├── .gitignore
├── LICENSE
├── README.md
└── core-ml.png
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2017 Peng Guo
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | # Awesome Core ML models [](https://github.com/sindresorhus/awesome)
4 |
5 | This repository has a collection of Open Source machine learning models which work with Apples **Core ML** standard.
6 |
7 | Apple has published some of their own models. They can be downloaded [here](https://developer.apple.com/machine-learning/).
8 | Those published models are: **SqueezeNet, Places205-GoogLeNet, ResNet50, Inception v3, VGG16** and will not be republished in this repository.
9 |
10 | ## Contributing
11 | If you want your model added simply create a pull request with your repository and model added. In order to keep the quality of this repository you have to conform to this project structure (taken from **@hollance**).
12 |
13 | ```
14 | ├── Convert
15 | ├── coreml.py
16 | ├── mobilenet_deploy.prototxt
17 | └── synset_words.txt
18 | ```
19 |
20 | There has to be a **Convert** directory with a Python script and additional data to reproduce this model on your own. If your model requires a huge amount of space please include a script which downloads those files.
21 |
22 | ```
23 | ├── MobileNetCoreML
24 | │ ├── *.swift
25 | ├── MobileNetCoreML.xcodeproj
26 | │ ├── project.pbxproj
27 | │ └── project.xcworkspace
28 | │ └── contents.xcworkspacedata
29 | ├── README.markdown
30 | ```
31 |
32 | You also have to have an Xcode project where the user can test the model (sample data included would be nice).
33 |
34 | This is a template for the README to copy:
35 | ```
36 | ### Name of your model
37 | **Model:** [Model.mlmodel](link for downloading)
38 | **Description:** Short description
39 | **Author:** [Author](https://github.com/author)
40 | **Reference:** [Name of reference](URL to reference)
41 | **Example:** [Your example project](URL to example project)
42 | ```
43 | ## Models
44 |
45 | ### MobileNet
46 | **Model:** [MobileNet.mlmodel](https://github.com/hollance/MobileNet-CoreML/raw/master/MobileNet.mlmodel)
47 | **Description:** Object detection, finegrain classification, face attributes and large scale geo-localization
48 | **Author:** [Matthijs Hollemans](https://github.com/hollance)
49 | **Reference:** [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861v1)
50 | **Example:** [MobileNet-CoreML](https://github.com/hollance/MobileNet-CoreML)
51 |
52 | ### MNIST
53 | **Model:** [MNIST.mlmodel](https://github.com/ph1ps/MNIST-CoreML/raw/master/MNISTPrediction/MNIST.mlmodel)
54 | **Description:** Handwritten digit classification
55 | **Author:** [Philipp Gabriel](https://github.com/ph1ps)
56 | **Reference:** [MNIST handwritten digit database](http://yann.lecun.com/exdb/mnist/)
57 | **Example:** [MNIST-CoreML](https://github.com/ph1ps/MNIST-CoreML)
58 |
59 | ### Food101
60 | **Model:** [Food101.mlmodel](https://drive.google.com/open?id=0B5TjkH3njRqnVjBPZGRZbkNITjA)
61 | **Description:** Food classification
62 | **Author:** [Philipp Gabriel](https://github.com/ph1ps)
63 | **Reference:** [UPMC Food-101](http://visiir.lip6.fr/explore)
64 | **Example:** [Food101-CoreML](https://github.com/ph1ps/Food101-CoreML)
65 |
66 | ### SentimentPolarity
67 | **Model:** [SentimentPolarity](https://github.com/cocoa-ai/SentimentCoreMLDemo/raw/master/SentimentPolarity/Resources/SentimentPolarity.mlmodel)
68 | **Description:** Sentiment Polarity Analysis
69 | **Author:** [Vadym Markov](https://github.com/vadymmarkov)
70 | **Reference:** [Epinions.com reviews dataset](http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/)
71 | **Example:** [SentimentCoreMLDemo](https://github.com/cocoa-ai/SentimentCoreMLDemo)
72 |
73 | ### VisualSentimentCNN
74 | **Model:** [VisualSentimentCNN](https://drive.google.com/open?id=0B1ghKa_MYL6mZ0dITW5uZlgyNTg)
75 | **Description:** Visual Sentiment Prediction
76 | **Author:** [Image Processing Group - BarcelonaTECH - UPC](https://github.com/imatge-upc)
77 | **Reference:** [From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction](https://github.com/imatge-upc/sentiment-2017-imavis)
78 | **Example:** [SentimentVisionDemo](https://github.com/cocoa-ai/SentimentVisionDemo)
79 |
80 | ### AgeNet
81 | **Model:** [AgeNet](https://drive.google.com/file/d/0B1ghKa_MYL6mT1J3T1BEeWx4TWc/view?usp=sharing)
82 | **Description:** Age Classification
83 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
84 | **Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
85 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
86 |
87 | ### GenderNet
88 | **Model:** [GenderNet](https://drive.google.com/file/d/0B1ghKa_MYL6mYkNsZHlyc2ZuaFk/view?usp=sharing)
89 | **Description:** Gender Classification
90 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
91 | **Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
92 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
93 |
94 | ### CNNEmotions
95 | **Model:** [CNNEmotions](https://drive.google.com/file/d/0B1ghKa_MYL6mTlYtRGdXNFlpWDQ/view?usp=sharing)
96 | **Description:** Emotion Recognition
97 | **Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/)
98 | **Reference:** [Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf)
99 | **Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)
100 |
101 | ### NamesDT
102 | **Model:** [NamesDT](https://github.com/cocoa-ai/NamesCoreMLDemo/raw/master/Names/Resources/NamesDT.mlmodel)
103 | **Description:** Gender Classification from first names
104 | **Author:** [http://nlpforhackers.io](http://nlpforhackers.io)
105 | **Reference:** [Is it a boy or a girl? An introduction to Machine Learning](http://nlpforhackers.io/introduction-machine-learning/)
106 | **Example:** [NamesCoreMLDemo](https://github.com/cocoa-ai/NamesCoreMLDemo)
107 |
108 | ### Oxford102
109 | **Model:** [Oxford102](https://drive.google.com/file/d/0B1ghKa_MYL6meDBHT2NaZGxkNzQ/view?usp=sharing)
110 | **Description:** Flower Classification
111 | **Author:** [Jimmie Goode](https://github.com/jimgoo)
112 | **Reference:** [Classifying images in the Oxford 102 flower dataset with CNNs](http://jimgoo.com/flower-power/)
113 | **Example:** [FlowersVisionDemo](https://github.com/cocoa-ai/FlowersVisionDemo)
114 |
115 | ### FlickrStyle
116 | **Model:** [FlickrStyle](https://drive.google.com/file/d/0B1ghKa_MYL6maFFWR3drLUFNQ1E/view?usp=sharing)
117 | **Description:** Image Style Classification
118 | **Author:** [Sergey Karayev](https://gist.github.com/sergeyk)
119 | **Reference:** [Recognizing Image Style](http://sergeykarayev.com/files/1311.3715v3.pdf)
120 | **Example:** [StylesVisionDemo](https://github.com/cocoa-ai/StylesVisionDemo)
121 |
122 | ## Model Demonstration App
123 |
124 |
125 |
126 |
128 |
129 |