├── .DS_Store ├── .gitignore ├── LICENSE ├── README.md ├── UR_Robot.py ├── color_image.png ├── command_test.sh ├── command_train.sh ├── dataset ├── generate_graspness.py ├── graspnet_dataset.py ├── simplify_dataset.py └── vis_graspness.py ├── depth_image.png ├── doc ├── example_data │ ├── color.png │ ├── demo_result.png │ ├── depth.png │ ├── meta.mat │ └── workspace_mask.png └── teaser.png ├── grasp_real.py ├── infer_vis_grasp.py ├── knn ├── .DS_Store ├── knn_modules.py ├── setup.py └── src │ ├── cpu │ ├── knn_cpu.cpp │ └── vision.h │ ├── cuda │ ├── knn.cu │ └── vision.h │ ├── knn.h │ └── vision.cpp ├── models ├── backbone_resunet14.py ├── graspnet.py ├── loss.py ├── modules.py └── resnet.py ├── pointnet2 ├── .DS_Store ├── _ext_src │ ├── .DS_Store │ ├── include │ │ ├── ball_query.h │ │ ├── cuda_utils.h │ │ ├── cylinder_query.h │ │ ├── group_points.h │ │ ├── interpolate.h │ │ ├── sampling.h │ │ └── utils.h │ └── src │ │ ├── ball_query.cpp │ │ ├── ball_query_gpu.cu │ │ ├── bindings.cpp │ │ ├── cylinder_query.cpp │ │ ├── cylinder_query_gpu.cu │ │ ├── group_points.cpp │ │ ├── group_points_gpu.cu │ │ ├── interpolate.cpp │ │ ├── interpolate_gpu.cu │ │ ├── sampling.cpp │ │ └── sampling_gpu.cu ├── pointnet2_modules.py ├── pointnet2_utils.py ├── pytorch_utils.py └── setup.py ├── real ├── .DS_Store ├── __init__.py ├── calibrate.py ├── cam_pose │ ├── camera_depth_scale.txt │ └── camera_pose.txt ├── camera_depth_scale.txt ├── camera_pose.txt ├── capture.py ├── color_image.png ├── realsenseD415.py ├── realsenseD435.py ├── robotiq_gripper.py ├── test.py ├── testForRealSense.py ├── testGripper.py ├── testReceiveCommand.py └── touch.py ├── requirements (copy).txt ├── requirements.txt ├── test.py ├── train.py └── utils ├── collision_detector.py ├── data_utils.py ├── label_generation.py └── loss_utils.py /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/.DS_Store -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | **/__pycache__/** 2 | *.ipynb 3 | **/.ipynb_checkpoints/** 4 | *.npy 5 | *.npz 6 | **/.vscode/** 7 | **/grasp_label*/** 8 | **/log*/** 9 | **/dump*/** 10 | **/build/** 11 | *.o 12 | *.so 13 | *.egg 14 | **/*.egg-info/** 15 | logs 16 | dataset/tolerance 17 | **/.idea/ -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GRASPNET-BASELINE 2 | SOFTWARE LICENSE AGREEMENT 3 | ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY 4 | 5 | BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. 6 | 7 | This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Shanghai Jiao Tong University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor. 8 | 9 | RESERVATION OF OWNERSHIP AND GRANT OF LICENSE: 10 | Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive, 11 | non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i). 12 | 13 | CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication. 14 | 15 | PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto. 16 | 17 | DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement. 18 | 19 | BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies. 20 | 21 | USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “AlphaPose", "Shanghai Jiao Tong" or any renditions thereof without the prior written permission of Licensor. 22 | 23 | You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software. 24 | 25 | ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void. 26 | 27 | TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below. 28 | 29 | The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement. 30 | 31 | FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement. 32 | 33 | DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS. 34 | 35 | SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement. 36 | 37 | EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage. 38 | 39 | EXPORT REGULATION: Licensee agrees to comply with any and all applicable 40 | U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control. 41 | 42 | SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby. 43 | 44 | NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor. 45 | 46 | ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto. 47 | 48 | 49 | 50 | ************************************************************************ 51 | 52 | THIRD-PARTY SOFTWARE NOTICES AND INFORMATION 53 | 54 | This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise. 55 | 56 | 1. PyTorch (https://github.com/pytorch/pytorch) 57 | 58 | THIRD-PARTY SOFTWARE NOTICES AND INFORMATION 59 | 60 | This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise. 61 | 62 | From PyTorch: 63 | 64 | Copyright (c) 2016- Facebook, Inc (Adam Paszke) 65 | Copyright (c) 2014- Facebook, Inc (Soumith Chintala) 66 | Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) 67 | Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) 68 | Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) 69 | Copyright (c) 2011-2013 NYU (Clement Farabet) 70 | Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) 71 | Copyright (c) 2006 Idiap Research Institute (Samy Bengio) 72 | Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) 73 | 74 | From Caffe2: 75 | 76 | Copyright (c) 2016-present, Facebook Inc. All rights reserved. 77 | 78 | All contributions by Facebook: 79 | Copyright (c) 2016 Facebook Inc. 80 | 81 | All contributions by Google: 82 | Copyright (c) 2015 Google Inc. 83 | All rights reserved. 84 | 85 | All contributions by Yangqing Jia: 86 | Copyright (c) 2015 Yangqing Jia 87 | All rights reserved. 88 | 89 | All contributions by Kakao Brain: 90 | Copyright 2019-2020 Kakao Brain 91 | 92 | All contributions from Caffe: 93 | Copyright(c) 2013, 2014, 2015, the respective contributors 94 | All rights reserved. 95 | 96 | All other contributions: 97 | Copyright(c) 2015, 2016 the respective contributors 98 | All rights reserved. 99 | 100 | Caffe2 uses a copyright model similar to Caffe: each contributor holds 101 | copyright over their contributions to Caffe2. The project versioning records 102 | all such contribution and copyright details. If a contributor wants to further 103 | mark their specific copyright on a particular contribution, they should 104 | indicate their copyright solely in the commit message of the change when it is 105 | committed. 106 | 107 | All rights reserved. 108 | 109 | Redistribution and use in source and binary forms, with or without 110 | modification, are permitted provided that the following conditions are met: 111 | 112 | 1. Redistributions of source code must retain the above copyright 113 | notice, this list of conditions and the following disclaimer. 114 | 115 | 2. Redistributions in binary form must reproduce the above copyright 116 | notice, this list of conditions and the following disclaimer in the 117 | documentation and/or other materials provided with the distribution. 118 | 119 | 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America 120 | and IDIAP Research Institute nor the names of its contributors may be 121 | used to endorse or promote products derived from this software without 122 | specific prior written permission. 123 | 124 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 125 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 126 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 127 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 128 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 129 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 130 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 131 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 132 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 133 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 134 | POSSIBILITY OF SUCH DAMAGE. 135 | 136 | 2. VoteNet (https://github.com/facebookresearch/votenet) 137 | 138 | MIT License 139 | 140 | Copyright (c) Facebook, Inc. and its affiliates. 141 | 142 | Permission is hereby granted, free of charge, to any person obtaining a copy 143 | of this software and associated documentation files (the "Software"), to deal 144 | in the Software without restriction, including without limitation the rights 145 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 146 | copies of the Software, and to permit persons to whom the Software is 147 | furnished to do so, subject to the following conditions: 148 | 149 | The above copyright notice and this permission notice shall be included in all 150 | copies or substantial portions of the Software. 151 | 152 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 153 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 154 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 155 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 156 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 157 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 158 | SOFTWARE. 159 | 160 | ************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION********** 161 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 此机械臂6dof抓取算法是graspness,此版本是在原作者基础上加上自己的的一些配置和操作, 2 | 3 | 主要添加了: 4 | - grasp_real.py:抓取主函数 5 | - real文件夹:存放一些配置文件等 6 | - UR_Robot.py:机械臂运动库 7 | 8 | 以下是原工程的README.md: 9 | --- 10 | 11 | # GraspNet graspness 12 | My implementation of paper "Graspness Discovery in Clutters for Fast and Accurate Grasp Detection" (ICCV 2021). 13 | 14 | [[paper](https://openaccess.thecvf.com/content/ICCV2021/papers/Wang_Graspness_Discovery_in_Clutters_for_Fast_and_Accurate_Grasp_Detection_ICCV_2021_paper.pdf)] 15 | [[dataset](https://graspnet.net/)] 16 | [[API](https://github.com/graspnet/graspnetAPI)] 17 | 18 | 19 | ## Requirements 20 | - Python 3 21 | - PyTorch 1.8 22 | - Open3d 0.8 23 | - TensorBoard 2.3 24 | - NumPy 25 | - SciPy 26 | - Pillow 27 | - tqdm 28 | - MinkowskiEngine 29 | 30 | ## Installation 31 | Get the code. 32 | ```bash 33 | git clone https://github.com/rhett-chen/graspness_implementation.git 34 | cd graspnet-graspness 35 | ``` 36 | Install packages via Pip. 37 | ```bash 38 | pip install -r requirements.txt 39 | ``` 40 | Compile and install pointnet2 operators (code adapted from [votenet](https://github.com/facebookresearch/votenet)). 41 | ```bash 42 | cd pointnet2 43 | python setup.py install 44 | ``` 45 | Compile and install knn operator (code adapted from [pytorch_knn_cuda](https://github.com/chrischoy/pytorch_knn_cuda)). 46 | ```bash 47 | cd knn 48 | python setup.py install 49 | ``` 50 | Install graspnetAPI for evaluation. 51 | ```bash 52 | git clone https://github.com/graspnet/graspnetAPI.git 53 | cd graspnetAPI 54 | pip install . 55 | ``` 56 | For MinkowskiEngine, please refer https://github.com/NVIDIA/MinkowskiEngine 57 | ## Point level Graspness Generation 58 | Point level graspness label are not included in the original dataset, and need additional generation. Make sure you have downloaded the orginal dataset from [GraspNet](https://graspnet.net/). The generation code is in [dataset/generate_graspness.py](dataset/generate_graspness.py). 59 | ```bash 60 | cd dataset 61 | python generate_graspness.py --dataset_root /data3/graspnet --camera_type kinect 62 | ``` 63 | 64 | ## Simplify dataset 65 | original dataset grasp_label files have redundant data, We can significantly save the memory cost. The code is in [dataset/simplify_dataset.py](dataset/simplify_dataset.py) 66 | ```bash 67 | cd dataset 68 | python simplify_dataset.py --dataset_root /data3/graspnet 69 | ``` 70 | 71 | ## Training and Testing 72 | Training examples are shown in [command_train.sh](command_train.sh). `--dataset_root`, `--camera` and `--log_dir` should be specified according to your settings. You can use TensorBoard to visualize training process. 73 | 74 | Testing examples are shown in [command_test.sh](command_test.sh), which contains inference and result evaluation. `--dataset_root`, `--camera`, `--checkpoint_path` and `--dump_dir` should be specified according to your settings. Set `--collision_thresh` to -1 for fast inference. 75 | 76 | If you need the trained weights, you can contact me directly. 77 | 78 | ## Results 79 | Results "In repo" report the model performance of my results without collision detection. 80 | 81 | Evaluation results on Kinect camera: 82 | | | | Seen | | | Similar | | | Novel | | 83 | |:--------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:|:------:|:----------------:|:----------------:| 84 | | | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | __AP__ | AP0.8 | AP0.4 | 85 | | In paper | 61.19 | 71.46 | 56.04 | 47.39 | 56.78 | 40.43 | 19.01 | 23.73 | 10.60 | 86 | | In repo | 61.83 | 73.28 | 54.14 | 51.13 | 62.53 | 41.57 | 19.94 | 24.90 | 11.02 | 87 | 88 | 89 | ## Troubleshooting 90 | If you meet the torch.floor error in MinkowskiEngine, you can simply solve it by changing the source code of MinkowskiEngine: 91 | MinkowskiEngine/utils/quantization.py 262,from discrete_coordinates =_auto_floor(coordinates) to discrete_coordinates = coordinates 92 | ## Acknowledgement 93 | My code is mainly based on Graspnet-baseline https://github.com/graspnet/graspnet-baseline. 94 | -------------------------------------------------------------------------------- /color_image.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/color_image.png -------------------------------------------------------------------------------- /command_test.sh: -------------------------------------------------------------------------------- 1 | CUDA_VISIBLE_DEVICES=4 python test.py --camera kinect --dump_dir logs/log_kn/dump_epoch10 --checkpoint_path logs/log_kn/minkresunet_epoch10.tar --batch_size 1 --dataset_root /data3/graspnet --infer --eval --collision_thresh -1 -------------------------------------------------------------------------------- /command_train.sh: -------------------------------------------------------------------------------- 1 | CUDA_VISIBLE_DEVICES=4 python train.py --camera kinect --log_dir logs/log_kn --batch_size 4 --learning_rate 0.001 --model_name minkuresunet --dataset_root /data3/graspnet -------------------------------------------------------------------------------- /dataset/generate_graspness.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import os 3 | from PIL import Image 4 | import scipy.io as scio 5 | import sys 6 | ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 7 | sys.path.append(ROOT_DIR) 8 | from utils.data_utils import get_workspace_mask, CameraInfo, create_point_cloud_from_depth_image 9 | from knn.knn_modules import knn 10 | import torch 11 | from graspnetAPI.utils.xmlhandler import xmlReader 12 | from graspnetAPI.utils.utils import get_obj_pose_list, transform_points 13 | import argparse 14 | 15 | 16 | parser = argparse.ArgumentParser() 17 | parser.add_argument('--dataset_root', default='/media/randy/299D817A2D97AD94/xxw/graspnet_dataset') 18 | parser.add_argument('--camera_type', default='realsense', help='Camera split [realsense/kinect]') 19 | 20 | 21 | if __name__ == '__main__': 22 | cfgs = parser.parse_args() 23 | dataset_root = cfgs.dataset_root # set dataset root 24 | camera_type = cfgs.camera_type # kinect / realsense 25 | save_path_root = os.path.join(dataset_root, 'graspness') 26 | 27 | num_views, num_angles, num_depths = 300, 12, 4 28 | fric_coef_thresh = 0.8 29 | point_grasp_num = num_views * num_angles * num_depths 30 | for scene_id in range(3,100): 31 | save_path = os.path.join(save_path_root, 'scene_' + str(scene_id).zfill(4), camera_type) 32 | if not os.path.exists(save_path): 33 | os.makedirs(save_path) 34 | labels = np.load( 35 | os.path.join(dataset_root, 'collision_label', 'scene_' + str(scene_id).zfill(4), 'collision_labels.npz')) 36 | collision_dump = [] 37 | for j in range(len(labels)): 38 | collision_dump.append(labels['arr_{}'.format(j)]) 39 | 40 | for ann_id in range(256): 41 | # get scene point cloud 42 | print('generating scene: {} ann: {}'.format(scene_id, ann_id)) 43 | depth = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 44 | camera_type, 'depth', str(ann_id).zfill(4) + '.png'))) 45 | seg = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 46 | camera_type, 'label', str(ann_id).zfill(4) + '.png'))) 47 | meta = scio.loadmat(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 48 | camera_type, 'meta', str(ann_id).zfill(4) + '.mat')) 49 | intrinsic = meta['intrinsic_matrix'] 50 | factor_depth = meta['factor_depth'] 51 | camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], 52 | factor_depth) 53 | cloud = create_point_cloud_from_depth_image(depth, camera, organized=True) 54 | 55 | # remove outlier and get objectness label 56 | depth_mask = (depth > 0) 57 | camera_poses = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 58 | camera_type, 'camera_poses.npy')) 59 | camera_pose = camera_poses[ann_id] 60 | align_mat = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 61 | camera_type, 'cam0_wrt_table.npy')) 62 | trans = np.dot(align_mat, camera_pose) 63 | workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02) 64 | mask = (depth_mask & workspace_mask) 65 | cloud_masked = cloud[mask] 66 | objectness_label = seg[mask] 67 | 68 | # get scene object and grasp info 69 | scene_reader = xmlReader(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4), 70 | camera_type, 'annotations', '%04d.xml' % ann_id)) 71 | pose_vectors = scene_reader.getposevectorlist() 72 | obj_list, pose_list = get_obj_pose_list(camera_pose, pose_vectors) 73 | grasp_labels = {} 74 | for i in obj_list: 75 | file = np.load(os.path.join(dataset_root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3))),allow_pickle=True) 76 | grasp_labels[i] = (file['points'].astype(np.float32), file['offsets'].astype(np.float32), 77 | file['scores'].astype(np.float32)) 78 | 79 | grasp_points = [] 80 | grasp_points_graspness = [] 81 | for i, (obj_idx, trans_) in enumerate(zip(obj_list, pose_list)): 82 | sampled_points, offsets, fric_coefs = grasp_labels[obj_idx] 83 | collision = collision_dump[i] # Npoints * num_views * num_angles * num_depths 84 | num_points = sampled_points.shape[0] 85 | 86 | valid_grasp_mask = ((fric_coefs <= fric_coef_thresh) & (fric_coefs > 0) & ~collision) 87 | valid_grasp_mask = valid_grasp_mask.reshape(num_points, -1) 88 | graspness = np.sum(valid_grasp_mask, axis=1) / point_grasp_num 89 | target_points = transform_points(sampled_points, trans_) 90 | target_points = transform_points(target_points, np.linalg.inv(camera_pose)) # fix bug 91 | grasp_points.append(target_points) 92 | grasp_points_graspness.append(graspness.reshape(num_points, 1)) 93 | grasp_points = np.vstack(grasp_points) 94 | grasp_points_graspness = np.vstack(grasp_points_graspness) 95 | 96 | grasp_points = torch.from_numpy(grasp_points).cuda() 97 | grasp_points_graspness = torch.from_numpy(grasp_points_graspness).cuda() 98 | grasp_points = grasp_points.transpose(0, 1).contiguous().unsqueeze(0) 99 | 100 | masked_points_num = cloud_masked.shape[0] 101 | cloud_masked_graspness = np.zeros((masked_points_num, 1)) 102 | part_num = int(masked_points_num / 10000) 103 | for i in range(1, part_num + 2): # lack of cuda memory 104 | if i == part_num + 1: 105 | cloud_masked_partial = cloud_masked[10000 * part_num:] 106 | if len(cloud_masked_partial) == 0: 107 | break 108 | else: 109 | cloud_masked_partial = cloud_masked[10000 * (i - 1):(i * 10000)] 110 | cloud_masked_partial = torch.from_numpy(cloud_masked_partial).cuda() 111 | cloud_masked_partial = cloud_masked_partial.transpose(0, 1).contiguous().unsqueeze(0) 112 | nn_inds = knn(grasp_points, cloud_masked_partial, k=1).squeeze() - 1 113 | cloud_masked_graspness[10000 * (i - 1):(i * 10000)] = torch.index_select( 114 | grasp_points_graspness, 0, nn_inds).cpu().numpy() 115 | 116 | max_graspness = np.max(cloud_masked_graspness) 117 | min_graspness = np.min(cloud_masked_graspness) 118 | cloud_masked_graspness = (cloud_masked_graspness - min_graspness) / (max_graspness - min_graspness) 119 | 120 | np.save(os.path.join(save_path, str(ann_id).zfill(4) + '.npy'), cloud_masked_graspness) 121 | -------------------------------------------------------------------------------- /dataset/simplify_dataset.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import os 3 | import argparse 4 | 5 | 6 | parser = argparse.ArgumentParser() 7 | parser.add_argument('--dataset_root', default='/media/randy/299D817A2D97AD94/xxw/graspnet_dataset') 8 | 9 | 10 | def simplify_grasp_labels(root, save_path): 11 | """ 12 | original dataset grasp_label files have redundant data, We can significantly save the memory cost 13 | """ 14 | obj_names = list(range(88)) 15 | if not os.path.exists(save_path): 16 | os.makedirs(save_path) 17 | for i in obj_names: 18 | print('\nsimplifying object {}:'.format(i)) 19 | label = np.load(os.path.join(root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3)))) 20 | point_num = len(label['points']) 21 | print('original shape: ', label['points'].shape, label['offsets'].shape, label['scores'].shape) 22 | if point_num > 4820: 23 | idxs = np.random.choice(point_num, 4820, False) 24 | points = label['points'][idxs] 25 | offsets = label['offsets'][idxs] 26 | scores = label['scores'][idxs] 27 | print('Warning!!! down sample object {}'.format(i)) 28 | else: 29 | points = label['points'] 30 | scores = label['scores'] 31 | offsets = label['offsets'] 32 | width = offsets[:, :, :, :, 2] 33 | print('after simplify, offset shape: ', points.shape, scores.shape, width.shape) 34 | np.savez(os.path.join(save_path, '{}_labels.npz'.format(str(i).zfill(3))), 35 | points=points, scores=scores, width=width) 36 | 37 | 38 | if __name__ == '__main__': 39 | cfgs = parser.parse_args() 40 | root = cfgs.dataset_root # set root and save path 41 | save_path = os.path.join(root, 'grasp_label_simplified') 42 | simplify_grasp_labels(root, save_path) 43 | 44 | -------------------------------------------------------------------------------- /dataset/vis_graspness.py: -------------------------------------------------------------------------------- 1 | import open3d as o3d 2 | import scipy.io as scio 3 | from PIL import Image 4 | import os 5 | import numpy as np 6 | import sys 7 | ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 8 | sys.path.append(ROOT_DIR) 9 | from utils.data_utils import get_workspace_mask, CameraInfo, create_point_cloud_from_depth_image 10 | 11 | data_path = '/media/bot/980A6F5E0A6F38801/datasets/graspnet/' 12 | scene_id = 'scene_0060' 13 | ann_id = '0000' 14 | camera_type = 'realsense' 15 | color = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'rgb', ann_id + '.png')), dtype=np.float32) / 255.0 16 | depth = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'depth', ann_id + '.png'))) 17 | seg = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'label', ann_id + '.png'))) 18 | meta = scio.loadmat(os.path.join(data_path, 'scenes', scene_id, camera_type, 'meta', ann_id + '.mat')) 19 | intrinsic = meta['intrinsic_matrix'] 20 | factor_depth = meta['factor_depth'] 21 | camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth) 22 | point_cloud = create_point_cloud_from_depth_image(depth, camera, organized=True) 23 | depth_mask = (depth > 0) 24 | camera_poses = np.load(os.path.join(data_path, 'scenes', scene_id, camera_type, 'camera_poses.npy')) 25 | align_mat = np.load(os.path.join(data_path, 'scenes', scene_id, camera_type, 'cam0_wrt_table.npy')) 26 | trans = np.dot(align_mat, camera_poses[int(ann_id)]) 27 | workspace_mask = get_workspace_mask(point_cloud, seg, trans=trans, organized=True, outlier=0.02) 28 | mask = (depth_mask & workspace_mask) 29 | point_cloud = point_cloud[mask] 30 | color = color[mask] 31 | seg = seg[mask] 32 | 33 | graspness_full = np.load(os.path.join(data_path, 'graspness', scene_id, camera_type, ann_id + '.npy')).squeeze() 34 | graspness_full[seg == 0] = 0. 35 | print('graspness full scene: ', graspness_full.shape, (graspness_full > 0.1).sum()) 36 | color[graspness_full > 0.1] = [0., 1., 0.] 37 | 38 | 39 | cloud = o3d.geometry.PointCloud() 40 | cloud.points = o3d.utility.Vector3dVector(point_cloud.astype(np.float32)) 41 | cloud.colors = o3d.utility.Vector3dVector(color.astype(np.float32)) 42 | o3d.visualization.draw_geometries([cloud]) 43 | -------------------------------------------------------------------------------- /depth_image.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/depth_image.png -------------------------------------------------------------------------------- /doc/example_data/color.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/example_data/color.png -------------------------------------------------------------------------------- /doc/example_data/demo_result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/example_data/demo_result.png -------------------------------------------------------------------------------- /doc/example_data/depth.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/example_data/depth.png -------------------------------------------------------------------------------- /doc/example_data/meta.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/example_data/meta.mat -------------------------------------------------------------------------------- /doc/example_data/workspace_mask.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/example_data/workspace_mask.png -------------------------------------------------------------------------------- /doc/teaser.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/doc/teaser.png -------------------------------------------------------------------------------- /grasp_real.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | import numpy as np 4 | import argparse 5 | from PIL import Image 6 | import time 7 | import scipy.io as scio 8 | import torch 9 | import open3d as o3d 10 | from graspnetAPI.graspnet_eval import GraspGroup 11 | 12 | ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) 13 | sys.path.append(ROOT_DIR) 14 | sys.path.append(os.path.join(ROOT_DIR, 'utils')) 15 | 16 | from models.graspnet import GraspNet, pred_decode 17 | from dataset.graspnet_dataset import minkowski_collate_fn 18 | from collision_detector import ModelFreeCollisionDetector 19 | from data_utils import CameraInfo, create_point_cloud_from_depth_image, get_workspace_mask 20 | from UR_Robot import UR_Robot 21 | 22 | parser = argparse.ArgumentParser() 23 | parser.add_argument('--checkpoint_path', default='np15000_graspness1e-1_bs4_lr1e-3_viewres_dataaug_fps_14D_epoch10.tar') 24 | #default='realsense_1120_epoch10.tar') 25 | 26 | parser.add_argument('--seed_feat_dim', default=512, type=int, help='Point wise feature dim') 27 | parser.add_argument('--camera', default='realsense', help='Camera split [realsense/kinect]') 28 | parser.add_argument('--num_point', type=int, default=15000, help='Point Number [default: 15000]') 29 | parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during inference [default: 1]') 30 | parser.add_argument('--voxel_size', type=float, default=0.005, help='Voxel Size for sparse convolution') 31 | parser.add_argument('--collision_thresh', type=float, default=0.01, 32 | help='Collision Threshold in collision detection [default: 0.01]') 33 | parser.add_argument('--voxel_size_cd', type=float, default=0.01, help='Voxel Size for collision detection') 34 | cfgs = parser.parse_args() 35 | 36 | def data_process(ur_robot): 37 | # load real data 38 | intrinsic = ur_robot.cam_intrinsics 39 | factor_depth = 1.0 / ur_robot.cam_depth_scale 40 | 41 | rgb, depth = ur_robot.get_camera_data() 42 | color = rgb / 255 43 | color = color[:, :, ::-1] 44 | depth = depth.astype(np.float32) 45 | # load data 46 | #root='/media/randy/299D817A2D97AD94/xxw/graspness' 47 | #color = np.array(Image.open(os.path.join(root, 'scenes', 'scene_0000', 'realsense', 'rgb', '0000' + '.png'))) 48 | #depth = np.array(Image.open(os.path.join(root, 'scenes', 'scene_0000', 'realsense', 'depth', '0000'+ '.png'))) 49 | #color = np.array(Image.open(os.path.join(root,'color_image.png')), dtype=np.float32) 50 | #depth = np.array(Image.open(os.path.join(root,'depth_image.png')), dtype=np.float32) 51 | workspace_mask = np.array(Image.open(os.path.join('doc/example_data', 'workspace_mask.png'))) #[720,1280][241false,978false] 52 | camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], 53 | factor_depth) 54 | # compute workspace limits 55 | x_left_up,y_left_up = 0+25,242+25 56 | x_right_bottom,y_right_bottom = 719-25,977-25 57 | point_z = depth[x_left_up,y_left_up] / camera.scale 58 | point_x = (y_left_up - camera.cx) * point_z / camera.fx 59 | point_y = (x_left_up - camera.cy) * point_z / camera.fy 60 | point_left_up = (point_x,point_y,point_z) 61 | point_z = depth[x_right_bottom,y_right_bottom] / camera.scale 62 | point_x = (y_right_bottom - camera.cx) * point_z / camera.fx 63 | point_y = (x_right_bottom - camera.cy) * point_z / camera.fy 64 | point_right_bottom = (point_x, point_y, point_z) 65 | 66 | # generate cloud 67 | cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)#720,1080,3 68 | 69 | # get valid points 70 | depth_mask = (depth > 0) 71 | # camera_poses = np.load(os.path.join(root, 'scenes', scene_id, camera_type, 'camera_poses.npy')) 72 | # align_mat = np.load(os.path.join(root, 'scenes', scene_id, camera_type, 'cam0_wrt_table.npy')) 73 | # trans = np.dot(align_mat, camera_poses[int(index)]) 74 | # workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02) 75 | mask = (workspace_mask & depth_mask) 76 | 77 | cloud_masked = cloud[mask]#51225,3 78 | color_masked = color[mask] 79 | # sample points random 80 | if len(cloud_masked) >= cfgs.num_point: 81 | idxs = np.random.choice(len(cloud_masked), cfgs.num_point, replace=False) 82 | else: 83 | idxs1 = np.arange(len(cloud_masked)) 84 | idxs2 = np.random.choice(len(cloud_masked), cfgs.num_point - len(cloud_masked), replace=True) 85 | idxs = np.concatenate([idxs1, idxs2], axis=0) 86 | cloud_sampled = cloud_masked[idxs]#15000,3 87 | color_sampled = color_masked[idxs] 88 | 89 | cloud = o3d.geometry.PointCloud() 90 | cloud.points = o3d.utility.Vector3dVector(cloud_masked.astype(np.float32)) 91 | cloud.colors = o3d.utility.Vector3dVector(color_masked.astype(np.float32)) #51w points 92 | 93 | ret_dict = {'point_clouds': cloud_sampled.astype(np.float32), 94 | 'coors': cloud_sampled.astype(np.float32) / cfgs.voxel_size, 95 | 'feats': np.ones_like(cloud_sampled).astype(np.float32), 96 | } 97 | return ret_dict,cloud,point_left_up,point_right_bottom 98 | 99 | 100 | def grasp(data_input,cloud_,point_left_up,point_right_bottom): 101 | batch_data = minkowski_collate_fn([data_input]) 102 | net = GraspNet(seed_feat_dim=cfgs.seed_feat_dim, is_training=False) 103 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 104 | net.to(device) 105 | # Load checkpoint 106 | checkpoint = torch.load(cfgs.checkpoint_path) 107 | net.load_state_dict(checkpoint['model_state_dict']) 108 | start_epoch = checkpoint['epoch'] 109 | print("-> loaded checkpoint %s (epoch: %d)" % (cfgs.checkpoint_path, start_epoch)) 110 | 111 | net.eval() 112 | 113 | for key in batch_data: 114 | if 'list' in key: 115 | for i in range(len(batch_data[key])): 116 | for j in range(len(batch_data[key][i])): 117 | batch_data[key][i][j] = batch_data[key][i][j].to(device) 118 | else: 119 | batch_data[key] = batch_data[key].to(device) 120 | # Forward pass 121 | with torch.no_grad(): 122 | end_points = net(batch_data) 123 | grasp_preds = pred_decode(end_points)#1024,17 124 | preds = grasp_preds[0].detach().cpu().numpy() 125 | gg = GraspGroup(preds) 126 | 127 | # collision detection 128 | if cfgs.collision_thresh > 0: 129 | cloud = data_input['point_clouds'] 130 | mfcdetector = ModelFreeCollisionDetector(cloud, voxel_size=cfgs.voxel_size_cd) 131 | collision_mask = mfcdetector.detect(gg, approach_dist=0.05, collision_thresh=cfgs.collision_thresh) 132 | gg = gg[~collision_mask] 133 | if len(gg)==0: 134 | print("detect nothing or have no grasp pose.") 135 | return False 136 | gg.nms() 137 | gg.sort_by_score() 138 | if len(gg)>50: 139 | gg = gg[:50] 140 | 141 | # grasp pose is in workspace? 142 | for i in range(len(gg)-1,-1,-1): 143 | if gg[i].translation[0]< point_left_up[0]+0.02 or gg[i].translation[0] >point_right_bottom[0]-0.02\ 144 | or gg[i].translation[1]point_right_bottom[1]-0.02: 145 | gg.remove(i) 146 | 147 | if len(gg)==0: 148 | print("detect nothing or have no grasp pose ") 149 | return False 150 | gg.sort_by_score() 151 | #grippers = gg.to_open3d_geometry_list() 152 | #grippers[0].paint_uniform_color([0, 1, 0]) # the best score grasp pose's color is green 153 | #o3d.visualization.draw_geometries([cloud_, *grippers]) 154 | 155 | 156 | # grasp pose transform 157 | cam2robot = ur_robot.cam_pose 158 | R_grasp2camera, t_grasp2camera = gg[0].rotation_matrix, gg[0].translation 159 | rot_y_0point5pi = np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]]) 160 | t_grasp2camera.shape = (1, 3) 161 | grasp2camera = np.concatenate( 162 | (np.concatenate((R_grasp2camera, t_grasp2camera.T), axis=1), np.array([[0, 0, 0, 1]])), axis=0) 163 | # print(f"primitive grasp2camera:{ur_robot.R2rpy(R_grasp2camera)*57.3}") 164 | grasp2robot = np.dot(cam2robot, grasp2camera) 165 | 166 | t_grasp2robot = grasp2robot[0:3, 3] 167 | R_grasp2robot = grasp2robot[0:3, 0:3] 168 | R_grasp2robot = np.dot(R_grasp2robot, rot_y_0point5pi) 169 | rpy_grasp2robot = ur_robot.R2rpy(R_grasp2robot) 170 | print(f"t_grasp2robot:{t_grasp2robot}") 171 | print(f"rpy_grasp2robot:{rpy_grasp2robot * 57.3}") 172 | width = gg[0].width * 10 + 0.05 173 | if width > 0.85: 174 | width = 0.85 175 | elif width < 0.4: 176 | width = 0.4 177 | # real grasp 178 | t_grasp2robot = t_grasp2robot.tolist() 179 | rpy_grasp2robot = rpy_grasp2robot.tolist() 180 | success = True 181 | success = ur_robot.grasp_ros(t_grasp2robot, rpy_grasp2robot, open_size=width) # 6-dof 182 | return success 183 | 184 | 185 | 186 | if __name__ == '__main__': 187 | 188 | ur_robot = UR_Robot(tcp_host_ip="192.168.50.100", tcp_port=30003, workspace_limits=None, is_use_robotiq85=True, 189 | is_use_camera=True) 190 | 191 | grasp_result = [] 192 | iter = 0 193 | while True: 194 | #for i in range(50): 195 | data_dict, cloud, point_left_up, point_right_bottom = data_process(ur_robot) 196 | grasp_success = grasp(data_dict, cloud, point_left_up, point_right_bottom) 197 | if grasp_success: 198 | grasp_result.append(True) 199 | else: 200 | grasp_result.append(False) 201 | # end 202 | if (iter >= 2) and (not grasp_result[iter]) and (not grasp_result[iter - 1]) and (not grasp_result[iter - 2]): 203 | print('grasp_result_array:', grasp_result) 204 | print("finish...") 205 | break 206 | iter += 1 207 | -------------------------------------------------------------------------------- /infer_vis_grasp.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | import numpy as np 4 | import argparse 5 | from PIL import Image 6 | import time 7 | import scipy.io as scio 8 | import torch 9 | import open3d as o3d 10 | from graspnetAPI.graspnet_eval import GraspGroup 11 | 12 | ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) 13 | sys.path.append(ROOT_DIR) 14 | sys.path.append(os.path.join(ROOT_DIR, 'utils')) 15 | from models.graspnet import GraspNet, pred_decode 16 | from dataset.graspnet_dataset import minkowski_collate_fn 17 | from collision_detector import ModelFreeCollisionDetector 18 | from data_utils import CameraInfo, create_point_cloud_from_depth_image, get_workspace_mask 19 | 20 | parser = argparse.ArgumentParser() 21 | parser.add_argument('--dataset_root', default='/media/randy/299D817A2D97AD94/xxw/graspnet_dataset') 22 | parser.add_argument('--checkpoint_path', default='np15000_graspness1e-1_bs4_lr1e-3_viewres_dataaug_fps_14D_epoch10.tar') 23 | parser.add_argument('--dump_dir', help='Dump dir to save outputs', default='/logs') 24 | parser.add_argument('--seed_feat_dim', default=512, type=int, help='Point wise feature dim') 25 | parser.add_argument('--camera', default='realsense', help='Camera split [realsense/kinect]') 26 | parser.add_argument('--num_point', type=int, default=15000, help='Point Number [default: 15000]') 27 | parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during inference [default: 1]') 28 | parser.add_argument('--voxel_size', type=float, default=0.005, help='Voxel Size for sparse convolution') 29 | parser.add_argument('--collision_thresh', type=float, default=-1, 30 | help='Collision Threshold in collision detection [default: 0.01]') 31 | parser.add_argument('--voxel_size_cd', type=float, default=0.01, help='Voxel Size for collision detection') 32 | parser.add_argument('--infer', action='store_true', default=True) 33 | parser.add_argument('--vis', action='store_true', default=False) 34 | parser.add_argument('--scene', type=str, default='0187') 35 | parser.add_argument('--index', type=str, default='0000') 36 | cfgs = parser.parse_args() 37 | 38 | # ------------------------------------------------------------------------- GLOBAL CONFIG BEG 39 | # if not os.path.exists(cfgs.dump_dir): 40 | # os.mkdir(cfgs.dump_dir) 41 | 42 | 43 | def data_process(): 44 | root = cfgs.dataset_root 45 | camera_type = cfgs.camera 46 | 47 | color = np.array(Image.open(os.path.join(root, 'scenes', scene_id, camera_type, 'rgb', index + '.png'))) 48 | depth = np.array(Image.open(os.path.join(root, 'scenes', scene_id, camera_type, 'depth', index + '.png'))) 49 | seg = np.array(Image.open(os.path.join(root, 'scenes', scene_id, camera_type, 'label', index + '.png'))) 50 | meta = scio.loadmat(os.path.join(root, 'scenes', scene_id, camera_type, 'meta', index + '.mat')) 51 | try: 52 | intrinsic = meta['intrinsic_matrix'] 53 | factor_depth = meta['factor_depth'] 54 | except Exception as e: 55 | print(repr(e)) 56 | camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], 57 | factor_depth) 58 | # generate cloud 59 | cloud = create_point_cloud_from_depth_image(depth, camera, organized=True) 60 | 61 | # get valid points 62 | depth_mask = (depth > 0) 63 | camera_poses = np.load(os.path.join(root, 'scenes', scene_id, camera_type, 'camera_poses.npy')) 64 | align_mat = np.load(os.path.join(root, 'scenes', scene_id, camera_type, 'cam0_wrt_table.npy')) 65 | trans = np.dot(align_mat, camera_poses[int(index)]) 66 | workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02) 67 | mask = (depth_mask & workspace_mask) 68 | 69 | cloud_masked = cloud[mask] 70 | color_masked = color[mask] 71 | 72 | # sample points random 73 | if len(cloud_masked) >= cfgs.num_point: 74 | idxs = np.random.choice(len(cloud_masked), cfgs.num_point, replace=False) 75 | else: 76 | idxs1 = np.arange(len(cloud_masked)) 77 | idxs2 = np.random.choice(len(cloud_masked), cfgs.num_point - len(cloud_masked), replace=True) 78 | idxs = np.concatenate([idxs1, idxs2], axis=0) 79 | cloud_sampled = cloud_masked[idxs] 80 | 81 | ret_dict = {'point_clouds': cloud_sampled.astype(np.float32), 82 | 'coors': cloud_sampled.astype(np.float32) / cfgs.voxel_size, 83 | 'feats': np.ones_like(cloud_sampled).astype(np.float32), 84 | } 85 | return ret_dict 86 | 87 | 88 | # Init datasets and dataloaders 89 | def my_worker_init_fn(worker_id): 90 | np.random.seed(np.random.get_state()[1][0] + worker_id) 91 | pass 92 | 93 | 94 | def inference(data_input): 95 | batch_data = minkowski_collate_fn([data_input]) 96 | net = GraspNet(seed_feat_dim=cfgs.seed_feat_dim, is_training=False) 97 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 98 | net.to(device) 99 | # Load checkpoint 100 | checkpoint = torch.load(cfgs.checkpoint_path) 101 | net.load_state_dict(checkpoint['model_state_dict']) 102 | start_epoch = checkpoint['epoch'] 103 | print("-> loaded checkpoint %s (epoch: %d)" % (cfgs.checkpoint_path, start_epoch)) 104 | 105 | net.eval() 106 | tic = time.time() 107 | 108 | for key in batch_data: 109 | if 'list' in key: 110 | for i in range(len(batch_data[key])): 111 | for j in range(len(batch_data[key][i])): 112 | batch_data[key][i][j] = batch_data[key][i][j].to(device) 113 | else: 114 | batch_data[key] = batch_data[key].to(device) 115 | # Forward pass 116 | with torch.no_grad(): 117 | end_points = net(batch_data) 118 | grasp_preds = pred_decode(end_points) 119 | 120 | preds = grasp_preds[0].detach().cpu().numpy() 121 | gg = GraspGroup(preds) 122 | # collision detection 123 | if cfgs.collision_thresh > 0: 124 | cloud = data_input['point_clouds'] 125 | mfcdetector = ModelFreeCollisionDetector(cloud, voxel_size=cfgs.voxel_size_cd) 126 | collision_mask = mfcdetector.detect(gg, approach_dist=0.05, collision_thresh=cfgs.collision_thresh) 127 | gg = gg[~collision_mask] 128 | 129 | gg.nms() 130 | gg.sort_by_score() 131 | gg = gg[:20] 132 | grippers = gg.to_open3d_geometry_list() 133 | grippers[0].paint_uniform_color([0, 1, 0]) # the best score grasp pose's color is green 134 | pc = data_dict['point_clouds'] 135 | cloud = o3d.geometry.PointCloud() 136 | cloud.points = o3d.utility.Vector3dVector(pc.astype(np.float32)) 137 | o3d.visualization.draw_geometries([cloud, *grippers]) 138 | 139 | # save grasps 140 | # save_dir = os.path.join(cfgs.dump_dir, scene_id, cfgs.camera) 141 | # save_path = os.path.join(save_dir, cfgs.index + '.npy') 142 | # if not os.path.exists(save_dir): 143 | # os.makedirs(save_dir) 144 | # gg.save_npy(save_path) 145 | # 146 | # toc = time.time() 147 | # print('inference time: %fs' % (toc - tic)) 148 | 149 | 150 | if __name__ == '__main__': 151 | scene_id = 'scene_' + cfgs.scene 152 | index = cfgs.index 153 | data_dict = data_process() 154 | 155 | if cfgs.infer: 156 | inference(data_dict) 157 | # if cfgs.vis: 158 | # pc = data_dict['point_clouds'] 159 | # gg = np.load(os.path.join(cfgs.dump_dir, scene_id, cfgs.camera, cfgs.index + '.npy')) 160 | # gg = GraspGroup(gg) 161 | # gg = gg.nms() 162 | # gg = gg.sort_by_score() 163 | # if gg.__len__() > 30: 164 | # gg = gg[:30] 165 | # grippers = gg.to_open3d_geometry_list() 166 | # cloud = o3d.geometry.PointCloud() 167 | # cloud.points = o3d.utility.Vector3dVector(pc.astype(np.float32)) 168 | # o3d.visualization.draw_geometries([cloud, *grippers]) 169 | -------------------------------------------------------------------------------- /knn/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/knn/.DS_Store -------------------------------------------------------------------------------- /knn/knn_modules.py: -------------------------------------------------------------------------------- 1 | import unittest 2 | import gc 3 | import operator as op 4 | import functools 5 | import torch 6 | from torch.autograd import Variable, Function 7 | from knn_pytorch import knn_pytorch 8 | # import knn_pytorch 9 | def knn(ref, query, k=1): 10 | """ Compute k nearest neighbors for each query point. 11 | """ 12 | device = ref.device 13 | ref = ref.float().to(device) 14 | query = query.float().to(device) 15 | inds = torch.empty(query.shape[0], k, query.shape[2]).long().to(device) 16 | knn_pytorch.knn(ref, query, inds) 17 | return inds 18 | -------------------------------------------------------------------------------- /knn/setup.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import glob 4 | import os 5 | 6 | import torch 7 | from setuptools import find_packages 8 | from setuptools import setup 9 | from torch.utils.cpp_extension import CUDA_HOME 10 | from torch.utils.cpp_extension import CppExtension 11 | from torch.utils.cpp_extension import CUDAExtension 12 | 13 | requirements = ["torch", "torchvision"] 14 | 15 | 16 | def get_extensions(): 17 | this_dir = os.path.dirname(os.path.abspath(__file__)) 18 | extensions_dir = os.path.join(this_dir, "src") 19 | 20 | main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) 21 | source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) 22 | source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) 23 | 24 | sources = main_file + source_cpu 25 | extension = CppExtension 26 | 27 | extra_compile_args = {"cxx": []} 28 | define_macros = [] 29 | 30 | if torch.cuda.is_available() and CUDA_HOME is not None: 31 | extension = CUDAExtension 32 | sources += source_cuda 33 | define_macros += [("WITH_CUDA", None)] 34 | extra_compile_args["nvcc"] = [ 35 | "-DCUDA_HAS_FP16=1", 36 | "-D__CUDA_NO_HALF_OPERATORS__", 37 | "-D__CUDA_NO_HALF_CONVERSIONS__", 38 | "-D__CUDA_NO_HALF2_OPERATORS__", 39 | ] 40 | 41 | sources = [os.path.join(extensions_dir, s) for s in sources] 42 | 43 | include_dirs = [extensions_dir] 44 | 45 | ext_modules = [ 46 | extension( 47 | "knn_pytorch.knn_pytorch", 48 | sources, 49 | include_dirs=include_dirs, 50 | define_macros=define_macros, 51 | extra_compile_args=extra_compile_args, 52 | ) 53 | ] 54 | 55 | return ext_modules 56 | 57 | 58 | setup( 59 | name="knn_pytorch", 60 | version="0.1", 61 | author="foolyc", 62 | url="https://github.com/foolyc/torchKNN", 63 | description="KNN implement in Pytorch 1.0 including both cpu version and gpu version", 64 | ext_modules=get_extensions(), 65 | cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, 66 | ) 67 | -------------------------------------------------------------------------------- /knn/src/cpu/knn_cpu.cpp: -------------------------------------------------------------------------------- 1 | #include "cpu/vision.h" 2 | 3 | 4 | void knn_cpu(float* ref_dev, int ref_width, float* query_dev, int query_width, 5 | int height, int k, float* dist_dev, long* ind_dev, long* ind_buf) 6 | { 7 | // Compute all the distances 8 | for(int query_idx = 0;query_idx dist_dev[query_idx * ref_width + j + 1]) 31 | { 32 | temp_value = dist_dev[query_idx * ref_width + j]; 33 | dist_dev[query_idx * ref_width + j] = dist_dev[query_idx * ref_width + j + 1]; 34 | dist_dev[query_idx * ref_width + j + 1] = temp_value; 35 | temp_idx = ind_buf[j]; 36 | ind_buf[j] = ind_buf[j + 1]; 37 | ind_buf[j + 1] = temp_idx; 38 | } 39 | 40 | } 41 | 42 | for(int i = 0;i < k;i++) 43 | ind_dev[query_idx + i * query_width] = ind_buf[i]; 44 | #if DEBUG 45 | for(int i = 0;i < ref_width;i++) 46 | printf("%d, ", ind_buf[i]); 47 | printf("\n"); 48 | #endif 49 | 50 | } 51 | 52 | 53 | 54 | 55 | 56 | } -------------------------------------------------------------------------------- /knn/src/cpu/vision.h: -------------------------------------------------------------------------------- 1 | #pragma once 2 | #include 3 | 4 | void knn_cpu(float* ref_dev, int ref_width, 5 | float* query_dev, int query_width, 6 | int height, int k, float* dist_dev, long* ind_dev, long* ind_buf); -------------------------------------------------------------------------------- /knn/src/cuda/knn.cu: -------------------------------------------------------------------------------- 1 | /** Modifed version of knn-CUDA from https://github.com/vincentfpgarcia/kNN-CUDA 2 | * The modifications are 3 | * removed texture memory usage 4 | * removed split query KNN computation 5 | * added feature extraction with bilinear interpolation 6 | * 7 | * Last modified by Christopher B. Choy 12/23/2016 8 | */ 9 | 10 | // Includes 11 | #include 12 | #include "cuda.h" 13 | 14 | #define IDX2D(i, j, dj) (dj * i + j) 15 | #define IDX3D(i, j, k, dj, dk) (IDX2D(IDX2D(i, j, dj), k, dk)) 16 | 17 | #define BLOCK 512 18 | #define MAX_STREAMS 512 19 | 20 | // Constants used by the program 21 | #define BLOCK_DIM 16 22 | #define DEBUG 0 23 | 24 | 25 | /** 26 | * Computes the distance between two matrix A (reference points) and 27 | * B (query points) containing respectively wA and wB points. 28 | * 29 | * @param A pointer on the matrix A 30 | * @param wA width of the matrix A = number of points in A 31 | * @param B pointer on the matrix B 32 | * @param wB width of the matrix B = number of points in B 33 | * @param dim dimension of points = height of matrices A and B 34 | * @param AB pointer on the matrix containing the wA*wB distances computed 35 | */ 36 | __global__ void cuComputeDistanceGlobal( float* A, int wA, 37 | float* B, int wB, int dim, float* AB){ 38 | 39 | // Declaration of the shared memory arrays As and Bs used to store the sub-matrix of A and B 40 | __shared__ float shared_A[BLOCK_DIM][BLOCK_DIM]; 41 | __shared__ float shared_B[BLOCK_DIM][BLOCK_DIM]; 42 | 43 | 44 | // Sub-matrix of A (begin, step, end) and Sub-matrix of B (begin, step) 45 | __shared__ int begin_A; 46 | __shared__ int begin_B; 47 | __shared__ int step_A; 48 | __shared__ int step_B; 49 | __shared__ int end_A; 50 | 51 | // Thread index 52 | int tx = threadIdx.x; 53 | int ty = threadIdx.y; 54 | 55 | // Other variables 56 | float tmp; 57 | float ssd = 0; 58 | 59 | // Loop parameters 60 | begin_A = BLOCK_DIM * blockIdx.y; 61 | begin_B = BLOCK_DIM * blockIdx.x; 62 | step_A = BLOCK_DIM * wA; 63 | step_B = BLOCK_DIM * wB; 64 | end_A = begin_A + (dim-1) * wA; 65 | 66 | // Conditions 67 | int cond0 = (begin_A + tx < wA); // used to write in shared memory 68 | int cond1 = (begin_B + tx < wB); // used to write in shared memory & to computations and to write in output matrix 69 | int cond2 = (begin_A + ty < wA); // used to computations and to write in output matrix 70 | 71 | // Loop over all the sub-matrices of A and B required to compute the block sub-matrix 72 | for (int a = begin_A, b = begin_B; a <= end_A; a += step_A, b += step_B) { 73 | // Load the matrices from device memory to shared memory; each thread loads one element of each matrix 74 | if (a/wA + ty < dim){ 75 | shared_A[ty][tx] = (cond0)? A[a + wA * ty + tx] : 0; 76 | shared_B[ty][tx] = (cond1)? B[b + wB * ty + tx] : 0; 77 | } 78 | else{ 79 | shared_A[ty][tx] = 0; 80 | shared_B[ty][tx] = 0; 81 | } 82 | 83 | // Synchronize to make sure the matrices are loaded 84 | __syncthreads(); 85 | 86 | // Compute the difference between the two matrixes; each thread computes one element of the block sub-matrix 87 | if (cond2 && cond1){ 88 | for (int k = 0; k < BLOCK_DIM; ++k){ 89 | tmp = shared_A[k][ty] - shared_B[k][tx]; 90 | ssd += tmp*tmp; 91 | } 92 | } 93 | 94 | // Synchronize to make sure that the preceding computation is done before loading two new sub-matrices of A and B in the next iteration 95 | __syncthreads(); 96 | } 97 | 98 | // Write the block sub-matrix to device memory; each thread writes one element 99 | if (cond2 && cond1) 100 | AB[(begin_A + ty) * wB + begin_B + tx] = ssd; 101 | } 102 | 103 | 104 | /** 105 | * Gathers k-th smallest distances for each column of the distance matrix in the top. 106 | * 107 | * @param dist distance matrix 108 | * @param ind index matrix 109 | * @param width width of the distance matrix and of the index matrix 110 | * @param height height of the distance matrix and of the index matrix 111 | * @param k number of neighbors to consider 112 | */ 113 | __global__ void cuInsertionSort(float *dist, long *ind, int width, int height, int k){ 114 | 115 | // Variables 116 | int l, i, j; 117 | float *p_dist; 118 | long *p_ind; 119 | float curr_dist, max_dist; 120 | long curr_row, max_row; 121 | unsigned int xIndex = blockIdx.x * blockDim.x + threadIdx.x; 122 | 123 | if (xIndexcurr_dist){ 138 | i=a; 139 | break; 140 | } 141 | } 142 | for (j=l; j>i; j--){ 143 | p_dist[j*width] = p_dist[(j-1)*width]; 144 | p_ind[j*width] = p_ind[(j-1)*width]; 145 | } 146 | p_dist[i*width] = curr_dist; 147 | p_ind[i*width] = l+1; 148 | } else { 149 | p_ind[l*width] = l+1; 150 | } 151 | max_dist = p_dist[curr_row]; 152 | } 153 | 154 | // Part 2 : insert element in the k-th first lines 155 | max_row = (k-1)*width; 156 | for (l=k; lcurr_dist){ 162 | i=a; 163 | break; 164 | } 165 | } 166 | for (j=k-1; j>i; j--){ 167 | p_dist[j*width] = p_dist[(j-1)*width]; 168 | p_ind[j*width] = p_ind[(j-1)*width]; 169 | } 170 | p_dist[i*width] = curr_dist; 171 | p_ind[i*width] = l+1; 172 | max_dist = p_dist[max_row]; 173 | } 174 | } 175 | } 176 | } 177 | 178 | 179 | /** 180 | * Computes the square root of the first line (width-th first element) 181 | * of the distance matrix. 182 | * 183 | * @param dist distance matrix 184 | * @param width width of the distance matrix 185 | * @param k number of neighbors to consider 186 | */ 187 | __global__ void cuParallelSqrt(float *dist, int width, int k){ 188 | unsigned int xIndex = blockIdx.x * blockDim.x + threadIdx.x; 189 | unsigned int yIndex = blockIdx.y * blockDim.y + threadIdx.y; 190 | if (xIndex>>(ref_dev, ref_nb, query_dev, query_nb, dim, dist_dev); 237 | 238 | // Kernel 2: Sort each column 239 | cuInsertionSort<<>>(dist_dev, ind_dev, query_nb, ref_nb, k); 240 | 241 | // Kernel 3: Compute square root of k first elements 242 | // cuParallelSqrt<<>>(dist_dev, query_nb, k); 243 | 244 | #if DEBUG 245 | unsigned int size_of_float = sizeof(float); 246 | unsigned long size_of_long = sizeof(long); 247 | 248 | float* dist_host = new float[query_nb * k]; 249 | long* idx_host = new long[query_nb * k]; 250 | 251 | // Memory copy of output from device to host 252 | cudaMemcpy(&dist_host[0], dist_dev, 253 | query_nb * k *size_of_float, cudaMemcpyDeviceToHost); 254 | 255 | cudaMemcpy(&idx_host[0], ind_dev, 256 | query_nb * k * size_of_long, cudaMemcpyDeviceToHost); 257 | 258 | int i = 0; 259 | for(i = 0; i < 100; i++){ 260 | printf("IDX[%d]: %d\n", i, (int)idx_host[i]); 261 | } 262 | #endif 263 | } 264 | 265 | 266 | 267 | 268 | 269 | 270 | -------------------------------------------------------------------------------- /knn/src/cuda/vision.h: -------------------------------------------------------------------------------- 1 | #pragma once 2 | #include 3 | #include 4 | 5 | void knn_device(float* ref_dev, int ref_width, 6 | float* query_dev, int query_width, 7 | int height, int k, float* dist_dev, long* ind_dev, cudaStream_t stream); -------------------------------------------------------------------------------- /knn/src/knn.h: -------------------------------------------------------------------------------- 1 | #pragma once 2 | #include "cpu/vision.h" 3 | 4 | #ifdef WITH_CUDA 5 | #include "cuda/vision.h" 6 | #include 7 | extern THCState *state; 8 | #endif 9 | 10 | 11 | 12 | int knn(at::Tensor& ref, at::Tensor& query, at::Tensor& idx) 13 | { 14 | 15 | // TODO check dimensions 16 | long batch, ref_nb, query_nb, dim, k; 17 | batch = ref.size(0); 18 | dim = ref.size(1); 19 | k = idx.size(1); 20 | ref_nb = ref.size(2); 21 | query_nb = query.size(2); 22 | 23 | float *ref_dev = ref.data(); 24 | float *query_dev = query.data(); 25 | long *idx_dev = idx.data(); 26 | 27 | 28 | 29 | 30 | if (ref.type().is_cuda()) { 31 | #ifdef WITH_CUDA 32 | // TODO raise error if not compiled with CUDA 33 | float *dist_dev = (float*)THCudaMalloc(state, ref_nb * query_nb * sizeof(float)); 34 | 35 | for (int b = 0; b < batch; b++) 36 | { 37 | // knn_device(ref_dev + b * dim * ref_nb, ref_nb, query_dev + b * dim * query_nb, query_nb, dim, k, 38 | // dist_dev, idx_dev + b * k * query_nb, THCState_getCurrentStream(state)); 39 | knn_device(ref_dev + b * dim * ref_nb, ref_nb, query_dev + b * dim * query_nb, query_nb, dim, k, 40 | dist_dev, idx_dev + b * k * query_nb, c10::cuda::getCurrentCUDAStream()); 41 | } 42 | THCudaFree(state, dist_dev); 43 | cudaError_t err = cudaGetLastError(); 44 | if (err != cudaSuccess) 45 | { 46 | printf("error in knn: %s\n", cudaGetErrorString(err)); 47 | THError("aborting"); 48 | } 49 | return 1; 50 | #else 51 | AT_ERROR("Not compiled with GPU support"); 52 | #endif 53 | } 54 | 55 | 56 | float *dist_dev = (float*)malloc(ref_nb * query_nb * sizeof(float)); 57 | long *ind_buf = (long*)malloc(ref_nb * sizeof(long)); 58 | for (int b = 0; b < batch; b++) { 59 | knn_cpu(ref_dev + b * dim * ref_nb, ref_nb, query_dev + b * dim * query_nb, query_nb, dim, k, 60 | dist_dev, idx_dev + b * k * query_nb, ind_buf); 61 | } 62 | 63 | free(dist_dev); 64 | free(ind_buf); 65 | 66 | return 1; 67 | 68 | } 69 | -------------------------------------------------------------------------------- /knn/src/vision.cpp: -------------------------------------------------------------------------------- 1 | #include "knn.h" 2 | 3 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 4 | m.def("knn", &knn, "k-nearest neighbors"); 5 | } 6 | -------------------------------------------------------------------------------- /models/backbone_resunet14.py: -------------------------------------------------------------------------------- 1 | import MinkowskiEngine as ME 2 | from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck 3 | from models.resnet import ResNetBase 4 | 5 | 6 | class MinkUNetBase(ResNetBase): 7 | BLOCK = None 8 | PLANES = None 9 | DILATIONS = (1, 1, 1, 1, 1, 1, 1, 1) 10 | LAYERS = (2, 2, 2, 2, 2, 2, 2, 2) 11 | PLANES = (32, 64, 128, 256, 256, 128, 96, 96) 12 | INIT_DIM = 32 13 | OUT_TENSOR_STRIDE = 1 14 | 15 | # To use the model, must call initialize_coords before forward pass. 16 | # Once data is processed, call clear to reset the model before calling 17 | # initialize_coords 18 | def __init__(self, in_channels, out_channels, D=3): 19 | ResNetBase.__init__(self, in_channels, out_channels, D) 20 | 21 | def network_initialization(self, in_channels, out_channels, D): 22 | # Output of the first conv concated to conv6 23 | self.inplanes = self.INIT_DIM 24 | self.conv0p1s1 = ME.MinkowskiConvolution( 25 | in_channels, self.inplanes, kernel_size=5, dimension=D) 26 | 27 | self.bn0 = ME.MinkowskiBatchNorm(self.inplanes) 28 | 29 | self.conv1p1s2 = ME.MinkowskiConvolution( 30 | self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) 31 | self.bn1 = ME.MinkowskiBatchNorm(self.inplanes) 32 | 33 | self.block1 = self._make_layer(self.BLOCK, self.PLANES[0], 34 | self.LAYERS[0]) 35 | 36 | self.conv2p2s2 = ME.MinkowskiConvolution( 37 | self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) 38 | self.bn2 = ME.MinkowskiBatchNorm(self.inplanes) 39 | 40 | self.block2 = self._make_layer(self.BLOCK, self.PLANES[1], 41 | self.LAYERS[1]) 42 | 43 | self.conv3p4s2 = ME.MinkowskiConvolution( 44 | self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) 45 | 46 | self.bn3 = ME.MinkowskiBatchNorm(self.inplanes) 47 | self.block3 = self._make_layer(self.BLOCK, self.PLANES[2], 48 | self.LAYERS[2]) 49 | 50 | self.conv4p8s2 = ME.MinkowskiConvolution( 51 | self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D) 52 | self.bn4 = ME.MinkowskiBatchNorm(self.inplanes) 53 | self.block4 = self._make_layer(self.BLOCK, self.PLANES[3], 54 | self.LAYERS[3]) 55 | 56 | self.convtr4p16s2 = ME.MinkowskiConvolutionTranspose( 57 | self.inplanes, self.PLANES[4], kernel_size=2, stride=2, dimension=D) 58 | self.bntr4 = ME.MinkowskiBatchNorm(self.PLANES[4]) 59 | 60 | self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion 61 | self.block5 = self._make_layer(self.BLOCK, self.PLANES[4], 62 | self.LAYERS[4]) 63 | self.convtr5p8s2 = ME.MinkowskiConvolutionTranspose( 64 | self.inplanes, self.PLANES[5], kernel_size=2, stride=2, dimension=D) 65 | self.bntr5 = ME.MinkowskiBatchNorm(self.PLANES[5]) 66 | 67 | self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion 68 | self.block6 = self._make_layer(self.BLOCK, self.PLANES[5], 69 | self.LAYERS[5]) 70 | self.convtr6p4s2 = ME.MinkowskiConvolutionTranspose( 71 | self.inplanes, self.PLANES[6], kernel_size=2, stride=2, dimension=D) 72 | self.bntr6 = ME.MinkowskiBatchNorm(self.PLANES[6]) 73 | 74 | self.inplanes = self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion 75 | self.block7 = self._make_layer(self.BLOCK, self.PLANES[6], 76 | self.LAYERS[6]) 77 | self.convtr7p2s2 = ME.MinkowskiConvolutionTranspose( 78 | self.inplanes, self.PLANES[7], kernel_size=2, stride=2, dimension=D) 79 | self.bntr7 = ME.MinkowskiBatchNorm(self.PLANES[7]) 80 | 81 | self.inplanes = self.PLANES[7] + self.INIT_DIM 82 | self.block8 = self._make_layer(self.BLOCK, self.PLANES[7], 83 | self.LAYERS[7]) 84 | 85 | self.final = ME.MinkowskiConvolution( 86 | self.PLANES[7] * self.BLOCK.expansion, 87 | out_channels, 88 | kernel_size=1, 89 | bias=True, 90 | dimension=D) 91 | self.relu = ME.MinkowskiReLU(inplace=True) 92 | 93 | def forward(self, x): 94 | out = self.conv0p1s1(x) 95 | out = self.bn0(out) 96 | out_p1 = self.relu(out) 97 | 98 | out = self.conv1p1s2(out_p1) 99 | out = self.bn1(out) 100 | out = self.relu(out) 101 | out_b1p2 = self.block1(out) 102 | 103 | out = self.conv2p2s2(out_b1p2) 104 | out = self.bn2(out) 105 | out = self.relu(out) 106 | out_b2p4 = self.block2(out) 107 | 108 | out = self.conv3p4s2(out_b2p4) 109 | out = self.bn3(out) 110 | out = self.relu(out) 111 | out_b3p8 = self.block3(out) 112 | 113 | # tensor_stride=16 114 | out = self.conv4p8s2(out_b3p8) 115 | out = self.bn4(out) 116 | out = self.relu(out) 117 | out = self.block4(out) 118 | 119 | # tensor_stride=8 120 | out = self.convtr4p16s2(out) 121 | out = self.bntr4(out) 122 | out = self.relu(out) 123 | 124 | out = ME.cat(out, out_b3p8) 125 | out = self.block5(out) 126 | 127 | # tensor_stride=4 128 | out = self.convtr5p8s2(out) 129 | out = self.bntr5(out) 130 | out = self.relu(out) 131 | 132 | out = ME.cat(out, out_b2p4) 133 | out = self.block6(out) 134 | 135 | # tensor_stride=2 136 | out = self.convtr6p4s2(out) 137 | out = self.bntr6(out) 138 | out = self.relu(out) 139 | 140 | out = ME.cat(out, out_b1p2) 141 | out = self.block7(out) 142 | 143 | # tensor_stride=1 144 | out = self.convtr7p2s2(out) 145 | out = self.bntr7(out) 146 | out = self.relu(out) 147 | 148 | out = ME.cat(out, out_p1) 149 | out = self.block8(out) 150 | 151 | return self.final(out) 152 | 153 | 154 | class MinkUNet14(MinkUNetBase): 155 | BLOCK = BasicBlock 156 | LAYERS = (1, 1, 1, 1, 1, 1, 1, 1) 157 | 158 | 159 | class MinkUNet18(MinkUNetBase): 160 | BLOCK = BasicBlock 161 | LAYERS = (2, 2, 2, 2, 2, 2, 2, 2) 162 | 163 | 164 | class MinkUNet34(MinkUNetBase): 165 | BLOCK = BasicBlock 166 | LAYERS = (2, 3, 4, 6, 2, 2, 2, 2) 167 | 168 | 169 | class MinkUNet50(MinkUNetBase): 170 | BLOCK = Bottleneck 171 | LAYERS = (2, 3, 4, 6, 2, 2, 2, 2) 172 | 173 | 174 | class MinkUNet101(MinkUNetBase): 175 | BLOCK = Bottleneck 176 | LAYERS = (2, 3, 4, 23, 2, 2, 2, 2) 177 | 178 | 179 | class MinkUNet14A(MinkUNet14): 180 | PLANES = (32, 64, 128, 256, 128, 128, 96, 96) 181 | 182 | 183 | class MinkUNet14B(MinkUNet14): 184 | PLANES = (32, 64, 128, 256, 128, 128, 128, 128) 185 | 186 | 187 | class MinkUNet14C(MinkUNet14): 188 | PLANES = (32, 64, 128, 256, 192, 192, 128, 128) 189 | 190 | 191 | class MinkUNet14Dori(MinkUNet14): 192 | PLANES = (32, 64, 128, 256, 384, 384, 384, 384) 193 | 194 | 195 | class MinkUNet14E(MinkUNet14): 196 | PLANES = (32, 64, 128, 256, 384, 384, 384, 384) 197 | 198 | 199 | class MinkUNet14D(MinkUNet14): 200 | PLANES = (32, 64, 128, 256, 192, 192, 192, 192) 201 | 202 | 203 | class MinkUNet18A(MinkUNet18): 204 | PLANES = (32, 64, 128, 256, 128, 128, 96, 96) 205 | 206 | 207 | class MinkUNet18B(MinkUNet18): 208 | PLANES = (32, 64, 128, 256, 128, 128, 128, 128) 209 | 210 | 211 | class MinkUNet18D(MinkUNet18): 212 | PLANES = (32, 64, 128, 256, 384, 384, 384, 384) 213 | 214 | 215 | class MinkUNet34A(MinkUNet34): 216 | PLANES = (32, 64, 128, 256, 256, 128, 64, 64) 217 | 218 | 219 | class MinkUNet34B(MinkUNet34): 220 | PLANES = (32, 64, 128, 256, 256, 128, 64, 32) 221 | 222 | 223 | class MinkUNet34C(MinkUNet34): 224 | PLANES = (32, 64, 128, 256, 256, 128, 96, 96) 225 | -------------------------------------------------------------------------------- /models/graspnet.py: -------------------------------------------------------------------------------- 1 | """ GraspNet baseline model definition. 2 | Author: chenxi-wang 3 | """ 4 | 5 | import os 6 | import sys 7 | import numpy as np 8 | import torch 9 | import torch.nn as nn 10 | import MinkowskiEngine as ME 11 | 12 | BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 13 | ROOT_DIR = os.path.dirname(BASE_DIR) 14 | sys.path.append(ROOT_DIR) 15 | 16 | from models.backbone_resunet14 import MinkUNet14D 17 | from models.modules import ApproachNet, GraspableNet, CloudCrop, SWADNet 18 | from loss_utils import GRASP_MAX_WIDTH, NUM_VIEW, NUM_ANGLE, NUM_DEPTH, GRASPNESS_THRESHOLD, M_POINT 19 | from label_generation import process_grasp_labels, match_grasp_view_and_label, batch_viewpoint_params_to_matrix 20 | from pointnet2.pointnet2_utils import furthest_point_sample, gather_operation 21 | 22 | 23 | class GraspNet(nn.Module): 24 | def __init__(self, cylinder_radius=0.05, seed_feat_dim=512, is_training=True): 25 | super().__init__() 26 | self.is_training = is_training 27 | self.seed_feature_dim = seed_feat_dim 28 | self.num_depth = NUM_DEPTH 29 | self.num_angle = NUM_ANGLE 30 | self.M_points = M_POINT 31 | self.num_view = NUM_VIEW 32 | 33 | self.backbone = MinkUNet14D(in_channels=3, out_channels=self.seed_feature_dim, D=3) 34 | self.graspable = GraspableNet(seed_feature_dim=self.seed_feature_dim) 35 | self.rotation = ApproachNet(self.num_view, seed_feature_dim=self.seed_feature_dim, is_training=self.is_training) 36 | self.crop = CloudCrop(nsample=16, cylinder_radius=cylinder_radius, seed_feature_dim=self.seed_feature_dim) 37 | self.swad = SWADNet(num_angle=self.num_angle, num_depth=self.num_depth) 38 | 39 | def forward(self, end_points): 40 | seed_xyz = end_points['point_clouds'] # use all sampled point cloud, B*Ns*3 41 | B, point_num, _ = seed_xyz.shape # batch _size 42 | # point-wise features 43 | coordinates_batch = end_points['coors'] 44 | features_batch = end_points['feats'] 45 | mink_input = ME.SparseTensor(features_batch, coordinates=coordinates_batch) 46 | seed_features = self.backbone(mink_input).F 47 | seed_features = seed_features[end_points['quantize2original']].view(B, point_num, -1).transpose(1, 2) 48 | 49 | end_points = self.graspable(seed_features, end_points) 50 | seed_features_flipped = seed_features.transpose(1, 2) # B*Ns*feat_dim 51 | objectness_score = end_points['objectness_score'] 52 | graspness_score = end_points['graspness_score'].squeeze(1) 53 | objectness_pred = torch.argmax(objectness_score, 1) 54 | objectness_mask = (objectness_pred == 1) 55 | graspness_mask = graspness_score > GRASPNESS_THRESHOLD 56 | graspable_mask = objectness_mask & graspness_mask 57 | 58 | seed_features_graspable = [] 59 | seed_xyz_graspable = [] 60 | graspable_num_batch = 0. 61 | for i in range(B): 62 | cur_mask = graspable_mask[i] 63 | graspable_num_batch += cur_mask.sum() 64 | cur_feat = seed_features_flipped[i][cur_mask] # Ns*feat_dim 65 | cur_seed_xyz = seed_xyz[i][cur_mask] # Ns*3 66 | 67 | cur_seed_xyz = cur_seed_xyz.unsqueeze(0) # 1*Ns*3 68 | fps_idxs = furthest_point_sample(cur_seed_xyz, self.M_points) 69 | cur_seed_xyz_flipped = cur_seed_xyz.transpose(1, 2).contiguous() # 1*3*Ns 70 | cur_seed_xyz = gather_operation(cur_seed_xyz_flipped, fps_idxs).transpose(1, 2).squeeze(0).contiguous() # Ns*3 71 | cur_feat_flipped = cur_feat.unsqueeze(0).transpose(1, 2).contiguous() # 1*feat_dim*Ns 72 | cur_feat = gather_operation(cur_feat_flipped, fps_idxs).squeeze(0).contiguous() # feat_dim*Ns 73 | 74 | seed_features_graspable.append(cur_feat) 75 | seed_xyz_graspable.append(cur_seed_xyz) 76 | seed_xyz_graspable = torch.stack(seed_xyz_graspable, 0) # B*Ns*3 77 | seed_features_graspable = torch.stack(seed_features_graspable) # B*feat_dim*Ns 78 | end_points['xyz_graspable'] = seed_xyz_graspable 79 | end_points['graspable_count_stage1'] = graspable_num_batch / B 80 | 81 | end_points, res_feat = self.rotation(seed_features_graspable, end_points) 82 | seed_features_graspable = seed_features_graspable + res_feat 83 | 84 | if self.is_training: 85 | end_points = process_grasp_labels(end_points) 86 | grasp_top_views_rot, end_points = match_grasp_view_and_label(end_points) 87 | else: 88 | grasp_top_views_rot = end_points['grasp_top_view_rot'] 89 | 90 | group_features = self.crop(seed_xyz_graspable.contiguous(), seed_features_graspable.contiguous(), grasp_top_views_rot) 91 | end_points = self.swad(group_features, end_points) 92 | 93 | return end_points 94 | 95 | 96 | def pred_decode(end_points): 97 | batch_size = len(end_points['point_clouds']) 98 | grasp_preds = [] 99 | for i in range(batch_size): 100 | grasp_center = end_points['xyz_graspable'][i].float()# 1024,3 101 | 102 | grasp_score = end_points['grasp_score_pred'][i].float()# 1024,12,4 103 | grasp_score = grasp_score.view(M_POINT, NUM_ANGLE*NUM_DEPTH)# 1024,48 104 | grasp_score, grasp_score_inds = torch.max(grasp_score, -1)# 1024 # [M_POINT] 105 | grasp_score = grasp_score.view(-1, 1)#1024,1 106 | grasp_angle = (grasp_score_inds // NUM_DEPTH) * np.pi / 12# 1024 107 | grasp_depth = (grasp_score_inds % NUM_DEPTH + 1) * 0.01#1024 108 | grasp_depth = grasp_depth.view(-1, 1) #1024,1 109 | grasp_width = 1.2 * end_points['grasp_width_pred'][i] / 10.#1024,12,4 110 | grasp_width = grasp_width.view(M_POINT, NUM_ANGLE*NUM_DEPTH)#1024,48 111 | grasp_width = torch.gather(grasp_width, 1, grasp_score_inds.view(-1, 1))#1024,1 112 | grasp_width = torch.clamp(grasp_width, min=0., max=GRASP_MAX_WIDTH)#1024,1 113 | 114 | approaching = -end_points['grasp_top_view_xyz'][i].float()#1024,3 115 | grasp_rot = batch_viewpoint_params_to_matrix(approaching, grasp_angle)#1024,3,3 116 | grasp_rot = grasp_rot.view(M_POINT, 9)#1024,9 117 | 118 | # merge preds 119 | grasp_height = 0.02 * torch.ones_like(grasp_score) 120 | obj_ids = -1 * torch.ones_like(grasp_score) 121 | grasp_preds.append( #1024,17 122 | torch.cat([grasp_score, grasp_width, grasp_height, grasp_depth, grasp_rot, grasp_center, obj_ids], axis=-1)) 123 | return grasp_preds 124 | -------------------------------------------------------------------------------- /models/loss.py: -------------------------------------------------------------------------------- 1 | import torch.nn as nn 2 | import torch 3 | 4 | 5 | def get_loss(end_points): 6 | objectness_loss, end_points = compute_objectness_loss(end_points) 7 | graspness_loss, end_points = compute_graspness_loss(end_points) 8 | view_loss, end_points = compute_view_graspness_loss(end_points) 9 | score_loss, end_points = compute_score_loss(end_points) 10 | width_loss, end_points = compute_width_loss(end_points) 11 | loss = objectness_loss + 10 * graspness_loss + 100 * view_loss + 15 * score_loss + 10 * width_loss 12 | end_points['loss/overall_loss'] = loss 13 | return loss, end_points 14 | 15 | 16 | def compute_objectness_loss(end_points): 17 | criterion = nn.CrossEntropyLoss(reduction='mean') 18 | objectness_score = end_points['objectness_score'] 19 | objectness_label = end_points['objectness_label'] 20 | loss = criterion(objectness_score, objectness_label) 21 | end_points['loss/stage1_objectness_loss'] = loss 22 | 23 | objectness_pred = torch.argmax(objectness_score, 1) 24 | end_points['stage1_objectness_acc'] = (objectness_pred == objectness_label.long()).float().mean() 25 | end_points['stage1_objectness_prec'] = (objectness_pred == objectness_label.long())[ 26 | objectness_pred == 1].float().mean() 27 | end_points['stage1_objectness_recall'] = (objectness_pred == objectness_label.long())[ 28 | objectness_label == 1].float().mean() 29 | return loss, end_points 30 | 31 | 32 | def compute_graspness_loss(end_points): 33 | criterion = nn.SmoothL1Loss(reduction='none') 34 | graspness_score = end_points['graspness_score'].squeeze(1) 35 | graspness_label = end_points['graspness_label'].squeeze(-1) 36 | loss_mask = end_points['objectness_label'].bool() 37 | loss = criterion(graspness_score, graspness_label) 38 | loss = loss[loss_mask] 39 | loss = loss.mean() 40 | 41 | graspness_score_c = graspness_score.detach().clone()[loss_mask] 42 | graspness_label_c = graspness_label.detach().clone()[loss_mask] 43 | graspness_score_c = torch.clamp(graspness_score_c, 0., 0.99) 44 | graspness_label_c = torch.clamp(graspness_label_c, 0., 0.99) 45 | rank_error = (torch.abs(torch.trunc(graspness_score_c * 20) - torch.trunc(graspness_label_c * 20)) / 20.).mean() 46 | end_points['stage1_graspness_acc_rank_error'] = rank_error 47 | 48 | end_points['loss/stage1_graspness_loss'] = loss 49 | return loss, end_points 50 | 51 | 52 | def compute_view_graspness_loss(end_points): 53 | criterion = nn.SmoothL1Loss(reduction='mean') 54 | view_score = end_points['view_score'] 55 | view_label = end_points['batch_grasp_view_graspness'] 56 | loss = criterion(view_score, view_label) 57 | end_points['loss/stage2_view_loss'] = loss 58 | return loss, end_points 59 | 60 | 61 | def compute_score_loss(end_points): 62 | criterion = nn.SmoothL1Loss(reduction='mean') 63 | grasp_score_pred = end_points['grasp_score_pred'] 64 | grasp_score_label = end_points['batch_grasp_score'] 65 | loss = criterion(grasp_score_pred, grasp_score_label) 66 | 67 | end_points['loss/stage3_score_loss'] = loss 68 | return loss, end_points 69 | 70 | 71 | def compute_width_loss(end_points): 72 | criterion = nn.SmoothL1Loss(reduction='none') 73 | grasp_width_pred = end_points['grasp_width_pred'] 74 | grasp_width_label = end_points['batch_grasp_width'] * 10 75 | loss = criterion(grasp_width_pred, grasp_width_label) 76 | grasp_score_label = end_points['batch_grasp_score'] 77 | loss_mask = grasp_score_label > 0 78 | loss = loss[loss_mask].mean() 79 | end_points['loss/stage3_width_loss'] = loss 80 | return loss, end_points 81 | -------------------------------------------------------------------------------- /models/modules.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | import torch 4 | import torch.nn as nn 5 | import torch.nn.functional as F 6 | 7 | BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 8 | ROOT_DIR = os.path.dirname(BASE_DIR) 9 | sys.path.append(ROOT_DIR) 10 | 11 | import pointnet2.pytorch_utils as pt_utils 12 | from pointnet2.pointnet2_utils import CylinderQueryAndGroup 13 | from loss_utils import generate_grasp_views, batch_viewpoint_params_to_matrix 14 | 15 | 16 | class GraspableNet(nn.Module): 17 | def __init__(self, seed_feature_dim): 18 | super().__init__() 19 | self.in_dim = seed_feature_dim 20 | self.conv_graspable = nn.Conv1d(self.in_dim, 3, 1) 21 | 22 | def forward(self, seed_features, end_points): 23 | graspable_score = self.conv_graspable(seed_features) # (B, 3, num_seed) 24 | end_points['objectness_score'] = graspable_score[:, :2] 25 | end_points['graspness_score'] = graspable_score[:, 2] 26 | return end_points 27 | 28 | 29 | class ApproachNet(nn.Module): 30 | def __init__(self, num_view, seed_feature_dim, is_training=True): 31 | super().__init__() 32 | self.num_view = num_view 33 | self.in_dim = seed_feature_dim 34 | self.is_training = is_training 35 | self.conv1 = nn.Conv1d(self.in_dim, self.in_dim, 1) 36 | self.conv2 = nn.Conv1d(self.in_dim, self.num_view, 1) 37 | 38 | def forward(self, seed_features, end_points): 39 | B, _, num_seed = seed_features.size() 40 | res_features = F.relu(self.conv1(seed_features), inplace=True) 41 | features = self.conv2(res_features) 42 | view_score = features.transpose(1, 2).contiguous() # (B, num_seed, num_view) 43 | end_points['view_score'] = view_score 44 | 45 | if self.is_training: 46 | # normalize view graspness score to 0~1 47 | view_score_ = view_score.clone().detach() 48 | view_score_max, _ = torch.max(view_score_, dim=2) 49 | view_score_min, _ = torch.min(view_score_, dim=2) 50 | view_score_max = view_score_max.unsqueeze(-1).expand(-1, -1, self.num_view) 51 | view_score_min = view_score_min.unsqueeze(-1).expand(-1, -1, self.num_view) 52 | view_score_ = (view_score_ - view_score_min) / (view_score_max - view_score_min + 1e-8) 53 | 54 | top_view_inds = [] 55 | for i in range(B): 56 | top_view_inds_batch = torch.multinomial(view_score_[i], 1, replacement=False) 57 | top_view_inds.append(top_view_inds_batch) 58 | top_view_inds = torch.stack(top_view_inds, dim=0).squeeze(-1) # B, num_seed 59 | else: 60 | _, top_view_inds = torch.max(view_score, dim=2) # (B, num_seed) 61 | 62 | top_view_inds_ = top_view_inds.view(B, num_seed, 1, 1).expand(-1, -1, -1, 3).contiguous() 63 | template_views = generate_grasp_views(self.num_view).to(features.device) # (num_view, 3) 64 | template_views = template_views.view(1, 1, self.num_view, 3).expand(B, num_seed, -1, -1).contiguous() 65 | vp_xyz = torch.gather(template_views, 2, top_view_inds_).squeeze(2) # (B, num_seed, 3) 66 | vp_xyz_ = vp_xyz.view(-1, 3) 67 | batch_angle = torch.zeros(vp_xyz_.size(0), dtype=vp_xyz.dtype, device=vp_xyz.device) 68 | vp_rot = batch_viewpoint_params_to_matrix(-vp_xyz_, batch_angle).view(B, num_seed, 3, 3) 69 | end_points['grasp_top_view_xyz'] = vp_xyz 70 | end_points['grasp_top_view_rot'] = vp_rot 71 | 72 | end_points['grasp_top_view_inds'] = top_view_inds 73 | return end_points, res_features 74 | 75 | 76 | class CloudCrop(nn.Module): 77 | def __init__(self, nsample, seed_feature_dim, cylinder_radius=0.05, hmin=-0.02, hmax=0.04): 78 | super().__init__() 79 | self.nsample = nsample 80 | self.in_dim = seed_feature_dim 81 | self.cylinder_radius = cylinder_radius 82 | mlps = [3 + self.in_dim, 256, 256] # use xyz, so plus 3 83 | 84 | self.grouper = CylinderQueryAndGroup(radius=cylinder_radius, hmin=hmin, hmax=hmax, nsample=nsample, 85 | use_xyz=True, normalize_xyz=True) 86 | self.mlps = pt_utils.SharedMLP(mlps, bn=True) 87 | 88 | def forward(self, seed_xyz_graspable, seed_features_graspable, vp_rot): 89 | grouped_feature = self.grouper(seed_xyz_graspable, seed_xyz_graspable, vp_rot, 90 | seed_features_graspable) # B*3 + feat_dim*M*K 91 | new_features = self.mlps(grouped_feature) # (batch_size, mlps[-1], M, K) 92 | new_features = F.max_pool2d(new_features, kernel_size=[1, new_features.size(3)]) # (batch_size, mlps[-1], M, 1) 93 | new_features = new_features.squeeze(-1) # (batch_size, mlps[-1], M) 94 | return new_features 95 | 96 | 97 | class SWADNet(nn.Module): 98 | def __init__(self, num_angle, num_depth): 99 | super().__init__() 100 | self.num_angle = num_angle 101 | self.num_depth = num_depth 102 | 103 | self.conv1 = nn.Conv1d(256, 256, 1) # input feat dim need to be consistent with CloudCrop module 104 | self.conv_swad = nn.Conv1d(256, 2*num_angle*num_depth, 1) 105 | 106 | def forward(self, vp_features, end_points): 107 | B, _, num_seed = vp_features.size() 108 | vp_features = F.relu(self.conv1(vp_features), inplace=True) 109 | vp_features = self.conv_swad(vp_features) 110 | vp_features = vp_features.view(B, 2, self.num_angle, self.num_depth, num_seed) 111 | vp_features = vp_features.permute(0, 1, 4, 2, 3) 112 | 113 | # split prediction 114 | end_points['grasp_score_pred'] = vp_features[:, 0] # B * num_seed * num angle * num_depth 115 | end_points['grasp_width_pred'] = vp_features[:, 1] 116 | return end_points 117 | -------------------------------------------------------------------------------- /models/resnet.py: -------------------------------------------------------------------------------- 1 | import torch.nn as nn 2 | 3 | try: 4 | import open3d as o3d 5 | except ImportError: 6 | raise ImportError("Please install open3d with `pip install open3d`.") 7 | 8 | import MinkowskiEngine as ME 9 | from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck 10 | 11 | 12 | class ResNetBase(nn.Module): 13 | BLOCK = None 14 | LAYERS = () 15 | INIT_DIM = 64 16 | PLANES = (64, 128, 256, 512) 17 | 18 | def __init__(self, in_channels, out_channels, D=3): 19 | nn.Module.__init__(self) 20 | self.D = D 21 | assert self.BLOCK is not None 22 | 23 | self.network_initialization(in_channels, out_channels, D) 24 | self.weight_initialization() 25 | 26 | def network_initialization(self, in_channels, out_channels, D): 27 | 28 | self.inplanes = self.INIT_DIM 29 | self.conv1 = nn.Sequential( 30 | ME.MinkowskiConvolution( 31 | in_channels, self.inplanes, kernel_size=3, stride=2, dimension=D 32 | ), 33 | ME.MinkowskiInstanceNorm(self.inplanes), 34 | ME.MinkowskiReLU(inplace=True), 35 | ME.MinkowskiMaxPooling(kernel_size=2, stride=2, dimension=D), 36 | ) 37 | 38 | self.layer1 = self._make_layer( 39 | self.BLOCK, self.PLANES[0], self.LAYERS[0], stride=2 40 | ) 41 | self.layer2 = self._make_layer( 42 | self.BLOCK, self.PLANES[1], self.LAYERS[1], stride=2 43 | ) 44 | self.layer3 = self._make_layer( 45 | self.BLOCK, self.PLANES[2], self.LAYERS[2], stride=2 46 | ) 47 | self.layer4 = self._make_layer( 48 | self.BLOCK, self.PLANES[3], self.LAYERS[3], stride=2 49 | ) 50 | 51 | self.conv5 = nn.Sequential( 52 | ME.MinkowskiDropout(), 53 | ME.MinkowskiConvolution( 54 | self.inplanes, self.inplanes, kernel_size=3, stride=3, dimension=D 55 | ), 56 | ME.MinkowskiInstanceNorm(self.inplanes), 57 | ME.MinkowskiGELU(), 58 | ) 59 | 60 | self.glob_pool = ME.MinkowskiGlobalMaxPooling() 61 | 62 | self.final = ME.MinkowskiLinear(self.inplanes, out_channels, bias=True) 63 | 64 | def weight_initialization(self): 65 | for m in self.modules(): 66 | if isinstance(m, ME.MinkowskiConvolution): 67 | ME.utils.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu") 68 | 69 | if isinstance(m, ME.MinkowskiBatchNorm): 70 | nn.init.constant_(m.bn.weight, 1) 71 | nn.init.constant_(m.bn.bias, 0) 72 | 73 | def _make_layer(self, block, planes, blocks, stride=1, dilation=1, bn_momentum=0.1): 74 | downsample = None 75 | if stride != 1 or self.inplanes != planes * block.expansion: 76 | downsample = nn.Sequential( 77 | ME.MinkowskiConvolution( 78 | self.inplanes, 79 | planes * block.expansion, 80 | kernel_size=1, 81 | stride=stride, 82 | dimension=self.D, 83 | ), 84 | ME.MinkowskiBatchNorm(planes * block.expansion), 85 | ) 86 | layers = [] 87 | layers.append( 88 | block( 89 | self.inplanes, 90 | planes, 91 | stride=stride, 92 | dilation=dilation, 93 | downsample=downsample, 94 | dimension=self.D, 95 | ) 96 | ) 97 | self.inplanes = planes * block.expansion 98 | for i in range(1, blocks): 99 | layers.append( 100 | block( 101 | self.inplanes, planes, stride=1, dilation=dilation, dimension=self.D 102 | ) 103 | ) 104 | 105 | return nn.Sequential(*layers) 106 | 107 | def forward(self, x: ME.SparseTensor): 108 | x = self.conv1(x) 109 | x = self.layer1(x) 110 | x = self.layer2(x) 111 | x = self.layer3(x) 112 | x = self.layer4(x) 113 | x = self.conv5(x) 114 | x = self.glob_pool(x) 115 | return self.final(x) 116 | 117 | 118 | class ResNet14(ResNetBase): 119 | BLOCK = BasicBlock 120 | LAYERS = (1, 1, 1, 1) 121 | 122 | 123 | class ResNet18(ResNetBase): 124 | BLOCK = BasicBlock 125 | LAYERS = (2, 2, 2, 2) 126 | 127 | 128 | class ResNet34(ResNetBase): 129 | BLOCK = BasicBlock 130 | LAYERS = (3, 4, 6, 3) 131 | 132 | 133 | class ResNet50(ResNetBase): 134 | BLOCK = Bottleneck 135 | LAYERS = (3, 4, 6, 3) 136 | 137 | 138 | class ResNet101(ResNetBase): 139 | BLOCK = Bottleneck 140 | LAYERS = (3, 4, 23, 3) 141 | 142 | 143 | class ResFieldNetBase(ResNetBase): 144 | def network_initialization(self, in_channels, out_channels, D): 145 | field_ch = 32 146 | field_ch2 = 64 147 | self.field_network = nn.Sequential( 148 | ME.MinkowskiSinusoidal(in_channels, field_ch), 149 | ME.MinkowskiBatchNorm(field_ch), 150 | ME.MinkowskiReLU(inplace=True), 151 | ME.MinkowskiLinear(field_ch, field_ch), 152 | ME.MinkowskiBatchNorm(field_ch), 153 | ME.MinkowskiReLU(inplace=True), 154 | ME.MinkowskiToSparseTensor(), 155 | ) 156 | self.field_network2 = nn.Sequential( 157 | ME.MinkowskiSinusoidal(field_ch + in_channels, field_ch2), 158 | ME.MinkowskiBatchNorm(field_ch2), 159 | ME.MinkowskiReLU(inplace=True), 160 | ME.MinkowskiLinear(field_ch2, field_ch2), 161 | ME.MinkowskiBatchNorm(field_ch2), 162 | ME.MinkowskiReLU(inplace=True), 163 | ME.MinkowskiToSparseTensor(), 164 | ) 165 | 166 | ResNetBase.network_initialization(self, field_ch2, out_channels, D) 167 | 168 | def forward(self, x: ME.TensorField): 169 | otensor = self.field_network(x) 170 | otensor2 = self.field_network2(otensor.cat_slice(x)) 171 | return ResNetBase.forward(self, otensor2) 172 | 173 | 174 | class ResFieldNet14(ResFieldNetBase): 175 | BLOCK = BasicBlock 176 | LAYERS = (1, 1, 1, 1) 177 | 178 | 179 | class ResFieldNet18(ResFieldNetBase): 180 | BLOCK = BasicBlock 181 | LAYERS = (2, 2, 2, 2) 182 | 183 | 184 | class ResFieldNet34(ResFieldNetBase): 185 | BLOCK = BasicBlock 186 | LAYERS = (3, 4, 6, 3) 187 | 188 | 189 | class ResFieldNet50(ResFieldNetBase): 190 | BLOCK = Bottleneck 191 | LAYERS = (3, 4, 6, 3) 192 | 193 | 194 | class ResFieldNet101(ResFieldNetBase): 195 | BLOCK = Bottleneck 196 | LAYERS = (3, 4, 23, 3) 197 | -------------------------------------------------------------------------------- /pointnet2/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/pointnet2/.DS_Store -------------------------------------------------------------------------------- /pointnet2/_ext_src/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/pointnet2/_ext_src/.DS_Store -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/ball_query.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #pragma once 7 | #include 8 | 9 | at::Tensor ball_query(at::Tensor new_xyz, at::Tensor xyz, const float radius, 10 | const int nsample); 11 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/cuda_utils.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #ifndef _CUDA_UTILS_H 7 | #define _CUDA_UTILS_H 8 | 9 | #include 10 | #include 11 | #include 12 | 13 | #include 14 | #include 15 | 16 | #include 17 | 18 | #define TOTAL_THREADS 512 19 | 20 | inline int opt_n_threads(int work_size) { 21 | const int pow_2 = std::log(static_cast(work_size)) / std::log(2.0); 22 | 23 | return max(min(1 << pow_2, TOTAL_THREADS), 1); 24 | } 25 | 26 | inline dim3 opt_block_config(int x, int y) { 27 | const int x_threads = opt_n_threads(x); 28 | const int y_threads = 29 | max(min(opt_n_threads(y), TOTAL_THREADS / x_threads), 1); 30 | dim3 block_config(x_threads, y_threads, 1); 31 | 32 | return block_config; 33 | } 34 | 35 | #define CUDA_CHECK_ERRORS() \ 36 | do { \ 37 | cudaError_t err = cudaGetLastError(); \ 38 | if (cudaSuccess != err) { \ 39 | fprintf(stderr, "CUDA kernel failed : %s\n%s at L:%d in %s\n", \ 40 | cudaGetErrorString(err), __PRETTY_FUNCTION__, __LINE__, \ 41 | __FILE__); \ 42 | exit(-1); \ 43 | } \ 44 | } while (0) 45 | 46 | #endif 47 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/cylinder_query.h: -------------------------------------------------------------------------------- 1 | // Author: chenxi-wang 2 | 3 | #pragma once 4 | #include 5 | 6 | at::Tensor cylinder_query(at::Tensor new_xyz, at::Tensor xyz, at::Tensor rot, const float radius, const float hmin, const float hmax, 7 | const int nsample); 8 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/group_points.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #pragma once 7 | #include 8 | 9 | at::Tensor group_points(at::Tensor points, at::Tensor idx); 10 | at::Tensor group_points_grad(at::Tensor grad_out, at::Tensor idx, const int n); 11 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/interpolate.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #pragma once 7 | 8 | #include 9 | #include 10 | 11 | std::vector three_nn(at::Tensor unknowns, at::Tensor knows); 12 | at::Tensor three_interpolate(at::Tensor points, at::Tensor idx, 13 | at::Tensor weight); 14 | at::Tensor three_interpolate_grad(at::Tensor grad_out, at::Tensor idx, 15 | at::Tensor weight, const int m); 16 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/sampling.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #pragma once 7 | #include 8 | 9 | at::Tensor gather_points(at::Tensor points, at::Tensor idx); 10 | at::Tensor gather_points_grad(at::Tensor grad_out, at::Tensor idx, const int n); 11 | at::Tensor furthest_point_sampling(at::Tensor points, const int nsamples); 12 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/include/utils.h: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #pragma once 7 | #include 8 | #include 9 | 10 | #define CHECK_CUDA(x) \ 11 | do { \ 12 | TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor"); \ 13 | } while (0) 14 | 15 | #define CHECK_CONTIGUOUS(x) \ 16 | do { \ 17 | TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor"); \ 18 | } while (0) 19 | 20 | #define CHECK_IS_INT(x) \ 21 | do { \ 22 | TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, \ 23 | #x " must be an int tensor"); \ 24 | } while (0) 25 | 26 | #define CHECK_IS_FLOAT(x) \ 27 | do { \ 28 | TORCH_CHECK(x.scalar_type() == at::ScalarType::Float, \ 29 | #x " must be a float tensor"); \ 30 | } while (0) 31 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/ball_query.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include "ball_query.h" 7 | #include "utils.h" 8 | 9 | void query_ball_point_kernel_wrapper(int b, int n, int m, float radius, 10 | int nsample, const float *new_xyz, 11 | const float *xyz, int *idx); 12 | 13 | at::Tensor ball_query(at::Tensor new_xyz, at::Tensor xyz, const float radius, 14 | const int nsample) { 15 | CHECK_CONTIGUOUS(new_xyz); 16 | CHECK_CONTIGUOUS(xyz); 17 | CHECK_IS_FLOAT(new_xyz); 18 | CHECK_IS_FLOAT(xyz); 19 | 20 | if (new_xyz.type().is_cuda()) { 21 | CHECK_CUDA(xyz); 22 | } 23 | 24 | at::Tensor idx = 25 | torch::zeros({new_xyz.size(0), new_xyz.size(1), nsample}, 26 | at::device(new_xyz.device()).dtype(at::ScalarType::Int)); 27 | 28 | if (new_xyz.type().is_cuda()) { 29 | query_ball_point_kernel_wrapper(xyz.size(0), xyz.size(1), new_xyz.size(1), 30 | radius, nsample, new_xyz.data(), 31 | xyz.data(), idx.data()); 32 | } else { 33 | TORCH_CHECK(false, "CPU not supported"); 34 | } 35 | 36 | return idx; 37 | } 38 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/ball_query_gpu.cu: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include 7 | #include 8 | #include 9 | 10 | #include "cuda_utils.h" 11 | 12 | // input: new_xyz(b, m, 3) xyz(b, n, 3) 13 | // output: idx(b, m, nsample) 14 | __global__ void query_ball_point_kernel(int b, int n, int m, float radius, 15 | int nsample, 16 | const float *__restrict__ new_xyz, 17 | const float *__restrict__ xyz, 18 | int *__restrict__ idx) { 19 | int batch_index = blockIdx.x; 20 | xyz += batch_index * n * 3; 21 | new_xyz += batch_index * m * 3; 22 | idx += m * nsample * batch_index; 23 | 24 | int index = threadIdx.x; 25 | int stride = blockDim.x; 26 | 27 | float radius2 = radius * radius; 28 | for (int j = index; j < m; j += stride) { 29 | float new_x = new_xyz[j * 3 + 0]; 30 | float new_y = new_xyz[j * 3 + 1]; 31 | float new_z = new_xyz[j * 3 + 2]; 32 | for (int k = 0, cnt = 0; k < n && cnt < nsample; ++k) { 33 | float x = xyz[k * 3 + 0]; 34 | float y = xyz[k * 3 + 1]; 35 | float z = xyz[k * 3 + 2]; 36 | float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + 37 | (new_z - z) * (new_z - z); 38 | if (d2 < radius2) { 39 | if (cnt == 0) { 40 | for (int l = 0; l < nsample; ++l) { 41 | idx[j * nsample + l] = k; 42 | } 43 | } 44 | idx[j * nsample + cnt] = k; 45 | ++cnt; 46 | } 47 | } 48 | } 49 | } 50 | 51 | void query_ball_point_kernel_wrapper(int b, int n, int m, float radius, 52 | int nsample, const float *new_xyz, 53 | const float *xyz, int *idx) { 54 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 55 | query_ball_point_kernel<<>>( 56 | b, n, m, radius, nsample, new_xyz, xyz, idx); 57 | 58 | CUDA_CHECK_ERRORS(); 59 | } 60 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/bindings.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include "ball_query.h" 7 | #include "group_points.h" 8 | #include "interpolate.h" 9 | #include "sampling.h" 10 | #include "cylinder_query.h" 11 | 12 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 13 | m.def("gather_points", &gather_points); 14 | m.def("gather_points_grad", &gather_points_grad); 15 | m.def("furthest_point_sampling", &furthest_point_sampling); 16 | 17 | m.def("three_nn", &three_nn); 18 | m.def("three_interpolate", &three_interpolate); 19 | m.def("three_interpolate_grad", &three_interpolate_grad); 20 | 21 | m.def("ball_query", &ball_query); 22 | 23 | m.def("group_points", &group_points); 24 | m.def("group_points_grad", &group_points_grad); 25 | 26 | m.def("cylinder_query", &cylinder_query); 27 | } 28 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/cylinder_query.cpp: -------------------------------------------------------------------------------- 1 | // Author: chenxi-wang 2 | 3 | #include "cylinder_query.h" 4 | #include "utils.h" 5 | 6 | void query_cylinder_point_kernel_wrapper(int b, int n, int m, float radius, float hmin, float hmax, 7 | int nsample, const float *new_xyz, 8 | const float *xyz, const float *rot, int *idx); 9 | 10 | at::Tensor cylinder_query(at::Tensor new_xyz, at::Tensor xyz, at::Tensor rot, const float radius, const float hmin, const float hmax, 11 | const int nsample) { 12 | CHECK_CONTIGUOUS(new_xyz); 13 | CHECK_CONTIGUOUS(xyz); 14 | CHECK_CONTIGUOUS(rot); 15 | CHECK_IS_FLOAT(new_xyz); 16 | CHECK_IS_FLOAT(xyz); 17 | CHECK_IS_FLOAT(rot); 18 | 19 | if (new_xyz.type().is_cuda()) { 20 | CHECK_CUDA(xyz); 21 | CHECK_CUDA(rot); 22 | } 23 | 24 | at::Tensor idx = 25 | torch::zeros({new_xyz.size(0), new_xyz.size(1), nsample}, 26 | at::device(new_xyz.device()).dtype(at::ScalarType::Int)); 27 | 28 | if (new_xyz.type().is_cuda()) { 29 | query_cylinder_point_kernel_wrapper(xyz.size(0), xyz.size(1), new_xyz.size(1), 30 | radius, hmin, hmax, nsample, new_xyz.data(), 31 | xyz.data(), rot.data(), idx.data()); 32 | } else { 33 | TORCH_CHECK(false, "CPU not supported"); 34 | } 35 | 36 | return idx; 37 | } 38 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/cylinder_query_gpu.cu: -------------------------------------------------------------------------------- 1 | // Author: chenxi-wang 2 | 3 | #include 4 | #include 5 | #include 6 | 7 | #include "cuda_utils.h" 8 | 9 | __global__ void query_cylinder_point_kernel(int b, int n, int m, float radius, float hmin, float hmax, 10 | int nsample, 11 | const float *__restrict__ new_xyz, 12 | const float *__restrict__ xyz, 13 | const float *__restrict__ rot, 14 | int *__restrict__ idx) { 15 | int batch_index = blockIdx.x; 16 | xyz += batch_index * n * 3; 17 | new_xyz += batch_index * m * 3; 18 | rot += batch_index * m * 9; 19 | idx += m * nsample * batch_index; 20 | 21 | int index = threadIdx.x; 22 | int stride = blockDim.x; 23 | 24 | float radius2 = radius * radius; 25 | for (int j = index; j < m; j += stride) { 26 | float new_x = new_xyz[j * 3 + 0]; 27 | float new_y = new_xyz[j * 3 + 1]; 28 | float new_z = new_xyz[j * 3 + 2]; 29 | float r0 = rot[j * 9 + 0]; 30 | float r1 = rot[j * 9 + 1]; 31 | float r2 = rot[j * 9 + 2]; 32 | float r3 = rot[j * 9 + 3]; 33 | float r4 = rot[j * 9 + 4]; 34 | float r5 = rot[j * 9 + 5]; 35 | float r6 = rot[j * 9 + 6]; 36 | float r7 = rot[j * 9 + 7]; 37 | float r8 = rot[j * 9 + 8]; 38 | for (int k = 0, cnt = 0; k < n && cnt < nsample; ++k) { 39 | float x = xyz[k * 3 + 0] - new_x; 40 | float y = xyz[k * 3 + 1] - new_y; 41 | float z = xyz[k * 3 + 2] - new_z; 42 | float x_rot = r0 * x + r3 * y + r6 * z; 43 | float y_rot = r1 * x + r4 * y + r7 * z; 44 | float z_rot = r2 * x + r5 * y + r8 * z; 45 | float d2 = y_rot * y_rot + z_rot * z_rot; 46 | if (d2 < radius2 && x_rot > hmin && x_rot < hmax) { 47 | if (cnt == 0) { 48 | for (int l = 0; l < nsample; ++l) { 49 | idx[j * nsample + l] = k; 50 | } 51 | } 52 | idx[j * nsample + cnt] = k; 53 | ++cnt; 54 | } 55 | } 56 | } 57 | } 58 | 59 | void query_cylinder_point_kernel_wrapper(int b, int n, int m, float radius, float hmin, float hmax, 60 | int nsample, const float *new_xyz, 61 | const float *xyz, const float *rot, int *idx) { 62 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 63 | query_cylinder_point_kernel<<>>( 64 | b, n, m, radius, hmin, hmax, nsample, new_xyz, xyz, rot, idx); 65 | 66 | CUDA_CHECK_ERRORS(); 67 | } 68 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/group_points.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include "group_points.h" 7 | #include "utils.h" 8 | 9 | void group_points_kernel_wrapper(int b, int c, int n, int npoints, int nsample, 10 | const float *points, const int *idx, 11 | float *out); 12 | 13 | void group_points_grad_kernel_wrapper(int b, int c, int n, int npoints, 14 | int nsample, const float *grad_out, 15 | const int *idx, float *grad_points); 16 | 17 | at::Tensor group_points(at::Tensor points, at::Tensor idx) { 18 | CHECK_CONTIGUOUS(points); 19 | CHECK_CONTIGUOUS(idx); 20 | CHECK_IS_FLOAT(points); 21 | CHECK_IS_INT(idx); 22 | 23 | if (points.type().is_cuda()) { 24 | CHECK_CUDA(idx); 25 | } 26 | 27 | at::Tensor output = 28 | torch::zeros({points.size(0), points.size(1), idx.size(1), idx.size(2)}, 29 | at::device(points.device()).dtype(at::ScalarType::Float)); 30 | 31 | if (points.type().is_cuda()) { 32 | group_points_kernel_wrapper(points.size(0), points.size(1), points.size(2), 33 | idx.size(1), idx.size(2), points.data(), 34 | idx.data(), output.data()); 35 | } else { 36 | TORCH_CHECK(false, "CPU not supported"); 37 | } 38 | 39 | return output; 40 | } 41 | 42 | at::Tensor group_points_grad(at::Tensor grad_out, at::Tensor idx, const int n) { 43 | CHECK_CONTIGUOUS(grad_out); 44 | CHECK_CONTIGUOUS(idx); 45 | CHECK_IS_FLOAT(grad_out); 46 | CHECK_IS_INT(idx); 47 | 48 | if (grad_out.type().is_cuda()) { 49 | CHECK_CUDA(idx); 50 | } 51 | 52 | at::Tensor output = 53 | torch::zeros({grad_out.size(0), grad_out.size(1), n}, 54 | at::device(grad_out.device()).dtype(at::ScalarType::Float)); 55 | 56 | if (grad_out.type().is_cuda()) { 57 | group_points_grad_kernel_wrapper( 58 | grad_out.size(0), grad_out.size(1), n, idx.size(1), idx.size(2), 59 | grad_out.data(), idx.data(), output.data()); 60 | } else { 61 | TORCH_CHECK(false, "CPU not supported"); 62 | } 63 | 64 | return output; 65 | } 66 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/group_points_gpu.cu: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include 7 | #include 8 | 9 | #include "cuda_utils.h" 10 | 11 | // input: points(b, c, n) idx(b, npoints, nsample) 12 | // output: out(b, c, npoints, nsample) 13 | __global__ void group_points_kernel(int b, int c, int n, int npoints, 14 | int nsample, 15 | const float *__restrict__ points, 16 | const int *__restrict__ idx, 17 | float *__restrict__ out) { 18 | int batch_index = blockIdx.x; 19 | points += batch_index * n * c; 20 | idx += batch_index * npoints * nsample; 21 | out += batch_index * npoints * nsample * c; 22 | 23 | const int index = threadIdx.y * blockDim.x + threadIdx.x; 24 | const int stride = blockDim.y * blockDim.x; 25 | for (int i = index; i < c * npoints; i += stride) { 26 | const int l = i / npoints; 27 | const int j = i % npoints; 28 | for (int k = 0; k < nsample; ++k) { 29 | int ii = idx[j * nsample + k]; 30 | out[(l * npoints + j) * nsample + k] = points[l * n + ii]; 31 | } 32 | } 33 | } 34 | 35 | void group_points_kernel_wrapper(int b, int c, int n, int npoints, int nsample, 36 | const float *points, const int *idx, 37 | float *out) { 38 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 39 | 40 | group_points_kernel<<>>( 41 | b, c, n, npoints, nsample, points, idx, out); 42 | 43 | CUDA_CHECK_ERRORS(); 44 | } 45 | 46 | // input: grad_out(b, c, npoints, nsample), idx(b, npoints, nsample) 47 | // output: grad_points(b, c, n) 48 | __global__ void group_points_grad_kernel(int b, int c, int n, int npoints, 49 | int nsample, 50 | const float *__restrict__ grad_out, 51 | const int *__restrict__ idx, 52 | float *__restrict__ grad_points) { 53 | int batch_index = blockIdx.x; 54 | grad_out += batch_index * npoints * nsample * c; 55 | idx += batch_index * npoints * nsample; 56 | grad_points += batch_index * n * c; 57 | 58 | const int index = threadIdx.y * blockDim.x + threadIdx.x; 59 | const int stride = blockDim.y * blockDim.x; 60 | for (int i = index; i < c * npoints; i += stride) { 61 | const int l = i / npoints; 62 | const int j = i % npoints; 63 | for (int k = 0; k < nsample; ++k) { 64 | int ii = idx[j * nsample + k]; 65 | atomicAdd(grad_points + l * n + ii, 66 | grad_out[(l * npoints + j) * nsample + k]); 67 | } 68 | } 69 | } 70 | 71 | void group_points_grad_kernel_wrapper(int b, int c, int n, int npoints, 72 | int nsample, const float *grad_out, 73 | const int *idx, float *grad_points) { 74 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 75 | 76 | group_points_grad_kernel<<>>( 77 | b, c, n, npoints, nsample, grad_out, idx, grad_points); 78 | 79 | CUDA_CHECK_ERRORS(); 80 | } 81 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/interpolate.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include "interpolate.h" 7 | #include "utils.h" 8 | 9 | void three_nn_kernel_wrapper(int b, int n, int m, const float *unknown, 10 | const float *known, float *dist2, int *idx); 11 | void three_interpolate_kernel_wrapper(int b, int c, int m, int n, 12 | const float *points, const int *idx, 13 | const float *weight, float *out); 14 | void three_interpolate_grad_kernel_wrapper(int b, int c, int n, int m, 15 | const float *grad_out, 16 | const int *idx, const float *weight, 17 | float *grad_points); 18 | 19 | std::vector three_nn(at::Tensor unknowns, at::Tensor knows) { 20 | CHECK_CONTIGUOUS(unknowns); 21 | CHECK_CONTIGUOUS(knows); 22 | CHECK_IS_FLOAT(unknowns); 23 | CHECK_IS_FLOAT(knows); 24 | 25 | if (unknowns.type().is_cuda()) { 26 | CHECK_CUDA(knows); 27 | } 28 | 29 | at::Tensor idx = 30 | torch::zeros({unknowns.size(0), unknowns.size(1), 3}, 31 | at::device(unknowns.device()).dtype(at::ScalarType::Int)); 32 | at::Tensor dist2 = 33 | torch::zeros({unknowns.size(0), unknowns.size(1), 3}, 34 | at::device(unknowns.device()).dtype(at::ScalarType::Float)); 35 | 36 | if (unknowns.type().is_cuda()) { 37 | three_nn_kernel_wrapper(unknowns.size(0), unknowns.size(1), knows.size(1), 38 | unknowns.data(), knows.data(), 39 | dist2.data(), idx.data()); 40 | } else { 41 | TORCH_CHECK(false, "CPU not supported"); 42 | } 43 | 44 | return {dist2, idx}; 45 | } 46 | 47 | at::Tensor three_interpolate(at::Tensor points, at::Tensor idx, 48 | at::Tensor weight) { 49 | CHECK_CONTIGUOUS(points); 50 | CHECK_CONTIGUOUS(idx); 51 | CHECK_CONTIGUOUS(weight); 52 | CHECK_IS_FLOAT(points); 53 | CHECK_IS_INT(idx); 54 | CHECK_IS_FLOAT(weight); 55 | 56 | if (points.type().is_cuda()) { 57 | CHECK_CUDA(idx); 58 | CHECK_CUDA(weight); 59 | } 60 | 61 | at::Tensor output = 62 | torch::zeros({points.size(0), points.size(1), idx.size(1)}, 63 | at::device(points.device()).dtype(at::ScalarType::Float)); 64 | 65 | if (points.type().is_cuda()) { 66 | three_interpolate_kernel_wrapper( 67 | points.size(0), points.size(1), points.size(2), idx.size(1), 68 | points.data(), idx.data(), weight.data(), 69 | output.data()); 70 | } else { 71 | TORCH_CHECK(false, "CPU not supported"); 72 | } 73 | 74 | return output; 75 | } 76 | at::Tensor three_interpolate_grad(at::Tensor grad_out, at::Tensor idx, 77 | at::Tensor weight, const int m) { 78 | CHECK_CONTIGUOUS(grad_out); 79 | CHECK_CONTIGUOUS(idx); 80 | CHECK_CONTIGUOUS(weight); 81 | CHECK_IS_FLOAT(grad_out); 82 | CHECK_IS_INT(idx); 83 | CHECK_IS_FLOAT(weight); 84 | 85 | if (grad_out.type().is_cuda()) { 86 | CHECK_CUDA(idx); 87 | CHECK_CUDA(weight); 88 | } 89 | 90 | at::Tensor output = 91 | torch::zeros({grad_out.size(0), grad_out.size(1), m}, 92 | at::device(grad_out.device()).dtype(at::ScalarType::Float)); 93 | 94 | if (grad_out.type().is_cuda()) { 95 | three_interpolate_grad_kernel_wrapper( 96 | grad_out.size(0), grad_out.size(1), grad_out.size(2), m, 97 | grad_out.data(), idx.data(), weight.data(), 98 | output.data()); 99 | } else { 100 | TORCH_CHECK(false, "CPU not supported"); 101 | } 102 | 103 | return output; 104 | } 105 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/interpolate_gpu.cu: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include 7 | #include 8 | #include 9 | 10 | #include "cuda_utils.h" 11 | 12 | // input: unknown(b, n, 3) known(b, m, 3) 13 | // output: dist2(b, n, 3), idx(b, n, 3) 14 | __global__ void three_nn_kernel(int b, int n, int m, 15 | const float *__restrict__ unknown, 16 | const float *__restrict__ known, 17 | float *__restrict__ dist2, 18 | int *__restrict__ idx) { 19 | int batch_index = blockIdx.x; 20 | unknown += batch_index * n * 3; 21 | known += batch_index * m * 3; 22 | dist2 += batch_index * n * 3; 23 | idx += batch_index * n * 3; 24 | 25 | int index = threadIdx.x; 26 | int stride = blockDim.x; 27 | for (int j = index; j < n; j += stride) { 28 | float ux = unknown[j * 3 + 0]; 29 | float uy = unknown[j * 3 + 1]; 30 | float uz = unknown[j * 3 + 2]; 31 | 32 | double best1 = 1e40, best2 = 1e40, best3 = 1e40; 33 | int besti1 = 0, besti2 = 0, besti3 = 0; 34 | for (int k = 0; k < m; ++k) { 35 | float x = known[k * 3 + 0]; 36 | float y = known[k * 3 + 1]; 37 | float z = known[k * 3 + 2]; 38 | float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z); 39 | if (d < best1) { 40 | best3 = best2; 41 | besti3 = besti2; 42 | best2 = best1; 43 | besti2 = besti1; 44 | best1 = d; 45 | besti1 = k; 46 | } else if (d < best2) { 47 | best3 = best2; 48 | besti3 = besti2; 49 | best2 = d; 50 | besti2 = k; 51 | } else if (d < best3) { 52 | best3 = d; 53 | besti3 = k; 54 | } 55 | } 56 | dist2[j * 3 + 0] = best1; 57 | dist2[j * 3 + 1] = best2; 58 | dist2[j * 3 + 2] = best3; 59 | 60 | idx[j * 3 + 0] = besti1; 61 | idx[j * 3 + 1] = besti2; 62 | idx[j * 3 + 2] = besti3; 63 | } 64 | } 65 | 66 | void three_nn_kernel_wrapper(int b, int n, int m, const float *unknown, 67 | const float *known, float *dist2, int *idx) { 68 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 69 | three_nn_kernel<<>>(b, n, m, unknown, known, 70 | dist2, idx); 71 | 72 | CUDA_CHECK_ERRORS(); 73 | } 74 | 75 | // input: points(b, c, m), idx(b, n, 3), weight(b, n, 3) 76 | // output: out(b, c, n) 77 | __global__ void three_interpolate_kernel(int b, int c, int m, int n, 78 | const float *__restrict__ points, 79 | const int *__restrict__ idx, 80 | const float *__restrict__ weight, 81 | float *__restrict__ out) { 82 | int batch_index = blockIdx.x; 83 | points += batch_index * m * c; 84 | 85 | idx += batch_index * n * 3; 86 | weight += batch_index * n * 3; 87 | 88 | out += batch_index * n * c; 89 | 90 | const int index = threadIdx.y * blockDim.x + threadIdx.x; 91 | const int stride = blockDim.y * blockDim.x; 92 | for (int i = index; i < c * n; i += stride) { 93 | const int l = i / n; 94 | const int j = i % n; 95 | float w1 = weight[j * 3 + 0]; 96 | float w2 = weight[j * 3 + 1]; 97 | float w3 = weight[j * 3 + 2]; 98 | 99 | int i1 = idx[j * 3 + 0]; 100 | int i2 = idx[j * 3 + 1]; 101 | int i3 = idx[j * 3 + 2]; 102 | 103 | out[i] = points[l * m + i1] * w1 + points[l * m + i2] * w2 + 104 | points[l * m + i3] * w3; 105 | } 106 | } 107 | 108 | void three_interpolate_kernel_wrapper(int b, int c, int m, int n, 109 | const float *points, const int *idx, 110 | const float *weight, float *out) { 111 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 112 | three_interpolate_kernel<<>>( 113 | b, c, m, n, points, idx, weight, out); 114 | 115 | CUDA_CHECK_ERRORS(); 116 | } 117 | 118 | // input: grad_out(b, c, n), idx(b, n, 3), weight(b, n, 3) 119 | // output: grad_points(b, c, m) 120 | 121 | __global__ void three_interpolate_grad_kernel( 122 | int b, int c, int n, int m, const float *__restrict__ grad_out, 123 | const int *__restrict__ idx, const float *__restrict__ weight, 124 | float *__restrict__ grad_points) { 125 | int batch_index = blockIdx.x; 126 | grad_out += batch_index * n * c; 127 | idx += batch_index * n * 3; 128 | weight += batch_index * n * 3; 129 | grad_points += batch_index * m * c; 130 | 131 | const int index = threadIdx.y * blockDim.x + threadIdx.x; 132 | const int stride = blockDim.y * blockDim.x; 133 | for (int i = index; i < c * n; i += stride) { 134 | const int l = i / n; 135 | const int j = i % n; 136 | float w1 = weight[j * 3 + 0]; 137 | float w2 = weight[j * 3 + 1]; 138 | float w3 = weight[j * 3 + 2]; 139 | 140 | int i1 = idx[j * 3 + 0]; 141 | int i2 = idx[j * 3 + 1]; 142 | int i3 = idx[j * 3 + 2]; 143 | 144 | atomicAdd(grad_points + l * m + i1, grad_out[i] * w1); 145 | atomicAdd(grad_points + l * m + i2, grad_out[i] * w2); 146 | atomicAdd(grad_points + l * m + i3, grad_out[i] * w3); 147 | } 148 | } 149 | 150 | void three_interpolate_grad_kernel_wrapper(int b, int c, int n, int m, 151 | const float *grad_out, 152 | const int *idx, const float *weight, 153 | float *grad_points) { 154 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 155 | three_interpolate_grad_kernel<<>>( 156 | b, c, n, m, grad_out, idx, weight, grad_points); 157 | 158 | CUDA_CHECK_ERRORS(); 159 | } 160 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/sampling.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include "sampling.h" 7 | #include "utils.h" 8 | 9 | void gather_points_kernel_wrapper(int b, int c, int n, int npoints, 10 | const float *points, const int *idx, 11 | float *out); 12 | void gather_points_grad_kernel_wrapper(int b, int c, int n, int npoints, 13 | const float *grad_out, const int *idx, 14 | float *grad_points); 15 | 16 | void furthest_point_sampling_kernel_wrapper(int b, int n, int m, 17 | const float *dataset, float *temp, 18 | int *idxs); 19 | 20 | at::Tensor gather_points(at::Tensor points, at::Tensor idx) { 21 | CHECK_CONTIGUOUS(points); 22 | CHECK_CONTIGUOUS(idx); 23 | CHECK_IS_FLOAT(points); 24 | CHECK_IS_INT(idx); 25 | 26 | if (points.type().is_cuda()) { 27 | CHECK_CUDA(idx); 28 | } 29 | 30 | at::Tensor output = 31 | torch::zeros({points.size(0), points.size(1), idx.size(1)}, 32 | at::device(points.device()).dtype(at::ScalarType::Float)); 33 | 34 | if (points.type().is_cuda()) { 35 | gather_points_kernel_wrapper(points.size(0), points.size(1), points.size(2), 36 | idx.size(1), points.data(), 37 | idx.data(), output.data()); 38 | } else { 39 | TORCH_CHECK(false, "CPU not supported"); 40 | } 41 | 42 | return output; 43 | } 44 | 45 | at::Tensor gather_points_grad(at::Tensor grad_out, at::Tensor idx, 46 | const int n) { 47 | CHECK_CONTIGUOUS(grad_out); 48 | CHECK_CONTIGUOUS(idx); 49 | CHECK_IS_FLOAT(grad_out); 50 | CHECK_IS_INT(idx); 51 | 52 | if (grad_out.type().is_cuda()) { 53 | CHECK_CUDA(idx); 54 | } 55 | 56 | at::Tensor output = 57 | torch::zeros({grad_out.size(0), grad_out.size(1), n}, 58 | at::device(grad_out.device()).dtype(at::ScalarType::Float)); 59 | 60 | if (grad_out.type().is_cuda()) { 61 | gather_points_grad_kernel_wrapper(grad_out.size(0), grad_out.size(1), n, 62 | idx.size(1), grad_out.data(), 63 | idx.data(), output.data()); 64 | } else { 65 | TORCH_CHECK(false, "CPU not supported"); 66 | } 67 | 68 | return output; 69 | } 70 | at::Tensor furthest_point_sampling(at::Tensor points, const int nsamples) { 71 | CHECK_CONTIGUOUS(points); 72 | CHECK_IS_FLOAT(points); 73 | 74 | at::Tensor output = 75 | torch::zeros({points.size(0), nsamples}, 76 | at::device(points.device()).dtype(at::ScalarType::Int)); 77 | 78 | at::Tensor tmp = 79 | torch::full({points.size(0), points.size(1)}, 1e10, 80 | at::device(points.device()).dtype(at::ScalarType::Float)); 81 | 82 | if (points.type().is_cuda()) { 83 | furthest_point_sampling_kernel_wrapper( 84 | points.size(0), points.size(1), nsamples, points.data(), 85 | tmp.data(), output.data()); 86 | } else { 87 | TORCH_CHECK(false, "CPU not supported"); 88 | } 89 | 90 | return output; 91 | } 92 | -------------------------------------------------------------------------------- /pointnet2/_ext_src/src/sampling_gpu.cu: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | // 3 | // This source code is licensed under the MIT license found in the 4 | // LICENSE file in the root directory of this source tree. 5 | 6 | #include 7 | #include 8 | 9 | #include "cuda_utils.h" 10 | 11 | // input: points(b, c, n) idx(b, m) 12 | // output: out(b, c, m) 13 | __global__ void gather_points_kernel(int b, int c, int n, int m, 14 | const float *__restrict__ points, 15 | const int *__restrict__ idx, 16 | float *__restrict__ out) { 17 | for (int i = blockIdx.x; i < b; i += gridDim.x) { 18 | for (int l = blockIdx.y; l < c; l += gridDim.y) { 19 | for (int j = threadIdx.x; j < m; j += blockDim.x) { 20 | int a = idx[i * m + j]; 21 | out[(i * c + l) * m + j] = points[(i * c + l) * n + a]; 22 | } 23 | } 24 | } 25 | } 26 | 27 | void gather_points_kernel_wrapper(int b, int c, int n, int npoints, 28 | const float *points, const int *idx, 29 | float *out) { 30 | gather_points_kernel<<>>(b, c, n, npoints, 32 | points, idx, out); 33 | 34 | CUDA_CHECK_ERRORS(); 35 | } 36 | 37 | // input: grad_out(b, c, m) idx(b, m) 38 | // output: grad_points(b, c, n) 39 | __global__ void gather_points_grad_kernel(int b, int c, int n, int m, 40 | const float *__restrict__ grad_out, 41 | const int *__restrict__ idx, 42 | float *__restrict__ grad_points) { 43 | for (int i = blockIdx.x; i < b; i += gridDim.x) { 44 | for (int l = blockIdx.y; l < c; l += gridDim.y) { 45 | for (int j = threadIdx.x; j < m; j += blockDim.x) { 46 | int a = idx[i * m + j]; 47 | atomicAdd(grad_points + (i * c + l) * n + a, 48 | grad_out[(i * c + l) * m + j]); 49 | } 50 | } 51 | } 52 | } 53 | 54 | void gather_points_grad_kernel_wrapper(int b, int c, int n, int npoints, 55 | const float *grad_out, const int *idx, 56 | float *grad_points) { 57 | gather_points_grad_kernel<<>>( 59 | b, c, n, npoints, grad_out, idx, grad_points); 60 | 61 | CUDA_CHECK_ERRORS(); 62 | } 63 | 64 | __device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, 65 | int idx1, int idx2) { 66 | const float v1 = dists[idx1], v2 = dists[idx2]; 67 | const int i1 = dists_i[idx1], i2 = dists_i[idx2]; 68 | dists[idx1] = max(v1, v2); 69 | dists_i[idx1] = v2 > v1 ? i2 : i1; 70 | } 71 | 72 | // Input dataset: (b, n, 3), tmp: (b, n) 73 | // Ouput idxs (b, m) 74 | template 75 | __global__ void furthest_point_sampling_kernel( 76 | int b, int n, int m, const float *__restrict__ dataset, 77 | float *__restrict__ temp, int *__restrict__ idxs) { 78 | if (m <= 0) return; 79 | __shared__ float dists[block_size]; 80 | __shared__ int dists_i[block_size]; 81 | 82 | int batch_index = blockIdx.x; 83 | dataset += batch_index * n * 3; 84 | temp += batch_index * n; 85 | idxs += batch_index * m; 86 | 87 | int tid = threadIdx.x; 88 | const int stride = block_size; 89 | 90 | int old = 0; 91 | if (threadIdx.x == 0) idxs[0] = old; 92 | 93 | __syncthreads(); 94 | for (int j = 1; j < m; j++) { 95 | int besti = 0; 96 | float best = -1; 97 | float x1 = dataset[old * 3 + 0]; 98 | float y1 = dataset[old * 3 + 1]; 99 | float z1 = dataset[old * 3 + 2]; 100 | for (int k = tid; k < n; k += stride) { 101 | float x2, y2, z2; 102 | x2 = dataset[k * 3 + 0]; 103 | y2 = dataset[k * 3 + 1]; 104 | z2 = dataset[k * 3 + 2]; 105 | float mag = (x2 * x2) + (y2 * y2) + (z2 * z2); 106 | if (mag <= 1e-3) continue; 107 | 108 | float d = 109 | (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1); 110 | 111 | float d2 = min(d, temp[k]); 112 | temp[k] = d2; 113 | besti = d2 > best ? k : besti; 114 | best = d2 > best ? d2 : best; 115 | } 116 | dists[tid] = best; 117 | dists_i[tid] = besti; 118 | __syncthreads(); 119 | 120 | if (block_size >= 512) { 121 | if (tid < 256) { 122 | __update(dists, dists_i, tid, tid + 256); 123 | } 124 | __syncthreads(); 125 | } 126 | if (block_size >= 256) { 127 | if (tid < 128) { 128 | __update(dists, dists_i, tid, tid + 128); 129 | } 130 | __syncthreads(); 131 | } 132 | if (block_size >= 128) { 133 | if (tid < 64) { 134 | __update(dists, dists_i, tid, tid + 64); 135 | } 136 | __syncthreads(); 137 | } 138 | if (block_size >= 64) { 139 | if (tid < 32) { 140 | __update(dists, dists_i, tid, tid + 32); 141 | } 142 | __syncthreads(); 143 | } 144 | if (block_size >= 32) { 145 | if (tid < 16) { 146 | __update(dists, dists_i, tid, tid + 16); 147 | } 148 | __syncthreads(); 149 | } 150 | if (block_size >= 16) { 151 | if (tid < 8) { 152 | __update(dists, dists_i, tid, tid + 8); 153 | } 154 | __syncthreads(); 155 | } 156 | if (block_size >= 8) { 157 | if (tid < 4) { 158 | __update(dists, dists_i, tid, tid + 4); 159 | } 160 | __syncthreads(); 161 | } 162 | if (block_size >= 4) { 163 | if (tid < 2) { 164 | __update(dists, dists_i, tid, tid + 2); 165 | } 166 | __syncthreads(); 167 | } 168 | if (block_size >= 2) { 169 | if (tid < 1) { 170 | __update(dists, dists_i, tid, tid + 1); 171 | } 172 | __syncthreads(); 173 | } 174 | 175 | old = dists_i[0]; 176 | if (tid == 0) idxs[j] = old; 177 | } 178 | } 179 | 180 | void furthest_point_sampling_kernel_wrapper(int b, int n, int m, 181 | const float *dataset, float *temp, 182 | int *idxs) { 183 | unsigned int n_threads = opt_n_threads(n); 184 | 185 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(); 186 | 187 | switch (n_threads) { 188 | case 512: 189 | furthest_point_sampling_kernel<512> 190 | <<>>(b, n, m, dataset, temp, idxs); 191 | break; 192 | case 256: 193 | furthest_point_sampling_kernel<256> 194 | <<>>(b, n, m, dataset, temp, idxs); 195 | break; 196 | case 128: 197 | furthest_point_sampling_kernel<128> 198 | <<>>(b, n, m, dataset, temp, idxs); 199 | break; 200 | case 64: 201 | furthest_point_sampling_kernel<64> 202 | <<>>(b, n, m, dataset, temp, idxs); 203 | break; 204 | case 32: 205 | furthest_point_sampling_kernel<32> 206 | <<>>(b, n, m, dataset, temp, idxs); 207 | break; 208 | case 16: 209 | furthest_point_sampling_kernel<16> 210 | <<>>(b, n, m, dataset, temp, idxs); 211 | break; 212 | case 8: 213 | furthest_point_sampling_kernel<8> 214 | <<>>(b, n, m, dataset, temp, idxs); 215 | break; 216 | case 4: 217 | furthest_point_sampling_kernel<4> 218 | <<>>(b, n, m, dataset, temp, idxs); 219 | break; 220 | case 2: 221 | furthest_point_sampling_kernel<2> 222 | <<>>(b, n, m, dataset, temp, idxs); 223 | break; 224 | case 1: 225 | furthest_point_sampling_kernel<1> 226 | <<>>(b, n, m, dataset, temp, idxs); 227 | break; 228 | default: 229 | furthest_point_sampling_kernel<512> 230 | <<>>(b, n, m, dataset, temp, idxs); 231 | } 232 | 233 | CUDA_CHECK_ERRORS(); 234 | } 235 | -------------------------------------------------------------------------------- /pointnet2/pytorch_utils.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | ''' Modified based on Ref: https://github.com/erikwijmans/Pointnet2_PyTorch ''' 7 | import torch 8 | import torch.nn as nn 9 | from typing import List, Tuple 10 | 11 | class SharedMLP(nn.Sequential): 12 | 13 | def __init__( 14 | self, 15 | args: List[int], 16 | *, 17 | bn: bool = False, 18 | activation=nn.ReLU(inplace=True), 19 | preact: bool = False, 20 | first: bool = False, 21 | name: str = "" 22 | ): 23 | super().__init__() 24 | 25 | for i in range(len(args) - 1): 26 | self.add_module( 27 | name + 'layer{}'.format(i), 28 | Conv2d( 29 | args[i], 30 | args[i + 1], 31 | bn=(not first or not preact or (i != 0)) and bn, 32 | activation=activation 33 | if (not first or not preact or (i != 0)) else None, 34 | preact=preact 35 | ) 36 | ) 37 | 38 | 39 | class _BNBase(nn.Sequential): 40 | 41 | def __init__(self, in_size, batch_norm=None, name=""): 42 | super().__init__() 43 | self.add_module(name + "bn", batch_norm(in_size)) 44 | 45 | nn.init.constant_(self[0].weight, 1.0) 46 | nn.init.constant_(self[0].bias, 0) 47 | 48 | 49 | class BatchNorm1d(_BNBase): 50 | 51 | def __init__(self, in_size: int, *, name: str = ""): 52 | super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name) 53 | 54 | 55 | class BatchNorm2d(_BNBase): 56 | 57 | def __init__(self, in_size: int, name: str = ""): 58 | super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name) 59 | 60 | 61 | class BatchNorm3d(_BNBase): 62 | 63 | def __init__(self, in_size: int, name: str = ""): 64 | super().__init__(in_size, batch_norm=nn.BatchNorm3d, name=name) 65 | 66 | 67 | class _ConvBase(nn.Sequential): 68 | 69 | def __init__( 70 | self, 71 | in_size, 72 | out_size, 73 | kernel_size, 74 | stride, 75 | padding, 76 | activation, 77 | bn, 78 | init, 79 | conv=None, 80 | batch_norm=None, 81 | bias=True, 82 | preact=False, 83 | name="" 84 | ): 85 | super().__init__() 86 | 87 | bias = bias and (not bn) 88 | conv_unit = conv( 89 | in_size, 90 | out_size, 91 | kernel_size=kernel_size, 92 | stride=stride, 93 | padding=padding, 94 | bias=bias 95 | ) 96 | init(conv_unit.weight) 97 | if bias: 98 | nn.init.constant_(conv_unit.bias, 0) 99 | 100 | if bn: 101 | if not preact: 102 | bn_unit = batch_norm(out_size) 103 | else: 104 | bn_unit = batch_norm(in_size) 105 | 106 | if preact: 107 | if bn: 108 | self.add_module(name + 'bn', bn_unit) 109 | 110 | if activation is not None: 111 | self.add_module(name + 'activation', activation) 112 | 113 | self.add_module(name + 'conv', conv_unit) 114 | 115 | if not preact: 116 | if bn: 117 | self.add_module(name + 'bn', bn_unit) 118 | 119 | if activation is not None: 120 | self.add_module(name + 'activation', activation) 121 | 122 | 123 | class Conv1d(_ConvBase): 124 | 125 | def __init__( 126 | self, 127 | in_size: int, 128 | out_size: int, 129 | *, 130 | kernel_size: int = 1, 131 | stride: int = 1, 132 | padding: int = 0, 133 | activation=nn.ReLU(inplace=True), 134 | bn: bool = False, 135 | init=nn.init.kaiming_normal_, 136 | bias: bool = True, 137 | preact: bool = False, 138 | name: str = "" 139 | ): 140 | super().__init__( 141 | in_size, 142 | out_size, 143 | kernel_size, 144 | stride, 145 | padding, 146 | activation, 147 | bn, 148 | init, 149 | conv=nn.Conv1d, 150 | batch_norm=BatchNorm1d, 151 | bias=bias, 152 | preact=preact, 153 | name=name 154 | ) 155 | 156 | 157 | class Conv2d(_ConvBase): 158 | 159 | def __init__( 160 | self, 161 | in_size: int, 162 | out_size: int, 163 | *, 164 | kernel_size: Tuple[int, int] = (1, 1), 165 | stride: Tuple[int, int] = (1, 1), 166 | padding: Tuple[int, int] = (0, 0), 167 | activation=nn.ReLU(inplace=True), 168 | bn: bool = False, 169 | init=nn.init.kaiming_normal_, 170 | bias: bool = True, 171 | preact: bool = False, 172 | name: str = "" 173 | ): 174 | super().__init__( 175 | in_size, 176 | out_size, 177 | kernel_size, 178 | stride, 179 | padding, 180 | activation, 181 | bn, 182 | init, 183 | conv=nn.Conv2d, 184 | batch_norm=BatchNorm2d, 185 | bias=bias, 186 | preact=preact, 187 | name=name 188 | ) 189 | 190 | 191 | class Conv3d(_ConvBase): 192 | 193 | def __init__( 194 | self, 195 | in_size: int, 196 | out_size: int, 197 | *, 198 | kernel_size: Tuple[int, int, int] = (1, 1, 1), 199 | stride: Tuple[int, int, int] = (1, 1, 1), 200 | padding: Tuple[int, int, int] = (0, 0, 0), 201 | activation=nn.ReLU(inplace=True), 202 | bn: bool = False, 203 | init=nn.init.kaiming_normal_, 204 | bias: bool = True, 205 | preact: bool = False, 206 | name: str = "" 207 | ): 208 | super().__init__( 209 | in_size, 210 | out_size, 211 | kernel_size, 212 | stride, 213 | padding, 214 | activation, 215 | bn, 216 | init, 217 | conv=nn.Conv3d, 218 | batch_norm=BatchNorm3d, 219 | bias=bias, 220 | preact=preact, 221 | name=name 222 | ) 223 | 224 | 225 | class FC(nn.Sequential): 226 | 227 | def __init__( 228 | self, 229 | in_size: int, 230 | out_size: int, 231 | *, 232 | activation=nn.ReLU(inplace=True), 233 | bn: bool = False, 234 | init=None, 235 | preact: bool = False, 236 | name: str = "" 237 | ): 238 | super().__init__() 239 | 240 | fc = nn.Linear(in_size, out_size, bias=not bn) 241 | if init is not None: 242 | init(fc.weight) 243 | if not bn: 244 | nn.init.constant_(fc.bias, 0) 245 | 246 | if preact: 247 | if bn: 248 | self.add_module(name + 'bn', BatchNorm1d(in_size)) 249 | 250 | if activation is not None: 251 | self.add_module(name + 'activation', activation) 252 | 253 | self.add_module(name + 'fc', fc) 254 | 255 | if not preact: 256 | if bn: 257 | self.add_module(name + 'bn', BatchNorm1d(out_size)) 258 | 259 | if activation is not None: 260 | self.add_module(name + 'activation', activation) 261 | 262 | def set_bn_momentum_default(bn_momentum): 263 | 264 | def fn(m): 265 | if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)): 266 | m.momentum = bn_momentum 267 | 268 | return fn 269 | 270 | 271 | class BNMomentumScheduler(object): 272 | 273 | def __init__( 274 | self, model, bn_lambda, last_epoch=-1, 275 | setter=set_bn_momentum_default 276 | ): 277 | if not isinstance(model, nn.Module): 278 | raise RuntimeError( 279 | "Class '{}' is not a PyTorch nn Module".format( 280 | type(model).__name__ 281 | ) 282 | ) 283 | 284 | self.model = model 285 | self.setter = setter 286 | self.lmbd = bn_lambda 287 | 288 | self.step(last_epoch + 1) 289 | self.last_epoch = last_epoch 290 | 291 | def step(self, epoch=None): 292 | if epoch is None: 293 | epoch = self.last_epoch + 1 294 | 295 | self.last_epoch = epoch 296 | self.model.apply(self.setter(self.lmbd(epoch))) 297 | 298 | 299 | -------------------------------------------------------------------------------- /pointnet2/setup.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # 3 | # This source code is licensed under the MIT license found in the 4 | # LICENSE file in the root directory of this source tree. 5 | 6 | from setuptools import setup 7 | from torch.utils.cpp_extension import BuildExtension, CUDAExtension 8 | import glob 9 | import os 10 | ROOT = os.path.dirname(os.path.abspath(__file__)) 11 | 12 | _ext_src_root = "_ext_src" 13 | _ext_sources = glob.glob("{}/src/*.cpp".format(_ext_src_root)) + glob.glob( 14 | "{}/src/*.cu".format(_ext_src_root) 15 | ) 16 | _ext_headers = glob.glob("{}/include/*".format(_ext_src_root)) 17 | 18 | setup( 19 | name='pointnet2', 20 | ext_modules=[ 21 | CUDAExtension( 22 | name='pointnet2._ext', 23 | sources=_ext_sources, 24 | extra_compile_args={ 25 | "cxx": ["-O2", "-I{}".format("{}/{}/include".format(ROOT, _ext_src_root))], 26 | "nvcc": ["-O2", "-I{}".format("{}/{}/include".format(ROOT, _ext_src_root))], 27 | }, 28 | ) 29 | ], 30 | cmdclass={ 31 | 'build_ext': BuildExtension 32 | } 33 | ) 34 | -------------------------------------------------------------------------------- /real/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/real/.DS_Store -------------------------------------------------------------------------------- /real/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/real/__init__.py -------------------------------------------------------------------------------- /real/calibrate.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import matplotlib.pyplot as plt 4 | import numpy as np 5 | import time 6 | import cv2 7 | from UR_Robot import UR_Robot 8 | from scipy import optimize 9 | from mpl_toolkits.mplot3d import Axes3D 10 | 11 | 12 | # User options (change me) 13 | # --------------- Setup options --------------- 14 | tcp_host_ip = '192.168.50.100' # IP and port to robot arm as TCP client (UR5) 15 | tcp_port = 30003 16 | # workspace_limits = np.asarray([[0.3, 0.75], [0.05, 0.4], [-0.2, -0.1]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates) 17 | # workspace_limits = np.asarray([[0.35, 0.55], [0, 0.35], [0.15, 0.25]]) 18 | workspace_limits = np.asarray([[0.2, 0.4], [0.4, 0.6], [0.05, 0.1]]) 19 | 20 | calib_grid_step = 0.05 #0.05 21 | #checkerboard_offset_from_tool = [0,-0.13,0.02] # change me! 22 | checkerboard_offset_from_tool = [0,0.121,0] 23 | tool_orientation = [-np.pi/2,0,0] # [0,-2.22,2.22] # [2.22,2.22,0] 24 | # tool_orientation = [np.pi/2,np.pi/2,np.pi/2] 25 | #--------------------------------------------- 26 | 27 | 28 | # Construct 3D calibration grid across workspace 29 | print(1 + (workspace_limits[0][1] - workspace_limits[0][0])/calib_grid_step) 30 | gridspace_x = np.linspace(workspace_limits[0][0], workspace_limits[0][1], int(1 + (workspace_limits[0][1] - workspace_limits[0][0])/calib_grid_step)) 31 | gridspace_y = np.linspace(workspace_limits[1][0], workspace_limits[1][1], int(1 + (workspace_limits[1][1] - workspace_limits[1][0])/calib_grid_step)) 32 | gridspace_z = np.linspace(workspace_limits[2][0], workspace_limits[2][1], int(1 + (workspace_limits[2][1] - workspace_limits[2][0])/calib_grid_step)) 33 | calib_grid_x, calib_grid_y, calib_grid_z = np.meshgrid(gridspace_x, gridspace_y, gridspace_z) 34 | num_calib_grid_pts = calib_grid_x.shape[0]*calib_grid_x.shape[1]*calib_grid_x.shape[2] 35 | 36 | calib_grid_x.shape = (num_calib_grid_pts,1) 37 | calib_grid_y.shape = (num_calib_grid_pts,1) 38 | calib_grid_z.shape = (num_calib_grid_pts,1) 39 | calib_grid_pts = np.concatenate((calib_grid_x, calib_grid_y, calib_grid_z), axis=1) 40 | 41 | measured_pts = [] 42 | observed_pts = [] 43 | observed_pix = [] 44 | 45 | # Move robot to home pose 46 | print('Connecting to robot...') 47 | robot = UR_Robot(tcp_host_ip,tcp_port,workspace_limits,is_use_robotiq85=False) 48 | # robot.open_gripper() 49 | 50 | # Slow down robot 51 | robot.joint_acc = 1.4 52 | robot.joint_vel = 1.05 53 | 54 | # Make robot gripper point upwards 55 | robot.move_j([-np.pi, -np.pi/2, np.pi/2, 0, np.pi/2, np.pi]) 56 | # self.home_joint_config = [-(0 / 360.0) * 2 * np.pi, -(90 / 360.0) * 2 * np.pi, 57 | # (0 / 360.0) * 2 * np.pi, -(90 / 360.0) * 2 * np.pi, 58 | # -(0 / 360.0) * 2 * np.pi, 0.0] 59 | # [0,-np.pi/2,0,-np.pi/2,0,0] 60 | # Move robot to each calibration point in workspace 61 | print('Collecting data...') 62 | for calib_pt_idx in range(num_calib_grid_pts): 63 | tool_position = calib_grid_pts[calib_pt_idx,:] 64 | tool_config = [tool_position[0],tool_position[1],tool_position[2], 65 | tool_orientation[0],tool_orientation[1],tool_orientation[2]] 66 | tool_config1 = [tool_position[0], tool_position[1], tool_position[2], 67 | tool_orientation[0], tool_orientation[1], tool_orientation[2]] 68 | print(f"tool position and orientation:{tool_config1}") 69 | robot.move_j_p(tool_config) 70 | time.sleep(2) # k 71 | 72 | # Find checkerboard center 73 | checkerboard_size = (5,5) 74 | refine_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 75 | camera_color_img, camera_depth_img = robot.get_camera_data() 76 | bgr_color_data = cv2.cvtColor(camera_color_img, cv2.COLOR_RGB2BGR) 77 | gray_data = cv2.cvtColor(bgr_color_data, cv2.COLOR_RGB2GRAY) 78 | checkerboard_found, corners = cv2.findChessboardCorners(gray_data, checkerboard_size, None, cv2.CALIB_CB_ADAPTIVE_THRESH) 79 | print(checkerboard_found) 80 | if checkerboard_found: 81 | corners_refined = cv2.cornerSubPix(gray_data, corners, (5,5), (-1,-1), refine_criteria) 82 | 83 | # Get observed checkerboard center 3D point in camera space 84 | checkerboard_pix = np.round(corners_refined[12,0,:]).astype(int) 85 | checkerboard_z = camera_depth_img[checkerboard_pix[1]][checkerboard_pix[0]] 86 | checkerboard_x = np.multiply(checkerboard_pix[0]-robot.cam_intrinsics[0][2],checkerboard_z/robot.cam_intrinsics[0][0]) 87 | checkerboard_y = np.multiply(checkerboard_pix[1]-robot.cam_intrinsics[1][2],checkerboard_z/robot.cam_intrinsics[1][1]) 88 | if checkerboard_z == 0: 89 | continue 90 | 91 | # Save calibration point and observed checkerboard center 92 | observed_pts.append([checkerboard_x,checkerboard_y,checkerboard_z]) 93 | # tool_position[2] += checkerboard_offset_from_tool 94 | tool_position = tool_position + checkerboard_offset_from_tool 95 | 96 | measured_pts.append(tool_position) 97 | observed_pix.append(checkerboard_pix) 98 | 99 | # Draw and display the corners 100 | # vis = cv2.drawChessboardCorners(robot.camera.color_data, checkerboard_size, corners_refined, checkerboard_found) 101 | vis = cv2.drawChessboardCorners(bgr_color_data, (1,1), corners_refined[12,:,:], checkerboard_found) 102 | cv2.imwrite('%06d.png' % len(measured_pts), vis) 103 | cv2.imshow('Calibration',vis) 104 | cv2.waitKey(1000) 105 | 106 | # Move robot back to home pose 107 | # robot.go_home() 108 | 109 | measured_pts = np.asarray(measured_pts) 110 | observed_pts = np.asarray(observed_pts) 111 | observed_pix = np.asarray(observed_pix) 112 | world2camera = np.eye(4) 113 | 114 | # Estimate rigid transform with SVD (from Nghia Ho) 115 | def get_rigid_transform(A, B): 116 | assert len(A) == len(B) 117 | N = A.shape[0] # Total points 118 | centroid_A = np.mean(A, axis=0) 119 | centroid_B = np.mean(B, axis=0) 120 | AA = A - np.tile(centroid_A, (N, 1)) # Centre the points 121 | BB = B - np.tile(centroid_B, (N, 1)) 122 | H = np.dot(np.transpose(AA), BB) # Dot is matrix multiplication for array 123 | U, S, Vt = np.linalg.svd(H) 124 | R = np.dot(Vt.T, U.T) 125 | if np.linalg.det(R) < 0: # Special reflection case 126 | Vt[2,:] *= -1 127 | R = np.dot(Vt.T, U.T) 128 | t = np.dot(-R, centroid_A.T) + centroid_B.T 129 | return R, t 130 | 131 | def get_rigid_transform_error(z_scale): 132 | global measured_pts, observed_pts, observed_pix, world2camera, camera 133 | 134 | # Apply z offset and compute new observed points using camera intrinsics 135 | observed_z = observed_pts[:,2:] * z_scale 136 | observed_x = np.multiply(observed_pix[:,[0]]-robot.cam_intrinsics[0][2],observed_z/robot.cam_intrinsics[0][0]) 137 | observed_y = np.multiply(observed_pix[:,[1]]-robot.cam_intrinsics[1][2],observed_z/robot.cam_intrinsics[1][1]) 138 | new_observed_pts = np.concatenate((observed_x, observed_y, observed_z), axis=1) 139 | 140 | # Estimate rigid transform between measured points and new observed points 141 | R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts)) 142 | t.shape = (3,1) 143 | world2camera = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0) 144 | 145 | # Compute rigid transform error 146 | registered_pts = np.dot(R,np.transpose(measured_pts)) + np.tile(t,(1,measured_pts.shape[0])) 147 | error = np.transpose(registered_pts) - new_observed_pts 148 | error = np.sum(np.multiply(error,error)) 149 | rmse = np.sqrt(error/measured_pts.shape[0]) 150 | return rmse 151 | 152 | # Optimize z scale w.r.t. rigid transform error 153 | print('Calibrating...') 154 | z_scale_init = 1 155 | optim_result = optimize.minimize(get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead') 156 | camera_depth_offset = optim_result.x 157 | 158 | # Save camera optimized offset and camera pose 159 | print('Saving...') 160 | np.savetxt('camera_depth_scale.txt', camera_depth_offset, delimiter=' ') 161 | get_rigid_transform_error(camera_depth_offset) 162 | camera_pose = np.linalg.inv(world2camera) 163 | np.savetxt('camera_pose.txt', camera_pose, delimiter=' ') 164 | print('Done.') 165 | 166 | # DEBUG CODE ----------------------------------------------------------------------------------- 167 | 168 | # np.savetxt('measured_pts.txt', np.asarray(measured_pts), delimiter=' ') 169 | # np.savetxt('observed_pts.txt', np.asarray(observed_pts), delimiter=' ') 170 | # np.savetxt('observed_pix.txt', np.asarray(observed_pix), delimiter=' ') 171 | # measured_pts = np.loadtxt('measured_pts.txt', delimiter=' ') 172 | # observed_pts = np.loadtxt('observed_pts.txt', delimiter=' ') 173 | # observed_pix = np.loadtxt('observed_pix.txt', delimiter=' ') 174 | 175 | # fig = plt.figure() 176 | # ax = fig.add_subplot(111, projection='3d') 177 | # ax.scatter(measured_pts[:,0],measured_pts[:,1],measured_pts[:,2], c='blue') 178 | 179 | # print(camera_depth_offset) 180 | # R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(observed_pts)) 181 | # t.shape = (3,1) 182 | # camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0) 183 | # camera2robot = np.linalg.inv(camera_pose) 184 | # t_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(observed_pts)) + np.tile(camera2robot[0:3,3:],(1,observed_pts.shape[0]))) 185 | 186 | # ax.scatter(t_observed_pts[:,0],t_observed_pts[:,1],t_observed_pts[:,2], c='red') 187 | 188 | # new_observed_pts = observed_pts.copy() 189 | # new_observed_pts[:,2] = new_observed_pts[:,2] * camera_depth_offset[0] 190 | # R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts)) 191 | # t.shape = (3,1) 192 | # camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0) 193 | # camera2robot = np.linalg.inv(camera_pose) 194 | # t_new_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(new_observed_pts)) + np.tile(camera2robot[0:3,3:],(1,new_observed_pts.shape[0]))) 195 | 196 | # ax.scatter(t_new_observed_pts[:,0],t_new_observed_pts[:,1],t_new_observed_pts[:,2], c='green') 197 | 198 | # plt.show() -------------------------------------------------------------------------------- /real/cam_pose/camera_depth_scale.txt: -------------------------------------------------------------------------------- 1 | 9.948730468741125155e-04 2 | -------------------------------------------------------------------------------- /real/cam_pose/camera_pose.txt: -------------------------------------------------------------------------------- 1 | -9.766495306940656818e-01 -1.773662733337518504e-01 1.212307686965546361e-01 5.543679023074974399e-01 2 | -2.041509203668498418e-01 9.419546311403927952e-01 -2.665405683691230987e-01 5.960364476569384173e-01 3 | -6.691857670653790502e-02 -2.850660940148158073e-01 -9.561690363814899785e-01 8.550696319465057593e-01 4 | 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 5 | -------------------------------------------------------------------------------- /real/camera_depth_scale.txt: -------------------------------------------------------------------------------- 1 | 9.948730468741125155e-04 2 | -------------------------------------------------------------------------------- /real/camera_pose.txt: -------------------------------------------------------------------------------- 1 | -9.766495306940656818e-01 -1.773662733337518504e-01 1.212307686965546361e-01 5.543679023074974399e-01 2 | -2.041509203668498418e-01 9.419546311403927952e-01 -2.665405683691230987e-01 5.960364476569384173e-01 3 | -6.691857670653790502e-02 -2.850660940148158073e-01 -9.561690363814899785e-01 8.550696319465057593e-01 4 | 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 5 | -------------------------------------------------------------------------------- /real/capture.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import time 4 | import matplotlib.pyplot as plt 5 | from realsenseD435 import RealsenseD435 6 | # import pyrealsense2 as rs 7 | 8 | camera = RealsenseD435() 9 | time.sleep(1) # Give camera some time to load data 10 | 11 | # while True: 12 | # color_img, depth_img = camera.get_data() 13 | # plt.subplot(211) 14 | # plt.imshow(color_img) 15 | # plt.subplot(212) 16 | # plt.imshow(depth_img) 17 | # plt.show() 18 | color_img, depth_img = camera.get_data() 19 | plt.subplot(211) 20 | plt.imshow(color_img) 21 | plt.subplot(212) 22 | plt.imshow(depth_img) 23 | plt.show() -------------------------------------------------------------------------------- /real/color_image.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/real/color_image.png -------------------------------------------------------------------------------- /real/realsenseD415.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import pyrealsense2 as rs 3 | import cv2 4 | 5 | class Camera(object): 6 | 7 | def __init__(self,width=640,height=480,fps=15): 8 | self.im_height = height 9 | self.im_width = width 10 | self.fps = fps 11 | self.intrinsics = None 12 | self.scale = None 13 | self.pipeline = None 14 | self.connect() 15 | # color_img, depth_img = self.get_data() 16 | #print(color_img, depth_img) 17 | 18 | 19 | def connect(self): 20 | # Configure depth and color streams 21 | self.pipeline = rs.pipeline() 22 | config = rs.config() 23 | config.enable_stream(rs.stream.depth, self.im_width, self.im_height, rs.format.z16, self.fps) 24 | config.enable_stream(rs.stream.color, self.im_width, self.im_height, rs.format.bgr8, self.fps) 25 | 26 | # Start streaming 27 | cfg = self.pipeline.start(config) 28 | 29 | # Determine intrinsics 30 | rgb_profile = cfg.get_stream(rs.stream.color) 31 | self.intrinsics = self.get_intrinsics(rgb_profile) 32 | # Determine depth scale 33 | self.scale = cfg.get_device().first_depth_sensor().get_depth_scale() 34 | print("camera depth scale:",self.scale) 35 | print("D415 have connected ...") 36 | def get_data(self): 37 | # Wait for a coherent pair of frames: depth and color 38 | frames = self.pipeline.wait_for_frames() 39 | 40 | # align 41 | align = rs.align(align_to=rs.stream.color) 42 | aligned_frames = align.process(frames) 43 | aligned_depth_frame = aligned_frames.get_depth_frame() 44 | color_frame = aligned_frames.get_color_frame() 45 | # no align 46 | # depth_frame = frames.get_depth_frame() 47 | # color_frame = frames.get_color_frame() 48 | 49 | # Convert images to numpy arrays 50 | depth_image = np.asanyarray(aligned_depth_frame.get_data()) 51 | color_image = np.asanyarray(color_frame.get_data()) 52 | return color_image, depth_image 53 | 54 | def plot_image(self): 55 | color_image,depth_image = self.get_data() 56 | # Apply colormap on depth image (image must be converted to 8-bit per pixel first) 57 | depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) 58 | 59 | depth_colormap_dim = depth_colormap.shape 60 | color_colormap_dim = color_image.shape 61 | 62 | # If depth and color resolutions are different, resize color image to match depth image for display 63 | if depth_colormap_dim != color_colormap_dim: 64 | resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]), 65 | interpolation=cv2.INTER_AREA) 66 | images = np.hstack((resized_color_image, depth_colormap)) 67 | else: 68 | images = np.hstack((color_image, depth_colormap)) 69 | # Show images 70 | cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) 71 | cv2.imshow('RealSense', images) 72 | # cv2.imwrite('color_image.png', color_image) 73 | cv2.waitKey(5000) 74 | 75 | def get_intrinsics(self,rgb_profile): 76 | raw_intrinsics = rgb_profile.as_video_stream_profile().get_intrinsics() 77 | print("camera intrinsics:", raw_intrinsics) 78 | # camera intrinsics form is as follows. 79 | #[[fx,0,ppx], 80 | # [0,fy,ppy], 81 | # [0,0,1]] 82 | # intrinsics = np.array([615.284,0,309.623,0,614.557,247.967,0,0,1]).reshape(3,3) #640 480 83 | intrinsics = np.array([raw_intrinsics.fx, 0, raw_intrinsics.ppx, 0, raw_intrinsics.fy, raw_intrinsics.ppy, 0, 0, 1]).reshape(3, 3) 84 | # print(intrinsics) 85 | return intrinsics 86 | if __name__== '__main__': 87 | mycamera = Camera(width=1280,height=720) 88 | # mycamera.get_data() 89 | # mycamera.plot_image() 90 | # print(mycamera.intrinsics) -------------------------------------------------------------------------------- /real/realsenseD435.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import socket 4 | import numpy as np 5 | import cv2 6 | import os 7 | import time 8 | import struct 9 | import pyrealsense2 as rs 10 | 11 | class RealsenseD435(object): 12 | 13 | def __init__(self): 14 | self.im_height = 720 15 | self.im_width = 1280 16 | self.intrinsics = None 17 | self.get_data() 18 | # color_img, depth_img = self.get_data() 19 | # print(color_img, depth_img) 20 | 21 | 22 | def get_data(self): 23 | # Return color image and depth image 24 | pipeline = rs.pipeline() 25 | config = rs.config() 26 | config.enable_stream(rs.stream.depth, self.im_width, self.im_height, rs.format.z16, 30) 27 | config.enable_stream(rs.stream.color, self.im_width, self.im_height, rs.format.bgr8, 30) 28 | profile = pipeline.start(config) 29 | frames = pipeline.wait_for_frames() 30 | depth = frames.get_depth_frame() 31 | color = frames.get_color_frame() 32 | depth_img=np.asarray(depth.get_data()) 33 | color_img=np.asarray(color.get_data()) 34 | # print(depth_img.dtype,color_img.dtype) 35 | # color_profile = color.get_profile() 36 | # cvsprofile = rs.video_stream_profile(color_profile) 37 | # color_intrin = cvsprofile.get_intrinsics() # [ 640x480 p[325.14 244.014] f[607.879 607.348] Inverse Brown Conrady [0 0 0 0 0] ] 38 | 39 | # Get camera intrinsics 40 | self.intrinsics = [607.879,0,325.14,0,607.348,244.014,0,0,1] # Change me!!!!!!! 41 | 42 | return color_img, depth_img 43 | 44 | # VPG 45 | # class Camera(object): 46 | # 47 | # def __init__(self): 48 | # 49 | # # Data options (change me) 50 | # self.im_height = 720 51 | # self.im_width = 1280 52 | # self.tcp_host_ip = '127.0.0.1' 53 | # self.tcp_port = 50000 54 | # self.buffer_size = 4098 # 4 KiB 55 | # 56 | # # Connect to server 57 | # self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 58 | # self.tcp_socket.connect((self.tcp_host_ip, self.tcp_port)) 59 | # 60 | # self.intrinsics = None 61 | # self.get_data() 62 | # # color_img, depth_img = self.get_data() 63 | # # print(color_img, depth_img) 64 | # 65 | # 66 | # def get_data(self): 67 | # 68 | # # Ping the server with anything 69 | # self.tcp_socket.send(b'asdf') 70 | # 71 | # # Fetch TCP data: 72 | # # color camera intrinsics, 9 floats, number of bytes: 9 x 4 73 | # # depth scale for converting depth from uint16 to float, 1 float, number of bytes: 4 74 | # # depth image, self.im_width x self.im_height uint16, number of bytes: self.im_width x self.im_height x 2 75 | # # color image, self.im_width x self.im_height x 3 uint8, number of bytes: self.im_width x self.im_height x 3 76 | # data = b'' 77 | # while len(data) < (10*4 + self.im_height*self.im_width*5): 78 | # data += self.tcp_socket.recv(self.buffer_size) 79 | # 80 | # # Reorganize TCP data into color and depth frame 81 | # self.intrinsics = np.fromstring(data[0:(9*4)], np.float32).reshape(3, 3) 82 | # depth_scale = np.fromstring(data[(9*4):(10*4)], np.float32)[0] 83 | # depth_img = np.fromstring(data[(10*4):((10*4)+self.im_width*self.im_height*2)], np.uint16).reshape(self.im_height, self.im_width) 84 | # color_img = np.fromstring(data[((10*4)+self.im_width*self.im_height*2):], np.uint8).reshape(self.im_height, self.im_width, 3) 85 | # depth_img = depth_img.astype(float) * depth_scale 86 | # return color_img, depth_img 87 | 88 | 89 | # DEPRECATED CAMERA CLASS FOR REALSENSE WITH ROS 90 | # ---------------------------------------------- 91 | 92 | # import rospy 93 | # from realsense_camera.msg import StreamData 94 | 95 | # class Camera(object): 96 | 97 | 98 | # def __init__(self): 99 | 100 | # # Data options (change me) 101 | # self.im_height = 720 102 | # self.im_width = 1280 103 | 104 | # # RGB-D data variables 105 | # self.color_data = np.zeros((self.im_height,self.im_width,3)) 106 | # self.depth_data = np.zeros((self.im_height,self.im_width)) 107 | # self.intrinsics = np.zeros((3,3)) 108 | 109 | # # Start ROS subscriber to fetch RealSense RGB-D data 110 | # rospy.init_node('listener', anonymous=True) 111 | # rospy.Subscriber("/realsense_camera/stream", StreamData, self.realsense_stream_callback) 112 | 113 | # # Recording variables 114 | # self.frame_idx = 0 115 | # self.is_recording = False 116 | # self.recording_directory = '' 117 | 118 | # # ROS subscriber callback function 119 | # def realsense_stream_callback(self, data): 120 | # tmp_color_data = np.asarray(bytearray(data.color)) 121 | # tmp_color_data.shape = (self.im_height,self.im_width,3) 122 | # tmp_depth_data = np.asarray(data.depth) 123 | # tmp_depth_data.shape = (self.im_height,self.im_width) 124 | # tmp_depth_data = tmp_depth_data.astype(float)/10000 125 | # tmp_intrinsics = np.asarray(data.intrinsics) 126 | # tmp_intrinsics.shape = (3,3) 127 | 128 | # self.color_data = tmp_color_data 129 | # self.depth_data = tmp_depth_data 130 | # self.intrinsics = tmp_intrinsics 131 | 132 | # if self.is_recording: 133 | # tmp_color_image = cv2.cvtColor(tmp_color_data, cv2.COLOR_RGB2BGR) 134 | # cv2.imwrite(os.path.join(self.recording_directory, '%06d.color.png' % (self.frame_idx)), tmp_color_image) 135 | # tmp_depth_image = np.round(tmp_depth_data * 10000).astype(np.uint16) # Save depth in 1e-4 meters 136 | # cv2.imwrite(os.path.join(self.recording_directory, '%06d.depth.png' % (self.frame_idx)), tmp_depth_image) 137 | # self.frame_idx += 1 138 | # else: 139 | # self.frame_idx = 0 140 | 141 | # time.sleep(0.1) 142 | 143 | # # Start/stop recording RGB-D video stream 144 | # def start_recording(self, directory): 145 | # self.recording_directory = directory 146 | # self.is_recording = True 147 | # def stop_recording(self): 148 | # self.is_recording = False 149 | 150 | -------------------------------------------------------------------------------- /real/test.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import math 3 | import cv2 4 | print('Saving...') 5 | # np.savetxt('camera_depth_scale.txt',[1,2], delimiter=' ') 6 | 7 | 8 | def rpy2R(rpy): # [r,p,y] 单位rad 9 | rot_x = np.array([[1, 0, 0], 10 | [0, math.cos(rpy[0]), -math.sin(rpy[0])], 11 | [0, math.sin(rpy[0]), math.cos(rpy[0])]]) 12 | rot_y = np.array([[math.cos(rpy[1]), 0, math.sin(rpy[1])], 13 | [0, 1, 0], 14 | [-math.sin(rpy[1]), 0, math.cos(rpy[1])]]) 15 | rot_z = np.array([[math.cos(rpy[2]), -math.sin(rpy[2]), 0], 16 | [math.sin(rpy[2]), math.cos(rpy[2]), 0], 17 | [0, 0, 1]]) 18 | R = np.dot(rot_z, np.dot(rot_y, rot_x)) 19 | return R 20 | 21 | 22 | def R2rotating_vector(R): 23 | theta = math.acos((R[0, 0] + R[1, 1] + R[2, 2] - 1) / 2) 24 | print(f"theta:{theta}") 25 | rx = (R[2, 1] - R[1, 2]) / (2 * math.sin(theta)) 26 | ry = (R[0, 2] - R[2, 0]) / (2 * math.sin(theta)) 27 | rz = (R[1, 0] - R[0, 1]) / (2 * math.sin(theta)) 28 | return np.array([rx, ry, rz]) 29 | 30 | if __name__ =="__main__": 31 | R = rpy2R([3.14,1.57,0]) 32 | print(R) 33 | v1 = R2rotating_vector(R) 34 | v2 = cv2.Rodrigues(R) 35 | 36 | print(v1) 37 | print(v2[0]) -------------------------------------------------------------------------------- /real/testForRealSense.py: -------------------------------------------------------------------------------- 1 | ## License: Apache 2.0. See LICENSE file in root directory. 2 | ## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved. 3 | 4 | ############################################### 5 | ## Open CV and Numpy integration ## 6 | ############################################### 7 | 8 | import pyrealsense2 as rs 9 | import numpy as np 10 | import cv2 11 | 12 | # ********************************************TEST01********************************************** 13 | # # Configure depth and color streams 14 | # pipeline = rs.pipeline() 15 | # config = rs.config() 16 | # 17 | # # Get device product line for setting a supporting resolution 18 | # pipeline_wrapper = rs.pipeline_wrapper(pipeline) 19 | # pipeline_profile = config.resolve(pipeline_wrapper) 20 | # device = pipeline_profile.get_device() 21 | # device_product_line = str(device.get_info(rs.camera_info.product_line)) 22 | # 23 | # found_rgb = False 24 | # for s in device.sensors: 25 | # if s.get_info(rs.camera_info.name) == 'RGB Camera': 26 | # found_rgb = True 27 | # break 28 | # if not found_rgb: 29 | # print("The demo requires Depth camera with Color sensor") 30 | # exit(0) 31 | # 32 | # config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) 33 | # 34 | # if device_product_line == 'L500': 35 | # print("111") 36 | # config.enable_stream(rs.stream.color, 960, 540, rs.format.bgr8, 30) 37 | # else: 38 | # config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) 39 | # 40 | # # Start streaming 41 | # pipeline.start(config) 42 | # 43 | # try: 44 | # while True: 45 | # 46 | # # Wait for a coherent pair of frames: depth and color 47 | # frames = pipeline.wait_for_frames() 48 | # depth_frame = frames.get_depth_frame() 49 | # color_frame = frames.get_color_frame() 50 | # if not depth_frame or not color_frame: 51 | # continue 52 | # 53 | # # Convert images to numpy arrays 54 | # depth_image = np.asanyarray(depth_frame.get_data()) 55 | # print(depth_frame) 56 | # color_image = np.asanyarray(color_frame.get_data()) 57 | # print(color_image) 58 | # 59 | # # Apply colormap on depth image (image must be converted to 8-bit per pixel first) 60 | # depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) 61 | # 62 | # depth_colormap_dim = depth_colormap.shape 63 | # color_colormap_dim = color_image.shape 64 | # 65 | # # If depth and color resolutions are different, resize color image to match depth image for display 66 | # if depth_colormap_dim != color_colormap_dim: 67 | # resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]), interpolation=cv2.INTER_AREA) 68 | # images = np.hstack((resized_color_image, depth_colormap)) 69 | # else: 70 | # images = np.hstack((color_image, depth_colormap)) 71 | # 72 | # # Show images 73 | # cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) 74 | # cv2.imshow('RealSense', iges) 75 | # cv2.waitKey(1) 76 | # 77 | # finally: 78 | # 79 | # # Stop streaming 80 | # pipeline.stop() 81 | 82 | 83 | 84 | # ********************************************TEST02********************************************** 85 | 86 | 87 | # 获取摄像头的内参是为了将像素坐标转化成实际坐标 88 | 89 | pipeline = rs.pipeline() 90 | config = rs.config() 91 | config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) 92 | config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) 93 | profile = pipeline.start(config) 94 | frames = pipeline.wait_for_frames() 95 | depth = frames.get_depth_frame() 96 | color = frames.get_color_frame() 97 | # 获取内参 98 | depth_profile = depth.get_profile() 99 | print(depth_profile) 100 | # 101 | print(type(depth_profile)) 102 | # 103 | print(depth_profile.fps()) 104 | # 30 105 | print(depth_profile.stream_index()) 106 | # 0 107 | print(depth_profile.stream_name()) 108 | # Depth 109 | print(depth_profile.stream_type()) 110 | # stream.depth 111 | print('', depth_profile.unique_id) 112 | # > 113 | 114 | color_profile = color.get_profile() 115 | print(color_profile) 116 | # 117 | print(type(color_profile)) 118 | # 119 | print(depth_profile.fps()) 120 | # 30 121 | print(depth_profile.stream_index()) 122 | # 0 123 | 124 | cvsprofile = rs.video_stream_profile(color_profile) 125 | dvsprofile = rs.video_stream_profile(depth_profile) 126 | 127 | color_intrin = cvsprofile.get_intrinsics() 128 | print("color intrin:" , color_intrin) 129 | print("color intrin type:",type(color_intrin)) 130 | # width: 640, height: 480, ppx: 318.482, ppy: 241.167, fx: 616.591, fy: 616.765, model: 2, coeffs: [0, 0, 0, 0, 0] 131 | 132 | # depth_intrin = dvsprofile.get_intrinsics() 133 | # print(depth_intrin) 134 | # # width: 640, height: 480, ppx: 317.78, ppy: 236.709, fx: 382.544, fy: 382.544, model: 4, coeffs: [0, 0, 0, 0, 0] 135 | # 136 | # extrin = depth_profile.get_extrinsics_to(color_profile) 137 | # print(extrin) 138 | # # rotation: [0.999984, -0.00420567, -0.00380472, 0.00420863, 0.999991, 0.00076919, 0.00380145, -0.00078519, 0.999992] 139 | # translation: [0.0147755, 0.000203265, 0.00051274] 140 | 141 | -------------------------------------------------------------------------------- /real/testGripper.py: -------------------------------------------------------------------------------- 1 | import robotiq_gripper 2 | import time 3 | 4 | # ip = "127.0.0.1" 5 | ip="192.168.50.139" 6 | def log_info(gripper): 7 | print(f"Pos: {str(gripper.get_current_position()): >3} " 8 | f"Open: {gripper.is_open(): <2} " 9 | f"Closed: {gripper.is_closed(): <2} ") 10 | 11 | print("Creating gripper...") 12 | gripper = robotiq_gripper.RobotiqGripper() 13 | print("Connecting to gripper...") 14 | gripper.connect(ip, 63352) 15 | print("Resting gripper...") 16 | gripper._reset() 17 | print("Activating gripper...") 18 | gripper.activate() 19 | time.sleep(1.5) 20 | 21 | print("Testing gripper......") 22 | gripper.move_and_wait_for_pos(255, 255, 255) 23 | log_info(gripper) 24 | print("gripper had closed!") 25 | time.sleep(1.5) 26 | gripper.move_and_wait_for_pos(0, 255, 255) 27 | log_info(gripper) 28 | print("gripper had opened!") 29 | time.sleep(1.5) 30 | -------------------------------------------------------------------------------- /real/testReceiveCommand.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TX-Leo/Graspness_6dof_robotic_grasping/bf2d0977272831834ea0edde0d426954ad6c4c8d/real/testReceiveCommand.py -------------------------------------------------------------------------------- /real/touch.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | import matplotlib.pyplot as plt 4 | import numpy as np 5 | import time 6 | import cv2 7 | from realsenseD415 import Camera 8 | from UR_Robot import UR_Robot 9 | 10 | 11 | # User options (change me) 12 | # --------------- Setup options --------------- 13 | tcp_host_ip = '192.168.50.100' # IP and port to robot arm as TCP client (UR5) 14 | tcp_port = 30003 15 | tool_orientation = [-np.pi,0,0] 16 | # --------------------------------------------- 17 | 18 | # Move robot to home pose 19 | robot = UR_Robot(tcp_host_ip,tcp_port) 20 | # robot.move_j([-np.pi, -np.pi/2, np.pi/2, 0, np.pi/2, np.pi]) 21 | grasp_home = [0.4, 0, 0.4, -np.pi, 0, 0] # you can change me 22 | robot.move_j_p(grasp_home) 23 | robot.open_gripper() 24 | 25 | # Slow down robot 26 | robot.joint_acc = 1.4 27 | robot.joint_vel = 1.05 28 | 29 | # Callback function for clicking on OpenCV window 30 | click_point_pix = () 31 | camera_color_img, camera_depth_img = robot.get_camera_data() 32 | def mouseclick_callback(event, x, y, flags, param): 33 | if event == cv2.EVENT_LBUTTONDOWN: 34 | global camera, robot, click_point_pix 35 | click_point_pix = (x,y) 36 | 37 | # Get click point in camera coordinates 38 | click_z = camera_depth_img[y][x] * robot.cam_depth_scale 39 | click_x = np.multiply(x-robot.cam_intrinsics[0][2],click_z/robot.cam_intrinsics[0][0]) 40 | click_y = np.multiply(y-robot.cam_intrinsics[1][2],click_z/robot.cam_intrinsics[1][1]) 41 | if click_z == 0: 42 | return 43 | click_point = np.asarray([click_x,click_y,click_z]) 44 | click_point.shape = (3,1) 45 | 46 | # Convert camera to robot coordinates 47 | # camera2robot = np.linalg.inv(robot.cam_pose) 48 | camera2robot = robot.cam_pose 49 | target_position = np.dot(camera2robot[0:3,0:3],click_point) + camera2robot[0:3,3:] 50 | 51 | target_position = target_position[0:3,0] 52 | print(target_position) 53 | print(target_position.shape) 54 | destination=np.append(target_position,tool_orientation) 55 | robot.plane_grasp([target_position[0],target_position[1],target_position[2]]) 56 | 57 | 58 | # Show color and depth frames 59 | cv2.namedWindow('color') 60 | cv2.setMouseCallback('color', mouseclick_callback) 61 | cv2.namedWindow('depth') 62 | 63 | while True: 64 | camera_color_img, camera_depth_img = robot.get_camera_data() 65 | bgr_data = cv2.cvtColor(camera_color_img, cv2.COLOR_RGB2BGR) 66 | if len(click_point_pix) != 0: 67 | bgr_data = cv2.circle(bgr_data, click_point_pix, 7, (0,0,255), 2) 68 | cv2.imshow('color', bgr_data) 69 | cv2.imshow('depth', camera_depth_img) 70 | 71 | if cv2.waitKey(1) == ord('c'): 72 | break 73 | 74 | cv2.destroyAllWindows() 75 | -------------------------------------------------------------------------------- /requirements (copy).txt: -------------------------------------------------------------------------------- 1 | torch>=1.8.0 2 | tensorboard==2.3 3 | numpy 4 | scipy 5 | open3d>=0.8 6 | Pillow 7 | tqdm 8 | MinkowskiEngine==0.5.4 9 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | tensorboard==2.3 2 | numpy 3 | scipy 4 | open3d>=0.8 5 | Pillow 6 | tqdm 7 | 8 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | import numpy as np 4 | import argparse 5 | import time 6 | import torch 7 | from torch.utils.data import DataLoader 8 | from graspnetAPI.graspnet_eval import GraspGroup, GraspNetEval 9 | 10 | ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) 11 | sys.path.append(os.path.join(ROOT_DIR, 'pointnet2')) 12 | sys.path.append(os.path.join(ROOT_DIR, 'utils')) 13 | sys.path.append(os.path.join(ROOT_DIR, 'models')) 14 | sys.path.append(os.path.join(ROOT_DIR, 'dataset')) 15 | 16 | from models.graspnet import GraspNet, pred_decode 17 | from dataset.graspnet_dataset import GraspNetDataset, minkowski_collate_fn 18 | from utils.collision_detector import ModelFreeCollisionDetector 19 | 20 | parser = argparse.ArgumentParser() 21 | parser.add_argument('--dataset_root', default=None, required=True) 22 | parser.add_argument('--checkpoint_path', help='Model checkpoint path', default=None, required=True) 23 | parser.add_argument('--dump_dir', help='Dump dir to save outputs', default=None, required=True) 24 | parser.add_argument('--seed_feat_dim', default=512, type=int, help='Point wise feature dim') 25 | parser.add_argument('--camera', default='kinect', help='Camera split [realsense/kinect]') 26 | parser.add_argument('--num_point', type=int, default=15000, help='Point Number [default: 15000]') 27 | parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during inference [default: 1]') 28 | parser.add_argument('--voxel_size', type=float, default=0.005, help='Voxel Size for sparse convolution') 29 | parser.add_argument('--collision_thresh', type=float, default=0.01, 30 | help='Collision Threshold in collision detection [default: 0.01]') 31 | parser.add_argument('--voxel_size_cd', type=float, default=0.01, help='Voxel Size for collision detection') 32 | parser.add_argument('--infer', action='store_true', default=False) 33 | parser.add_argument('--eval', action='store_true', default=False) 34 | cfgs = parser.parse_args() 35 | 36 | # ------------------------------------------------------------------------- GLOBAL CONFIG BEG 37 | if not os.path.exists(cfgs.dump_dir): 38 | os.mkdir(cfgs.dump_dir) 39 | 40 | 41 | # Init datasets and dataloaders 42 | def my_worker_init_fn(worker_id): 43 | np.random.seed(np.random.get_state()[1][0] + worker_id) 44 | pass 45 | 46 | 47 | def inference(): 48 | test_dataset = GraspNetDataset(cfgs.dataset_root, split='test_seen', camera=cfgs.camera, num_points=cfgs.num_point, 49 | voxel_size=cfgs.voxel_size, remove_outlier=True, augment=False, load_label=False) 50 | print('Test dataset length: ', len(test_dataset)) 51 | scene_list = test_dataset.scene_list() 52 | test_dataloader = DataLoader(test_dataset, batch_size=cfgs.batch_size, shuffle=False, 53 | num_workers=0, worker_init_fn=my_worker_init_fn, collate_fn=minkowski_collate_fn) 54 | print('Test dataloader length: ', len(test_dataloader)) 55 | # Init the model 56 | net = GraspNet(seed_feat_dim=cfgs.seed_feat_dim, is_training=False) 57 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 58 | net.to(device) 59 | # Load checkpoint 60 | checkpoint = torch.load(cfgs.checkpoint_path) 61 | net.load_state_dict(checkpoint['model_state_dict']) 62 | start_epoch = checkpoint['epoch'] 63 | print("-> loaded checkpoint %s (epoch: %d)" % (cfgs.checkpoint_path, start_epoch)) 64 | 65 | batch_interval = 100 66 | net.eval() 67 | tic = time.time() 68 | for batch_idx, batch_data in enumerate(test_dataloader): 69 | for key in batch_data: 70 | if 'list' in key: 71 | for i in range(len(batch_data[key])): 72 | for j in range(len(batch_data[key][i])): 73 | batch_data[key][i][j] = batch_data[key][i][j].to(device) 74 | else: 75 | batch_data[key] = batch_data[key].to(device) 76 | 77 | # Forward pass 78 | with torch.no_grad(): 79 | end_points = net(batch_data) 80 | grasp_preds = pred_decode(end_points) 81 | 82 | # Dump results for evaluation 83 | for i in range(cfgs.batch_size): 84 | data_idx = batch_idx * cfgs.batch_size + i 85 | preds = grasp_preds[i].detach().cpu().numpy() 86 | 87 | gg = GraspGroup(preds) 88 | # collision detection 89 | if cfgs.collision_thresh > 0: 90 | cloud = test_dataset.get_data(data_idx, return_raw_cloud=True) 91 | mfcdetector = ModelFreeCollisionDetector(cloud, voxel_size=cfgs.voxel_size_cd) 92 | collision_mask = mfcdetector.detect(gg, approach_dist=0.05, collision_thresh=cfgs.collision_thresh) 93 | gg = gg[~collision_mask] 94 | 95 | # save grasps 96 | save_dir = os.path.join(cfgs.dump_dir, scene_list[data_idx], cfgs.camera) 97 | save_path = os.path.join(save_dir, str(data_idx % 256).zfill(4) + '.npy') 98 | if not os.path.exists(save_dir): 99 | os.makedirs(save_dir) 100 | gg.save_npy(save_path) 101 | 102 | if (batch_idx + 1) % batch_interval == 0: 103 | toc = time.time() 104 | print('Eval batch: %d, time: %fs' % (batch_idx + 1, (toc - tic) / batch_interval)) 105 | tic = time.time() 106 | 107 | 108 | def evaluate(dump_dir): 109 | ge = GraspNetEval(root=cfgs.dataset_root, camera=cfgs.camera, split='test_seen') 110 | res, ap = ge.eval_seen(dump_folder=dump_dir, proc=6) 111 | save_dir = os.path.join(cfgs.dump_dir, 'ap_{}.npy'.format(cfgs.camera)) 112 | np.save(save_dir, res) 113 | 114 | 115 | if __name__ == '__main__': 116 | if cfgs.infer: 117 | inference() 118 | if cfgs.eval: 119 | evaluate(cfgs.dump_dir) 120 | -------------------------------------------------------------------------------- /train.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | import numpy as np 4 | from datetime import datetime 5 | import argparse 6 | 7 | import torch 8 | import torch.optim as optim 9 | from torch.utils.data import DataLoader 10 | from torch.utils.tensorboard import SummaryWriter 11 | 12 | ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) 13 | sys.path.append(os.path.join(ROOT_DIR, 'pointnet2')) 14 | sys.path.append(os.path.join(ROOT_DIR, 'utils')) 15 | sys.path.append(os.path.join(ROOT_DIR, 'models')) 16 | sys.path.append(os.path.join(ROOT_DIR, 'dataset')) 17 | 18 | from models.graspnet import GraspNet 19 | from models.loss import get_loss 20 | from dataset.graspnet_dataset import GraspNetDataset, minkowski_collate_fn, load_grasp_labels 21 | 22 | parser = argparse.ArgumentParser() 23 | parser.add_argument('--dataset_root', default=None, required=True) 24 | parser.add_argument('--camera', default='kinect', help='Camera split [realsense/kinect]') 25 | parser.add_argument('--checkpoint_path', help='Model checkpoint path', default=None) 26 | parser.add_argument('--model_name', type=str, default=None) 27 | parser.add_argument('--log_dir', default='logs/log') 28 | parser.add_argument('--num_point', type=int, default=15000, help='Point Number [default: 20000]') 29 | parser.add_argument('--seed_feat_dim', default=512, type=int, help='Point wise feature dim') 30 | parser.add_argument('--voxel_size', type=float, default=0.005, help='Voxel Size to process point clouds ') 31 | parser.add_argument('--max_epoch', type=int, default=10, help='Epoch to run [default: 18]') 32 | parser.add_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 2]') 33 | parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') 34 | parser.add_argument('--resume', action='store_true', default=False, help='Whether to resume from checkpoint') 35 | cfgs = parser.parse_args() 36 | # ------------------------------------------------------------------------- GLOBAL CONFIG BEG 37 | EPOCH_CNT = 0 38 | CHECKPOINT_PATH = cfgs.checkpoint_path if cfgs.checkpoint_path is not None and cfgs.resume else None 39 | if not os.path.exists(cfgs.log_dir): 40 | os.makedirs(cfgs.log_dir) 41 | 42 | LOG_FOUT = open(os.path.join(cfgs.log_dir, 'log_train.txt'), 'a') 43 | LOG_FOUT.write(str(cfgs) + '\n') 44 | 45 | 46 | def log_string(out_str): 47 | LOG_FOUT.write(out_str + '\n') 48 | LOG_FOUT.flush() 49 | print(out_str) 50 | 51 | 52 | # Init datasets and dataloaders 53 | def my_worker_init_fn(worker_id): 54 | np.random.seed(np.random.get_state()[1][0] + worker_id) 55 | pass 56 | 57 | 58 | grasp_labels = load_grasp_labels(cfgs.dataset_root) 59 | TRAIN_DATASET = GraspNetDataset(cfgs.dataset_root, grasp_labels=grasp_labels, camera=cfgs.camera, split='train', 60 | num_points=cfgs.num_point, voxel_size=cfgs.voxel_size, 61 | remove_outlier=True, augment=True, load_label=True) 62 | print('train dataset length: ', len(TRAIN_DATASET)) 63 | TRAIN_DATALOADER = DataLoader(TRAIN_DATASET, batch_size=cfgs.batch_size, shuffle=True, 64 | num_workers=0, worker_init_fn=my_worker_init_fn, collate_fn=minkowski_collate_fn) 65 | print('train dataloader length: ', len(TRAIN_DATALOADER)) 66 | 67 | net = GraspNet(seed_feat_dim=cfgs.seed_feat_dim, is_training=True) 68 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 69 | net.to(device) 70 | # Load the Adam optimizer 71 | optimizer = optim.Adam(net.parameters(), lr=cfgs.learning_rate) 72 | start_epoch = 0 73 | if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH): 74 | checkpoint = torch.load(CHECKPOINT_PATH) 75 | net.load_state_dict(checkpoint['model_state_dict']) 76 | optimizer.load_state_dict(checkpoint['optimizer_state_dict']) 77 | start_epoch = checkpoint['epoch'] 78 | log_string("-> loaded checkpoint %s (epoch: %d)" % (CHECKPOINT_PATH, start_epoch)) 79 | # TensorBoard Visualizers 80 | TRAIN_WRITER = SummaryWriter(os.path.join(cfgs.log_dir, 'train')) 81 | 82 | 83 | def get_current_lr(epoch): 84 | lr = cfgs.learning_rate 85 | lr = lr * (0.95 ** epoch) 86 | return lr 87 | 88 | 89 | def adjust_learning_rate(optimizer, epoch): 90 | lr = get_current_lr(epoch) 91 | for param_group in optimizer.param_groups: 92 | param_group['lr'] = lr 93 | 94 | 95 | def train_one_epoch(): 96 | stat_dict = {} # collect statistics 97 | adjust_learning_rate(optimizer, EPOCH_CNT) 98 | net.train() 99 | batch_interval = 20 100 | for batch_idx, batch_data_label in enumerate(TRAIN_DATALOADER): 101 | for key in batch_data_label: 102 | if 'list' in key: 103 | for i in range(len(batch_data_label[key])): 104 | for j in range(len(batch_data_label[key][i])): 105 | batch_data_label[key][i][j] = batch_data_label[key][i][j].to(device) 106 | else: 107 | batch_data_label[key] = batch_data_label[key].to(device) 108 | 109 | end_points = net(batch_data_label) 110 | loss, end_points = get_loss(end_points) 111 | loss.backward() 112 | optimizer.step() 113 | optimizer.zero_grad() 114 | 115 | for key in end_points: 116 | if 'loss' in key or 'acc' in key or 'prec' in key or 'recall' in key or 'count' in key: 117 | if key not in stat_dict: 118 | stat_dict[key] = 0 119 | stat_dict[key] += end_points[key].item() 120 | 121 | if (batch_idx + 1) % batch_interval == 0: 122 | log_string(' ----epoch: %03d ---- batch: %03d ----' % (EPOCH_CNT, batch_idx + 1)) 123 | for key in sorted(stat_dict.keys()): 124 | TRAIN_WRITER.add_scalar(key, stat_dict[key] / batch_interval, 125 | (EPOCH_CNT * len(TRAIN_DATALOADER) + batch_idx) * cfgs.batch_size) 126 | log_string('mean %s: %f' % (key, stat_dict[key] / batch_interval)) 127 | stat_dict[key] = 0 128 | 129 | 130 | def train(start_epoch): 131 | global EPOCH_CNT 132 | for epoch in range(start_epoch, cfgs.max_epoch): 133 | EPOCH_CNT = epoch 134 | log_string('**** EPOCH %03d ****' % epoch) 135 | log_string('Current learning rate: %f' % (get_current_lr(epoch))) 136 | log_string(str(datetime.now())) 137 | # Reset numpy seed. 138 | # REF: https://github.com/pytorch/pytorch/issues/5059 139 | np.random.seed() 140 | train_one_epoch() 141 | 142 | save_dict = {'epoch': epoch + 1, 'optimizer_state_dict': optimizer.state_dict(), 143 | 'model_state_dict': net.state_dict()} 144 | torch.save(save_dict, os.path.join(cfgs.log_dir, cfgs.model_name + '_epoch' + str(epoch + 1).zfill(2) + '.tar')) 145 | 146 | 147 | if __name__ == '__main__': 148 | train(start_epoch) 149 | -------------------------------------------------------------------------------- /utils/collision_detector.py: -------------------------------------------------------------------------------- 1 | """ Collision detection to remove collided grasp pose predictions. 2 | Author: chenxi-wang 3 | """ 4 | 5 | import os 6 | import sys 7 | import numpy as np 8 | import open3d as o3d 9 | 10 | class ModelFreeCollisionDetector(): 11 | """ Collision detection in scenes without object labels. Current finger width and length are fixed. 12 | 13 | Input: 14 | scene_points: [numpy.ndarray, (N,3), numpy.float32] 15 | the scene points to detect 16 | voxel_size: [float] 17 | used for downsample 18 | 19 | Example usage: 20 | mfcdetector = ModelFreeCollisionDetector(scene_points, voxel_size=0.005) 21 | collision_mask = mfcdetector.detect(grasp_group, approach_dist=0.03) 22 | collision_mask, iou_list = mfcdetector.detect(grasp_group, approach_dist=0.03, collision_thresh=0.05, return_ious=True) 23 | collision_mask, empty_mask = mfcdetector.detect(grasp_group, approach_dist=0.03, collision_thresh=0.05, 24 | return_empty_grasp=True, empty_thresh=0.01) 25 | collision_mask, empty_mask, iou_list = mfcdetector.detect(grasp_group, approach_dist=0.03, collision_thresh=0.05, 26 | return_empty_grasp=True, empty_thresh=0.01, return_ious=True) 27 | """ 28 | def __init__(self, scene_points, voxel_size=0.005): 29 | self.finger_width = 0.01 30 | self.finger_length = 0.06 31 | self.voxel_size = voxel_size 32 | scene_cloud = o3d.geometry.PointCloud() 33 | scene_cloud.points = o3d.utility.Vector3dVector(scene_points) 34 | scene_cloud = scene_cloud.voxel_down_sample(voxel_size) 35 | self.scene_points = np.array(scene_cloud.points) 36 | 37 | def detect(self, grasp_group, approach_dist=0.03, collision_thresh=0.05, return_empty_grasp=False, empty_thresh=0.01, return_ious=False): 38 | """ Detect collision of grasps. 39 | 40 | Input: 41 | grasp_group: [GraspGroup, M grasps] 42 | the grasps to check 43 | approach_dist: [float] 44 | the distance for a gripper to move along approaching direction before grasping 45 | this shifting space requires no point either 46 | collision_thresh: [float] 47 | if global collision iou is greater than this threshold, 48 | a collision is detected 49 | return_empty_grasp: [bool] 50 | if True, return a mask to imply whether there are objects in a grasp 51 | empty_thresh: [float] 52 | if inner space iou is smaller than this threshold, 53 | a collision is detected 54 | only set when [return_empty_grasp] is True 55 | return_ious: [bool] 56 | if True, return global collision iou and part collision ious 57 | 58 | Output: 59 | collision_mask: [numpy.ndarray, (M,), numpy.bool] 60 | True implies collision 61 | [optional] empty_mask: [numpy.ndarray, (M,), numpy.bool] 62 | True implies empty grasp 63 | only returned when [return_empty_grasp] is True 64 | [optional] iou_list: list of [numpy.ndarray, (M,), numpy.float32] 65 | global and part collision ious, containing 66 | [global_iou, left_iou, right_iou, bottom_iou, shifting_iou] 67 | only returned when [return_ious] is True 68 | """ 69 | approach_dist = max(approach_dist, self.finger_width) 70 | T = grasp_group.translations 71 | R = grasp_group.rotation_matrices 72 | heights = grasp_group.heights[:,np.newaxis] 73 | depths = grasp_group.depths[:,np.newaxis] 74 | widths = grasp_group.widths[:,np.newaxis] 75 | targets = self.scene_points[np.newaxis,:,:] - T[:,np.newaxis,:] 76 | targets = np.matmul(targets, R) 77 | 78 | ## collision detection 79 | # height mask 80 | mask1 = ((targets[:,:,2] > -heights/2) & (targets[:,:,2] < heights/2)) 81 | # left finger mask 82 | mask2 = ((targets[:,:,0] > depths - self.finger_length) & (targets[:,:,0] < depths)) 83 | mask3 = (targets[:,:,1] > -(widths/2 + self.finger_width)) 84 | mask4 = (targets[:,:,1] < -widths/2) 85 | # right finger mask 86 | mask5 = (targets[:,:,1] < (widths/2 + self.finger_width)) 87 | mask6 = (targets[:,:,1] > widths/2) 88 | # bottom mask 89 | mask7 = ((targets[:,:,0] <= depths - self.finger_length)\ 90 | & (targets[:,:,0] > depths - self.finger_length - self.finger_width)) 91 | # shifting mask 92 | mask8 = ((targets[:,:,0] <= depths - self.finger_length - self.finger_width)\ 93 | & (targets[:,:,0] > depths - self.finger_length - self.finger_width - approach_dist)) 94 | 95 | # get collision mask of each point 96 | left_mask = (mask1 & mask2 & mask3 & mask4) 97 | right_mask = (mask1 & mask2 & mask5 & mask6) 98 | bottom_mask = (mask1 & mask3 & mask5 & mask7) 99 | shifting_mask = (mask1 & mask3 & mask5 & mask8) 100 | global_mask = (left_mask | right_mask | bottom_mask | shifting_mask) 101 | 102 | # calculate equivalant volume of each part 103 | left_right_volume = (heights * self.finger_length * self.finger_width / (self.voxel_size**3)).reshape(-1) 104 | bottom_volume = (heights * (widths+2*self.finger_width) * self.finger_width / (self.voxel_size**3)).reshape(-1) 105 | shifting_volume = (heights * (widths+2*self.finger_width) * approach_dist / (self.voxel_size**3)).reshape(-1) 106 | volume = left_right_volume*2 + bottom_volume + shifting_volume 107 | 108 | # get collision iou of each part 109 | global_iou = global_mask.sum(axis=1) / (volume+1e-6) 110 | 111 | # get collison mask 112 | collision_mask = (global_iou > collision_thresh) 113 | 114 | if not (return_empty_grasp or return_ious): 115 | return collision_mask 116 | 117 | ret_value = [collision_mask,] 118 | if return_empty_grasp: 119 | inner_mask = (mask1 & mask2 & (~mask4) & (~mask6)) 120 | inner_volume = (heights * self.finger_length * widths / (self.voxel_size**3)).reshape(-1) 121 | empty_mask = (inner_mask.sum(axis=-1)/inner_volume < empty_thresh) 122 | ret_value.append(empty_mask) 123 | if return_ious: 124 | left_iou = left_mask.sum(axis=1) / (left_right_volume+1e-6) 125 | right_iou = right_mask.sum(axis=1) / (left_right_volume+1e-6) 126 | bottom_iou = bottom_mask.sum(axis=1) / (bottom_volume+1e-6) 127 | shifting_iou = shifting_mask.sum(axis=1) / (shifting_volume+1e-6) 128 | ret_value.append([global_iou, left_iou, right_iou, bottom_iou, shifting_iou]) 129 | return ret_value 130 | -------------------------------------------------------------------------------- /utils/data_utils.py: -------------------------------------------------------------------------------- 1 | """ Tools for data processing. 2 | Author: chenxi-wang 3 | """ 4 | 5 | import numpy as np 6 | 7 | 8 | class CameraInfo(): 9 | """ Camera intrisics for point cloud creation. """ 10 | 11 | def __init__(self, width, height, fx, fy, cx, cy, scale): 12 | self.width = width 13 | self.height = height 14 | self.fx = fx 15 | self.fy = fy 16 | self.cx = cx 17 | self.cy = cy 18 | self.scale = scale 19 | 20 | 21 | def create_point_cloud_from_depth_image(depth, camera, organized=True): 22 | """ Generate point cloud using depth image only. 23 | 24 | Input: 25 | depth: [numpy.ndarray, (H,W), numpy.float32] 26 | depth image 27 | camera: [CameraInfo] 28 | camera intrinsics 29 | organized: bool 30 | whether to keep the cloud in image shape (H,W,3) 31 | 32 | Output: 33 | cloud: [numpy.ndarray, (H,W,3)/(H*W,3), numpy.float32] 34 | generated cloud, (H,W,3) for organized=True, (H*W,3) for organized=False 35 | """ 36 | assert (depth.shape[0] == camera.height and depth.shape[1] == camera.width) 37 | xmap = np.arange(camera.width) 38 | ymap = np.arange(camera.height) 39 | xmap, ymap = np.meshgrid(xmap, ymap) 40 | points_z = depth / camera.scale 41 | points_x = (xmap - camera.cx) * points_z / camera.fx 42 | points_y = (ymap - camera.cy) * points_z / camera.fy 43 | cloud = np.stack([points_x, points_y, points_z], axis=-1) 44 | if not organized: 45 | cloud = cloud.reshape([-1, 3]) 46 | return cloud 47 | 48 | 49 | def transform_point_cloud(cloud, transform, format='4x4'): 50 | """ Transform points to new coordinates with transformation matrix. 51 | 52 | Input: 53 | cloud: [np.ndarray, (N,3), np.float32] 54 | points in original coordinates 55 | transform: [np.ndarray, (3,3)/(3,4)/(4,4), np.float32] 56 | transformation matrix, could be rotation only or rotation+translation 57 | format: [string, '3x3'/'3x4'/'4x4'] 58 | the shape of transformation matrix 59 | '3x3' --> rotation matrix 60 | '3x4'/'4x4' --> rotation matrix + translation matrix 61 | 62 | Output: 63 | cloud_transformed: [np.ndarray, (N,3), np.float32] 64 | points in new coordinates 65 | """ 66 | if not (format == '3x3' or format == '4x4' or format == '3x4'): 67 | raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.') 68 | if format == '3x3': 69 | cloud_transformed = np.dot(transform, cloud.T).T 70 | elif format == '4x4' or format == '3x4': 71 | ones = np.ones(cloud.shape[0])[:, np.newaxis] 72 | cloud_ = np.concatenate([cloud, ones], axis=1) 73 | cloud_transformed = np.dot(transform, cloud_.T).T 74 | cloud_transformed = cloud_transformed[:, :3] 75 | return cloud_transformed 76 | 77 | 78 | def compute_point_dists(A, B): 79 | """ Compute pair-wise point distances in two matrices. 80 | 81 | Input: 82 | A: [np.ndarray, (N,3), np.float32] 83 | point cloud A 84 | B: [np.ndarray, (M,3), np.float32] 85 | point cloud B 86 | 87 | Output: 88 | dists: [np.ndarray, (N,M), np.float32] 89 | distance matrix 90 | """ 91 | A = A[:, np.newaxis, :] 92 | B = B[np.newaxis, :, :] 93 | dists = np.linalg.norm(A - B, axis=-1) 94 | return dists 95 | 96 | 97 | def remove_invisible_grasp_points(cloud, grasp_points, pose, th=0.01): 98 | """ Remove invisible part of object model according to scene point cloud. 99 | 100 | Input: 101 | cloud: [np.ndarray, (N,3), np.float32] 102 | scene point cloud 103 | grasp_points: [np.ndarray, (M,3), np.float32] 104 | grasp point label in object coordinates 105 | pose: [np.ndarray, (4,4), np.float32] 106 | transformation matrix from object coordinates to world coordinates 107 | th: [float] 108 | if the minimum distance between a grasp point and the scene points is greater than outlier, the point will be removed 109 | 110 | Output: 111 | visible_mask: [np.ndarray, (M,), np.bool] 112 | mask to show the visible part of grasp points 113 | """ 114 | grasp_points_trans = transform_point_cloud(grasp_points, pose) 115 | dists = compute_point_dists(grasp_points_trans, cloud) 116 | min_dists = dists.min(axis=1) 117 | visible_mask = (min_dists < th) 118 | return visible_mask 119 | 120 | 121 | def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0): 122 | """ Keep points in workspace as input. 123 | 124 | Input: 125 | cloud: [np.ndarray, (H,W,3), np.float32] 126 | scene point cloud 127 | seg: [np.ndarray, (H,W,), np.uint8] 128 | segmantation label of scene points 129 | trans: [np.ndarray, (4,4), np.float32] 130 | transformation matrix for scene points, default: None. 131 | organized: [bool] 132 | whether to keep the cloud in image shape (H,W,3) 133 | outlier: [float] 134 | if the distance between a point and workspace is greater than outlier, the point will be removed 135 | 136 | Output: 137 | workspace_mask: [np.ndarray, (H,W)/(H*W,), np.bool] 138 | mask to indicate whether scene points are in workspace 139 | """ 140 | if organized: 141 | h, w, _ = cloud.shape 142 | cloud = cloud.reshape([h * w, 3]) 143 | seg = seg.reshape(h * w) 144 | if trans is not None: 145 | cloud = transform_point_cloud(cloud, trans) 146 | foreground = cloud[seg > 0] 147 | xmin, ymin, zmin = foreground.min(axis=0) 148 | xmax, ymax, zmax = foreground.max(axis=0) 149 | mask_x = ((cloud[:, 0] > xmin - outlier) & (cloud[:, 0] < xmax + outlier)) 150 | mask_y = ((cloud[:, 1] > ymin - outlier) & (cloud[:, 1] < ymax + outlier)) 151 | mask_z = ((cloud[:, 2] > zmin - outlier) & (cloud[:, 2] < zmax + outlier)) 152 | workspace_mask = (mask_x & mask_y & mask_z) 153 | if organized: 154 | workspace_mask = workspace_mask.reshape([h, w]) 155 | 156 | return workspace_mask 157 | -------------------------------------------------------------------------------- /utils/label_generation.py: -------------------------------------------------------------------------------- 1 | """ Dynamically generate grasp labels during training. 2 | Author: chenxi-wang 3 | """ 4 | 5 | import os 6 | import sys 7 | import torch 8 | 9 | BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 10 | ROOT_DIR = os.path.dirname(BASE_DIR) 11 | sys.path.append(ROOT_DIR) 12 | # sys.path.append(os.path.join(ROOT_DIR, 'knn')) 13 | 14 | from knn.knn_modules import knn 15 | from loss_utils import GRASP_MAX_WIDTH, batch_viewpoint_params_to_matrix, \ 16 | transform_point_cloud, generate_grasp_views 17 | 18 | 19 | def process_grasp_labels(end_points): 20 | """ Process labels according to scene points and object poses. """ 21 | seed_xyzs = end_points['xyz_graspable'] # (B, M_point, 3) 22 | batch_size, num_samples, _ = seed_xyzs.size() 23 | 24 | batch_grasp_points = [] 25 | batch_grasp_views_rot = [] 26 | batch_grasp_scores = [] 27 | batch_grasp_widths = [] 28 | for i in range(batch_size): 29 | seed_xyz = seed_xyzs[i] # (Ns, 3) 30 | poses = end_points['object_poses_list'][i] # [(3, 4),] 31 | 32 | # get merged grasp points for label computation 33 | grasp_points_merged = [] 34 | grasp_views_rot_merged = [] 35 | grasp_scores_merged = [] 36 | grasp_widths_merged = [] 37 | for obj_idx, pose in enumerate(poses): 38 | grasp_points = end_points['grasp_points_list'][i][obj_idx] # (Np, 3) 39 | grasp_scores = end_points['grasp_scores_list'][i][obj_idx] # (Np, V, A, D) 40 | grasp_widths = end_points['grasp_widths_list'][i][obj_idx] # (Np, V, A, D) 41 | _, V, A, D = grasp_scores.size() 42 | num_grasp_points = grasp_points.size(0) 43 | # generate and transform template grasp views 44 | grasp_views = generate_grasp_views(V).to(pose.device) # (V, 3) 45 | grasp_points_trans = transform_point_cloud(grasp_points, pose, '3x4') 46 | grasp_views_trans = transform_point_cloud(grasp_views, pose[:3, :3], '3x3') 47 | # generate and transform template grasp view rotation 48 | angles = torch.zeros(grasp_views.size(0), dtype=grasp_views.dtype, device=grasp_views.device) 49 | grasp_views_rot = batch_viewpoint_params_to_matrix(-grasp_views, angles) # (V, 3, 3) 50 | grasp_views_rot_trans = torch.matmul(pose[:3, :3], grasp_views_rot) # (V, 3, 3) 51 | 52 | # assign views 53 | grasp_views_ = grasp_views.transpose(0, 1).contiguous().unsqueeze(0) 54 | grasp_views_trans_ = grasp_views_trans.transpose(0, 1).contiguous().unsqueeze(0) 55 | view_inds = knn(grasp_views_trans_, grasp_views_, k=1).squeeze() - 1 56 | grasp_views_rot_trans = torch.index_select(grasp_views_rot_trans, 0, view_inds) # (V, 3, 3) 57 | grasp_views_rot_trans = grasp_views_rot_trans.unsqueeze(0).expand(num_grasp_points, -1, -1, 58 | -1) # (Np, V, 3, 3) 59 | grasp_scores = torch.index_select(grasp_scores, 1, view_inds) # (Np, V, A, D) 60 | grasp_widths = torch.index_select(grasp_widths, 1, view_inds) # (Np, V, A, D) 61 | # add to list 62 | grasp_points_merged.append(grasp_points_trans) 63 | grasp_views_rot_merged.append(grasp_views_rot_trans) 64 | grasp_scores_merged.append(grasp_scores) 65 | grasp_widths_merged.append(grasp_widths) 66 | 67 | grasp_points_merged = torch.cat(grasp_points_merged, dim=0) # (Np', 3) 68 | grasp_views_rot_merged = torch.cat(grasp_views_rot_merged, dim=0) # (Np', V, 3, 3) 69 | grasp_scores_merged = torch.cat(grasp_scores_merged, dim=0) # (Np', V, A, D) 70 | grasp_widths_merged = torch.cat(grasp_widths_merged, dim=0) # (Np', V, A, D) 71 | 72 | # compute nearest neighbors 73 | seed_xyz_ = seed_xyz.transpose(0, 1).contiguous().unsqueeze(0) # (1, 3, Ns) 74 | grasp_points_merged_ = grasp_points_merged.transpose(0, 1).contiguous().unsqueeze(0) # (1, 3, Np') 75 | nn_inds = knn(grasp_points_merged_, seed_xyz_, k=1).squeeze() - 1 # (Ns) 76 | 77 | # assign anchor points to real points 78 | grasp_points_merged = torch.index_select(grasp_points_merged, 0, nn_inds) # (Ns, 3) 79 | grasp_views_rot_merged = torch.index_select(grasp_views_rot_merged, 0, nn_inds) # (Ns, V, 3, 3) 80 | grasp_scores_merged = torch.index_select(grasp_scores_merged, 0, nn_inds) # (Ns, V, A, D) 81 | grasp_widths_merged = torch.index_select(grasp_widths_merged, 0, nn_inds) # (Ns, V, A, D) 82 | 83 | # add to batch 84 | batch_grasp_points.append(grasp_points_merged) 85 | batch_grasp_views_rot.append(grasp_views_rot_merged) 86 | batch_grasp_scores.append(grasp_scores_merged) 87 | batch_grasp_widths.append(grasp_widths_merged) 88 | 89 | batch_grasp_points = torch.stack(batch_grasp_points, 0) # (B, Ns, 3) 90 | batch_grasp_views_rot = torch.stack(batch_grasp_views_rot, 0) # (B, Ns, V, 3, 3) 91 | batch_grasp_scores = torch.stack(batch_grasp_scores, 0) # (B, Ns, V, A, D) 92 | batch_grasp_widths = torch.stack(batch_grasp_widths, 0) # (B, Ns, V, A, D) 93 | 94 | # compute view graspness 95 | view_u_threshold = 0.6 96 | view_grasp_num = 48 97 | batch_grasp_view_valid_mask = (batch_grasp_scores <= view_u_threshold) & (batch_grasp_scores > 0) # (B, Ns, V, A, D) 98 | batch_grasp_view_valid = batch_grasp_view_valid_mask.float() 99 | batch_grasp_view_graspness = torch.sum(torch.sum(batch_grasp_view_valid, dim=-1), dim=-1) / view_grasp_num # (B, Ns, V) 100 | view_graspness_min, _ = torch.min(batch_grasp_view_graspness, dim=-1) # (B, Ns) 101 | view_graspness_max, _ = torch.max(batch_grasp_view_graspness, dim=-1) 102 | view_graspness_max = view_graspness_max.unsqueeze(-1).expand(-1, -1, 300) # (B, Ns, V) 103 | view_graspness_min = view_graspness_min.unsqueeze(-1).expand(-1, -1, 300) # same shape as batch_grasp_view_graspness 104 | batch_grasp_view_graspness = (batch_grasp_view_graspness - view_graspness_min) / (view_graspness_max - view_graspness_min + 1e-5) 105 | 106 | # process scores 107 | label_mask = (batch_grasp_scores > 0) & (batch_grasp_widths <= GRASP_MAX_WIDTH) # (B, Ns, V, A, D) 108 | batch_grasp_scores[~label_mask] = 0 109 | 110 | end_points['batch_grasp_point'] = batch_grasp_points 111 | end_points['batch_grasp_view_rot'] = batch_grasp_views_rot 112 | end_points['batch_grasp_score'] = batch_grasp_scores 113 | end_points['batch_grasp_width'] = batch_grasp_widths 114 | end_points['batch_grasp_view_graspness'] = batch_grasp_view_graspness 115 | 116 | return end_points 117 | 118 | 119 | def match_grasp_view_and_label(end_points): 120 | """ Slice grasp labels according to predicted views. """ 121 | top_view_inds = end_points['grasp_top_view_inds'] # (B, Ns) 122 | template_views_rot = end_points['batch_grasp_view_rot'] # (B, Ns, V, 3, 3) 123 | grasp_scores = end_points['batch_grasp_score'] # (B, Ns, V, A, D) 124 | grasp_widths = end_points['batch_grasp_width'] # (B, Ns, V, A, D, 3) 125 | 126 | B, Ns, V, A, D = grasp_scores.size() 127 | top_view_inds_ = top_view_inds.view(B, Ns, 1, 1, 1).expand(-1, -1, -1, 3, 3) 128 | top_template_views_rot = torch.gather(template_views_rot, 2, top_view_inds_).squeeze(2) 129 | top_view_inds_ = top_view_inds.view(B, Ns, 1, 1, 1).expand(-1, -1, -1, A, D) 130 | top_view_grasp_scores = torch.gather(grasp_scores, 2, top_view_inds_).squeeze(2) 131 | top_view_grasp_widths = torch.gather(grasp_widths, 2, top_view_inds_).squeeze(2) 132 | 133 | u_max = top_view_grasp_scores.max() 134 | po_mask = top_view_grasp_scores > 0 135 | po_mask_num = torch.sum(po_mask) 136 | if po_mask_num > 0: 137 | u_min = top_view_grasp_scores[po_mask].min() 138 | top_view_grasp_scores[po_mask] = torch.log(u_max / top_view_grasp_scores[po_mask]) / (torch.log(u_max / u_min) + 1e-6) 139 | 140 | end_points['batch_grasp_score'] = top_view_grasp_scores # (B, Ns, A, D) 141 | end_points['batch_grasp_width'] = top_view_grasp_widths # (B, Ns, A, D) 142 | 143 | return top_template_views_rot, end_points 144 | -------------------------------------------------------------------------------- /utils/loss_utils.py: -------------------------------------------------------------------------------- 1 | """ Tools for loss computation. 2 | Author: chenxi-wang 3 | """ 4 | 5 | import torch 6 | import numpy as np 7 | 8 | GRASP_MAX_WIDTH = 0.1 9 | GRASPNESS_THRESHOLD = 0.1 10 | NUM_VIEW = 300 11 | NUM_ANGLE = 12 12 | NUM_DEPTH = 4 13 | M_POINT = 1024 14 | 15 | 16 | def transform_point_cloud(cloud, transform, format='4x4'): 17 | """ Transform points to new coordinates with transformation matrix. 18 | 19 | Input: 20 | cloud: [torch.FloatTensor, (N,3)] 21 | points in original coordinates 22 | transform: [torch.FloatTensor, (3,3)/(3,4)/(4,4)] 23 | transformation matrix, could be rotation only or rotation+translation 24 | format: [string, '3x3'/'3x4'/'4x4'] 25 | the shape of transformation matrix 26 | '3x3' --> rotation matrix 27 | '3x4'/'4x4' --> rotation matrix + translation matrix 28 | 29 | Output: 30 | cloud_transformed: [torch.FloatTensor, (N,3)] 31 | points in new coordinates 32 | """ 33 | if not (format == '3x3' or format == '4x4' or format == '3x4'): 34 | raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.') 35 | if format == '3x3': 36 | cloud_transformed = torch.matmul(transform, cloud.T).T 37 | elif format == '4x4' or format == '3x4': 38 | ones = cloud.new_ones(cloud.size(0), device=cloud.device).unsqueeze(-1) 39 | cloud_ = torch.cat([cloud, ones], dim=1) 40 | cloud_transformed = torch.matmul(transform, cloud_.T).T 41 | cloud_transformed = cloud_transformed[:, :3] 42 | return cloud_transformed 43 | 44 | 45 | def generate_grasp_views(N=300, phi=(np.sqrt(5) - 1) / 2, center=np.zeros(3), r=1): 46 | """ View sampling on a unit sphere using Fibonacci lattices. 47 | Ref: https://arxiv.org/abs/0912.4540 48 | 49 | Input: 50 | N: [int] 51 | number of sampled views 52 | phi: [float] 53 | constant for view coordinate calculation, different phi's bring different distributions, default: (sqrt(5)-1)/2 54 | center: [np.ndarray, (3,), np.float32] 55 | sphere center 56 | r: [float] 57 | sphere radius 58 | 59 | Output: 60 | views: [torch.FloatTensor, (N,3)] 61 | sampled view coordinates 62 | """ 63 | views = [] 64 | for i in range(N): 65 | zi = (2 * i + 1) / N - 1 66 | xi = np.sqrt(1 - zi ** 2) * np.cos(2 * i * np.pi * phi) 67 | yi = np.sqrt(1 - zi ** 2) * np.sin(2 * i * np.pi * phi) 68 | views.append([xi, yi, zi]) 69 | views = r * np.array(views) + center 70 | return torch.from_numpy(views.astype(np.float32)) 71 | 72 | 73 | def batch_viewpoint_params_to_matrix(batch_towards, batch_angle): 74 | """ Transform approach vectors and in-plane rotation angles to rotation matrices. 75 | 76 | Input: 77 | batch_towards: [torch.FloatTensor, (N,3)] 78 | approach vectors in batch 79 | batch_angle: [torch.floatTensor, (N,)] 80 | in-plane rotation angles in batch 81 | 82 | Output: 83 | batch_matrix: [torch.floatTensor, (N,3,3)] 84 | rotation matrices in batch 85 | """ 86 | axis_x = batch_towards 87 | ones = torch.ones(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device) 88 | zeros = torch.zeros(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device) 89 | axis_y = torch.stack([-axis_x[:, 1], axis_x[:, 0], zeros], dim=-1) 90 | mask_y = (torch.norm(axis_y, dim=-1) == 0) 91 | axis_y[mask_y, 1] = 1 92 | axis_x = axis_x / torch.norm(axis_x, dim=-1, keepdim=True) 93 | axis_y = axis_y / torch.norm(axis_y, dim=-1, keepdim=True) 94 | axis_z = torch.cross(axis_x, axis_y) 95 | sin = torch.sin(batch_angle) 96 | cos = torch.cos(batch_angle) 97 | R1 = torch.stack([ones, zeros, zeros, zeros, cos, -sin, zeros, sin, cos], dim=-1) 98 | R1 = R1.reshape([-1, 3, 3]) 99 | R2 = torch.stack([axis_x, axis_y, axis_z], dim=-1) 100 | batch_matrix = torch.matmul(R2, R1) 101 | return batch_matrix 102 | 103 | 104 | def huber_loss(error, delta=1.0): 105 | """ 106 | Args: 107 | error: Torch tensor (d1,d2,...,dk) 108 | Returns: 109 | loss: Torch tensor (d1,d2,...,dk) 110 | 111 | x = error = pred - gt or dist(pred,gt) 112 | 0.5 * |x|^2 if |x|<=d 113 | 0.5 * d^2 + d * (|x|-d) if |x|>d 114 | Author: Charles R. Qi 115 | Ref: https://github.com/charlesq34/frustum-pointnets/blob/master/models/model_util.py 116 | """ 117 | abs_error = torch.abs(error) 118 | quadratic = torch.clamp(abs_error, max=delta) 119 | linear = (abs_error - quadratic) 120 | loss = 0.5 * quadratic ** 2 + delta * linear 121 | return loss 122 | --------------------------------------------------------------------------------