├── .gitignore ├── .python-version ├── LICENSE ├── README.md ├── assets ├── TauricResearch.png ├── analyst.png ├── cli │ ├── cli_init.png │ ├── cli_news.png │ ├── cli_technical.png │ └── cli_transaction.png ├── researcher.png ├── risk.png ├── schema.png ├── trader.png └── wechat.png ├── cli ├── __init__.py ├── main.py ├── models.py ├── static │ └── welcome.txt └── utils.py ├── main.py ├── pyproject.toml ├── requirements.txt ├── setup.py ├── tradingagents ├── agents │ ├── __init__.py │ ├── analysts │ │ ├── fundamentals_analyst.py │ │ ├── market_analyst.py │ │ ├── news_analyst.py │ │ └── social_media_analyst.py │ ├── managers │ │ ├── research_manager.py │ │ └── risk_manager.py │ ├── researchers │ │ ├── bear_researcher.py │ │ └── bull_researcher.py │ ├── risk_mgmt │ │ ├── aggresive_debator.py │ │ ├── conservative_debator.py │ │ └── neutral_debator.py │ ├── trader │ │ └── trader.py │ └── utils │ │ ├── agent_states.py │ │ ├── agent_utils.py │ │ └── memory.py ├── dataflows │ ├── __init__.py │ ├── config.py │ ├── finnhub_utils.py │ ├── googlenews_utils.py │ ├── interface.py │ ├── reddit_utils.py │ ├── stockstats_utils.py │ ├── utils.py │ └── yfin_utils.py ├── default_config.py └── graph │ ├── __init__.py │ ├── conditional_logic.py │ ├── propagation.py │ ├── reflection.py │ ├── setup.py │ ├── signal_processing.py │ └── trading_graph.py └── uv.lock /.gitignore: -------------------------------------------------------------------------------- 1 | env/ 2 | __pycache__/ 3 | .DS_Store 4 | *.csv 5 | src/ 6 | eval_results/ 7 | eval_data/ 8 | *.egg-info/ 9 | .env 10 | -------------------------------------------------------------------------------- /.python-version: -------------------------------------------------------------------------------- 1 | 3.10 2 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | <p align="center"> 2 | <img src="assets/TauricResearch.png" style="width: 60%; height: auto;"> 3 | </p> 4 | 5 | <div align="center" style="line-height: 1;"> 6 | <a href="https://arxiv.org/abs/2412.20138" target="_blank"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-2412.20138-B31B1B?logo=arxiv"/></a> 7 | <a href="https://discord.com/invite/hk9PGKShPK" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-TradingResearch-7289da?logo=discord&logoColor=white&color=7289da"/></a> 8 | <a href="./assets/wechat.png" target="_blank"><img alt="WeChat" src="https://img.shields.io/badge/WeChat-TauricResearch-brightgreen?logo=wechat&logoColor=white"/></a> 9 | <a href="https://x.com/TauricResearch" target="_blank"><img alt="X Follow" src="https://img.shields.io/badge/X-TauricResearch-white?logo=x&logoColor=white"/></a> 10 | <br> 11 | <a href="https://github.com/TauricResearch/" target="_blank"><img alt="Community" src="https://img.shields.io/badge/Join_GitHub_Community-TauricResearch-14C290?logo=discourse"/></a> 12 | </div> 13 | 14 | <div align="center"> 15 | <!-- Keep these links. Translations will automatically update with the README. --> 16 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=de">Deutsch</a> | 17 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=es">Español</a> | 18 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=fr">français</a> | 19 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=ja">日本語</a> | 20 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=ko">한국어</a> | 21 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=pt">Português</a> | 22 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=ru">Русский</a> | 23 | <a href="https://www.readme-i18n.com/TauricResearch/TradingAgents?lang=zh">中文</a> 24 | </div> 25 | 26 | --- 27 | 28 | # TradingAgents: Multi-Agents LLM Financial Trading Framework 29 | 30 | > 🎉 **TradingAgents** officially released! We have received numerous inquiries about the work, and we would like to express our thanks for the enthusiasm in our community. 31 | > 32 | > So we decided to fully open-source the framework. Looking forward to building impactful projects with you! 33 | 34 | <div align="center"> 35 | <a href="https://www.star-history.com/#TauricResearch/TradingAgents&Date"> 36 | <picture> 37 | <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=TauricResearch/TradingAgents&type=Date&theme=dark" /> 38 | <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=TauricResearch/TradingAgents&type=Date" /> 39 | <img alt="TradingAgents Star History" src="https://api.star-history.com/svg?repos=TauricResearch/TradingAgents&type=Date" style="width: 80%; height: auto;" /> 40 | </picture> 41 | </a> 42 | </div> 43 | 44 | <div align="center"> 45 | 46 | 🚀 [TradingAgents](#tradingagents-framework) | ⚡ [Installation & CLI](#installation-and-cli) | 🎬 [Demo](https://www.youtube.com/watch?v=90gr5lwjIho) | 📦 [Package Usage](#tradingagents-package) | 🤝 [Contributing](#contributing) | 📄 [Citation](#citation) 47 | 48 | </div> 49 | 50 | ## TradingAgents Framework 51 | 52 | TradingAgents is a multi-agent trading framework that mirrors the dynamics of real-world trading firms. By deploying specialized LLM-powered agents: from fundamental analysts, sentiment experts, and technical analysts, to trader, risk management team, the platform collaboratively evaluates market conditions and informs trading decisions. Moreover, these agents engage in dynamic discussions to pinpoint the optimal strategy. 53 | 54 | <p align="center"> 55 | <img src="assets/schema.png" style="width: 100%; height: auto;"> 56 | </p> 57 | 58 | > TradingAgents framework is designed for research purposes. Trading performance may vary based on many factors, including the chosen backbone language models, model temperature, trading periods, the quality of data, and other non-deterministic factors. [It is not intended as financial, investment, or trading advice.](https://tauric.ai/disclaimer/) 59 | 60 | Our framework decomposes complex trading tasks into specialized roles. This ensures the system achieves a robust, scalable approach to market analysis and decision-making. 61 | 62 | ### Analyst Team 63 | - Fundamentals Analyst: Evaluates company financials and performance metrics, identifying intrinsic values and potential red flags. 64 | - Sentiment Analyst: Analyzes social media and public sentiment using sentiment scoring algorithms to gauge short-term market mood. 65 | - News Analyst: Monitors global news and macroeconomic indicators, interpreting the impact of events on market conditions. 66 | - Technical Analyst: Utilizes technical indicators (like MACD and RSI) to detect trading patterns and forecast price movements. 67 | 68 | <p align="center"> 69 | <img src="assets/analyst.png" width="100%" style="display: inline-block; margin: 0 2%;"> 70 | </p> 71 | 72 | ### Researcher Team 73 | - Comprises both bullish and bearish researchers who critically assess the insights provided by the Analyst Team. Through structured debates, they balance potential gains against inherent risks. 74 | 75 | <p align="center"> 76 | <img src="assets/researcher.png" width="70%" style="display: inline-block; margin: 0 2%;"> 77 | </p> 78 | 79 | ### Trader Agent 80 | - Composes reports from the analysts and researchers to make informed trading decisions. It determines the timing and magnitude of trades based on comprehensive market insights. 81 | 82 | <p align="center"> 83 | <img src="assets/trader.png" width="70%" style="display: inline-block; margin: 0 2%;"> 84 | </p> 85 | 86 | ### Risk Management and Portfolio Manager 87 | - Continuously evaluates portfolio risk by assessing market volatility, liquidity, and other risk factors. The risk management team evaluates and adjusts trading strategies, providing assessment reports to the Portfolio Manager for final decision. 88 | - The Portfolio Manager approves/rejects the transaction proposal. If approved, the order will be sent to the simulated exchange and executed. 89 | 90 | <p align="center"> 91 | <img src="assets/risk.png" width="70%" style="display: inline-block; margin: 0 2%;"> 92 | </p> 93 | 94 | ## Installation and CLI 95 | 96 | ### Installation 97 | 98 | Clone TradingAgents: 99 | ```bash 100 | git clone https://github.com/TauricResearch/TradingAgents.git 101 | cd TradingAgents 102 | ``` 103 | 104 | Create a virtual environment in any of your favorite environment managers: 105 | ```bash 106 | conda create -n tradingagents python=3.13 107 | conda activate tradingagents 108 | ``` 109 | 110 | Install dependencies: 111 | ```bash 112 | pip install -r requirements.txt 113 | ``` 114 | 115 | ### Required APIs 116 | 117 | You will also need the FinnHub API for financial data. All of our code is implemented with the free tier. 118 | ```bash 119 | export FINNHUB_API_KEY=$YOUR_FINNHUB_API_KEY 120 | ``` 121 | 122 | You will need the OpenAI API for all the agents. 123 | ```bash 124 | export OPENAI_API_KEY=$YOUR_OPENAI_API_KEY 125 | ``` 126 | 127 | ### CLI Usage 128 | 129 | You can also try out the CLI directly by running: 130 | ```bash 131 | python -m cli.main 132 | ``` 133 | You will see a screen where you can select your desired tickers, date, LLMs, research depth, etc. 134 | 135 | <p align="center"> 136 | <img src="assets/cli/cli_init.png" width="100%" style="display: inline-block; margin: 0 2%;"> 137 | </p> 138 | 139 | An interface will appear showing results as they load, letting you track the agent's progress as it runs. 140 | 141 | <p align="center"> 142 | <img src="assets/cli/cli_news.png" width="100%" style="display: inline-block; margin: 0 2%;"> 143 | </p> 144 | 145 | <p align="center"> 146 | <img src="assets/cli/cli_transaction.png" width="100%" style="display: inline-block; margin: 0 2%;"> 147 | </p> 148 | 149 | ## TradingAgents Package 150 | 151 | ### Implementation Details 152 | 153 | We built TradingAgents with LangGraph to ensure flexibility and modularity. We utilize `o1-preview` and `gpt-4o` as our deep thinking and fast thinking LLMs for our experiments. However, for testing purposes, we recommend you use `o4-mini` and `gpt-4.1-mini` to save on costs as our framework makes **lots of** API calls. 154 | 155 | ### Python Usage 156 | 157 | To use TradingAgents inside your code, you can import the `tradingagents` module and initialize a `TradingAgentsGraph()` object. The `.propagate()` function will return a decision. You can run `main.py`, here's also a quick example: 158 | 159 | ```python 160 | from tradingagents.graph.trading_graph import TradingAgentsGraph 161 | from tradingagents.default_config import DEFAULT_CONFIG 162 | 163 | ta = TradingAgentsGraph(debug=True, config=DEFAULT_CONFIG.copy()) 164 | 165 | # forward propagate 166 | _, decision = ta.propagate("NVDA", "2024-05-10") 167 | print(decision) 168 | ``` 169 | 170 | You can also adjust the default configuration to set your own choice of LLMs, debate rounds, etc. 171 | 172 | ```python 173 | from tradingagents.graph.trading_graph import TradingAgentsGraph 174 | from tradingagents.default_config import DEFAULT_CONFIG 175 | 176 | # Create a custom config 177 | config = DEFAULT_CONFIG.copy() 178 | config["deep_think_llm"] = "gpt-4.1-nano" # Use a different model 179 | config["quick_think_llm"] = "gpt-4.1-nano" # Use a different model 180 | config["max_debate_rounds"] = 1 # Increase debate rounds 181 | config["online_tools"] = True # Use online tools or cached data 182 | 183 | # Initialize with custom config 184 | ta = TradingAgentsGraph(debug=True, config=config) 185 | 186 | # forward propagate 187 | _, decision = ta.propagate("NVDA", "2024-05-10") 188 | print(decision) 189 | ``` 190 | 191 | > For `online_tools`, we recommend enabling them for experimentation, as they provide access to real-time data. The agents' offline tools rely on cached data from our **Tauric TradingDB**, a curated dataset we use for backtesting. We're currently in the process of refining this dataset, and we plan to release it soon alongside our upcoming projects. Stay tuned! 192 | 193 | You can view the full list of configurations in `tradingagents/default_config.py`. 194 | 195 | ## Contributing 196 | 197 | We welcome contributions from the community! Whether it's fixing a bug, improving documentation, or suggesting a new feature, your input helps make this project better. If you are interested in this line of research, please consider joining our open-source financial AI research community [Tauric Research](https://tauric.ai/). 198 | 199 | ## Citation 200 | 201 | Please reference our work if you find *TradingAgents* provides you with some help :) 202 | 203 | ``` 204 | @misc{xiao2025tradingagentsmultiagentsllmfinancial, 205 | title={TradingAgents: Multi-Agents LLM Financial Trading Framework}, 206 | author={Yijia Xiao and Edward Sun and Di Luo and Wei Wang}, 207 | year={2025}, 208 | eprint={2412.20138}, 209 | archivePrefix={arXiv}, 210 | primaryClass={q-fin.TR}, 211 | url={https://arxiv.org/abs/2412.20138}, 212 | } 213 | ``` 214 | -------------------------------------------------------------------------------- /assets/TauricResearch.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/TauricResearch.png -------------------------------------------------------------------------------- /assets/analyst.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/analyst.png -------------------------------------------------------------------------------- /assets/cli/cli_init.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/cli/cli_init.png -------------------------------------------------------------------------------- /assets/cli/cli_news.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/cli/cli_news.png -------------------------------------------------------------------------------- /assets/cli/cli_technical.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/cli/cli_technical.png -------------------------------------------------------------------------------- /assets/cli/cli_transaction.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/cli/cli_transaction.png -------------------------------------------------------------------------------- /assets/researcher.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/researcher.png -------------------------------------------------------------------------------- /assets/risk.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/risk.png -------------------------------------------------------------------------------- /assets/schema.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/schema.png -------------------------------------------------------------------------------- /assets/trader.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/trader.png -------------------------------------------------------------------------------- /assets/wechat.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/assets/wechat.png -------------------------------------------------------------------------------- /cli/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/TauricResearch/TradingAgents/a438acdbbd622a4d3c112d23f7462651f8f9aeee/cli/__init__.py -------------------------------------------------------------------------------- /cli/models.py: -------------------------------------------------------------------------------- 1 | from enum import Enum 2 | from typing import List, Optional, Dict 3 | from pydantic import BaseModel 4 | 5 | 6 | class AnalystType(str, Enum): 7 | MARKET = "market" 8 | SOCIAL = "social" 9 | NEWS = "news" 10 | FUNDAMENTALS = "fundamentals" 11 | -------------------------------------------------------------------------------- /cli/static/welcome.txt: -------------------------------------------------------------------------------- 1 | 2 | ______ ___ ___ __ 3 | /_ __/________ _____/ (_)___ ____ _/ | ____ ____ ____ / /______ 4 | / / / ___/ __ `/ __ / / __ \/ __ `/ /| |/ __ `/ _ \/ __ \/ __/ ___/ 5 | / / / / / /_/ / /_/ / / / / / /_/ / ___ / /_/ / __/ / / / /_(__ ) 6 | /_/ /_/ \__,_/\__,_/_/_/ /_/\__, /_/ |_\__, /\___/_/ /_/\__/____/ 7 | /____/ /____/ 8 | -------------------------------------------------------------------------------- /cli/utils.py: -------------------------------------------------------------------------------- 1 | import questionary 2 | from typing import List, Optional, Tuple, Dict 3 | 4 | from cli.models import AnalystType 5 | 6 | ANALYST_ORDER = [ 7 | ("Market Analyst", AnalystType.MARKET), 8 | ("Social Media Analyst", AnalystType.SOCIAL), 9 | ("News Analyst", AnalystType.NEWS), 10 | ("Fundamentals Analyst", AnalystType.FUNDAMENTALS), 11 | ] 12 | 13 | 14 | def get_ticker() -> str: 15 | """Prompt the user to enter a ticker symbol.""" 16 | ticker = questionary.text( 17 | "Enter the ticker symbol to analyze:", 18 | validate=lambda x: len(x.strip()) > 0 or "Please enter a valid ticker symbol.", 19 | style=questionary.Style( 20 | [ 21 | ("text", "fg:green"), 22 | ("highlighted", "noinherit"), 23 | ] 24 | ), 25 | ).ask() 26 | 27 | if not ticker: 28 | console.print("\n[red]No ticker symbol provided. Exiting...[/red]") 29 | exit(1) 30 | 31 | return ticker.strip().upper() 32 | 33 | 34 | def get_analysis_date() -> str: 35 | """Prompt the user to enter a date in YYYY-MM-DD format.""" 36 | import re 37 | from datetime import datetime 38 | 39 | def validate_date(date_str: str) -> bool: 40 | if not re.match(r"^\d{4}-\d{2}-\d{2}quot;, date_str): 41 | return False 42 | try: 43 | datetime.strptime(date_str, "%Y-%m-%d") 44 | return True 45 | except ValueError: 46 | return False 47 | 48 | date = questionary.text( 49 | "Enter the analysis date (YYYY-MM-DD):", 50 | validate=lambda x: validate_date(x.strip()) 51 | or "Please enter a valid date in YYYY-MM-DD format.", 52 | style=questionary.Style( 53 | [ 54 | ("text", "fg:green"), 55 | ("highlighted", "noinherit"), 56 | ] 57 | ), 58 | ).ask() 59 | 60 | if not date: 61 | console.print("\n[red]No date provided. Exiting...[/red]") 62 | exit(1) 63 | 64 | return date.strip() 65 | 66 | 67 | def select_analysts() -> List[AnalystType]: 68 | """Select analysts using an interactive checkbox.""" 69 | choices = questionary.checkbox( 70 | "Select Your [Analysts Team]:", 71 | choices=[ 72 | questionary.Choice(display, value=value) for display, value in ANALYST_ORDER 73 | ], 74 | instruction="\n- Press Space to select/unselect analysts\n- Press 'a' to select/unselect all\n- Press Enter when done", 75 | validate=lambda x: len(x) > 0 or "You must select at least one analyst.", 76 | style=questionary.Style( 77 | [ 78 | ("checkbox-selected", "fg:green"), 79 | ("selected", "fg:green noinherit"), 80 | ("highlighted", "noinherit"), 81 | ("pointer", "noinherit"), 82 | ] 83 | ), 84 | ).ask() 85 | 86 | if not choices: 87 | console.print("\n[red]No analysts selected. Exiting...[/red]") 88 | exit(1) 89 | 90 | return choices 91 | 92 | 93 | def select_research_depth() -> int: 94 | """Select research depth using an interactive selection.""" 95 | 96 | # Define research depth options with their corresponding values 97 | DEPTH_OPTIONS = [ 98 | ("Shallow - Quick research, few debate and strategy discussion rounds", 1), 99 | ("Medium - Middle ground, moderate debate rounds and strategy discussion", 3), 100 | ("Deep - Comprehensive research, in depth debate and strategy discussion", 5), 101 | ] 102 | 103 | choice = questionary.select( 104 | "Select Your [Research Depth]:", 105 | choices=[ 106 | questionary.Choice(display, value=value) for display, value in DEPTH_OPTIONS 107 | ], 108 | instruction="\n- Use arrow keys to navigate\n- Press Enter to select", 109 | style=questionary.Style( 110 | [ 111 | ("selected", "fg:yellow noinherit"), 112 | ("highlighted", "fg:yellow noinherit"), 113 | ("pointer", "fg:yellow noinherit"), 114 | ] 115 | ), 116 | ).ask() 117 | 118 | if choice is None: 119 | console.print("\n[red]No research depth selected. Exiting...[/red]") 120 | exit(1) 121 | 122 | return choice 123 | 124 | 125 | def select_shallow_thinking_agent(provider) -> str: 126 | """Select shallow thinking llm engine using an interactive selection.""" 127 | 128 | # Define shallow thinking llm engine options with their corresponding model names 129 | SHALLOW_AGENT_OPTIONS = { 130 | "openai": [ 131 | ("GPT-4o-mini - Fast and efficient for quick tasks", "gpt-4o-mini"), 132 | ("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"), 133 | ("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"), 134 | ("GPT-4o - Standard model with solid capabilities", "gpt-4o"), 135 | ], 136 | "anthropic": [ 137 | ("Claude Haiku 3.5 - Fast inference and standard capabilities", "claude-3-5-haiku-latest"), 138 | ("Claude Sonnet 3.5 - Highly capable standard model", "claude-3-5-sonnet-latest"), 139 | ("Claude Sonnet 3.7 - Exceptional hybrid reasoning and agentic capabilities", "claude-3-7-sonnet-latest"), 140 | ("Claude Sonnet 4 - High performance and excellent reasoning", "claude-sonnet-4-0"), 141 | ], 142 | "google": [ 143 | ("Gemini 2.0 Flash-Lite - Cost efficiency and low latency", "gemini-2.0-flash-lite"), 144 | ("Gemini 2.0 Flash - Next generation features, speed, and thinking", "gemini-2.0-flash"), 145 | ("Gemini 2.5 Flash - Adaptive thinking, cost efficiency", "gemini-2.5-flash-preview-05-20"), 146 | ], 147 | "openrouter": [ 148 | ("Meta: Llama 4 Scout", "meta-llama/llama-4-scout:free"), 149 | ("Meta: Llama 3.3 8B Instruct - A lightweight and ultra-fast variant of Llama 3.3 70B", "meta-llama/llama-3.3-8b-instruct:free"), 150 | ("google/gemini-2.0-flash-exp:free - Gemini Flash 2.0 offers a significantly faster time to first token", "google/gemini-2.0-flash-exp:free"), 151 | ], 152 | "ollama": [ 153 | ("llama3.1 local", "llama3.1"), 154 | ("llama3.2 local", "llama3.2"), 155 | ] 156 | } 157 | 158 | choice = questionary.select( 159 | "Select Your [Quick-Thinking LLM Engine]:", 160 | choices=[ 161 | questionary.Choice(display, value=value) 162 | for display, value in SHALLOW_AGENT_OPTIONS[provider.lower()] 163 | ], 164 | instruction="\n- Use arrow keys to navigate\n- Press Enter to select", 165 | style=questionary.Style( 166 | [ 167 | ("selected", "fg:magenta noinherit"), 168 | ("highlighted", "fg:magenta noinherit"), 169 | ("pointer", "fg:magenta noinherit"), 170 | ] 171 | ), 172 | ).ask() 173 | 174 | if choice is None: 175 | console.print( 176 | "\n[red]No shallow thinking llm engine selected. Exiting...[/red]" 177 | ) 178 | exit(1) 179 | 180 | return choice 181 | 182 | 183 | def select_deep_thinking_agent(provider) -> str: 184 | """Select deep thinking llm engine using an interactive selection.""" 185 | 186 | # Define deep thinking llm engine options with their corresponding model names 187 | DEEP_AGENT_OPTIONS = { 188 | "openai": [ 189 | ("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"), 190 | ("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"), 191 | ("GPT-4o - Standard model with solid capabilities", "gpt-4o"), 192 | ("o4-mini - Specialized reasoning model (compact)", "o4-mini"), 193 | ("o3-mini - Advanced reasoning model (lightweight)", "o3-mini"), 194 | ("o3 - Full advanced reasoning model", "o3"), 195 | ("o1 - Premier reasoning and problem-solving model", "o1"), 196 | ], 197 | "anthropic": [ 198 | ("Claude Haiku 3.5 - Fast inference and standard capabilities", "claude-3-5-haiku-latest"), 199 | ("Claude Sonnet 3.5 - Highly capable standard model", "claude-3-5-sonnet-latest"), 200 | ("Claude Sonnet 3.7 - Exceptional hybrid reasoning and agentic capabilities", "claude-3-7-sonnet-latest"), 201 | ("Claude Sonnet 4 - High performance and excellent reasoning", "claude-sonnet-4-0"), 202 | ("Claude Opus 4 - Most powerful Anthropic model", " claude-opus-4-0"), 203 | ], 204 | "google": [ 205 | ("Gemini 2.0 Flash-Lite - Cost efficiency and low latency", "gemini-2.0-flash-lite"), 206 | ("Gemini 2.0 Flash - Next generation features, speed, and thinking", "gemini-2.0-flash"), 207 | ("Gemini 2.5 Flash - Adaptive thinking, cost efficiency", "gemini-2.5-flash-preview-05-20"), 208 | ("Gemini 2.5 Pro", "gemini-2.5-pro-preview-06-05"), 209 | ], 210 | "openrouter": [ 211 | ("DeepSeek V3 - a 685B-parameter, mixture-of-experts model", "deepseek/deepseek-chat-v3-0324:free"), 212 | ("Deepseek - latest iteration of the flagship chat model family from the DeepSeek team.", "deepseek/deepseek-chat-v3-0324:free"), 213 | ], 214 | "ollama": [ 215 | ("llama3.1 local", "llama3.1"), 216 | ("qwen3", "qwen3"), 217 | ] 218 | } 219 | 220 | choice = questionary.select( 221 | "Select Your [Deep-Thinking LLM Engine]:", 222 | choices=[ 223 | questionary.Choice(display, value=value) 224 | for display, value in DEEP_AGENT_OPTIONS[provider.lower()] 225 | ], 226 | instruction="\n- Use arrow keys to navigate\n- Press Enter to select", 227 | style=questionary.Style( 228 | [ 229 | ("selected", "fg:magenta noinherit"), 230 | ("highlighted", "fg:magenta noinherit"), 231 | ("pointer", "fg:magenta noinherit"), 232 | ] 233 | ), 234 | ).ask() 235 | 236 | if choice is None: 237 | console.print("\n[red]No deep thinking llm engine selected. Exiting...[/red]") 238 | exit(1) 239 | 240 | return choice 241 | 242 | def select_llm_provider() -> tuple[str, str]: 243 | """Select the OpenAI api url using interactive selection.""" 244 | # Define OpenAI api options with their corresponding endpoints 245 | BASE_URLS = [ 246 | ("OpenAI", "https://api.openai.com/v1"), 247 | ("Anthropic", "https://api.anthropic.com/"), 248 | ("Google", "https://generativelanguage.googleapis.com/v1"), 249 | ("Openrouter", "https://openrouter.ai/api/v1"), 250 | ("Ollama", "http://localhost:11434/v1"), 251 | ] 252 | 253 | choice = questionary.select( 254 | "Select your LLM Provider:", 255 | choices=[ 256 | questionary.Choice(display, value=(display, value)) 257 | for display, value in BASE_URLS 258 | ], 259 | instruction="\n- Use arrow keys to navigate\n- Press Enter to select", 260 | style=questionary.Style( 261 | [ 262 | ("selected", "fg:magenta noinherit"), 263 | ("highlighted", "fg:magenta noinherit"), 264 | ("pointer", "fg:magenta noinherit"), 265 | ] 266 | ), 267 | ).ask() 268 | 269 | if choice is None: 270 | console.print("\n[red]no OpenAI backend selected. Exiting...[/red]") 271 | exit(1) 272 | 273 | display_name, url = choice 274 | print(f"You selected: {display_name}\tURL: {url}") 275 | 276 | return display_name, url 277 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | from tradingagents.graph.trading_graph import TradingAgentsGraph 2 | from tradingagents.default_config import DEFAULT_CONFIG 3 | 4 | # Create a custom config 5 | config = DEFAULT_CONFIG.copy() 6 | config["llm_provider"] = "google" # Use a different model 7 | config["backend_url"] = "https://generativelanguage.googleapis.com/v1" # Use a different backend 8 | config["deep_think_llm"] = "gemini-2.0-flash" # Use a different model 9 | config["quick_think_llm"] = "gemini-2.0-flash" # Use a different model 10 | config["max_debate_rounds"] = 1 # Increase debate rounds 11 | config["online_tools"] = True # Increase debate rounds 12 | 13 | # Initialize with custom config 14 | ta = TradingAgentsGraph(debug=True, config=config) 15 | 16 | # forward propagate 17 | _, decision = ta.propagate("NVDA", "2024-05-10") 18 | print(decision) 19 | 20 | # Memorize mistakes and reflect 21 | # ta.reflect_and_remember(1000) # parameter is the position returns 22 | -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [project] 2 | name = "tradingagents" 3 | version = "0.1.0" 4 | description = "Add your description here" 5 | readme = "README.md" 6 | requires-python = ">=3.10" 7 | dependencies = [ 8 | "akshare>=1.16.98", 9 | "backtrader>=1.9.78.123", 10 | "chainlit>=2.5.5", 11 | "chromadb>=1.0.12", 12 | "eodhd>=1.0.32", 13 | "feedparser>=6.0.11", 14 | "finnhub-python>=2.4.23", 15 | "langchain-anthropic>=0.3.15", 16 | "langchain-experimental>=0.3.4", 17 | "langchain-google-genai>=2.1.5", 18 | "langchain-openai>=0.3.23", 19 | "langgraph>=0.4.8", 20 | "pandas>=2.3.0", 21 | "parsel>=1.10.0", 22 | "praw>=7.8.1", 23 | "pytz>=2025.2", 24 | "questionary>=2.1.0", 25 | "redis>=6.2.0", 26 | "requests>=2.32.4", 27 | "rich>=14.0.0", 28 | "setuptools>=80.9.0", 29 | "stockstats>=0.6.5", 30 | "tqdm>=4.67.1", 31 | "tushare>=1.4.21", 32 | "typing-extensions>=4.14.0", 33 | "yfinance>=0.2.63", 34 | ] 35 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | typing-extensions 2 | langchain-openai 3 | langchain-experimental 4 | pandas 5 | yfinance 6 | praw 7 | feedparser 8 | stockstats 9 | eodhd 10 | langgraph 11 | chromadb 12 | setuptools 13 | backtrader 14 | akshare 15 | tushare 16 | finnhub-python 17 | parsel 18 | requests 19 | tqdm 20 | pytz 21 | redis 22 | chainlit 23 | rich 24 | questionary 25 | langchain_anthropic 26 | langchain-google-genai 27 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | """ 2 | Setup script for the TradingAgents package. 3 | """ 4 | 5 | from setuptools import setup, find_packages 6 | 7 | setup( 8 | name="tradingagents", 9 | version="0.1.0", 10 | description="Multi-Agents LLM Financial Trading Framework", 11 | author="TradingAgents Team", 12 | author_email="yijia.xiao@cs.ucla.edu", 13 | url="https://github.com/TauricResearch", 14 | packages=find_packages(), 15 | install_requires=[ 16 | "langchain>=0.1.0", 17 | "langchain-openai>=0.0.2", 18 | "langchain-experimental>=0.0.40", 19 | "langgraph>=0.0.20", 20 | "numpy>=1.24.0", 21 | "pandas>=2.0.0", 22 | "praw>=7.7.0", 23 | "stockstats>=0.5.4", 24 | "yfinance>=0.2.31", 25 | "typer>=0.9.0", 26 | "rich>=13.0.0", 27 | "questionary>=2.0.1", 28 | ], 29 | python_requires=">=3.10", 30 | entry_points={ 31 | "console_scripts": [ 32 | "tradingagents=cli.main:app", 33 | ], 34 | }, 35 | classifiers=[ 36 | "Development Status :: 3 - Alpha", 37 | "Intended Audience :: Financial and Trading Industry", 38 | "License :: OSI Approved :: Apache Software License", 39 | "Programming Language :: Python :: 3", 40 | "Programming Language :: Python :: 3.10", 41 | "Topic :: Office/Business :: Financial :: Investment", 42 | ], 43 | ) 44 | -------------------------------------------------------------------------------- /tradingagents/agents/__init__.py: -------------------------------------------------------------------------------- 1 | from .utils.agent_utils import Toolkit, create_msg_delete 2 | from .utils.agent_states import AgentState, InvestDebateState, RiskDebateState 3 | from .utils.memory import FinancialSituationMemory 4 | 5 | from .analysts.fundamentals_analyst import create_fundamentals_analyst 6 | from .analysts.market_analyst import create_market_analyst 7 | from .analysts.news_analyst import create_news_analyst 8 | from .analysts.social_media_analyst import create_social_media_analyst 9 | 10 | from .researchers.bear_researcher import create_bear_researcher 11 | from .researchers.bull_researcher import create_bull_researcher 12 | 13 | from .risk_mgmt.aggresive_debator import create_risky_debator 14 | from .risk_mgmt.conservative_debator import create_safe_debator 15 | from .risk_mgmt.neutral_debator import create_neutral_debator 16 | 17 | from .managers.research_manager import create_research_manager 18 | from .managers.risk_manager import create_risk_manager 19 | 20 | from .trader.trader import create_trader 21 | 22 | __all__ = [ 23 | "FinancialSituationMemory", 24 | "Toolkit", 25 | "AgentState", 26 | "create_msg_delete", 27 | "InvestDebateState", 28 | "RiskDebateState", 29 | "create_bear_researcher", 30 | "create_bull_researcher", 31 | "create_research_manager", 32 | "create_fundamentals_analyst", 33 | "create_market_analyst", 34 | "create_neutral_debator", 35 | "create_news_analyst", 36 | "create_risky_debator", 37 | "create_risk_manager", 38 | "create_safe_debator", 39 | "create_social_media_analyst", 40 | "create_trader", 41 | ] 42 | -------------------------------------------------------------------------------- /tradingagents/agents/analysts/fundamentals_analyst.py: -------------------------------------------------------------------------------- 1 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 2 | import time 3 | import json 4 | 5 | 6 | def create_fundamentals_analyst(llm, toolkit): 7 | def fundamentals_analyst_node(state): 8 | current_date = state["trade_date"] 9 | ticker = state["company_of_interest"] 10 | company_name = state["company_of_interest"] 11 | 12 | if toolkit.config["online_tools"]: 13 | tools = [toolkit.get_fundamentals_openai] 14 | else: 15 | tools = [ 16 | toolkit.get_finnhub_company_insider_sentiment, 17 | toolkit.get_finnhub_company_insider_transactions, 18 | toolkit.get_simfin_balance_sheet, 19 | toolkit.get_simfin_cashflow, 20 | toolkit.get_simfin_income_stmt, 21 | ] 22 | 23 | system_message = ( 24 | "You are a researcher tasked with analyzing fundamental information over the past week about a company. Please write a comprehensive report of the company's fundamental information such as financial documents, company profile, basic company financials, company financial history, insider sentiment and insider transactions to gain a full view of the company's fundamental information to inform traders. Make sure to include as much detail as possible. Do not simply state the trends are mixed, provide detailed and finegrained analysis and insights that may help traders make decisions." 25 | + " Make sure to append a Markdown table at the end of the report to organize key points in the report, organized and easy to read.", 26 | ) 27 | 28 | prompt = ChatPromptTemplate.from_messages( 29 | [ 30 | ( 31 | "system", 32 | "You are a helpful AI assistant, collaborating with other assistants." 33 | " Use the provided tools to progress towards answering the question." 34 | " If you are unable to fully answer, that's OK; another assistant with different tools" 35 | " will help where you left off. Execute what you can to make progress." 36 | " If you or any other assistant has the FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** or deliverable," 37 | " prefix your response with FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** so the team knows to stop." 38 | " You have access to the following tools: {tool_names}.\n{system_message}" 39 | "For your reference, the current date is {current_date}. The company we want to look at is {ticker}", 40 | ), 41 | MessagesPlaceholder(variable_name="messages"), 42 | ] 43 | ) 44 | 45 | prompt = prompt.partial(system_message=system_message) 46 | prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools])) 47 | prompt = prompt.partial(current_date=current_date) 48 | prompt = prompt.partial(ticker=ticker) 49 | 50 | chain = prompt | llm.bind_tools(tools) 51 | 52 | result = chain.invoke(state["messages"]) 53 | 54 | report = "" 55 | 56 | if len(result.tool_calls) == 0: 57 | report = result.content 58 | 59 | return { 60 | "messages": [result], 61 | "fundamentals_report": report, 62 | } 63 | 64 | return fundamentals_analyst_node 65 | -------------------------------------------------------------------------------- /tradingagents/agents/analysts/market_analyst.py: -------------------------------------------------------------------------------- 1 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 2 | import time 3 | import json 4 | 5 | 6 | def create_market_analyst(llm, toolkit): 7 | 8 | def market_analyst_node(state): 9 | current_date = state["trade_date"] 10 | ticker = state["company_of_interest"] 11 | company_name = state["company_of_interest"] 12 | 13 | if toolkit.config["online_tools"]: 14 | tools = [ 15 | toolkit.get_YFin_data_online, 16 | toolkit.get_stockstats_indicators_report_online, 17 | ] 18 | else: 19 | tools = [ 20 | toolkit.get_YFin_data, 21 | toolkit.get_stockstats_indicators_report, 22 | ] 23 | 24 | system_message = ( 25 | """You are a trading assistant tasked with analyzing financial markets. Your role is to select the **most relevant indicators** for a given market condition or trading strategy from the following list. The goal is to choose up to **8 indicators** that provide complementary insights without redundancy. Categories and each category's indicators are: 26 | 27 | Moving Averages: 28 | - close_50_sma: 50 SMA: A medium-term trend indicator. Usage: Identify trend direction and serve as dynamic support/resistance. Tips: It lags price; combine with faster indicators for timely signals. 29 | - close_200_sma: 200 SMA: A long-term trend benchmark. Usage: Confirm overall market trend and identify golden/death cross setups. Tips: It reacts slowly; best for strategic trend confirmation rather than frequent trading entries. 30 | - close_10_ema: 10 EMA: A responsive short-term average. Usage: Capture quick shifts in momentum and potential entry points. Tips: Prone to noise in choppy markets; use alongside longer averages for filtering false signals. 31 | 32 | MACD Related: 33 | - macd: MACD: Computes momentum via differences of EMAs. Usage: Look for crossovers and divergence as signals of trend changes. Tips: Confirm with other indicators in low-volatility or sideways markets. 34 | - macds: MACD Signal: An EMA smoothing of the MACD line. Usage: Use crossovers with the MACD line to trigger trades. Tips: Should be part of a broader strategy to avoid false positives. 35 | - macdh: MACD Histogram: Shows the gap between the MACD line and its signal. Usage: Visualize momentum strength and spot divergence early. Tips: Can be volatile; complement with additional filters in fast-moving markets. 36 | 37 | Momentum Indicators: 38 | - rsi: RSI: Measures momentum to flag overbought/oversold conditions. Usage: Apply 70/30 thresholds and watch for divergence to signal reversals. Tips: In strong trends, RSI may remain extreme; always cross-check with trend analysis. 39 | 40 | Volatility Indicators: 41 | - boll: Bollinger Middle: A 20 SMA serving as the basis for Bollinger Bands. Usage: Acts as a dynamic benchmark for price movement. Tips: Combine with the upper and lower bands to effectively spot breakouts or reversals. 42 | - boll_ub: Bollinger Upper Band: Typically 2 standard deviations above the middle line. Usage: Signals potential overbought conditions and breakout zones. Tips: Confirm signals with other tools; prices may ride the band in strong trends. 43 | - boll_lb: Bollinger Lower Band: Typically 2 standard deviations below the middle line. Usage: Indicates potential oversold conditions. Tips: Use additional analysis to avoid false reversal signals. 44 | - atr: ATR: Averages true range to measure volatility. Usage: Set stop-loss levels and adjust position sizes based on current market volatility. Tips: It's a reactive measure, so use it as part of a broader risk management strategy. 45 | 46 | Volume-Based Indicators: 47 | - vwma: VWMA: A moving average weighted by volume. Usage: Confirm trends by integrating price action with volume data. Tips: Watch for skewed results from volume spikes; use in combination with other volume analyses. 48 | 49 | - Select indicators that provide diverse and complementary information. Avoid redundancy (e.g., do not select both rsi and stochrsi). Also briefly explain why they are suitable for the given market context. When you tool call, please use the exact name of the indicators provided above as they are defined parameters, otherwise your call will fail. Please make sure to call get_YFin_data first to retrieve the CSV that is needed to generate indicators. Write a very detailed and nuanced report of the trends you observe. Do not simply state the trends are mixed, provide detailed and finegrained analysis and insights that may help traders make decisions.""" 50 | + """ Make sure to append a Markdown table at the end of the report to organize key points in the report, organized and easy to read.""" 51 | ) 52 | 53 | prompt = ChatPromptTemplate.from_messages( 54 | [ 55 | ( 56 | "system", 57 | "You are a helpful AI assistant, collaborating with other assistants." 58 | " Use the provided tools to progress towards answering the question." 59 | " If you are unable to fully answer, that's OK; another assistant with different tools" 60 | " will help where you left off. Execute what you can to make progress." 61 | " If you or any other assistant has the FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** or deliverable," 62 | " prefix your response with FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** so the team knows to stop." 63 | " You have access to the following tools: {tool_names}.\n{system_message}" 64 | "For your reference, the current date is {current_date}. The company we want to look at is {ticker}", 65 | ), 66 | MessagesPlaceholder(variable_name="messages"), 67 | ] 68 | ) 69 | 70 | prompt = prompt.partial(system_message=system_message) 71 | prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools])) 72 | prompt = prompt.partial(current_date=current_date) 73 | prompt = prompt.partial(ticker=ticker) 74 | 75 | chain = prompt | llm.bind_tools(tools) 76 | 77 | result = chain.invoke(state["messages"]) 78 | 79 | report = "" 80 | 81 | if len(result.tool_calls) == 0: 82 | report = result.content 83 | 84 | return { 85 | "messages": [result], 86 | "market_report": report, 87 | } 88 | 89 | return market_analyst_node 90 | -------------------------------------------------------------------------------- /tradingagents/agents/analysts/news_analyst.py: -------------------------------------------------------------------------------- 1 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 2 | import time 3 | import json 4 | 5 | 6 | def create_news_analyst(llm, toolkit): 7 | def news_analyst_node(state): 8 | current_date = state["trade_date"] 9 | ticker = state["company_of_interest"] 10 | 11 | if toolkit.config["online_tools"]: 12 | tools = [toolkit.get_global_news_openai, toolkit.get_google_news] 13 | else: 14 | tools = [ 15 | toolkit.get_finnhub_news, 16 | toolkit.get_reddit_news, 17 | toolkit.get_google_news, 18 | ] 19 | 20 | system_message = ( 21 | "You are a news researcher tasked with analyzing recent news and trends over the past week. Please write a comprehensive report of the current state of the world that is relevant for trading and macroeconomics. Look at news from EODHD, and finnhub to be comprehensive. Do not simply state the trends are mixed, provide detailed and finegrained analysis and insights that may help traders make decisions." 22 | + """ Make sure to append a Makrdown table at the end of the report to organize key points in the report, organized and easy to read.""" 23 | ) 24 | 25 | prompt = ChatPromptTemplate.from_messages( 26 | [ 27 | ( 28 | "system", 29 | "You are a helpful AI assistant, collaborating with other assistants." 30 | " Use the provided tools to progress towards answering the question." 31 | " If you are unable to fully answer, that's OK; another assistant with different tools" 32 | " will help where you left off. Execute what you can to make progress." 33 | " If you or any other assistant has the FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** or deliverable," 34 | " prefix your response with FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** so the team knows to stop." 35 | " You have access to the following tools: {tool_names}.\n{system_message}" 36 | "For your reference, the current date is {current_date}. We are looking at the company {ticker}", 37 | ), 38 | MessagesPlaceholder(variable_name="messages"), 39 | ] 40 | ) 41 | 42 | prompt = prompt.partial(system_message=system_message) 43 | prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools])) 44 | prompt = prompt.partial(current_date=current_date) 45 | prompt = prompt.partial(ticker=ticker) 46 | 47 | chain = prompt | llm.bind_tools(tools) 48 | result = chain.invoke(state["messages"]) 49 | 50 | report = "" 51 | 52 | if len(result.tool_calls) == 0: 53 | report = result.content 54 | 55 | return { 56 | "messages": [result], 57 | "news_report": report, 58 | } 59 | 60 | return news_analyst_node 61 | -------------------------------------------------------------------------------- /tradingagents/agents/analysts/social_media_analyst.py: -------------------------------------------------------------------------------- 1 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 2 | import time 3 | import json 4 | 5 | 6 | def create_social_media_analyst(llm, toolkit): 7 | def social_media_analyst_node(state): 8 | current_date = state["trade_date"] 9 | ticker = state["company_of_interest"] 10 | company_name = state["company_of_interest"] 11 | 12 | if toolkit.config["online_tools"]: 13 | tools = [toolkit.get_stock_news_openai] 14 | else: 15 | tools = [ 16 | toolkit.get_reddit_stock_info, 17 | ] 18 | 19 | system_message = ( 20 | "You are a social media and company specific news researcher/analyst tasked with analyzing social media posts, recent company news, and public sentiment for a specific company over the past week. You will be given a company's name your objective is to write a comprehensive long report detailing your analysis, insights, and implications for traders and investors on this company's current state after looking at social media and what people are saying about that company, analyzing sentiment data of what people feel each day about the company, and looking at recent company news. Try to look at all sources possible from social media to sentiment to news. Do not simply state the trends are mixed, provide detailed and finegrained analysis and insights that may help traders make decisions." 21 | + """ Make sure to append a Makrdown table at the end of the report to organize key points in the report, organized and easy to read.""", 22 | ) 23 | 24 | prompt = ChatPromptTemplate.from_messages( 25 | [ 26 | ( 27 | "system", 28 | "You are a helpful AI assistant, collaborating with other assistants." 29 | " Use the provided tools to progress towards answering the question." 30 | " If you are unable to fully answer, that's OK; another assistant with different tools" 31 | " will help where you left off. Execute what you can to make progress." 32 | " If you or any other assistant has the FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** or deliverable," 33 | " prefix your response with FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL** so the team knows to stop." 34 | " You have access to the following tools: {tool_names}.\n{system_message}" 35 | "For your reference, the current date is {current_date}. The current company we want to analyze is {ticker}", 36 | ), 37 | MessagesPlaceholder(variable_name="messages"), 38 | ] 39 | ) 40 | 41 | prompt = prompt.partial(system_message=system_message) 42 | prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools])) 43 | prompt = prompt.partial(current_date=current_date) 44 | prompt = prompt.partial(ticker=ticker) 45 | 46 | chain = prompt | llm.bind_tools(tools) 47 | 48 | result = chain.invoke(state["messages"]) 49 | 50 | report = "" 51 | 52 | if len(result.tool_calls) == 0: 53 | report = result.content 54 | 55 | return { 56 | "messages": [result], 57 | "sentiment_report": report, 58 | } 59 | 60 | return social_media_analyst_node 61 | -------------------------------------------------------------------------------- /tradingagents/agents/managers/research_manager.py: -------------------------------------------------------------------------------- 1 | import time 2 | import json 3 | 4 | 5 | def create_research_manager(llm, memory): 6 | def research_manager_node(state) -> dict: 7 | history = state["investment_debate_state"].get("history", "") 8 | market_research_report = state["market_report"] 9 | sentiment_report = state["sentiment_report"] 10 | news_report = state["news_report"] 11 | fundamentals_report = state["fundamentals_report"] 12 | 13 | investment_debate_state = state["investment_debate_state"] 14 | 15 | curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}" 16 | past_memories = memory.get_memories(curr_situation, n_matches=2) 17 | 18 | past_memory_str = "" 19 | for i, rec in enumerate(past_memories, 1): 20 | past_memory_str += rec["recommendation"] + "\n\n" 21 | 22 | prompt = f"""As the portfolio manager and debate facilitator, your role is to critically evaluate this round of debate and make a definitive decision: align with the bear analyst, the bull analyst, or choose Hold only if it is strongly justified based on the arguments presented. 23 | 24 | Summarize the key points from both sides concisely, focusing on the most compelling evidence or reasoning. Your recommendation—Buy, Sell, or Hold—must be clear and actionable. Avoid defaulting to Hold simply because both sides have valid points; commit to a stance grounded in the debate's strongest arguments. 25 | 26 | Additionally, develop a detailed investment plan for the trader. This should include: 27 | 28 | Your Recommendation: A decisive stance supported by the most convincing arguments. 29 | Rationale: An explanation of why these arguments lead to your conclusion. 30 | Strategic Actions: Concrete steps for implementing the recommendation. 31 | Take into account your past mistakes on similar situations. Use these insights to refine your decision-making and ensure you are learning and improving. Present your analysis conversationally, as if speaking naturally, without special formatting. 32 | 33 | Here are your past reflections on mistakes: 34 | \"{past_memory_str}\" 35 | 36 | Here is the debate: 37 | Debate History: 38 | {history}""" 39 | response = llm.invoke(prompt) 40 | 41 | new_investment_debate_state = { 42 | "judge_decision": response.content, 43 | "history": investment_debate_state.get("history", ""), 44 | "bear_history": investment_debate_state.get("bear_history", ""), 45 | "bull_history": investment_debate_state.get("bull_history", ""), 46 | "current_response": response.content, 47 | "count": investment_debate_state["count"], 48 | } 49 | 50 | return { 51 | "investment_debate_state": new_investment_debate_state, 52 | "investment_plan": response.content, 53 | } 54 | 55 | return research_manager_node 56 | -------------------------------------------------------------------------------- /tradingagents/agents/managers/risk_manager.py: -------------------------------------------------------------------------------- 1 | import time 2 | import json 3 | 4 | 5 | def create_risk_manager(llm, memory): 6 | def risk_manager_node(state) -> dict: 7 | 8 | company_name = state["company_of_interest"] 9 | 10 | history = state["risk_debate_state"]["history"] 11 | risk_debate_state = state["risk_debate_state"] 12 | market_research_report = state["market_report"] 13 | news_report = state["news_report"] 14 | fundamentals_report = state["news_report"] 15 | sentiment_report = state["sentiment_report"] 16 | trader_plan = state["investment_plan"] 17 | 18 | curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}" 19 | past_memories = memory.get_memories(curr_situation, n_matches=2) 20 | 21 | past_memory_str = "" 22 | for i, rec in enumerate(past_memories, 1): 23 | past_memory_str += rec["recommendation"] + "\n\n" 24 | 25 | prompt = f"""As the Risk Management Judge and Debate Facilitator, your goal is to evaluate the debate between three risk analysts—Risky, Neutral, and Safe/Conservative—and determine the best course of action for the trader. Your decision must result in a clear recommendation: Buy, Sell, or Hold. Choose Hold only if strongly justified by specific arguments, not as a fallback when all sides seem valid. Strive for clarity and decisiveness. 26 | 27 | Guidelines for Decision-Making: 28 | 1. **Summarize Key Arguments**: Extract the strongest points from each analyst, focusing on relevance to the context. 29 | 2. **Provide Rationale**: Support your recommendation with direct quotes and counterarguments from the debate. 30 | 3. **Refine the Trader's Plan**: Start with the trader's original plan, **{trader_plan}**, and adjust it based on the analysts' insights. 31 | 4. **Learn from Past Mistakes**: Use lessons from **{past_memory_str}** to address prior misjudgments and improve the decision you are making now to make sure you don't make a wrong BUY/SELL/HOLD call that loses money. 32 | 33 | Deliverables: 34 | - A clear and actionable recommendation: Buy, Sell, or Hold. 35 | - Detailed reasoning anchored in the debate and past reflections. 36 | 37 | --- 38 | 39 | **Analysts Debate History:** 40 | {history} 41 | 42 | --- 43 | 44 | Focus on actionable insights and continuous improvement. Build on past lessons, critically evaluate all perspectives, and ensure each decision advances better outcomes.""" 45 | 46 | response = llm.invoke(prompt) 47 | 48 | new_risk_debate_state = { 49 | "judge_decision": response.content, 50 | "history": risk_debate_state["history"], 51 | "risky_history": risk_debate_state["risky_history"], 52 | "safe_history": risk_debate_state["safe_history"], 53 | "neutral_history": risk_debate_state["neutral_history"], 54 | "latest_speaker": "Judge", 55 | "current_risky_response": risk_debate_state["current_risky_response"], 56 | "current_safe_response": risk_debate_state["current_safe_response"], 57 | "current_neutral_response": risk_debate_state["current_neutral_response"], 58 | "count": risk_debate_state["count"], 59 | } 60 | 61 | return { 62 | "risk_debate_state": new_risk_debate_state, 63 | "final_trade_decision": response.content, 64 | } 65 | 66 | return risk_manager_node 67 | -------------------------------------------------------------------------------- /tradingagents/agents/researchers/bear_researcher.py: -------------------------------------------------------------------------------- 1 | from langchain_core.messages import AIMessage 2 | import time 3 | import json 4 | 5 | 6 | def create_bear_researcher(llm, memory): 7 | def bear_node(state) -> dict: 8 | investment_debate_state = state["investment_debate_state"] 9 | history = investment_debate_state.get("history", "") 10 | bear_history = investment_debate_state.get("bear_history", "") 11 | 12 | current_response = investment_debate_state.get("current_response", "") 13 | market_research_report = state["market_report"] 14 | sentiment_report = state["sentiment_report"] 15 | news_report = state["news_report"] 16 | fundamentals_report = state["fundamentals_report"] 17 | 18 | curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}" 19 | past_memories = memory.get_memories(curr_situation, n_matches=2) 20 | 21 | past_memory_str = "" 22 | for i, rec in enumerate(past_memories, 1): 23 | past_memory_str += rec["recommendation"] + "\n\n" 24 | 25 | prompt = f"""You are a Bear Analyst making the case against investing in the stock. Your goal is to present a well-reasoned argument emphasizing risks, challenges, and negative indicators. Leverage the provided research and data to highlight potential downsides and counter bullish arguments effectively. 26 | 27 | Key points to focus on: 28 | 29 | - Risks and Challenges: Highlight factors like market saturation, financial instability, or macroeconomic threats that could hinder the stock's performance. 30 | - Competitive Weaknesses: Emphasize vulnerabilities such as weaker market positioning, declining innovation, or threats from competitors. 31 | - Negative Indicators: Use evidence from financial data, market trends, or recent adverse news to support your position. 32 | - Bull Counterpoints: Critically analyze the bull argument with specific data and sound reasoning, exposing weaknesses or over-optimistic assumptions. 33 | - Engagement: Present your argument in a conversational style, directly engaging with the bull analyst's points and debating effectively rather than simply listing facts. 34 | 35 | Resources available: 36 | 37 | Market research report: {market_research_report} 38 | Social media sentiment report: {sentiment_report} 39 | Latest world affairs news: {news_report} 40 | Company fundamentals report: {fundamentals_report} 41 | Conversation history of the debate: {history} 42 | Last bull argument: {current_response} 43 | Reflections from similar situations and lessons learned: {past_memory_str} 44 | Use this information to deliver a compelling bear argument, refute the bull's claims, and engage in a dynamic debate that demonstrates the risks and weaknesses of investing in the stock. You must also address reflections and learn from lessons and mistakes you made in the past. 45 | """ 46 | 47 | response = llm.invoke(prompt) 48 | 49 | argument = f"Bear Analyst: {response.content}" 50 | 51 | new_investment_debate_state = { 52 | "history": history + "\n" + argument, 53 | "bear_history": bear_history + "\n" + argument, 54 | "bull_history": investment_debate_state.get("bull_history", ""), 55 | "current_response": argument, 56 | "count": investment_debate_state["count"] + 1, 57 | } 58 | 59 | return {"investment_debate_state": new_investment_debate_state} 60 | 61 | return bear_node 62 | -------------------------------------------------------------------------------- /tradingagents/agents/researchers/bull_researcher.py: -------------------------------------------------------------------------------- 1 | from langchain_core.messages import AIMessage 2 | import time 3 | import json 4 | 5 | 6 | def create_bull_researcher(llm, memory): 7 | def bull_node(state) -> dict: 8 | investment_debate_state = state["investment_debate_state"] 9 | history = investment_debate_state.get("history", "") 10 | bull_history = investment_debate_state.get("bull_history", "") 11 | 12 | current_response = investment_debate_state.get("current_response", "") 13 | market_research_report = state["market_report"] 14 | sentiment_report = state["sentiment_report"] 15 | news_report = state["news_report"] 16 | fundamentals_report = state["fundamentals_report"] 17 | 18 | curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}" 19 | past_memories = memory.get_memories(curr_situation, n_matches=2) 20 | 21 | past_memory_str = "" 22 | for i, rec in enumerate(past_memories, 1): 23 | past_memory_str += rec["recommendation"] + "\n\n" 24 | 25 | prompt = f"""You are a Bull Analyst advocating for investing in the stock. Your task is to build a strong, evidence-based case emphasizing growth potential, competitive advantages, and positive market indicators. Leverage the provided research and data to address concerns and counter bearish arguments effectively. 26 | 27 | Key points to focus on: 28 | - Growth Potential: Highlight the company's market opportunities, revenue projections, and scalability. 29 | - Competitive Advantages: Emphasize factors like unique products, strong branding, or dominant market positioning. 30 | - Positive Indicators: Use financial health, industry trends, and recent positive news as evidence. 31 | - Bear Counterpoints: Critically analyze the bear argument with specific data and sound reasoning, addressing concerns thoroughly and showing why the bull perspective holds stronger merit. 32 | - Engagement: Present your argument in a conversational style, engaging directly with the bear analyst's points and debating effectively rather than just listing data. 33 | 34 | Resources available: 35 | Market research report: {market_research_report} 36 | Social media sentiment report: {sentiment_report} 37 | Latest world affairs news: {news_report} 38 | Company fundamentals report: {fundamentals_report} 39 | Conversation history of the debate: {history} 40 | Last bear argument: {current_response} 41 | Reflections from similar situations and lessons learned: {past_memory_str} 42 | Use this information to deliver a compelling bull argument, refute the bear's concerns, and engage in a dynamic debate that demonstrates the strengths of the bull position. You must also address reflections and learn from lessons and mistakes you made in the past. 43 | """ 44 | 45 | response = llm.invoke(prompt) 46 | 47 | argument = f"Bull Analyst: {response.content}" 48 | 49 | new_investment_debate_state = { 50 | "history": history + "\n" + argument, 51 | "bull_history": bull_history + "\n" + argument, 52 | "bear_history": investment_debate_state.get("bear_history", ""), 53 | "current_response": argument, 54 | "count": investment_debate_state["count"] + 1, 55 | } 56 | 57 | return {"investment_debate_state": new_investment_debate_state} 58 | 59 | return bull_node 60 | -------------------------------------------------------------------------------- /tradingagents/agents/risk_mgmt/aggresive_debator.py: -------------------------------------------------------------------------------- 1 | import time 2 | import json 3 | 4 | 5 | def create_risky_debator(llm): 6 | def risky_node(state) -> dict: 7 | risk_debate_state = state["risk_debate_state"] 8 | history = risk_debate_state.get("history", "") 9 | risky_history = risk_debate_state.get("risky_history", "") 10 | 11 | current_safe_response = risk_debate_state.get("current_safe_response", "") 12 | current_neutral_response = risk_debate_state.get("current_neutral_response", "") 13 | 14 | market_research_report = state["market_report"] 15 | sentiment_report = state["sentiment_report"] 16 | news_report = state["news_report"] 17 | fundamentals_report = state["fundamentals_report"] 18 | 19 | trader_decision = state["trader_investment_plan"] 20 | 21 | prompt = f"""As the Risky Risk Analyst, your role is to actively champion high-reward, high-risk opportunities, emphasizing bold strategies and competitive advantages. When evaluating the trader's decision or plan, focus intently on the potential upside, growth potential, and innovative benefits—even when these come with elevated risk. Use the provided market data and sentiment analysis to strengthen your arguments and challenge the opposing views. Specifically, respond directly to each point made by the conservative and neutral analysts, countering with data-driven rebuttals and persuasive reasoning. Highlight where their caution might miss critical opportunities or where their assumptions may be overly conservative. Here is the trader's decision: 22 | 23 | {trader_decision} 24 | 25 | Your task is to create a compelling case for the trader's decision by questioning and critiquing the conservative and neutral stances to demonstrate why your high-reward perspective offers the best path forward. Incorporate insights from the following sources into your arguments: 26 | 27 | Market Research Report: {market_research_report} 28 | Social Media Sentiment Report: {sentiment_report} 29 | Latest World Affairs Report: {news_report} 30 | Company Fundamentals Report: {fundamentals_report} 31 | Here is the current conversation history: {history} Here are the last arguments from the conservative analyst: {current_safe_response} Here are the last arguments from the neutral analyst: {current_neutral_response}. If there are no responses from the other viewpoints, do not halluncinate and just present your point. 32 | 33 | Engage actively by addressing any specific concerns raised, refuting the weaknesses in their logic, and asserting the benefits of risk-taking to outpace market norms. Maintain a focus on debating and persuading, not just presenting data. Challenge each counterpoint to underscore why a high-risk approach is optimal. Output conversationally as if you are speaking without any special formatting.""" 34 | 35 | response = llm.invoke(prompt) 36 | 37 | argument = f"Risky Analyst: {response.content}" 38 | 39 | new_risk_debate_state = { 40 | "history": history + "\n" + argument, 41 | "risky_history": risky_history + "\n" + argument, 42 | "safe_history": risk_debate_state.get("safe_history", ""), 43 | "neutral_history": risk_debate_state.get("neutral_history", ""), 44 | "latest_speaker": "Risky", 45 | "current_risky_response": argument, 46 | "current_safe_response": risk_debate_state.get("current_safe_response", ""), 47 | "current_neutral_response": risk_debate_state.get( 48 | "current_neutral_response", "" 49 | ), 50 | "count": risk_debate_state["count"] + 1, 51 | } 52 | 53 | return {"risk_debate_state": new_risk_debate_state} 54 | 55 | return risky_node 56 | -------------------------------------------------------------------------------- /tradingagents/agents/risk_mgmt/conservative_debator.py: -------------------------------------------------------------------------------- 1 | from langchain_core.messages import AIMessage 2 | import time 3 | import json 4 | 5 | 6 | def create_safe_debator(llm): 7 | def safe_node(state) -> dict: 8 | risk_debate_state = state["risk_debate_state"] 9 | history = risk_debate_state.get("history", "") 10 | safe_history = risk_debate_state.get("safe_history", "") 11 | 12 | current_risky_response = risk_debate_state.get("current_risky_response", "") 13 | current_neutral_response = risk_debate_state.get("current_neutral_response", "") 14 | 15 | market_research_report = state["market_report"] 16 | sentiment_report = state["sentiment_report"] 17 | news_report = state["news_report"] 18 | fundamentals_report = state["fundamentals_report"] 19 | 20 | trader_decision = state["trader_investment_plan"] 21 | 22 | prompt = f"""As the Safe/Conservative Risk Analyst, your primary objective is to protect assets, minimize volatility, and ensure steady, reliable growth. You prioritize stability, security, and risk mitigation, carefully assessing potential losses, economic downturns, and market volatility. When evaluating the trader's decision or plan, critically examine high-risk elements, pointing out where the decision may expose the firm to undue risk and where more cautious alternatives could secure long-term gains. Here is the trader's decision: 23 | 24 | {trader_decision} 25 | 26 | Your task is to actively counter the arguments of the Risky and Neutral Analysts, highlighting where their views may overlook potential threats or fail to prioritize sustainability. Respond directly to their points, drawing from the following data sources to build a convincing case for a low-risk approach adjustment to the trader's decision: 27 | 28 | Market Research Report: {market_research_report} 29 | Social Media Sentiment Report: {sentiment_report} 30 | Latest World Affairs Report: {news_report} 31 | Company Fundamentals Report: {fundamentals_report} 32 | Here is the current conversation history: {history} Here is the last response from the risky analyst: {current_risky_response} Here is the last response from the neutral analyst: {current_neutral_response}. If there are no responses from the other viewpoints, do not halluncinate and just present your point. 33 | 34 | Engage by questioning their optimism and emphasizing the potential downsides they may have overlooked. Address each of their counterpoints to showcase why a conservative stance is ultimately the safest path for the firm's assets. Focus on debating and critiquing their arguments to demonstrate the strength of a low-risk strategy over their approaches. Output conversationally as if you are speaking without any special formatting.""" 35 | 36 | response = llm.invoke(prompt) 37 | 38 | argument = f"Safe Analyst: {response.content}" 39 | 40 | new_risk_debate_state = { 41 | "history": history + "\n" + argument, 42 | "risky_history": risk_debate_state.get("risky_history", ""), 43 | "safe_history": safe_history + "\n" + argument, 44 | "neutral_history": risk_debate_state.get("neutral_history", ""), 45 | "latest_speaker": "Safe", 46 | "current_risky_response": risk_debate_state.get( 47 | "current_risky_response", "" 48 | ), 49 | "current_safe_response": argument, 50 | "current_neutral_response": risk_debate_state.get( 51 | "current_neutral_response", "" 52 | ), 53 | "count": risk_debate_state["count"] + 1, 54 | } 55 | 56 | return {"risk_debate_state": new_risk_debate_state} 57 | 58 | return safe_node 59 | -------------------------------------------------------------------------------- /tradingagents/agents/risk_mgmt/neutral_debator.py: -------------------------------------------------------------------------------- 1 | import time 2 | import json 3 | 4 | 5 | def create_neutral_debator(llm): 6 | def neutral_node(state) -> dict: 7 | risk_debate_state = state["risk_debate_state"] 8 | history = risk_debate_state.get("history", "") 9 | neutral_history = risk_debate_state.get("neutral_history", "") 10 | 11 | current_risky_response = risk_debate_state.get("current_risky_response", "") 12 | current_safe_response = risk_debate_state.get("current_safe_response", "") 13 | 14 | market_research_report = state["market_report"] 15 | sentiment_report = state["sentiment_report"] 16 | news_report = state["news_report"] 17 | fundamentals_report = state["fundamentals_report"] 18 | 19 | trader_decision = state["trader_investment_plan"] 20 | 21 | prompt = f"""As the Neutral Risk Analyst, your role is to provide a balanced perspective, weighing both the potential benefits and risks of the trader's decision or plan. You prioritize a well-rounded approach, evaluating the upsides and downsides while factoring in broader market trends, potential economic shifts, and diversification strategies.Here is the trader's decision: 22 | 23 | {trader_decision} 24 | 25 | Your task is to challenge both the Risky and Safe Analysts, pointing out where each perspective may be overly optimistic or overly cautious. Use insights from the following data sources to support a moderate, sustainable strategy to adjust the trader's decision: 26 | 27 | Market Research Report: {market_research_report} 28 | Social Media Sentiment Report: {sentiment_report} 29 | Latest World Affairs Report: {news_report} 30 | Company Fundamentals Report: {fundamentals_report} 31 | Here is the current conversation history: {history} Here is the last response from the risky analyst: {current_risky_response} Here is the last response from the safe analyst: {current_safe_response}. If there are no responses from the other viewpoints, do not halluncinate and just present your point. 32 | 33 | Engage actively by analyzing both sides critically, addressing weaknesses in the risky and conservative arguments to advocate for a more balanced approach. Challenge each of their points to illustrate why a moderate risk strategy might offer the best of both worlds, providing growth potential while safeguarding against extreme volatility. Focus on debating rather than simply presenting data, aiming to show that a balanced view can lead to the most reliable outcomes. Output conversationally as if you are speaking without any special formatting.""" 34 | 35 | response = llm.invoke(prompt) 36 | 37 | argument = f"Neutral Analyst: {response.content}" 38 | 39 | new_risk_debate_state = { 40 | "history": history + "\n" + argument, 41 | "risky_history": risk_debate_state.get("risky_history", ""), 42 | "safe_history": risk_debate_state.get("safe_history", ""), 43 | "neutral_history": neutral_history + "\n" + argument, 44 | "latest_speaker": "Neutral", 45 | "current_risky_response": risk_debate_state.get( 46 | "current_risky_response", "" 47 | ), 48 | "current_safe_response": risk_debate_state.get("current_safe_response", ""), 49 | "current_neutral_response": argument, 50 | "count": risk_debate_state["count"] + 1, 51 | } 52 | 53 | return {"risk_debate_state": new_risk_debate_state} 54 | 55 | return neutral_node 56 | -------------------------------------------------------------------------------- /tradingagents/agents/trader/trader.py: -------------------------------------------------------------------------------- 1 | import functools 2 | import time 3 | import json 4 | 5 | 6 | def create_trader(llm, memory): 7 | def trader_node(state, name): 8 | company_name = state["company_of_interest"] 9 | investment_plan = state["investment_plan"] 10 | market_research_report = state["market_report"] 11 | sentiment_report = state["sentiment_report"] 12 | news_report = state["news_report"] 13 | fundamentals_report = state["fundamentals_report"] 14 | 15 | curr_situation = f"{market_research_report}\n\n{sentiment_report}\n\n{news_report}\n\n{fundamentals_report}" 16 | past_memories = memory.get_memories(curr_situation, n_matches=2) 17 | 18 | past_memory_str = "" 19 | if past_memories: 20 | for i, rec in enumerate(past_memories, 1): 21 | past_memory_str += rec["recommendation"] + "\n\n" 22 | else: 23 | past_memory_str = "No past memories found." 24 | 25 | context = { 26 | "role": "user", 27 | "content": f"Based on a comprehensive analysis by a team of analysts, here is an investment plan tailored for {company_name}. This plan incorporates insights from current technical market trends, macroeconomic indicators, and social media sentiment. Use this plan as a foundation for evaluating your next trading decision.\n\nProposed Investment Plan: {investment_plan}\n\nLeverage these insights to make an informed and strategic decision.", 28 | } 29 | 30 | messages = [ 31 | { 32 | "role": "system", 33 | "content": f"""You are a trading agent analyzing market data to make investment decisions. Based on your analysis, provide a specific recommendation to buy, sell, or hold. End with a firm decision and always conclude your response with 'FINAL TRANSACTION PROPOSAL: **BUY/HOLD/SELL**' to confirm your recommendation. Do not forget to utilize lessons from past decisions to learn from your mistakes. Here is some reflections from similar situatiosn you traded in and the lessons learned: {past_memory_str}""", 34 | }, 35 | context, 36 | ] 37 | 38 | result = llm.invoke(messages) 39 | 40 | return { 41 | "messages": [result], 42 | "trader_investment_plan": result.content, 43 | "sender": name, 44 | } 45 | 46 | return functools.partial(trader_node, name="Trader") 47 | -------------------------------------------------------------------------------- /tradingagents/agents/utils/agent_states.py: -------------------------------------------------------------------------------- 1 | from typing import Annotated, Sequence 2 | from datetime import date, timedelta, datetime 3 | from typing_extensions import TypedDict, Optional 4 | from langchain_openai import ChatOpenAI 5 | from tradingagents.agents import * 6 | from langgraph.prebuilt import ToolNode 7 | from langgraph.graph import END, StateGraph, START, MessagesState 8 | 9 | 10 | # Researcher team state 11 | class InvestDebateState(TypedDict): 12 | bull_history: Annotated[ 13 | str, "Bullish Conversation history" 14 | ] # Bullish Conversation history 15 | bear_history: Annotated[ 16 | str, "Bearish Conversation history" 17 | ] # Bullish Conversation history 18 | history: Annotated[str, "Conversation history"] # Conversation history 19 | current_response: Annotated[str, "Latest response"] # Last response 20 | judge_decision: Annotated[str, "Final judge decision"] # Last response 21 | count: Annotated[int, "Length of the current conversation"] # Conversation length 22 | 23 | 24 | # Risk management team state 25 | class RiskDebateState(TypedDict): 26 | risky_history: Annotated[ 27 | str, "Risky Agent's Conversation history" 28 | ] # Conversation history 29 | safe_history: Annotated[ 30 | str, "Safe Agent's Conversation history" 31 | ] # Conversation history 32 | neutral_history: Annotated[ 33 | str, "Neutral Agent's Conversation history" 34 | ] # Conversation history 35 | history: Annotated[str, "Conversation history"] # Conversation history 36 | latest_speaker: Annotated[str, "Analyst that spoke last"] 37 | current_risky_response: Annotated[ 38 | str, "Latest response by the risky analyst" 39 | ] # Last response 40 | current_safe_response: Annotated[ 41 | str, "Latest response by the safe analyst" 42 | ] # Last response 43 | current_neutral_response: Annotated[ 44 | str, "Latest response by the neutral analyst" 45 | ] # Last response 46 | judge_decision: Annotated[str, "Judge's decision"] 47 | count: Annotated[int, "Length of the current conversation"] # Conversation length 48 | 49 | 50 | class AgentState(MessagesState): 51 | company_of_interest: Annotated[str, "Company that we are interested in trading"] 52 | trade_date: Annotated[str, "What date we are trading at"] 53 | 54 | sender: Annotated[str, "Agent that sent this message"] 55 | 56 | # research step 57 | market_report: Annotated[str, "Report from the Market Analyst"] 58 | sentiment_report: Annotated[str, "Report from the Social Media Analyst"] 59 | news_report: Annotated[ 60 | str, "Report from the News Researcher of current world affairs" 61 | ] 62 | fundamentals_report: Annotated[str, "Report from the Fundamentals Researcher"] 63 | 64 | # researcher team discussion step 65 | investment_debate_state: Annotated[ 66 | InvestDebateState, "Current state of the debate on if to invest or not" 67 | ] 68 | investment_plan: Annotated[str, "Plan generated by the Analyst"] 69 | 70 | trader_investment_plan: Annotated[str, "Plan generated by the Trader"] 71 | 72 | # risk management team discussion step 73 | risk_debate_state: Annotated[ 74 | RiskDebateState, "Current state of the debate on evaluating risk" 75 | ] 76 | final_trade_decision: Annotated[str, "Final decision made by the Risk Analysts"] 77 | -------------------------------------------------------------------------------- /tradingagents/agents/utils/agent_utils.py: -------------------------------------------------------------------------------- 1 | from langchain_core.messages import BaseMessage, HumanMessage, ToolMessage, AIMessage 2 | from typing import List 3 | from typing import Annotated 4 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 5 | from langchain_core.messages import RemoveMessage 6 | from langchain_core.tools import tool 7 | from datetime import date, timedelta, datetime 8 | import functools 9 | import pandas as pd 10 | import os 11 | from dateutil.relativedelta import relativedelta 12 | from langchain_openai import ChatOpenAI 13 | import tradingagents.dataflows.interface as interface 14 | from tradingagents.default_config import DEFAULT_CONFIG 15 | from langchain_core.messages import HumanMessage 16 | 17 | 18 | def create_msg_delete(): 19 | def delete_messages(state): 20 | """Clear messages and add placeholder for Anthropic compatibility""" 21 | messages = state["messages"] 22 | 23 | # Remove all messages 24 | removal_operations = [RemoveMessage(id=m.id) for m in messages] 25 | 26 | # Add a minimal placeholder message 27 | placeholder = HumanMessage(content="Continue") 28 | 29 | return {"messages": removal_operations + [placeholder]} 30 | 31 | return delete_messages 32 | 33 | 34 | class Toolkit: 35 | _config = DEFAULT_CONFIG.copy() 36 | 37 | @classmethod 38 | def update_config(cls, config): 39 | """Update the class-level configuration.""" 40 | cls._config.update(config) 41 | 42 | @property 43 | def config(self): 44 | """Access the configuration.""" 45 | return self._config 46 | 47 | def __init__(self, config=None): 48 | if config: 49 | self.update_config(config) 50 | 51 | @staticmethod 52 | @tool 53 | def get_reddit_news( 54 | curr_date: Annotated[str, "Date you want to get news for in yyyy-mm-dd format"], 55 | ) -> str: 56 | """ 57 | Retrieve global news from Reddit within a specified time frame. 58 | Args: 59 | curr_date (str): Date you want to get news for in yyyy-mm-dd format 60 | Returns: 61 | str: A formatted dataframe containing the latest global news from Reddit in the specified time frame. 62 | """ 63 | 64 | global_news_result = interface.get_reddit_global_news(curr_date, 7, 5) 65 | 66 | return global_news_result 67 | 68 | @staticmethod 69 | @tool 70 | def get_finnhub_news( 71 | ticker: Annotated[ 72 | str, 73 | "Search query of a company, e.g. 'AAPL, TSM, etc.", 74 | ], 75 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 76 | end_date: Annotated[str, "End date in yyyy-mm-dd format"], 77 | ): 78 | """ 79 | Retrieve the latest news about a given stock from Finnhub within a date range 80 | Args: 81 | ticker (str): Ticker of a company. e.g. AAPL, TSM 82 | start_date (str): Start date in yyyy-mm-dd format 83 | end_date (str): End date in yyyy-mm-dd format 84 | Returns: 85 | str: A formatted dataframe containing news about the company within the date range from start_date to end_date 86 | """ 87 | 88 | end_date_str = end_date 89 | 90 | end_date = datetime.strptime(end_date, "%Y-%m-%d") 91 | start_date = datetime.strptime(start_date, "%Y-%m-%d") 92 | look_back_days = (end_date - start_date).days 93 | 94 | finnhub_news_result = interface.get_finnhub_news( 95 | ticker, end_date_str, look_back_days 96 | ) 97 | 98 | return finnhub_news_result 99 | 100 | @staticmethod 101 | @tool 102 | def get_reddit_stock_info( 103 | ticker: Annotated[ 104 | str, 105 | "Ticker of a company. e.g. AAPL, TSM", 106 | ], 107 | curr_date: Annotated[str, "Current date you want to get news for"], 108 | ) -> str: 109 | """ 110 | Retrieve the latest news about a given stock from Reddit, given the current date. 111 | Args: 112 | ticker (str): Ticker of a company. e.g. AAPL, TSM 113 | curr_date (str): current date in yyyy-mm-dd format to get news for 114 | Returns: 115 | str: A formatted dataframe containing the latest news about the company on the given date 116 | """ 117 | 118 | stock_news_results = interface.get_reddit_company_news(ticker, curr_date, 7, 5) 119 | 120 | return stock_news_results 121 | 122 | @staticmethod 123 | @tool 124 | def get_YFin_data( 125 | symbol: Annotated[str, "ticker symbol of the company"], 126 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 127 | end_date: Annotated[str, "End date in yyyy-mm-dd format"], 128 | ) -> str: 129 | """ 130 | Retrieve the stock price data for a given ticker symbol from Yahoo Finance. 131 | Args: 132 | symbol (str): Ticker symbol of the company, e.g. AAPL, TSM 133 | start_date (str): Start date in yyyy-mm-dd format 134 | end_date (str): End date in yyyy-mm-dd format 135 | Returns: 136 | str: A formatted dataframe containing the stock price data for the specified ticker symbol in the specified date range. 137 | """ 138 | 139 | result_data = interface.get_YFin_data(symbol, start_date, end_date) 140 | 141 | return result_data 142 | 143 | @staticmethod 144 | @tool 145 | def get_YFin_data_online( 146 | symbol: Annotated[str, "ticker symbol of the company"], 147 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 148 | end_date: Annotated[str, "End date in yyyy-mm-dd format"], 149 | ) -> str: 150 | """ 151 | Retrieve the stock price data for a given ticker symbol from Yahoo Finance. 152 | Args: 153 | symbol (str): Ticker symbol of the company, e.g. AAPL, TSM 154 | start_date (str): Start date in yyyy-mm-dd format 155 | end_date (str): End date in yyyy-mm-dd format 156 | Returns: 157 | str: A formatted dataframe containing the stock price data for the specified ticker symbol in the specified date range. 158 | """ 159 | 160 | result_data = interface.get_YFin_data_online(symbol, start_date, end_date) 161 | 162 | return result_data 163 | 164 | @staticmethod 165 | @tool 166 | def get_stockstats_indicators_report( 167 | symbol: Annotated[str, "ticker symbol of the company"], 168 | indicator: Annotated[ 169 | str, "technical indicator to get the analysis and report of" 170 | ], 171 | curr_date: Annotated[ 172 | str, "The current trading date you are trading on, YYYY-mm-dd" 173 | ], 174 | look_back_days: Annotated[int, "how many days to look back"] = 30, 175 | ) -> str: 176 | """ 177 | Retrieve stock stats indicators for a given ticker symbol and indicator. 178 | Args: 179 | symbol (str): Ticker symbol of the company, e.g. AAPL, TSM 180 | indicator (str): Technical indicator to get the analysis and report of 181 | curr_date (str): The current trading date you are trading on, YYYY-mm-dd 182 | look_back_days (int): How many days to look back, default is 30 183 | Returns: 184 | str: A formatted dataframe containing the stock stats indicators for the specified ticker symbol and indicator. 185 | """ 186 | 187 | result_stockstats = interface.get_stock_stats_indicators_window( 188 | symbol, indicator, curr_date, look_back_days, False 189 | ) 190 | 191 | return result_stockstats 192 | 193 | @staticmethod 194 | @tool 195 | def get_stockstats_indicators_report_online( 196 | symbol: Annotated[str, "ticker symbol of the company"], 197 | indicator: Annotated[ 198 | str, "technical indicator to get the analysis and report of" 199 | ], 200 | curr_date: Annotated[ 201 | str, "The current trading date you are trading on, YYYY-mm-dd" 202 | ], 203 | look_back_days: Annotated[int, "how many days to look back"] = 30, 204 | ) -> str: 205 | """ 206 | Retrieve stock stats indicators for a given ticker symbol and indicator. 207 | Args: 208 | symbol (str): Ticker symbol of the company, e.g. AAPL, TSM 209 | indicator (str): Technical indicator to get the analysis and report of 210 | curr_date (str): The current trading date you are trading on, YYYY-mm-dd 211 | look_back_days (int): How many days to look back, default is 30 212 | Returns: 213 | str: A formatted dataframe containing the stock stats indicators for the specified ticker symbol and indicator. 214 | """ 215 | 216 | result_stockstats = interface.get_stock_stats_indicators_window( 217 | symbol, indicator, curr_date, look_back_days, True 218 | ) 219 | 220 | return result_stockstats 221 | 222 | @staticmethod 223 | @tool 224 | def get_finnhub_company_insider_sentiment( 225 | ticker: Annotated[str, "ticker symbol for the company"], 226 | curr_date: Annotated[ 227 | str, 228 | "current date of you are trading at, yyyy-mm-dd", 229 | ], 230 | ): 231 | """ 232 | Retrieve insider sentiment information about a company (retrieved from public SEC information) for the past 30 days 233 | Args: 234 | ticker (str): ticker symbol of the company 235 | curr_date (str): current date you are trading at, yyyy-mm-dd 236 | Returns: 237 | str: a report of the sentiment in the past 30 days starting at curr_date 238 | """ 239 | 240 | data_sentiment = interface.get_finnhub_company_insider_sentiment( 241 | ticker, curr_date, 30 242 | ) 243 | 244 | return data_sentiment 245 | 246 | @staticmethod 247 | @tool 248 | def get_finnhub_company_insider_transactions( 249 | ticker: Annotated[str, "ticker symbol"], 250 | curr_date: Annotated[ 251 | str, 252 | "current date you are trading at, yyyy-mm-dd", 253 | ], 254 | ): 255 | """ 256 | Retrieve insider transaction information about a company (retrieved from public SEC information) for the past 30 days 257 | Args: 258 | ticker (str): ticker symbol of the company 259 | curr_date (str): current date you are trading at, yyyy-mm-dd 260 | Returns: 261 | str: a report of the company's insider transactions/trading information in the past 30 days 262 | """ 263 | 264 | data_trans = interface.get_finnhub_company_insider_transactions( 265 | ticker, curr_date, 30 266 | ) 267 | 268 | return data_trans 269 | 270 | @staticmethod 271 | @tool 272 | def get_simfin_balance_sheet( 273 | ticker: Annotated[str, "ticker symbol"], 274 | freq: Annotated[ 275 | str, 276 | "reporting frequency of the company's financial history: annual/quarterly", 277 | ], 278 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 279 | ): 280 | """ 281 | Retrieve the most recent balance sheet of a company 282 | Args: 283 | ticker (str): ticker symbol of the company 284 | freq (str): reporting frequency of the company's financial history: annual / quarterly 285 | curr_date (str): current date you are trading at, yyyy-mm-dd 286 | Returns: 287 | str: a report of the company's most recent balance sheet 288 | """ 289 | 290 | data_balance_sheet = interface.get_simfin_balance_sheet(ticker, freq, curr_date) 291 | 292 | return data_balance_sheet 293 | 294 | @staticmethod 295 | @tool 296 | def get_simfin_cashflow( 297 | ticker: Annotated[str, "ticker symbol"], 298 | freq: Annotated[ 299 | str, 300 | "reporting frequency of the company's financial history: annual/quarterly", 301 | ], 302 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 303 | ): 304 | """ 305 | Retrieve the most recent cash flow statement of a company 306 | Args: 307 | ticker (str): ticker symbol of the company 308 | freq (str): reporting frequency of the company's financial history: annual / quarterly 309 | curr_date (str): current date you are trading at, yyyy-mm-dd 310 | Returns: 311 | str: a report of the company's most recent cash flow statement 312 | """ 313 | 314 | data_cashflow = interface.get_simfin_cashflow(ticker, freq, curr_date) 315 | 316 | return data_cashflow 317 | 318 | @staticmethod 319 | @tool 320 | def get_simfin_income_stmt( 321 | ticker: Annotated[str, "ticker symbol"], 322 | freq: Annotated[ 323 | str, 324 | "reporting frequency of the company's financial history: annual/quarterly", 325 | ], 326 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 327 | ): 328 | """ 329 | Retrieve the most recent income statement of a company 330 | Args: 331 | ticker (str): ticker symbol of the company 332 | freq (str): reporting frequency of the company's financial history: annual / quarterly 333 | curr_date (str): current date you are trading at, yyyy-mm-dd 334 | Returns: 335 | str: a report of the company's most recent income statement 336 | """ 337 | 338 | data_income_stmt = interface.get_simfin_income_statements( 339 | ticker, freq, curr_date 340 | ) 341 | 342 | return data_income_stmt 343 | 344 | @staticmethod 345 | @tool 346 | def get_google_news( 347 | query: Annotated[str, "Query to search with"], 348 | curr_date: Annotated[str, "Curr date in yyyy-mm-dd format"], 349 | ): 350 | """ 351 | Retrieve the latest news from Google News based on a query and date range. 352 | Args: 353 | query (str): Query to search with 354 | curr_date (str): Current date in yyyy-mm-dd format 355 | look_back_days (int): How many days to look back 356 | Returns: 357 | str: A formatted string containing the latest news from Google News based on the query and date range. 358 | """ 359 | 360 | google_news_results = interface.get_google_news(query, curr_date, 7) 361 | 362 | return google_news_results 363 | 364 | @staticmethod 365 | @tool 366 | def get_stock_news_openai( 367 | ticker: Annotated[str, "the company's ticker"], 368 | curr_date: Annotated[str, "Current date in yyyy-mm-dd format"], 369 | ): 370 | """ 371 | Retrieve the latest news about a given stock by using OpenAI's news API. 372 | Args: 373 | ticker (str): Ticker of a company. e.g. AAPL, TSM 374 | curr_date (str): Current date in yyyy-mm-dd format 375 | Returns: 376 | str: A formatted string containing the latest news about the company on the given date. 377 | """ 378 | 379 | openai_news_results = interface.get_stock_news_openai(ticker, curr_date) 380 | 381 | return openai_news_results 382 | 383 | @staticmethod 384 | @tool 385 | def get_global_news_openai( 386 | curr_date: Annotated[str, "Current date in yyyy-mm-dd format"], 387 | ): 388 | """ 389 | Retrieve the latest macroeconomics news on a given date using OpenAI's macroeconomics news API. 390 | Args: 391 | curr_date (str): Current date in yyyy-mm-dd format 392 | Returns: 393 | str: A formatted string containing the latest macroeconomic news on the given date. 394 | """ 395 | 396 | openai_news_results = interface.get_global_news_openai(curr_date) 397 | 398 | return openai_news_results 399 | 400 | @staticmethod 401 | @tool 402 | def get_fundamentals_openai( 403 | ticker: Annotated[str, "the company's ticker"], 404 | curr_date: Annotated[str, "Current date in yyyy-mm-dd format"], 405 | ): 406 | """ 407 | Retrieve the latest fundamental information about a given stock on a given date by using OpenAI's news API. 408 | Args: 409 | ticker (str): Ticker of a company. e.g. AAPL, TSM 410 | curr_date (str): Current date in yyyy-mm-dd format 411 | Returns: 412 | str: A formatted string containing the latest fundamental information about the company on the given date. 413 | """ 414 | 415 | openai_fundamentals_results = interface.get_fundamentals_openai( 416 | ticker, curr_date 417 | ) 418 | 419 | return openai_fundamentals_results 420 | -------------------------------------------------------------------------------- /tradingagents/agents/utils/memory.py: -------------------------------------------------------------------------------- 1 | import chromadb 2 | from chromadb.config import Settings 3 | from openai import OpenAI 4 | 5 | 6 | class FinancialSituationMemory: 7 | def __init__(self, name, config): 8 | if config["backend_url"] == "http://localhost:11434/v1": 9 | self.embedding = "nomic-embed-text" 10 | else: 11 | self.embedding = "text-embedding-3-small" 12 | self.client = OpenAI(base_url=config["backend_url"]) 13 | self.chroma_client = chromadb.Client(Settings(allow_reset=True)) 14 | self.situation_collection = self.chroma_client.create_collection(name=name) 15 | 16 | def get_embedding(self, text): 17 | """Get OpenAI embedding for a text""" 18 | 19 | response = self.client.embeddings.create( 20 | model=self.embedding, input=text 21 | ) 22 | return response.data[0].embedding 23 | 24 | def add_situations(self, situations_and_advice): 25 | """Add financial situations and their corresponding advice. Parameter is a list of tuples (situation, rec)""" 26 | 27 | situations = [] 28 | advice = [] 29 | ids = [] 30 | embeddings = [] 31 | 32 | offset = self.situation_collection.count() 33 | 34 | for i, (situation, recommendation) in enumerate(situations_and_advice): 35 | situations.append(situation) 36 | advice.append(recommendation) 37 | ids.append(str(offset + i)) 38 | embeddings.append(self.get_embedding(situation)) 39 | 40 | self.situation_collection.add( 41 | documents=situations, 42 | metadatas=[{"recommendation": rec} for rec in advice], 43 | embeddings=embeddings, 44 | ids=ids, 45 | ) 46 | 47 | def get_memories(self, current_situation, n_matches=1): 48 | """Find matching recommendations using OpenAI embeddings""" 49 | query_embedding = self.get_embedding(current_situation) 50 | 51 | results = self.situation_collection.query( 52 | query_embeddings=[query_embedding], 53 | n_results=n_matches, 54 | include=["metadatas", "documents", "distances"], 55 | ) 56 | 57 | matched_results = [] 58 | for i in range(len(results["documents"][0])): 59 | matched_results.append( 60 | { 61 | "matched_situation": results["documents"][0][i], 62 | "recommendation": results["metadatas"][0][i]["recommendation"], 63 | "similarity_score": 1 - results["distances"][0][i], 64 | } 65 | ) 66 | 67 | return matched_results 68 | 69 | 70 | if __name__ == "__main__": 71 | # Example usage 72 | matcher = FinancialSituationMemory() 73 | 74 | # Example data 75 | example_data = [ 76 | ( 77 | "High inflation rate with rising interest rates and declining consumer spending", 78 | "Consider defensive sectors like consumer staples and utilities. Review fixed-income portfolio duration.", 79 | ), 80 | ( 81 | "Tech sector showing high volatility with increasing institutional selling pressure", 82 | "Reduce exposure to high-growth tech stocks. Look for value opportunities in established tech companies with strong cash flows.", 83 | ), 84 | ( 85 | "Strong dollar affecting emerging markets with increasing forex volatility", 86 | "Hedge currency exposure in international positions. Consider reducing allocation to emerging market debt.", 87 | ), 88 | ( 89 | "Market showing signs of sector rotation with rising yields", 90 | "Rebalance portfolio to maintain target allocations. Consider increasing exposure to sectors benefiting from higher rates.", 91 | ), 92 | ] 93 | 94 | # Add the example situations and recommendations 95 | matcher.add_situations(example_data) 96 | 97 | # Example query 98 | current_situation = """ 99 | Market showing increased volatility in tech sector, with institutional investors 100 | reducing positions and rising interest rates affecting growth stock valuations 101 | """ 102 | 103 | try: 104 | recommendations = matcher.get_memories(current_situation, n_matches=2) 105 | 106 | for i, rec in enumerate(recommendations, 1): 107 | print(f"\nMatch {i}:") 108 | print(f"Similarity Score: {rec['similarity_score']:.2f}") 109 | print(f"Matched Situation: {rec['matched_situation']}") 110 | print(f"Recommendation: {rec['recommendation']}") 111 | 112 | except Exception as e: 113 | print(f"Error during recommendation: {str(e)}") 114 | -------------------------------------------------------------------------------- /tradingagents/dataflows/__init__.py: -------------------------------------------------------------------------------- 1 | from .finnhub_utils import get_data_in_range 2 | from .googlenews_utils import getNewsData 3 | from .yfin_utils import YFinanceUtils 4 | from .reddit_utils import fetch_top_from_category 5 | from .stockstats_utils import StockstatsUtils 6 | from .yfin_utils import YFinanceUtils 7 | 8 | from .interface import ( 9 | # News and sentiment functions 10 | get_finnhub_news, 11 | get_finnhub_company_insider_sentiment, 12 | get_finnhub_company_insider_transactions, 13 | get_google_news, 14 | get_reddit_global_news, 15 | get_reddit_company_news, 16 | # Financial statements functions 17 | get_simfin_balance_sheet, 18 | get_simfin_cashflow, 19 | get_simfin_income_statements, 20 | # Technical analysis functions 21 | get_stock_stats_indicators_window, 22 | get_stockstats_indicator, 23 | # Market data functions 24 | get_YFin_data_window, 25 | get_YFin_data, 26 | ) 27 | 28 | __all__ = [ 29 | # News and sentiment functions 30 | "get_finnhub_news", 31 | "get_finnhub_company_insider_sentiment", 32 | "get_finnhub_company_insider_transactions", 33 | "get_google_news", 34 | "get_reddit_global_news", 35 | "get_reddit_company_news", 36 | # Financial statements functions 37 | "get_simfin_balance_sheet", 38 | "get_simfin_cashflow", 39 | "get_simfin_income_statements", 40 | # Technical analysis functions 41 | "get_stock_stats_indicators_window", 42 | "get_stockstats_indicator", 43 | # Market data functions 44 | "get_YFin_data_window", 45 | "get_YFin_data", 46 | ] 47 | -------------------------------------------------------------------------------- /tradingagents/dataflows/config.py: -------------------------------------------------------------------------------- 1 | import tradingagents.default_config as default_config 2 | from typing import Dict, Optional 3 | 4 | # Use default config but allow it to be overridden 5 | _config: Optional[Dict] = None 6 | DATA_DIR: Optional[str] = None 7 | 8 | 9 | def initialize_config(): 10 | """Initialize the configuration with default values.""" 11 | global _config, DATA_DIR 12 | if _config is None: 13 | _config = default_config.DEFAULT_CONFIG.copy() 14 | DATA_DIR = _config["data_dir"] 15 | 16 | 17 | def set_config(config: Dict): 18 | """Update the configuration with custom values.""" 19 | global _config, DATA_DIR 20 | if _config is None: 21 | _config = default_config.DEFAULT_CONFIG.copy() 22 | _config.update(config) 23 | DATA_DIR = _config["data_dir"] 24 | 25 | 26 | def get_config() -> Dict: 27 | """Get the current configuration.""" 28 | if _config is None: 29 | initialize_config() 30 | return _config.copy() 31 | 32 | 33 | # Initialize with default config 34 | initialize_config() 35 | -------------------------------------------------------------------------------- /tradingagents/dataflows/finnhub_utils.py: -------------------------------------------------------------------------------- 1 | import json 2 | import os 3 | 4 | 5 | def get_data_in_range(ticker, start_date, end_date, data_type, data_dir, period=None): 6 | """ 7 | Gets finnhub data saved and processed on disk. 8 | Args: 9 | start_date (str): Start date in YYYY-MM-DD format. 10 | end_date (str): End date in YYYY-MM-DD format. 11 | data_type (str): Type of data from finnhub to fetch. Can be insider_trans, SEC_filings, news_data, insider_senti, or fin_as_reported. 12 | data_dir (str): Directory where the data is saved. 13 | period (str): Default to none, if there is a period specified, should be annual or quarterly. 14 | """ 15 | 16 | if period: 17 | data_path = os.path.join( 18 | data_dir, 19 | "finnhub_data", 20 | data_type, 21 | f"{ticker}_{period}_data_formatted.json", 22 | ) 23 | else: 24 | data_path = os.path.join( 25 | data_dir, "finnhub_data", data_type, f"{ticker}_data_formatted.json" 26 | ) 27 | 28 | data = open(data_path, "r") 29 | data = json.load(data) 30 | 31 | # filter keys (date, str in format YYYY-MM-DD) by the date range (str, str in format YYYY-MM-DD) 32 | filtered_data = {} 33 | for key, value in data.items(): 34 | if start_date <= key <= end_date and len(value) > 0: 35 | filtered_data[key] = value 36 | return filtered_data 37 | -------------------------------------------------------------------------------- /tradingagents/dataflows/googlenews_utils.py: -------------------------------------------------------------------------------- 1 | import json 2 | import requests 3 | from bs4 import BeautifulSoup 4 | from datetime import datetime 5 | import time 6 | import random 7 | from tenacity import ( 8 | retry, 9 | stop_after_attempt, 10 | wait_exponential, 11 | retry_if_exception_type, 12 | retry_if_result, 13 | ) 14 | 15 | 16 | def is_rate_limited(response): 17 | """Check if the response indicates rate limiting (status code 429)""" 18 | return response.status_code == 429 19 | 20 | 21 | @retry( 22 | retry=(retry_if_result(is_rate_limited)), 23 | wait=wait_exponential(multiplier=1, min=4, max=60), 24 | stop=stop_after_attempt(5), 25 | ) 26 | def make_request(url, headers): 27 | """Make a request with retry logic for rate limiting""" 28 | # Random delay before each request to avoid detection 29 | time.sleep(random.uniform(2, 6)) 30 | response = requests.get(url, headers=headers) 31 | return response 32 | 33 | 34 | def getNewsData(query, start_date, end_date): 35 | """ 36 | Scrape Google News search results for a given query and date range. 37 | query: str - search query 38 | start_date: str - start date in the format yyyy-mm-dd or mm/dd/yyyy 39 | end_date: str - end date in the format yyyy-mm-dd or mm/dd/yyyy 40 | """ 41 | if "-" in start_date: 42 | start_date = datetime.strptime(start_date, "%Y-%m-%d") 43 | start_date = start_date.strftime("%m/%d/%Y") 44 | if "-" in end_date: 45 | end_date = datetime.strptime(end_date, "%Y-%m-%d") 46 | end_date = end_date.strftime("%m/%d/%Y") 47 | 48 | headers = { 49 | "User-Agent": ( 50 | "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " 51 | "AppleWebKit/537.36 (KHTML, like Gecko) " 52 | "Chrome/101.0.4951.54 Safari/537.36" 53 | ) 54 | } 55 | 56 | news_results = [] 57 | page = 0 58 | while True: 59 | offset = page * 10 60 | url = ( 61 | f"https://www.google.com/search?q={query}" 62 | f"&tbs=cdr:1,cd_min:{start_date},cd_max:{end_date}" 63 | f"&tbm=nws&start={offset}" 64 | ) 65 | 66 | try: 67 | response = make_request(url, headers) 68 | soup = BeautifulSoup(response.content, "html.parser") 69 | results_on_page = soup.select("div.SoaBEf") 70 | 71 | if not results_on_page: 72 | break # No more results found 73 | 74 | for el in results_on_page: 75 | try: 76 | link = el.find("a")["href"] 77 | title = el.select_one("div.MBeuO").get_text() 78 | snippet = el.select_one(".GI74Re").get_text() 79 | date = el.select_one(".LfVVr").get_text() 80 | source = el.select_one(".NUnG9d span").get_text() 81 | news_results.append( 82 | { 83 | "link": link, 84 | "title": title, 85 | "snippet": snippet, 86 | "date": date, 87 | "source": source, 88 | } 89 | ) 90 | except Exception as e: 91 | print(f"Error processing result: {e}") 92 | # If one of the fields is not found, skip this result 93 | continue 94 | 95 | # Update the progress bar with the current count of results scraped 96 | 97 | # Check for the "Next" link (pagination) 98 | next_link = soup.find("a", id="pnnext") 99 | if not next_link: 100 | break 101 | 102 | page += 1 103 | 104 | except Exception as e: 105 | print(f"Failed after multiple retries: {e}") 106 | break 107 | 108 | return news_results 109 | -------------------------------------------------------------------------------- /tradingagents/dataflows/interface.py: -------------------------------------------------------------------------------- 1 | from typing import Annotated, Dict 2 | from .reddit_utils import fetch_top_from_category 3 | from .yfin_utils import * 4 | from .stockstats_utils import * 5 | from .googlenews_utils import * 6 | from .finnhub_utils import get_data_in_range 7 | from dateutil.relativedelta import relativedelta 8 | from concurrent.futures import ThreadPoolExecutor 9 | from datetime import datetime 10 | import json 11 | import os 12 | import pandas as pd 13 | from tqdm import tqdm 14 | import yfinance as yf 15 | from openai import OpenAI 16 | from .config import get_config, set_config, DATA_DIR 17 | 18 | 19 | def get_finnhub_news( 20 | ticker: Annotated[ 21 | str, 22 | "Search query of a company's, e.g. 'AAPL, TSM, etc.", 23 | ], 24 | curr_date: Annotated[str, "Current date in yyyy-mm-dd format"], 25 | look_back_days: Annotated[int, "how many days to look back"], 26 | ): 27 | """ 28 | Retrieve news about a company within a time frame 29 | 30 | Args 31 | ticker (str): ticker for the company you are interested in 32 | start_date (str): Start date in yyyy-mm-dd format 33 | end_date (str): End date in yyyy-mm-dd format 34 | Returns 35 | str: dataframe containing the news of the company in the time frame 36 | 37 | """ 38 | 39 | start_date = datetime.strptime(curr_date, "%Y-%m-%d") 40 | before = start_date - relativedelta(days=look_back_days) 41 | before = before.strftime("%Y-%m-%d") 42 | 43 | result = get_data_in_range(ticker, before, curr_date, "news_data", DATA_DIR) 44 | 45 | if len(result) == 0: 46 | return "" 47 | 48 | combined_result = "" 49 | for day, data in result.items(): 50 | if len(data) == 0: 51 | continue 52 | for entry in data: 53 | current_news = ( 54 | "### " + entry["headline"] + f" ({day})" + "\n" + entry["summary"] 55 | ) 56 | combined_result += current_news + "\n\n" 57 | 58 | return f"## {ticker} News, from {before} to {curr_date}:\n" + str(combined_result) 59 | 60 | 61 | def get_finnhub_company_insider_sentiment( 62 | ticker: Annotated[str, "ticker symbol for the company"], 63 | curr_date: Annotated[ 64 | str, 65 | "current date of you are trading at, yyyy-mm-dd", 66 | ], 67 | look_back_days: Annotated[int, "number of days to look back"], 68 | ): 69 | """ 70 | Retrieve insider sentiment about a company (retrieved from public SEC information) for the past 15 days 71 | Args: 72 | ticker (str): ticker symbol of the company 73 | curr_date (str): current date you are trading on, yyyy-mm-dd 74 | Returns: 75 | str: a report of the sentiment in the past 15 days starting at curr_date 76 | """ 77 | 78 | date_obj = datetime.strptime(curr_date, "%Y-%m-%d") 79 | before = date_obj - relativedelta(days=look_back_days) 80 | before = before.strftime("%Y-%m-%d") 81 | 82 | data = get_data_in_range(ticker, before, curr_date, "insider_senti", DATA_DIR) 83 | 84 | if len(data) == 0: 85 | return "" 86 | 87 | result_str = "" 88 | seen_dicts = [] 89 | for date, senti_list in data.items(): 90 | for entry in senti_list: 91 | if entry not in seen_dicts: 92 | result_str += f"### {entry['year']}-{entry['month']}:\nChange: {entry['change']}\nMonthly Share Purchase Ratio: {entry['mspr']}\n\n" 93 | seen_dicts.append(entry) 94 | 95 | return ( 96 | f"## {ticker} Insider Sentiment Data for {before} to {curr_date}:\n" 97 | + result_str 98 | + "The change field refers to the net buying/selling from all insiders' transactions. The mspr field refers to monthly share purchase ratio." 99 | ) 100 | 101 | 102 | def get_finnhub_company_insider_transactions( 103 | ticker: Annotated[str, "ticker symbol"], 104 | curr_date: Annotated[ 105 | str, 106 | "current date you are trading at, yyyy-mm-dd", 107 | ], 108 | look_back_days: Annotated[int, "how many days to look back"], 109 | ): 110 | """ 111 | Retrieve insider transcaction information about a company (retrieved from public SEC information) for the past 15 days 112 | Args: 113 | ticker (str): ticker symbol of the company 114 | curr_date (str): current date you are trading at, yyyy-mm-dd 115 | Returns: 116 | str: a report of the company's insider transaction/trading informtaion in the past 15 days 117 | """ 118 | 119 | date_obj = datetime.strptime(curr_date, "%Y-%m-%d") 120 | before = date_obj - relativedelta(days=look_back_days) 121 | before = before.strftime("%Y-%m-%d") 122 | 123 | data = get_data_in_range(ticker, before, curr_date, "insider_trans", DATA_DIR) 124 | 125 | if len(data) == 0: 126 | return "" 127 | 128 | result_str = "" 129 | 130 | seen_dicts = [] 131 | for date, senti_list in data.items(): 132 | for entry in senti_list: 133 | if entry not in seen_dicts: 134 | result_str += f"### Filing Date: {entry['filingDate']}, {entry['name']}:\nChange:{entry['change']}\nShares: {entry['share']}\nTransaction Price: {entry['transactionPrice']}\nTransaction Code: {entry['transactionCode']}\n\n" 135 | seen_dicts.append(entry) 136 | 137 | return ( 138 | f"## {ticker} insider transactions from {before} to {curr_date}:\n" 139 | + result_str 140 | + "The change field reflects the variation in share count—here a negative number indicates a reduction in holdings—while share specifies the total number of shares involved. The transactionPrice denotes the per-share price at which the trade was executed, and transactionDate marks when the transaction occurred. The name field identifies the insider making the trade, and transactionCode (e.g., S for sale) clarifies the nature of the transaction. FilingDate records when the transaction was officially reported, and the unique id links to the specific SEC filing, as indicated by the source. Additionally, the symbol ties the transaction to a particular company, isDerivative flags whether the trade involves derivative securities, and currency notes the currency context of the transaction." 141 | ) 142 | 143 | 144 | def get_simfin_balance_sheet( 145 | ticker: Annotated[str, "ticker symbol"], 146 | freq: Annotated[ 147 | str, 148 | "reporting frequency of the company's financial history: annual / quarterly", 149 | ], 150 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 151 | ): 152 | data_path = os.path.join( 153 | DATA_DIR, 154 | "fundamental_data", 155 | "simfin_data_all", 156 | "balance_sheet", 157 | "companies", 158 | "us", 159 | f"us-balance-{freq}.csv", 160 | ) 161 | df = pd.read_csv(data_path, sep=";") 162 | 163 | # Convert date strings to datetime objects and remove any time components 164 | df["Report Date"] = pd.to_datetime(df["Report Date"], utc=True).dt.normalize() 165 | df["Publish Date"] = pd.to_datetime(df["Publish Date"], utc=True).dt.normalize() 166 | 167 | # Convert the current date to datetime and normalize 168 | curr_date_dt = pd.to_datetime(curr_date, utc=True).normalize() 169 | 170 | # Filter the DataFrame for the given ticker and for reports that were published on or before the current date 171 | filtered_df = df[(df["Ticker"] == ticker) & (df["Publish Date"] <= curr_date_dt)] 172 | 173 | # Check if there are any available reports; if not, return a notification 174 | if filtered_df.empty: 175 | print("No balance sheet available before the given current date.") 176 | return "" 177 | 178 | # Get the most recent balance sheet by selecting the row with the latest Publish Date 179 | latest_balance_sheet = filtered_df.loc[filtered_df["Publish Date"].idxmax()] 180 | 181 | # drop the SimFinID column 182 | latest_balance_sheet = latest_balance_sheet.drop("SimFinId") 183 | 184 | return ( 185 | f"## {freq} balance sheet for {ticker} released on {str(latest_balance_sheet['Publish Date'])[0:10]}: \n" 186 | + str(latest_balance_sheet) 187 | + "\n\nThis includes metadata like reporting dates and currency, share details, and a breakdown of assets, liabilities, and equity. Assets are grouped as current (liquid items like cash and receivables) and noncurrent (long-term investments and property). Liabilities are split between short-term obligations and long-term debts, while equity reflects shareholder funds such as paid-in capital and retained earnings. Together, these components ensure that total assets equal the sum of liabilities and equity." 188 | ) 189 | 190 | 191 | def get_simfin_cashflow( 192 | ticker: Annotated[str, "ticker symbol"], 193 | freq: Annotated[ 194 | str, 195 | "reporting frequency of the company's financial history: annual / quarterly", 196 | ], 197 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 198 | ): 199 | data_path = os.path.join( 200 | DATA_DIR, 201 | "fundamental_data", 202 | "simfin_data_all", 203 | "cash_flow", 204 | "companies", 205 | "us", 206 | f"us-cashflow-{freq}.csv", 207 | ) 208 | df = pd.read_csv(data_path, sep=";") 209 | 210 | # Convert date strings to datetime objects and remove any time components 211 | df["Report Date"] = pd.to_datetime(df["Report Date"], utc=True).dt.normalize() 212 | df["Publish Date"] = pd.to_datetime(df["Publish Date"], utc=True).dt.normalize() 213 | 214 | # Convert the current date to datetime and normalize 215 | curr_date_dt = pd.to_datetime(curr_date, utc=True).normalize() 216 | 217 | # Filter the DataFrame for the given ticker and for reports that were published on or before the current date 218 | filtered_df = df[(df["Ticker"] == ticker) & (df["Publish Date"] <= curr_date_dt)] 219 | 220 | # Check if there are any available reports; if not, return a notification 221 | if filtered_df.empty: 222 | print("No cash flow statement available before the given current date.") 223 | return "" 224 | 225 | # Get the most recent cash flow statement by selecting the row with the latest Publish Date 226 | latest_cash_flow = filtered_df.loc[filtered_df["Publish Date"].idxmax()] 227 | 228 | # drop the SimFinID column 229 | latest_cash_flow = latest_cash_flow.drop("SimFinId") 230 | 231 | return ( 232 | f"## {freq} cash flow statement for {ticker} released on {str(latest_cash_flow['Publish Date'])[0:10]}: \n" 233 | + str(latest_cash_flow) 234 | + "\n\nThis includes metadata like reporting dates and currency, share details, and a breakdown of cash movements. Operating activities show cash generated from core business operations, including net income adjustments for non-cash items and working capital changes. Investing activities cover asset acquisitions/disposals and investments. Financing activities include debt transactions, equity issuances/repurchases, and dividend payments. The net change in cash represents the overall increase or decrease in the company's cash position during the reporting period." 235 | ) 236 | 237 | 238 | def get_simfin_income_statements( 239 | ticker: Annotated[str, "ticker symbol"], 240 | freq: Annotated[ 241 | str, 242 | "reporting frequency of the company's financial history: annual / quarterly", 243 | ], 244 | curr_date: Annotated[str, "current date you are trading at, yyyy-mm-dd"], 245 | ): 246 | data_path = os.path.join( 247 | DATA_DIR, 248 | "fundamental_data", 249 | "simfin_data_all", 250 | "income_statements", 251 | "companies", 252 | "us", 253 | f"us-income-{freq}.csv", 254 | ) 255 | df = pd.read_csv(data_path, sep=";") 256 | 257 | # Convert date strings to datetime objects and remove any time components 258 | df["Report Date"] = pd.to_datetime(df["Report Date"], utc=True).dt.normalize() 259 | df["Publish Date"] = pd.to_datetime(df["Publish Date"], utc=True).dt.normalize() 260 | 261 | # Convert the current date to datetime and normalize 262 | curr_date_dt = pd.to_datetime(curr_date, utc=True).normalize() 263 | 264 | # Filter the DataFrame for the given ticker and for reports that were published on or before the current date 265 | filtered_df = df[(df["Ticker"] == ticker) & (df["Publish Date"] <= curr_date_dt)] 266 | 267 | # Check if there are any available reports; if not, return a notification 268 | if filtered_df.empty: 269 | print("No income statement available before the given current date.") 270 | return "" 271 | 272 | # Get the most recent income statement by selecting the row with the latest Publish Date 273 | latest_income = filtered_df.loc[filtered_df["Publish Date"].idxmax()] 274 | 275 | # drop the SimFinID column 276 | latest_income = latest_income.drop("SimFinId") 277 | 278 | return ( 279 | f"## {freq} income statement for {ticker} released on {str(latest_income['Publish Date'])[0:10]}: \n" 280 | + str(latest_income) 281 | + "\n\nThis includes metadata like reporting dates and currency, share details, and a comprehensive breakdown of the company's financial performance. Starting with Revenue, it shows Cost of Revenue and resulting Gross Profit. Operating Expenses are detailed, including SG&A, R&D, and Depreciation. The statement then shows Operating Income, followed by non-operating items and Interest Expense, leading to Pretax Income. After accounting for Income Tax and any Extraordinary items, it concludes with Net Income, representing the company's bottom-line profit or loss for the period." 282 | ) 283 | 284 | 285 | def get_google_news( 286 | query: Annotated[str, "Query to search with"], 287 | curr_date: Annotated[str, "Curr date in yyyy-mm-dd format"], 288 | look_back_days: Annotated[int, "how many days to look back"], 289 | ) -> str: 290 | query = query.replace(" ", "+") 291 | 292 | start_date = datetime.strptime(curr_date, "%Y-%m-%d") 293 | before = start_date - relativedelta(days=look_back_days) 294 | before = before.strftime("%Y-%m-%d") 295 | 296 | news_results = getNewsData(query, before, curr_date) 297 | 298 | news_str = "" 299 | 300 | for news in news_results: 301 | news_str += ( 302 | f"### {news['title']} (source: {news['source']}) \n\n{news['snippet']}\n\n" 303 | ) 304 | 305 | if len(news_results) == 0: 306 | return "" 307 | 308 | return f"## {query} Google News, from {before} to {curr_date}:\n\n{news_str}" 309 | 310 | 311 | def get_reddit_global_news( 312 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 313 | look_back_days: Annotated[int, "how many days to look back"], 314 | max_limit_per_day: Annotated[int, "Maximum number of news per day"], 315 | ) -> str: 316 | """ 317 | Retrieve the latest top reddit news 318 | Args: 319 | start_date: Start date in yyyy-mm-dd format 320 | end_date: End date in yyyy-mm-dd format 321 | Returns: 322 | str: A formatted dataframe containing the latest news articles posts on reddit and meta information in these columns: "created_utc", "id", "title", "selftext", "score", "num_comments", "url" 323 | """ 324 | 325 | start_date = datetime.strptime(start_date, "%Y-%m-%d") 326 | before = start_date - relativedelta(days=look_back_days) 327 | before = before.strftime("%Y-%m-%d") 328 | 329 | posts = [] 330 | # iterate from start_date to end_date 331 | curr_date = datetime.strptime(before, "%Y-%m-%d") 332 | 333 | total_iterations = (start_date - curr_date).days + 1 334 | pbar = tqdm(desc=f"Getting Global News on {start_date}", total=total_iterations) 335 | 336 | while curr_date <= start_date: 337 | curr_date_str = curr_date.strftime("%Y-%m-%d") 338 | fetch_result = fetch_top_from_category( 339 | "global_news", 340 | curr_date_str, 341 | max_limit_per_day, 342 | data_path=os.path.join(DATA_DIR, "reddit_data"), 343 | ) 344 | posts.extend(fetch_result) 345 | curr_date += relativedelta(days=1) 346 | pbar.update(1) 347 | 348 | pbar.close() 349 | 350 | if len(posts) == 0: 351 | return "" 352 | 353 | news_str = "" 354 | for post in posts: 355 | if post["content"] == "": 356 | news_str += f"### {post['title']}\n\n" 357 | else: 358 | news_str += f"### {post['title']}\n\n{post['content']}\n\n" 359 | 360 | return f"## Global News Reddit, from {before} to {curr_date}:\n{news_str}" 361 | 362 | 363 | def get_reddit_company_news( 364 | ticker: Annotated[str, "ticker symbol of the company"], 365 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 366 | look_back_days: Annotated[int, "how many days to look back"], 367 | max_limit_per_day: Annotated[int, "Maximum number of news per day"], 368 | ) -> str: 369 | """ 370 | Retrieve the latest top reddit news 371 | Args: 372 | ticker: ticker symbol of the company 373 | start_date: Start date in yyyy-mm-dd format 374 | end_date: End date in yyyy-mm-dd format 375 | Returns: 376 | str: A formatted dataframe containing the latest news articles posts on reddit and meta information in these columns: "created_utc", "id", "title", "selftext", "score", "num_comments", "url" 377 | """ 378 | 379 | start_date = datetime.strptime(start_date, "%Y-%m-%d") 380 | before = start_date - relativedelta(days=look_back_days) 381 | before = before.strftime("%Y-%m-%d") 382 | 383 | posts = [] 384 | # iterate from start_date to end_date 385 | curr_date = datetime.strptime(before, "%Y-%m-%d") 386 | 387 | total_iterations = (start_date - curr_date).days + 1 388 | pbar = tqdm( 389 | desc=f"Getting Company News for {ticker} on {start_date}", 390 | total=total_iterations, 391 | ) 392 | 393 | while curr_date <= start_date: 394 | curr_date_str = curr_date.strftime("%Y-%m-%d") 395 | fetch_result = fetch_top_from_category( 396 | "company_news", 397 | curr_date_str, 398 | max_limit_per_day, 399 | ticker, 400 | data_path=os.path.join(DATA_DIR, "reddit_data"), 401 | ) 402 | posts.extend(fetch_result) 403 | curr_date += relativedelta(days=1) 404 | 405 | pbar.update(1) 406 | 407 | pbar.close() 408 | 409 | if len(posts) == 0: 410 | return "" 411 | 412 | news_str = "" 413 | for post in posts: 414 | if post["content"] == "": 415 | news_str += f"### {post['title']}\n\n" 416 | else: 417 | news_str += f"### {post['title']}\n\n{post['content']}\n\n" 418 | 419 | return f"##{ticker} News Reddit, from {before} to {curr_date}:\n\n{news_str}" 420 | 421 | 422 | def get_stock_stats_indicators_window( 423 | symbol: Annotated[str, "ticker symbol of the company"], 424 | indicator: Annotated[str, "technical indicator to get the analysis and report of"], 425 | curr_date: Annotated[ 426 | str, "The current trading date you are trading on, YYYY-mm-dd" 427 | ], 428 | look_back_days: Annotated[int, "how many days to look back"], 429 | online: Annotated[bool, "to fetch data online or offline"], 430 | ) -> str: 431 | 432 | best_ind_params = { 433 | # Moving Averages 434 | "close_50_sma": ( 435 | "50 SMA: A medium-term trend indicator. " 436 | "Usage: Identify trend direction and serve as dynamic support/resistance. " 437 | "Tips: It lags price; combine with faster indicators for timely signals." 438 | ), 439 | "close_200_sma": ( 440 | "200 SMA: A long-term trend benchmark. " 441 | "Usage: Confirm overall market trend and identify golden/death cross setups. " 442 | "Tips: It reacts slowly; best for strategic trend confirmation rather than frequent trading entries." 443 | ), 444 | "close_10_ema": ( 445 | "10 EMA: A responsive short-term average. " 446 | "Usage: Capture quick shifts in momentum and potential entry points. " 447 | "Tips: Prone to noise in choppy markets; use alongside longer averages for filtering false signals." 448 | ), 449 | # MACD Related 450 | "macd": ( 451 | "MACD: Computes momentum via differences of EMAs. " 452 | "Usage: Look for crossovers and divergence as signals of trend changes. " 453 | "Tips: Confirm with other indicators in low-volatility or sideways markets." 454 | ), 455 | "macds": ( 456 | "MACD Signal: An EMA smoothing of the MACD line. " 457 | "Usage: Use crossovers with the MACD line to trigger trades. " 458 | "Tips: Should be part of a broader strategy to avoid false positives." 459 | ), 460 | "macdh": ( 461 | "MACD Histogram: Shows the gap between the MACD line and its signal. " 462 | "Usage: Visualize momentum strength and spot divergence early. " 463 | "Tips: Can be volatile; complement with additional filters in fast-moving markets." 464 | ), 465 | # Momentum Indicators 466 | "rsi": ( 467 | "RSI: Measures momentum to flag overbought/oversold conditions. " 468 | "Usage: Apply 70/30 thresholds and watch for divergence to signal reversals. " 469 | "Tips: In strong trends, RSI may remain extreme; always cross-check with trend analysis." 470 | ), 471 | # Volatility Indicators 472 | "boll": ( 473 | "Bollinger Middle: A 20 SMA serving as the basis for Bollinger Bands. " 474 | "Usage: Acts as a dynamic benchmark for price movement. " 475 | "Tips: Combine with the upper and lower bands to effectively spot breakouts or reversals." 476 | ), 477 | "boll_ub": ( 478 | "Bollinger Upper Band: Typically 2 standard deviations above the middle line. " 479 | "Usage: Signals potential overbought conditions and breakout zones. " 480 | "Tips: Confirm signals with other tools; prices may ride the band in strong trends." 481 | ), 482 | "boll_lb": ( 483 | "Bollinger Lower Band: Typically 2 standard deviations below the middle line. " 484 | "Usage: Indicates potential oversold conditions. " 485 | "Tips: Use additional analysis to avoid false reversal signals." 486 | ), 487 | "atr": ( 488 | "ATR: Averages true range to measure volatility. " 489 | "Usage: Set stop-loss levels and adjust position sizes based on current market volatility. " 490 | "Tips: It's a reactive measure, so use it as part of a broader risk management strategy." 491 | ), 492 | # Volume-Based Indicators 493 | "vwma": ( 494 | "VWMA: A moving average weighted by volume. " 495 | "Usage: Confirm trends by integrating price action with volume data. " 496 | "Tips: Watch for skewed results from volume spikes; use in combination with other volume analyses." 497 | ), 498 | "mfi": ( 499 | "MFI: The Money Flow Index is a momentum indicator that uses both price and volume to measure buying and selling pressure. " 500 | "Usage: Identify overbought (>80) or oversold (<20) conditions and confirm the strength of trends or reversals. " 501 | "Tips: Use alongside RSI or MACD to confirm signals; divergence between price and MFI can indicate potential reversals." 502 | ), 503 | } 504 | 505 | if indicator not in best_ind_params: 506 | raise ValueError( 507 | f"Indicator {indicator} is not supported. Please choose from: {list(best_ind_params.keys())}" 508 | ) 509 | 510 | end_date = curr_date 511 | curr_date = datetime.strptime(curr_date, "%Y-%m-%d") 512 | before = curr_date - relativedelta(days=look_back_days) 513 | 514 | if not online: 515 | # read from YFin data 516 | data = pd.read_csv( 517 | os.path.join( 518 | DATA_DIR, 519 | f"market_data/price_data/{symbol}-YFin-data-2015-01-01-2025-03-25.csv", 520 | ) 521 | ) 522 | data["Date"] = pd.to_datetime(data["Date"], utc=True) 523 | dates_in_df = data["Date"].astype(str).str[:10] 524 | 525 | ind_string = "" 526 | while curr_date >= before: 527 | # only do the trading dates 528 | if curr_date.strftime("%Y-%m-%d") in dates_in_df.values: 529 | indicator_value = get_stockstats_indicator( 530 | symbol, indicator, curr_date.strftime("%Y-%m-%d"), online 531 | ) 532 | 533 | ind_string += f"{curr_date.strftime('%Y-%m-%d')}: {indicator_value}\n" 534 | 535 | curr_date = curr_date - relativedelta(days=1) 536 | else: 537 | # online gathering 538 | ind_string = "" 539 | while curr_date >= before: 540 | indicator_value = get_stockstats_indicator( 541 | symbol, indicator, curr_date.strftime("%Y-%m-%d"), online 542 | ) 543 | 544 | ind_string += f"{curr_date.strftime('%Y-%m-%d')}: {indicator_value}\n" 545 | 546 | curr_date = curr_date - relativedelta(days=1) 547 | 548 | result_str = ( 549 | f"## {indicator} values from {before.strftime('%Y-%m-%d')} to {end_date}:\n\n" 550 | + ind_string 551 | + "\n\n" 552 | + best_ind_params.get(indicator, "No description available.") 553 | ) 554 | 555 | return result_str 556 | 557 | 558 | def get_stockstats_indicator( 559 | symbol: Annotated[str, "ticker symbol of the company"], 560 | indicator: Annotated[str, "technical indicator to get the analysis and report of"], 561 | curr_date: Annotated[ 562 | str, "The current trading date you are trading on, YYYY-mm-dd" 563 | ], 564 | online: Annotated[bool, "to fetch data online or offline"], 565 | ) -> str: 566 | 567 | curr_date = datetime.strptime(curr_date, "%Y-%m-%d") 568 | curr_date = curr_date.strftime("%Y-%m-%d") 569 | 570 | try: 571 | indicator_value = StockstatsUtils.get_stock_stats( 572 | symbol, 573 | indicator, 574 | curr_date, 575 | os.path.join(DATA_DIR, "market_data", "price_data"), 576 | online=online, 577 | ) 578 | except Exception as e: 579 | print( 580 | f"Error getting stockstats indicator data for indicator {indicator} on {curr_date}: {e}" 581 | ) 582 | return "" 583 | 584 | return str(indicator_value) 585 | 586 | 587 | def get_YFin_data_window( 588 | symbol: Annotated[str, "ticker symbol of the company"], 589 | curr_date: Annotated[str, "Start date in yyyy-mm-dd format"], 590 | look_back_days: Annotated[int, "how many days to look back"], 591 | ) -> str: 592 | # calculate past days 593 | date_obj = datetime.strptime(curr_date, "%Y-%m-%d") 594 | before = date_obj - relativedelta(days=look_back_days) 595 | start_date = before.strftime("%Y-%m-%d") 596 | 597 | # read in data 598 | data = pd.read_csv( 599 | os.path.join( 600 | DATA_DIR, 601 | f"market_data/price_data/{symbol}-YFin-data-2015-01-01-2025-03-25.csv", 602 | ) 603 | ) 604 | 605 | # Extract just the date part for comparison 606 | data["DateOnly"] = data["Date"].str[:10] 607 | 608 | # Filter data between the start and end dates (inclusive) 609 | filtered_data = data[ 610 | (data["DateOnly"] >= start_date) & (data["DateOnly"] <= curr_date) 611 | ] 612 | 613 | # Drop the temporary column we created 614 | filtered_data = filtered_data.drop("DateOnly", axis=1) 615 | 616 | # Set pandas display options to show the full DataFrame 617 | with pd.option_context( 618 | "display.max_rows", None, "display.max_columns", None, "display.width", None 619 | ): 620 | df_string = filtered_data.to_string() 621 | 622 | return ( 623 | f"## Raw Market Data for {symbol} from {start_date} to {curr_date}:\n\n" 624 | + df_string 625 | ) 626 | 627 | 628 | def get_YFin_data_online( 629 | symbol: Annotated[str, "ticker symbol of the company"], 630 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 631 | end_date: Annotated[str, "End date in yyyy-mm-dd format"], 632 | ): 633 | 634 | datetime.strptime(start_date, "%Y-%m-%d") 635 | datetime.strptime(end_date, "%Y-%m-%d") 636 | 637 | # Create ticker object 638 | ticker = yf.Ticker(symbol.upper()) 639 | 640 | # Fetch historical data for the specified date range 641 | data = ticker.history(start=start_date, end=end_date) 642 | 643 | # Check if data is empty 644 | if data.empty: 645 | return ( 646 | f"No data found for symbol '{symbol}' between {start_date} and {end_date}" 647 | ) 648 | 649 | # Remove timezone info from index for cleaner output 650 | if data.index.tz is not None: 651 | data.index = data.index.tz_localize(None) 652 | 653 | # Round numerical values to 2 decimal places for cleaner display 654 | numeric_columns = ["Open", "High", "Low", "Close", "Adj Close"] 655 | for col in numeric_columns: 656 | if col in data.columns: 657 | data[col] = data[col].round(2) 658 | 659 | # Convert DataFrame to CSV string 660 | csv_string = data.to_csv() 661 | 662 | # Add header information 663 | header = f"# Stock data for {symbol.upper()} from {start_date} to {end_date}\n" 664 | header += f"# Total records: {len(data)}\n" 665 | header += f"# Data retrieved on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n" 666 | 667 | return header + csv_string 668 | 669 | 670 | def get_YFin_data( 671 | symbol: Annotated[str, "ticker symbol of the company"], 672 | start_date: Annotated[str, "Start date in yyyy-mm-dd format"], 673 | end_date: Annotated[str, "End date in yyyy-mm-dd format"], 674 | ) -> str: 675 | # read in data 676 | data = pd.read_csv( 677 | os.path.join( 678 | DATA_DIR, 679 | f"market_data/price_data/{symbol}-YFin-data-2015-01-01-2025-03-25.csv", 680 | ) 681 | ) 682 | 683 | if end_date > "2025-03-25": 684 | raise Exception( 685 | f"Get_YFin_Data: {end_date} is outside of the data range of 2015-01-01 to 2025-03-25" 686 | ) 687 | 688 | # Extract just the date part for comparison 689 | data["DateOnly"] = data["Date"].str[:10] 690 | 691 | # Filter data between the start and end dates (inclusive) 692 | filtered_data = data[ 693 | (data["DateOnly"] >= start_date) & (data["DateOnly"] <= end_date) 694 | ] 695 | 696 | # Drop the temporary column we created 697 | filtered_data = filtered_data.drop("DateOnly", axis=1) 698 | 699 | # remove the index from the dataframe 700 | filtered_data = filtered_data.reset_index(drop=True) 701 | 702 | return filtered_data 703 | 704 | 705 | def get_stock_news_openai(ticker, curr_date): 706 | config = get_config() 707 | client = OpenAI(base_url=config["backend_url"]) 708 | 709 | response = client.responses.create( 710 | model=config["quick_think_llm"], 711 | input=[ 712 | { 713 | "role": "system", 714 | "content": [ 715 | { 716 | "type": "input_text", 717 | "text": f"Can you search Social Media for {ticker} from 7 days before {curr_date} to {curr_date}? Make sure you only get the data posted during that period.", 718 | } 719 | ], 720 | } 721 | ], 722 | text={"format": {"type": "text"}}, 723 | reasoning={}, 724 | tools=[ 725 | { 726 | "type": "web_search_preview", 727 | "user_location": {"type": "approximate"}, 728 | "search_context_size": "low", 729 | } 730 | ], 731 | temperature=1, 732 | max_output_tokens=4096, 733 | top_p=1, 734 | store=True, 735 | ) 736 | 737 | return response.output[1].content[0].text 738 | 739 | 740 | def get_global_news_openai(curr_date): 741 | config = get_config() 742 | client = OpenAI(base_url=config["backend_url"]) 743 | 744 | response = client.responses.create( 745 | model=config["quick_think_llm"], 746 | input=[ 747 | { 748 | "role": "system", 749 | "content": [ 750 | { 751 | "type": "input_text", 752 | "text": f"Can you search global or macroeconomics news from 7 days before {curr_date} to {curr_date} that would be informative for trading purposes? Make sure you only get the data posted during that period.", 753 | } 754 | ], 755 | } 756 | ], 757 | text={"format": {"type": "text"}}, 758 | reasoning={}, 759 | tools=[ 760 | { 761 | "type": "web_search_preview", 762 | "user_location": {"type": "approximate"}, 763 | "search_context_size": "low", 764 | } 765 | ], 766 | temperature=1, 767 | max_output_tokens=4096, 768 | top_p=1, 769 | store=True, 770 | ) 771 | 772 | return response.output[1].content[0].text 773 | 774 | 775 | def get_fundamentals_openai(ticker, curr_date): 776 | config = get_config() 777 | client = OpenAI(base_url=config["backend_url"]) 778 | 779 | response = client.responses.create( 780 | model=config["quick_think_llm"], 781 | input=[ 782 | { 783 | "role": "system", 784 | "content": [ 785 | { 786 | "type": "input_text", 787 | "text": f"Can you search Fundamental for discussions on {ticker} during of the month before {curr_date} to the month of {curr_date}. Make sure you only get the data posted during that period. List as a table, with PE/PS/Cash flow/ etc", 788 | } 789 | ], 790 | } 791 | ], 792 | text={"format": {"type": "text"}}, 793 | reasoning={}, 794 | tools=[ 795 | { 796 | "type": "web_search_preview", 797 | "user_location": {"type": "approximate"}, 798 | "search_context_size": "low", 799 | } 800 | ], 801 | temperature=1, 802 | max_output_tokens=4096, 803 | top_p=1, 804 | store=True, 805 | ) 806 | 807 | return response.output[1].content[0].text 808 | -------------------------------------------------------------------------------- /tradingagents/dataflows/reddit_utils.py: -------------------------------------------------------------------------------- 1 | import requests 2 | import time 3 | import json 4 | from datetime import datetime, timedelta 5 | from contextlib import contextmanager 6 | from typing import Annotated 7 | import os 8 | import re 9 | 10 | ticker_to_company = { 11 | "AAPL": "Apple", 12 | "MSFT": "Microsoft", 13 | "GOOGL": "Google", 14 | "AMZN": "Amazon", 15 | "TSLA": "Tesla", 16 | "NVDA": "Nvidia", 17 | "TSM": "Taiwan Semiconductor Manufacturing Company OR TSMC", 18 | "JPM": "JPMorgan Chase OR JP Morgan", 19 | "JNJ": "Johnson & Johnson OR JNJ", 20 | "V": "Visa", 21 | "WMT": "Walmart", 22 | "META": "Meta OR Facebook", 23 | "AMD": "AMD", 24 | "INTC": "Intel", 25 | "QCOM": "Qualcomm", 26 | "BABA": "Alibaba", 27 | "ADBE": "Adobe", 28 | "NFLX": "Netflix", 29 | "CRM": "Salesforce", 30 | "PYPL": "PayPal", 31 | "PLTR": "Palantir", 32 | "MU": "Micron", 33 | "SQ": "Block OR Square", 34 | "ZM": "Zoom", 35 | "CSCO": "Cisco", 36 | "SHOP": "Shopify", 37 | "ORCL": "Oracle", 38 | "X": "Twitter OR X", 39 | "SPOT": "Spotify", 40 | "AVGO": "Broadcom", 41 | "ASML": "ASML ", 42 | "TWLO": "Twilio", 43 | "SNAP": "Snap Inc.", 44 | "TEAM": "Atlassian", 45 | "SQSP": "Squarespace", 46 | "UBER": "Uber", 47 | "ROKU": "Roku", 48 | "PINS": "Pinterest", 49 | } 50 | 51 | 52 | def fetch_top_from_category( 53 | category: Annotated[ 54 | str, "Category to fetch top post from. Collection of subreddits." 55 | ], 56 | date: Annotated[str, "Date to fetch top posts from."], 57 | max_limit: Annotated[int, "Maximum number of posts to fetch."], 58 | query: Annotated[str, "Optional query to search for in the subreddit."] = None, 59 | data_path: Annotated[ 60 | str, 61 | "Path to the data folder. Default is 'reddit_data'.", 62 | ] = "reddit_data", 63 | ): 64 | base_path = data_path 65 | 66 | all_content = [] 67 | 68 | if max_limit < len(os.listdir(os.path.join(base_path, category))): 69 | raise ValueError( 70 | "REDDIT FETCHING ERROR: max limit is less than the number of files in the category. Will not be able to fetch any posts" 71 | ) 72 | 73 | limit_per_subreddit = max_limit // len( 74 | os.listdir(os.path.join(base_path, category)) 75 | ) 76 | 77 | for data_file in os.listdir(os.path.join(base_path, category)): 78 | # check if data_file is a .jsonl file 79 | if not data_file.endswith(".jsonl"): 80 | continue 81 | 82 | all_content_curr_subreddit = [] 83 | 84 | with open(os.path.join(base_path, category, data_file), "rb") as f: 85 | for i, line in enumerate(f): 86 | # skip empty lines 87 | if not line.strip(): 88 | continue 89 | 90 | parsed_line = json.loads(line) 91 | 92 | # select only lines that are from the date 93 | post_date = datetime.utcfromtimestamp( 94 | parsed_line["created_utc"] 95 | ).strftime("%Y-%m-%d") 96 | if post_date != date: 97 | continue 98 | 99 | # if is company_news, check that the title or the content has the company's name (query) mentioned 100 | if "company" in category and query: 101 | search_terms = [] 102 | if "OR" in ticker_to_company[query]: 103 | search_terms = ticker_to_company[query].split(" OR ") 104 | else: 105 | search_terms = [ticker_to_company[query]] 106 | 107 | search_terms.append(query) 108 | 109 | found = False 110 | for term in search_terms: 111 | if re.search( 112 | term, parsed_line["title"], re.IGNORECASE 113 | ) or re.search(term, parsed_line["selftext"], re.IGNORECASE): 114 | found = True 115 | break 116 | 117 | if not found: 118 | continue 119 | 120 | post = { 121 | "title": parsed_line["title"], 122 | "content": parsed_line["selftext"], 123 | "url": parsed_line["url"], 124 | "upvotes": parsed_line["ups"], 125 | "posted_date": post_date, 126 | } 127 | 128 | all_content_curr_subreddit.append(post) 129 | 130 | # sort all_content_curr_subreddit by upvote_ratio in descending order 131 | all_content_curr_subreddit.sort(key=lambda x: x["upvotes"], reverse=True) 132 | 133 | all_content.extend(all_content_curr_subreddit[:limit_per_subreddit]) 134 | 135 | return all_content 136 | -------------------------------------------------------------------------------- /tradingagents/dataflows/stockstats_utils.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import yfinance as yf 3 | from stockstats import wrap 4 | from typing import Annotated 5 | import os 6 | from .config import get_config 7 | 8 | 9 | class StockstatsUtils: 10 | @staticmethod 11 | def get_stock_stats( 12 | symbol: Annotated[str, "ticker symbol for the company"], 13 | indicator: Annotated[ 14 | str, "quantitative indicators based off of the stock data for the company" 15 | ], 16 | curr_date: Annotated[ 17 | str, "curr date for retrieving stock price data, YYYY-mm-dd" 18 | ], 19 | data_dir: Annotated[ 20 | str, 21 | "directory where the stock data is stored.", 22 | ], 23 | online: Annotated[ 24 | bool, 25 | "whether to use online tools to fetch data or offline tools. If True, will use online tools.", 26 | ] = False, 27 | ): 28 | df = None 29 | data = None 30 | 31 | if not online: 32 | try: 33 | data = pd.read_csv( 34 | os.path.join( 35 | data_dir, 36 | f"{symbol}-YFin-data-2015-01-01-2025-03-25.csv", 37 | ) 38 | ) 39 | df = wrap(data) 40 | except FileNotFoundError: 41 | raise Exception("Stockstats fail: Yahoo Finance data not fetched yet!") 42 | else: 43 | # Get today's date as YYYY-mm-dd to add to cache 44 | today_date = pd.Timestamp.today() 45 | curr_date = pd.to_datetime(curr_date) 46 | 47 | end_date = today_date 48 | start_date = today_date - pd.DateOffset(years=15) 49 | start_date = start_date.strftime("%Y-%m-%d") 50 | end_date = end_date.strftime("%Y-%m-%d") 51 | 52 | # Get config and ensure cache directory exists 53 | config = get_config() 54 | os.makedirs(config["data_cache_dir"], exist_ok=True) 55 | 56 | data_file = os.path.join( 57 | config["data_cache_dir"], 58 | f"{symbol}-YFin-data-{start_date}-{end_date}.csv", 59 | ) 60 | 61 | if os.path.exists(data_file): 62 | data = pd.read_csv(data_file) 63 | data["Date"] = pd.to_datetime(data["Date"]) 64 | else: 65 | data = yf.download( 66 | symbol, 67 | start=start_date, 68 | end=end_date, 69 | multi_level_index=False, 70 | progress=False, 71 | auto_adjust=True, 72 | ) 73 | data = data.reset_index() 74 | data.to_csv(data_file, index=False) 75 | 76 | df = wrap(data) 77 | df["Date"] = df["Date"].dt.strftime("%Y-%m-%d") 78 | curr_date = curr_date.strftime("%Y-%m-%d") 79 | 80 | df[indicator] # trigger stockstats to calculate the indicator 81 | matching_rows = df[df["Date"].str.startswith(curr_date)] 82 | 83 | if not matching_rows.empty: 84 | indicator_value = matching_rows[indicator].values[0] 85 | return indicator_value 86 | else: 87 | return "N/A: Not a trading day (weekend or holiday)" 88 | -------------------------------------------------------------------------------- /tradingagents/dataflows/utils.py: -------------------------------------------------------------------------------- 1 | import os 2 | import json 3 | import pandas as pd 4 | from datetime import date, timedelta, datetime 5 | from typing import Annotated 6 | 7 | SavePathType = Annotated[str, "File path to save data. If None, data is not saved."] 8 | 9 | def save_output(data: pd.DataFrame, tag: str, save_path: SavePathType = None) -> None: 10 | if save_path: 11 | data.to_csv(save_path) 12 | print(f"{tag} saved to {save_path}") 13 | 14 | 15 | def get_current_date(): 16 | return date.today().strftime("%Y-%m-%d") 17 | 18 | 19 | def decorate_all_methods(decorator): 20 | def class_decorator(cls): 21 | for attr_name, attr_value in cls.__dict__.items(): 22 | if callable(attr_value): 23 | setattr(cls, attr_name, decorator(attr_value)) 24 | return cls 25 | 26 | return class_decorator 27 | 28 | 29 | def get_next_weekday(date): 30 | 31 | if not isinstance(date, datetime): 32 | date = datetime.strptime(date, "%Y-%m-%d") 33 | 34 | if date.weekday() >= 5: 35 | days_to_add = 7 - date.weekday() 36 | next_weekday = date + timedelta(days=days_to_add) 37 | return next_weekday 38 | else: 39 | return date 40 | -------------------------------------------------------------------------------- /tradingagents/dataflows/yfin_utils.py: -------------------------------------------------------------------------------- 1 | # gets data/stats 2 | 3 | import yfinance as yf 4 | from typing import Annotated, Callable, Any, Optional 5 | from pandas import DataFrame 6 | import pandas as pd 7 | from functools import wraps 8 | 9 | from .utils import save_output, SavePathType, decorate_all_methods 10 | 11 | 12 | def init_ticker(func: Callable) -> Callable: 13 | """Decorator to initialize yf.Ticker and pass it to the function.""" 14 | 15 | @wraps(func) 16 | def wrapper(symbol: Annotated[str, "ticker symbol"], *args, **kwargs) -> Any: 17 | ticker = yf.Ticker(symbol) 18 | return func(ticker, *args, **kwargs) 19 | 20 | return wrapper 21 | 22 | 23 | @decorate_all_methods(init_ticker) 24 | class YFinanceUtils: 25 | 26 | def get_stock_data( 27 | symbol: Annotated[str, "ticker symbol"], 28 | start_date: Annotated[ 29 | str, "start date for retrieving stock price data, YYYY-mm-dd" 30 | ], 31 | end_date: Annotated[ 32 | str, "end date for retrieving stock price data, YYYY-mm-dd" 33 | ], 34 | save_path: SavePathType = None, 35 | ) -> DataFrame: 36 | """retrieve stock price data for designated ticker symbol""" 37 | ticker = symbol 38 | # add one day to the end_date so that the data range is inclusive 39 | end_date = pd.to_datetime(end_date) + pd.DateOffset(days=1) 40 | end_date = end_date.strftime("%Y-%m-%d") 41 | stock_data = ticker.history(start=start_date, end=end_date) 42 | # save_output(stock_data, f"Stock data for {ticker.ticker}", save_path) 43 | return stock_data 44 | 45 | def get_stock_info( 46 | symbol: Annotated[str, "ticker symbol"], 47 | ) -> dict: 48 | """Fetches and returns latest stock information.""" 49 | ticker = symbol 50 | stock_info = ticker.info 51 | return stock_info 52 | 53 | def get_company_info( 54 | symbol: Annotated[str, "ticker symbol"], 55 | save_path: Optional[str] = None, 56 | ) -> DataFrame: 57 | """Fetches and returns company information as a DataFrame.""" 58 | ticker = symbol 59 | info = ticker.info 60 | company_info = { 61 | "Company Name": info.get("shortName", "N/A"), 62 | "Industry": info.get("industry", "N/A"), 63 | "Sector": info.get("sector", "N/A"), 64 | "Country": info.get("country", "N/A"), 65 | "Website": info.get("website", "N/A"), 66 | } 67 | company_info_df = DataFrame([company_info]) 68 | if save_path: 69 | company_info_df.to_csv(save_path) 70 | print(f"Company info for {ticker.ticker} saved to {save_path}") 71 | return company_info_df 72 | 73 | def get_stock_dividends( 74 | symbol: Annotated[str, "ticker symbol"], 75 | save_path: Optional[str] = None, 76 | ) -> DataFrame: 77 | """Fetches and returns the latest dividends data as a DataFrame.""" 78 | ticker = symbol 79 | dividends = ticker.dividends 80 | if save_path: 81 | dividends.to_csv(save_path) 82 | print(f"Dividends for {ticker.ticker} saved to {save_path}") 83 | return dividends 84 | 85 | def get_income_stmt(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: 86 | """Fetches and returns the latest income statement of the company as a DataFrame.""" 87 | ticker = symbol 88 | income_stmt = ticker.financials 89 | return income_stmt 90 | 91 | def get_balance_sheet(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: 92 | """Fetches and returns the latest balance sheet of the company as a DataFrame.""" 93 | ticker = symbol 94 | balance_sheet = ticker.balance_sheet 95 | return balance_sheet 96 | 97 | def get_cash_flow(symbol: Annotated[str, "ticker symbol"]) -> DataFrame: 98 | """Fetches and returns the latest cash flow statement of the company as a DataFrame.""" 99 | ticker = symbol 100 | cash_flow = ticker.cashflow 101 | return cash_flow 102 | 103 | def get_analyst_recommendations(symbol: Annotated[str, "ticker symbol"]) -> tuple: 104 | """Fetches the latest analyst recommendations and returns the most common recommendation and its count.""" 105 | ticker = symbol 106 | recommendations = ticker.recommendations 107 | if recommendations.empty: 108 | return None, 0 # No recommendations available 109 | 110 | # Assuming 'period' column exists and needs to be excluded 111 | row_0 = recommendations.iloc[0, 1:] # Exclude 'period' column if necessary 112 | 113 | # Find the maximum voting result 114 | max_votes = row_0.max() 115 | majority_voting_result = row_0[row_0 == max_votes].index.tolist() 116 | 117 | return majority_voting_result[0], max_votes 118 | -------------------------------------------------------------------------------- /tradingagents/default_config.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | DEFAULT_CONFIG = { 4 | "project_dir": os.path.abspath(os.path.join(os.path.dirname(__file__), ".")), 5 | "results_dir": os.getenv("TRADINGAGENTS_RESULTS_DIR", "./results"), 6 | "data_dir": "/Users/yluo/Documents/Code/ScAI/FR1-data", 7 | "data_cache_dir": os.path.join( 8 | os.path.abspath(os.path.join(os.path.dirname(__file__), ".")), 9 | "dataflows/data_cache", 10 | ), 11 | # LLM settings 12 | "llm_provider": "openai", 13 | "deep_think_llm": "o4-mini", 14 | "quick_think_llm": "gpt-4o-mini", 15 | "backend_url": "https://api.openai.com/v1", 16 | # Debate and discussion settings 17 | "max_debate_rounds": 1, 18 | "max_risk_discuss_rounds": 1, 19 | "max_recur_limit": 100, 20 | # Tool settings 21 | "online_tools": True, 22 | } 23 | -------------------------------------------------------------------------------- /tradingagents/graph/__init__.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/__init__.py 2 | 3 | from .trading_graph import TradingAgentsGraph 4 | from .conditional_logic import ConditionalLogic 5 | from .setup import GraphSetup 6 | from .propagation import Propagator 7 | from .reflection import Reflector 8 | from .signal_processing import SignalProcessor 9 | 10 | __all__ = [ 11 | "TradingAgentsGraph", 12 | "ConditionalLogic", 13 | "GraphSetup", 14 | "Propagator", 15 | "Reflector", 16 | "SignalProcessor", 17 | ] 18 | -------------------------------------------------------------------------------- /tradingagents/graph/conditional_logic.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/conditional_logic.py 2 | 3 | from tradingagents.agents.utils.agent_states import AgentState 4 | 5 | 6 | class ConditionalLogic: 7 | """Handles conditional logic for determining graph flow.""" 8 | 9 | def __init__(self, max_debate_rounds=1, max_risk_discuss_rounds=1): 10 | """Initialize with configuration parameters.""" 11 | self.max_debate_rounds = max_debate_rounds 12 | self.max_risk_discuss_rounds = max_risk_discuss_rounds 13 | 14 | def should_continue_market(self, state: AgentState): 15 | """Determine if market analysis should continue.""" 16 | messages = state["messages"] 17 | last_message = messages[-1] 18 | if last_message.tool_calls: 19 | return "tools_market" 20 | return "Msg Clear Market" 21 | 22 | def should_continue_social(self, state: AgentState): 23 | """Determine if social media analysis should continue.""" 24 | messages = state["messages"] 25 | last_message = messages[-1] 26 | if last_message.tool_calls: 27 | return "tools_social" 28 | return "Msg Clear Social" 29 | 30 | def should_continue_news(self, state: AgentState): 31 | """Determine if news analysis should continue.""" 32 | messages = state["messages"] 33 | last_message = messages[-1] 34 | if last_message.tool_calls: 35 | return "tools_news" 36 | return "Msg Clear News" 37 | 38 | def should_continue_fundamentals(self, state: AgentState): 39 | """Determine if fundamentals analysis should continue.""" 40 | messages = state["messages"] 41 | last_message = messages[-1] 42 | if last_message.tool_calls: 43 | return "tools_fundamentals" 44 | return "Msg Clear Fundamentals" 45 | 46 | def should_continue_debate(self, state: AgentState) -> str: 47 | """Determine if debate should continue.""" 48 | 49 | if ( 50 | state["investment_debate_state"]["count"] >= 2 * self.max_debate_rounds 51 | ): # 3 rounds of back-and-forth between 2 agents 52 | return "Research Manager" 53 | if state["investment_debate_state"]["current_response"].startswith("Bull"): 54 | return "Bear Researcher" 55 | return "Bull Researcher" 56 | 57 | def should_continue_risk_analysis(self, state: AgentState) -> str: 58 | """Determine if risk analysis should continue.""" 59 | if ( 60 | state["risk_debate_state"]["count"] >= 3 * self.max_risk_discuss_rounds 61 | ): # 3 rounds of back-and-forth between 3 agents 62 | return "Risk Judge" 63 | if state["risk_debate_state"]["latest_speaker"].startswith("Risky"): 64 | return "Safe Analyst" 65 | if state["risk_debate_state"]["latest_speaker"].startswith("Safe"): 66 | return "Neutral Analyst" 67 | return "Risky Analyst" 68 | -------------------------------------------------------------------------------- /tradingagents/graph/propagation.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/propagation.py 2 | 3 | from typing import Dict, Any 4 | from tradingagents.agents.utils.agent_states import ( 5 | AgentState, 6 | InvestDebateState, 7 | RiskDebateState, 8 | ) 9 | 10 | 11 | class Propagator: 12 | """Handles state initialization and propagation through the graph.""" 13 | 14 | def __init__(self, max_recur_limit=100): 15 | """Initialize with configuration parameters.""" 16 | self.max_recur_limit = max_recur_limit 17 | 18 | def create_initial_state( 19 | self, company_name: str, trade_date: str 20 | ) -> Dict[str, Any]: 21 | """Create the initial state for the agent graph.""" 22 | return { 23 | "messages": [("human", company_name)], 24 | "company_of_interest": company_name, 25 | "trade_date": str(trade_date), 26 | "investment_debate_state": InvestDebateState( 27 | {"history": "", "current_response": "", "count": 0} 28 | ), 29 | "risk_debate_state": RiskDebateState( 30 | { 31 | "history": "", 32 | "current_risky_response": "", 33 | "current_safe_response": "", 34 | "current_neutral_response": "", 35 | "count": 0, 36 | } 37 | ), 38 | "market_report": "", 39 | "fundamentals_report": "", 40 | "sentiment_report": "", 41 | "news_report": "", 42 | } 43 | 44 | def get_graph_args(self) -> Dict[str, Any]: 45 | """Get arguments for the graph invocation.""" 46 | return { 47 | "stream_mode": "values", 48 | "config": {"recursion_limit": self.max_recur_limit}, 49 | } 50 | -------------------------------------------------------------------------------- /tradingagents/graph/reflection.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/reflection.py 2 | 3 | from typing import Dict, Any 4 | from langchain_openai import ChatOpenAI 5 | 6 | 7 | class Reflector: 8 | """Handles reflection on decisions and updating memory.""" 9 | 10 | def __init__(self, quick_thinking_llm: ChatOpenAI): 11 | """Initialize the reflector with an LLM.""" 12 | self.quick_thinking_llm = quick_thinking_llm 13 | self.reflection_system_prompt = self._get_reflection_prompt() 14 | 15 | def _get_reflection_prompt(self) -> str: 16 | """Get the system prompt for reflection.""" 17 | return """ 18 | You are an expert financial analyst tasked with reviewing trading decisions/analysis and providing a comprehensive, step-by-step analysis. 19 | Your goal is to deliver detailed insights into investment decisions and highlight opportunities for improvement, adhering strictly to the following guidelines: 20 | 21 | 1. Reasoning: 22 | - For each trading decision, determine whether it was correct or incorrect. A correct decision results in an increase in returns, while an incorrect decision does the opposite. 23 | - Analyze the contributing factors to each success or mistake. Consider: 24 | - Market intelligence. 25 | - Technical indicators. 26 | - Technical signals. 27 | - Price movement analysis. 28 | - Overall market data analysis 29 | - News analysis. 30 | - Social media and sentiment analysis. 31 | - Fundamental data analysis. 32 | - Weight the importance of each factor in the decision-making process. 33 | 34 | 2. Improvement: 35 | - For any incorrect decisions, propose revisions to maximize returns. 36 | - Provide a detailed list of corrective actions or improvements, including specific recommendations (e.g., changing a decision from HOLD to BUY on a particular date). 37 | 38 | 3. Summary: 39 | - Summarize the lessons learned from the successes and mistakes. 40 | - Highlight how these lessons can be adapted for future trading scenarios and draw connections between similar situations to apply the knowledge gained. 41 | 42 | 4. Query: 43 | - Extract key insights from the summary into a concise sentence of no more than 1000 tokens. 44 | - Ensure the condensed sentence captures the essence of the lessons and reasoning for easy reference. 45 | 46 | Adhere strictly to these instructions, and ensure your output is detailed, accurate, and actionable. You will also be given objective descriptions of the market from a price movements, technical indicator, news, and sentiment perspective to provide more context for your analysis. 47 | """ 48 | 49 | def _extract_current_situation(self, current_state: Dict[str, Any]) -> str: 50 | """Extract the current market situation from the state.""" 51 | curr_market_report = current_state["market_report"] 52 | curr_sentiment_report = current_state["sentiment_report"] 53 | curr_news_report = current_state["news_report"] 54 | curr_fundamentals_report = current_state["fundamentals_report"] 55 | 56 | return f"{curr_market_report}\n\n{curr_sentiment_report}\n\n{curr_news_report}\n\n{curr_fundamentals_report}" 57 | 58 | def _reflect_on_component( 59 | self, component_type: str, report: str, situation: str, returns_losses 60 | ) -> str: 61 | """Generate reflection for a component.""" 62 | messages = [ 63 | ("system", self.reflection_system_prompt), 64 | ( 65 | "human", 66 | f"Returns: {returns_losses}\n\nAnalysis/Decision: {report}\n\nObjective Market Reports for Reference: {situation}", 67 | ), 68 | ] 69 | 70 | result = self.quick_thinking_llm.invoke(messages).content 71 | return result 72 | 73 | def reflect_bull_researcher(self, current_state, returns_losses, bull_memory): 74 | """Reflect on bull researcher's analysis and update memory.""" 75 | situation = self._extract_current_situation(current_state) 76 | bull_debate_history = current_state["investment_debate_state"]["bull_history"] 77 | 78 | result = self._reflect_on_component( 79 | "BULL", bull_debate_history, situation, returns_losses 80 | ) 81 | bull_memory.add_situations([(situation, result)]) 82 | 83 | def reflect_bear_researcher(self, current_state, returns_losses, bear_memory): 84 | """Reflect on bear researcher's analysis and update memory.""" 85 | situation = self._extract_current_situation(current_state) 86 | bear_debate_history = current_state["investment_debate_state"]["bear_history"] 87 | 88 | result = self._reflect_on_component( 89 | "BEAR", bear_debate_history, situation, returns_losses 90 | ) 91 | bear_memory.add_situations([(situation, result)]) 92 | 93 | def reflect_trader(self, current_state, returns_losses, trader_memory): 94 | """Reflect on trader's decision and update memory.""" 95 | situation = self._extract_current_situation(current_state) 96 | trader_decision = current_state["trader_investment_plan"] 97 | 98 | result = self._reflect_on_component( 99 | "TRADER", trader_decision, situation, returns_losses 100 | ) 101 | trader_memory.add_situations([(situation, result)]) 102 | 103 | def reflect_invest_judge(self, current_state, returns_losses, invest_judge_memory): 104 | """Reflect on investment judge's decision and update memory.""" 105 | situation = self._extract_current_situation(current_state) 106 | judge_decision = current_state["investment_debate_state"]["judge_decision"] 107 | 108 | result = self._reflect_on_component( 109 | "INVEST JUDGE", judge_decision, situation, returns_losses 110 | ) 111 | invest_judge_memory.add_situations([(situation, result)]) 112 | 113 | def reflect_risk_manager(self, current_state, returns_losses, risk_manager_memory): 114 | """Reflect on risk manager's decision and update memory.""" 115 | situation = self._extract_current_situation(current_state) 116 | judge_decision = current_state["risk_debate_state"]["judge_decision"] 117 | 118 | result = self._reflect_on_component( 119 | "RISK JUDGE", judge_decision, situation, returns_losses 120 | ) 121 | risk_manager_memory.add_situations([(situation, result)]) 122 | -------------------------------------------------------------------------------- /tradingagents/graph/setup.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/setup.py 2 | 3 | from typing import Dict, Any 4 | from langchain_openai import ChatOpenAI 5 | from langgraph.graph import END, StateGraph, START 6 | from langgraph.prebuilt import ToolNode 7 | 8 | from tradingagents.agents import * 9 | from tradingagents.agents.utils.agent_states import AgentState 10 | from tradingagents.agents.utils.agent_utils import Toolkit 11 | 12 | from .conditional_logic import ConditionalLogic 13 | 14 | 15 | class GraphSetup: 16 | """Handles the setup and configuration of the agent graph.""" 17 | 18 | def __init__( 19 | self, 20 | quick_thinking_llm: ChatOpenAI, 21 | deep_thinking_llm: ChatOpenAI, 22 | toolkit: Toolkit, 23 | tool_nodes: Dict[str, ToolNode], 24 | bull_memory, 25 | bear_memory, 26 | trader_memory, 27 | invest_judge_memory, 28 | risk_manager_memory, 29 | conditional_logic: ConditionalLogic, 30 | ): 31 | """Initialize with required components.""" 32 | self.quick_thinking_llm = quick_thinking_llm 33 | self.deep_thinking_llm = deep_thinking_llm 34 | self.toolkit = toolkit 35 | self.tool_nodes = tool_nodes 36 | self.bull_memory = bull_memory 37 | self.bear_memory = bear_memory 38 | self.trader_memory = trader_memory 39 | self.invest_judge_memory = invest_judge_memory 40 | self.risk_manager_memory = risk_manager_memory 41 | self.conditional_logic = conditional_logic 42 | 43 | def setup_graph( 44 | self, selected_analysts=["market", "social", "news", "fundamentals"] 45 | ): 46 | """Set up and compile the agent workflow graph. 47 | 48 | Args: 49 | selected_analysts (list): List of analyst types to include. Options are: 50 | - "market": Market analyst 51 | - "social": Social media analyst 52 | - "news": News analyst 53 | - "fundamentals": Fundamentals analyst 54 | """ 55 | if len(selected_analysts) == 0: 56 | raise ValueError("Trading Agents Graph Setup Error: no analysts selected!") 57 | 58 | # Create analyst nodes 59 | analyst_nodes = {} 60 | delete_nodes = {} 61 | tool_nodes = {} 62 | 63 | if "market" in selected_analysts: 64 | analyst_nodes["market"] = create_market_analyst( 65 | self.quick_thinking_llm, self.toolkit 66 | ) 67 | delete_nodes["market"] = create_msg_delete() 68 | tool_nodes["market"] = self.tool_nodes["market"] 69 | 70 | if "social" in selected_analysts: 71 | analyst_nodes["social"] = create_social_media_analyst( 72 | self.quick_thinking_llm, self.toolkit 73 | ) 74 | delete_nodes["social"] = create_msg_delete() 75 | tool_nodes["social"] = self.tool_nodes["social"] 76 | 77 | if "news" in selected_analysts: 78 | analyst_nodes["news"] = create_news_analyst( 79 | self.quick_thinking_llm, self.toolkit 80 | ) 81 | delete_nodes["news"] = create_msg_delete() 82 | tool_nodes["news"] = self.tool_nodes["news"] 83 | 84 | if "fundamentals" in selected_analysts: 85 | analyst_nodes["fundamentals"] = create_fundamentals_analyst( 86 | self.quick_thinking_llm, self.toolkit 87 | ) 88 | delete_nodes["fundamentals"] = create_msg_delete() 89 | tool_nodes["fundamentals"] = self.tool_nodes["fundamentals"] 90 | 91 | # Create researcher and manager nodes 92 | bull_researcher_node = create_bull_researcher( 93 | self.quick_thinking_llm, self.bull_memory 94 | ) 95 | bear_researcher_node = create_bear_researcher( 96 | self.quick_thinking_llm, self.bear_memory 97 | ) 98 | research_manager_node = create_research_manager( 99 | self.deep_thinking_llm, self.invest_judge_memory 100 | ) 101 | trader_node = create_trader(self.quick_thinking_llm, self.trader_memory) 102 | 103 | # Create risk analysis nodes 104 | risky_analyst = create_risky_debator(self.quick_thinking_llm) 105 | neutral_analyst = create_neutral_debator(self.quick_thinking_llm) 106 | safe_analyst = create_safe_debator(self.quick_thinking_llm) 107 | risk_manager_node = create_risk_manager( 108 | self.deep_thinking_llm, self.risk_manager_memory 109 | ) 110 | 111 | # Create workflow 112 | workflow = StateGraph(AgentState) 113 | 114 | # Add analyst nodes to the graph 115 | for analyst_type, node in analyst_nodes.items(): 116 | workflow.add_node(f"{analyst_type.capitalize()} Analyst", node) 117 | workflow.add_node( 118 | f"Msg Clear {analyst_type.capitalize()}", delete_nodes[analyst_type] 119 | ) 120 | workflow.add_node(f"tools_{analyst_type}", tool_nodes[analyst_type]) 121 | 122 | # Add other nodes 123 | workflow.add_node("Bull Researcher", bull_researcher_node) 124 | workflow.add_node("Bear Researcher", bear_researcher_node) 125 | workflow.add_node("Research Manager", research_manager_node) 126 | workflow.add_node("Trader", trader_node) 127 | workflow.add_node("Risky Analyst", risky_analyst) 128 | workflow.add_node("Neutral Analyst", neutral_analyst) 129 | workflow.add_node("Safe Analyst", safe_analyst) 130 | workflow.add_node("Risk Judge", risk_manager_node) 131 | 132 | # Define edges 133 | # Start with the first analyst 134 | first_analyst = selected_analysts[0] 135 | workflow.add_edge(START, f"{first_analyst.capitalize()} Analyst") 136 | 137 | # Connect analysts in sequence 138 | for i, analyst_type in enumerate(selected_analysts): 139 | current_analyst = f"{analyst_type.capitalize()} Analyst" 140 | current_tools = f"tools_{analyst_type}" 141 | current_clear = f"Msg Clear {analyst_type.capitalize()}" 142 | 143 | # Add conditional edges for current analyst 144 | workflow.add_conditional_edges( 145 | current_analyst, 146 | getattr(self.conditional_logic, f"should_continue_{analyst_type}"), 147 | [current_tools, current_clear], 148 | ) 149 | workflow.add_edge(current_tools, current_analyst) 150 | 151 | # Connect to next analyst or to Bull Researcher if this is the last analyst 152 | if i < len(selected_analysts) - 1: 153 | next_analyst = f"{selected_analysts[i+1].capitalize()} Analyst" 154 | workflow.add_edge(current_clear, next_analyst) 155 | else: 156 | workflow.add_edge(current_clear, "Bull Researcher") 157 | 158 | # Add remaining edges 159 | workflow.add_conditional_edges( 160 | "Bull Researcher", 161 | self.conditional_logic.should_continue_debate, 162 | { 163 | "Bear Researcher": "Bear Researcher", 164 | "Research Manager": "Research Manager", 165 | }, 166 | ) 167 | workflow.add_conditional_edges( 168 | "Bear Researcher", 169 | self.conditional_logic.should_continue_debate, 170 | { 171 | "Bull Researcher": "Bull Researcher", 172 | "Research Manager": "Research Manager", 173 | }, 174 | ) 175 | workflow.add_edge("Research Manager", "Trader") 176 | workflow.add_edge("Trader", "Risky Analyst") 177 | workflow.add_conditional_edges( 178 | "Risky Analyst", 179 | self.conditional_logic.should_continue_risk_analysis, 180 | { 181 | "Safe Analyst": "Safe Analyst", 182 | "Risk Judge": "Risk Judge", 183 | }, 184 | ) 185 | workflow.add_conditional_edges( 186 | "Safe Analyst", 187 | self.conditional_logic.should_continue_risk_analysis, 188 | { 189 | "Neutral Analyst": "Neutral Analyst", 190 | "Risk Judge": "Risk Judge", 191 | }, 192 | ) 193 | workflow.add_conditional_edges( 194 | "Neutral Analyst", 195 | self.conditional_logic.should_continue_risk_analysis, 196 | { 197 | "Risky Analyst": "Risky Analyst", 198 | "Risk Judge": "Risk Judge", 199 | }, 200 | ) 201 | 202 | workflow.add_edge("Risk Judge", END) 203 | 204 | # Compile and return 205 | return workflow.compile() 206 | -------------------------------------------------------------------------------- /tradingagents/graph/signal_processing.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/signal_processing.py 2 | 3 | from langchain_openai import ChatOpenAI 4 | 5 | 6 | class SignalProcessor: 7 | """Processes trading signals to extract actionable decisions.""" 8 | 9 | def __init__(self, quick_thinking_llm: ChatOpenAI): 10 | """Initialize with an LLM for processing.""" 11 | self.quick_thinking_llm = quick_thinking_llm 12 | 13 | def process_signal(self, full_signal: str) -> str: 14 | """ 15 | Process a full trading signal to extract the core decision. 16 | 17 | Args: 18 | full_signal: Complete trading signal text 19 | 20 | Returns: 21 | Extracted decision (BUY, SELL, or HOLD) 22 | """ 23 | messages = [ 24 | ( 25 | "system", 26 | "You are an efficient assistant designed to analyze paragraphs or financial reports provided by a group of analysts. Your task is to extract the investment decision: SELL, BUY, or HOLD. Provide only the extracted decision (SELL, BUY, or HOLD) as your output, without adding any additional text or information.", 27 | ), 28 | ("human", full_signal), 29 | ] 30 | 31 | return self.quick_thinking_llm.invoke(messages).content 32 | -------------------------------------------------------------------------------- /tradingagents/graph/trading_graph.py: -------------------------------------------------------------------------------- 1 | # TradingAgents/graph/trading_graph.py 2 | 3 | import os 4 | from pathlib import Path 5 | import json 6 | from datetime import date 7 | from typing import Dict, Any, Tuple, List, Optional 8 | 9 | from langchain_openai import ChatOpenAI 10 | from langchain_anthropic import ChatAnthropic 11 | from langchain_google_genai import ChatGoogleGenerativeAI 12 | 13 | from langgraph.prebuilt import ToolNode 14 | 15 | from tradingagents.agents import * 16 | from tradingagents.default_config import DEFAULT_CONFIG 17 | from tradingagents.agents.utils.memory import FinancialSituationMemory 18 | from tradingagents.agents.utils.agent_states import ( 19 | AgentState, 20 | InvestDebateState, 21 | RiskDebateState, 22 | ) 23 | from tradingagents.dataflows.interface import set_config 24 | 25 | from .conditional_logic import ConditionalLogic 26 | from .setup import GraphSetup 27 | from .propagation import Propagator 28 | from .reflection import Reflector 29 | from .signal_processing import SignalProcessor 30 | 31 | 32 | class TradingAgentsGraph: 33 | """Main class that orchestrates the trading agents framework.""" 34 | 35 | def __init__( 36 | self, 37 | selected_analysts=["market", "social", "news", "fundamentals"], 38 | debug=False, 39 | config: Dict[str, Any] = None, 40 | ): 41 | """Initialize the trading agents graph and components. 42 | 43 | Args: 44 | selected_analysts: List of analyst types to include 45 | debug: Whether to run in debug mode 46 | config: Configuration dictionary. If None, uses default config 47 | """ 48 | self.debug = debug 49 | self.config = config or DEFAULT_CONFIG 50 | 51 | # Update the interface's config 52 | set_config(self.config) 53 | 54 | # Create necessary directories 55 | os.makedirs( 56 | os.path.join(self.config["project_dir"], "dataflows/data_cache"), 57 | exist_ok=True, 58 | ) 59 | 60 | # Initialize LLMs 61 | if self.config["llm_provider"].lower() == "openai" or self.config["llm_provider"] == "ollama" or self.config["llm_provider"] == "openrouter": 62 | self.deep_thinking_llm = ChatOpenAI(model=self.config["deep_think_llm"], base_url=self.config["backend_url"]) 63 | self.quick_thinking_llm = ChatOpenAI(model=self.config["quick_think_llm"], base_url=self.config["backend_url"]) 64 | elif self.config["llm_provider"].lower() == "anthropic": 65 | self.deep_thinking_llm = ChatAnthropic(model=self.config["deep_think_llm"], base_url=self.config["backend_url"]) 66 | self.quick_thinking_llm = ChatAnthropic(model=self.config["quick_think_llm"], base_url=self.config["backend_url"]) 67 | elif self.config["llm_provider"].lower() == "google": 68 | self.deep_thinking_llm = ChatGoogleGenerativeAI(model=self.config["deep_think_llm"]) 69 | self.quick_thinking_llm = ChatGoogleGenerativeAI(model=self.config["quick_think_llm"]) 70 | else: 71 | raise ValueError(f"Unsupported LLM provider: {self.config['llm_provider']}") 72 | 73 | self.toolkit = Toolkit(config=self.config) 74 | 75 | # Initialize memories 76 | self.bull_memory = FinancialSituationMemory("bull_memory", self.config) 77 | self.bear_memory = FinancialSituationMemory("bear_memory", self.config) 78 | self.trader_memory = FinancialSituationMemory("trader_memory", self.config) 79 | self.invest_judge_memory = FinancialSituationMemory("invest_judge_memory", self.config) 80 | self.risk_manager_memory = FinancialSituationMemory("risk_manager_memory", self.config) 81 | 82 | # Create tool nodes 83 | self.tool_nodes = self._create_tool_nodes() 84 | 85 | # Initialize components 86 | self.conditional_logic = ConditionalLogic() 87 | self.graph_setup = GraphSetup( 88 | self.quick_thinking_llm, 89 | self.deep_thinking_llm, 90 | self.toolkit, 91 | self.tool_nodes, 92 | self.bull_memory, 93 | self.bear_memory, 94 | self.trader_memory, 95 | self.invest_judge_memory, 96 | self.risk_manager_memory, 97 | self.conditional_logic, 98 | ) 99 | 100 | self.propagator = Propagator() 101 | self.reflector = Reflector(self.quick_thinking_llm) 102 | self.signal_processor = SignalProcessor(self.quick_thinking_llm) 103 | 104 | # State tracking 105 | self.curr_state = None 106 | self.ticker = None 107 | self.log_states_dict = {} # date to full state dict 108 | 109 | # Set up the graph 110 | self.graph = self.graph_setup.setup_graph(selected_analysts) 111 | 112 | def _create_tool_nodes(self) -> Dict[str, ToolNode]: 113 | """Create tool nodes for different data sources.""" 114 | return { 115 | "market": ToolNode( 116 | [ 117 | # online tools 118 | self.toolkit.get_YFin_data_online, 119 | self.toolkit.get_stockstats_indicators_report_online, 120 | # offline tools 121 | self.toolkit.get_YFin_data, 122 | self.toolkit.get_stockstats_indicators_report, 123 | ] 124 | ), 125 | "social": ToolNode( 126 | [ 127 | # online tools 128 | self.toolkit.get_stock_news_openai, 129 | # offline tools 130 | self.toolkit.get_reddit_stock_info, 131 | ] 132 | ), 133 | "news": ToolNode( 134 | [ 135 | # online tools 136 | self.toolkit.get_global_news_openai, 137 | self.toolkit.get_google_news, 138 | # offline tools 139 | self.toolkit.get_finnhub_news, 140 | self.toolkit.get_reddit_news, 141 | ] 142 | ), 143 | "fundamentals": ToolNode( 144 | [ 145 | # online tools 146 | self.toolkit.get_fundamentals_openai, 147 | # offline tools 148 | self.toolkit.get_finnhub_company_insider_sentiment, 149 | self.toolkit.get_finnhub_company_insider_transactions, 150 | self.toolkit.get_simfin_balance_sheet, 151 | self.toolkit.get_simfin_cashflow, 152 | self.toolkit.get_simfin_income_stmt, 153 | ] 154 | ), 155 | } 156 | 157 | def propagate(self, company_name, trade_date): 158 | """Run the trading agents graph for a company on a specific date.""" 159 | 160 | self.ticker = company_name 161 | 162 | # Initialize state 163 | init_agent_state = self.propagator.create_initial_state( 164 | company_name, trade_date 165 | ) 166 | args = self.propagator.get_graph_args() 167 | 168 | if self.debug: 169 | # Debug mode with tracing 170 | trace = [] 171 | for chunk in self.graph.stream(init_agent_state, **args): 172 | if len(chunk["messages"]) == 0: 173 | pass 174 | else: 175 | chunk["messages"][-1].pretty_print() 176 | trace.append(chunk) 177 | 178 | final_state = trace[-1] 179 | else: 180 | # Standard mode without tracing 181 | final_state = self.graph.invoke(init_agent_state, **args) 182 | 183 | # Store current state for reflection 184 | self.curr_state = final_state 185 | 186 | # Log state 187 | self._log_state(trade_date, final_state) 188 | 189 | # Return decision and processed signal 190 | return final_state, self.process_signal(final_state["final_trade_decision"]) 191 | 192 | def _log_state(self, trade_date, final_state): 193 | """Log the final state to a JSON file.""" 194 | self.log_states_dict[str(trade_date)] = { 195 | "company_of_interest": final_state["company_of_interest"], 196 | "trade_date": final_state["trade_date"], 197 | "market_report": final_state["market_report"], 198 | "sentiment_report": final_state["sentiment_report"], 199 | "news_report": final_state["news_report"], 200 | "fundamentals_report": final_state["fundamentals_report"], 201 | "investment_debate_state": { 202 | "bull_history": final_state["investment_debate_state"]["bull_history"], 203 | "bear_history": final_state["investment_debate_state"]["bear_history"], 204 | "history": final_state["investment_debate_state"]["history"], 205 | "current_response": final_state["investment_debate_state"][ 206 | "current_response" 207 | ], 208 | "judge_decision": final_state["investment_debate_state"][ 209 | "judge_decision" 210 | ], 211 | }, 212 | "trader_investment_decision": final_state["trader_investment_plan"], 213 | "risk_debate_state": { 214 | "risky_history": final_state["risk_debate_state"]["risky_history"], 215 | "safe_history": final_state["risk_debate_state"]["safe_history"], 216 | "neutral_history": final_state["risk_debate_state"]["neutral_history"], 217 | "history": final_state["risk_debate_state"]["history"], 218 | "judge_decision": final_state["risk_debate_state"]["judge_decision"], 219 | }, 220 | "investment_plan": final_state["investment_plan"], 221 | "final_trade_decision": final_state["final_trade_decision"], 222 | } 223 | 224 | # Save to file 225 | directory = Path(f"eval_results/{self.ticker}/TradingAgentsStrategy_logs/") 226 | directory.mkdir(parents=True, exist_ok=True) 227 | 228 | with open( 229 | f"eval_results/{self.ticker}/TradingAgentsStrategy_logs/full_states_log_{trade_date}.json", 230 | "w", 231 | ) as f: 232 | json.dump(self.log_states_dict, f, indent=4) 233 | 234 | def reflect_and_remember(self, returns_losses): 235 | """Reflect on decisions and update memory based on returns.""" 236 | self.reflector.reflect_bull_researcher( 237 | self.curr_state, returns_losses, self.bull_memory 238 | ) 239 | self.reflector.reflect_bear_researcher( 240 | self.curr_state, returns_losses, self.bear_memory 241 | ) 242 | self.reflector.reflect_trader( 243 | self.curr_state, returns_losses, self.trader_memory 244 | ) 245 | self.reflector.reflect_invest_judge( 246 | self.curr_state, returns_losses, self.invest_judge_memory 247 | ) 248 | self.reflector.reflect_risk_manager( 249 | self.curr_state, returns_losses, self.risk_manager_memory 250 | ) 251 | 252 | def process_signal(self, full_signal): 253 | """Process a signal to extract the core decision.""" 254 | return self.signal_processor.process_signal(full_signal) 255 | --------------------------------------------------------------------------------