├── champions.csv
├── scrap.ipynb
├── .ipynb_checkpoints
└── scrap-checkpoint.ipynb
└── football_analysis.ipynb
/champions.csv:
--------------------------------------------------------------------------------
1 | Rank,Team,Participations,Titles,Pld,W,D,L,GF,GA,GD,Pts
2 | 1,Brazil,21,5,109,73,18,18,229,105,124,237
3 | 2,Germany,19,4,109,67,20,22,226,125,101,221
4 | 3,Italy,18,4,83,45,21,17,128,77,51,156
5 | 4,Argentina,17,2,81,43,15,23,137,93,44,144
6 | 5,France,15,2,66,34,13,19,120,77,43,115
7 | 6,England,15,1,69,29,21,19,91,64,27,108
8 | 7,Spain,15,1,63,30,15,18,99,72,27,105
9 | 8,Uruguay,13,2,56,24,12,20,87,74,13,84
10 |
--------------------------------------------------------------------------------
/scrap.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 77,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "from bs4 import BeautifulSoup as bs\n",
10 | "import requests\n",
11 | "import pandas as pd\n",
12 | "import csv\n"
13 | ]
14 | },
15 | {
16 | "cell_type": "code",
17 | "execution_count": 78,
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "url='https://en.wikipedia.org/wiki/FIFA_World_Cup'\n",
22 | "headers = {\"User-Agent\":\"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0\"}\n",
23 | "data=requests.get(url,headers=headers)\n",
24 | "soup=bs(data.text,'html.parser')\n",
25 | "\n",
26 | "#soup.prettify()"
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 79,
32 | "metadata": {},
33 | "outputs": [],
34 | "source": [
35 | "\n",
36 | "resp_table=soup.select('table.wikitable')[7]\n",
37 | "#resp_table\n"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {},
43 | "source": [
44 | "### listing only the headers\n"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": 80,
50 | "metadata": {
51 | "scrolled": true
52 | },
53 | "outputs": [],
54 | "source": [
55 | "headers=[]\n",
56 | "for h in resp_table.find_all('th'):\n",
57 | " headers.append(h.text.replace('\\n',\"\"))\n",
58 | "#print(headers)\n",
59 | "\n"
60 | ]
61 | },
62 | {
63 | "cell_type": "code",
64 | "execution_count": 84,
65 | "metadata": {},
66 | "outputs": [
67 | {
68 | "data": {
69 | "text/html": [
70 | "
\n",
71 | "\n",
84 | "
\n",
85 | " \n",
86 | " \n",
87 | " | \n",
88 | " Rank | \n",
89 | " Team | \n",
90 | " Participations | \n",
91 | " Titles | \n",
92 | " Pld | \n",
93 | " W | \n",
94 | " D | \n",
95 | " L | \n",
96 | " GF | \n",
97 | " GA | \n",
98 | " GD | \n",
99 | " Pts | \n",
100 | "
\n",
101 | " \n",
102 | " \n",
103 | " \n",
104 | "
\n",
105 | "
"
106 | ],
107 | "text/plain": [
108 | "Empty DataFrame\n",
109 | "Columns: [Rank, Team, Participations, Titles, Pld, W, D, L, GF, GA, GD, Pts]\n",
110 | "Index: []"
111 | ]
112 | },
113 | "execution_count": 84,
114 | "metadata": {},
115 | "output_type": "execute_result"
116 | }
117 | ],
118 | "source": [
119 | "df=pd.DataFrame(columns=headers)\n",
120 | "#df\n"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 86,
126 | "metadata": {},
127 | "outputs": [],
128 | "source": [
129 | "rows=[]\n",
130 | "row_tags=rows=resp_table.find_all('tr')\n",
131 | "for r in row_tags[1:]:\n",
132 | " dirty_rows=r.find_all('td')\n",
133 | " beauty_rows=[rw.text.strip() for rw in dirty_rows]\n",
134 | " #print(beauty_rows)\n",
135 | " length=len(df)\n",
136 | " df.loc[length]=beauty_rows\n",
137 | " \n",
138 | " "
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 87,
144 | "metadata": {},
145 | "outputs": [
146 | {
147 | "data": {
148 | "text/html": [
149 | "\n",
150 | "\n",
163 | "
\n",
164 | " \n",
165 | " \n",
166 | " | \n",
167 | " Rank | \n",
168 | " Team | \n",
169 | " Participations | \n",
170 | " Titles | \n",
171 | " Pld | \n",
172 | " W | \n",
173 | " D | \n",
174 | " L | \n",
175 | " GF | \n",
176 | " GA | \n",
177 | " GD | \n",
178 | " Pts | \n",
179 | "
\n",
180 | " \n",
181 | " \n",
182 | " \n",
183 | " | 0 | \n",
184 | " 1 | \n",
185 | " Brazil | \n",
186 | " 21 | \n",
187 | " 5 | \n",
188 | " 109 | \n",
189 | " 73 | \n",
190 | " 18 | \n",
191 | " 18 | \n",
192 | " 229 | \n",
193 | " 105 | \n",
194 | " 124 | \n",
195 | " 237 | \n",
196 | "
\n",
197 | " \n",
198 | " | 1 | \n",
199 | " 2 | \n",
200 | " Germany[124] | \n",
201 | " 19 | \n",
202 | " 4 | \n",
203 | " 109 | \n",
204 | " 67 | \n",
205 | " 20 | \n",
206 | " 22 | \n",
207 | " 226 | \n",
208 | " 125 | \n",
209 | " 101 | \n",
210 | " 221 | \n",
211 | "
\n",
212 | " \n",
213 | " | 2 | \n",
214 | " 3 | \n",
215 | " Italy | \n",
216 | " 18 | \n",
217 | " 4 | \n",
218 | " 83 | \n",
219 | " 45 | \n",
220 | " 21 | \n",
221 | " 17 | \n",
222 | " 128 | \n",
223 | " 77 | \n",
224 | " 51 | \n",
225 | " 156 | \n",
226 | "
\n",
227 | " \n",
228 | " | 3 | \n",
229 | " 4 | \n",
230 | " Argentina | \n",
231 | " 17 | \n",
232 | " 2 | \n",
233 | " 81 | \n",
234 | " 43 | \n",
235 | " 15 | \n",
236 | " 23 | \n",
237 | " 137 | \n",
238 | " 93 | \n",
239 | " 44 | \n",
240 | " 144 | \n",
241 | "
\n",
242 | " \n",
243 | " | 4 | \n",
244 | " 5 | \n",
245 | " France | \n",
246 | " 15 | \n",
247 | " 2 | \n",
248 | " 66 | \n",
249 | " 34 | \n",
250 | " 13 | \n",
251 | " 19 | \n",
252 | " 120 | \n",
253 | " 77 | \n",
254 | " 43 | \n",
255 | " 115 | \n",
256 | "
\n",
257 | " \n",
258 | " | 5 | \n",
259 | " 6 | \n",
260 | " England | \n",
261 | " 15 | \n",
262 | " 1 | \n",
263 | " 69 | \n",
264 | " 29 | \n",
265 | " 21 | \n",
266 | " 19 | \n",
267 | " 91 | \n",
268 | " 64 | \n",
269 | " 27 | \n",
270 | " 108 | \n",
271 | "
\n",
272 | " \n",
273 | " | 6 | \n",
274 | " 7 | \n",
275 | " Spain | \n",
276 | " 15 | \n",
277 | " 1 | \n",
278 | " 63 | \n",
279 | " 30 | \n",
280 | " 15 | \n",
281 | " 18 | \n",
282 | " 99 | \n",
283 | " 72 | \n",
284 | " 27 | \n",
285 | " 105 | \n",
286 | "
\n",
287 | " \n",
288 | " | 7 | \n",
289 | " 8 | \n",
290 | " Uruguay | \n",
291 | " 13 | \n",
292 | " 2 | \n",
293 | " 56 | \n",
294 | " 24 | \n",
295 | " 12 | \n",
296 | " 20 | \n",
297 | " 87 | \n",
298 | " 74 | \n",
299 | " 13 | \n",
300 | " 84 | \n",
301 | "
\n",
302 | " \n",
303 | "
\n",
304 | "
"
305 | ],
306 | "text/plain": [
307 | " Rank Team Participations Titles Pld W D L GF GA GD \\\n",
308 | "0 1 Brazil 21 5 109 73 18 18 229 105 124 \n",
309 | "1 2 Germany[124] 19 4 109 67 20 22 226 125 101 \n",
310 | "2 3 Italy 18 4 83 45 21 17 128 77 51 \n",
311 | "3 4 Argentina 17 2 81 43 15 23 137 93 44 \n",
312 | "4 5 France 15 2 66 34 13 19 120 77 43 \n",
313 | "5 6 England 15 1 69 29 21 19 91 64 27 \n",
314 | "6 7 Spain 15 1 63 30 15 18 99 72 27 \n",
315 | "7 8 Uruguay 13 2 56 24 12 20 87 74 13 \n",
316 | "\n",
317 | " Pts \n",
318 | "0 237 \n",
319 | "1 221 \n",
320 | "2 156 \n",
321 | "3 144 \n",
322 | "4 115 \n",
323 | "5 108 \n",
324 | "6 105 \n",
325 | "7 84 "
326 | ]
327 | },
328 | "execution_count": 87,
329 | "metadata": {},
330 | "output_type": "execute_result"
331 | }
332 | ],
333 | "source": [
334 | "df\n",
335 | " "
336 | ]
337 | },
338 | {
339 | "cell_type": "code",
340 | "execution_count": 88,
341 | "metadata": {},
342 | "outputs": [],
343 | "source": [
344 | "df.to_csv('champions.csv',index=False)"
345 | ]
346 | },
347 | {
348 | "cell_type": "code",
349 | "execution_count": null,
350 | "metadata": {},
351 | "outputs": [],
352 | "source": []
353 | }
354 | ],
355 | "metadata": {
356 | "kernelspec": {
357 | "display_name": "Python 3 (ipykernel)",
358 | "language": "python",
359 | "name": "python3"
360 | },
361 | "language_info": {
362 | "codemirror_mode": {
363 | "name": "ipython",
364 | "version": 3
365 | },
366 | "file_extension": ".py",
367 | "mimetype": "text/x-python",
368 | "name": "python",
369 | "nbconvert_exporter": "python",
370 | "pygments_lexer": "ipython3",
371 | "version": "3.11.0"
372 | },
373 | "vscode": {
374 | "interpreter": {
375 | "hash": "d3e10ef16274dd72e574b8fa73b58450b957d8421a2901baded3cca26fcf5dda"
376 | }
377 | }
378 | },
379 | "nbformat": 4,
380 | "nbformat_minor": 2
381 | }
382 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/scrap-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "from bs4 import BeautifulSoup as bs\n",
10 | "import requests\n",
11 | "import pandas\n"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "url='https://en.wikipedia.org/wiki/FIFA_World_Cup'\n",
21 | "headers = {\"User-Agent\":\"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0\"}\n",
22 | "data=requests.get(url,headers=headers)\n",
23 | "soup=bs(data.text,'html.parser')"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 3,
29 | "metadata": {},
30 | "outputs": [],
31 | "source": [
32 | "#print(soup.prettify())\n",
33 | "\n",
34 | "#access the titles of the website\n",
35 | "#tit=soup.title.text\n",
36 | "#print(tit)"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": 4,
42 | "metadata": {
43 | "scrolled": true
44 | },
45 | "outputs": [
46 | {
47 | "name": "stdout",
48 | "output_type": "stream",
49 | "text": [
50 | "\n",
51 | "\n",
52 | "| Rank\n",
53 | " | \n",
54 | "Team\n",
55 | " | \n",
56 | "Participations\n",
57 | " | \n",
58 | "Titles\n",
59 | " | \n",
60 | "Pld\n",
61 | " | \n",
62 | "W\n",
63 | " | \n",
64 | "D\n",
65 | " | \n",
66 | "L\n",
67 | " | \n",
68 | "GF\n",
69 | " | \n",
70 | "GA\n",
71 | " | \n",
72 | "GD\n",
73 | " | \n",
74 | "Pts\n",
75 | " |
\n",
76 | "\n",
77 | "| 1\n",
78 | " | \n",
79 | " Brazil\n",
80 | " | \n",
81 | "21\n",
82 | " | \n",
83 | "5\n",
84 | " | \n",
85 | "109\n",
86 | " | \n",
87 | "73\n",
88 | " | \n",
89 | "18\n",
90 | " | \n",
91 | "18\n",
92 | " | \n",
93 | "229\n",
94 | " | \n",
95 | "105\n",
96 | " | \n",
97 | "124\n",
98 | " | \n",
99 | "237\n",
100 | " |
\n",
101 | "\n",
102 | "| 2\n",
103 | " | \n",
104 | " Germany[123]\n",
105 | " | \n",
106 | "19\n",
107 | " | \n",
108 | "4\n",
109 | " | \n",
110 | "109\n",
111 | " | \n",
112 | "67\n",
113 | " | \n",
114 | "20\n",
115 | " | \n",
116 | "22\n",
117 | " | \n",
118 | "226\n",
119 | " | \n",
120 | "125\n",
121 | " | \n",
122 | "101\n",
123 | " | \n",
124 | "221\n",
125 | " |
\n",
126 | "\n",
127 | "| 3\n",
128 | " | \n",
129 | " Italy\n",
130 | " | \n",
131 | "18\n",
132 | " | \n",
133 | "4\n",
134 | " | \n",
135 | "83\n",
136 | " | \n",
137 | "45\n",
138 | " | \n",
139 | "21\n",
140 | " | \n",
141 | "17\n",
142 | " | \n",
143 | "128\n",
144 | " | \n",
145 | "77\n",
146 | " | \n",
147 | "51\n",
148 | " | \n",
149 | "156\n",
150 | " |
\n",
151 | "\n",
152 | "| 4\n",
153 | " | \n",
154 | " Argentina\n",
155 | " | \n",
156 | "17\n",
157 | " | \n",
158 | "2\n",
159 | " | \n",
160 | "81\n",
161 | " | \n",
162 | "43\n",
163 | " | \n",
164 | "15\n",
165 | " | \n",
166 | "23\n",
167 | " | \n",
168 | "137\n",
169 | " | \n",
170 | "93\n",
171 | " | \n",
172 | "44\n",
173 | " | \n",
174 | "144\n",
175 | " |
\n",
176 | "\n",
177 | "| 5\n",
178 | " | \n",
179 | " France\n",
180 | " | \n",
181 | "15\n",
182 | " | \n",
183 | "2\n",
184 | " | \n",
185 | "66\n",
186 | " | \n",
187 | "34\n",
188 | " | \n",
189 | "13\n",
190 | " | \n",
191 | "19\n",
192 | " | \n",
193 | "120\n",
194 | " | \n",
195 | "77\n",
196 | " | \n",
197 | "43\n",
198 | " | \n",
199 | "115\n",
200 | " |
\n",
201 | "\n",
202 | "| 6\n",
203 | " | \n",
204 | " England\n",
205 | " | \n",
206 | "15\n",
207 | " | \n",
208 | "1\n",
209 | " | \n",
210 | "69\n",
211 | " | \n",
212 | "29\n",
213 | " | \n",
214 | "21\n",
215 | " | \n",
216 | "19\n",
217 | " | \n",
218 | "91\n",
219 | " | \n",
220 | "64\n",
221 | " | \n",
222 | "27\n",
223 | " | \n",
224 | "108\n",
225 | " |
\n",
226 | "\n",
227 | "| 7\n",
228 | " | \n",
229 | " Spain\n",
230 | " | \n",
231 | "15\n",
232 | " | \n",
233 | "1\n",
234 | " | \n",
235 | "63\n",
236 | " | \n",
237 | "30\n",
238 | " | \n",
239 | "15\n",
240 | " | \n",
241 | "18\n",
242 | " | \n",
243 | "99\n",
244 | " | \n",
245 | "72\n",
246 | " | \n",
247 | "27\n",
248 | " | \n",
249 | "105\n",
250 | " |
\n",
251 | "\n",
252 | "| 8\n",
253 | " | \n",
254 | " Uruguay\n",
255 | " | \n",
256 | "13\n",
257 | " | \n",
258 | "2\n",
259 | " | \n",
260 | "56\n",
261 | " | \n",
262 | "24\n",
263 | " | \n",
264 | "12\n",
265 | " | \n",
266 | "20\n",
267 | " | \n",
268 | "87\n",
269 | " | \n",
270 | "74\n",
271 | " | \n",
272 | "13\n",
273 | " | \n",
274 | "84\n",
275 | " |
\n"
276 | ]
277 | }
278 | ],
279 | "source": [
280 | "\n",
281 | "resp_table=soup.select('table.wikitable')[7]\n",
282 | "print(resp_table)\n"
283 | ]
284 | },
285 | {
286 | "cell_type": "markdown",
287 | "metadata": {},
288 | "source": [
289 | "### listing only the headers"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 27,
295 | "metadata": {},
296 | "outputs": [
297 | {
298 | "name": "stdout",
299 | "output_type": "stream",
300 | "text": [
301 | "['Rank\\n', 'Team\\n', 'Participations\\n', 'Titles\\n', 'Pld\\n', 'W\\n', 'D\\n', 'L\\n', 'GF\\n', 'GA\\n', 'GD\\n', 'Pts\\n']\n"
302 | ]
303 | }
304 | ],
305 | "source": [
306 | "headers=[]\n",
307 | "for h in resp_table.find_all('th'):\n",
308 | " headers.append(h.text)\n",
309 | "print(headers)"
310 | ]
311 | },
312 | {
313 | "cell_type": "code",
314 | "execution_count": 29,
315 | "metadata": {},
316 | "outputs": [
317 | {
318 | "ename": "AttributeError",
319 | "evalue": "ResultSet object has no attribute 'text'. You're probably treating a list of elements like a single element. Did you call find_all() when you meant to call find()?",
320 | "output_type": "error",
321 | "traceback": [
322 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
323 | "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
324 | "Cell \u001b[1;32mIn [29], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[39mfor\u001b[39;00m row \u001b[39min\u001b[39;00m resp_table\u001b[39m.\u001b[39mfind_all(\u001b[39m'\u001b[39m\u001b[39mtr\u001b[39m\u001b[39m'\u001b[39m)[\u001b[39m1\u001b[39m:]:\n\u001b[1;32m----> 2\u001b[0m data\u001b[39m=\u001b[39mrow\u001b[39m.\u001b[39;49mfind_all(\u001b[39m'\u001b[39;49m\u001b[39mtd\u001b[39;49m\u001b[39m'\u001b[39;49m)\u001b[39m.\u001b[39;49mtext\n",
325 | "File \u001b[1;32mc:\\Python\\Python310\\lib\\site-packages\\bs4\\element.py:2289\u001b[0m, in \u001b[0;36mResultSet.__getattr__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2287\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getattr__\u001b[39m(\u001b[39mself\u001b[39m, key):\n\u001b[0;32m 2288\u001b[0m \u001b[39m\"\"\"Raise a helpful exception to explain a common code fix.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 2289\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mAttributeError\u001b[39;00m(\n\u001b[0;32m 2290\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mResultSet object has no attribute \u001b[39m\u001b[39m'\u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m. You\u001b[39m\u001b[39m'\u001b[39m\u001b[39mre probably treating a list of elements like a single element. Did you call find_all() when you meant to call find()?\u001b[39m\u001b[39m\"\u001b[39m \u001b[39m%\u001b[39m key\n\u001b[0;32m 2291\u001b[0m )\n",
326 | "\u001b[1;31mAttributeError\u001b[0m: ResultSet object has no attribute 'text'. You're probably treating a list of elements like a single element. Did you call find_all() when you meant to call find()?"
327 | ]
328 | }
329 | ],
330 | "source": [
331 | "for row in resp_table.find_all('tr')[1:]:\n",
332 | " data=row.find_all('td').text\n",
333 | "\n"
334 | ]
335 | }
336 | ],
337 | "metadata": {
338 | "kernelspec": {
339 | "display_name": "Python 3 (ipykernel)",
340 | "language": "python",
341 | "name": "python3"
342 | },
343 | "language_info": {
344 | "codemirror_mode": {
345 | "name": "ipython",
346 | "version": 3
347 | },
348 | "file_extension": ".py",
349 | "mimetype": "text/x-python",
350 | "name": "python",
351 | "nbconvert_exporter": "python",
352 | "pygments_lexer": "ipython3",
353 | "version": "3.11.0"
354 | },
355 | "vscode": {
356 | "interpreter": {
357 | "hash": "d3e10ef16274dd72e574b8fa73b58450b957d8421a2901baded3cca26fcf5dda"
358 | }
359 | }
360 | },
361 | "nbformat": 4,
362 | "nbformat_minor": 2
363 | }
364 |
--------------------------------------------------------------------------------
/football_analysis.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 27,
6 | "id": "eecc6fa6",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd\n",
11 | "import requests\n",
12 | "import matplotlib.pyplot as mp"
13 | ]
14 | },
15 | {
16 | "cell_type": "code",
17 | "execution_count": 28,
18 | "id": "f07ee235",
19 | "metadata": {},
20 | "outputs": [
21 | {
22 | "data": {
23 | "text/html": [
24 | "\n",
25 | "\n",
38 | "
\n",
39 | " \n",
40 | " \n",
41 | " | \n",
42 | " Rank | \n",
43 | " Team | \n",
44 | " Participations | \n",
45 | " Titles | \n",
46 | " Pld | \n",
47 | " W | \n",
48 | " D | \n",
49 | " L | \n",
50 | " GF | \n",
51 | " GA | \n",
52 | " GD | \n",
53 | " Pts | \n",
54 | "
\n",
55 | " \n",
56 | " \n",
57 | " \n",
58 | " | 0 | \n",
59 | " 1 | \n",
60 | " Brazil | \n",
61 | " 21 | \n",
62 | " 5 | \n",
63 | " 109 | \n",
64 | " 73 | \n",
65 | " 18 | \n",
66 | " 18 | \n",
67 | " 229 | \n",
68 | " 105 | \n",
69 | " 124 | \n",
70 | " 237 | \n",
71 | "
\n",
72 | " \n",
73 | " | 1 | \n",
74 | " 2 | \n",
75 | " Germany | \n",
76 | " 19 | \n",
77 | " 4 | \n",
78 | " 109 | \n",
79 | " 67 | \n",
80 | " 20 | \n",
81 | " 22 | \n",
82 | " 226 | \n",
83 | " 125 | \n",
84 | " 101 | \n",
85 | " 221 | \n",
86 | "
\n",
87 | " \n",
88 | " | 2 | \n",
89 | " 3 | \n",
90 | " Italy | \n",
91 | " 18 | \n",
92 | " 4 | \n",
93 | " 83 | \n",
94 | " 45 | \n",
95 | " 21 | \n",
96 | " 17 | \n",
97 | " 128 | \n",
98 | " 77 | \n",
99 | " 51 | \n",
100 | " 156 | \n",
101 | "
\n",
102 | " \n",
103 | " | 3 | \n",
104 | " 4 | \n",
105 | " Argentina | \n",
106 | " 17 | \n",
107 | " 2 | \n",
108 | " 81 | \n",
109 | " 43 | \n",
110 | " 15 | \n",
111 | " 23 | \n",
112 | " 137 | \n",
113 | " 93 | \n",
114 | " 44 | \n",
115 | " 144 | \n",
116 | "
\n",
117 | " \n",
118 | " | 4 | \n",
119 | " 5 | \n",
120 | " France | \n",
121 | " 15 | \n",
122 | " 2 | \n",
123 | " 66 | \n",
124 | " 34 | \n",
125 | " 13 | \n",
126 | " 19 | \n",
127 | " 120 | \n",
128 | " 77 | \n",
129 | " 43 | \n",
130 | " 115 | \n",
131 | "
\n",
132 | " \n",
133 | " | 5 | \n",
134 | " 6 | \n",
135 | " England | \n",
136 | " 15 | \n",
137 | " 1 | \n",
138 | " 69 | \n",
139 | " 29 | \n",
140 | " 21 | \n",
141 | " 19 | \n",
142 | " 91 | \n",
143 | " 64 | \n",
144 | " 27 | \n",
145 | " 108 | \n",
146 | "
\n",
147 | " \n",
148 | " | 6 | \n",
149 | " 7 | \n",
150 | " Spain | \n",
151 | " 15 | \n",
152 | " 1 | \n",
153 | " 63 | \n",
154 | " 30 | \n",
155 | " 15 | \n",
156 | " 18 | \n",
157 | " 99 | \n",
158 | " 72 | \n",
159 | " 27 | \n",
160 | " 105 | \n",
161 | "
\n",
162 | " \n",
163 | " | 7 | \n",
164 | " 8 | \n",
165 | " Uruguay | \n",
166 | " 13 | \n",
167 | " 2 | \n",
168 | " 56 | \n",
169 | " 24 | \n",
170 | " 12 | \n",
171 | " 20 | \n",
172 | " 87 | \n",
173 | " 74 | \n",
174 | " 13 | \n",
175 | " 84 | \n",
176 | "
\n",
177 | " \n",
178 | "
\n",
179 | "
"
180 | ],
181 | "text/plain": [
182 | " Rank Team Participations Titles Pld W D L GF GA GD \\\n",
183 | "0 1 Brazil 21 5 109 73 18 18 229 105 124 \n",
184 | "1 2 Germany 19 4 109 67 20 22 226 125 101 \n",
185 | "2 3 Italy 18 4 83 45 21 17 128 77 51 \n",
186 | "3 4 Argentina 17 2 81 43 15 23 137 93 44 \n",
187 | "4 5 France 15 2 66 34 13 19 120 77 43 \n",
188 | "5 6 England 15 1 69 29 21 19 91 64 27 \n",
189 | "6 7 Spain 15 1 63 30 15 18 99 72 27 \n",
190 | "7 8 Uruguay 13 2 56 24 12 20 87 74 13 \n",
191 | "\n",
192 | " Pts \n",
193 | "0 237 \n",
194 | "1 221 \n",
195 | "2 156 \n",
196 | "3 144 \n",
197 | "4 115 \n",
198 | "5 108 \n",
199 | "6 105 \n",
200 | "7 84 "
201 | ]
202 | },
203 | "execution_count": 28,
204 | "metadata": {},
205 | "output_type": "execute_result"
206 | }
207 | ],
208 | "source": [
209 | "df=pd.read_csv('champions.csv')\n",
210 | "df\n"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 29,
216 | "id": "9d5d9f4f",
217 | "metadata": {
218 | "collapsed": true
219 | },
220 | "outputs": [
221 | {
222 | "data": {
223 | "text/html": [
224 | "\n",
225 | "\n",
238 | "
\n",
239 | " \n",
240 | " \n",
241 | " | \n",
242 | " Rank | \n",
243 | " Participations | \n",
244 | " Titles | \n",
245 | " Pld | \n",
246 | " W | \n",
247 | " D | \n",
248 | " L | \n",
249 | " GF | \n",
250 | " GA | \n",
251 | " GD | \n",
252 | " Pts | \n",
253 | "
\n",
254 | " \n",
255 | " \n",
256 | " \n",
257 | " | count | \n",
258 | " 8.00000 | \n",
259 | " 8.000000 | \n",
260 | " 8.000000 | \n",
261 | " 8.000000 | \n",
262 | " 8.000000 | \n",
263 | " 8.000000 | \n",
264 | " 8.000000 | \n",
265 | " 8.000000 | \n",
266 | " 8.000000 | \n",
267 | " 8.000000 | \n",
268 | " 8.000000 | \n",
269 | "
\n",
270 | " \n",
271 | " | mean | \n",
272 | " 4.50000 | \n",
273 | " 16.625000 | \n",
274 | " 2.625000 | \n",
275 | " 79.500000 | \n",
276 | " 43.125000 | \n",
277 | " 16.875000 | \n",
278 | " 19.500000 | \n",
279 | " 139.625000 | \n",
280 | " 85.875000 | \n",
281 | " 53.750000 | \n",
282 | " 146.250000 | \n",
283 | "
\n",
284 | " \n",
285 | " | std | \n",
286 | " 2.44949 | \n",
287 | " 2.615203 | \n",
288 | " 1.505941 | \n",
289 | " 20.255511 | \n",
290 | " 18.074746 | \n",
291 | " 3.603074 | \n",
292 | " 2.070197 | \n",
293 | " 57.021143 | \n",
294 | " 20.413144 | \n",
295 | " 38.688315 | \n",
296 | " 55.984054 | \n",
297 | "
\n",
298 | " \n",
299 | " | min | \n",
300 | " 1.00000 | \n",
301 | " 13.000000 | \n",
302 | " 1.000000 | \n",
303 | " 56.000000 | \n",
304 | " 24.000000 | \n",
305 | " 12.000000 | \n",
306 | " 17.000000 | \n",
307 | " 87.000000 | \n",
308 | " 64.000000 | \n",
309 | " 13.000000 | \n",
310 | " 84.000000 | \n",
311 | "
\n",
312 | " \n",
313 | " | 25% | \n",
314 | " 2.75000 | \n",
315 | " 15.000000 | \n",
316 | " 1.750000 | \n",
317 | " 65.250000 | \n",
318 | " 29.750000 | \n",
319 | " 14.500000 | \n",
320 | " 18.000000 | \n",
321 | " 97.000000 | \n",
322 | " 73.500000 | \n",
323 | " 27.000000 | \n",
324 | " 107.250000 | \n",
325 | "
\n",
326 | " \n",
327 | " | 50% | \n",
328 | " 4.50000 | \n",
329 | " 16.000000 | \n",
330 | " 2.000000 | \n",
331 | " 75.000000 | \n",
332 | " 38.500000 | \n",
333 | " 16.500000 | \n",
334 | " 19.000000 | \n",
335 | " 124.000000 | \n",
336 | " 77.000000 | \n",
337 | " 43.500000 | \n",
338 | " 129.500000 | \n",
339 | "
\n",
340 | " \n",
341 | " | 75% | \n",
342 | " 6.25000 | \n",
343 | " 18.250000 | \n",
344 | " 4.000000 | \n",
345 | " 89.500000 | \n",
346 | " 50.500000 | \n",
347 | " 20.250000 | \n",
348 | " 20.500000 | \n",
349 | " 159.250000 | \n",
350 | " 96.000000 | \n",
351 | " 63.500000 | \n",
352 | " 172.250000 | \n",
353 | "
\n",
354 | " \n",
355 | " | max | \n",
356 | " 8.00000 | \n",
357 | " 21.000000 | \n",
358 | " 5.000000 | \n",
359 | " 109.000000 | \n",
360 | " 73.000000 | \n",
361 | " 21.000000 | \n",
362 | " 23.000000 | \n",
363 | " 229.000000 | \n",
364 | " 125.000000 | \n",
365 | " 124.000000 | \n",
366 | " 237.000000 | \n",
367 | "
\n",
368 | " \n",
369 | "
\n",
370 | "
"
371 | ],
372 | "text/plain": [
373 | " Rank Participations Titles Pld W D \\\n",
374 | "count 8.00000 8.000000 8.000000 8.000000 8.000000 8.000000 \n",
375 | "mean 4.50000 16.625000 2.625000 79.500000 43.125000 16.875000 \n",
376 | "std 2.44949 2.615203 1.505941 20.255511 18.074746 3.603074 \n",
377 | "min 1.00000 13.000000 1.000000 56.000000 24.000000 12.000000 \n",
378 | "25% 2.75000 15.000000 1.750000 65.250000 29.750000 14.500000 \n",
379 | "50% 4.50000 16.000000 2.000000 75.000000 38.500000 16.500000 \n",
380 | "75% 6.25000 18.250000 4.000000 89.500000 50.500000 20.250000 \n",
381 | "max 8.00000 21.000000 5.000000 109.000000 73.000000 21.000000 \n",
382 | "\n",
383 | " L GF GA GD Pts \n",
384 | "count 8.000000 8.000000 8.000000 8.000000 8.000000 \n",
385 | "mean 19.500000 139.625000 85.875000 53.750000 146.250000 \n",
386 | "std 2.070197 57.021143 20.413144 38.688315 55.984054 \n",
387 | "min 17.000000 87.000000 64.000000 13.000000 84.000000 \n",
388 | "25% 18.000000 97.000000 73.500000 27.000000 107.250000 \n",
389 | "50% 19.000000 124.000000 77.000000 43.500000 129.500000 \n",
390 | "75% 20.500000 159.250000 96.000000 63.500000 172.250000 \n",
391 | "max 23.000000 229.000000 125.000000 124.000000 237.000000 "
392 | ]
393 | },
394 | "execution_count": 29,
395 | "metadata": {},
396 | "output_type": "execute_result"
397 | }
398 | ],
399 | "source": [
400 | "df.describe()"
401 | ]
402 | },
403 | {
404 | "cell_type": "markdown",
405 | "id": "4d5babca",
406 | "metadata": {},
407 | "source": [
408 | "### selecting only team and titles \n"
409 | ]
410 | },
411 | {
412 | "cell_type": "code",
413 | "execution_count": 30,
414 | "id": "ce358583",
415 | "metadata": {},
416 | "outputs": [
417 | {
418 | "data": {
419 | "text/html": [
420 | "\n",
421 | "\n",
434 | "
\n",
435 | " \n",
436 | " \n",
437 | " | \n",
438 | " Team | \n",
439 | " Titles | \n",
440 | "
\n",
441 | " \n",
442 | " \n",
443 | " \n",
444 | " | 0 | \n",
445 | " Brazil | \n",
446 | " 5 | \n",
447 | "
\n",
448 | " \n",
449 | " | 1 | \n",
450 | " Germany | \n",
451 | " 4 | \n",
452 | "
\n",
453 | " \n",
454 | " | 2 | \n",
455 | " Italy | \n",
456 | " 4 | \n",
457 | "
\n",
458 | " \n",
459 | " | 3 | \n",
460 | " Argentina | \n",
461 | " 2 | \n",
462 | "
\n",
463 | " \n",
464 | " | 4 | \n",
465 | " France | \n",
466 | " 2 | \n",
467 | "
\n",
468 | " \n",
469 | " | 5 | \n",
470 | " England | \n",
471 | " 1 | \n",
472 | "
\n",
473 | " \n",
474 | " | 6 | \n",
475 | " Spain | \n",
476 | " 1 | \n",
477 | "
\n",
478 | " \n",
479 | " | 7 | \n",
480 | " Uruguay | \n",
481 | " 2 | \n",
482 | "
\n",
483 | " \n",
484 | "
\n",
485 | "
"
486 | ],
487 | "text/plain": [
488 | " Team Titles\n",
489 | "0 Brazil 5\n",
490 | "1 Germany 4\n",
491 | "2 Italy 4\n",
492 | "3 Argentina 2\n",
493 | "4 France 2\n",
494 | "5 England 1\n",
495 | "6 Spain 1\n",
496 | "7 Uruguay 2"
497 | ]
498 | },
499 | "execution_count": 30,
500 | "metadata": {},
501 | "output_type": "execute_result"
502 | }
503 | ],
504 | "source": [
505 | "winners=df.loc[:,['Team','Titles']]\n",
506 | "winners\n"
507 | ]
508 | },
509 | {
510 | "cell_type": "markdown",
511 | "id": "d2cc6948",
512 | "metadata": {},
513 | "source": [
514 | "### plotting most no of worldcup winners "
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 31,
520 | "id": "284101f5",
521 | "metadata": {},
522 | "outputs": [
523 | {
524 | "data": {
525 | "text/plain": [
526 | ""
527 | ]
528 | },
529 | "execution_count": 31,
530 | "metadata": {},
531 | "output_type": "execute_result"
532 | },
533 | {
534 | "data": {
535 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHmCAYAAAAvPcdXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2WUlEQVR4nO3deVxVdeL/8fcFBJVNzZUUN0wtF9RxaVpMMtNMs20srRSXRzqSJZnLmJJtOmVWjo01lqJOqWXZmGVlVlqpo4gLTgmKOC65jQoIGSCc3x9+vb8QNNHPvUfOfT0fj/vIe+6B+z5C8Pacz+dzXJZlWQIAADDAz+4AAADAOSgWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADAmwNtvWFRUpJ9//lmhoaFyuVzefnsAAHAJLMvSyZMnFRERIT+/85+X8Hqx+Pnnn1WvXj1vvy0AADBg3759qlu37nlf93qxCA0NlXQmWFhYmLffHgAAXILs7GzVq1fP/Xv8fLxeLM5e/ggLC6NYAABQzvzeMAYGbwIAAGMoFgAAwBiKBQAAMMbrYywAADChqKhI+fn5dsdwjAoVKsjf3/+yPw/FAgBQ7uTn5ysjI0NFRUV2R3GUKlWqqHbt2pe1zhTFAgBQrliWpYMHD8rf31/16tW74GJNuDiWZemXX37RkSNHJEl16tS55M9FsQAAlCunT5/WL7/8ooiICFWuXNnuOI5RqVIlSdKRI0dUs2bNS74sQs0DAJQrhYWFkqTAwECbkzjP2aJWUFBwyZ+DYgEAKJe435R5Jv5OKRYAAMAYigUAADCmTIM3n3nmGU2ePLnYtqZNm2rHjh1GQwEAUFYNxn3q1ffbM7Wn0c83cOBAZWZm6uOPPz7vPt9++626dOmiEydOqEqVKkbf35Qyzwq57rrr9NVXX/3/TxDAxBIAAC7k98YuJCQk6PXXX5dlWe5tt9xyi6Kjo/Xaa695OJ1ZZW4FAQEBql27tieyAADgSAcPHnT/efHixZo0aZJSU1Pd20JCQhQSEmJHNOPKPMZi586dioiIUKNGjdS/f3/t3bv3gvvn5eUpOzu72AMAAF9Su3Zt9yM8PFwul6vYtpCQEA0cOFB9+vSRdOayyOrVq/X666/L5XLJ5XJpz549pX7u77//XjfddJMqVaqkevXqaeTIkcrNzXW//ve//11NmjRRxYoVVatWLd13330ePdYynbHo2LGjEhMT1bRpUx08eFCTJ0/WTTfdpO3btys0NLTUj5kyZUqJcRmXw9vX0H7L9PU0AABK8/rrrystLU0tWrTQs88+K0mqUaNGiXKRnp6u7t276/nnn9ecOXN09OhRxcXFKS4uTnPnzlVSUpJGjhypBQsW6I9//KOOHz+u7777zqPZy1QsevTo4f5zq1at1LFjR9WvX1/vv/++Bg8eXOrHjB8/XvHx8e7n2dnZqlev3iXGBQDA+cLDwxUYGKjKlStfcPjBlClT1L9/fz3xxBOSpCZNmmjGjBnq3LmzZs2apb179yo4OFh33nmnQkNDVb9+fbVp08aj2S9r5GWVKlV0zTXXaNeuXefdJygoSEFBQZfzNgAAoBRbt27Vtm3b9O6777q3WZaloqIiZWRk6LbbblP9+vXVqFEjde/eXd27d9fdd9/t0aXQL2sdi5ycHKWnp1/WzUoAAMClycnJ0aOPPqotW7a4H1u3btXOnTvVuHFjhYaGKjk5WQsXLlSdOnU0adIktW7dWpmZmR7LVKYzFqNHj1avXr1Uv359/fzzz0pISJC/v78efPBBT+UDAMAnBQYGuu+Lcj5t27bVjz/+qKioqPPuExAQoK5du6pr165KSEhQlSpV9PXXX+uee+4xHfnM+5Vl5/379+vBBx/UsWPHVKNGDd14441av369atSo4ZFwAAD4qgYNGujf//639uzZo5CQEFWrVq3EPmPHjlWnTp0UFxenIUOGKDg4WD/++KNWrlypmTNnavny5dq9e7duvvlmVa1aVZ999pmKiorUtGlTj+UuU7FYtGiRp3IAAHBZnDZzb/To0RowYICuvfZanTp1ShkZGSX2adWqlVavXq0JEybopptukmVZaty4sfr27SvpzFjIjz76SM8884x+/fVXNWnSRAsXLtR1113nsdwu67fLfHlBdna2wsPDlZWVpbCwsDJ/PNNNAcC3/frrr8rIyFDDhg1VsWJFu+M4yoX+bi/29zc3IQMAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAACUS16ee+ATioqKLvtzXNaS3gAAeFuFChXkcrl09OhR1ahRQy6Xy+5I5Z5lWcrPz9fRo0fl5+enwMDAS/5cFAsAQLni7++vunXrav/+/ee9lTguTeXKlRUZGSk/v0u/oEGxAACUOyEhIWrSpIkKCgrsjuIY/v7+CggIuOwzQBQLAEC55O/vL39/f7tj4BwM3gQAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDGXVSymTp0ql8ulJ554wlAcAABQnl1ysdi4caPeeusttWrVymQeAABQjl1SscjJyVH//v01e/ZsVa1a9YL75uXlKTs7u9gDAAA4U8ClfNCIESPUs2dPde3aVc8///wF950yZYomT558SeHw/zUY96lt771nak/b3ttXjxsAyqsyn7FYtGiRkpOTNWXKlIvaf/z48crKynI/9u3bV+aQAACgfCjTGYt9+/bp8ccf18qVK1WxYsWL+pigoCAFBQVdUjgAAFC+lKlYbNq0SUeOHFHbtm3d2woLC7VmzRrNnDlTeXl58vf3Nx4SAACUD2UqFrfeeqtSUlKKbYuNjVWzZs00duxYSgUAAD6uTMUiNDRULVq0KLYtODhYV111VYntAADA97DyJgAAMOaSppv+1rfffmsgBgAAcALOWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAYygWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAYygWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAYygWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAYygWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAYygWAADAGIoFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCmTMVi1qxZatWqlcLCwhQWFqbrr79eK1as8FQ2AABQzpSpWNStW1dTp07Vpk2blJSUpJiYGN111136z3/+46l8AACgHAkoy869evUq9vyFF17QrFmztH79el133XVGgwEAgPKnTMXitwoLC/XBBx8oNzdX119//Xn3y8vLU15envt5dnb2pb4lAAC4wpV58GZKSopCQkIUFBSkYcOGaenSpbr22mvPu/+UKVMUHh7uftSrV++yAgMAgCtXmYtF06ZNtWXLFv373//W8OHDNWDAAP3444/n3X/8+PHKyspyP/bt23dZgQEAwJWrzJdCAgMDFRUVJUlq166dNm7cqNdff11vvfVWqfsHBQUpKCjo8lICAIBy4bLXsSgqKio2hgIAAPiuMp2xGD9+vHr06KHIyEidPHlS7733nr799lt98cUXnsoHAADKkTIViyNHjuiRRx7RwYMHFR4erlatWumLL77Qbbfd5ql8AACgHClTsXjnnXc8lQMAADgA9woBAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgTJmKxZQpU9S+fXuFhoaqZs2a6tOnj1JTUz2VDQAAlDNlKharV6/WiBEjtH79eq1cuVIFBQXq1q2bcnNzPZUPAACUIwFl2fnzzz8v9jwxMVE1a9bUpk2bdPPNNxsNBgAAyp8yFYtzZWVlSZKqVat23n3y8vKUl5fnfp6dnX05bwkAAK5gl1wsioqK9MQTT+iGG25QixYtzrvflClTNHny5Et9G8AnNRj3qW3vvWdqT9ve21ePG77F6d/nlzwrZMSIEdq+fbsWLVp0wf3Gjx+vrKws92Pfvn2X+pYAAOAKd0lnLOLi4rR8+XKtWbNGdevWveC+QUFBCgoKuqRwAACgfClTsbAsS4899piWLl2qb7/9Vg0bNvRULgAAUA6VqViMGDFC7733nv71r38pNDRUhw4dkiSFh4erUqVKHgkIAADKjzKNsZg1a5aysrJ0yy23qE6dOu7H4sWLPZUPAACUI2W+FAIAAHA+3CsEAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgTJmLxZo1a9SrVy9FRETI5XLp448/9kAsAABQHpW5WOTm5qp169Z64403PJEHAACUYwFl/YAePXqoR48eF71/Xl6e8vLy3M+zs7PL+pYAAKCcKHOxKKspU6Zo8uTJnn4bACi3Goz71Lb33jO1p23v7avH7XQeH7w5fvx4ZWVluR/79u3z9FsCAACbePyMRVBQkIKCgjz9NgAA4ArAdFMAAGAMxQIAABhT5kshOTk52rVrl/t5RkaGtmzZomrVqikyMtJoOAAAUL6UuVgkJSWpS5cu7ufx8fGSpAEDBigxMdFYMAAAUP6UuVjccsstsizLE1kAAEA5xxgLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlAsAACAMRQLAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxQIAABhDsQAAAMZQLAAAgDEUCwAAYAzFAgAAGEOxAAAAxlxSsXjjjTfUoEEDVaxYUR07dtSGDRtM5wIAAOVQmYvF4sWLFR8fr4SEBCUnJ6t169a6/fbbdeTIEU/kAwAA5UiZi8X06dM1dOhQxcbG6tprr9Wbb76pypUra86cOZ7IBwAAypGAsuycn5+vTZs2afz48e5tfn5+6tq1q9atW1fqx+Tl5SkvL8/9PCsrS5KUnZ19KXlVlPfLJX2cCZea2QSO2/s4bu/juL2P4/a+8nrcZz/WsqwL72iVwYEDByxJ1tq1a4ttf+qpp6wOHTqU+jEJCQmWJB48ePDgwYOHAx779u27YFco0xmLSzF+/HjFx8e7nxcVFen48eO66qqr5HK5PP32xWRnZ6tevXrat2+fwsLCvPreduK4OW5fwHFz3L7AzuO2LEsnT55URETEBfcrU7GoXr26/P39dfjw4WLbDx8+rNq1a5f6MUFBQQoKCiq2rUqVKmV5W+PCwsJ86hvxLI7bt3DcvoXj9i12HXd4ePjv7lOmwZuBgYFq166dVq1a5d5WVFSkVatW6frrry97QgAA4ChlvhQSHx+vAQMG6A9/+IM6dOig1157Tbm5uYqNjfVEPgAAUI6UuVj07dtXR48e1aRJk3To0CFFR0fr888/V61atTyRz6igoCAlJCSUuDTjdBw3x+0LOG6O2xeUh+N2Wb87bwQAAODicK8QAABgDMUCAAAYQ7EAAADGUCwAAIAxFAsAAGAMxcKBvvnmG7sjAAB8FNNNHSgoKEh169ZVbGysBgwYoHr16tkdCR62f/9+LVu2THv37lV+fn6x16ZPn25TKsCcwsJCJSYmatWqVTpy5IiKioqKvf7111/blMzzEhISNGjQINWvX9/uKBfFkcWiTZs2F32Ds+TkZA+n8b7//e9/WrBggebNm6f//Oc/iomJ0eDBg9WnTx8FBgbaHc+jBgwYoMGDB+vmm2+2O4rXrFq1Sr1791ajRo20Y8cOtWjRQnv27JFlWWrbtq2jf+BKUmZmppYsWaL09HQ99dRTqlatmpKTk1WrVi1dffXVdsczZtu2bRe9b6tWrTyYxB5xcXFKTExUz549VadOnRI/41999VWbknledHS0tm/frs6dO2vw4MG69957WSDL2yZPnnzR+yYkJHgwif2Sk5M1d+5cLVy4UJLUr18/DR48WK1bt7Y5mWf06dNHn332merXr+8+Y+OkXy6l6dChg3r06KHJkycrNDRUW7duVc2aNdW/f391795dw4cPtzuix2zbtk1du3ZVeHi49uzZo9TUVDVq1EhPP/209u7dq/nz59sd0Rg/Pz+5XC5ZlvW7/3AqLCz0UirvqV69uubPn6877rjD7ii22Lx5s/tn+enTp/XAAw9o0KBBat++vd3RSrrgTdXhCAcOHLASEhKsoKAgKzg42PL397duvPFGa/v27XZH84gjR45Yr7zyitWqVSsrICDA6t69u/XBBx9Y+fn5dkfziJCQEGvXrl2WZVlWlSpV3F/XLVu2WPXr17cxmefdeuut1lNPPWVZ1pm/h/T0dMuyLOuHH35w3LHv2bPH/Vi6dKnVuHFj680337S2bt1qbd261XrzzTetJk2aWEuXLrU7qkfUqVPHSk1NtTuG7fLz860PP/zQuvPOO60KFSpYLVu2tF577TUrMzPT7mhuFAuHys/Ptz744AOrR48eVkBAgNWpUydr9uzZVk5OjpWRkWH179/fat68ud0xPW7Tpk1WXFycVbFiRat69erWE088YaWlpdkdy6hatWpZP/74o2VZltW8eXPrX//6l2VZZ4pFcHCwndE8LiwszF2qflss9uzZYwUFBdkZzaPat29vffrppyW2f/rpp1bbtm1tSOR506ZNs/785z9bRUVFdkexVV5enrVo0SKrW7duVkBAgHXzzTdbUVFRVmhoqLVo0SK741mWZVllvglZeVCtWjWlpaWpevXqqlq16gVPGx4/ftyLybzjscce08KFC2VZlh5++GG99NJLatGihfv14OBgTZs2TRERETam9LyDBw9q5cqVWrlypfz9/XXHHXcoJSVF1157rV566SWNGjXK7ohGdOrUSd9//72aN2+uO+64Q08++aRSUlL00UcfqVOnTnbH86igoCBlZ2eX2J6WlqYaNWrYkMg7UlJS1LBhwxLbGzZsqB9//NGGRJ73/fff65tvvtGKFSt03XXXqUKFCsVe/+ijj2xK5h2bNm1yXwoJCgrSI488ojfeeENRUVGSpL/97W8aOXKk+vbta3NSh46xmDdvnh544AEFBQUpMTHxgsViwIABXkzmHbfeequGDBmie+6557wDfE6fPq0ffvhBnTt39nI6zyooKNCyZcs0d+5cffnll2rVqpWGDBmifv36KSwsTJK0dOlSDRo0SCdOnLA5rRm7d+9WTk6OWrVqpdzcXD355JNau3atmjRpounTp5ebkeSXYsiQITp27Jjef/99VatWTdu2bZO/v7/69Omjm2++Wa+99prdET2ibdu2atGihd5++233gOz8/HwNGTJE27dvd+Sg9NjY2Au+PnfuXC8l8b6WLVtqx44d6tatm4YOHapevXrJ39+/2D7/+9//VLNmzRKzZezgyGIB31W9enUVFRXpwQcf1NChQxUdHV1in8zMTLVp00YZGRneDwijsrKydN999ykpKUknT55URESEDh06pOuvv16fffaZgoOD7Y7oERs2bFCvXr1kWZZ7Bsi2bdvkcrn0ySefqEOHDjYnhEnPPfecBg0aVG4Goju+WMTExKhz584lZn+cOHFC9957r2On4u3cuVPffPNNqfO9J02aZFMqz1uwYIHuv/9+VaxY0e4oXpefn1/q1zsyMtKmRN7zww8/aOvWrcrJyVHbtm3VtWtXuyN5XG5urt59913t2LFDktS8eXP169fPsWUK5Yfji4Wfn5+uuuoq3XDDDXr33Xfd/9MdPnxYERERjpyWNXv2bA0fPlzVq1dX7dq1i10KcrlcjjxN6svS0tI0ePBgrV27tth26/+mJTrxexy+oW3btlq1apWqVq36u+sTOf3nWnlaBM+RgzfP9dVXX+nRRx9Vp06d9Mknn6hBgwZ2R/Ko559/Xi+88ILGjh1rdxSvuOeeey56XycO8IqNjVVAQICWL19e6sJBTjZy5EhFRUVp5MiRxbbPnDlTu3btcuwYC8k3zkredddd7nFiffr0sTeMjX5vEbwrjU+csTh06JDCw8MVGxurlStX6oMPPlDz5s0de8YiLCxMW7ZsUaNGjeyO4hW/N6jrt5w4wCs4OFibNm1Ss2bN7I7idVdffbWWLVumdu3aFduenJys3r17a//+/TYl8yzOSvqWcrcInh1zXL3Jz8/POnz4sPv5c889ZwUFBVmTJk2y/Pz8bEzmOYMGDbJmzZpldwx4yR/+8Afru+++szuGLYKCgqydO3eW2L5z505Hr2MRGRlpTZ061e4Y8JLytgie4y+FWOeckHn66afVvHlzR04zPSsqKkoTJ07U+vXr1bJlyxLzvc89bYzy7a9//avGjBmjF198sdSv99lptk4UFRWlzz//XHFxccW2r1ixwtFn7E6cOKH777/f7hheVVhYqFdffVXvv/9+qeMMnLgm0VnBwcHu461Tp47S09N13XXXSTozzfRK4/hikZGRUWKhnHvvvVdNmzbVpk2bbErlWf/4xz8UEhKi1atXa/Xq1cVec7lcji8WS5YsOe8PHyeeIj47A+LWW28ttt3ygcGb8fHxiouL09GjRxUTEyPpzPXoV155xdHjK+6//359+eWXGjZsmN1RvGby5Ml6++239eSTT+rpp5/WhAkTtGfPHn388ceOGVNyPuVtETzHj7GAb5kxY4YmTJiggQMH6h//+IdiY2OVnp6ujRs3asSIEXrhhRfsjmjcueXxXE5bBO1cs2bN0gsvvKCff/5ZktSgQQM988wzeuSRR2xO5jlTpkzR9OnT1bNnT585K9m4cWPNmDFDPXv2VGhoqLZs2eLetn79er333nt2R/SY8rYInk8Ui6SkpPP+C9aJswR8WbNmzZSQkKAHH3zQPcipUaNGmjRpko4fP66ZM2faHREecvToUVWqVEkhISF2R/G40pbzPsvlcmn37t1eTOMdwcHB+umnnxQZGak6dero008/Vdu2bbV79261adNGWVlZdkfE/3H8pZBFixbpkUce0e23364vv/xS3bp1U1pamg4fPqy7777b7ngeU57mPJu0d+9e/fGPf5QkVapUSSdPnpQkPfzww+rUqZNjisW2bdvUokUL+fn5adu2bRfc9+zKjE7n5HuDnMsXV42tW7euDh48qMjISDVu3Fhffvml2rZtq40bN5731gWwh+OLxYsvvqhXX31VI0aMUGhoqF5//XU1bNhQjz76qOrUqWN3PI8ob3OeTapdu7aOHz+u+vXrKzIyUuvXr1fr1q2VkZFRYiBveRYdHa1Dhw6pZs2aio6OlsvlKvX4nD7G4vDhwxo9erRWrVqlI0eOlPg7cPKx+5q7775bq1atUseOHfXYY4/poYce0jvvvKO9e/c65oaC5+Pn53fB9WmutO9zxxeL9PR09ezZU5IUGBio3NxcuVwujRo1SjExMZo8ebLNCc0bP368Ro8e7Z7z/OGHHxab8+xkMTExWrZsmdq0aaPY2FiNGjVKS5YsUVJSUpkW0rrS/XZQsi/+6/WsgQMHau/evZo4caLPLQ7ma2clp06d6v5z3759FRkZqXXr1qlJkybq1auXjck8b+nSpcWeFxQUaPPmzZo3b96V+TvMrnmu3nL11Vdb27ZtsyzLslq2bGm99957lmVZ1tq1a62wsDA7o3lMeZvzbFJhYaFVUFDgfr5w4ULrscces2bMmGHl5eXZmMxzVq9eXeyYzyooKLBWr15tQyLvCQkJsTZv3mx3DK/76quvrMqVK1stWrSwAgICrOjoaKtKlSpWeHi41aVLF7vjwUveffddq3fv3nbHKMHP7mLjaTfffLNWrlwp6cwUrccff1xDhw7Vgw8+WGJ6nlOUNuf5rCtxzrNJ+/fvL3Y74QceeEAzZsxQXFycDh06ZGMyz+nSpUupc/izsrLUpUsXGxJ5T7169Rx1ietinT0rmZKSoooVK+rDDz/Uvn371LlzZ0evb5Gamqq4uDjdeuutuvXWWxUXF6fU1FS7Y9mmU6dOWrVqld0xSnB8sZg5c6YeeOABSdKECRMUHx+vw4cP695779U777xjczrPODvnWZJ7zvMLL7ygQYMGXZFznk1q2LChjh49WmL78ePHLziSvjyz/m+9inMdO3bM8Xe6fO211zRu3Djt2bPH7ihe9dNPP7mn0wYEBOjUqVMKCQnRs88+q7/+9a82p/OMDz/8UC1atNCmTZvUunVrtW7dWsnJyWrRooU+/PBDu+N53alTpzRjxowr8lbqjh5jcfr0aS1fvly33367pDMDYMaNG2dzKs+bPn26cnJyJJ1ZVCYnJ0eLFy92z3l2svP9ks3JyXHcrdTPjhlxuVwaOHBgsZHxhYWF2rZtm3uGjFP17dtXv/zyixo3bqzKlSuXWM/BqasxlreVGE0YM2aMxo8fr2effbbY9oSEBI0ZM0b33nuvTck8r2rVqsV+rlmWpZMnT6py5cr65z//aWOy0jm6WAQEBGjYsGH66aef7I7iVb9dyjg4OFhvvvmmjWm8Iz4+XtKZX7ITJ05U5cqV3a8VFhbq3//+t6Kjo21K5xnh4eGSzvyQCQ0NVaVKldyvBQYGqlOnTho6dKhd8bzCyatrXkh5W4nRhIMHD5a66NlDDz2kl19+2YZE3vPqq68WKxZ+fn6qUaOGOnbsqKpVq9qYrHSOLhbSmbvCbdmy5YpbmcxbcnJyStxS2Yn3jti8ebOkM79kU1JSFBgY6H4tMDBQrVu31ujRo+2K5xFn79TaoEEDjR492vGXPUrj5Hv+XIgvnpW85ZZb9N133ykqKqrY9u+//1433XSTTam8Y+DAgXZHKBPHr7z5/vvva/z48Ro1apTatWtX4oevExcPysjIUFxcnL799lv9+uuv7u2WD9w7IjY2VjNmzFBoaKjdUeBlv/76a4lpl04s0b7qzTff1KRJk/SnP/3JfVZm/fr1+uCDDzR58mRFRES49+3du7ddMT3ifIvguVwuVaxYUZGRkVfUImGOLxZ+fucfn+rUX7I33HCDLMvS448/rlq1apUYc+DEe0dc7BoVTlzC3ZcXicrNzdXYsWP1/vvv69ixYyVed/Kx+5oL/Sz/LSf+XP/tAlln///+7c/1ChUqqG/fvnrrrbeuiLFkjr8U4ouLB23dulWbNm1S06ZN7Y7iNWfHG/giX14kasyYMfrmm280a9YsPfzww3rjjTd04MABvfXWW8UWVHKCcwfwXYgTB62ee0nXlyxdulRjx47VU089pQ4dOkiSNmzYoFdeeUUJCQk6ffq0xo0bp6efflrTpk2zOa0PnLE4duyYrrrqKknSvn37NHv2bJ06dUq9e/d27HW5Ll26aMKECe7bacPZQkND9d133zlucOrFiIyM1Pz583XLLbcoLCxMycnJioqK0oIFC7Rw4UJ99tlndkc0Zt68eRe9r5PGnqxbt07Hjh3TnXfe6d42f/58JSQkKDc3V3369NHf/va3K+pSgGkdOnTQc889557heNYXX3yhiRMnasOGDfr444/15JNPFlu3yC6OPWORkpKiXr16ad++fWrSpIkWLVqk7t27Kzc3V35+fnr11Ve1ZMkS9enTx+6oxr399tsaNmyYDhw4oBYtWpSYgufEcSW+zFcXiZLO/Mv87CyosLAw97/Ub7zxRg0fPtzOaMY5qSyUxbPPPqtbbrnFXSxSUlI0ePBgDRw4UM2bN9fLL7+siIgIPfPMM/YG9aCUlJRSJyDUr19fKSkpks7cP+jgwYPejlYqxy6QNWbMGLVs2VJr1qxxf1P27NlTWVlZOnHihB599FHHnSo96+jRo0pPT1dsbKzat2+v6OhotWnTxv1fOIuvLhIlnZlaffZyZ7NmzfT+++9Lkj755BNVqVLFxmSelZ2dXerj5MmTJQawlndbtmwptkryokWL1LFjR82ePVvx8fGaMWOG++vuVM2aNdPUqVOLfW0LCgo0depUNWvWTJJ04MAB1apVy66IxTj2Ukj16tX19ddfq1WrVsrJyVFYWJg2btyodu3aSZJ27NihTp06KTMz096gHnDttdeqefPmGjNmTKmDN3116q1TVa1aVb/88otOnz7tU4tESWfm9/v7+2vkyJH66quv1KtXL1mWpYKCAk2fPl2PP/643RE94vfudlm3bl0NHDhQCQkJFz3o8UpVsWJF7dy5U/Xq1ZN05mxUjx49NGHCBEnSnj171LJlS508edLOmB61du1a9e7dW35+fu4zzikpKSosLNTy5cvVqVMnLViwQIcOHdJTTz1lc1oHXwo5fvy4ateuLUkKCQlRcHBwsYVEqlat6thvxP/+979atmxZifnecCZfXSRKUrHbZXft2lU7duzQpk2bFBUV5ehLfomJiZowYYIGDhxYbDDfvHnz9PTTT+vo0aOaNm2agoKC9Je//MXmtJenVq1aysjIUL169ZSfn6/k5ORid/Q8efJkiTLtNH/84x+VkZGhd999V2lpaZLO3PuqX79+7qn1Dz/8sJ0Ri/PuPc+8x+VyWUeOHHE/DwkJsXbv3u1+fujQIcvPz8+OaB535513WkuWLLE7BuBR+fn5VkxMjJWWlmZ3FK+LiYmxFi9eXGL74sWLrZiYGMuyLGv+/PlW06ZNvR3NuGHDhlnXX3+9tWbNGis+Pt666qqrit2p+J///Kf1hz/8wcaEOJdjz1hIKnb/hF9//VXDhg1zL5CVl5dnZzSP6tWrl0aNGqWUlBS1bNmyRJt32uIxkNLT0zV37lylp6fr9ddfV82aNbVixQpFRka67yHhNBUqVDjvwkFOt3bt2lKX6m/Tpo3WrVsn6cwlg71793o7mnHPPfec7rnnHnXu3FkhISGaN29esZV158yZo27dutmY0PPmz59/wddLW+rcTo4dYxEbG3tR+51dFtlJfHFRMF+2evVq9ejRQzfccIPWrFmjn376SY0aNdLUqVOVlJSkJUuW2B3RY0aNGqWgoCDHDsQ+n2uuuUb33HNPieMeN26cli5dqtTUVCUlJemuu+7SgQMHbEppVlZWlkJCQuTv719s+/HjxxUSElKsbDjNufcDKSgo0C+//KLAwEBVrlz5ihtH5dgzFk4sDBfLlxeS8UXjxo3T888/r/j4+GJLmcfExGjmzJk2JvO806dPa86cOfrqq69KXbLfqffNmDZtmu6//36tWLFC7du3lyQlJSVpx44d7iK5ceNG9e3b186YRp1vEbxq1ap5OYn3nThxosS2nTt3avjw4VfEYM1zOfaMha8qKChQpUqVtGXLFrVo0cLuOPCCkJAQpaSkqGHDhgoNDdXWrVvVqFEj7dmzR82aNSt2vxin2L17txo0aFBsGuK5XC6Xvv76ay+m8q6MjAy99dZb7sF8TZs21aOPPqoGDRrYGwxek5SUpIceekg7duywO0oxjj1j4asqVKigyMhILnf4kCpVqujgwYNq2LBhse2bN2/W1VdfbVMqz2rSpIkOHjyob775RpLUt29fzZgx44qZx+8NDRs29LlLQCguICBAP//8s90xSqBYONCECRP0l7/8RQsWLPCJ04S+7oEHHtDYsWP1wQcfyOVyqaioSD/88INGjx59xQ3qMuXcE60rVqxQbm6uTWnskZmZqQ0bNujIkSMlLn869evuq5YtW1bsuWVZOnjwoGbOnKkbbrjBplTnx6UQB2rTpo127dqlgoIC1a9fv8R15+TkZJuSwRPy8/M1YsQIJSYmqrCwUAEBASosLFS/fv2UmJhYYrCbE/j5+enQoUOqWbOmJBW7BOQLPvnkE/Xv39+9+N9vF8tyuVxX3GA+XJ5zB+S7XC7VqFFDMTExeuWVV1SnTh2bkpWOMxYO5MT7n+D8AgMDNXv2bE2cOFHbt29XTk6O2rRpoyZNmtgdzWNcLleJlSd96a6uTz75pAYNGqQXX3xRlStXtjsOPKy8DcjnjAWAcsfPz089evRwr1PzySefKCYmpsTZuY8++siOeB4XHByslJQUnzlD48sKCgrUrFkzLV++XM2bN7c7zkXhjIVDZWZmasmSJUpPT9dTTz2latWqKTk5WbVq1XLsgD5fFR8fX+p2l8ulihUrKioqSnfddZejxtuce6fPhx56yKYk9rj99tuVlJREsfABFSpUKHczuzhj4UDbtm1T165dFR4erj179ig1NVWNGjXS008/rb179/7uKm4oX7p06aLk5GQVFhaqadOmkqS0tDT5+/urWbNmSk1Nlcvl0vfff69rr73W5rQw4Z133tGzzz6r2NhYVtf1AS+++KLS0tL09ttvKyDgyj8fQLFwoK5du6pt27Z66aWXig1qW7t2rfr16+eTt9d2stdee03fffed5s6dq7CwMElnVikcMmSIbrzxRg0dOlT9+vXTqVOn9MUXX9icFiawuq5vufvuu7Vq1SqFhISoZcuWV/wlP4qFA4WHhys5OVmNGzcuViz++9//qmnTpuXutBou7Oqrr9bKlStLnI34z3/+o27duunAgQNKTk5Wt27d9L///c+mlAAu1e/douJKW2n6yj+ngjILCgpSdnZ2ie1paWmqUaOGDYngSVlZWTpy5EiJYnH06FH390GVKlWUn59vRzwYdMcdd2jhwoXu5a2nTp2qYcOGqUqVKpKkY8eO6aabbtKPP/5oY0qYdqUVh99z/vNpKLd69+6tZ599VgUFBZLOnBrdu3evxo4dq3vvvdfmdDDtrrvu0qBBg7R06VLt379f+/fv19KlSzV48GD31OMNGzbommuusTcoLtsXX3xR7M7ML774YrE1K06fPq3U1FQ7osEDqlatqmrVqpV4NGzYULfffrtWrlxpd8RScSnEgbKysnTfffcpKSlJJ0+eVEREhA4dOqROnTppxYoVJa7PoXzLycnRqFGjNH/+fJ0+fVrSmaV+BwwYoFdffVXBwcHasmWLJCk6Otq+oLhsv7cw2OHDhxUREcEYC4eYN29eqdszMzO1adMmLV68WEuWLFGvXr28nOzCKBYO9sMPP2jr1q3KyclR27Zt1bVrV7sjwbDCwkL98MMP7pkBu3fvliQ1atRIISEhNqeDaRQL/Nb06dO1ZMkSrV271u4oxXApxEFOnTql5cuXu58vX75cu3bt0qFDh/TZZ59pzJgxDNx0GH9/f3Xr1k2ZmZkKCQlRq1at1KpVK0qFQ/n6iqMo7s4777zi7mwqMXjTUebNm6dPP/1Ud955pyRp5syZuu6661SpUiVJ0o4dO1SnTh2NGjXKzpgwrEWLFtq9e3eJu5vCeSzL0sCBA90rjv76668aNmyY+/Lmb8dfwPny8vIUGBhod4wSuBTiIDfddJPGjBnjvt527mnSf/7zn3rjjTe0bt06O2PCsM8//1zjx4/Xc889p3bt2pUYQ3N2bQuUf7837fCs8jaLAJfmiSee0I4dO/T555/bHaUYioWD1KlTR+vWrVODBg0kSTVq1NDGjRvdz9PS0tS+fXtlZWXZFxLG/XaxpN+eFrcsi8WSgHLsfMv1Z2VlKTk5WWlpaVqzZo3atWvn5WQXxqUQB8nMzCx2KvTo0aPFXi8qKuJUqQN98803530tJSXFi0kAmLR58+ZSt4eFhem2227TRx99dEVeAqVYOEjdunW1fft29/0izrVt2zbVrVvXy6ngaZ07dy72/OTJk1q4cKHefvttbdq0SXFxcTYlA3A5LvSPhisZs0Ic5I477tCkSZNKnflx6tQpTZ48WT179rQhGbxhzZo1GjBggOrUqaNp06YpJiZG69evtzsWAB/DGAsHOXz4sKKjoxUYGKi4uDj3SoupqamaOXOmTp8+rc2bN6tWrVo2J4Uphw4dUmJiot555x1lZ2frT3/6k958801t3bqVO5kCsAXFwmEyMjI0fPhwrVy5Ume/tC6XS7fddpv+/ve/u2eIoPzr1auX1qxZo549e6p///7q3r27/P39VaFCBYoFANtQLBzq+PHj2rVrlyQpKipK1apVszkRTAsICNDIkSM1fPhwNWnSxL2dYgHAToyxcKhq1aqpQ4cO6tChA6XCob7//nudPHlS7dq1U8eOHTVz5kxuiw7AdpyxAMq53NxcLV68WHPmzNGGDRtUWFio6dOna9CgQQoNDbU7HgAfQ7EAHCQ1NVXvvPOOFixYoMzMTN12221atmyZ3bEA+BCKBeBAhYWF+uSTTzRnzhyKBQCvolgAAABjGLwJAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWACQy+W64OOZZ56xOyKAciLA7gAA7Hfw4EH3nxcvXqxJkyYpNTXVvS0kJMSOWADKIc5YAFDt2rXdj/DwcLlcrmLbFi1apObNm6tixYpq1qyZ/v73vxf7+LFjx+qaa65R5cqV1ahRI02cOFEFBQXu15955hlFR0drzpw5ioyMVEhIiP785z+rsLBQL730kmrXrq2aNWvqhRde8PahAzCMMxYALujdd9/VpEmTNHPmTLVp00abN2/W0KFDFRwcrAEDBkiSQkNDlZiYqIiICKWkpGjo0KEKDQ3VmDFj3J8nPT1dK1as0Oeff6709HTdd9992r17t6655hqtXr1aa9eu1aBBg9S1a1d17NjRrsMFcJlYeRNAMYmJiXriiSeUmZkpSYqKitJzzz2nBx980L3P888/r88++0xr164t9XNMmzZNixYtUlJSkqQzZyxefvllHTp0yH1jtO7duys1NVXp6eny8ztz8rRZs2YaOHCgxo0b58EjBOBJnLEAcF65ublKT0/X4MGDNXToUPf206dPKzw83P188eLFmjFjhtLT05WTk6PTp08rLCys2Odq0KBBsbut1qpVS/7+/u5ScXbbkSNHPHhEADyNYgHgvHJyciRJs2fPLnF5wt/fX5K0bt069e/fX5MnT9btt9+u8PBwLVq0SK+88kqx/StUqFDsucvlKnVbUVGR6cMA4EUUCwDnVatWLUVERGj37t3q379/qfusXbtW9evX14QJE9zb/vvf/3orIoArDMUCwAVNnjxZI0eOVHh4uLp37668vDwlJSXpxIkTio+PV5MmTbR3714tWrRI7du316effqqlS5faHRuATZhuCuCChgwZorfffltz585Vy5Yt1blzZyUmJqphw4aSpN69e2vUqFGKi4tTdHS01q5dq4kTJ9qcGoBdmBUCAACM4YwFAAAwhmIBAACMoVgAAABjKBYAAMAYigUAADCGYgEAAIyhWAAAAGMoFgAAwBiKBQAAMIZiAQAAjKFYAAAAY/4fxyTO9fApal4AAAAASUVORK5CYII=\n",
536 | "text/plain": [
537 | ""
538 | ]
539 | },
540 | "metadata": {},
541 | "output_type": "display_data"
542 | }
543 | ],
544 | "source": [
545 | "winners.plot(kind='bar',x='Team',y='Titles')"
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 45,
551 | "id": "c769107e",
552 | "metadata": {},
553 | "outputs": [
554 | {
555 | "data": {
556 | "text/html": [
557 | "\n",
558 | "\n",
571 | "
\n",
572 | " \n",
573 | " \n",
574 | " | \n",
575 | " Team | \n",
576 | " GF | \n",
577 | " GA | \n",
578 | "
\n",
579 | " \n",
580 | " \n",
581 | " \n",
582 | " | 0 | \n",
583 | " Brazil | \n",
584 | " 229 | \n",
585 | " 105 | \n",
586 | "
\n",
587 | " \n",
588 | " | 1 | \n",
589 | " Germany | \n",
590 | " 226 | \n",
591 | " 125 | \n",
592 | "
\n",
593 | " \n",
594 | " | 2 | \n",
595 | " Italy | \n",
596 | " 128 | \n",
597 | " 77 | \n",
598 | "
\n",
599 | " \n",
600 | " | 3 | \n",
601 | " Argentina | \n",
602 | " 137 | \n",
603 | " 93 | \n",
604 | "
\n",
605 | " \n",
606 | " | 4 | \n",
607 | " France | \n",
608 | " 120 | \n",
609 | " 77 | \n",
610 | "
\n",
611 | " \n",
612 | " | 5 | \n",
613 | " England | \n",
614 | " 91 | \n",
615 | " 64 | \n",
616 | "
\n",
617 | " \n",
618 | " | 6 | \n",
619 | " Spain | \n",
620 | " 99 | \n",
621 | " 72 | \n",
622 | "
\n",
623 | " \n",
624 | " | 7 | \n",
625 | " Uruguay | \n",
626 | " 87 | \n",
627 | " 74 | \n",
628 | "
\n",
629 | " \n",
630 | "
\n",
631 | "
"
632 | ],
633 | "text/plain": [
634 | " Team GF GA\n",
635 | "0 Brazil 229 105\n",
636 | "1 Germany 226 125\n",
637 | "2 Italy 128 77\n",
638 | "3 Argentina 137 93\n",
639 | "4 France 120 77\n",
640 | "5 England 91 64\n",
641 | "6 Spain 99 72\n",
642 | "7 Uruguay 87 74"
643 | ]
644 | },
645 | "execution_count": 45,
646 | "metadata": {},
647 | "output_type": "execute_result"
648 | }
649 | ],
650 | "source": [
651 | "games=df.loc[:,['Team','GF','GA']]\n",
652 | "games"
653 | ]
654 | },
655 | {
656 | "cell_type": "markdown",
657 | "id": "cde6f46a",
658 | "metadata": {},
659 | "source": [
660 | "### Goal For and Goal Against in a bar graph representation by a team\n"
661 | ]
662 | },
663 | {
664 | "cell_type": "code",
665 | "execution_count": 49,
666 | "id": "c74f974f",
667 | "metadata": {
668 | "scrolled": false
669 | },
670 | "outputs": [
671 | {
672 | "data": {
673 | "text/plain": [
674 | ""
675 | ]
676 | },
677 | "execution_count": 49,
678 | "metadata": {},
679 | "output_type": "execute_result"
680 | },
681 | {
682 | "data": {
683 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAN3CAYAAAC4Pcn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEZ0lEQVR4nO3dd3hUddr/8c+kECAhCQGSEIRQpQjSpC2uBZAqRbGA6ENb1kIsIEVWBLFgWSsioivdAsjasKA8qLCaIF2CQuhgIYCwJAQkhOT8/uDHPIbcEEgmOSnv13XNtZszM/EeUPLmlO/xOI7jCAAA4Cx+bg8AAACKJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgCnA7QHyIisrS7/99psqVKggj8fj9jgAABQbjuPo6NGjiomJkZ/f+fcVFMtI+O2331S9enW3xwAAoNj6+eefdckll5z3NcUyEipUqCDp9AcMDQ11eRoAAIqP1NRUVa9e3fuz9HyKZSScOcQQGhpKJAAAkAcXcrieExcBAICJSAAAACYiAQAAmIrlOQkAAJwtMzNTGRkZbo/husDAQPn7+/vkexEJAIBizXEcJScn68iRI26PUmSEh4crOjo632sJEQkAgGLtTCBERkaqfPnypXqRPcdxdPz4cR04cECSVLVq1Xx9PyIBAFBsZWZmegOhUqVKbo9TJJQrV06SdODAAUVGRubr0AMnLgIAiq0z5yCUL1/e5UmKljO/Hvk9R4NIAAAUe6X5EIPFV78eRAIAADARCQAAwEQkAABKIE8hP/ImOTlZ999/v+rWrauyZcsqKipK7du312uvvabjx49LkmrWrCmPx5PtkdvdG32FqxsAAHDBzp071b59e4WHh2vy5Mlq0qSJgoKClJiYqDfeeEPVqlVTr169JEmPPfaYhg0b5n2vrxZLyg2RAACAC+655x4FBARozZo1Cg4O9m6vXbu2evfuLcdxvNsqVKig6OjoQp+Rww0AABSyQ4cO6csvv9Tw4cOzBcKfFYUrNogEAAAK2fbt2+U4jurXr59te+XKlRUSEqKQkBCNHTvWu33s2LHe7SEhIZoyZUqhzMnhBgAAiohVq1YpKytLAwYMUHp6unf76NGjNWjQIO/XlStXLpR5iAQAAApZ3bp15fF4lJSUlG177dq1Jf3f0spnVK5cWXXr1i20+c7gcAMAAIWsUqVKuu666zR16lQdO3bM7XHOiUgAAMAF06ZN06lTp3TFFVdowYIF2rx5s5KSkvTWW29py5YthXaZ4/lwuAEAUAI5ub/EZXXq1NH69es1efJkjRs3Tr/88ouCgoLUqFEjjRo1Svfcc4/bIxIJAAC4pWrVqnrllVf0yiuvnPM1u3fvLryBzsLhBgAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAABwSXJysu6//37VrVtXZcuWVVRUlNq3b6/XXntNx48fz/bap556Sv7+/vrnP/9ZaPOxLDMAoMTxTPIU6j/PmXjx94rYuXOn2rdvr/DwcE2ePFlNmjRRUFCQEhMT9cYbb6hatWrq1auX9/UzZ87UmDFjNHPmTI0ePdqX458TkQAAgAvuueceBQQEaM2aNQoODvZur127tnr37i3H+b/wWL58uf744w899thjmjt3ruLj4/WXv/ylwGcspYcbPHl8AACQf4cOHdKXX36p4cOHZwuEP/N4/u/nzowZM9S/f38FBgaqf//+mjFjRqHMWUojAQAA92zfvl2O46h+/frZtleuXFkhISEKCQnR2LFjJUmpqalatGiRbr/9dknS7bffroULFyotLa3A5yQSAAAoIlatWqUNGzbosssuU3p6uiTp3XffVZ06ddS0aVNJUrNmzRQbG6sFCxYU+DxEAgAAhaxu3bryeDxKSkrKtr127dqqW7euypUr5902Y8YM/fjjjwoICPA+fvrpJ82cObPA5+TERQAAClmlSpV03XXXaerUqbr33nvPeV5CYmKi1qxZo2+++UYRERHe7YcPH9Y111yjLVu2qEGDBgU2J5EAAIALpk2bpvbt2+uKK67Qo48+qssvv1x+fn5avXq1tmzZopYtW2rGjBlq3bq1rrrqqhzvb9WqlWbMmFGg6yZwuAEAABfUqVNH69evV6dOnTRu3Dg1bdpUV1xxhV555RWNGjVKEydO1FtvvaW+ffua7+/bt6/mzp2rjIyMApvR4/z5QsxiIjU1VWFhYUpJSVFoaGgevkNeL2csdr9UAFCinThxQrt27VKtWrVUtmxZt8cpMs7363IxP0PZkwAAAEyck1CisccEAJB37EkAAAAmIgEAAJiIBAAAYCISAADFXjG8UK9A+erXg0gAABRbgYGBkqTjx4+7PEnRcubX48yvT15xdQMAoNjy9/dXeHi4Dhw4IEkqX758tlsslzaO4+j48eM6cOCAwsPD5e/vn6/vRyQAAIq16OhoSfKGAqTw8HDvr0t+EAkAgGLN4/GoatWqioyMLNAliouLwMDAfO9BOINIAACUCP7+/j774YjTOHERAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYLioSnnrqKbVq1UoVKlRQZGSk+vTpo6SkpGyvOXHihIYPH65KlSopJCREffv21f79+7O9Zu/everRo4fKly+vyMhIjR49WqdOncr/pwEAAD5zUZGwfPlyDR8+XCtXrtTSpUuVkZGhzp0769ixY97XjBgxQosXL9Z7772n5cuX67ffftONN97ofT4zM1M9evTQyZMnFR8frzlz5mj27NmaMGGC7z4VAADIN4/jOE5e33zw4EFFRkZq+fLluuqqq5SSkqIqVaronXfe0U033SRJ2rJlixo2bKiEhAS1bdtWn3/+ua6//nr99ttvioqKkiRNnz5dY8eO1cGDB1WmTJlc/7mpqakKCwtTSkqKQkND8zC5Jw/vkaQ8/1K5pLR8TgDAhbqYn6H5OichJSVFkhQRESFJWrt2rTIyMtSpUyfvaxo0aKAaNWooISFBkpSQkKAmTZp4A0GSunTpotTUVP3444/mPyc9PV2pqanZHgAAoGDlORKysrL0wAMPqH379mrcuLEkKTk5WWXKlFF4eHi210ZFRSk5Odn7mj8HwpnnzzxneeqppxQWFuZ9VK9ePa9jAwCAC5TnSBg+fLg2bdqk+fPn+3Ie07hx45SSkuJ9/PzzzwX+zwQAoLQLyMub4uLi9Mknn2jFihW65JJLvNujo6N18uRJHTlyJNvehP379ys6Otr7mlWrVmX7fmeufjjzmrMFBQUpKCgoL6MCAIA8uqg9CY7jKC4uTh988IG++uor1apVK9vzLVu2VGBgoJYtW+bdlpSUpL1796pdu3aSpHbt2ikxMVEHDhzwvmbp0qUKDQ1Vo0aN8vNZAACAD13UnoThw4frnXfe0UcffaQKFSp4zyEICwtTuXLlFBYWpqFDh2rkyJGKiIhQaGio7r33XrVr105t27aVJHXu3FmNGjXSHXfcoWeffVbJyckaP368hg8fzt4CAACKkIu6BNLjsS+pmzVrlgYNGiTp9GJKDz74oN59912lp6erS5cumjZtWrZDCXv27NHdd9+tb775RsHBwRo4cKCefvppBQRcWLNwCeSFKi2fEwBwoS7mZ2i+1klwC5FwoUrL5wQAXKhCWycBAACUXEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATBcdCStWrFDPnj0VExMjj8ejDz/8MNvzgwYNksfjyfbo2rVrttccPnxYAwYMUGhoqMLDwzV06FClpaXl64MAAADfuuhIOHbsmJo2bapXX331nK/p2rWr9u3b5328++672Z4fMGCAfvzxRy1dulSffPKJVqxYob///e8XPz0AACgwARf7hm7duqlbt27nfU1QUJCio6PN5zZv3qwlS5Zo9erVuuKKKyRJr7zyirp3767nnntOMTExFzsSAAAoAAVyTsI333yjyMhI1a9fX3fffbcOHTrkfS4hIUHh4eHeQJCkTp06yc/PT99//735/dLT05WamprtAQAACpbPI6Fr166aO3euli1bpmeeeUbLly9Xt27dlJmZKUlKTk5WZGRktvcEBAQoIiJCycnJ5vd86qmnFBYW5n1Ur17d12MDAICzXPThhtz069fP+/+bNGmiyy+/XHXq1NE333yjjh075ul7jhs3TiNHjvR+nZqaSigAAFDACvwSyNq1a6ty5cravn27JCk6OloHDhzI9ppTp07p8OHD5zyPISgoSKGhodkeAACgYBV4JPzyyy86dOiQqlatKklq166djhw5orVr13pf89VXXykrK0tt2rQp6HEAAMAFuujDDWlpad69ApK0a9cubdiwQREREYqIiNCkSZPUt29fRUdHa8eOHRozZozq1q2rLl26SJIaNmyorl27atiwYZo+fboyMjIUFxenfv36cWUDAABFiMdxHOdi3vDNN9/o2muvzbF94MCBeu2119SnTx+tX79eR44cUUxMjDp37qzHH39cUVFR3tcePnxYcXFxWrx4sfz8/NS3b19NmTJFISEhFzRDamqqwsLClJKSksdDD548vEeSLuqXqggoLZ8TAHChLuZn6EVHQlFAJFyo0vI5AQAX6mJ+hnLvBgAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAACmALcHAHChPPl4r+OzKQCUHuxJAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgCnA7QGA/PPk8X2OT6cAgJKGPQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMDEiovIwTMprysYSs5EVjEEgJKCPQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATEQCAAAwEQkAAMBEJAAAABORAAAATAFuDwAA2Xny8V7HZ1MAYE8CAAA4ByIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAiEgAAgIlIAAAAJiIBAACYiAQAAGAKcHuA4sQzyZPn9zoTHR9OAgBAwWNPAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADAdNGRsGLFCvXs2VMxMTHyeDz68MMPsz3vOI4mTJigqlWrqly5curUqZO2bduW7TWHDx/WgAEDFBoaqvDwcA0dOlRpaWn5+iAAAMC3LjoSjh07pqZNm+rVV181n3/22Wc1ZcoUTZ8+Xd9//72Cg4PVpUsXnThxwvuaAQMG6Mcff9TSpUv1ySefaMWKFfr73/+e908BAAB87qJv8NStWzd169bNfM5xHL300ksaP368evfuLUmaO3euoqKi9OGHH6pfv37avHmzlixZotWrV+uKK66QJL3yyivq3r27nnvuOcXExOTj4wAAAF/x6TkJu3btUnJysjp16uTdFhYWpjZt2ighIUGSlJCQoPDwcG8gSFKnTp3k5+en77//3pfjAACAfPDpraKTk5MlSVFRUdm2R0VFeZ9LTk5WZGRk9iECAhQREeF9zdnS09OVnp7u/To1NdWXYwMAAEOxuLrhqaeeUlhYmPdRvXp1t0cCAKDE82kkREdHS5L279+fbfv+/fu9z0VHR+vAgQPZnj916pQOHz7sfc3Zxo0bp5SUFO/j559/9uXYAADA4NNIqFWrlqKjo7Vs2TLvttTUVH3//fdq166dJKldu3Y6cuSI1q5d633NV199paysLLVp08b8vkFBQQoNDc32AAAABeuiz0lIS0vT9u3bvV/v2rVLGzZsUEREhGrUqKEHHnhATzzxhOrVq6datWrpkUceUUxMjPr06SNJatiwobp27aphw4Zp+vTpysjIUFxcnPr168eVDQBQ4njy8V7HZ1Mgby46EtasWaNrr73W+/XIkSMlSQMHDtTs2bM1ZswYHTt2TH//+9915MgRXXnllVqyZInKli3rfc/bb7+tuLg4dezYUX5+furbt6+mTJnig48DAAB8xeM4TrFLtdTUVIWFhSklJSWPhx7yVraeSXl6myTJmejGLzOf8/yK27/6peVvZKXlc5YW/H4WNRfzM7RYXN0AAAAKH5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwBTg9gAACp5nkidP73MmOj6eBEBxwp4EAABgIhIAAICJSAAAACYiAQAAmIgEAABg4uoGAHBF3q44OY2rTlA42JMAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAEzd4AgDAJ/J6066ie8Mu9iQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMAW4PQDgFs8kT57f60x0fDgJfCWvv6f8fgI29iQAAAATkQAAAExEAgAAMBEJAADARCQAAAATkQAAAExEAgAAMBEJAADARCQAAAATKy4CAOCiorz6K3sSAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiasbAABFUl7P+i/oM/5LE/YkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAE5EAAABMRAIAADARCQAAwEQkAAAAU4DbAwAALo5nkidP73MmOj6eBCUdexIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmHweCY8++qg8Hk+2R4MGDbzPnzhxQsOHD1elSpUUEhKivn37av/+/b4eAwAA5FOB7Em47LLLtG/fPu/j22+/9T43YsQILV68WO+9956WL1+u3377TTfeeGNBjAEAAPIhoEC+aUCAoqOjc2xPSUnRjBkz9M4776hDhw6SpFmzZqlhw4ZauXKl2rZtWxDjAACAPCiQPQnbtm1TTEyMateurQEDBmjv3r2SpLVr1yojI0OdOnXyvrZBgwaqUaOGEhISCmIUAACQRz7fk9CmTRvNnj1b9evX1759+zRp0iT99a9/1aZNm5ScnKwyZcooPDw823uioqKUnJx8zu+Znp6u9PR079epqam+HhsAAJzF55HQrVs37/+//PLL1aZNG8XGxmrhwoUqV65cnr7nU089pUmTJvlqRAAAcAEK/BLI8PBwXXrppdq+fbuio6N18uRJHTlyJNtr9u/fb57DcMa4ceOUkpLiffz8888FPDUAACjwSEhLS9OOHTtUtWpVtWzZUoGBgVq2bJn3+aSkJO3du1ft2rU75/cICgpSaGhotgcAAChYPj/cMGrUKPXs2VOxsbH67bffNHHiRPn7+6t///4KCwvT0KFDNXLkSEVERCg0NFT33nuv2rVrx5UNAAAUMT6PhF9++UX9+/fXoUOHVKVKFV155ZVauXKlqlSpIkl68cUX5efnp759+yo9PV1dunTRtGnTfD0GAADIJ59Hwvz588/7fNmyZfXqq6/q1Vdf9fU/GgAA+BD3bgAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgEAABgIhIAAICJSAAAACYiAQAAmFyLhFdffVU1a9ZU2bJl1aZNG61atcqtUQAAgMGVSFiwYIFGjhypiRMnat26dWratKm6dOmiAwcOuDEOAAAwuBIJL7zwgoYNG6bBgwerUaNGmj59usqXL6+ZM2e6MQ4AADAEFPY/8OTJk1q7dq3GjRvn3ebn56dOnTopISHBfE96errS09O9X6ekpEiSUlNTC3bYs53I+1sLfdb84HPmqlh9TinPn5XPWUTxOc+rtHxOKW+f9cx7HMfJ/cVOIfv1118dSU58fHy27aNHj3Zat25tvmfixImOJB48ePDgwYOHjx4///xzrj+zC31PQl6MGzdOI0eO9H6dlZWlw4cPq1KlSvJ4PIUyQ2pqqqpXr66ff/5ZoaGhhfLPdAOfs+QpLZ+Vz1my8DkLjuM4Onr0qGJiYnJ9baFHQuXKleXv76/9+/dn275//35FR0eb7wkKClJQUFC2beHh4QU14nmFhoaW6H9hz+Bzljyl5bPyOUsWPmfBCAsLu6DXFfqJi2XKlFHLli21bNky77asrCwtW7ZM7dq1K+xxAADAObhyuGHkyJEaOHCgrrjiCrVu3VovvfSSjh07psGDB7sxDgAAMLgSCbfeeqsOHjyoCRMmKDk5Wc2aNdOSJUsUFRXlxjgXJCgoSBMnTsxx2KOk4XOWPKXls/I5SxY+Z9HgcZwLuQYCAACUNty7AQAAmIgEAABgIhIAAICJSAAAACYiAQAAmIgE6Ouvv3Z7BABAEcQlkFBQUJAuueQSDR48WAMHDlT16tXdHqnADBw4UEOHDtVVV13l9igF6pdfftHHH3+svXv36uTJk9mee+GFF1yaqmAcOXJEixYt0o4dOzR69GhFRERo3bp1ioqKUrVq1dweL882btx4wa+9/PLLC3CSwpOZmanZs2dr2bJlOnDggLKysrI9/9VXX7k0mW9NnDhRQ4YMUWxsrNuj5IpIMDRv3vyCbxy1bt26Ap6m4P3++++aN2+e5syZox9//FEdOnTQ0KFD1adPH5UpU8bt8XyqT58++uyzzxQbG+uNouL8g8SybNky9erVS7Vr19aWLVvUuHFj7d69W47jqEWLFiXmD1rp9A/STp06KSwsTLt371ZSUpJq166t8ePHa+/evZo7d67bI+aZn5+fPB6PHMfJ9c+jzMzMQpqqYMXFxWn27Nnq0aOHqlatmuNzv/jiiy5N5lvNmjXTpk2bdPXVV2vo0KHq27cviykVJ5MmTbrg106cOLEAJyl869at06xZs/Tuu+9Kkm677TYNHTpUTZs2dXky3zl48KA3in766Sd16tRJQ4cOVe/evRUYGOj2ePnWunVrdevWTZMmTVKFChX0ww8/KDIyUgMGDFDXrl119913uz2iz3Tq1EktWrTQs88+6/2stWvXVnx8vG677Tbt3r3b7RHzbM+ePd7/v379eo0aNUqjR4/23uMmISFBzz//vJ599ln16dPHpSl9q3Llypo7d666d+/u9igFbv369d4/a0+dOqV+/fppyJAhatWqldujZZfrzaRR6vz666/OxIkTnaCgICc4ONjx9/d3rrzySmfTpk1uj+Zza9eudeLi4pyyZcs6lStXdh544AFn69atbo+VLyEhIc727dsdx3Gc8PBw7+/bhg0bnNjYWBcn873Q0FDvZw0JCXF27NjhOI7j7N692wkKCnJzNJ9q1aqV8+mnn+bY/umnnzotWrRwYaKCUbVqVScpKcntMQrVyZMnnX//+9/O9ddf7wQGBjpNmjRxXnrpJefIkSNuj+Y4juNw4iIkSRkZGVq0aJG6d++u2NhYffHFF5o6dar279+v7du3KzY2VjfffLPbY/rUvn37tHTpUi1dulT+/v7q3r27EhMT1ahRo2K9WzM4ONh7HkLVqlW1Y8cO73O///67W2MViKCgIKWmpubYvnXrVlWpUsWFiQpGYmKiatWqlWN7rVq19NNPP7kwUcF48MEH9fLLL8spRTu4HcdRRkaGTp48KcdxVLFiRU2dOlXVq1fXggUL3B6PPQmWihUrOgcPHnQc5/TfxCpWrHjOR0kQFxfnVKpUyYmIiHDuv/9+JzExMcdr9u3b53g8Hhem862TJ086ixYtcnr06OEEBgY6LVu2dF577TUnJSXF+5r333/fCQ8Pd3HK/Ondu7fzxhtvOI7jOA8++KBTt25d54knnnBatGjhdOzY0eXpfGvo0KFOnz59nJMnTzohISHOzp07nT179jjNmzd37r//frfH85nmzZs7d9xxh5Oenu7dlp6e7txxxx1O8+bNXZzMt/r06eOEhYU5tWrVcq6//nrnhhtuyPYoSdasWeMMHz7ciYiIcKpWreqMHTvW2bZtm/f5KVOmOJGRkS5OeBrnJBjmzJmjfv36KSgoSLNnzz7vSUMDBw4sxMkKRseOHfW3v/1NN9544zlPnjl16pS+++47XX311YU8nW9VrlxZWVlZ6t+/v4YNG6ZmzZrleM2RI0fUvHlz7dq1q/AH9IGdO3cqLS1Nl19+uY4dO6YHH3xQ8fHxqlevnl544YVicUb1hUpJSdFNN92kNWvW6OjRo4qJiVFycrLatWunzz77TMHBwW6P6BOrVq1Sz5495TiO90qGjRs3yuPxaPHixWrdurXLE/rG4MGDz/v8rFmzCmmSgtWkSRNt2bJFnTt31rBhw9SzZ0/5+/tne83vv/+uyMjIHFd4FDYiAaXKvHnzdPPNN6ts2bJujwIf+u677/TDDz8oLS1NLVq0UKdOndweyeeOHTumt99+W1u2bJEkNWzYULfddluJCaHS5PHHH9eQIUOKxZVVREIuOnTooKuvvjrHVQz//e9/1bdv3xJzOdm2bdv09ddfm9cmT5gwwaWpkB8nT540fz9r1Kjh0kQAihsiIRd+fn6qVKmS2rdvr7fffttb7fv371dMTEyJuD75X//6l+6++25VrlxZ0dHR2Q6veDyeYr8WxI033njBr33//fcLcJLCsXXrVg0dOlTx8fHZtjv//3r7kvDv7Bn33Xef6tatq/vuuy/b9qlTp2r79u166aWX3BmsAJTUkG/RooWWLVumihUr5rpGTXH/s+jPisuCZwFuD1Ac/O///q/uvPNOtW3bVosXL1bNmjXdHsmnnnjiCT355JMaO3as26MUiLCwMLdHKFSDBw9WQECAPvnkE3NBmpLk3//+tz7++OMc2//yl7/o6aefLjGRkFvIF+dI6N27t/dcqJKy3kNuclvwrChhT0Iu/Pz8lJycrLCwMA0ePFhLly7Ve++9p4YNG5aYPQmhoaHasGGDateu7fYo8IHg4GCtXbtWDRo0cHuUAle2bFlt2rRJdevWzbZ9+/btaty4sU6cOOHSZL4VGxure+65p8SGfGlTnBY8Y52EXJwp9qCgIL3zzju6//771bVrV02bNs3lyXzn5ptv1pdffun2GPCRRo0albj1EM6lbt26WrJkSY7tn3/+eYmK3v/+978lbp2S0mzz5s36n//5H0lSQECA/vjjD4WEhOixxx7TM8884/J02XG4IRdn72gZP368GjZsWCIufTyjbt26euSRR7Ry5Uo1adIkx9LEZx/vLe4WLVqkhQsXmscCS8Ixz2eeeUZjxozR5MmTzd/P0NBQlybzvZEjRyouLk4HDx5Uhw4dJJ3elfv888+XmEMN0v+F/F133eX2KAUqMzNTL7744jn/+zx8+LBLk/mWteDZZZddJqnoLXhGJORi165dOVZu69u3r+rXr6+1a9e6NJVvvfHGGwoJCdHy5cu1fPnybM95PJ4SFQlTpkzRww8/rEGDBumjjz7S4MGDtWPHDq1evVrDhw93ezyfOHP5X8eOHbNtL4knLg4ZMkTp6el68skn9fjjj0uSatasqddee837N7WSoLSE/KRJk/Tmm2/qwQcf1Pjx4/Xwww9r9+7d+vDDD4v1eRdna9u2rb799ls1bNhQ3bt314MPPqjExES9//77atu2rdvjZcM5CShVGjRooIkTJ6p///7Zbgg0YcIEHT58WFOnTnV7xHw7O/TOVtwXxDqXgwcPqly5cgoJCXF7FJ+zlmQ+w+PxaOfOnYU4TcGpU6eOpkyZoh49eqhChQrasGGDd9vKlSv1zjvvuD2iTxSnBc+IhAuwZs2ac+7+KgmXzJUm5cuX1+bNmxUbG6vIyEgtXbpUTZs21bZt29S2bVsdOnTI7RGBUis4OFibN29WjRo1VLVqVX366adq0aKFdu7cqebNmyslJcXtEUsdDjfkYv78+fqf//kfdenSRV9++aU6d+6srVu3av/+/brhhhvcHs9niss1u/kVHR2tw4cPKzY2VjVq1NDKlSvVtGlT7dq1q1jfVGbjxo1q3Lix/Pz8tHHjxvO+9syyviXB/v37NWrUKC1btkwHDhzI8XtYkg6tlAaXXHKJ9u3bpxo1aqhOnTr68ssv1aJFC61evfqcS8ajYBEJuZg8ebJefPFFDR8+XBUqVNDLL7+sWrVq6c4771TVqlXdHs8nitM1u/nVoUMHffzxx2revLkGDx6sESNGaNGiRVqzZs1FLbpU1DRr1kzJycmKjIxUs2bN5PF4zOgpaeckDBo0SHv37tUjjzxS4teEKA0hf8MNN2jZsmVq06aN7r33Xt1+++2aMWOG9u7dqxEjRrg9ns/4+fmd99/VovTfKIcbchEcHKwff/xRNWvWVKVKlfTNN9+oSZMm2rx5szp06KB9+/a5PWK+FadrdvMrKytLWVlZCgg43cfz58/3Hgu88847VaZMGZcnzJs9e/aoRo0a8ng82rNnz3lfW5SOd+ZXhQoV9J///Me8UVdJklvIl5Tl4c+WkJCghIQE1atXTz179nR7HJ/56KOPsn2dkZGh9evXa86cOZo0aZKGDh3q0mSGwrrdZHFVrVo1Z+PGjY7jOE6TJk2cd955x3Ecx4mPj3dCQ0PdHM1nQkJCnO3btzuOc/rW2Js2bXIcx3E2bNjgxMbGujiZ7+3Zs8fJysrKsT0rK8vZs2ePCxP53vLly52MjIwc2zMyMpzly5e7MFHBadiwobNu3Tq3xyhwrVq1ciZMmOA4zun/Xnfs2OEcPXrU6dWrlzNt2jSXp4OvvP32206vXr3cHiMbFlPKxVVXXaWlS5dKOn2t8v33369hw4apf//+OS4xK66sa3bPKGrX7OZXrVq1dPDgwRzbDx8+fN4zyIuTa6+91ryePCUlRddee60LExWcl156SQ899JB2797t9igFqjgtvpNfSUlJiouLU8eOHdWxY0fFxcUpKSnJ7bEKRdu2bbVs2TK3x8iGcxJyMXXqVO/Srg8//LACAwMVHx+vvn37avz48S5P5xvF6Zrd/HL+/1oBZ0tLSysxt48+12c8dOhQibut8K233qrjx4+rTp06Kl++fI71A1h8p3j597//rX79+umKK65Qu3btJEkrV65U48aNNX/+fPXt29flCQvOH3/8oSlTphS520cTCedx6tQpffLJJ+rSpYuk0yebPPTQQy5P5XsvvPCC0tLSJJ1ezCQtLU0LFizwXrNbEowcOVLS6RP3HnnkEZUvX977XGZmpr7//vtif1z7zImXHo9HgwYNynY2eGZmpjZu3Ki//OUvbo1XIErSqornU1pCfsyYMRo3bpwee+yxbNsnTpyoMWPGlJhIqFixYraQdxxHR48eVfny5fXWW2+5OFlOnLiYiz9fV4/i68xu9uXLl6tdu3bZTlAsU6aMatasqVGjRqlevXpujZhvgwcPliTNmTNHt9xyi8qVK+d97sxnHDZsmCpXruzWiMij4rT4Tn6UL19eGzduzHHDrm3btqlp06Y6fvy4S5P51uzZs7NFgp+fn6pUqaI2bdqoYsWKLk6WE3sSctG6dWtt2LChxPxHmJu0tLQc96ovCWv9f/3115JO/yCdMmWKKlSo4PJEvjdr1ixJ8gZPSTu0kJsTJ07kuDSwJPy7KynbzaqCg4M1ffp0F6cpONdcc43+85//5IiEb7/9Vn/9619dmsr3Bg0a5PYIF4w9CblYuHChxo0bpxEjRqhly5Y5/uAtCQvT7Nq1S3Fxcfrmm2+y3VrXKUFr/V/oGgisoFm8HDt2TGPHjtXChQvN1TJLwr+7pcn06dM1YcIE3XLLLd7DKCtXrtR7772nSZMmKSYmxvvaXr16uTVmvp1rwTOPx6OyZcuqRo0aRWbxKCIhF35+574ApKT8AG3fvr0cx9H999+vqKioHCe9lYS1/s/sis/Nmb+NF2elaRXC4cOH6+uvv9bjjz+uO+64Q6+++qp+/fVXvf7663r66ac1YMAAt0fMs7OPW59PSTlB83x/3v5Zcf+z98+LKZ357/PPv9eBgYG69dZb9frrr7t+QjWRkIvSsDBNSEiI1q5dq/r167s9CnygW7du2rt3r+Li4sxVCHv37u3SZL5Xo0YNzZ07V9dcc41CQ0O1bt061a1bV/PmzdO7776rzz77zO0R82zOnDkX/NqSdOv60uCjjz7S2LFjNXr0aLVu3VqStGrVKj3//POaOHGiTp06pYceeki33nqrnnvuOXeHdWFthmLl999/9/7/vXv3Oo888ogzatQoZ8WKFS5O5VvXXHONs3TpUrfHgI+EhIQ469evd3uMQhEcHOxdBKtatWrO999/7ziO4+zcudMJDg52czRchPj4eGfx4sXZts2ZM8epWbOmU6VKFWfYsGHOiRMnXJrO91q1auUsWbIkx/YlS5Y4rVq1chzHcT744AOndu3ahT1aDpy4eA6JiYnq2bOnfv75Z9WrV0/z589X165ddezYMfn5+enFF1/UokWL1KdPH7dHzbc333xTd911l3799Vc1btw4x7XmJeG8i9KkevXqxfpmVRejdu3a2rVrl2rUqKEGDRpo4cKFat26tRYvXqzw8HC3x/OZ1NRUc7vH41FQUFCxXU78jMcee0zXXHONrr/+ekmn//wdOnSoBg0apIYNG+qf//ynYmJi9Oijj7o7qI8kJiaae6FjY2OVmJgo6fT9WIrEsv9uV0pR1bVrV+f66693vv32W+fOO+90qlWr5gwZMsTJzMx0MjMznXvuucdp06aN22P6REJCglOrVi3H4/F4H35+ft7/RfHyxRdfOJ07d3Z27drl9igF7oUXXnBefvllx3EcZ+nSpU7ZsmWdoKAgx8/Pz3nppZdcns53zvy3eK5HjRo1nAkTJjiZmZluj5on0dHRzurVq71f/+Mf/3Dat2/v/XrhwoVOw4YN3RitQDRr1swZOHCgk56e7t128uRJZ+DAgU6zZs0cx3Gcb7/91qlZs6ZbI3pxTsI5VK5cWV999ZUuv/xypaWlKTQ0VKtXr1bLli0lSVu2bFHbtm115MgRdwf1gUaNGqlhw4YaM2aMeeJiSTjvojSpWLGijh8/rlOnTpXoVQgte/bs0dq1a1W3bt0StQds7ty5evjhhzVo0KBsx7DnzJmj8ePH6+DBg3ruuec0evRo/eMf/3B52otXtmxZbdu2TdWrV5ckXXnllerWrZsefvhhSdLu3bvVpEkTHT161M0xfSY+Pl69evWSn5+f99/TxMREZWZm6pNPPlHbtm01b948JScna/To0a7OSiScg5+fn/fWu5K8d0c8c73y/v37FRMTU6zPsD0jODhYP/zwQ45rk1E85XbCW0k5yS0jI0Ndu3bV9OnTi/UiWBeiY8eOuvPOO3XLLbdk275w4UK9/vrrWrZsmebNm6cnn3xSW7ZscWnKvIuNjdW8efN01VVX6eTJkwoPD9fixYu998dJTEzU1VdfXaIC9+jRo3r77be1detWSVL9+vV12223Fbk1XDgn4TzO/ht1Sb1XfYcOHYiEEqSkREBuAgMDz3m9eUkTHx9vLqDUvHlzJSQkSDr9t++9e/cW9mg+0b17dz300EN65pln9OGHH6p8+fLZFk/auHGj6tSp4+KEvlehQgXdddddbo+RKyLhPP68/v2JEyd01113eRdTSk9Pd3M0n+rZs6dGjBihxMRENWnSJMfu6eK8aElptWPHDs2aNUs7duzQyy+/rMjISH3++eeqUaOG98ZAJcHtt9+uGTNm6Omnn3Z7lAJVvXp183POmDHDu4v+0KFDRW5J3wv1+OOP68Ybb9TVV1+tkJAQzZkzJ9vJmDNnzlTnzp1dnNC35s6de97nz9zxsyjgcMM5lKbFd0rDglGlyfLly9WtWze1b99eK1as0ObNm1W7dm09/fTTWrNmjRYtWuT2iD5z7733au7cuapXr565ImpJuUHZxx9/rJtvvlkNGjRQq1atJElr1qzRli1btGjRIl1//fV67bXXtG3btmL9mVNSUhQSEiJ/f/9s2w8fPqyQkJBifxXHGWfHXEZGho4fP64yZcqofPnyReqwCpEAlDDt2rXTzTffrJEjR2Y7l2bVqlW68cYb9csvv7g9Yr7t3LlTNWvW9B6ztng8Hn311VeFOFXB2rVrl15//fVsx7DvvPNO1axZ093B4BPbtm3T3XffrdGjR3vvPFwUEAmlXEZGhsqVK6cNGzaocePGbo8DHwgJCVFiYqJq1aqVLRJ2796tBg0aZLs/R3Hl7++vffv2eU8svvXWWzVlyhRFRUW5PBmQd2vWrNHtt99epE4+5ZyEUi4wMFA1atTgkEIJEh4ern379qlWrVrZtq9fv17VqlVzaSrfOvvvNp9//rmOHTvm0jSF48iRI1q1apUOHDiQ406tRekYNvIuICBAv/32m9tjZEMkQA8//LD+8Y9/aN68eYqIiHB7HORTv379NHbsWL333nvyeDzKysrSd999p1GjRpXYHyYlfYfo4sWLNWDAAO+aLX++0srj8ZTY39eS6uOPP872teM42rdvn6ZOnar27du7NJWNww1Q8+bNtX37dmVkZCg2NjbHyV/r1q1zaTLkxcmTJzV8+HDNnj1bmZmZCggIUGZmpm677TbNnj07x0lhxZG/v7+Sk5NVpUoVSacvJ9u4cWOOvSclxaWXXqru3btr8uTJKl++vNvjIJ/OPlnc4/GoSpUq6tChg55//nlVrVrVpclyIhKgSZMmnff5iRMnFtIk8KW9e/dq06ZNSktLU/PmzUvUgkN+fn7q1q2b9xLlxYsXq0OHDjkC9/3333djPJ8LDg5WYmKidzE3oLAQCQCKndJ0ibIk3XjjjerXr1+OFRdR/GRkZKhBgwb65JNP1LBhQ7fHyRXnJEDS6ZOiFi1apB07dmj06NGKiIjQunXrFBUVVWJOdistRo4caW73eDwqW7as6tatq969exfr809Kyg//C9WjRw+NHj1aP/30EwueFXOBgYHF6goj9iRAGzduVKdOnRQWFqbdu3crKSlJtWvX1vjx47V3795cVwdD0XLttddq3bp1yszMVP369SVJW7dulb+/vxo0aKCkpCR5PB59++23atSokcvT4kKw4FnJMnnyZG3dulVvvvmmAgKK9t/ViQSoU6dOatGihZ599tls19XHx8frtttu0+7du90eERfhpZde0n/+8x/NmjVLoaGhkk6vZPe3v/1NV155pYYNG6bbbrtNf/zxh7744guXpwVKnxtuuEHLli1TSEiImjRpUqTPpSESoLCwMK1bt0516tTJFgl79uxR/fr1i9WuMUjVqlXT0qVLc+wl+PHHH9W5c2f9+uuvWrdunTp37qzff//dpSlxIbp37653331XYWFhkqSnn35ad911l8LDwyWdvl/DX//6V/30008uTomLlds5NUXpcFrR3s+BQhEUFKTU1NQc27du3eq9xAzFR0pKig4cOJAjEg4ePOj9fQ4PD9fJkyfdGA8X4Ysvvsh2M7nJkyfrlltu8UbCqVOnlJSU5NJ0yKuiFAG5OfeBLpQavXr10mOPPaaMjAxJp49x7t27V2PHjlXfvn1dng4Xq3fv3hoyZIg++OAD/fLLL/rll1/0wQcfaOjQoerTp48kadWqVbr00kvdHRS5OntHLzt+i7eKFSsqIiIix6NWrVrq0qWLli5d6vaIOXC4AUpJSdFNN92kNWvW6OjRo4qJiVFycrLatm2rzz//PMfxMhRtaWlpGjFihObOnatTp05JOr3c68CBA/Xiiy8qODhYGzZskCQ1a9bMvUGRKz8/PyUnJ3vvUfHnw4GStH//fsXExHDiYjExZ84cc/uRI0e0du1aLViwQIsWLVLPnj0LebJzIxLg9d133+mHH35QWlqaWrRooU6dOrk9Ei5SZmamvvvuO+9lcjt37pQk1a5dWyEhIS5Ph4uV28qSRELJ8sILL2jRokWKj493exQvIqEU++OPP7Rs2TJdf/31kqRx48ZlO/4ZEBCgxx57TGXLlnVrRORB2bJltXnz5hK7RHFpktvKkunp6VqyZAmRUEJs3bpVbdu21eHDh90exYsTF0uxOXPm6NNPP/VGwtSpU3XZZZepXLlykqQtW7aoatWqGjFihJtj4iI1btxYO3fuJBJKgIEDB2b7+vbbb8/xGm7uVHKkp6erTJkybo+RDXsSSrG//vWvGjNmjPf419nHO9966y29+uqrSkhIcHNMXKQlS5Zo3Lhxevzxx9WyZcsc55ScWTsBQNHywAMPaMuWLVqyZInbo3gRCaVY1apVlZCQoJo1a0qSqlSpotWrV3u/3rp1q1q1aqWUlBT3hsRF+/PqfH++pbDjOKzOB7joXEump6SkaN26ddq6datWrFihli1bFvJk58bhhlLsyJEj2c5BOHjwYLbns7Kysj2P4uHrr78+53OJiYmFOAmAP1u/fr25PTQ0VNddd53ef//9IneYkEgoxS655BJt2rTJu77/2TZu3KhLLrmkkKdCfl199dXZvj569Kjeffddvfnmm1q7dq3i4uJcmgwo3c4X8EUViymVYt27d9eECRPMZZf/+OMPTZo0ST169HBhMvjCihUrNHDgQFWtWlXPPfecOnTooJUrV7o9FoBihHMSSrH9+/erWbNmKlOmjOLi4rwr8CUlJWnq1Kk6deqU1q9fr6ioKJcnxYVKTk7W7NmzNWPGDKWmpuqWW27R9OnT9cMPP3DHRwAXjUgo5Xbt2qW7775bS5cu9S756vF4dN1112natGneKx1Q9PXs2VMrVqxQjx49NGDAAHXt2lX+/v4KDAwkEgDkCZEASdLhw4e1fft2SVLdunUVERHh8kS4WAEBAbrvvvt09913q169et7tRAKAvOKcBEiSIiIi1Lp1a7Vu3ZpAKKa+/fZbHT16VC1btlSbNm00depUbgUNIF/YkwCUMMeOHdOCBQs0c+ZMrVq1SpmZmXrhhRc0ZMgQVahQwe3xABQjRAJQgiUlJWnGjBmaN2+ejhw5ouuuu04ff/yx22MBKCaIBKAUyMzM1OLFizVz5kwiAcAFIxIAAICJExcBAICJSAAAACYiAQAAmIgEAABgIhIAeHk8nvM+Hn30UbdHBFCIuFU0AK99+/Z5//+CBQs0YcIEJSUlebeFhIS4MRYAl7AnAYBXdHS09xEWFiaPx5Nt2/z589WwYUOVLVtWDRo00LRp07K9f+zYsbr00ktVvnx51a5dW4888ogyMjK8zz/66KNq1qyZZs6cqRo1aigkJET33HOPMjMz9eyzzyo6OlqRkZF68sknC/ujAzCwJwHABXn77bc1YcIETZ06Vc2bN9f69es1bNgwBQcHa+DAgZKkChUqaPbs2YqJiVFiYqKGDRumChUqaMyYMd7vs2PHDn3++edasmSJduzYoZtuukk7d+7UpZdequXLlys+Pl5DhgxRp06d1KZNG7c+LgCxmBKAc5g9e7YeeOABHTlyRNLpu4M+/vjj6t+/v/c1TzzxhD777DPFx8eb3+O5557T/PnztWbNGkmn9yT885//VHJysvc+El27dlVSUpJ27NghP7/TOzcbNGigQYMG6aGHHirATwggN+xJAJCrY8eOaceOHRo6dKiGDRvm3X7q1CmFhYV5v16wYIGmTJmiHTt2KC0tTadOnVJoaGi271WzZs1sN5qKioqSv7+/NxDObDtw4EABfiIAF4JIAJCrtLQ0SdK//vWvHIcA/P39JUkJCQkaMGCAJk2apC5duigsLEzz58/X888/n+31gYGB2b72eDzmtqysLF9/DAAXiUgAkKuoqCjFxMRo586dGjBggPma+Ph4xcbG6uGHH/Zu27NnT2GNCKAAEAkALsikSZN03333KSwsTF27dlV6errWrFmj//73vxo5cqTq1aunvXv3av78+WrVqpU+/fRTffDBB26PDSAfuAQSwAX529/+pjfffFOzZs1SkyZNdPXVV2v27NmqVauWJKlXr14aMWKE4uLi1KxZM8XHx+uRRx5xeWoA+cHVDQAAwMSeBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJiIBAAAYCISAACAiUgAAAAmIgEAAJj+H2VGkiiEXsm2AAAAAElFTkSuQmCC\n",
684 | "text/plain": [
685 | ""
686 | ]
687 | },
688 | "metadata": {},
689 | "output_type": "display_data"
690 | }
691 | ],
692 | "source": [
693 | "games.plot(kind='bar',y=['GF','GA'],x='Team',color=['yellow','green'],figsize=(6,10),)"
694 | ]
695 | },
696 | {
697 | "cell_type": "code",
698 | "execution_count": 53,
699 | "id": "fc00336d",
700 | "metadata": {},
701 | "outputs": [
702 | {
703 | "data": {
704 | "text/plain": [
705 | "(8, 12)"
706 | ]
707 | },
708 | "execution_count": 53,
709 | "metadata": {},
710 | "output_type": "execute_result"
711 | }
712 | ],
713 | "source": [
714 | "df.shape"
715 | ]
716 | },
717 | {
718 | "cell_type": "code",
719 | "execution_count": 61,
720 | "id": "805fd47b",
721 | "metadata": {},
722 | "outputs": [
723 | {
724 | "data": {
725 | "text/html": [
726 | "\n",
727 | "\n",
740 | "
\n",
741 | " \n",
742 | " \n",
743 | " | \n",
744 | " Team | \n",
745 | " Pts | \n",
746 | "
\n",
747 | " \n",
748 | " \n",
749 | " \n",
750 | " | 0 | \n",
751 | " Brazil | \n",
752 | " 237 | \n",
753 | "
\n",
754 | " \n",
755 | " | 1 | \n",
756 | " Germany | \n",
757 | " 221 | \n",
758 | "
\n",
759 | " \n",
760 | " | 2 | \n",
761 | " Italy | \n",
762 | " 156 | \n",
763 | "
\n",
764 | " \n",
765 | " | 3 | \n",
766 | " Argentina | \n",
767 | " 144 | \n",
768 | "
\n",
769 | " \n",
770 | " | 4 | \n",
771 | " France | \n",
772 | " 115 | \n",
773 | "
\n",
774 | " \n",
775 | " | 5 | \n",
776 | " England | \n",
777 | " 108 | \n",
778 | "
\n",
779 | " \n",
780 | " | 6 | \n",
781 | " Spain | \n",
782 | " 105 | \n",
783 | "
\n",
784 | " \n",
785 | " | 7 | \n",
786 | " Uruguay | \n",
787 | " 84 | \n",
788 | "
\n",
789 | " \n",
790 | "
\n",
791 | "
"
792 | ],
793 | "text/plain": [
794 | " Team Pts\n",
795 | "0 Brazil 237\n",
796 | "1 Germany 221\n",
797 | "2 Italy 156\n",
798 | "3 Argentina 144\n",
799 | "4 France 115\n",
800 | "5 England 108\n",
801 | "6 Spain 105\n",
802 | "7 Uruguay 84"
803 | ]
804 | },
805 | "execution_count": 61,
806 | "metadata": {},
807 | "output_type": "execute_result"
808 | }
809 | ],
810 | "source": [
811 | "points=df.iloc[:,[1,11]]\n",
812 | "points"
813 | ]
814 | },
815 | {
816 | "cell_type": "code",
817 | "execution_count": 65,
818 | "id": "d8ae14a0",
819 | "metadata": {},
820 | "outputs": [],
821 | "source": [
822 | "my_team=df.Team\n",
823 | "my_pts=df.Pts"
824 | ]
825 | },
826 | {
827 | "cell_type": "markdown",
828 | "id": "8b116cdc",
829 | "metadata": {},
830 | "source": [
831 | "### showing total points gained by a team as percentage in the form of pie chart\n"
832 | ]
833 | },
834 | {
835 | "cell_type": "code",
836 | "execution_count": 78,
837 | "id": "08058faf",
838 | "metadata": {},
839 | "outputs": [
840 | {
841 | "data": {
842 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGbCAYAAAC/GSVRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDOklEQVR4nO3dd3hTZfvA8W+StulI927poINN2SB7KiBbhoADVNRXHC8qDsSB8jpQXIjiBgRBQRH5gYqIIFNZLWWWFjqge++ZnN8flUhtCx1pT8bzua5ekJMz7sw7z1ZIkiQhCIIgCGZOKXcAgiAIgtAaRMITBEEQLIJIeIIgCIJFEAlPEARBsAgi4QmCIAgWQSQ8QRAEwSKIhCcIgiBYBJHwBEEQBIsgEp4gCIJgEUTCa4Lg4GDmzp3bqtccNmwYXbp0adVrmoLg4GDGjx8vdxhGTaFQsGTJkla/7pIlS1AoFK1+3dayd+9eFAoFe/fuleX6cr2upkwkPKGWlJQUlixZQlRUVIP2P3ToEEuWLCEvL69F4zI1Z8+eZcmSJSQkJDT5HBs2bOC9994zWEymQrynhJYgEl4TxMTE8Nlnn8kdRotJSUnh5ZdfblTCe/nll8WX07+cPXuWl19+2WIT3vPPP09paWmTjjWF99SQIUMoLS1lyJAhcociNJCV3AGYIrVaLXcILaKqqgqdTid3GIKZsLKywsrKfL9ilEoltra2cochNIIo4f3tanvD+fPnmTFjBk5OTri7u/Pf//6XsrKyGvvW1YaXl5fHggULCAgIQK1WExYWxrJlyxqcQH7++WeGDh2Ko6MjTk5O9OnThw0bNtTa7+zZswwfPhx7e3v8/f158803a9xfUVHBiy++SK9evXB2dsbBwYHBgwezZ8+eGvslJCSgUChYvnw57733HqGhoajVaj766CP69OkDwD333INCoUChULBmzZp6n7ennnoKgLZt2+r3v1qqqaqqYunSpfrzBwcH89xzz1FeXn7D5yQtLY177rmHNm3aoFar8fX1ZdKkSXWWmA4cOEDfvn2xtbUlJCSEr776qtY+ly5dYvr06bi5uWFvb89NN93Ejh079PdLkoSHhwdPPPGEfptOp8PFxQWVSlWjtLFs2TKsrKwoKiqqM/Y1a9Ywffp0AIYPH65/Xq5t7/noo4/o3LkzarUaPz8/Hn744RrXGDZsGDt27CAxMVF/fHBwMNDw17mhrrZHffvttzz33HP4+Pjg4ODAxIkTuXz5cq39N2/eTK9evbCzs8PDw4M777yT5OTkGvvU1YanUCh45JFH2Lp1K126dEGtVtO5c2d++eWXGsdd7z21a9cuBg0ahIuLCxqNhvbt2/Pcc8/d8DGWlpby2GOP4eHhgaOjIxMnTiQ5OblWW1hiYiLz58+nffv22NnZ4e7uzvTp02u97+pqw7va1n6jzylAeXk5L730EmFhYajVagICAnj66adrfTbKy8t5/PHH8fT01Md95cqVGz5eoTbz/fnVRDNmzCA4OJjXX3+dP//8kxUrVpCbm1vnF+hVJSUlDB06lOTkZB588EECAwM5dOgQixYtIjU19YZVUmvWrOHee++lc+fOLFq0CBcXFyIjI/nll1+YPXu2fr/c3FzGjBnDbbfdxowZM/juu+945pln6Nq1K2PHjgWgoKCAzz//nFmzZnH//fdTWFjIF198wejRozly5Ajdu3evce3Vq1dTVlbGAw88gFqtZsqUKRQWFvLiiy/ywAMPMHjwYAAGDBhQZ+y33XYbFy5cYOPGjbz77rt4eHgA4OnpCcC8efNYu3Yt06ZN48knn+Svv/7i9ddf59y5c/zwww/XfV6mTp3KmTNnePTRRwkODiYjI4Ndu3aRlJSk/+IHiIuLY9q0adx3333MmTOHL7/8krlz59KrVy86d+4MQHp6OgMGDKCkpITHHnsMd3d31q5dy8SJE/nuu++YMmUKCoWCgQMHsm/fPv25o6Ojyc/PR6lUcvDgQcaNGwfA/v376dGjBxqNps7YhwwZwmOPPcaKFSt47rnn6NixI4D+3yVLlvDyyy8zatQoHnroIWJiYli1ahVHjx7l4MGDWFtbs3jxYvLz87ly5QrvvvsugP56jX2dG+rVV19FoVDwzDPPkJGRwXvvvceoUaOIiorCzs4OqH6/3nPPPfTp04fXX3+d9PR03n//fQ4ePEhkZCQuLi7XvcaBAwfYsmUL8+fPx9HRkRUrVjB16lSSkpJwd3e/7nvqzJkzjB8/noiICF555RXUajVxcXEcPHjwho9t7ty5bNq0ibvuuoubbrqJP/74Q/96Xuvo0aMcOnSImTNn0qZNGxISEli1ahXDhg3j7Nmz2NvbX/c6Dfmc6nQ6Jk6cyIEDB3jggQfo2LEjp06d4t133+XChQts3bpVf7558+axfv16Zs+ezYABA/j999/rjFtoAEmQJEmSXnrpJQmQJk6cWGP7/PnzJUA6efKkfltQUJA0Z84c/e2lS5dKDg4O0oULF2oc++yzz0oqlUpKSkqq97p5eXmSo6Oj1K9fP6m0tLTGfTqdTv//oUOHSoD01Vdf6beVl5dLPj4+0tSpU/XbqqqqpPLy8hrnyc3Nlby9vaV7771Xvy0+Pl4CJCcnJykjI6PG/kePHpUAafXq1fXGfa233npLAqT4+Pga26OioiRAmjdvXo3tCxculADp999/r/ecubm5EiC99dZb1712UFCQBEj79u3Tb8vIyJDUarX05JNP6rctWLBAAqT9+/frtxUWFkpt27aVgoODJa1Wq38sKpVKKigokCRJklasWCEFBQVJffv2lZ555hlJkiRJq9VKLi4u0uOPP37d2DZv3iwB0p49e2psz8jIkGxsbKRbbrlFf11JkqSVK1dKgPTll1/qt40bN04KCgqqde6Gvs6SJEmA9NJLL1031j179kiA5O/vr3/skiRJmzZtkgDp/ffflyRJkioqKiQvLy+pS5cuNd6v27dvlwDpxRdf1G+7+pn6dyw2NjZSXFycftvJkyclQPrggw/02+p7T7377rsSIGVmZl738fzb8ePHJUBasGBBje1z586t9fyUlJTUOv7w4cO1Pn9Xn7NrX9+Gfk7XrVsnKZXKGu9HSZKkjz/+WAKkgwcPSpL0z2do/vz5NfabPXt2g15XoSZRpfkvDz/8cI3bjz76KAA//fRTvcds3ryZwYMH4+rqSlZWlv5v1KhRaLXaGiWGf9u1axeFhYU8++yztdoD/l0dpNFouPPOO/W3bWxs6Nu3L5cuXdJvU6lU2NjYANW/InNycqiqqqJ3796cOHGi1vWnTp2qL40Z2tXn7NoqQoAnn3wSoEZ14r/Z2dlhY2PD3r17yc3Nve51OnXqpC+JQnVJoH379jWel59++om+ffsyaNAg/TaNRsMDDzxAQkICZ8+eBWDw4MFotVoOHToEVJfkBg8ezODBg9m/fz8Ap0+fJi8vr8Y1G+O3336joqKCBQsWoFT+8xG8//77cXJyuu7zclVjX+eGuvvuu3F0dNTfnjZtGr6+vvrX8tixY2RkZDB//vwa79dx48bRoUOHBsU+atQoQkND9bcjIiJwcnKq8XrV52rp8ccff2xUe/PVKtP58+fX2H71832tqyVZgMrKSrKzswkLC8PFxaVBz21DPqebN2+mY8eOdOjQocZ3xogRIwD0VdNXn/fHHnusxjUWLFhwwziE2kTC+5fw8PAat0NDQ1EqldftaRcbG8svv/yCp6dnjb9Ro0YBkJGRUe+xFy9eBGjQGLs2bdrUSoKurq61EsLatWuJiIjA1tYWd3d3PD092bFjB/n5+bXO2bZt2xtet6kSExNRKpWEhYXV2O7j44OLiwuJiYn1HqtWq1m2bBk///wz3t7eDBkyhDfffJO0tLRa+wYGBtba9u/nJTExkfbt29fa72oV49VYevbsib29vT65XU14Q4YM4dixY5SVlenvuzZ5NsbVa/07HhsbG0JCQq77vFyrMa9zQ/37/a9QKAgLC9O//+uLHaBDhw4Nir0hr1d9br/9dgYOHMi8efPw9vZm5syZbNq06YbJ7+p78d/v93+/N6G6re/FF1/Ut8d7eHjg6elJXl5eg57bhnxOY2NjOXPmTK3vjHbt2gH/fGdcjfvaHwhQ9/Mv3Jhow7uBhgyc1el03HzzzTz99NN13n/1TdxcKpWqzu2SJOn/v379eubOncvkyZN56qmn8PLyQqVS8frrr+uT67Wu/TXbUpo6+HjBggVMmDCBrVu3snPnTl544QVef/11fv/9d3r06KHfryHPS0NZW1vTr18/9u3bR1xcHGlpaQwePBhvb28qKyv566+/2L9/Px06dGixknFDNPZ1NibNeb3s7OzYt28fe/bsYceOHfzyyy98++23jBgxgl9//bXeczfGo48+yurVq1mwYAH9+/fH2dkZhULBzJkzG1SqbMjj0+l0dO3alXfeeafOfQMCApoWvHBdIuH9S2xsbI1fgXFxceh0uhqdJP4tNDSUoqIifYmuMa7+cjt9+nSdvzYb67vvviMkJIQtW7bUSDQvvfRSg8/R2ARV3/5BQUHodDpiY2P1JSmo7kCSl5dHUFDQDc8dGhrKk08+yZNPPklsbCzdu3fn7bffZv369Y2KMSgoiJiYmFrbz58/r7//qsGDB7Ns2TJ+++03PDw86NChAwqFgs6dO7N//37279/foNldrve8QPV4zpCQEP32iooK4uPja7yP6juHIV7nusTGxta4LUkScXFxRERE1Ir9avXbVTExMQ16TRvieu9BpVLJyJEjGTlyJO+88w6vvfYaixcvZs+ePfV+Bq++F+Pj42uUYuPi4mrt+9133zFnzhzefvtt/baysjKDjgkMDQ3l5MmTjBw58rqP9WrcFy9erFGqq+u9LNyYqNL8lw8//LDG7Q8++ABA37uqLjNmzODw4cPs3Lmz1n15eXlUVVXVe+wtt9yCo6Mjr7/+eq3hD00poVz9dXntsX/99ReHDx9u8DkcHBwAGvwBr2//W2+9FaBWL9Wrv2qv19OspKSk1vMRGhqKo6Njg4Y0/Nutt97KkSNHajwPxcXFfPrppwQHB9OpUyf99sGDB1NeXs57773HoEGD9F9IgwcPZt26daSkpDSo/a6+52XUqFHY2NiwYsWKGq/TF198QX5+fo3nxcHBoc5qNEO8znX56quvKCws1N/+7rvvSE1N1b//e/fujZeXFx9//HGN1+Hnn3/m3LlzBus9WN9zl5OTU2vfqz1Sr/e+GD16NFA9FORaVz/f11KpVLU+ex988AFarfaGcTfUjBkzSE5OrnMCi9LSUoqLi4F/vndWrFhRYx9TnYxAbqKE9y/x8fFMnDiRMWPGcPjwYX134G7dutV7zFNPPcW2bdsYP368vjt8cXExp06d4rvvviMhIUHftfrfnJycePfdd5k3bx59+vRh9uzZuLq6cvLkSUpKSli7dm2j4h8/fjxbtmxhypQpjBs3jvj4eD7++GM6depU75ixfwsNDcXFxYWPP/4YR0dHHBwc6NevX73tfb169QJg8eLFzJw5E2trayZMmEC3bt2YM2cOn376KXl5eQwdOpQjR46wdu1aJk+ezPDhw+uN4cKFC4wcOZIZM2bQqVMnrKys+OGHH0hPT2fmzJmNek4Ann32WTZu3MjYsWN57LHHcHNzY+3atcTHx/P999/X6DzSv39/rKysiImJ4YEHHtBvHzJkCKtWrQJoUMLr3r07KpWKZcuWkZ+fj1qtZsSIEXh5ebFo0SJefvllxowZw8SJE4mJidGPgby2w0OvXr349ttveeKJJ+jTpw8ajYYJEyYY5HWui5ubG4MGDeKee+4hPT2d9957j7CwMO6//36gusp32bJl3HPPPQwdOpRZs2bphyUEBwfz+OOPN/na16rvPfXKK6+wb98+xo0bR1BQEBkZGXz00Ue0adPmum2qvXr1YurUqbz33ntkZ2frhyVcuHABqFmiHD9+POvWrcPZ2ZlOnTpx+PBhfvvtN9zd3Q3y2ADuuusuNm3axH/+8x/27NnDwIED0Wq1nD9/nk2bNrFz50569+5N9+7dmTVrFh999BH5+fkMGDCA3bt311kyFRpAru6hxuZqF+qzZ89K06ZNkxwdHSVXV1fpkUceqTVc4N/DEiSpuov7okWLpLCwMMnGxkby8PCQBgwYIC1fvlyqqKi44fW3bdsmDRgwQLKzs5OcnJykvn37Shs3btTfP3ToUKlz5861jpszZ06Nbus6nU567bXXpKCgIEmtVks9evSQtm/fXmu/q8MS6uv2/+OPP0qdOnWSrKysGjREYenSpZK/v7+kVCprdCevrKyUXn75Zalt27aStbW1FBAQIC1atEgqKyu77vmysrKkhx9+WOrQoYPk4OAgOTs7S/369ZM2bdpUY7+goCBp3LhxtY4fOnSoNHTo0BrbLl68KE2bNk1ycXGRbG1tpb59+0rbt2+v8/p9+vSRAOmvv/7Sb7ty5YoESAEBAdeN/VqfffaZFBISIqlUqlpd2FeuXCl16NBBsra2lry9vaWHHnpIys3NrXF8UVGRNHv2bMnFxUUC9K9hQ19nSWrcsISNGzdKixYtkry8vCQ7Oztp3LhxUmJiYq39v/32W6lHjx6SWq2W3NzcpDvuuEO6cuVKjX3qG5bw8MMP1zpfXZ+put5Tu3fvliZNmiT5+flJNjY2kp+fnzRr1qxaQ4LqUlxcLD388MOSm5ubpNFopMmTJ0sxMTESIL3xxhv6/XJzc6V77rlH8vDwkDQajTR69Gjp/PnztWKsb1hCQz6nklQ9xGPZsmVS586dJbVaLbm6ukq9evWSXn75ZSk/P1+/X2lpqfTYY49J7u7ukoODgzRhwgTp8uXLYlhCEygkqQn1Zmbo6kDgzMzMektjgmCu9u7dy/Dhw9m8eTPTpk2TO5xWExUVRY8ePVi/fj133HGH3OEILUy04QmCYBHqmsj6vffeQ6lUigmgLYRowxMEwSK8+eabHD9+nOHDh2NlZcXPP//Mzz//zAMPPCCGAVgIkfAEQbAIAwYMYNeuXSxdupSioiICAwNZsmQJixcvljs0oZWINjxBEATBIog2PEEQBMEiiIQnCIIgWASR8ARBEASLIBKeIAiCYBFEwhMEQRAsgkh4giAIgkUQCU8QBEGwCCLhCYIgCBZBJDxBEATBIoiEJwiCIFgEkfAEQRAEiyASniAIgmARRMITBEEQLIJIeIIgCIJFEAlPEARBsAgi4QmCIAgWQSQ8QRAEwSKIhCcIgiBYBJHwBEEQBIsgEp4gCIJgEUTCEwRBECyCSHiCIAiCRRAJTxAEQbAIIuEJgiAIFkEkPEEQBMEiiIQnCIIgWASR8ARBEASLIBKeCUpLS+O///0vYWFh2Nra4u3tzcCBA1m1ahUlJSVyhycIgmCUrOQOQGicS5cuMXDgQFxcXHjttdfo2rUrarWaU6dO8emnn+Lv78/EiRMbfd6KigpsbGxaIGJBEATjIEp4Jmb+/PlYWVlx7NgxZsyYQceOHQkJCWHSpEns2LGDCRMmAJCXl8e8efPw9PTEycmJESNGcPLkSf15lixZQvfu3fn8889p27Yttra2ACgUCj755BPGjx+Pvb09HTt25PDhw8TFxTFs2DAcHBwYMGAAFy9e1J/r4sWLTJo0CW9vbzQaDX369OG3336rEXdwcDCvvfYa9957L46OjgQGBvLpp5/q7x8xYgSPPPJIjWMyMzOxsbFh9+7dBn8eBUGwPCLhmZDs7Gx+/fVXHn74YRwcHOrcR6FQADB9+nQyMjL4+eefOX78OD179mTkyJHk5OTo942Li+P7779ny5YtREVF6bcvXbqUu+++m6ioKDp06MDs2bN58MEHWbRoEceOHUOSpBrJqaioiFtvvZXdu3cTGRnJmDFjmDBhAklJSTVie/vtt+nduzeRkZHMnz+fhx56iJiYGADmzZvHhg0bKC8v1++/fv16/P39GTFiRLOfO0EQBCTBZPz5558SIG3ZsqXGdnd3d8nBwUFycHCQnn76aWn//v2Sk5OTVFZWVmO/0NBQ6ZNPPpEkSZJeeuklydraWsrIyKixDyA9//zz+tuHDx+WAOmLL77Qb9u4caNka2t73Vg7d+4sffDBB/rbQUFB0p133qm/rdPpJC8vL2nVqlWSJElSaWmp5OrqKn377bf6fSIiIqQlS5Zc9zqCIAgNJUp4ZuDIkSNERUXRuXNnysvLOXnyJEVFRbi7u6PRaPR/8fHxNaoig4KC8PT0rHW+iIgI/f+9vb0B6Nq1a41tZWVlFBQUANUlvIULF9KxY0dcXFzQaDScO3euVgnv2vMqFAp8fHzIyMgAwNbWlrvuuosvv/wSgBMnTnD69Gnmzp3bzGdHEAShmui0YkLCwsJQKBT6asCrQkJCALCzswOqE5Cvry979+6tdQ4XFxf9/+urFrW2ttb//2oVaV3bdDodAAsXLmTXrl0sX76csLAw7OzsmDZtGhUVFfWe9+p5rp4Dqqs1u3fvzpUrV1i9ejUjRowgKCiozhgFQRAaSyQ8E+Lu7s7NN9/MypUrefTRR+tNWD179iQtLQ0rKyuCg4NbPK6DBw8yd+5cpkyZAlQn3ISEhEafp2vXrvTu3ZvPPvuMDRs2sHLlSgNHKgiCJRNVmibmo48+oqqqit69e/Ptt99y7tw5YmJiWL9+PefPn0elUjFq1Cj69+/P5MmT+fXXX0lISODQoUMsXryYY8eOGTym8PBwfceXkydPMnv27Bolt8aYN28eb7zxBpIk6ROoIAiCIYiEZ2JCQ0OJjIxk1KhRLFq0iG7dutG7d28++OADFi5cyNKlS1EoFPz0008MGTKEe+65h3bt2jFz5kwSExP1bXKG9M477+Dq6sqAAQOYMGECo0ePpmfPnk0616xZs7CysmLWrFn6oRKCIAiGoJAkSZI7CEG4KiEhgdDQUI4ePdrkpCkIglAXkfAEo1BZWUl2djYLFy4kPj6egwcPyh2SIAhmRnRaEYzCwYMHGT58OO3ateO7776TO5z6VRRDaS6U5FT/W5pzzf9zoervgfN/92T9+8Y1/1X8s02tATs3sHcHe7e//+9afdvWubUekSBYDFHCE4SrdDrIvwzZcZBzqfrf7ItQkHxNQitrnViUVmDnWp0EHTzAJQjcQ8EjHNzDwC0UrEUbpyA0hkh4guUpL4S0U38ntL+TWnYc5MSDtvzGxxsDhRKc2oBHWHUCdA+vToie7cG5jdzRCYJREglPMH/ZF+HyEbj8V/W/medAatqwCZOg8YGAvhDQr/rPtxtYiZUwBEEkPMG8VJRAyom/E9wRuHIUSrLkjkpeVrbg16NmEnTwkDsqQWh1IuEJpk2ng+TjELsT4nZDWjToquSOyvi5hUDwIAi/BUKGV3egEQQzJxKeYHrK8iF2F1zYCRd3Q0m23BGZNpUNBA2A8NFUtBuPjXug3BEJQosQCU8wDYXpcH579V/8ftBVyh2RWfrW71m+LB7I6C4+jO3iQ0dfJ7lDEgSDEQlPMF6luRC9CU5/X90WZ84dTYyApFAySvEZF0vs9NuC3e0Z3dmHCd386OIvxgYKpk0kPMG4SBLE/wEnvoJz201nmIAZKPTqTdekJ+q9v6u/M7P6BjKxux8atZizQjA9IuEJxiE/GaK+hsj1kJcodzQW6feAR7g3dsAN93OwUTGhmx+z+gbSLcCl5QMTBAMRCU+Qj7YSYn6CE+uqO5+IKktZzbH/kD9yXBt1TCdfJ2b1DWByD38cba1vfIAgyEgkPKH1FabDnx9Vl+YsfYyckahwCaVd2tImH29nrWJ8hC+z+gXSM7BxSVMQWotIeELryU2Eg+9B1IbWm5NSaJDIwDlMuTDaIOfq1saZR0eEM6qT4ddeFITmEAlPaHkZ5+HAO9W9LcWgcKP0nOtyNqT6GfScXfydeGR4OKM7e6OosXqEIMhDJDyh5SQfh/3vwPkdgHibGSudvQfhue+hlZQtcv6Ovk48OiKMsV18ROITZCUSnmB48ftg/9twaa/ckQgNEN9mMsPjZrT4ddp5a3hkRDjju/qiVIrEJ7Q+kfAEw0mJgp2LIfGA3JEIjbDS+xWWJ4a12vVCPR14ZEQYE7v5oxKJT2hFIuEJzVeYDrtfgZMbxNACEyNZ2dGz/BNyK1t/IHmIhwMvjO/E8A5erX5twTKJhCc0XWUZHF4JB96FiiK5oxGaINNvBH0uzZM1hlEdvXhxfGcC3e1ljUMwf2J+IKFpTn8Pu5ZAfpLckQjN8Ad95A6B385lsD82iweHhjJ/WCi21iq5QxLMlCjhCY2TfAJ+WQSX/5Q7EqGZJIWSW5SfEVtsd+OdW0kbVzueH9eJMV185A5FMEMi4QkNU5JT3SHl5EbEEAPzUOTZky6XF8odRp2GtPNkyYROhHiKhWkFw2mZgTeCeTm3HT7sV90pRSQ7s3HUtr/cIdRr34VMxry3n2W/nKekQkxWIBiGKOEJ9SvNhZ+ehlOb5I5EaAFz7T9kbyMni5aDn7Mtb03vxsAwD7lDEUycSHhC3S7shG2PQVGa3JEILaDCJYR2af+TO4wGUyhg3qC2PDW6AzZWomJKaBrxzhFqKsuHrfNhwwyR7MzYOaeBcofQKJIEn+2PZ9KHB4lNL5Q7HMFEiYQn/CPuN/iof/VCrIJZ+64oQu4QmuRcagETVh5g7aEEuUMRTJCo0hSgogR+eRZOrJU7EqEV6OzcCc97v8Umi24tw9p78ta0bng6quUORTARpv2OF5ov5xJ8cbNIdhYk0X2wySc7gL0xmYx5bx+7z6XLHYpgIkz/XS803YWd8OkwSD8tdyRCK/q5sofcIRhMdnEF9609xuIfTlFaoZU7HMHIiSpNSyRJsPcN+GMZYlydZZGsbOld8QnZFdZyh2JwHX2d+HxOb/xdjGfmGMG4iBKepSnNgw23wx9vIJKd5cny6m+WyQ6qO7RMWnmQE0m5cociGCmR8CxJ2unqKszYnXJHIshkn6K33CG0qKyicmZ++ic/RF6ROxTBCImEZymiN1V3TsmNlzsSQSYSCj5Lby93GC2uokrH49+e5M1fziNabIRriYRn7iSpetLnLfdDZYnc0QgyKvbszvkiy1lz7qO9F3lw3XExF6egJxKeOdNWwpYHqhdpFSzecdub5A6h1f16Np1pqw6TklcqdyiCERAJz1xVlMDGmWLiZ0Hvq5zOcocgi7OpBUwUnVkERMIzTyU58NXE6qnCBAGodG7L7mw3ucOQTVZRObM+/ZMd0alyhyLISCQ8c5N/Bb4cA1eOyh2JYERMbbLollBepeOxbyLZGpksdyiCTKzkDkAwoMwLsG4KFIgu2UJN3xd3kzsEo6DVSTyxKYpKrY7pvQPkDkdoZSLhmYsrx+Dr6VCaI3ckgpHR2bmxIc1P7jCMhk6Cp7+PpkonMatvoNzhCK1IVGmag7jdsHaiSHZCnZLcB1GpU8gdhlGRJHjuh1OsO5wgdyhCKxIJz9TF74dvZkNlsdyRCEbql8qecodglCQJXvjxDF8eEJMxWAqR8EzZlWPVQw+qyuSORDBSkkrNZ6lt5Q7DqL2y/Syf7rsodxhCKxAJz1Sln4H1U6GiSO5IBCOW43WT2U4WbUiv/XSeD/fEyR1Gi1qzZg0uLi7620uWLKF79+6yxSMHkfBMUfbF6t6YZXlyRyIYuT+UfeUOwWS8tTOGFbtjW/w6c+fORaFQ6P/c3d0ZM2YM0dHRLXrd22+/nQsXLrToNYydSHimJv8KfDUJisQqz8L1Wcpk0Yb0zq4LbPgrqcWvM2bMGFJTU0lNTWX37t1YWVkxfvz4evevrKxs9jXt7Ozw8vJq9nlMmUh4pqQoo7o3Zv5luSMRTECJZzfOWdBk0Ybywo+n2ROT0aLXUKvV+Pj44OPjQ/fu3Xn22We5fPkymZmZJCQkoFAo+Pbbbxk6dCi2trZ8/fXXZGdnM2vWLPz9/bG3t6dr165s3LhRf86rx/37b9iwYUDtKk1LJBKeqSjNra7GzBGN60LDHLftL3cIJkmrk3jk6xOcSclvlesVFRWxfv16wsLCcHd3129/9tln+e9//8u5c+cYPXo0ZWVl9OrVix07dnD69GkeeOAB7rrrLo4cOQJAQECAvtSYmppKZGQk7u7uDBkypFUehykQA89NQUVx9aDy9NNyRyKYkPW5neQOwWQVV2i5d81Rfpg/ED8XO4Off/v27Wg0muprFRfj6+vL9u3bUSr/KYMsWLCA2267rcZxCxcu1P//0UcfZefOnWzatIm+ffuiUqnw8fEBoKysjMmTJ9O/f3+WLFli8PhNlSjhGTtJql7iR8yNKTRCpVMQv2a533hHoV7pBeXcu+YohWXNbz/7t+HDhxMVFUVUVBRHjhxh9OjRjB07lsTERP0+vXvXXJ1eq9WydOlSunbtipubGxqNhp07d5KUVLvN8d5776WwsJANGzbUSKKWTjwTxm73K3B+u9xRCCbmvPMguUMwC+fTCnlo/QkqtTqDntfBwYGwsDDCwsLo06cPn3/+OcXFxXz22Wc19rnWW2+9xfvvv88zzzzDnj17iIqKYvTo0VRUVNTY73//+x87d+5k27ZtODo6GjRuUycSnjE7+S0ceEfuKAQTtKU4Qu4QzMaBuCwWbTnVotdQKBQolUpKS+tfqPbgwYNMmjSJO++8k27duhESElJrmMH333/PK6+8wqZNmwgNDW3RmE2RaMMzVpePwrZH5Y5CMEE6W1fWp7WROwyz8t3xKwS42vPfUeEGOV95eTlpaWkA5ObmsnLlSoqKipgwYUK9x4SHh/Pdd99x6NAhXF1deeedd0hPT6dTp+q22tOnT3P33XfzzDPP0LlzZ/35bWxscHOz3LUQryVKeEYosyST+06+Q4Kb+NISGu+yx2AxWXQLePe3C/wQaZilt3755Rd8fX3x9fWlX79+HD16lM2bN+uHENTl+eefp2fPnowePZphw4bh4+PD5MmT9fcfO3aMkpIS/ve//+nP7evrW6vjiyVTSJIkyR2E8I9KbSX37LyHk5kncbTWsEzrzOCLh+UOSzAhn/q8xGsJYsB5S7C1VrL14YF08HGSOxShCUQJz8i8duQ1TmaeBKCwsohHpFQ+jxgrc1SCqZBUaj5LCZE7DLNVVqlj/voTFJVXyR2K0AQi4RmR/7v4f3x34bsa23SSjvcLz/B0z1spszb8eCBzsC+xigkbS/B7uxDFywVsPV+zG3l6kY65W0vxe7sQ+1cLGLO+mNhsbY19nthZhtuyAgLeLeTr6JrHbz5TyYSNJS3+OAwhx+smMsVk0S3qUlYxz37fsvNeCi1DJDwjkViQyP/+/F+99/+ce5q7O/YhzUW06/1bcYVEN28lH95qW+s+SZKY/G0pl3J1/DjTnsgHHQhyVjJqXQnFFdW1+f8XU8mGU5X8epcDb46yZd7/lZJVUt0NPb9MYvHv5XWe2xjtV/aROwSLsD06la/E4rEmRyQ8I1CpreTpfU9TUnX9UsS5wgRu93HneGCvVorMNIwNt+Z/I2yZ0rF2ySY2R8efV7SsGmdLH38V7T1UrBpvS2klbDxdXZI7l6VjWLCK3n4qZnW1xkmtID63Ohk+vauMh3pbE+hs/B8VCQWfZYi2u9byv+3nOJ3cOtOPCYZh/J9iC/Deifc4m322QfvmlOcyzzqXTV1uaeGozMPVphZbq396LSoVCtRWcCCpulqzm7eKYylacksljqdoKa2UCHNTciCpihNpWh7rZyNH6I1W6tGVM4UON95RMIgKrY7HNkZSUiHa80yFSHgyO5B8gHVn1zXqmCpdFUuLz/NKz3FUKkV7zfV08FAS6Kxg0e4yckslKrQSyw6Uc6VAIrWoutpydJgVd0ZY0+ezIub+WMrayXY42MBDO8r4eJwdq45V0n5lEQO/LOZMhvYGV5TPCTsxWXRru5RVzMvbGvZjVZCfSHgyyirNYvGBxUg0bWTI5txTzIsYTLbG08CRmQ9rlYItM+y5kK3D7c1C7F8tZE9CFWPDrFBeM1RtyTBb4h5z5NRDGqZ0tOb1/RWMamuFtQr+t6+cA/fYM6+HNXdvrX8mDLmtz+sidwgW6dtjl/npVKrcYQgNIBKejJ4/+Dw5ZTnNOseJ/DhmBgZy1q+zgaIyP738VET9R0PeM46kPqnhlzsdyC7VEeJS99v/fJaW9acqWTpCzd6EKoYEqfB0UDKjszUnUnUUlhvf0NUqp0B+yRSTRctl0ZZTpOQZ748hoZpIeDL5Me5HDiYfNMi50kozmWNfwU8dhhvkfObK2VaBp4OS2Gwtx1J0TOpQuzpYkiQe3F7GO7eo0dgo0Oqg8u95g6/+qzW+fEeMmCxaVvmllTwjhioYPZHwZJBVmsVbx94y6DnLtOU8U36Rd3qMQ6ewrJe1qEIiKk1LVFp1+1p8ro6oNC1J+dUZavOZSvYmVFUPTThfyc3rSpjcwYpbQmtPJfv5iUo87RVMaF+dDAcGWvF7fBV/Xqni3cPldPJU4mJrfNN2bSnpJncIFm9/bBY/RiXLHYZwHWJqMRk8sfcJdiXuarHzD3LpwLLzf+FUahldpvcmVDF8be0hHXO6WbNmsh0r/irnrUMVpBdJ+DoquDvCmheGqrFR1Uxc6UU6+n1ezKH7HPBz/OdHwyt/lPP+XxV4OShYO9mOvv6qFn9MjaGzdaFjwUrKdZb1Q8cYeWjU7H5yKM52ojOZMRIJr5XtStzFE3ufaPHrBDv48X5GFiEZcS1+LUFel9uMZ3DcbLnDEP42u18gr03pKncYQh3ET8JWlF+ez6t/vtoq10ooTuEOF2v2hQ5olesJ8tlZJSYiMCYbjyRxPDFX7jCEOoiE14reOvoW2WXZrXa9ospiHpVS+KybmHzaXEkqGz5NFZNFGxNJgsU/nKLKwKukC80nEl4ricyI5MeLP7b6dXWSjhUFZ3iq51hKbexb/fpCy8r16kdGuWgvMjbn0wr5/EC83GEI/yISXivQSTreOPKGrDH8knuGuzv0IsU1UNY4BMM6oOordwhCPd7/LZbLOaaxyoalEAmvFWyN29rguTJb0vnCRGZ5u3AsSLT5mIvP0jvIHYJQj9JKLS9tOyN3GMI1RMJrYUUVRaw4sULuMPRyyvO43yqXb8Tk0yavxKMrp8Rk0Ubt9/MZ/CymHTMaIuG1sE+iP2nVjioNUaWr4tXi8yzpOY5KlWmsBCDUFiUmizYJS7efpbzKeCcdtyQi4bWgxIJEvj73tdxh1Ov73FPc13UQWRovuUMRmkBMFm0aUvLL2PBXktxhCIiE16LePvY2lbpKucO4rsj8OGYGtuGMn/jyNCVVTgH8lOkhdxhCA3209yKlFaKUJzeR8FpIdGY0ey7vkTuMBkkvzWKufTnbO4yQOxShgS6IyaJNSmZhOWsPJ8gdhsUTCa+FfBj1odwhNEqZtpxF5XG8bYGTT5uiraVismhT8/EfFyksM+4aH3MnvtlawIn0ExxKOSR3GE2yJu8U87uPosDOWe5QhHpIamfWprSROwyhkfJKKvlCDEaXlUh4LcDUSnf/djDvPLNDO3LJK1zuUIQ6JHsOEisjmKgvDsSTV1IhdxgWS3xqDOxI6hGOpB2RO4xmSyxO4Q4XK/aGibYiY/OrtqfcIQhNVFhWxSf7LskdhsUSCc/AVkatlDsEgymqLOYx7WU+6Xar3KEIf5NUNnyaEip3GEIzrDmYQGZhudxhWCSR8AzocMphIjMi5Q7DoCQkVhac5smeYymxEbN6yC3Psw9p5WKyAFNWWqnlo71inUo5iIRnQGvPrJU7hBbza+4Z7u7Qk2Q3Mfm0nA5a9ZM7BMEAvv4rifSCMrnDsDgi4RlIXG4cB1MOyh1Gi4opTGSWpzNHgvvIHYrF+jxDTBZtDiqqdHz9Z6LcYVgckfAMZN25dXKH0CpyK/J5UJnN111Hyx2KxSl170JUgUbuMAQD2Xj0MpVikdhWJRKeAWSXZrP94na5w2g1VVIVbxSd4yUx+XSrirIfIHcIggFlFpbzk1hJoVWJhGcA38R8Q4XO8sbWbMk9xb1dBpLl6C13KBbh67zOcocgGNi6w6JaszUpJEmS5A7ClJVry7nlu1vIKcuROxTZeNl68H5BJV2ST8kditmqcvQnLPMtucOoV/7hTZRcOExlzhUUVjao/TviOnQu1u7/zAgjVVWQ8/sXlJzbh6StxK5tT9xueQiVgysA2tJCsne8Q1nSKaxc/fC49b/YeP8zBCP711VYu3jj1Pe2Vn98LWnHY4Po7CdmNmoNooTXTDsu7bDoZAeQUZbFXLsy/q+jmHy6pcS6DJY7hOsqu3wax57j8LlzOd63LwVtFembXkBX8U9PxJzdn1EadwSPyc/iPfsNqoqyyfzhNf39+Ye/RVdRiu/c97EN7Er2Lx/o7ytPPk9FagyOvSe16uNqDaKU13pEwmum72O/lzsEo1CuLee5sjje6jEerUIldzhm50cjnyzae8YraLqOwsYzCBuvENzHPY62IJOK9OrxZrryYoqid+E64j7sgrqh9gnD49YFlCefozz5PACV2Zdx6DgEazd/HLuNoTL7MgCStorsXz/E7ZaHUSjN7731Y1QK+SViUunWIBJeM1zMu0h0ZrTcYRiVr/Kieaj7CPLtXOQOxWxIaifWpprWZNG68mIAlLbVvUrL0+JAV4VdcHf9PtbuAaicPClPqU54Nl5tKUuMRtJpKY0/gbVnMAAFf32PbUBX1L7mObdraaWWzccvyx2GRRAJrxm2xG6ROwSjdDgvhlkh7bjo1U7uUMxCsucgSrWmU7KRJB25uz9D7d8Jm7+Tlq44F1RW+gR4lcrBBW1xLgDON00HpYrkT+ZREnsY97H/pTInmaLTu3EeOJPsnStJ/vg+Mre+oU+o5mLdn4mI7hQtTyS8JqrUVbL9kuUMRWisyyVp3OGs5Pdw4257MgW/aXvJHUKj5Py6iorMRDwmPt2o45RqBzwnPkWbh1bjM/sNbDwCyd75Ia7D76X4zF6q8tLxu/8TFNZq8g5ubKHo5ZGYXcLeC5lyh2H2RMJroj8u/2HxnVVupLiqhAVVSazqdisSCrnDMUmS0ppPUk1nsuicXasovXgU71mvYeXkod+udHAFbRW6sqIa+2uL8/S9NP+tKHoXSlsH7MNvouzyKezDb0KhssK+wyDKk8yvR/DXfybJHYLZEwmviUR1ZsNISHxUcJone44Rk083QZ5XX1LLjH9wvyRJ5OxaRcmFw3jPfBVrF58a96t9wkBpRWniSf22yuwraAsyUfvVni5NW5JP3qFvcBv1YPUGnQ5JV/X3nVVIkvnNULIvNlOsiN7CRMJrgoySDJNd0Vwuu3LPcGf7HlwRk083ymEr05i3NGfXKorO7MVjwlMobezRFuWiLcpFV1m9DI5S7YAm4mZyf/+cssRoytPiyP7pPdR+HVD71054Obs/xanPZKwcq0uJ6jYdKT6zh8qsyxSe/AW1f6dWfXytoaJKx2/n0uUOw6xZyR2AKdqVuAutpJU7DJMTW5TELE9nljv3oV/8UbnDMQmfZ5rGF3tR5E8ApG9cVGO7+60L0HQdBYDbyPvJUSjJ3PoakrYS27Y9cb95fq1zlV46TlVuKh7jn9Rvc+w5norUOFLXPYHatx0uA2e14KORz0+n0pjSw7R65JoSk59pZe7cueTl5bF169bWu+YvczmefrzVrmdurBRWLHRoxx2nfpE7FKNW6t6ZjsmL5Q5DaEVqKyUnXrgZB7Uoi7QEWas0586dy+TJkwEYNmwYCxYskDOcBskqzTK7RV5bW/Xk02d5oec4KlRqucMxWift+8sdgtDKyqt07D6fIXcYZku04TXS70m/ozPDBnM5bM09xT1dBpDp5HPjnS3QxoIucocgyOCnaLGCQksxioQ3d+5c/vjjD95//30UCgUKhYKEhAS0Wi333Xcfbdu2xc7Ojvbt2/P+++/Xe56vvvoKd3d3ysvLa2yfPHkyd911l0Fi/TXxV4OcR6gWXXCRmf6+nGoTIXcoRkWr8ePHdC+5wxBksPdCBiUVVXKHYZaMIuG9//779O/fn/vvv5/U1FRSU1MJCAhAp9PRpk0bNm/ezNmzZ3nxxRd57rnn2LRpU53nmT59Olqtlm3btum3ZWRksGPHDu69995mx5lblsvxNNF2Z2gZZdnMVZfwY8eRcodiNOJcxYB9S1VWqWPPeTEIvSUYRcJzdnbGxsYGe3t7fHx88PHxQaVSYW1tzcsvv0zv3r1p27Ytd9xxB/fcc0+9Cc/Ozo7Zs2ezevVq/bb169cTGBjIsGHDmh3nnst7qJLEL6+WUKGr4PmyWJb1GCcmnwa2lhn3ZNFCyxILw7YMo0h41/Phhx/Sq1cvPD090Wg0fPrppyQl1T8jwf3338+vv/5KcnIyAGvWrGHu3LkoFM2f6WPv5b3NPodwfevzTvGf7iPIt6979g1LIKkd+SpFjFe0ZHtiMiirFEOfDM2oE94333zDwoULue+++/j111+JiorinnvuoaKi/tXFe/ToQbdu3fjqq684fvw4Z86cYe7cuc2OpVJXyZG0I80+j3Bjf+bFMLNtOLHe7eUORRapHgMp1hr1R1NoYSUVWv4Qc2sanNEM9rCxsUGrrfmL5uDBgwwYMID58/8ZnHrx4sUbnmvevHm89957JCcnM2rUKAICApodX1RGFMWV5jVDuzG7UpLGnU72vOY0mJGx++UOp1X9pustdwiCETh8MZvRnUUPZkMymp+RwcHB/PXXXyQkJJCVlYVOpyM8PJxjx46xc+dOLly4wAsvvMDRozeeoWP27NlcuXKFzz77zCCdVQAxlZgMSqpKeLwqiY8saPJpSWllUpNFCy3nr3gxOb2hGU3CW7hwISqVik6dOuHp6UlSUhIPPvggt912G7fffjv9+vUjOzu7RmmvPs7OzkydOhWNRqMf2N5cf6b8aZDzCI0jIbGq4DSP9xxNiVpz4wNMXL5XH5LLxGB8AWLSCsgvFZNJG5LJTy1Wn5EjR9K5c2dWrFjR7HMVVBQw5JshYv5MmYVpAliRcoWA7ES5Q2kxP7dZwENxfeUOQzASX8zpzciO3nKHYTaMpoRnKLm5ufzwww/s3buXhx9+2CDnPJZ2TCQ7IxBXdJlZHo4cbmu+CeGLzI5yhyAYEVGtaVhG02nFUHr06EFubi7Lli2jfXvD9PI7miZm9jcW+RUFPKQo5omuY7jbzCafLnPryLEUR7nDEIyISHiGZXYJLyEhweDnPJl58sY7Ca1GK2l5q+gsMT3H8dLJ37DRlt/4IBNw0mGg3CEIRuZMcj7F5VVi9QQDMbsqTUOr1FYSkxMjdxhCHbblnmJul/5kOPvKHYpBfCMmixb+pUoncTwxV+4wzIZIeDdwPuc8Fbr6B7oL8jpVcImZft6cDDDtqbi0Gl+2ZnjKHYZghI6Iak2DEQnvBqKzouUOQbiBzLIc7rUpZmunUXKH0mRxroORJMsYayg0jkh4hiMS3g2cyjoldwhCA1ToKnih9AJv9BhPldL02ju2lXWXOwTBSEVdyRPzahqISHg3cDrrtNwhCI3wdV40/4kYRp69m9yhNJhko2GNmCxaqEdFlY7Y9CK5wzALpvdTuBXll+eTWGCag5yLY4rJ+imL0sRSqvKqCHw0EKdeTvr7039IJ/+vfCpzKlFYKbALtsN7qjf2ofYA6Cp1JH+ZTGFkIVbOVvjd7Yem8z8znWT+lElldiV+d/m1+mO7kb/yLzCzbSgrsrxol35e7nBuKM1zIMUF4renUL+4zEK6tnGWOwyTJz5l13E+x/i/LOujK9dhG2hbb0JS+6jxu8uP8P+FE7I4BBsPGxKWJ1BVUL3eX+7eXMoSywh5IQS3YW5c/vgyVyflqcisIPePXLynGe8MEMkl6dzpJLGr3RC5Q7mh3ZKYLFq4vrgMUcIzBJHwruNS/iW5Q2gyxwhHvKd61yjVXculvwuazhpsvGyw9bfFZ5YPulIdZVfKAChPLcexuyO2/ra4jXRDW6hFW1jdjpCyNgWfGT6o7Ix7odbSqlKerEzkg+7jjHbyaUlpxccpYXKHIRg5kfAMQyS867iUZ7oJrzF0VTpy9+aitFNiG2ALgG2ALSWxJegqdBSdKsLKxQqVo4q8Q3korBX1JlJjIyHxaf4p/ttzNMVq45vFpMCzF1fEZNHCDcSKhGcQog3vOuLz4+UOoUUVRBVwZdUVdBU6rJytCH4qGCvH6reE62BXyi6XEftcLFaOVgTMD0BbrCX9h3TaPtuW9O+r2wBtvGzwv88fa1drmR/N9e3JPcud7SJYkZJMQHaC3OHo/Wl9k9whCCYgKbuESq0Oa5UoozSHePauw9wTnqajhtBXQglZHIKmq4bLH13Wt+EprBT43e1H++XtCX0pFId2DqR9k4b7ze6UJZVRcKKAsKVh2IXakbo+VeZH0jBxRZeZ6eHAoRDjSTJfZInJooUbq9JJJGSJBaibSyS8ehRVFJFRmiF3GC1KqVai9lZjH2ZPm/vaoFApyN1X9zRGReeKKE8ux32UO8Xni3GMcESpVuLc15ni86bzQSyoKGQ+6ayNGCN3KJS5tedInmlUDQvyE+14zScSXj1MucNKU0k6CV2lrtZ2XYWO1HWp+M31Q6FUgA4kbXWPTalKQtKZ1pKKWknL8sKzPNdzHOVWtrLFcUpMFi00gkh4zScSXj1MvTpTW6alNLGU0sRSACqyKihNLKUiuwJduY6079IoiSup3p5QypUvrlCVW4Vz39pjfTK3ZaKJ0GAXZAeAfbg9BccLKLtcRs7uHOzD7Vv1sRnK/+WeYm7nfqQ7yzOW8JuCrrJcVzBNouNK84lOK/VIKU6RO4RmKY0vJWFZgv522sY0AFwGuuA3x4+K1AqSDiShLdKi0qiwa2tH2+faYutfs8RTdqWM/KP5hL3yT9d5p95OFJ8v5tJrl1D7qGnznzat8phawumCeGb6evGukxfdL0e12nW1Dj5syfBqtesJpk+U8JpPIV0dTSzU8PLhl/nuwndyhyG0EmulNc+r23Lb2d9a5XqxAdO5OXZKq1xLMA+21krOLx0rdxgmTVRp1iO9OF3uEIRWVKmr5KXSC7zaY1yrTD69rbx7i19DMC9llTqKyqvkDsOkiYRXj4wS8+6hKdTtm7xTPBgxjFwH9xa7hmTjwJdismihCXKKxNqczSESXj1EwrNcR/IvMCs4hBifTi1y/nTPgRRXGfe0bIJxyikRCa85RMKrQ4W2gtzyusejCZYhuSSduxy1/Nre8JNP/67rZfBzCpYhp7hc7hBMmkh4dRClOwH+nny6IoEVBpx8WlKo+DQt3CDnEixPTnGl3CGYNJHw6pBVmiV3CIIR+Sz/FI/1vIUi2+bPilLo1ZuEUvkGuwumTZTwmkckvDoUVhTKHYJgZPbmnuOO8C4keoQ06zx/WvczUESCJRIlvOYRCa8OxZWmMzek0HouFV1hlpstB5sx+fTqbDFZtNB0ooTXPCLh1aGoUsxoINStsLKIh0lndRMmny53bc/h3NpTtwlCQ4kSXvOIhFcHUcITrkcraXmn8CzP9ry1UZNPn9YMaMGoBEsgSnjNIxJeHUTCExpiR+5p7u7UlzQX/wbt/02hmCxaaJ7cElHCaw6R8OogqjSFhjpbmMBMHw8iA3pcdz+tgzffpXu3UlSCuSooFQmvOUTCq4Mo4QmNkV2ey302BXzX+eZ694l3G4QkGWYsn2C5KrW116sUGk4kvDqUa0U9udA4lbpKXi6J4X89xlGptK51//by65cABaEhTGytZaMjEl4dxIpJQlN9m3eKByKGkOPgod8mWTvwhZgsWjCAKp0o4TWHSHiCYGDH8mOZFRTMed/qyafTPQdQWCXWWhaaT+S75hEJrw4SooQnNE9KaQZ3O1TxS/uh7KG33OEIZkKU8JpH/OwUBAPy0WroVepDh0INATkKbCUv1J278WJ4LgUleXKHJ5g4hej31Cwi4QlCI6lQ0KnCk64lboTn2+ObpcU5rQiry+lIuXlAHgCSjS2nJr8P53/iFtsJXPHx4ERlLBnZmXKGL5gwhch4zSISXl1EjaYAOOrU9Cz3plORM8G51nhlVuKQkoviShpSWQqQUmP/f79tUqYuISu1CqUumbT2l2mT4E8bIkgNLCNSukhKZlqrPRbBPIiE1zwi4dVFvKcsSlCVCz1KPWlX4ECbHAVu6SWok7ORUtNBulRr/4b8HioccScxqY4A6LRV7Du6gRl9FkFmFb5JtvjSmYw2YUSq4rmcnmzgRySYK6VSdLtoDpHw6mCjtJE7BMHArCQlERXedC1xIzRPjU+WFqfUAlRX0pHys4CaayA2p5BfFdiBaPUgKNUCoK2qQpJ0HEnfQV+rMfrBVF5X1IymA1l+IZy0SSQ+LakZVxUsgUh4zSMSXh0crB3kDkFoIledHb3KvOlY5ERQrhUe6eXYp+TAlTSovAxcrrG/oWuvdTZqzt30OOUZVf9s01b/Pz4xis4DB+OQYl/jGI8UG0YSTq53MCcdLhOXEm/gqARzoVar5Q7BpImEVweR8IxfeKU73Us8CCuwwz8HXNNLsLmcgZSRBci3gG/qbS+RmVZVY5u26p/bvx1fzeR2/0UqrPr3obimWzOMEHp6BnLSKZkLKRfFJAhCDSLhNY9IeHWwt7a/8U5Ci1NLKrpX+NC1yJW2eTZ4Z1XhmJqP8nIaUlE6kF5jf7lTQ9Gw2cSk11zvTqHQwTVJq6ysiAtEEk79Kyc4ZVoxODOIHu5tOOWawrmUOHRi/JWASHjNJRJeHUQJr3V56Rz0Y9cCc5S4Z5Rhl5yDlJIOVYlAYo395U5sdakMbM9J+yFQoq2xXWlVO1GdiP6JkIERqFKu/0g02Sr6ZwcQ4eLPGc80zqRcQKvVXvcYwbzZ2jZ8/UWhNpHw6iASnuEpJOhY6Um3UnfC8u3wy5ZwSS3C6koGUnYOkF9jf2NMavXRWdlwvv/jlKfXTkYqVd3H7I3ZwCj3O5Aqblxyc8hT0jfPj65O3pz1y+RUagxVVbWrRAXzJ0p4zSMSXh0crETCayqNZEP3cm86F7rQNq967JomNQ/F5VSk0lQgtcb+ppTY6pM29SUy60h2AApl3QktKyuJjLBUPBuxRp5dgYpeBT50cfDiXEAW0ekxVFRUNClmwTSJhNc8IuHVwcFGJLwb8dc60avUm/b6sWul2F4du6ar3cvQHBJbXYqG3s75DJd671eq6n/ke4+sY3qvRZDVuEU91cVKusd60cnOgwsBuURlnKesvKxR5xBMk0h4zSMSXh08bD1uvJMFUKGgS7kXESVuhObb4ZulxSmtsHoKrbwcIKfG/uaa1OpT1SacaIfhtdrtrlVfCQ9Ap9NyIvtXeiqGN+nJsylV0iXWnfbqAcQF5hGZdZ6S0pLGn0gwGaINr3lEwquDl4OX3CG0KmfJll6lPnQsciQozxrPjAocknNRXElFqkgGas4EYmmJrS46KxvOD3ySsnqqMq9SXifhAcReOkLHQQOwS276L3frcgUdY11pZ30TF4PyicyNobC4qMnnE4yXo6Oj3CGYNJHw6uBk44SdlR2lVaVyh2JQIVWudC/1pF2+A/454JZegs2VTKT0TJDiau0vElv90qe+SMYNkh2AQnnjZ/G3E6uZGPoIUlHzOqKoKhW0i3Mh1KovCUGFnCiIIb+woFnnFIyLk5OT3CGYNJHw6uFp50lSoelN9WQjqehW4U2XIldC8tX4ZFXhmFqA6nI6UmEmUHOmfpHUGq948HTOZbg2aF+l4sa9MEtK8rmkOkNb2jc3NABUVQpCLzrRVtWbpKBiThRfICc/1yDnbi3vvfce+fn5tbb37t2bcePGsXPnTqKiorCxsWHkyJFERETo9zlz5gzR0dHMmjWrNUNuFc7OzjfeSaiXSHj18LL3MuqE56FzoGepV/UUWjkq3DPKsE/OQUpOg6okoGbsIrEZRpVfCCedRkFxw0pjSlXDBowfidpK0IBFKFMNN8BcqVUQfElDoLIHyUGlnCiPJTMn68YHGoH777+/xiwzGRkZrFu3js6dOxMTE8OpU6e46667yM7OZtu2bYSFhWFvb09ZWRm///47d999t4zRtxxRwmsekfDq4WnvKXcIALSvdKdbiQfhBfb4ZUu4phVjfTkDKSsbUx67ZooklRUxQ56mLK0RVY8NKOFdtf/iJoY6z4BKw86qotQpCIi3p40igpTAMiK1F0nLSr/xgTJycKjZU/rAgQO4uroSFBTEoUOHCA4Oxs/PDz8/P3bu3Elubi729vbs2rWL3r17m2VJSK1Wi04rzSQSXj287Rs+Pqq5bCUrepX70rnImeA8G7wzK9FcnUKrxPim0LJU6dNeJD2tcTOdNKRK86q09IvkhGThlubW2NAaRCEp8E+0w58upAWEEamIJzkj5cYHykyr1RIdHU3//v1RKBR4e3tz/PhxSktLyc3NpbKyEjc3N5KSkkhLS2PcuHFyh9wiROmu+UTCq4ePg4/hz6nV6KfQCshR4J5RVj12LSUdtJYzds0UlQy8jXMZ7o0/sBEJD+D3I2uZ3v1ppJzGjc1rLJ/LtoylI5n+oURaxZOUfqVFr9cc58+fp6ysjO7duwMQFhZGREQEn332GdbW1kyePBkbGxt27NjBpEmTOHbsGEeOHMHe3p7x48fj5WUeva7NsdTa2kTCq0eQU1CTjlOhoFOFJ11L3AjPt8c3S4tzWlH12LXcPCCvxv4iqRk/rW9bTrqMRmpgu921FI1MeFptBScL9xKhGNgqbw7PZBtuoT3ZviGctE3iUmpCy1+0kSIjIwkPD6/RJX/YsGEMGzZMf3vv3r20bdsWlUrFvn37eOihh7hw4QJbt27lgQcekCFqwxMlvOYTCa8eQY7XT3iOOjU9y73pVORMcG71FFoOKbkorqQhlaUANauKRGIzTZLKipihz1DamHa7azUy4QGcu3CA9oP6oU5uvY+ne6o1Iwilp3cQ0Q6XuZBSe6V3OeTl5XHp0iVmzJhR7z5ZWVmcOnWKBx98kMjISIKCgnBwcKBz585s27aN8vJys5ihxN29CTUMQg0i4dXDT+OHtdIavwoHepR60k4/hVYJ6qtTaEm1vxREYjMv6VOfJ62R7XbXamwJ76rdJ9cyLvABpOvM4tISXNKtGEJbunsEcsolmfPJcbKuyRcVFYWDgwPt2rWr835Jkti+fTu33HILNjY26HQ6/VJKV/81lzUFPT2NoyOdKRMJrx4qpYrNO8KpiIoGanblNo+Pj3AjJQMmcy6zeV8yCppWMiwszCLJNpaAkpBmXb+pnLJUDMwKpJubP6fdUjmbEtvqa/JJkkRUVBTdunVDqVTWuc+JEyewt7enffvqMYyBgYH88ccfXLlyhdjYWDw9Pc2mZ6O5tEXKqe53kQCArZ+/3CEIMqnyCeak21iaXzhoepI4dHwzknc96wu1Ek2Oipvi2jDTeijdAzqhqm+9oxZw6dIl8vPz6dGjR533FxUVsX//fsaOHavf5u/vT//+/dmwYQNnz55l0qRJrRVui1Kr1bi4uMgdhslTSOZS3m8BWR9/TOZ778sdhtDKJKWK87evJNUAg8C9AuJIit7W5OP9/TsyyG4SaI3jY1qm0XHON5PotBgqK1u2J6nwjzZt2jBv3jy5wzB5ooR3HerwcLlDEGSQMfV5gyS7as1rg0tOPke+V+0ptuRiW6SkR6w3s7SD6BsYYRadQUyBqM40DJHwrkMkPMtT0n8iZ7MM+eXS/MS5++hqFC7WBojFcGxKlERc8OT28oH0D+iOna2d3CGZNZHwDEMkvOuwDghAYW8vdxhCK9F6BRLtMc4A7XbXkJq3AgJAZWUZp8sOGiAYw7MpU9A51p3bS/ozKKAXDvZi8eSWIBKeYYiEdx0KhQJ1aKjcYQitQFKquDDyWUoKm5+gapxXMkzV6Olze6j0a91eko1hVaGgQ6wLMwr7MbRNbxw1Yt02Q/L2br2pDs2ZSHg3YNuls9whCK0g47bnSE1tiY4hhhtH9/uZdShs5e21eSOqSgXhcc5My+3DCP++uDi5yB2SyXN1da01mbbQNCLh3YBDv35yhyC0sNK+4zibY/i5UwEkneESXl5eGimaBIOdryWptApCLjpyW1ZPbva9CXeXlpkQ2xIEBATIHYLZEAnvBuz79QOFQu4whBai9WzDSe+JGKjmsRZJMuxMKfuObQQv05kvQqlTEBTvwOT07ozx6Y+Xm5gtpLHatGnTrOOHDRvGggULam1fs2aNxY3tEwnvBqxcXVHXM62RYNokhYLYUc8ZvN2u5kUMfG5J4s/U7aA0rR9hCklBmwR7JqR2ZZzXQPw8W6ZEbY7kKOFVVFS0+jVbg0h4DeBw001yhyC0gMzbniOlRdrt/qEzYJXmVYlJJyn0KTL4eVuDQlLgm2TLrZc7M8FzEAFeYjaj61Gr1a3SYWXu3LlMnjyZV199FT8/P/1UbQqFgq1bt9bY18XFhTVr1uhvHzp0iO7du2Nra0vv3r3ZunUrCoWCqKgooO6S5NV9rrp48SKTJk3C29sbjUZDnz59+O233/T3v/LKK3Tp0qVW3N27d+eFF15o8OMUCa8B7G8S7XjmprTvrZzJ9Wvx6xi6SvOq3cdXo3AynarNunhfVjM6qQOT3QYT7BModzhGKSAgoN55RA1t9+7dxMTEsGvXLrZv396gYwoKCpgwYQJdu3blxIkTLF26lGeeeabR1y4qKuLWW29l9+7dREZGMmbMGCZMmEBSUhIA9957L+fOnePo0aP6YyIjI4mOjuaee+5p8HVM+xPTSuz79AUrK6hqwaovodVo3X2J9pmEVNDyr6chO61cq7ysmBjdcdrRrUXO35o8UmwYRTg5Pm2Jtk8iLqX2YsiWKjCw9X4IODg48Pnnn2NjY9PgYzZs2IBCoeCzzz7D1taWTp06kZyczP3339+oa3fr1o1u3f55Ly9dupQffviBbdu28cgjj9CmTRtGjx7N6tWr6dOnDwCrV69m6NChhIQ0fIJ1UcJrAJXGAdvOneQOQzAASaEgbvTzFLdCsgOQdC13nchTv1DV8oXUVuOWZsWwSyFMdxxKe//QGlVelqpt27atdq2uXbs2KtkBxMTEEBERUWNFir59+zb62kVFRSxcuJCOHTvi4uKCRqPh3Llz+hIewP3338/GjRspKyujoqKCDRs2cO+99zbqOqKE10AO/W6i7GS03GEIzZR12yKSU268n6HotC2bWPee38DNHnciVRjvoPTGcs60YnBmMN3dAjjllsL5lLhWX5rIGNjZ2eHv3/w2TicnJ/Lza8/HmpeXh7Ozs/52XWP9FApFrfUEGztpuFKpvOE5Fi5cyK5du1i+fDlhYWHY2dkxbdq0Gp1nJkyYgFqt5ocffsDGxobKykqmTZvWuFgatbcFcxDteCavtPdozuQ2r4t3Y7VEp5VrZWdfJt2lFTN4K3LMUTEgLoDbbYYSEdChVZcmMgahoaEGab9r3749J06cqLX9xIkT9S6se5Wnpyepqan627GxsZSUlNQ496lTpygvL9dvu7ad7eo5CgsLKS4u1m+72qHlqoMHDzJ37lymTJlC165d8fHxISEhocY+VlZWzJkzh9WrV7N69WpmzpyJnV3j5nAVCa+B7Hr2RNHI4r5gPHRuPkT73YZO17rL7EgtXMID2HtkHQoP45pc2pAc8pT0jfVnpmowPQI6Y2VlGRVT4QaavP6hhx7iwoULPPbYY0RHRxMTE8M777zDxo0befLJJ6977IgRI1i5ciWRkZEcO3aM//znP1hb//Nemz17NjqdjgceeIBz586xc+dOli9fDqCvku7Xrx/29vY899xzXLx4kQ0bNtTo5Xn1sW7ZsoWoqChOnjypP++/zZs3j99//51ffvml0dWZIBJegyltbbHrZvodBK51rKSE+VcuMzQujk4x5/mtsFB/X6Uk8XZmBpPi4+l1IYahcXE8m5pCRtU/VREVOh3PpKbQJ/YCYy9d5NA1v+AAvsjJ5n/paa32eOojKRTEjXmh1drtrtXSVZpQPV/n0axfzP7TbFegolesDzOlwfQOaHx7kylRKBSEhYUZ5FwhISHs27eP8+fPM2rUKPr168emTZvYvHkzY8aMue6xb7/9NgEBAQwePJjZs2ezcOFC7K+ZUN/JyYn/+7//Iyoqiu7du7N48WJefPFFAH27npubG+vXr+enn36ia9eubNy4kSVLltS4zjvvvIOrqysDBgxgwoQJjB49mp49e9aKJzw8nAEDBtChQwf6NWEWLLEAbCNkfvghWR+slDsMg9lXVERkaSmdbW15LCWZFX7+jHKsnvS3UKtlQUoy05xd6GCrpkCr47WMdHQSbA4OBmB9bg7f5OXxrp8/+4uL+DInh/2hYSgUCq5UVHD/lctsDgpGI3NVVNZtzxKdI8/0TNaqrynMSm+Va00Y9F/sk21vvKOZqLDTEdMmh5MZMZSVl8kdjkH5+/s3uqejsfj666+55557yM/Pb3SV441IkkR4eDjz58/niSeeaPTxZv6b0LDMbQD6EI2G/3p66pPctRxVKr4ICGSskxNtbdR0s7PjeS9vzpSXkfJ3g/OligpGaDSEq9XMdnElR6slV1vdZvVKejpPenrJnuzKeo7idL58Y7xao4R31e4Tq1FoLKO6D8CmVEnXWA9uLxvAwICe2NuZz1JehqrObA1fffUVBw4cID4+nq1bt/LMM88wY8YMgye7zMxMVq5cSVpaWqPG3l3Lcj4dBmDXvTsqDw+0WVlyhyKLQp0OBeD0d0N6e7Wa/ysooEyn40BxMZ4qK1xVKv6vIB8bpaLORNqatG7eRAdMR5cv3/hJbVXjerQ1R0lJAReV0YRgWUNorMsVdIx1pZ31TVwMKuBE7nmKik1zJpqrTCnhpaWl8eKLL5KWloavry/Tp0/n1VdfNfh1vLy88PDw4NNPP8XV1bVJ5xBVmo2U/vrr5Kz9Su4wDK5TzPkaVZr/Vq7TcUdSIm1t1LzlVz34q1KSeCMjnX3FxbiqVDzj6UWoWs3tiQmsCQhkU14ePxUWEGhtw/98fPC2bt2OFbGzV3I5Rd6xXLqyj6koLbnxjgY0fcAilKmW143/Kq2VRHxwISfyYygoLJA7nEZzdHTkiSeeEOMQW4Co0mwkp4kT5Q6h1VVKEk+kpCABL10zr5+1QsEL3j7sCgllU1AwvezteTMjgztdXTlXXsbuokJ+CG5LhJ0tr2W0TjvWVdlTnpY92UHrVmle9UfcN2BtuR9tVZWCsDgnpuX0ZqRfP1ydm1YakEuXLl1EsmshlvupaCK7zp2xCbOcVdCrk10yKVWVfBEQeN02ub9KirlYUc5sF1eOlpQwxEGDvVLJGEcnjpS0XimnrMdIThUEt9r1rkcrw3R0GRnxZLtntPp1jY1Sq6DtJQ1TMntwi+9NeLp6yB1Sg3Tt2lXuEMyWSHhN4DxxktwhtIqryS6xooIv2gTgcp1kV67TsTQ9nZe8fVApFGglqKK6trxKkmitCjatqxfRgbej0xpDTb2EJNMMIXuOrEXhZr5j8xpDqVMQGO/AxLQIxnoPwMej5VcfaCp3d3f8/MxovjgjIxJeEzhPGA+tNIN5SyrW6ThXVsa5suou3cmVlZwrq+6FWSlJLEhJ5kxZGW/6+qEFMquqyKyqoqKOZt9V2dkMcdDQ6e+xNz3s7NhVWEhMWRkb8nLpYeAeW/W5NPZFivJbr6PI9Sit5GtH02qrOJG/G0TNmJ5CUuCfaMf4K10Y7zUQf09fuUOqRZTuWpbopdkE1r6+2PftS8mff8odSrOcKStl7uXL+tvLMqurwSY7OfGwhwd7iqp7ut2WmFDjuDUBAfS1/2fevdjycn4pLGBL8D8T3Y52dORoaQl3XU6irY0Nb/q2/K/W7MkLjaLd7iqVUt5S5oW4w3Qc1B/bZFHS+zefJFvG0olM/1AirRJISr8id0iASHgtTfTSbKK8LT+Q+txzcoch/K282zAOe8wwkqrMajZ2lRSkfCBrDI4ad8YF/QepRCxtdT3ZvpWctE3kUmqibDH4+fnxwAMPyHZ9S2D69XIycbzlFhS2ljOrhTHTOXsQ3Xa2USU7AKVS/qEBhUXZJKrPyx2G0XNPtWZEfBjTnIfSzq/h66sZkijdtTyR8JpIpXHAceRIucMQgEvjXqIwzzja7a6lsjKOBHz4xPdIPpa10kBTuaRbMeRSW2ZohtGxTXirDQ9QqVQi4bUCkfCawXmS5Y3JMzY5k54gKcU438YKhfwlvKsOJn4PVi335V1UXsKS31Zw06rphL09isnrHiIq9Zz+/o//2kj3DybS/YOJfHLkmxrHRqac5dY186hqwcVyG8spS8XAuEButxtKlzbtDbJMz/V07NgRjUbTotcQRKeVZnEYONCipxqTW1nEYE4VhwHGUZL6N6XKeBJeckoMeQNycUl1aZHzP/XLMi5kxvPe+MV4azz44cyvzP7mCXbP+4q80gLePvAla6a9gSTB3O+fYUjbPnT0DKVKV8WinW/zxpiFWCmN7+tIk6Pippw2RDj7ccYrndMpMWi1hl/jsCmrhAuNZ5w/jU2EQqXCedytcodhkXSObpwOvQttlXEmOwCFwrhi231kNQpXw/fYLK0s5+eYfTw3/CFuCuhOW9c2PDHoXoJd/VkXuZW47EQ6eoYyMKgXg4J70dEzlIvZSQB8/Nc39AuIoLtvR4PHZUj2+Ur6xPoyUzmEXgFdaqwJ11ze3t4EBso3wbklEQmvmZxvmyp3CBYpfsISCnKNr93uWgply6523lhVVRWcKt5v8PNqdVq0kha1qub6dLZWao5eOUUHzxAu5V4muSCdK/lpxOdcpr1HWxJyk9l06ieeGmw6y+DYFSrpEevNTO1g+gZEoFarm33OPn36GCAyoSFEwmsm2/btcBgyWO4wLErOhAUkphh/JwylzOPw6nIm5g8q/A2biDVqe3r5deb9Q2tJK8xCq9Oy5cyvHE85Q0ZxNuEewTwz5AFmf/sEd2x6kmeGPki4RzCLdi7nuWEP8Uf8EUZ+MYcxq+/jz8tRBo2tpahLFETEenJ7+UD6B/TAzrZpEyuo1WoiIiIMHJ1QHzEOzwBKTpwgcfYdcodhEcq7DOJP3zvQVhpP+1h93HyzSTm7Vu4wanF29mas/31IpYZLfAm5ySz8+Q3+unwSlUJFF59wQlwDOJUWw57719faf/Opn9kZe4DXRz/JsM/uZPvdn5BamMmj25dy6MFvUVuZ1mrmlWqJi4H5RGafp7ikuMHH9evXj7Fjx7ZgZMK1jK+V2ATZ9+yJfe/elBw7JncoZk2nceF0u7vR5hh3VeZVCoVxVWlelZ+fzpXwS/iXBhnsnMGu/nw3+wNKKkoprCjGW+PBQz++RKBL7Rl2ckryeO/gGr6b/QGRKWdp69aGtm4BtHULoEpbxaXcy3T0NK0J2q3LFXSIdSHcuh+Xggo4kRdDYVHhDY8T1ZmtS1RpGoj7gw/KHYLZS5j4MvkmkuzA+DqtXOvA8W/By/C/d+1t7PDWeJBXVsi++KPcEj6o1j4v/76SeX1m4OvkhVbSUXVNr0etTotOpgm3DUFVqSA8zplpuX0Y4d8XFyfnevdt164dHh6msYKDuRAlPAPRDB6EbZculJ0+LXcoZil3/GMkpJjW21WBcZbwAJAkDif/SH/b8WCAGWr2XjqChESoWwAJucm8uncVoW6BzOhasxfzvvijXMq5zLvjqqfl6+7TgbicRPZc/JOUwgyUShUhbqbfY1GlVRBy0ZFgZS8uB5dwouQC2Xk5NfYZPFi0/bc20/oGMXLuD9xP8mP/lTsMs1PRqT+nyjtCqy0yZCBGNPC8LklXTtNl4FAcU5o/4LmwvIg39n1KWmEmLraOjG0/lKeH3I+16p+vmNLKcl747T0+mrgEpaK6csnXyYuloxbw5M9vYKOy5t1xz2Fn3fyej8ZCqVMQdMmBQEV3rgSXElkeR0ZOJkFBQQQEBMgdnsURnVYMSJIkLo2fQMXFi3KHYjZ0Ghcib3nTpKoyr/IKSCIp+ju5w7guGxt7buv0BJKRLKlk7iSFRFpAOV6jwwkKDZY7HIsj2vAMSKFQ4H7/PLnDMCuJE5eYZLKrZsRVmn+rqCjhXOURucOwGApJQZDkKZKdTETCMzDn8eOxbtNG7jDMQu64h4lPMeW13Iy7SvOqk2d+pUosst1qHEeZfhulqRIJz8AUVla433ev3GGYvIqO/ThV2UXuMJrJ+Et4V+05tx6F2vgH85s6mwBH7Nq7yR2GxRIJrwU4T52KylN0N24qncaZ053uo6rCNEpI9TOdhJeTk0ya82W5wzB7onQnL5HwWoDSxgb3uXPlDsNkJU1cQl62qbbbXUMyrYT9x5GvwVN03G4pNkFOonQnM5HwWojrzJmilNcEebc+xKUU05pWqj4SxrO+W0NIko6jGb+Ib4WWoACXCfKspC78Q7y1W4jSwQGvx5+QOwyTUtGhD9FVZjSRromV8AAuJRyn2LdU7jDMjn1Pb2zaOModhsUTCa8FOU+ZjK2YCb1BdA5OnOk8zwza7a4hmU4b3rV+O74GhaOo2jQUhY0K59HBcochIBJei1IoFPg8twgUCrlDMXqXJy0hN9u0qgBvRDLRhFdWWkAsUXKHYTYchwegcjKPanpTJxJeC7Pr3h3niRPkDsOo5Y99kIsp5jOd1FWmmvAAjkfvQOsrfqg1l8rNFsfB/nKHIfxNJLxW4Pnkkyjt7eUOwyhVtOvNSW13ucNoEZLOtEusf8R+g8JafEU0h/PYtiisxHNoLMQr0QqsvbzwmP+Q3GEYHZ2dhjMRD5hXu901JJ3plvAAMjMTyHRLlzsMk6UOcca+q+ipbUxEwmslbnPmoA4PlzsMo3J5ysvkZpnBeLt66Ew84QHsPfoVCndTnt5NJgpwHi+GIRgbs094CQkJKBQKoqKiZI1DYW2Nz8sviw4sf8sffT8XU2zlDqNFmXqVJoBWW8WJ3N9AvG0bxeEmX2z8mr/skmBYTUp4hw8fRqVSMW7cOEPH0yxz585l8uTJNbYFBASQmppKly7yz8to37MHLtOnyx2G7CrDehBNz2adIy4lmo9/Xsxz62bwyCcjORl/oMb9kiSx/ehqnls3ncc/H8sH258iI//KPzFoK1j7++ss/HICL39zN+evHK9x/G9R37LpwAfNitHUqzSvunDxT0r9KuQOw2So3GxxHttW7jCEOjQp4X3xxRc8+uij7Nu3j5SUlHr3kySJqip5f+WqVCp8fHywsjKOcUVeC59E5WG59fo6WwfOdP8PleXNa7crryrF3z2U2wc9Vuf9v538hj9O/8DMwQtYOGUlNla2fLjjWSqrqr+4D57bweXMCzw5+QMGdhzPmt2vcXVpyKyCVA6e38GEvs2bBFxnBiW8q3ZHrkHhYByfIaOmALdp4ShtxETcxqjRCa+oqIhvv/2Whx56iHHjxrFmzRr9fXv37kWhUPDzzz/Tq1cv1Go1Bw4coLCwkDvuuAMHBwd8fX159913GTZsGAsWLNAfW15ezsKFC/H398fBwYF+/fqxd+9e/f1r1qzBxcWFnTt30rFjRzQaDWPGjCE1NRWAJUuWsHbtWn788UcUCgUKhYK9e/fWqtK8GuPu3bvp3bs39vb2DBgwgJiYGP21Ll68yKRJk/D29kaj0dCnTx9+++23xj5VdVI5OeH97LMGOZcpujLlZXKymp8IOgf2Y0Lfe+nWdlCt+yRJYs+pLYzueScRwQPxdw/l7uHPkF+SxcmE6pJgem4SXYMH4OsWzJDOkygqy6OoLB+Ab/e/z+R+D2Bn49CsGHXa5j3Ossoqfow8w/+2/86z3//MB7sPkpSTp79/7/mLvPTjLl76cRd7Yy7VODYxO5d3d+1HqzNMh6Di4lzirc8a5FzmTNPfD3WIi9xhCPVodMLbtGkTHTp0oH379tx55518+eWX/HvR9GeffZY33niDc+fOERERwRNPPMHBgwfZtm0bu3btYv/+/Zw4caLGMY888giHDx/mm2++ITo6munTpzNmzBhiY2P1+5SUlLB8+XLWrVvHvn37SEpKYuHChQAsXLiQGTNm6JNgamoqAwYMqPdxLF68mLfffptjx45hZWXFvff+82u+qKiIW2+9ld27dxMZGcmYMWOYMGECSUlJjX266uQ8fhwOQwYb5FympOCWe4lLtWvx62QXplJQkkMH/3+qTe3UGoK9OpKQXv2l7e8ewsW001RUlXPu8lGc7N3R2DpzNPY3rK2s60ykjSVpm1eluflYNBfSs5jVrxsLbxlCO29PPv3jL/JLykjJK2DnmQvceVMP7rypB7+cjiE1rwAArU7H98dPM7VXV1RKwzXT/xX5AzofUXKpj5W7LU5jguUOQ7iORn8avvjiC+68804AxowZQ35+Pn/88UeNfV555RVuvvlmQkNDsba2Zu3atSxfvpyRI0fSpUsXVq9ejfaaL4OkpCRWr17N5s2bGTx4MKGhoSxcuJBBgwaxevVq/X6VlZV8/PHH9O7dm549e/LII4+we/duADQaDXZ2dqjVanx8fPDx8cHGpv7ZDV599VWGDh1Kp06dePbZZzl06BBlZWUAdOvWjQcffJAuXboQHh7O0qVLCQ0NZdu2bY19uurl9/rrWHl6Gux8xq4iNIKTij6tcq2CklwAHO1ca2x3tHPV39e//Vj83UJ4ddO97IzcwH2jXqCkvJAdx9YwfeCj/N+RL1my8S5W7niGvOLMJsXRnCrNyiotp66kMS6iA6Ge7ng4OjC6SzvcNfYcuphIRmERvs5OhHt7EO7tga+zExmFxQDsjblEiKcbgW4uTb5+fQ7EbwYr0YOlFgW4Tm8nqjKNXKMSXkxMDEeOHGHWrFkAWFlZcfvtt/PFF1/U2K937976/1+6dInKykr69u2r3+bs7Ez79u31t0+dOoVWq6Vdu3ZoNBr93x9//MHFixf1+9nb2xMaGqq/7evrS0ZGRmMegl7ENXNc+vr6AujPVVRUxMKFC+nYsSMuLi5oNBrOnTtnsBIegJW7O35vvQUG/AVurCS1Hed6PtzsdjtDUqmsuH3wf3l59tc8fdtHhPp2ZcvhjxnaZQqXs+KITjjIommf0tarI5sPftikazSnSlMrSegkCWtVzS9Qa5WK+KwcfJ0dySwqJre4lJziErIKi/Bx1pBVVMzR+CuM6dK+njM3T2paLLkeOS1yblOmGeiPOthZ7jCEG2hUK/QXX3xBVVUVfn5++m2SJKFWq1m5cqV+m4ND49o+ioqKUKlUHD9+HNW/PuAazT9de62ta44HUigUtapTG+racyn+Hiqg+7u9Y+HChezatYvly5cTFhaGnZ0d06ZNo6LCsD3VHG7qh8d//kPWRx8Z9LzG5sptL5Od2nodOJzsq0t2haW5ODu467cXlubSxj20zmMuJEeSlpvAHUOf5Ic/P6FzYF/U1nb0DB3GH9sWNCkOXTM6bNlaWxHk7sKus7F4OWlwVKuJvJxMYnYuHhoHvJ0cGdulPZ/u+wuAsV074O3kyCd7/2R8tw7EpGXy65kLqJRKJvXoRKin+w2u2HC/H13DtIinkXLNdwxlY1h52onJoU1EgxNeVVUVX331FW+//Ta33HJLjfsmT57Mxo0b6dChQ63jQkJCsLa25ujRowQGVq/2m5+fz4ULFxgyZAgAPXr0QKvVkpGRweDBTW/bsrGxqVFV2lQHDx5k7ty5TJkyBahOyAkJCc0+b108HnmYkmPHKDlypEXOL7eCm+8hNrV5nT8ay93RFyd7N2KST9DGIwyA0opiEjLOMahT7XlNK6sq2HRgBXNGPodSqUKSdGj/LoxqdVVITVzmR9vMTiuz+nVn09Folv7fbpQKBf6uTvQI8ONKbnXnmgFhQQwIC9LvfzThCmprK4LcXVn2817+O2oQ+aWlfH04kufGDcdKZZjqtqqqCqKL99FV0R+a9nvTfCirqzLFFGymocEJb/v27eTm5nLffffh7Fyz6D516lS++OIL3nrrrVrHOTo6MmfOHJ566inc3Nzw8vLipZdeQqlU6ktW7dq144477uDuu+/m7bffpkePHmRmZrJ7924iIiIaPN4vODiYnTt3EhMTg7u7e604Gyo8PJwtW7YwYcIEFAoFL7zwgr70Z2gKpRK/t94ifsoUtDnmVVVU2bYL0ap+UGn48WjllaVk5ifrb2cXpnElKw57tSNujt4M73obv5z4Gk/nNrg7+rDj2Gqc7T3oFly7M8rPJ9bRKbAfAR7VM+GE+HThhz8/4ab2o/njzFZCfJo2hrM5JTwAD40D84f3p7yqivLKKpzsbFl3+ARumtrzshaXV7DrzAXmD+9PUnYeno4O+j+tJJFZWIyvi1Oz4rnW2Zh9tBvUB3WyZQ9VcBoVhDrQcM+r0LIa/LPkiy++YNSoUXUmkalTp3Ls2DGio6PrPPadd96hf//+jB8/nlGjRjFw4EA6duyIre0/M22sXr2au+++myeffJL27dszefLkGqXChrj//vtp3749vXv3xtPTk4MHDzb42H/H6+rqyoABA5gwYQKjR4+mZ8/mDZS+HmtvL/yWLTOrWVgkG1vO9n6UirKWGXydmBnDG98/yBvfPwjAlsOreOP7B9lxbA0Ao7rNZGiXyWzc9w5v/TCf8soy5t/6OtZWNTsypeTEE3nxD8b1nqPf1j1kCF0Cb+LdbY+Tkn2JaQMeblKMWgONQVVbWeFkZ0tJRSUxaZl08fOptc+PUWcZ0q4tLvZ26CQJre6fopdOp0PXxKr/69kd/RUKO8vtpGHb0Q3H4QFyhyE0gkJqaiNYMxQXF+Pv78/bb7/Nfffd19qXN1oZb79N9mefyx2GQVyZtYwLqZY9tVJZ7jvNOj4mLRNJkvB01JBdVMz26PNYKZU8PKJ/jeEGF9Iy+fn0BR4dOQClQkFeSSlv/LyXOQN6kV9Sxk+nzvPC+JFYWxk+OQ3sdTttcoINfl5jZ+Vui9ejPVDaWnYJ19S0yqsVGRnJ+fPn6du3L/n5+bzyyisATJo0qTUubzI8//tfSo4dpzQyUu5QmqVw5N0Wn+wUquZXgZdWVvJzdAx5pWXY21jTtY0PY7u0r5HsKqu0/BB5hjtv6oHy7xoCF3s7pvTozKaj0aiUSmb27dYiyQ7g4PFvmXHTcyjSzWMatYZQWCtxu7OTSHYmqFVKeJGRkcybN4+YmBhsbGzo1asX77zzDl27dm3pS5ucytRU4idPQZufL3coTVIZ3Jm/Oj5KRanlfAHWxcpaS1HG+3KH0Sra+HdioN1E0FpGDxa329tj38NL7jCEJpClSlO4vsLf93Bl/ny5w2g0ycaWU5PfJyvDfOaQbCpr20oKU5s3+bQpGTvgIZxSzb/zhkN/X1wnhckdhtBEoi+tEXIcMRy3OXfLHUajpUxdIpLd31RKy/odufvoGhQu5r1unk2gIy5ijTuTJhKekfJauBCHQc2fz7G1FI64k5hUR7nDMBqGaMMzJRWVpZwtPyx3GC1GqbHG/Y6OKFTiK9OUiVfPSCmsrWmz4n1sTaCdsyqwA9Fq00nOrUGpsqwSHkD02d1U+pvh47ZS4H5nR1TOarkjEZpJJDwjprS3J+CTj7EJDpY7lHrpbNScu+lxyi28k8q/KZWWVcK76vfT61DYmtHYPAW4zWgv5sk0EyLhGTkrNzcCPv/caFdWSL3tJTJFu10tCoVlJry8vFRSHRPlDsNgnMe2xT7COD97QuOJhGcCbNr4E/D5ZygdjauNrGjYbGLSxS/fuigtrA3vWn8c3QCepj9GTTPAD8chbeQOQzAgkfBMhG379rT5cCWK66zx15oqA9tz0n6ImDy4PhZawgNAkvgrbTsoTXeqPLuuHjiLHplmRyQ8E+LQty9+y+VfQ09nZcP5/o9TXiLa7eqjVFj2L4GEpJMU+RTLHUaTqMNdcLu9PQoTTthC3UTCMzFOt9yCz4svyBpD2rSXyLSgqaSaQqEUz8/u46tROJlW1aZNgCPud3VCYSW+Gs2ReFVNkOvMmXjINBNL0dDbOZ/uIsu1TYsFV2n+raysiBjtcbnDaDArLzvc53ZGaWNGvUyFGkTCM1Gejz2Ky+23t+o1q9qEE+0wXLTbNYDSktvwrhF5+he0fnJHcWNW3vZ43h+BysH4Z4tZsmQJ3bt3lzsMkyQSngnzeelFHMeMaZVr6axsiBn4JGWi3a5hRMLT23N+Awob4/2qsfZ1wPOBCFSOze8QlpmZyUMPPURgYCBqtRofHx9Gjx7d5LU567Jw4UJ2795tsPNZEtOqYBdqUCiV+L+9nDRHDXmbv2vRa6VPfZF00W7XYJY6Dq8u2dmXyQhLwTOj9sK1crMJcMTj3i4o7QzzVTh16lQqKipYu3YtISEhpKens3v3brKzsw1yfgCNRoNGY9nLbzWV8f7sEhpEoVLhu3Qp7v95sMWuUTx4OucyXFvs/OZJ/Di41t6j68HDuH5f2wQ74THPcMkuLy+P/fv3s2zZMoYPH05QUBB9+/Zl0aJFTJw4EQCFQsGqVasYO3YsdnZ2hISE8N13NX+sPvPMM7Rr1w57e3tCQkJ44YUXqKys1N//7yrNuXPnMnnyZJYvX46vry/u7u48/PDDNY4RqomEZya8FizA+/nnQWHYrtRVfiGcdBol2u0aTSS8a+l0Wo5n/QpG0tNfHeZSXbJTGy4JXy15bd26lfLy8nr3e+GFF5g6dSonT57kjjvuYObMmZw7d05/v6OjI2vWrOHs2bO8//77fPbZZ7z77rvXvfaePXu4ePEie/bsYe3ataxZs4Y1a9YY6qGZDZHwzIjbnXfgt/wtFNaGaXiXVFbEDHmasmIxdVjjiSrNf4uLP0qJX/2JoLXYdnDDY47he2NaWVmxZs0a1q5di4uLCwMHDuS5554jOjq6xn7Tp09n3rx5tGvXjqVLl9K7d28++OCftROff/55BgwYQHBwMBMmTGDhwoVs2rTputd2dXVl5cqVdOjQgfHjxzNu3DjRzlcHkfDMjPO4cbT5eBVKe/tmnyt92oukp4mSStOI560uu0+sRqGRr2rTrrM77nd2RGHdMl99U6dOJSUlhW3btjFmzBj27t1Lz549a5S2+vfvX+OY/v371yjhffvttwwcOBAfHx80Gg3PP/88SUlJ171u586dUan+SeC+vr5kZGQY5kGZEZHwzJBm4EAC165F5ebW5HOUDLyNcxnuBozK0ogSXl1KSvK5pDwly7Ud+vrgNrtjiw8qt7W15eabb+aFF17g0KFDzJ07l5deeqlBxx4+fJg77riDW2+9le3btxMZGcnixYupqKi47nHW/6rVUSgU6HTiPfhvIuGZKbuuXQj6ej3W/v6NPlbr25aTLqORRLtd00mihFefIye3ofNtxa8eJTiPD8H1tnAUqtZvROzUqRPFxf9Ms/bnn3/WuP/PP/+kY8eOABw6dIigoCAWL15M7969CQ8PJzHRfFafkJtIeGZM3bYtQRs2oG7XrsHHSCorYoY+Q6lot2sWSSS869oXtwlaqFrxWgq1Co85nXEc1Pgffo2VnZ3NiBEjWL9+PdHR0cTHx7N582befPNNJk2apN9v8+bNfPnll1y4cIGXXnqJI0eO8MgjjwAQHh5OUlIS33zzDRcvXmTFihX88MMPLR67pRAJz8xZe3sRtH4ddr17NWj/9KnPkyba7ZpPJLzrSs+4SLZ7ZoteQ+Vmi9f8bti2b3rVfmNoNBr69evHu+++y5AhQ+jSpQsvvPAC999/PytXrtTv9/LLL/PNN98QERHBV199xcaNG+nUqRMAEydO5PHHH+eRRx6he/fuHDp0iBdekHfuXHOikCRRcWUJdOXlpL34Ivk/bqt3n5IBk/lLfbOoyjQAD98jXDl7QO4wjJpKZc307s8g5Rh+vJhNsBPud3UyuqnCFAoFP/zwA5MnT5Y7FIskSngWQqlW47dsGT4vvVjnsIUqn2BOuo0Vyc5ARJXmjWm1lUTm/27wsXn2vbzxnNfV6JKdID+R8CyM66xZBG34Gis/X/02SakidvgzlBaJdjuDEQmvQWLiDlHmZ6ASngKcx7bFbXo7sbyPUCdRpWmhqnJzSXnqaYoPHCB9+kucyfSSOySz4uq5l9QLJ+QOwyQ4atwZF/QfpJKm/+BSOdvgdnt71CEuhgtMMDvGNbmd0GqsXF0J+PQTUjZuZe8hV8TcYYYl6UQJr6EKi7JJVMcQWBLapONtO7vjNjUcpb2owhSuT5T7LZhCqcT/jtuY+N/uOLio5Q7HrEg6UT3cGIdPfIfk07ipvhTWSlymhOFxVyeR7IQGEQlPwL+dKzOf70vbbh5yh2I2dKKE12gHE7eAVcN6sFj7OOD1SHc0/XxvvLMg/E0kPAEAW401tz4UwZCZ7VC1woBgcyeqNBsvOeU8eZ65N9zPob8vXg93x9rboRWiEsyJ6LQi1JKbVszer2NIic2TOxSTZW+/hZzkBLnDMDnW1rZM7bIQKa92z02lgxWuU9th10nM8So0jUh4Qp0kSeLcwVQObYmjvBm95yyVrXozeWmX5Q7DJHXuMIwu5f1qbLPr5onLhBBUGhuZohLMgUh4wnWVFFSwf9MF4o6JpUYaw8Z6IwUZqXKHYbKmDHoKm2QlKmc1LlPCsOvQOtODCeZNJDyhQRJOZbFv4wUKc8rkDsUkWCnXUZTdsnNFmjNXV1+mjH8G55vbolQbdqFWwXKJhCc0WGW5lr9+vET03itIOvG2uR6ltIaSvBy5wzBJvmHtGXnfQ3iHhMkdimBmRMITGi0jsYA968+TdblI7lCMV+VnlBUVyh2FSbF1dGLwrDl0HXELCkXrr1snmD+R8IQm0ekkzh1M4eiOBIrzyuUOx+hoS1dRWVYqdxgmQalS0XXELQy8/S7sHJ3kDkcwYyLhCc1SVakles8VTuxMpFwsGqtXWfQB2krDL3tjThQKJe0HDGbgjDtx8REDyIWWJxKeYBDlpVVE/prIyd+vUFUuBl2X572HJOnkDsNohfTqy6CZd+MZGCx3KIIFEQlPMKiSggqO7YjnzIEUdFoLfWspJMpy3pU7CqMU0DmCQTPvxq9dB7lDESyQSHhCiyjIKuWv/7tE7JF0i1tUVmWtpTjjfbnDMCo+oeEMnHk3wRE95A5FsGAi4QktKju5iOO/JHLxRIbFlPhsbKsoSF0hdxhGwSc0nL6TpxPed4DcoQiCSHhC6yjOK+fU3iucOZBCWZF5d+ZQ21eQn7xS7jBko1SpCOs7gJ5jJ+LfvqPc4QiCnkh4QquqqtRy4a90Tv5+mZyUYrnDaRF2juXkJn0odxitzlbjSNeRo+l+yzicPDzlDkcQahEJT5DNlfM5nPz9Comnssyqnc/eqZScxFVyh9Fq3PwD6Dl2Ip2GDMdabSt3OIJQLyu5AxAsV5sObrTp4EZ+ZgnRe65w7lAqlWWmP6RBqTKj7F0PhVJJcLee9Bw7kaCIHmJmFMEkiBKeYDQqy7Vcisrkwl9pXD6fa7LzdTq6F5EZ96ncYbQIn9BwOg4aRvsBQ3BwcZU7HEFoFJHwBKNUUlBB7NF0Yv5KIzPJtOakdPYoID32c7nDMBg3vzZ0GDiUDoOG4urjJ3c4gtBkIuEJRi8vo4SLJzK4eCLTJJKfq1ceqTFfyh1Gs2jc3Gk/YAgdBw4VqxYIZkMkPMGk5GeWcvFEBvEnM0lPKDTKak9XnxxSz62RO4xGc/VrQ9vuvQjr3Y82HbugUCrlDkkQDEokPMFkVZRWkRybx5XzOVw5n2s0wxzc/bJIPvOV3GHckLXaloDOXWnbvTdte/TC2ctH7pAEoUWJXpqCybKxs6JthAdtIzyA6na/5Jjc6gQYk0tBllyrsxvnpNEqKyt823UgsHM3Art0wyesHSor8RUgWA5RwhPMVkFWKVfO55ISm0fWlUJy00paZXozD/80rpze0OLXuR6FQomrrx9ebUPxbhuKd0gYPuHtsbZRyxqXIMhJJDzBYmi1OnJTS8hOLiL7ShFZf/9bUlBh0Ot4tEnhyqlvDHrO61GqVLj7B+DVNkyf4LyCQ7C2FYPABeFaoj5DsBgqlRKPNho82mig3z/bSwsr9MkvJ6WYotwyivMrKM4rp7yk8YvaKjD84HlrtS1Onl44eXji5Omt/7+Lty8egcFY2dgY/JqCYG5EwhMsnp2jDQEd3Ajo4FbrvqpKLcV5FRTnl1OcV05JfgVFeVf/X055aRVVFTqqKrV//6tDqay/0kShVGJja4e1nR02alts7OywtrWr/ldti42tHTb29mhc3XHy9MTJwwsnTy/sHJ1a8ikQBIsgqjQFoQVIkoSk06HT6ZB0WnRaHSorK1ESEwQZiYE2Zmzu3LkoFIpaf3FxcXKHZvYUCgVKlQora2us1bao7e1FshMEmYkqTTM3ZswYVq9eXWObp2fNpVsqKiqwEV/GgiCYOVHCM3NqtRofH58afyNHjuSRRx5hwYIFeHh4MHr0aADeeecdunbtioODAwEBAcyfP5+ioiL9udasWYOLiws7d+6kY8eOaDQaxowZQ2pqao1rfvnll3Tu3Bm1Wo2vry+PPPKI/r68vDzmzZuHp6cnTk5OjBgxgpMnT7bOkyEYjavvpZaWkJCAQqEgKiqqxa8lGD+R8CzU2rVrsbGx4eDBg3z88ccAKJVKVqxYwZkzZ1i7di2///47Tz/9dI3jSkpKWL58OevWrWPfvn0kJSWxcOFC/f2rVq3i4Ycf5oEHHuDUqVNs27aNsLB/5mKcPn06GRkZ/Pzzzxw/fpyePXsycuRIcnJyWueBCzdUX1X4mDFj5A5NEJpHEszWnDlzJJVKJTk4OOj/pk2bJg0dOlTq0aPHDY/fvHmz5O7urr+9evVqCZDi4uL02z788EPJ29tbf9vPz09avHhxnefbv3+/5OTkJJWVldXYHhoaKn3yySeNfXhCC5kzZ440ZswYKTU1tcZfTk6Owa6xevVqydnZ2WDnq098fLwESJGRkS1+LcH4iRKemRs+fDhRUVH6vxUrVgDQq1evWvv+9ttvjBw5En9/fxwdHbnrrrvIzs6mpKREv4+9vT2hoaH6276+vmRkZACQkZFBSkoKI0eOrDOWkydPUlRUhLu7OxqNRv8XHx/PxYsXDfmwhWaqqyrc1bV6/TuFQsHnn3/OlClTsLe3Jzw8nG3bttU4ftu2bYSHh2Nra8vw4cNZu3YtCoWCvLy8Oq938eJFJk2ahLe3NxqNhj59+vDbb7/V2Cc4OJjXXnuNe++9F0dHRwIDA/n005rrDh45coQePXpga2tL7969iYyMNNyTIpg8kfDMnIODA2FhYfo/X19f/fZrJSQkMH78eCIiIvj+++85fvw4H374IVDdqeUqa2vrGscpFAqkv0e22NnZXTeWoqIifH19ayTgqKgoYmJieOqpp5r9WIXW8/LLLzNjxgyio6O59dZbueOOO/TV0vHx8UybNo3Jkydz8uRJHnzwQRYvXnzd8xUVFXHrrbeye/duIiMjGTNmDBMmTCApKanGfm+//bY+kc2fP5+HHnqImJgY/TnGjx9Pp06dOH78OEuWLKlR3S4IIuEJABw/fhydTsfbb7/NTTfdRLt27UhJSWnUORwdHQkODmb37t113t+zZ0/S0tKwsrKqkYTDwsLw8PAwxMMQDGT79u01SuEajYbXXntNf//cuXOZNWsWYWFhvPbaaxQVFXHkyBEAPvnkE9q3b89bb71F+/btmTlzJnPnzr3u9bp168aDDz5Ily5dCA8PZ+nSpYSGhtYqOd56663Mnz+fsLAwnnnmGTw8PNizZw8AGzZsQKfT8cUXX9C5c2fGjx8vfkgJNYhhCQIAYWFhVFZW8sEHHzBhwoQanVkaY8mSJfznP//By8uLsWPHUlhYyMGDB3n00UcZNWoU/fv3Z/Lkybz55pv6pLpjxw6mTJlC7969W+CRCU0xfPhwVq1aVWObm9s/M9FERETo/+/g4ICTk5O+ajsmJoY+ffrUOLZv377XvV5RURFLlixhx44dpKamUlVVRWlpaa0S3rXXVSgU+Pj46K977tw5IiIisL1mDtH+/fs35OEKFkIkPAGo/oX9zjvvsGzZMhYtWsSQIUN4/fXXufvuuxt1njlz5lBWVsa7777LwoUL8fDwYNq0aUD1F9RPP/3E4sWLueeee8jMzMTHx4chQ4bg7e3dEg9LaKKrVeH1qatqW6dr+rJICxcuZNeuXSxfvpywsDDs7OyYNm1ajer0lriuYFlEwjNja9asqXP73r1769z++OOP8/jjj9fYdtddd+n/P3fu3FpVU5MnT9a34V314IMP8uCDD9Z5DUdHR1asWKHvPCOYn/bt2/PTTz/V2Hb06NHrHnPw4EHmzp3LlClTgOoSX0JCQqOu27FjR9atW0dZWZm+lPfnn3826hyCeRNteIIg1FJeXk5aWlqNv6ysrAYd++CDD3L+/HmeeeYZLly4wKZNm/Q/vhQKRZ3HhIeHs2XLFqKiojh58iSzZ89udMlt9uzZKBQK7r//fs6ePctPP/3E8uXLG3UOwbyJhCcIQi2//PILvr6+Nf4GDRrUoGPbtm3Ld999x5YtW4iIiGDVqlX6Xppqdd0L0L7zzju4uroyYMAAJkyYwOjRo+nZs2ejYtZoNPzf//0fp06dokePHixevJhly5Y16hyCeROrJQiC0OJeffVVPv74Yy5fvix3KIIFE214giAY3EcffUSfPn1wd3fn4MGDvPXWWzXmVBUEOYiEJwiCwcXGxvK///2PnJwcAgMDefLJJ1m0aJHcYQkWTlRpCoIgCBZBdFoRBEEQLIJIeIIgCIJFEAlPEARBsAgi4QmCIAgWQSQ8QRAEwSKIhCcIgiBYBJHwBEEQBIsgEp4gCIJgEUTCEwRBECyCSHiCIAiCRRAJTxAEQbAIIuEJgiAIFkEkPEEQBMEiiIQnCIIgWASR8ARBEASLIBKeIAiCYBFEwhMEQRAsgkh4giAIgkUQCU8QBEGwCCLhCYIgCBZBJDxBEATBIoiEJwiCIFgEkfAEQRAEiyASniAIgmARRMITBEEQLIJIeIIgCIJFEAlPEARBsAgi4QmCIAgWQSQ8QRAEwSL8P41sL+bPr0pJAAAAAElFTkSuQmCC\n",
843 | "text/plain": [
844 | ""
845 | ]
846 | },
847 | "metadata": {},
848 | "output_type": "display_data"
849 | }
850 | ],
851 | "source": [
852 | "mp.pie(my_pts,labels=my_team,autopct='%1.0f%%')\n",
853 | "mp.title(\"pie chart to show total points gained\")\n",
854 | "mp.show()"
855 | ]
856 | },
857 | {
858 | "cell_type": "code",
859 | "execution_count": null,
860 | "id": "aa977979",
861 | "metadata": {},
862 | "outputs": [],
863 | "source": []
864 | }
865 | ],
866 | "metadata": {
867 | "kernelspec": {
868 | "display_name": "Python 3 (ipykernel)",
869 | "language": "python",
870 | "name": "python3"
871 | },
872 | "language_info": {
873 | "codemirror_mode": {
874 | "name": "ipython",
875 | "version": 3
876 | },
877 | "file_extension": ".py",
878 | "mimetype": "text/x-python",
879 | "name": "python",
880 | "nbconvert_exporter": "python",
881 | "pygments_lexer": "ipython3",
882 | "version": "3.11.0"
883 | }
884 | },
885 | "nbformat": 4,
886 | "nbformat_minor": 5
887 | }
888 |
--------------------------------------------------------------------------------