'orient', 'conj',
79 | 'punc']
80 | self.dataset_split = [0.6, 0.2, 0.2]
81 |
82 | def generate(self):
83 | if self.file_path.find('.xl') > 0:
84 | file_data = pd.read_excel(self.file_path)
85 | elif self.file_path.endswith('.csv'):
86 | file_data = pd.read_csv(self.file_path)
87 | else:
88 | raise Exception('不支持的文件类型')
89 | file_data = pd.read_excel(self.file_path)
90 | model = 'train'
91 | data_row_sum = len(file_data)
92 | max_train_index = data_row_sum * self.dataset_split[0]
93 | max_dev_index = data_row_sum * (self.dataset_split[0] + self.dataset_split[1])
94 |
95 | file_data['BMSE_Label'] = ''
96 | for index, row in file_data.iterrows():
97 | # change model
98 | if max_train_index <= index < max_dev_index:
99 | model = 'dev'
100 | if index >= max_dev_index:
101 | model = 'test'
102 |
103 | split_address_str = str(file_data.iloc[index, 0])
104 | split_num_label_str = str(file_data.iloc[index, 1])
105 | split_address = split_address_str.split('|')
106 | split_num_label = split_num_label_str.split('|')
107 | # process address have only one segment. it will cause split_address's length is 1.
108 | if len(split_address) == 0:
109 | split_address = file_data.iloc[index, 0]
110 | split_num_label = file_data.iloc[index, 1]
111 | assert len(split_address) == len(split_num_label), 'the index of' + str(
112 | index) + ':the length of data not equals label'
113 | # make label index to label name. for example: 2-->city
114 | split_label = [int(x) - 1 for x in split_num_label]
115 | row_data_tokenizer = []
116 | bmse_label_list = []
117 | for segment_index in range(len(split_address)):
118 | address_segment = split_address[segment_index]
119 | address_segment_label = split_label[segment_index]
120 | # atomization
121 | atomization_list = atomization(address_segment)
122 | # toke
123 | token_list = tokenized(atomization_list)
124 | for element in token_list:
125 | row_data_tokenizer.append(element)
126 | print(token_list)
127 | # get bmse label
128 | segment_bmse_list = get_BMSE_by_length(len(token_list))
129 | for segment_bmse in segment_bmse_list:
130 | bmse_label_list.append(segment_bmse + '-' + str(self.labels[address_segment_label]))
131 | # process.write_data_label(row_data_tokenizer, bmse_label_list, model)
132 | print(row_data_tokenizer, bmse_label_list)
133 | path = os.path.join(self.dataset_save_dir, model + '.txt')
134 | with open(path, 'a+', encoding='UTF-8') as w:
135 | for index in range(len(row_data_tokenizer)):
136 | str_line = row_data_tokenizer[index] + ' ' + bmse_label_list[index]
137 | w.write(str_line + '\n')
138 | w.write('\n')
139 |
140 |
141 | if __name__ == "__main__":
142 | process = AddressDataset(file_path='data/sample_files/手工标记好的示例地址.xlsx', dataset_save_dir='data')
143 | process.generate()
144 |
--------------------------------------------------------------------------------
/predict.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # @Author : woleto
3 | # @Time : 2020/3/4 12:02
4 | from other.predict_base import predict_one, participles_sequence
5 | from other.preprocessing import atomization
6 | import pandas as pd
7 |
8 |
9 | def predict_address(address):
10 | predict_sequence = predict_one(address)
11 | atom_address = atomization(address)
12 | participles_address = participles_sequence(atom_address, predict_sequence[0])
13 | return participles_address
14 |
15 |
16 | def predict_file_address(origin_file_path, result_file):
17 | """
18 | Note:
19 | 示例代码,可根据文件本身调节
20 | :param origin_file_path:
21 | :param result_file:
22 | :return:
23 | """
24 | address_file_path = origin_file_path
25 | predict_result_path = result_file
26 | data = pd.read_csv(address_file_path, sep=',', encoding="gbk", header=None)
27 | # print(data)
28 | data["序列标注"] = ""
29 | data["分词情况"] = ""
30 | for index, row in data.iterrows():
31 | if index == 0:
32 | continue
33 | try:
34 | address = row[0]
35 | atom_address = atomization(address)
36 | predict_sequence = predict_one(address)
37 | data.iloc[index, 2] = ','.join(predict_sequence[0])
38 | # 用序列映射地址,从而进行分词
39 | participles_address = participles_sequence(atom_address, predict_sequence[0])
40 | data.iloc[index, 1] = participles_address
41 | except:
42 | print(index)
43 | continue
44 | if index % 100 == 0:
45 | data.to_csv(predict_result_path, index=False, header=None)
46 | data.to_csv(predict_result_path, index=False, header=None)
47 |
48 |
49 | if __name__ == "__main__":
50 | # 预测单个地址
51 | address = "北京市朝阳区酒仙桥北路甲10号电子城IT产业园107楼6层"
52 | result = predict_address(address)
53 | print('分词地址:', address)
54 | print('分词结果:', result)
55 |
56 | # 预测整个文件
57 | # predict_file_address('data/sample_files/展示预测的示例地址文件.csv','data/sample_files/展示预测的示例地址文件结果.csv')
58 |
59 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 |
4 | from __future__ import absolute_import
5 | from __future__ import division
6 | from __future__ import print_function
7 |
8 |
9 | def train():
10 | """
11 | 训练步骤:
12 | 1.有标记好的xlsx、csv或其他格式的数据,参考data/sample_files/手工标记好的示例地址.xlsx
13 | 2.使用other文件夹下的preprocessing.py文件生成数据集
14 | 3.在train/helper.py中找到data_dir属性,将其修改为数据集的目录
15 | 4.在train/helper.py中找到output_dir属性,修改该值,否则在此次训练开始后,会自动删除之前训练好的模型
16 | 5.(可选)在train/helper.py中修改有关训练的超参数属性,例如:batch_size,learning_rate等等
17 | :return:
18 | """
19 | # 确保已经在dataset中产生了trian、test、dev文件
20 | import os
21 | from train.helper import get_args_parser
22 | from train.bert_lstm_ner import train
23 |
24 | args = get_args_parser()
25 | if True:
26 | import sys
27 | param_str = '\n'.join(['%20s = %s' % (k, v) for k, v in sorted(vars(args).items())])
28 | print('usage: %s\n%20s %s\n%s\n%s\n' % (' '.join(sys.argv), 'ARG', 'VALUE', '_' * 50, param_str))
29 | print(args)
30 | os.environ['CUDA_VISIBLE_DEVICES'] = args.device_map
31 | train(args=args)
32 |
33 |
34 | if __name__ == '__main__':
35 | train()
--------------------------------------------------------------------------------
/train/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
--------------------------------------------------------------------------------
/train/bert_lstm_ner.py:
--------------------------------------------------------------------------------
1 | #! usr/bin/env python3
2 | # -*- coding:utf-8 -*-
3 | """
4 | Copyright 2018 The Google AI Language Team Authors.
5 | BASED ON Google_BERT.
6 | reference from :zhoukaiyin/
7 |
8 | @Author:Macan
9 | """
10 |
11 | from __future__ import absolute_import
12 | from __future__ import division
13 | from __future__ import print_function
14 |
15 | import collections
16 | import os
17 | import tensorflow as tf
18 | import codecs
19 | import pickle
20 |
21 | from bert_base.bert import modeling
22 | from bert_base.bert import optimization
23 | from bert_base.bert import tokenization
24 |
25 |
26 | from train.models import create_model, InputFeatures, InputExample
27 | from train.helper import set_logger
28 | __version__ = '0.1.0'
29 |
30 | __all__ = ['__version__', 'DataProcessor', 'NerProcessor', 'write_tokens', 'convert_single_example',
31 | 'filed_based_convert_examples_to_features', 'file_based_input_fn_builder',
32 | 'model_fn_builder', 'train']
33 |
34 |
35 | logger = set_logger('Training')
36 |
37 | class DataProcessor(object):
38 | """Base class for data converters for sequence classification data sets."""
39 |
40 | def get_train_examples(self, data_dir):
41 | """Gets a collection of `InputExample`s for the train set."""
42 | raise NotImplementedError()
43 |
44 | def get_dev_examples(self, data_dir):
45 | """Gets a collection of `InputExample`s for the dev set."""
46 | raise NotImplementedError()
47 |
48 | def get_labels(self):
49 | """Gets the list of labels for this data set."""
50 | raise NotImplementedError()
51 |
52 | @classmethod
53 | def _read_data(cls, input_file):
54 | """Reads a BIO data."""
55 | with codecs.open(input_file, 'r', encoding='utf-8') as f:
56 | lines = []
57 | words = []
58 | labels = []
59 | for line in f:
60 | contends = line.strip()
61 | tokens = contends.split(' ')
62 | if len(tokens) == 2:
63 | words.append(tokens[0])
64 | labels.append(tokens[1])
65 | else:
66 | if len(contends) == 0:
67 | l = ' '.join([label for label in labels if len(label) > 0])
68 | w = ' '.join([word for word in words if len(word) > 0])
69 | lines.append([l, w])
70 | words = []
71 | labels = []
72 | continue
73 | if contends.startswith("-DOCSTART-"):
74 | words.append('')
75 | continue
76 | return lines
77 |
78 |
79 | class NerProcessor(DataProcessor):
80 | def __init__(self, output_dir):
81 | self.labels = set()
82 | self.output_dir = output_dir
83 |
84 | def get_train_examples(self, data_dir):
85 | return self._create_example(
86 | self._read_data(os.path.join(data_dir, "train.txt")), "train"
87 | )
88 |
89 | def get_dev_examples(self, data_dir):
90 | return self._create_example(
91 | self._read_data(os.path.join(data_dir, "dev.txt")), "dev"
92 | )
93 |
94 | def get_test_examples(self, data_dir):
95 | return self._create_example(
96 | self._read_data(os.path.join(data_dir, "test.txt")), "test")
97 |
98 | def get_labels(self, labels=None):
99 | if labels is not None:
100 | try:
101 | # 支持从文件中读取标签类型
102 | if os.path.exists(labels) and os.path.isfile(labels):
103 | with codecs.open(labels, 'r', encoding='utf-8') as fd:
104 | for line in fd:
105 | self.labels.append(line.strip())
106 | else:
107 | # 否则通过传入的参数,按照逗号分割
108 | self.labels = labels.split(',')
109 | self.labels = set(self.labels) # to set
110 | except Exception as e:
111 | print(e)
112 | # 通过读取train文件获取标签的方法会出现一定的风险。
113 | if os.path.exists(os.path.join(self.output_dir, 'label_list.pkl')):
114 | with codecs.open(os.path.join(self.output_dir, 'label_list.pkl'), 'rb') as rf:
115 | self.labels = pickle.load(rf)
116 | else:
117 | if len(self.labels) > 0:
118 | self.labels = self.labels.union(set(["X", "[CLS]", "[SEP]"]))
119 | with codecs.open(os.path.join(self.output_dir, 'label_list.pkl'), 'wb') as rf:
120 | pickle.dump(self.labels, rf)
121 | else:
122 | # self.labels = ["O", "B", "I", "X","[CLS]", "[SEP]"]
123 | self.labels = ["O", 'B-TIM', 'I-TIM', "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"]
124 | return self.labels
125 |
126 | def _create_example(self, lines, set_type):
127 | examples = []
128 | for (i, line) in enumerate(lines):
129 | guid = "%s-%s" % (set_type, i)
130 | text = tokenization.convert_to_unicode(line[1])
131 | label = tokenization.convert_to_unicode(line[0])
132 | # if i == 0:
133 | # print('label: ', label)
134 | examples.append(InputExample(guid=guid, text=text, label=label))
135 | return examples
136 |
137 | def _read_data(self, input_file):
138 | """Reads a BIO data."""
139 | with codecs.open(input_file, 'r', encoding='utf-8') as f:
140 | lines = []
141 | words = []
142 | labels = []
143 | for line in f:
144 | contends = line.strip()
145 | tokens = contends.split(' ')
146 | if len(tokens) == 2:
147 | words.append(tokens[0])
148 | labels.append(tokens[-1])
149 | else:
150 | if len(contends) == 0 and len(words) > 0:
151 | label = []
152 | word = []
153 | for l, w in zip(labels, words):
154 | if len(l) > 0 and len(w) > 0:
155 | label.append(l)
156 | self.labels.add(l)
157 | word.append(w)
158 | lines.append([' '.join(label), ' '.join(word)])
159 | words = []
160 | labels = []
161 | continue
162 | if contends.startswith("-DOCSTART-"):
163 | continue
164 | return lines
165 |
166 |
167 | def write_tokens(tokens, output_dir, mode):
168 | """
169 | 将序列解析结果写入到文件中
170 | 只在mode=test的时候启用
171 | :param output_dir:
172 | :param tokens:
173 | :param mode:
174 | :return:
175 | """
176 | if mode == "test":
177 | path = os.path.join(output_dir, "token_" + mode + ".txt")
178 | wf = codecs.open(path, 'a', encoding='utf-8')
179 | for token in tokens:
180 | if token != "**NULL**":
181 | wf.write(token + '\n')
182 | wf.close()
183 |
184 |
185 | def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode):
186 | """
187 | 将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
188 | :param ex_index: index
189 | :param example: 一个样本
190 | :param label_list: 标签列表
191 | :param max_seq_length:
192 | :param tokenizer:
193 | :param output_dir
194 | :param mode:
195 | :return:
196 | """
197 | label_map = {}
198 | # 1表示从1开始对label进行index化
199 | for (i, label) in enumerate(label_list, 1):
200 | label_map[label] = i
201 | # 保存label->index 的map
202 | if not os.path.exists(os.path.join(output_dir, 'label2id.pkl')):
203 | with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'wb') as w:
204 | pickle.dump(label_map, w)
205 |
206 | textlist = example.text.split(' ')
207 | labellist = example.label.split(' ')
208 | tokens = []
209 | labels = []
210 | for i, word in enumerate(textlist):
211 | # 分词,如果是中文,就是分字,但是对于一些不在BERT的vocab.txt中得字符会被进行WordPice处理(例如中文的引号),可以将所有的分字操作替换为list(input)
212 | token = tokenizer.tokenize(word)
213 | tokens.extend(token)
214 | label_1 = labellist[i]
215 | for m in range(len(token)):
216 | if m == 0:
217 | labels.append(label_1)
218 | else: # 一般不会出现else
219 | labels.append("X")
220 | # tokens = tokenizer.tokenize(example.text)
221 | # 序列截断
222 | if len(tokens) >= max_seq_length - 1:
223 | tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志
224 | labels = labels[0:(max_seq_length - 2)]
225 | ntokens = []
226 | segment_ids = []
227 | label_ids = []
228 | ntokens.append("[CLS]") # 句子开始设置CLS 标志
229 | segment_ids.append(0)
230 | # append("O") or append("[CLS]") not sure!
231 | label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
232 | for i, token in enumerate(tokens):
233 | ntokens.append(token)
234 | segment_ids.append(0)
235 | label_ids.append(label_map[labels[i]])
236 | ntokens.append("[SEP]") # 句尾添加[SEP] 标志
237 | segment_ids.append(0)
238 | # append("O") or append("[SEP]") not sure!
239 | label_ids.append(label_map["[SEP]"])
240 | input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式
241 | input_mask = [1] * len(input_ids)
242 | # label_mask = [1] * len(input_ids)
243 | # padding, 使用
244 | while len(input_ids) < max_seq_length:
245 | input_ids.append(0)
246 | input_mask.append(0)
247 | segment_ids.append(0)
248 | # we don't concerned about it!
249 | label_ids.append(0)
250 | ntokens.append("**NULL**")
251 | # label_mask.append(0)
252 | # print(len(input_ids))
253 | assert len(input_ids) == max_seq_length
254 | assert len(input_mask) == max_seq_length
255 | assert len(segment_ids) == max_seq_length
256 | assert len(label_ids) == max_seq_length
257 | # assert len(label_mask) == max_seq_length
258 |
259 | # 打印部分样本数据信息
260 | if ex_index < 5:
261 | logger.info("*** Example ***")
262 | logger.info("guid: %s" % (example.guid))
263 | logger.info("tokens: %s" % " ".join(
264 | [tokenization.printable_text(x) for x in tokens]))
265 | logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
266 | logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
267 | logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
268 | logger.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
269 | # logger.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))
270 |
271 | # 结构化为一个类
272 | feature = InputFeatures(
273 | input_ids=input_ids,
274 | input_mask=input_mask,
275 | segment_ids=segment_ids,
276 | label_ids=label_ids,
277 | # label_mask = label_mask
278 | )
279 | # mode='test'的时候才有效
280 | write_tokens(ntokens, output_dir, mode)
281 | return feature
282 |
283 |
284 | def filed_based_convert_examples_to_features(
285 | examples, label_list, max_seq_length, tokenizer, output_file, output_dir, mode=None):
286 | """
287 | 将数据转化为TF_Record 结构,作为模型数据输入
288 | :param examples: 样本
289 | :param label_list:标签list
290 | :param max_seq_length: 预先设定的最大序列长度
291 | :param tokenizer: tokenizer 对象
292 | :param output_file: tf.record 输出路径
293 | :param mode:
294 | :return:
295 | """
296 | writer = tf.python_io.TFRecordWriter(output_file)
297 | # 遍历训练数据
298 | for (ex_index, example) in enumerate(examples):
299 | if ex_index % 5000 == 0:
300 | logger.info("Writing example %d of %d" % (ex_index, len(examples)))
301 | # 对于每一个训练样本,
302 | feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode)
303 |
304 | def create_int_feature(values):
305 | f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
306 | return f
307 |
308 | features = collections.OrderedDict()
309 | features["input_ids"] = create_int_feature(feature.input_ids)
310 | features["input_mask"] = create_int_feature(feature.input_mask)
311 | features["segment_ids"] = create_int_feature(feature.segment_ids)
312 | features["label_ids"] = create_int_feature(feature.label_ids)
313 | # features["label_mask"] = create_int_feature(feature.label_mask)
314 | # tf.train.Example/Feature 是一种协议,方便序列化???
315 | tf_example = tf.train.Example(features=tf.train.Features(feature=features))
316 | writer.write(tf_example.SerializeToString())
317 |
318 |
319 | def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
320 | name_to_features = {
321 | "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
322 | "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
323 | "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
324 | "label_ids": tf.FixedLenFeature([seq_length], tf.int64),
325 | # "label_ids":tf.VarLenFeature(tf.int64),
326 | # "label_mask": tf.FixedLenFeature([seq_length], tf.int64),
327 | }
328 |
329 | def _decode_record(record, name_to_features):
330 | example = tf.parse_single_example(record, name_to_features)
331 | for name in list(example.keys()):
332 | t = example[name]
333 | if t.dtype == tf.int64:
334 | t = tf.to_int32(t)
335 | example[name] = t
336 | return example
337 |
338 | def input_fn(params):
339 | batch_size = params["batch_size"]
340 | d = tf.data.TFRecordDataset(input_file)
341 | if is_training:
342 | d = d.repeat()
343 | d = d.shuffle(buffer_size=300)
344 | d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features),
345 | batch_size=batch_size,
346 | num_parallel_calls=8, # 并行处理数据的CPU核心数量,不要大于你机器的核心数
347 | drop_remainder=drop_remainder))
348 | d = d.prefetch(buffer_size=4)
349 | return d
350 |
351 | return input_fn
352 |
353 |
354 | def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
355 | num_train_steps, num_warmup_steps, args):
356 | """
357 | 构建模型
358 | :param bert_config:
359 | :param num_labels:
360 | :param init_checkpoint:
361 | :param learning_rate:
362 | :param num_train_steps:
363 | :param num_warmup_steps:
364 | :param use_tpu:
365 | :param use_one_hot_embeddings:
366 | :return:
367 | """
368 | def model_fn(features, labels, mode, params):
369 | logger.info("*** Features ***")
370 | for name in sorted(features.keys()):
371 | logger.info(" name = %s, shape = %s" % (name, features[name].shape))
372 | input_ids = features["input_ids"]
373 | input_mask = features["input_mask"]
374 | segment_ids = features["segment_ids"]
375 | label_ids = features["label_ids"]
376 |
377 | print('shape of input_ids', input_ids.shape)
378 | # label_mask = features["label_mask"]
379 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
380 |
381 | # 使用参数构建模型,input_idx 就是输入的样本idx表示,label_ids 就是标签的idx表示
382 | total_loss, logits, trans, pred_ids = create_model(
383 | bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
384 | num_labels, False, args.dropout_rate, args.lstm_size, args.cell, args.num_layers)
385 |
386 | tvars = tf.trainable_variables()
387 | # 加载BERT模型
388 | if init_checkpoint:
389 | (assignment_map, initialized_variable_names) = \
390 | modeling.get_assignment_map_from_checkpoint(tvars,
391 | init_checkpoint)
392 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
393 |
394 | # 打印变量名
395 | # logger.info("**** Trainable Variables ****")
396 | #
397 | # # 打印加载模型的参数
398 | # for var in tvars:
399 | # init_string = ""
400 | # if var.name in initialized_variable_names:
401 | # init_string = ", *INIT_FROM_CKPT*"
402 | # logger.info(" name = %s, shape = %s%s", var.name, var.shape,
403 | # init_string)
404 |
405 | output_spec = None
406 | if mode == tf.estimator.ModeKeys.TRAIN:
407 | #train_op = optimizer.optimizer(total_loss, learning_rate, num_train_steps)
408 | train_op = optimization.create_optimizer(
409 | total_loss, learning_rate, num_train_steps, num_warmup_steps, False)
410 | hook_dict = {}
411 | hook_dict['loss'] = total_loss
412 | hook_dict['global_steps'] = tf.train.get_or_create_global_step()
413 | logging_hook = tf.train.LoggingTensorHook(
414 | hook_dict, every_n_iter=args.save_summary_steps)
415 |
416 | output_spec = tf.estimator.EstimatorSpec(
417 | mode=mode,
418 | loss=total_loss,
419 | train_op=train_op,
420 | training_hooks=[logging_hook])
421 |
422 | elif mode == tf.estimator.ModeKeys.EVAL:
423 | # 针对NER ,进行了修改
424 | def metric_fn(label_ids, pred_ids):
425 | return {
426 | "eval_loss": tf.metrics.mean_squared_error(labels=label_ids, predictions=pred_ids),
427 | }
428 | eval_metrics = metric_fn(label_ids, pred_ids)
429 | output_spec = tf.estimator.EstimatorSpec(
430 | mode=mode,
431 | loss=total_loss,
432 | eval_metric_ops=eval_metrics
433 | )
434 | else:
435 | output_spec = tf.estimator.EstimatorSpec(
436 | mode=mode,
437 | predictions=pred_ids
438 | )
439 | return output_spec
440 |
441 | return model_fn
442 |
443 |
444 | def get_last_checkpoint(model_path):
445 | if not os.path.exists(os.path.join(model_path, 'checkpoint')):
446 | logger.info('checkpoint file not exits:'.format(os.path.join(model_path, 'checkpoint')))
447 | return None
448 | last = None
449 | with codecs.open(os.path.join(model_path, 'checkpoint'), 'r', encoding='utf-8') as fd:
450 | for line in fd:
451 | line = line.strip().split(':')
452 | if len(line) != 2:
453 | continue
454 | if line[0] == 'model_checkpoint_path':
455 | last = line[1][2:-1]
456 | break
457 | return last
458 |
459 |
460 | def adam_filter(model_path):
461 | """
462 | 去掉模型中的Adam相关参数,这些参数在测试的时候是没有用的
463 | :param model_path:
464 | :return:
465 | """
466 | last_name = get_last_checkpoint(model_path)
467 | if last_name is None:
468 | return
469 | sess = tf.Session()
470 | imported_meta = tf.train.import_meta_graph(os.path.join(model_path, last_name + '.meta'))
471 | imported_meta.restore(sess, os.path.join(model_path, last_name))
472 | need_vars = []
473 | for var in tf.global_variables():
474 | if 'adam_v' not in var.name and 'adam_m' not in var.name:
475 | need_vars.append(var)
476 | saver = tf.train.Saver(need_vars)
477 | saver.save(sess, os.path.join(model_path, 'model.ckpt'))
478 |
479 |
480 | def train(args):
481 | os.environ['CUDA_VISIBLE_DEVICES'] = args.device_map
482 |
483 | processors = {
484 | "ner": NerProcessor
485 | }
486 | bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)
487 |
488 | if args.max_seq_length > bert_config.max_position_embeddings:
489 | raise ValueError(
490 | "Cannot use sequence length %d because the BERT model "
491 | "was only trained up to sequence length %d" %
492 | (args.max_seq_length, bert_config.max_position_embeddings))
493 |
494 | # 在re train 的时候,才删除上一轮产出的文件,在predicted 的时候不做clean
495 | if args.clean and args.do_train:
496 | if os.path.exists(args.output_dir):
497 | def del_file(path):
498 | ls = os.listdir(path)
499 | for i in ls:
500 | c_path = os.path.join(path, i)
501 | if os.path.isdir(c_path):
502 | del_file(c_path)
503 | else:
504 | os.remove(c_path)
505 |
506 | try:
507 | del_file(args.output_dir)
508 | except Exception as e:
509 | print(e)
510 | print('pleace remove the files of output dir and data.conf')
511 | exit(-1)
512 |
513 | #check output dir exists
514 | if not os.path.exists(args.output_dir):
515 | os.mkdir(args.output_dir)
516 |
517 | processor = processors[args.ner](args.output_dir)
518 |
519 | tokenizer = tokenization.FullTokenizer(
520 | vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
521 |
522 | session_config = tf.ConfigProto(
523 | log_device_placement=False,
524 | inter_op_parallelism_threads=0,
525 | intra_op_parallelism_threads=0,
526 | allow_soft_placement=True)
527 |
528 | run_config = tf.estimator.RunConfig(
529 | model_dir=args.output_dir,
530 | save_summary_steps=10,
531 | save_checkpoints_steps=500,
532 | session_config=session_config
533 | )
534 |
535 | train_examples = None
536 | eval_examples = None
537 | num_train_steps = None
538 | num_warmup_steps = None
539 |
540 | if args.do_train and args.do_eval:
541 | # 加载训练数据
542 | train_examples = processor.get_train_examples(args.data_dir)
543 | num_train_steps = int(
544 | len(train_examples) *1.0 / args.batch_size * args.num_train_epochs)
545 | if num_train_steps < 1:
546 | raise AttributeError('training data is so small...')
547 | num_warmup_steps = int(num_train_steps * args.warmup_proportion)
548 |
549 | logger.info("***** Running training *****")
550 | logger.info(" Num examples = %d", len(train_examples))
551 | logger.info(" Batch size = %d", args.batch_size)
552 | logger.info(" Num steps = %d", num_train_steps)
553 |
554 | eval_examples = processor.get_dev_examples(args.data_dir)
555 |
556 | # 打印验证集数据信息
557 | logger.info("***** Running evaluation *****")
558 | logger.info(" Num examples = %d", len(eval_examples))
559 | logger.info(" Batch size = %d", args.batch_size)
560 |
561 | label_list = processor.get_labels()
562 | # 返回的model_dn 是一个函数,其定义了模型,训练,评测方法,并且使用钩子参数,加载了BERT模型的参数进行了自己模型的参数初始化过程
563 | # tf 新的架构方法,通过定义model_fn 函数,定义模型,然后通过EstimatorAPI进行模型的其他工作,Es就可以控制模型的训练,预测,评估工作等。
564 | model_fn = model_fn_builder(
565 | bert_config=bert_config,
566 | num_labels=len(label_list) + 1,
567 | init_checkpoint=args.init_checkpoint,
568 | learning_rate=args.learning_rate,
569 | num_train_steps=num_train_steps,
570 | num_warmup_steps=num_warmup_steps,
571 | args=args)
572 |
573 | params = {
574 | 'batch_size': args.batch_size
575 | }
576 |
577 | estimator = tf.estimator.Estimator(
578 | model_fn,
579 | params=params,
580 | config=run_config)
581 |
582 | if args.do_train and args.do_eval:
583 | # 1. 将数据转化为tf_record 数据
584 | train_file = os.path.join(args.output_dir, "train.tf_record")
585 | if not os.path.exists(train_file):
586 | filed_based_convert_examples_to_features(
587 | train_examples, label_list, args.max_seq_length, tokenizer, train_file, args.output_dir)
588 |
589 | # 2.读取record 数据,组成batch
590 | train_input_fn = file_based_input_fn_builder(
591 | input_file=train_file,
592 | seq_length=args.max_seq_length,
593 | is_training=True,
594 | drop_remainder=True)
595 | # estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
596 |
597 | eval_file = os.path.join(args.output_dir, "eval.tf_record")
598 | if not os.path.exists(eval_file):
599 | filed_based_convert_examples_to_features(
600 | eval_examples, label_list, args.max_seq_length, tokenizer, eval_file, args.output_dir)
601 | eval_input_fn = file_based_input_fn_builder(
602 | input_file=eval_file,
603 | seq_length=args.max_seq_length,
604 | is_training=False,
605 | drop_remainder=False)
606 |
607 | # train and eval togither
608 | # early stop hook
609 | early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook(
610 | estimator=estimator,
611 | metric_name='loss',
612 | max_steps_without_decrease=num_train_steps,
613 | eval_dir=None,
614 | min_steps=0,
615 | run_every_secs=None,
616 | run_every_steps=args.save_checkpoints_steps)
617 |
618 | train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
619 | hooks=[early_stopping_hook])
620 | eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn)
621 | tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
622 |
623 | if args.do_predict:
624 | token_path = os.path.join(args.output_dir, "token_test.txt")
625 | if os.path.exists(token_path):
626 | os.remove(token_path)
627 |
628 | with codecs.open(os.path.join(args.output_dir, 'label2id.pkl'), 'rb') as rf:
629 | label2id = pickle.load(rf)
630 | id2label = {value: key for key, value in label2id.items()}
631 |
632 | predict_examples = processor.get_test_examples(args.data_dir)
633 | predict_file = os.path.join(args.output_dir, "predict.tf_record")
634 | filed_based_convert_examples_to_features(predict_examples, label_list,
635 | args.max_seq_length, tokenizer,
636 | predict_file, args.output_dir, mode="test")
637 |
638 | logger.info("***** Running prediction*****")
639 | logger.info(" Num examples = %d", len(predict_examples))
640 | logger.info(" Batch size = %d", args.batch_size)
641 |
642 | predict_drop_remainder = False
643 | predict_input_fn = file_based_input_fn_builder(
644 | input_file=predict_file,
645 | seq_length=args.max_seq_length,
646 | is_training=False,
647 | drop_remainder=predict_drop_remainder)
648 |
649 | result = estimator.predict(input_fn=predict_input_fn)
650 | output_predict_file = os.path.join(args.output_dir, "label_test.txt")
651 |
652 | def result_to_pair(writer):
653 | for predict_line, prediction in zip(predict_examples, result):
654 | idx = 0
655 | line = ''
656 | line_token = str(predict_line.text).split(' ')
657 | label_token = str(predict_line.label).split(' ')
658 | len_seq = len(label_token)
659 | if len(line_token) != len(label_token):
660 | logger.info(predict_line.text)
661 | logger.info(predict_line.label)
662 | break
663 | for id in prediction:
664 | if idx >= len_seq:
665 | break
666 | if id == 0:
667 | continue
668 | curr_labels = id2label[id]
669 | if curr_labels in ['[CLS]', '[SEP]']:
670 | continue
671 | try:
672 | line += line_token[idx] + ' ' + label_token[idx] + ' ' + curr_labels + '\n'
673 | except Exception as e:
674 | logger.info(e)
675 | logger.info(predict_line.text)
676 | logger.info(predict_line.label)
677 | line = ''
678 | break
679 | idx += 1
680 | writer.write(line + '\n')
681 |
682 | with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
683 | result_to_pair(writer)
684 | from train import conlleval
685 | eval_result = conlleval.return_report(output_predict_file)
686 | print(''.join(eval_result))
687 | # 写结果到文件中
688 | with codecs.open(os.path.join(args.output_dir, 'predict_score.txt'), 'a', encoding='utf-8') as fd:
689 | fd.write(''.join(eval_result))
690 | # filter model
691 | if args.filter_adam_var:
692 | adam_filter(args.output_dir)
693 |
694 |
--------------------------------------------------------------------------------
/train/conlleval.py:
--------------------------------------------------------------------------------
1 | # Python version of the evaluation script from CoNLL'00-
2 | # Originates from: https://github.com/spyysalo/conlleval.py
3 |
4 |
5 | # Intentional differences:
6 | # - accept any space as delimiter by default
7 | # - optional file argument (default STDIN)
8 | # - option to set boundary (-b argument)
9 | # - LaTeX output (-l argument) not supported
10 | # - raw tags (-r argument) not supported
11 |
12 | # add function :evaluate(predicted_label, ori_label): which will not read from file
13 |
14 | import sys
15 | import re
16 | import codecs
17 | from collections import defaultdict, namedtuple
18 |
19 | ANY_SPACE = ''
20 |
21 |
22 | class FormatError(Exception):
23 | pass
24 |
25 | Metrics = namedtuple('Metrics', 'tp fp fn prec rec fscore')
26 |
27 |
28 | class EvalCounts(object):
29 | def __init__(self):
30 | self.correct_chunk = 0 # number of correctly identified chunks
31 | self.correct_tags = 0 # number of correct chunk tags
32 | self.found_correct = 0 # number of chunks in corpus
33 | self.found_guessed = 0 # number of identified chunks
34 | self.token_counter = 0 # token counter (ignores sentence breaks)
35 |
36 | # counts by type
37 | self.t_correct_chunk = defaultdict(int)
38 | self.t_found_correct = defaultdict(int)
39 | self.t_found_guessed = defaultdict(int)
40 |
41 |
42 | def parse_args(argv):
43 | import argparse
44 | parser = argparse.ArgumentParser(
45 | description='evaluate tagging results using CoNLL criteria',
46 | formatter_class=argparse.ArgumentDefaultsHelpFormatter
47 | )
48 | arg = parser.add_argument
49 | arg('-b', '--boundary', metavar='STR', default='-X-',
50 | help='sentence boundary')
51 | arg('-d', '--delimiter', metavar='CHAR', default=ANY_SPACE,
52 | help='character delimiting items in input')
53 | arg('-o', '--otag', metavar='CHAR', default='O',
54 | help='alternative outside tag')
55 | arg('file', nargs='?', default=None)
56 | return parser.parse_args(argv)
57 |
58 |
59 | def parse_tag(t):
60 | m = re.match(r'^([^-]*)-(.*)$', t)
61 | return m.groups() if m else (t, '')
62 |
63 |
64 | def evaluate(iterable, options=None):
65 | if options is None:
66 | options = parse_args([]) # use defaults
67 |
68 | counts = EvalCounts()
69 | num_features = None # number of features per line
70 | in_correct = False # currently processed chunks is correct until now
71 | last_correct = 'O' # previous chunk tag in corpus
72 | last_correct_type = '' # type of previously identified chunk tag
73 | last_guessed = 'O' # previously identified chunk tag
74 | last_guessed_type = '' # type of previous chunk tag in corpus
75 |
76 | for line in iterable:
77 | line = line.rstrip('\r\n')
78 |
79 | if options.delimiter == ANY_SPACE:
80 | features = line.split()
81 | else:
82 | features = line.split(options.delimiter)
83 |
84 | if num_features is None:
85 | num_features = len(features)
86 | elif num_features != len(features) and len(features) != 0:
87 | raise FormatError('unexpected number of features: %d (%d)' %
88 | (len(features), num_features))
89 |
90 | if len(features) == 0 or features[0] == options.boundary:
91 | features = [options.boundary, 'O', 'O']
92 | if len(features) < 3:
93 | raise FormatError('unexpected number of features in line %s' % line)
94 |
95 | guessed, guessed_type = parse_tag(features.pop())
96 | correct, correct_type = parse_tag(features.pop())
97 | first_item = features.pop(0)
98 |
99 | if first_item == options.boundary:
100 | guessed = 'O'
101 |
102 | end_correct = end_of_chunk(last_correct, correct,
103 | last_correct_type, correct_type)
104 | end_guessed = end_of_chunk(last_guessed, guessed,
105 | last_guessed_type, guessed_type)
106 | start_correct = start_of_chunk(last_correct, correct,
107 | last_correct_type, correct_type)
108 | start_guessed = start_of_chunk(last_guessed, guessed,
109 | last_guessed_type, guessed_type)
110 |
111 | if in_correct:
112 | if (end_correct and end_guessed and
113 | last_guessed_type == last_correct_type):
114 | in_correct = False
115 | counts.correct_chunk += 1
116 | counts.t_correct_chunk[last_correct_type] += 1
117 | elif (end_correct != end_guessed or guessed_type != correct_type):
118 | in_correct = False
119 |
120 | if start_correct and start_guessed and guessed_type == correct_type:
121 | in_correct = True
122 |
123 | if start_correct:
124 | counts.found_correct += 1
125 | counts.t_found_correct[correct_type] += 1
126 | if start_guessed:
127 | counts.found_guessed += 1
128 | counts.t_found_guessed[guessed_type] += 1
129 | if first_item != options.boundary:
130 | if correct == guessed and guessed_type == correct_type:
131 | counts.correct_tags += 1
132 | counts.token_counter += 1
133 |
134 | last_guessed = guessed
135 | last_correct = correct
136 | last_guessed_type = guessed_type
137 | last_correct_type = correct_type
138 |
139 | if in_correct:
140 | counts.correct_chunk += 1
141 | counts.t_correct_chunk[last_correct_type] += 1
142 |
143 | return counts
144 |
145 |
146 |
147 | def uniq(iterable):
148 | seen = set()
149 | return [i for i in iterable if not (i in seen or seen.add(i))]
150 |
151 |
152 | def calculate_metrics(correct, guessed, total):
153 | tp, fp, fn = correct, guessed-correct, total-correct
154 | p = 0 if tp + fp == 0 else 1.*tp / (tp + fp)
155 | r = 0 if tp + fn == 0 else 1.*tp / (tp + fn)
156 | f = 0 if p + r == 0 else 2 * p * r / (p + r)
157 | return Metrics(tp, fp, fn, p, r, f)
158 |
159 |
160 | def metrics(counts):
161 | c = counts
162 | overall = calculate_metrics(
163 | c.correct_chunk, c.found_guessed, c.found_correct
164 | )
165 | by_type = {}
166 | for t in uniq(list(c.t_found_correct) + list(c.t_found_guessed)):
167 | by_type[t] = calculate_metrics(
168 | c.t_correct_chunk[t], c.t_found_guessed[t], c.t_found_correct[t]
169 | )
170 | return overall, by_type
171 |
172 |
173 | def report(counts, out=None):
174 | if out is None:
175 | out = sys.stdout
176 |
177 | overall, by_type = metrics(counts)
178 |
179 | c = counts
180 | out.write('processed %d tokens with %d phrases; ' %
181 | (c.token_counter, c.found_correct))
182 | out.write('found: %d phrases; correct: %d.\n' %
183 | (c.found_guessed, c.correct_chunk))
184 |
185 | if c.token_counter > 0:
186 | out.write('accuracy: %6.2f%%; ' %
187 | (100.*c.correct_tags/c.token_counter))
188 | out.write('precision: %6.2f%%; ' % (100.*overall.prec))
189 | out.write('recall: %6.2f%%; ' % (100.*overall.rec))
190 | out.write('FB1: %6.2f\n' % (100.*overall.fscore))
191 |
192 | for i, m in sorted(by_type.items()):
193 | out.write('%17s: ' % i)
194 | out.write('precision: %6.2f%%; ' % (100.*m.prec))
195 | out.write('recall: %6.2f%%; ' % (100.*m.rec))
196 | out.write('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i]))
197 |
198 |
199 | def report_notprint(counts, out=None):
200 | if out is None:
201 | out = sys.stdout
202 |
203 | overall, by_type = metrics(counts)
204 |
205 | c = counts
206 | final_report = []
207 | line = []
208 | line.append('processed %d tokens with %d phrases; ' %
209 | (c.token_counter, c.found_correct))
210 | line.append('found: %d phrases; correct: %d.\n' %
211 | (c.found_guessed, c.correct_chunk))
212 | final_report.append("".join(line))
213 |
214 | if c.token_counter > 0:
215 | line = []
216 | line.append('accuracy: %6.2f%%; ' %
217 | (100.*c.correct_tags/c.token_counter))
218 | line.append('precision: %6.2f%%; ' % (100.*overall.prec))
219 | line.append('recall: %6.2f%%; ' % (100.*overall.rec))
220 | line.append('FB1: %6.2f\n' % (100.*overall.fscore))
221 | final_report.append("".join(line))
222 |
223 | for i, m in sorted(by_type.items()):
224 | line = []
225 | line.append('%17s: ' % i)
226 | line.append('precision: %6.2f%%; ' % (100.*m.prec))
227 | line.append('recall: %6.2f%%; ' % (100.*m.rec))
228 | line.append('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i]))
229 | final_report.append("".join(line))
230 | return final_report
231 |
232 |
233 | def end_of_chunk(prev_tag, tag, prev_type, type_):
234 | # check if a chunk ended between the previous and current word
235 | # arguments: previous and current chunk tags, previous and current types
236 | chunk_end = False
237 |
238 | if prev_tag == 'E': chunk_end = True
239 | if prev_tag == 'S': chunk_end = True
240 |
241 | if prev_tag == 'B' and tag == 'B': chunk_end = True
242 | if prev_tag == 'B' and tag == 'S': chunk_end = True
243 | if prev_tag == 'B' and tag == 'O': chunk_end = True
244 | if prev_tag == 'I' and tag == 'B': chunk_end = True
245 | if prev_tag == 'I' and tag == 'S': chunk_end = True
246 | if prev_tag == 'I' and tag == 'O': chunk_end = True
247 |
248 | if prev_tag != 'O' and prev_tag != '.' and prev_type != type_:
249 | chunk_end = True
250 |
251 | # these chunks are assumed to have length 1
252 | if prev_tag == ']': chunk_end = True
253 | if prev_tag == '[': chunk_end = True
254 |
255 | return chunk_end
256 |
257 |
258 | def start_of_chunk(prev_tag, tag, prev_type, type_):
259 | # check if a chunk started between the previous and current word
260 | # arguments: previous and current chunk tags, previous and current types
261 | chunk_start = False
262 |
263 | if tag == 'B': chunk_start = True
264 | if tag == 'S': chunk_start = True
265 |
266 | if prev_tag == 'E' and tag == 'E': chunk_start = True
267 | if prev_tag == 'E' and tag == 'I': chunk_start = True
268 | if prev_tag == 'S' and tag == 'E': chunk_start = True
269 | if prev_tag == 'S' and tag == 'I': chunk_start = True
270 | if prev_tag == 'O' and tag == 'E': chunk_start = True
271 | if prev_tag == 'O' and tag == 'I': chunk_start = True
272 |
273 | if tag != 'O' and tag != '.' and prev_type != type_:
274 | chunk_start = True
275 |
276 | # these chunks are assumed to have length 1
277 | if tag == '[': chunk_start = True
278 | if tag == ']': chunk_start = True
279 |
280 | return chunk_start
281 |
282 |
283 | def return_report(input_file):
284 | with codecs.open(input_file, "r", "utf8") as f:
285 | counts = evaluate(f)
286 | return report_notprint(counts)
287 |
288 |
289 | def main(argv):
290 | args = parse_args(argv[1:])
291 |
292 | if args.file is None:
293 | counts = evaluate(sys.stdin, args)
294 | else:
295 | with open(args.file) as f:
296 | counts = evaluate(f, args)
297 | report(counts)
298 |
299 | if __name__ == '__main__':
300 | sys.exit(main(sys.argv))
--------------------------------------------------------------------------------
/train/helper.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import argparse
3 | import logging
4 | import os
5 |
6 | __all__ = ['get_args_parser', 'set_logger']
7 |
8 |
9 | def get_args_parser():
10 | from .bert_lstm_ner import __version__
11 | parser = argparse.ArgumentParser()
12 | if os.name == 'nt':
13 | # chinese_L-12_H-768_A-12为google发布的预训练模型
14 | bert_path = 'bert_base/chinese_L-12_H-768_A-12'
15 | root_path = r''
16 | else:
17 | bert_path = '/home/chinese_L-12_H-768_A-12/'
18 | root_path = '/home/BERT-BiLSTM-CRF-NER'
19 |
20 | group1 = parser.add_argument_group('File Paths', 'config the path, checkpoint and filename of a pretrained/fine-tuned BERT model')
21 |
22 | # 1.data_dir是存放最终数据集的地方,使用自己数据训练一定记得确认数据集是否在如下目录(当前是:data/dataset)
23 | group1.add_argument('-data_dir', type=str, default=os.path.join(root_path, 'data/dataset'),
24 | help='train, dev and test data dir')
25 |
26 | # 2.output_dir是放模型以及中间数据存放的目录,如果要生成新模型,一定要确认,否则会抹掉之前训练好的模型
27 | group1.add_argument('-output_dir', type=str, default=os.path.join(root_path, 'output'),
28 | help='directory of a pretrained BERT model')
29 |
30 | group1.add_argument('-bert_path', type=str, default=bert_path)
31 | group1.add_argument('-bert_config_file', type=str, default=os.path.join(bert_path, 'bert_config.json'))
32 | group1.add_argument('-init_checkpoint', type=str, default=os.path.join(bert_path, 'bert_model.ckpt'),
33 | help='Initial checkpoint (usually from a pre-trained BERT model).')
34 | group1.add_argument('-vocab_file', type=str, default=os.path.join(bert_path, 'vocab.txt'),
35 | help='')
36 |
37 | group2 = parser.add_argument_group('Model Config', 'config the model params')
38 |
39 | # 3.地址的最大长度,当前为100。可以根据需要调整。
40 | # 例如:"北京市朝阳区" 长度为6
41 | group2.add_argument('-max_seq_length', type=int, default=100,
42 | help='The maximum total input sequence length after WordPiece tokenization.')
43 | group2.add_argument('-do_train', action='store_false', default=True,
44 | help='Whether to run training.')
45 | group2.add_argument('-do_eval', action='store_false', default=True,
46 | help='Whether to run eval on the dev set.')
47 | group2.add_argument('-do_predict', action='store_false', default=True,
48 | help='Whether to run the predict in inference mode on the test set.')
49 |
50 | # 4. 一次添加多少条地址到模型进行训练,一般可以选择2的倍数
51 | group2.add_argument('-batch_size', type=int, default=32,
52 | help='Total batch size for training, eval and predict.')
53 | # 5. 训练学习率
54 | group2.add_argument('-learning_rate', type=float, default=1e-5,
55 | help='The initial learning rate for Adam.')
56 | # 6.一次训练训练多少代(把所有训练数据从头到尾训练一次是一代)
57 | group2.add_argument('-num_train_epochs', type=float, default=10,
58 | help='Total number of training epochs to perform.')
59 |
60 |
61 | group2.add_argument('-dropout_rate', type=float, default=0.5,
62 | help='Dropout rate')
63 | group2.add_argument('-clip', type=float, default=0.5,
64 | help='Gradient clip')
65 | group2.add_argument('-warmup_proportion', type=float, default=0.1,
66 | help='Proportion of training to perform linear learning rate warmup for '
67 | 'E.g., 0.1 = 10% of training.')
68 |
69 | # 7. LSTM网络中一层的神经元数目
70 | group2.add_argument('-lstm_size', type=int, default=128,
71 | help='size of lstm units.')
72 | # 8. LSTM设置几层(数目较大会造成训练缓慢)
73 | group2.add_argument('-num_layers', type=int, default=1,
74 | help='number of rnn layers, default is 1.')
75 | group2.add_argument('-cell', type=str, default='lstm',
76 | help='which rnn cell used.')
77 |
78 | # 9. 训练多少步,保存一次模型
79 | group2.add_argument('-save_checkpoints_steps', type=int, default=500,
80 | help='save_checkpoints_steps')
81 | # 10.训练多少步,保存一次当前状态
82 | group2.add_argument('-save_summary_steps', type=int, default=500,
83 | help='save_summary_steps.')
84 | group2.add_argument('-filter_adam_var', type=bool, default=False,
85 | help='after training do filter Adam params from model and save no Adam params model in file.')
86 | group2.add_argument('-do_lower_case', type=bool, default=True,
87 | help='Whether to lower case the input text.')
88 | group2.add_argument('-clean', type=bool, default=True)
89 | group2.add_argument('-device_map', type=str, default='0',
90 | help='witch device using to train')
91 |
92 | # add labels
93 | group2.add_argument('-label_list', type=str, default=None,
94 | help='User define labels, can be a file with one label one line or a string using \',\' split')
95 |
96 | parser.add_argument('-verbose', action='store_true', default=False,
97 | help='turn on tensorflow logging for debug')
98 | parser.add_argument('-ner', type=str, default='ner', help='which modle to train')
99 | parser.add_argument('-version', action='version', version='%(prog)s ' + __version__)
100 | return parser.parse_args()
101 |
102 |
103 | def set_logger(context, verbose=False):
104 | logger = logging.getLogger(context)
105 | logger.setLevel(logging.DEBUG if verbose else logging.INFO)
106 | formatter = logging.Formatter(
107 | '%(levelname)-.1s:' + context + ':[%(filename).3s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt=
108 | '%m-%d %H:%M:%S')
109 | console_handler = logging.StreamHandler()
110 | console_handler.setLevel(logging.DEBUG if verbose else logging.INFO)
111 | console_handler.setFormatter(formatter)
112 | logger.handlers = []
113 | logger.addHandler(console_handler)
114 | return logger
--------------------------------------------------------------------------------
/train/lstm_crf_layer.py:
--------------------------------------------------------------------------------
1 | # encoding=utf-8
2 |
3 | """
4 | bert-blstm-crf layer
5 | @Author:Macan
6 | """
7 |
8 | import tensorflow as tf
9 | from tensorflow.contrib import rnn
10 | from tensorflow.contrib import crf
11 |
12 |
13 | class BLSTM_CRF(object):
14 | def __init__(self, embedded_chars, hidden_unit, cell_type, num_layers, dropout_rate,
15 | initializers, num_labels, seq_length, labels, lengths, is_training):
16 | """
17 | BLSTM-CRF 网络
18 | :param embedded_chars: Fine-tuning embedding input
19 | :param hidden_unit: LSTM的隐含单元个数
20 | :param cell_type: RNN类型(LSTM OR GRU DICNN will be add in feature)
21 | :param num_layers: RNN的层数
22 | :param droupout_rate: droupout rate
23 | :param initializers: variable init class
24 | :param num_labels: 标签数量
25 | :param seq_length: 序列最大长度
26 | :param labels: 真实标签
27 | :param lengths: [batch_size] 每个batch下序列的真实长度
28 | :param is_training: 是否是训练过程
29 | """
30 | self.hidden_unit = hidden_unit
31 | self.dropout_rate = dropout_rate
32 | self.cell_type = cell_type
33 | self.num_layers = num_layers
34 | self.embedded_chars = embedded_chars
35 | self.initializers = initializers
36 | self.seq_length = seq_length
37 | self.num_labels = num_labels
38 | self.labels = labels
39 | self.lengths = lengths
40 | self.embedding_dims = embedded_chars.shape[-1].value
41 | self.is_training = is_training
42 |
43 | def add_blstm_crf_layer(self, crf_only):
44 | """
45 | blstm-crf网络
46 | :return:
47 | """
48 | if self.is_training:
49 | # lstm input dropout rate i set 0.9 will get best score
50 | self.embedded_chars = tf.nn.dropout(self.embedded_chars, self.dropout_rate)
51 |
52 | if crf_only:
53 | logits = self.project_crf_layer(self.embedded_chars)
54 | else:
55 | # blstm
56 | lstm_output = self.blstm_layer(self.embedded_chars)
57 | # project
58 | logits = self.project_bilstm_layer(lstm_output)
59 | # crf
60 | loss, trans = self.crf_layer(logits)
61 | # CRF decode, pred_ids 是一条最大概率的标注路径
62 | pred_ids, _ = crf.crf_decode(potentials=logits, transition_params=trans, sequence_length=self.lengths)
63 | return (loss, logits, trans, pred_ids)
64 |
65 | def _witch_cell(self):
66 | """
67 | RNN 类型
68 | :return:
69 | """
70 | cell_tmp = None
71 | if self.cell_type == 'lstm':
72 | cell_tmp = rnn.LSTMCell(self.hidden_unit)
73 | elif self.cell_type == 'gru':
74 | cell_tmp = rnn.GRUCell(self.hidden_unit)
75 | return cell_tmp
76 |
77 | def _bi_dir_rnn(self):
78 | """
79 | 双向RNN
80 | :return:
81 | """
82 | cell_fw = self._witch_cell()
83 | cell_bw = self._witch_cell()
84 | if self.dropout_rate is not None:
85 | cell_bw = rnn.DropoutWrapper(cell_bw, output_keep_prob=self.dropout_rate)
86 | cell_fw = rnn.DropoutWrapper(cell_fw, output_keep_prob=self.dropout_rate)
87 | return cell_fw, cell_bw
88 |
89 | def blstm_layer(self, embedding_chars):
90 | """
91 |
92 | :return:
93 | """
94 | with tf.variable_scope('rnn_layer'):
95 | cell_fw, cell_bw = self._bi_dir_rnn()
96 | if self.num_layers > 1:
97 | cell_fw = rnn.MultiRNNCell([cell_fw] * self.num_layers, state_is_tuple=True)
98 | cell_bw = rnn.MultiRNNCell([cell_bw] * self.num_layers, state_is_tuple=True)
99 | outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, embedding_chars,
100 | dtype=tf.float32)
101 | outputs = tf.concat(outputs, axis=2)
102 | return outputs
103 |
104 | def project_bilstm_layer(self, lstm_outputs, name=None):
105 | """
106 | hidden layer between lstm layer and logits
107 | :param lstm_outputs: [batch_size, num_steps, emb_size]
108 | :return: [batch_size, num_steps, num_tags]
109 | """
110 | with tf.variable_scope("project" if not name else name):
111 | with tf.variable_scope("hidden"):
112 | W = tf.get_variable("W", shape=[self.hidden_unit * 2, self.hidden_unit],
113 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
114 |
115 | b = tf.get_variable("b", shape=[self.hidden_unit], dtype=tf.float32,
116 | initializer=tf.zeros_initializer())
117 | output = tf.reshape(lstm_outputs, shape=[-1, self.hidden_unit * 2])
118 | hidden = tf.nn.xw_plus_b(output, W, b)
119 |
120 | # project to score of tags
121 | with tf.variable_scope("logits"):
122 | W = tf.get_variable("W", shape=[self.hidden_unit, self.num_labels],
123 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
124 |
125 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
126 | initializer=tf.zeros_initializer())
127 |
128 | pred = tf.nn.xw_plus_b(hidden, W, b)
129 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
130 |
131 | def project_crf_layer(self, embedding_chars, name=None):
132 | """
133 | hidden layer between input layer and logits
134 | :param lstm_outputs: [batch_size, num_steps, emb_size]
135 | :return: [batch_size, num_steps, num_tags]
136 | """
137 | with tf.variable_scope("project" if not name else name):
138 | with tf.variable_scope("logits"):
139 | W = tf.get_variable("W", shape=[self.embedding_dims, self.num_labels],
140 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
141 |
142 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
143 | initializer=tf.zeros_initializer())
144 | output = tf.reshape(self.embedded_chars,
145 | shape=[-1, self.embedding_dims]) # [batch_size, embedding_dims]
146 | pred = tf.tanh(tf.nn.xw_plus_b(output, W, b))
147 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
148 |
149 | def crf_layer(self, logits):
150 | """
151 | calculate crf loss
152 | :param project_logits: [1, num_steps, num_tags]
153 | :return: scalar loss
154 | """
155 | with tf.variable_scope("crf_loss"):
156 | trans = tf.get_variable(
157 | "transitions",
158 | shape=[self.num_labels, self.num_labels],
159 | initializer=self.initializers.xavier_initializer())
160 | if self.labels is None:
161 | return None, trans
162 | else:
163 | log_likelihood, trans = tf.contrib.crf.crf_log_likelihood(
164 | inputs=logits,
165 | tag_indices=self.labels,
166 | transition_params=trans,
167 | sequence_lengths=self.lengths)
168 | return tf.reduce_mean(-log_likelihood), trans
169 |
--------------------------------------------------------------------------------
/train/models.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | 一些公共模型代码
5 | @Time : 2019/1/30 12:46
6 | @Author : MaCan (ma_cancan@163.com)
7 | @File : models.py
8 | """
9 |
10 | from train.lstm_crf_layer import BLSTM_CRF
11 | from tensorflow.contrib.layers.python.layers import initializers
12 |
13 |
14 | __all__ = ['InputExample', 'InputFeatures', 'decode_labels', 'create_model', 'convert_id_str',
15 | 'convert_id_to_label', 'result_to_json', 'create_classification_model']
16 |
17 | class Model(object):
18 | def __init__(self, *args, **kwargs):
19 | pass
20 |
21 |
22 | class InputExample(object):
23 | """A single training/test example for simple sequence classification."""
24 |
25 | def __init__(self, guid=None, text=None, label=None):
26 | """Constructs a InputExample.
27 | Args:
28 | guid: Unique id for the example.
29 | text_a: string. The untokenized text of the first sequence. For single
30 | sequence tasks, only this sequence must be specified.
31 | label: (Optional) string. The label of the example. This should be
32 | specified for train and dev examples, but not for test examples.
33 | """
34 | self.guid = guid
35 | self.text = text
36 | self.label = label
37 |
38 | class InputFeatures(object):
39 | """A single set of features of data."""
40 |
41 | def __init__(self, input_ids, input_mask, segment_ids, label_ids, ):
42 | self.input_ids = input_ids
43 | self.input_mask = input_mask
44 | self.segment_ids = segment_ids
45 | self.label_ids = label_ids
46 | # self.label_mask = label_mask
47 |
48 |
49 | class DataProcessor(object):
50 | """Base class for data converters for sequence classification data sets."""
51 |
52 | def get_train_examples(self, data_dir):
53 | """Gets a collection of `InputExample`s for the train set."""
54 | raise NotImplementedError()
55 |
56 | def get_dev_examples(self, data_dir):
57 | """Gets a collection of `InputExample`s for the dev set."""
58 | raise NotImplementedError()
59 |
60 | def get_labels(self):
61 | """Gets the list of labels for this data set."""
62 | raise NotImplementedError()
63 |
64 |
65 | def create_model(bert_config, is_training, input_ids, input_mask,
66 | segment_ids, labels, num_labels, use_one_hot_embeddings,
67 | dropout_rate=1.0, lstm_size=1, cell='lstm', num_layers=1):
68 | """
69 | 创建X模型
70 | :param bert_config: bert 配置
71 | :param is_training:
72 | :param input_ids: 数据的idx 表示
73 | :param input_mask:
74 | :param segment_ids:
75 | :param labels: 标签的idx 表示
76 | :param num_labels: 类别数量
77 | :param use_one_hot_embeddings:
78 | :return:
79 | """
80 | # 使用数据加载BertModel,获取对应的字embedding
81 | import tensorflow as tf
82 | from bert_base.bert import modeling
83 | model = modeling.BertModel(
84 | config=bert_config,
85 | is_training=is_training,
86 | input_ids=input_ids,
87 | input_mask=input_mask,
88 | token_type_ids=segment_ids,
89 | use_one_hot_embeddings=use_one_hot_embeddings
90 | )
91 | # 获取对应的embedding 输入数据[batch_size, seq_length, embedding_size]
92 | embedding = model.get_sequence_output()
93 | max_seq_length = embedding.shape[1].value
94 | # 算序列真实长度
95 | used = tf.sign(tf.abs(input_ids))
96 | lengths = tf.reduce_sum(used, reduction_indices=1) # [batch_size] 大小的向量,包含了当前batch中的序列长度
97 | # 添加CRF output layer
98 | blstm_crf = BLSTM_CRF(embedded_chars=embedding, hidden_unit=lstm_size, cell_type=cell, num_layers=num_layers,
99 | dropout_rate=dropout_rate, initializers=initializers, num_labels=num_labels,
100 | seq_length=max_seq_length, labels=labels, lengths=lengths, is_training=is_training)
101 | rst = blstm_crf.add_blstm_crf_layer(crf_only=True)
102 | return rst
103 |
104 |
105 | def create_classification_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels):
106 | """
107 |
108 | :param bert_config:
109 | :param is_training:
110 | :param input_ids:
111 | :param input_mask:
112 | :param segment_ids:
113 | :param labels:
114 | :param num_labels:
115 | :param use_one_hot_embedding:
116 | :return:
117 | """
118 | import tensorflow as tf
119 | from bert_base.bert import modeling
120 | # 通过传入的训练数据,进行representation
121 | model = modeling.BertModel(
122 | config=bert_config,
123 | is_training=is_training,
124 | input_ids=input_ids,
125 | input_mask=input_mask,
126 | token_type_ids=segment_ids,
127 | )
128 |
129 | embedding_layer = model.get_sequence_output()
130 | output_layer = model.get_pooled_output()
131 | hidden_size = output_layer.shape[-1].value
132 |
133 | # predict = CNN_Classification(embedding_chars=embedding_layer,
134 | # labels=labels,
135 | # num_tags=num_labels,
136 | # sequence_length=FLAGS.max_seq_length,
137 | # embedding_dims=embedding_layer.shape[-1].value,
138 | # vocab_size=0,
139 | # filter_sizes=[3, 4, 5],
140 | # num_filters=3,
141 | # dropout_keep_prob=FLAGS.dropout_keep_prob,
142 | # l2_reg_lambda=0.001)
143 | # loss, predictions, probabilities = predict.add_cnn_layer()
144 |
145 | output_weights = tf.get_variable(
146 | "output_weights", [num_labels, hidden_size],
147 | initializer=tf.truncated_normal_initializer(stddev=0.02))
148 |
149 | output_bias = tf.get_variable(
150 | "output_bias", [num_labels], initializer=tf.zeros_initializer())
151 |
152 | with tf.variable_scope("loss"):
153 | if is_training:
154 | # I.e., 0.1 dropout
155 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
156 |
157 | logits = tf.matmul(output_layer, output_weights, transpose_b=True)
158 | logits = tf.nn.bias_add(logits, output_bias)
159 | probabilities = tf.nn.softmax(logits, axis=-1)
160 | log_probs = tf.nn.log_softmax(logits, axis=-1)
161 |
162 | if labels is not None:
163 | one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
164 |
165 | per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
166 | loss = tf.reduce_mean(per_example_loss)
167 | else:
168 | loss, per_example_loss = None, None
169 | return (loss, per_example_loss, logits, probabilities)
170 |
171 |
172 | def decode_labels(labels, batch_size):
173 | new_labels = []
174 | for row in range(batch_size):
175 | label = []
176 | for i in labels[row]:
177 | i = i.decode('utf-8')
178 | if i == '**PAD**':
179 | break
180 | if i in ['[CLS]', '[SEP]']:
181 | continue
182 | label.append(i)
183 | new_labels.append(label)
184 | return new_labels
185 |
186 |
187 | def convert_id_str(input_ids, batch_size):
188 | res = []
189 | for row in range(batch_size):
190 | line = []
191 | for i in input_ids[row]:
192 | i = i.decode('utf-8')
193 | if i == '**PAD**':
194 | break
195 | if i in ['[CLS]', '[SEP]']:
196 | continue
197 |
198 | line.append(i)
199 | res.append(line)
200 | return res
201 |
202 |
203 | def convert_id_to_label(pred_ids_result, idx2label, batch_size):
204 | """
205 | 将id形式的结果转化为真实序列结果
206 | :param pred_ids_result:
207 | :param idx2label:
208 | :return:
209 | """
210 | result = []
211 | index_result = []
212 | for row in range(batch_size):
213 | curr_seq = []
214 | curr_idx = []
215 | ids = pred_ids_result[row]
216 | for idx, id in enumerate(ids):
217 | if id == 0:
218 | break
219 | curr_label = idx2label[id]
220 | if curr_label in ['[CLS]', '[SEP]']:
221 | if id == 102 and (idx < len(ids) and ids[idx + 1] == 0):
222 | break
223 | continue
224 | # elif curr_label == '[SEP]':
225 | # break
226 | curr_seq.append(curr_label)
227 | curr_idx.append(id)
228 | result.append(curr_seq)
229 | index_result.append(curr_idx)
230 | return result, index_result
231 |
232 |
233 | def result_to_json(self, string, tags):
234 | """
235 | 将模型标注序列和输入序列结合 转化为结果
236 | :param string: 输入序列
237 | :param tags: 标注结果
238 | :return:
239 | """
240 | item = {"entities": []}
241 | entity_name = ""
242 | entity_start = 0
243 | idx = 0
244 | last_tag = ''
245 |
246 | for char, tag in zip(string, tags):
247 | if tag[0] == "S":
248 | self.append(char, idx, idx+1, tag[2:])
249 | item["entities"].append({"word": char, "start": idx, "end": idx+1, "type":tag[2:]})
250 | elif tag[0] == "B":
251 | if entity_name != '':
252 | self.append(entity_name, entity_start, idx, last_tag[2:])
253 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
254 | entity_name = ""
255 | entity_name += char
256 | entity_start = idx
257 | elif tag[0] == "I":
258 | entity_name += char
259 | elif tag[0] == "O":
260 | if entity_name != '':
261 | self.append(entity_name, entity_start, idx, last_tag[2:])
262 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
263 | entity_name = ""
264 | else:
265 | entity_name = ""
266 | entity_start = idx
267 | idx += 1
268 | last_tag = tag
269 | if entity_name != '':
270 | self.append(entity_name, entity_start, idx, last_tag[2:])
271 | item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
272 | return item
273 |
--------------------------------------------------------------------------------
/train/tf_metrics.py:
--------------------------------------------------------------------------------
1 | """
2 | Multiclass
3 | from:
4 | https://github.com/guillaumegenthial/tf_metrics/blob/master/tf_metrics/__init__.py
5 |
6 | """
7 |
8 | __author__ = "Guillaume Genthial"
9 |
10 | import numpy as np
11 | import tensorflow as tf
12 | from tensorflow.python.ops.metrics_impl import _streaming_confusion_matrix
13 |
14 | __all__ = ['precision', 'recall', 'f1', 'fbeta', 'safe_div', 'pr_re_fbeta', 'pr_re_fbeta', 'metrics_from_confusion_matrix']
15 |
16 |
17 | def precision(labels, predictions, num_classes, pos_indices=None,
18 | weights=None, average='micro'):
19 | """Multi-class precision metric for Tensorflow
20 | Parameters
21 | ----------
22 | labels : Tensor of tf.int32 or tf.int64
23 | The true labels
24 | predictions : Tensor of tf.int32 or tf.int64
25 | The predictions, same shape as labels
26 | num_classes : int
27 | The number of classes
28 | pos_indices : list of int, optional
29 | The indices of the positive classes, default is all
30 | weights : Tensor of tf.int32, optional
31 | Mask, must be of compatible shape with labels
32 | average : str, optional
33 | 'micro': counts the total number of true positives, false
34 | positives, and false negatives for the classes in
35 | `pos_indices` and infer the metric from it.
36 | 'macro': will compute the metric separately for each class in
37 | `pos_indices` and average. Will not account for class
38 | imbalance.
39 | 'weighted': will compute the metric separately for each class in
40 | `pos_indices` and perform a weighted average by the total
41 | number of true labels for each class.
42 | Returns
43 | -------
44 | tuple of (scalar float Tensor, update_op)
45 | """
46 | cm, op = _streaming_confusion_matrix(
47 | labels, predictions, num_classes, weights)
48 | pr, _, _ = metrics_from_confusion_matrix(
49 | cm, pos_indices, average=average)
50 | op, _, _ = metrics_from_confusion_matrix(
51 | op, pos_indices, average=average)
52 | return (pr, op)
53 |
54 |
55 | def recall(labels, predictions, num_classes, pos_indices=None, weights=None,
56 | average='micro'):
57 | """Multi-class recall metric for Tensorflow
58 | Parameters
59 | ----------
60 | labels : Tensor of tf.int32 or tf.int64
61 | The true labels
62 | predictions : Tensor of tf.int32 or tf.int64
63 | The predictions, same shape as labels
64 | num_classes : int
65 | The number of classes
66 | pos_indices : list of int, optional
67 | The indices of the positive classes, default is all
68 | weights : Tensor of tf.int32, optional
69 | Mask, must be of compatible shape with labels
70 | average : str, optional
71 | 'micro': counts the total number of true positives, false
72 | positives, and false negatives for the classes in
73 | `pos_indices` and infer the metric from it.
74 | 'macro': will compute the metric separately for each class in
75 | `pos_indices` and average. Will not account for class
76 | imbalance.
77 | 'weighted': will compute the metric separately for each class in
78 | `pos_indices` and perform a weighted average by the total
79 | number of true labels for each class.
80 | Returns
81 | -------
82 | tuple of (scalar float Tensor, update_op)
83 | """
84 | cm, op = _streaming_confusion_matrix(
85 | labels, predictions, num_classes, weights)
86 | _, re, _ = metrics_from_confusion_matrix(
87 | cm, pos_indices, average=average)
88 | _, op, _ = metrics_from_confusion_matrix(
89 | op, pos_indices, average=average)
90 | return (re, op)
91 |
92 |
93 | def f1(labels, predictions, num_classes, pos_indices=None, weights=None,
94 | average='micro'):
95 | return fbeta(labels, predictions, num_classes, pos_indices, weights,
96 | average)
97 |
98 |
99 | def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None,
100 | average='micro', beta=1):
101 | """Multi-class fbeta metric for Tensorflow
102 | Parameters
103 | ----------
104 | labels : Tensor of tf.int32 or tf.int64
105 | The true labels
106 | predictions : Tensor of tf.int32 or tf.int64
107 | The predictions, same shape as labels
108 | num_classes : int
109 | The number of classes
110 | pos_indices : list of int, optional
111 | The indices of the positive classes, default is all
112 | weights : Tensor of tf.int32, optional
113 | Mask, must be of compatible shape with labels
114 | average : str, optional
115 | 'micro': counts the total number of true positives, false
116 | positives, and false negatives for the classes in
117 | `pos_indices` and infer the metric from it.
118 | 'macro': will compute the metric separately for each class in
119 | `pos_indices` and average. Will not account for class
120 | imbalance.
121 | 'weighted': will compute the metric separately for each class in
122 | `pos_indices` and perform a weighted average by the total
123 | number of true labels for each class.
124 | beta : int, optional
125 | Weight of precision in harmonic mean
126 | Returns
127 | -------
128 | tuple of (scalar float Tensor, update_op)
129 | """
130 | cm, op = _streaming_confusion_matrix(
131 | labels, predictions, num_classes, weights)
132 | _, _, fbeta = metrics_from_confusion_matrix(
133 | cm, pos_indices, average=average, beta=beta)
134 | _, _, op = metrics_from_confusion_matrix(
135 | op, pos_indices, average=average, beta=beta)
136 | return (fbeta, op)
137 |
138 |
139 | def safe_div(numerator, denominator):
140 | """Safe division, return 0 if denominator is 0"""
141 | numerator, denominator = tf.to_float(numerator), tf.to_float(denominator)
142 | zeros = tf.zeros_like(numerator, dtype=numerator.dtype)
143 | denominator_is_zero = tf.equal(denominator, zeros)
144 | return tf.where(denominator_is_zero, zeros, numerator / denominator)
145 |
146 |
147 | def pr_re_fbeta(cm, pos_indices, beta=1):
148 | """Uses a confusion matrix to compute precision, recall and fbeta"""
149 | num_classes = cm.shape[0]
150 | neg_indices = [i for i in range(num_classes) if i not in pos_indices]
151 | cm_mask = np.ones([num_classes, num_classes])
152 | cm_mask[neg_indices, neg_indices] = 0
153 | diag_sum = tf.reduce_sum(tf.diag_part(cm * cm_mask))
154 |
155 | cm_mask = np.ones([num_classes, num_classes])
156 | cm_mask[:, neg_indices] = 0
157 | tot_pred = tf.reduce_sum(cm * cm_mask)
158 |
159 | cm_mask = np.ones([num_classes, num_classes])
160 | cm_mask[neg_indices, :] = 0
161 | tot_gold = tf.reduce_sum(cm * cm_mask)
162 |
163 | pr = safe_div(diag_sum, tot_pred)
164 | re = safe_div(diag_sum, tot_gold)
165 | fbeta = safe_div((1. + beta**2) * pr * re, beta**2 * pr + re)
166 |
167 | return pr, re, fbeta
168 |
169 |
170 | def metrics_from_confusion_matrix(cm, pos_indices=None, average='micro',
171 | beta=1):
172 | """Precision, Recall and F1 from the confusion matrix
173 | Parameters
174 | ----------
175 | cm : tf.Tensor of type tf.int32, of shape (num_classes, num_classes)
176 | The streaming confusion matrix.
177 | pos_indices : list of int, optional
178 | The indices of the positive classes
179 | beta : int, optional
180 | Weight of precision in harmonic mean
181 | average : str, optional
182 | 'micro', 'macro' or 'weighted'
183 | """
184 | num_classes = cm.shape[0]
185 | if pos_indices is None:
186 | pos_indices = [i for i in range(num_classes)]
187 |
188 | if average == 'micro':
189 | return pr_re_fbeta(cm, pos_indices, beta)
190 | elif average in {'macro', 'weighted'}:
191 | precisions, recalls, fbetas, n_golds = [], [], [], []
192 | for idx in pos_indices:
193 | pr, re, fbeta = pr_re_fbeta(cm, [idx], beta)
194 | precisions.append(pr)
195 | recalls.append(re)
196 | fbetas.append(fbeta)
197 | cm_mask = np.zeros([num_classes, num_classes])
198 | cm_mask[idx, :] = 1
199 | n_golds.append(tf.to_float(tf.reduce_sum(cm * cm_mask)))
200 |
201 | if average == 'macro':
202 | pr = tf.reduce_mean(precisions)
203 | re = tf.reduce_mean(recalls)
204 | fbeta = tf.reduce_mean(fbetas)
205 | return pr, re, fbeta
206 | if average == 'weighted':
207 | n_gold = tf.reduce_sum(n_golds)
208 | pr_sum = sum(p * n for p, n in zip(precisions, n_golds))
209 | pr = safe_div(pr_sum, n_gold)
210 | re_sum = sum(r * n for r, n in zip(recalls, n_golds))
211 | re = safe_div(re_sum, n_gold)
212 | fbeta_sum = sum(f * n for f, n in zip(fbetas, n_golds))
213 | fbeta = safe_div(fbeta_sum, n_gold)
214 | return pr, re, fbeta
215 |
216 | else:
217 | raise NotImplementedError()
--------------------------------------------------------------------------------