├── .gitignore ├── LICENSE ├── README.md └── core-ml.png /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2017 Peng Guo 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | # Awesome Core ML models [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) 4 | 5 | This repository has a collection of Open Source machine learning models which work with Apples **Core ML** standard. 6 | 7 | Apple has published some of their own models. They can be downloaded [here](https://developer.apple.com/machine-learning/). 8 | Those published models are: **SqueezeNet, Places205-GoogLeNet, ResNet50, Inception v3, VGG16** and will not be republished in this repository. 9 | 10 | ## Contributing 11 | If you want your model added simply create a pull request with your repository and model added. In order to keep the quality of this repository you have to conform to this project structure (taken from **@hollance**). 12 | 13 | ``` 14 | ├── Convert 15 |    ├── coreml.py 16 |    ├── mobilenet_deploy.prototxt 17 |    └── synset_words.txt 18 | ``` 19 | 20 | There has to be a **Convert** directory with a Python script and additional data to reproduce this model on your own. If your model requires a huge amount of space please include a script which downloads those files. 21 | 22 | ``` 23 | ├── MobileNetCoreML 24 | │   ├── *.swift 25 | ├── MobileNetCoreML.xcodeproj 26 | │   ├── project.pbxproj 27 | │   └── project.xcworkspace 28 | │   └── contents.xcworkspacedata 29 | ├── README.markdown 30 | ``` 31 | 32 | You also have to have an Xcode project where the user can test the model (sample data included would be nice). 33 | 34 | This is a template for the README to copy: 35 | ``` 36 | ### Name of your model 37 | **Model:** [Model.mlmodel](link for downloading)
38 | **Description:** Short description
39 | **Author:** [Author](https://github.com/author)
40 | **Reference:** [Name of reference](URL to reference)
41 | **Example:** [Your example project](URL to example project)
42 | ``` 43 | ## Models 44 | 45 | ### MobileNet 46 | **Model:** [MobileNet.mlmodel](https://github.com/hollance/MobileNet-CoreML/raw/master/MobileNet.mlmodel)
47 | **Description:** Object detection, finegrain classification, face attributes and large scale geo-localization
48 | **Author:** [Matthijs Hollemans](https://github.com/hollance)
49 | **Reference:** [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861v1)
50 | **Example:** [MobileNet-CoreML](https://github.com/hollance/MobileNet-CoreML)
51 | 52 | ### MNIST 53 | **Model:** [MNIST.mlmodel](https://github.com/ph1ps/MNIST-CoreML/raw/master/MNISTPrediction/MNIST.mlmodel)
54 | **Description:** Handwritten digit classification
55 | **Author:** [Philipp Gabriel](https://github.com/ph1ps)
56 | **Reference:** [MNIST handwritten digit database](http://yann.lecun.com/exdb/mnist/)
57 | **Example:** [MNIST-CoreML](https://github.com/ph1ps/MNIST-CoreML)
58 | 59 | ### Food101 60 | **Model:** [Food101.mlmodel](https://drive.google.com/open?id=0B5TjkH3njRqnVjBPZGRZbkNITjA)
61 | **Description:** Food classification
62 | **Author:** [Philipp Gabriel](https://github.com/ph1ps)
63 | **Reference:** [UPMC Food-101](http://visiir.lip6.fr/explore)
64 | **Example:** [Food101-CoreML](https://github.com/ph1ps/Food101-CoreML)
65 | 66 | ### SentimentPolarity 67 | **Model:** [SentimentPolarity](https://github.com/cocoa-ai/SentimentCoreMLDemo/raw/master/SentimentPolarity/Resources/SentimentPolarity.mlmodel)
68 | **Description:** Sentiment Polarity Analysis
69 | **Author:** [Vadym Markov](https://github.com/vadymmarkov)
70 | **Reference:** [Epinions.com reviews dataset](http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/)
71 | **Example:** [SentimentCoreMLDemo](https://github.com/cocoa-ai/SentimentCoreMLDemo)
72 | 73 | ### VisualSentimentCNN 74 | **Model:** [VisualSentimentCNN](https://drive.google.com/open?id=0B1ghKa_MYL6mZ0dITW5uZlgyNTg)
75 | **Description:** Visual Sentiment Prediction
76 | **Author:** [Image Processing Group - BarcelonaTECH - UPC](https://github.com/imatge-upc)
77 | **Reference:** [From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction](https://github.com/imatge-upc/sentiment-2017-imavis)
78 | **Example:** [SentimentVisionDemo](https://github.com/cocoa-ai/SentimentVisionDemo)
79 | 80 | ### AgeNet 81 | **Model:** [AgeNet](https://drive.google.com/file/d/0B1ghKa_MYL6mT1J3T1BEeWx4TWc/view?usp=sharing)
82 | **Description:** Age Classification
83 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
84 | **Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
85 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
86 | 87 | ### GenderNet 88 | **Model:** [GenderNet](https://drive.google.com/file/d/0B1ghKa_MYL6mYkNsZHlyc2ZuaFk/view?usp=sharing)
89 | **Description:** Gender Classification
90 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
91 | **Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
92 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
93 | 94 | ### CNNEmotions 95 | **Model:** [CNNEmotions](https://drive.google.com/file/d/0B1ghKa_MYL6mTlYtRGdXNFlpWDQ/view?usp=sharing)
96 | **Description:** Emotion Recognition
97 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/)
98 | **Reference:** [Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf)
99 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
100 | 101 | ### NamesDT 102 | **Model:** [NamesDT](https://github.com/cocoa-ai/NamesCoreMLDemo/raw/master/Names/Resources/NamesDT.mlmodel)
103 | **Description:** Gender Classification from first names
104 | **Author:** [http://nlpforhackers.io](http://nlpforhackers.io)
105 | **Reference:** [Is it a boy or a girl? An introduction to Machine Learning](http://nlpforhackers.io/introduction-machine-learning/)
106 | **Example:** [NamesCoreMLDemo](https://github.com/cocoa-ai/NamesCoreMLDemo)
107 | 108 | ### Oxford102 109 | **Model:** [Oxford102](https://drive.google.com/file/d/0B1ghKa_MYL6meDBHT2NaZGxkNzQ/view?usp=sharing)
110 | **Description:** Flower Classification
111 | **Author:** [Jimmie Goode](https://github.com/jimgoo)
112 | **Reference:** [Classifying images in the Oxford 102 flower dataset with CNNs](http://jimgoo.com/flower-power/)
113 | **Example:** [FlowersVisionDemo](https://github.com/cocoa-ai/FlowersVisionDemo)
114 | 115 | ### FlickrStyle 116 | **Model:** [FlickrStyle](https://drive.google.com/file/d/0B1ghKa_MYL6maFFWR3drLUFNQ1E/view?usp=sharing)
117 | **Description:** Image Style Classification
118 | **Author:** [Sergey Karayev](https://gist.github.com/sergeyk)
119 | **Reference:** [Recognizing Image Style](http://sergeykarayev.com/files/1311.3715v3.pdf)
120 | **Example:** [StylesVisionDemo](https://github.com/cocoa-ai/StylesVisionDemo)
121 | 122 | ## Model Demonstration App 123 | 124 |

125 | 126 |

127 |

128 | 129 |

130 | 131 | **Description:** Discover, download, on-device-compile & launch different image processing CoreML models on iOS.
132 | **Author:** [Eugene Bokhan](https://github.com/eugenebokhan)
133 | **Source:** [Awesome ML](https://github.com/eugenebokhan/Awesome-ML)
134 | **Lincese:** [BSD 3-Clause](https://github.com/eugenebokhan/Awesome-ML/blob/master/LICENSE.md)
135 | -------------------------------------------------------------------------------- /core-ml.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SwiftBrain/awesome-CoreML-models/ec857bdab7fa15c1c6e9ffd07cd1543d93bc8955/core-ml.png --------------------------------------------------------------------------------