\n",
2686 | "\n",
2699 | "
\n",
2700 | " \n",
2701 | " \n",
2702 | " | \n",
2703 | " Unnamed: 0 | \n",
2704 | " country | \n",
2705 | " population | \n",
2706 | " area | \n",
2707 | " capital | \n",
2708 | "
\n",
2709 | " \n",
2710 | " \n",
2711 | " \n",
2712 | " 0 | \n",
2713 | " BR | \n",
2714 | " Brazil | \n",
2715 | " 200 | \n",
2716 | " 8515767 | \n",
2717 | " Brasilia | \n",
2718 | "
\n",
2719 | " \n",
2720 | " 1 | \n",
2721 | " RU | \n",
2722 | " Russia | \n",
2723 | " 144 | \n",
2724 | " 17098242 | \n",
2725 | " Moscow | \n",
2726 | "
\n",
2727 | " \n",
2728 | " 2 | \n",
2729 | " IN | \n",
2730 | " India | \n",
2731 | " 1252 | \n",
2732 | " 3287590 | \n",
2733 | " New Delhi | \n",
2734 | "
\n",
2735 | " \n",
2736 | " 3 | \n",
2737 | " CH | \n",
2738 | " China | \n",
2739 | " 1357 | \n",
2740 | " 9596961 | \n",
2741 | " Beijing | \n",
2742 | "
\n",
2743 | " \n",
2744 | " 4 | \n",
2745 | " SA | \n",
2746 | " South Africa | \n",
2747 | " 55 | \n",
2748 | " 1221037 | \n",
2749 | " Pretoria | \n",
2750 | "
\n",
2751 | " \n",
2752 | "
\n",
2753 | "
"
2754 | ],
2755 | "text/plain": [
2756 | " Unnamed: 0 country population area capital\n",
2757 | "0 BR Brazil 200 8515767 Brasilia\n",
2758 | "1 RU Russia 144 17098242 Moscow\n",
2759 | "2 IN India 1252 3287590 New Delhi\n",
2760 | "3 CH China 1357 9596961 Beijing\n",
2761 | "4 SA South Africa 55 1221037 Pretoria"
2762 | ]
2763 | },
2764 | "execution_count": 96,
2765 | "metadata": {},
2766 | "output_type": "execute_result"
2767 | }
2768 | ],
2769 | "source": [
2770 | "import pandas as pd\n",
2771 | "brics = pd.read_csv(\"brics.csv\")\n",
2772 | "brics"
2773 | ]
2774 | },
2775 | {
2776 | "cell_type": "code",
2777 | "execution_count": 97,
2778 | "metadata": {},
2779 | "outputs": [
2780 | {
2781 | "data": {
2782 | "text/html": [
2783 | "