├── .github
└── workflows
│ └── publish.yml
├── .gitignore
├── LICENSE
├── README.md
├── __init__.py
├── install.py
├── models
└── .gitkeep
├── pyproject.toml
├── requirements.txt
├── src
├── __init__.py
├── idm_vton
│ ├── __init__.py
│ ├── attentionhacked_garmnet.py
│ ├── attentionhacked_tryon.py
│ ├── transformerhacked_garmnet.py
│ ├── transformerhacked_tryon.py
│ ├── tryon_pipeline.py
│ ├── unet_block_hacked_garmnet.py
│ ├── unet_block_hacked_tryon.py
│ ├── unet_hacked_garmnet.py
│ └── unet_hacked_tryon.py
├── ip_adapter
│ ├── __init__.py
│ ├── attention_processor.py
│ ├── ip_adapter.py
│ ├── resampler.py
│ ├── test_resampler.py
│ └── utils.py
├── logger.py
├── nodes
│ ├── __init__.py
│ ├── idm_vton.py
│ └── pipeline_loader.py
└── nodes_mappings.py
└── workflow.png
/.github/workflows/publish.yml:
--------------------------------------------------------------------------------
1 | name: Publish to Comfy registry
2 | on:
3 | workflow_dispatch:
4 | push:
5 | branches:
6 | - main
7 | paths:
8 | - "pyproject.toml"
9 |
10 | jobs:
11 | publish-node:
12 | name: Publish Custom Node to registry
13 | runs-on: ubuntu-latest
14 | steps:
15 | - name: Check out code
16 | uses: actions/checkout@v4
17 | - name: Publish Custom Node
18 | uses: Comfy-Org/publish-node-action@main
19 | with:
20 | ## Add your own personal access token to your Github Repository secrets and reference it here.
21 | personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }}
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | models/*
2 | !models/.gitkeep
3 |
4 | # Byte-compiled / optimized / DLL files
5 | __pycache__/
6 | *.py[cod]
7 | *$py.class
8 |
9 | # C extensions
10 | *.so
11 |
12 | # Distribution / packaging
13 | .Python
14 | build/
15 | develop-eggs/
16 | dist/
17 | downloads/
18 | eggs/
19 | .eggs/
20 | lib/
21 | lib64/
22 | parts/
23 | sdist/
24 | var/
25 | wheels/
26 | share/python-wheels/
27 | *.egg-info/
28 | .installed.cfg
29 | *.egg
30 | MANIFEST
31 |
32 | # PyInstaller
33 | # Usually these files are written by a python script from a template
34 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
35 | *.manifest
36 | *.spec
37 |
38 | # Installer logs
39 | pip-log.txt
40 | pip-delete-this-directory.txt
41 |
42 | # Unit test / coverage reports
43 | htmlcov/
44 | .tox/
45 | .nox/
46 | .coverage
47 | .coverage.*
48 | .cache
49 | nosetests.xml
50 | coverage.xml
51 | *.cover
52 | *.py,cover
53 | .hypothesis/
54 | .pytest_cache/
55 | cover/
56 |
57 | # Translations
58 | *.mo
59 | *.pot
60 |
61 | # Django stuff:
62 | *.log
63 | local_settings.py
64 | db.sqlite3
65 | db.sqlite3-journal
66 |
67 | # Flask stuff:
68 | instance/
69 | .webassets-cache
70 |
71 | # Scrapy stuff:
72 | .scrapy
73 |
74 | # Sphinx documentation
75 | docs/_build/
76 |
77 | # PyBuilder
78 | .pybuilder/
79 | target/
80 |
81 | # Jupyter Notebook
82 | .ipynb_checkpoints
83 |
84 | # IPython
85 | profile_default/
86 | ipython_config.py
87 |
88 | # pyenv
89 | # For a library or package, you might want to ignore these files since the code is
90 | # intended to run in multiple environments; otherwise, check them in:
91 | # .python-version
92 |
93 | # pipenv
94 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
95 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
96 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
97 | # install all needed dependencies.
98 | #Pipfile.lock
99 |
100 | # poetry
101 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
102 | # This is especially recommended for binary packages to ensure reproducibility, and is more
103 | # commonly ignored for libraries.
104 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
105 | #poetry.lock
106 |
107 | # pdm
108 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
109 | #pdm.lock
110 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
111 | # in version control.
112 | # https://pdm.fming.dev/#use-with-ide
113 | .pdm.toml
114 |
115 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
116 | __pypackages__/
117 |
118 | # Celery stuff
119 | celerybeat-schedule
120 | celerybeat.pid
121 |
122 | # SageMath parsed files
123 | *.sage.py
124 |
125 | # Environments
126 | .env
127 | .venv
128 | env/
129 | venv/
130 | ENV/
131 | env.bak/
132 | venv.bak/
133 |
134 | # Spyder project settings
135 | .spyderproject
136 | .spyproject
137 |
138 | # Rope project settings
139 | .ropeproject
140 |
141 | # mkdocs documentation
142 | /site
143 |
144 | # mypy
145 | .mypy_cache/
146 | .dmypy.json
147 | dmypy.json
148 |
149 | # Pyre type checker
150 | .pyre/
151 |
152 | # pytype static type analyzer
153 | .pytype/
154 |
155 | # Cython debug symbols
156 | cython_debug/
157 |
158 | # PyCharm
159 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
160 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
161 | # and can be added to the global gitignore or merged into this file. For a more nuclear
162 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
163 | #.idea/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ComfyUI-IDM-VTON
2 | ComfyUI adaptation of [IDM-VTON](https://github.com/yisol/IDM-VTON).
3 |
4 | 
5 |
6 | ## Installation
7 |
8 | :warning: Current implementation requires GPU with at least 16GB of VRAM :warning:
9 |
10 | ### Using ComfyUI Manager:
11 |
12 | - In [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager), look for ```ComfyUI-IDM-VTON```, and be sure the author is ```TemryL```. Install it.
13 |
14 | ### Manually:
15 | - Clone this repo into `custom_nodes` folder in ComfyUI and install the dependencies.
16 | ```bash
17 | cd custom_nodes
18 | git clone https://github.com/TemryL/ComfyUI-IDM-VTON.git
19 | cd ComfyUI-IDM-VTON
20 | python install.py
21 | ```
22 |
23 | Models weights from [yisol/IDM-VTON](https://huggingface.co/yisol/IDM-VTON) in [HuggingFace](https://huggingface.co) will be downloaded in [models](models/) folder of this repository.
24 |
25 | ## Mask Generation
26 | The workflow provided above uses [ComfyUI Segment Anything](https://github.com/storyicon/comfyui_segment_anything) to generate the image mask.
27 |
28 | ## DensePose Estimation
29 | DensePose estimation is performed using [ComfyUI's ControlNet Auxiliary Preprocessors](https://github.com/Fannovel16/comfyui_controlnet_aux).
30 |
31 | ## :star: Star Us!
32 | If you find this project useful, please consider giving it a star on GitHub. This helps the project to gain visibility and encourages more contributors to join in. Thank you for your support!
33 |
34 | ## Contribute
35 | Thanks for your interest in contributing to the source code! We welcome help from anyone and appreciate every contribution, no matter how small!
36 |
37 | If you're ready to contribute, please create a fork, make your changes, commit them, and then submit a pull request for review. We'll consider it for integration into the main code base.
38 |
39 | ## Credits
40 | - [ComfyUI](https://github.com/comfyanonymous/ComfyUI)
41 | - [IDM-VTON](https://github.com/yisol/IDM-VTON)
42 | - [ComfyUI Segment Anything](https://github.com/storyicon/comfyui_segment_anything)
43 | - [ComfyUI's ControlNet Auxiliary Preprocessors](https://github.com/Fannovel16/comfyui_controlnet_aux)
44 |
45 | ## License
46 | Original [IDM-VTON](https://github.com/yisol/IDM-VTON) source code under [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
47 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from .install import *
2 | from .src.nodes_mappings import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
3 |
4 |
5 | __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
--------------------------------------------------------------------------------
/install.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | import subprocess
4 | from huggingface_hub import snapshot_download
5 |
6 | sys.path.append("../../")
7 | from folder_paths import models_dir
8 |
9 | CUSTOM_NODES_PATH = os.path.dirname(os.path.abspath(__file__))
10 | WEIGHTS_PATH = os.path.join(models_dir, "IDM-VTON")
11 | HF_REPO_ID = "yisol/IDM-VTON"
12 |
13 | os.makedirs(WEIGHTS_PATH, exist_ok=True)
14 |
15 | def build_pip_install_cmds(args):
16 | if "python_embeded" in sys.executable or "python_embedded" in sys.executable:
17 | return [sys.executable, '-s', '-m', 'pip', 'install'] + args
18 | else:
19 | return [sys.executable, '-m', 'pip', 'install'] + args
20 |
21 | def ensure_package():
22 | cmds = build_pip_install_cmds(['-r', 'requirements.txt'])
23 | subprocess.run(cmds, cwd=CUSTOM_NODES_PATH)
24 |
25 |
26 | if __name__ == "__main__":
27 | ensure_package()
28 | snapshot_download(repo_id=HF_REPO_ID, local_dir=WEIGHTS_PATH, local_dir_use_symlinks=False)
29 |
--------------------------------------------------------------------------------
/models/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/TemryL/ComfyUI-IDM-VTON/5a8334c58c390381e31a8023cb7ba398ade40b39/models/.gitkeep
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "comfyui-idm-vton"
3 | description = "ComfyUI adaptation of [a/IDM-VTON](https://github.com/yisol/IDM-VTON) for virtual try-on."
4 | version = "1.0.1"
5 | license = { file = "LICENSE" }
6 | dependencies = ["torch", "torchvision", "torchaudio", "accelerate==0.30.0", "torchmetrics==1.4.0", "tqdm==4.66.4", "transformers==4.40.2", "diffusers==0.27.2", "einops==0.8.0", "bitsandbytes==0.42", "scipy==1.13.0", "opencv-python"]
7 |
8 | [project.urls]
9 | Repository = "https://github.com/TemryL/ComfyUI-IDM-VTON"
10 | # Used by Comfy Registry https://comfyregistry.org
11 |
12 | [tool.comfy]
13 | PublisherId = "temryl"
14 | DisplayName = "ComfyUI-IDM-VTON"
15 | Icon = ""
16 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch
2 | torchvision
3 | torchaudio
4 | accelerate==0.30.0
5 | torchmetrics==1.4.0
6 | tqdm==4.66.4
7 | transformers==4.40.2
8 | diffusers==0.27.2
9 | einops==0.8.0
10 | bitsandbytes==0.42
11 | scipy==1.13.0
12 | opencv-python
--------------------------------------------------------------------------------
/src/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/TemryL/ComfyUI-IDM-VTON/5a8334c58c390381e31a8023cb7ba398ade40b39/src/__init__.py
--------------------------------------------------------------------------------
/src/idm_vton/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/TemryL/ComfyUI-IDM-VTON/5a8334c58c390381e31a8023cb7ba398ade40b39/src/idm_vton/__init__.py
--------------------------------------------------------------------------------
/src/idm_vton/attentionhacked_garmnet.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from typing import Any, Dict, Optional
15 |
16 | import torch
17 | import torch.nn.functional as F
18 | from torch import nn
19 |
20 | from diffusers.utils import USE_PEFT_BACKEND
21 | from diffusers.utils.torch_utils import maybe_allow_in_graph
22 | from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
23 | from diffusers.models.attention_processor import Attention
24 | from diffusers.models.embeddings import SinusoidalPositionalEmbedding
25 | from diffusers.models.lora import LoRACompatibleLinear
26 | from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27 |
28 |
29 | def _chunked_feed_forward(
30 | ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
31 | ):
32 | # "feed_forward_chunk_size" can be used to save memory
33 | if hidden_states.shape[chunk_dim] % chunk_size != 0:
34 | raise ValueError(
35 | f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
36 | )
37 |
38 | num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39 | if lora_scale is None:
40 | ff_output = torch.cat(
41 | [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
42 | dim=chunk_dim,
43 | )
44 | else:
45 | # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
46 | ff_output = torch.cat(
47 | [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48 | dim=chunk_dim,
49 | )
50 |
51 | return ff_output
52 |
53 |
54 | @maybe_allow_in_graph
55 | class GatedSelfAttentionDense(nn.Module):
56 | r"""
57 | A gated self-attention dense layer that combines visual features and object features.
58 |
59 | Parameters:
60 | query_dim (`int`): The number of channels in the query.
61 | context_dim (`int`): The number of channels in the context.
62 | n_heads (`int`): The number of heads to use for attention.
63 | d_head (`int`): The number of channels in each head.
64 | """
65 |
66 | def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67 | super().__init__()
68 |
69 | # we need a linear projection since we need cat visual feature and obj feature
70 | self.linear = nn.Linear(context_dim, query_dim)
71 |
72 | self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
73 | self.ff = FeedForward(query_dim, activation_fn="geglu")
74 |
75 | self.norm1 = nn.LayerNorm(query_dim)
76 | self.norm2 = nn.LayerNorm(query_dim)
77 |
78 | self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
79 | self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
80 |
81 | self.enabled = True
82 |
83 | def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84 | if not self.enabled:
85 | return x
86 |
87 | n_visual = x.shape[1]
88 | objs = self.linear(objs)
89 |
90 | x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
91 | x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
92 |
93 | return x
94 |
95 |
96 | @maybe_allow_in_graph
97 | class BasicTransformerBlock(nn.Module):
98 | r"""
99 | A basic Transformer block.
100 |
101 | Parameters:
102 | dim (`int`): The number of channels in the input and output.
103 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
104 | attention_head_dim (`int`): The number of channels in each head.
105 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
106 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
107 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
108 | num_embeds_ada_norm (:
109 | obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
110 | attention_bias (:
111 | obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112 | only_cross_attention (`bool`, *optional*):
113 | Whether to use only cross-attention layers. In this case two cross attention layers are used.
114 | double_self_attention (`bool`, *optional*):
115 | Whether to use two self-attention layers. In this case no cross attention layers are used.
116 | upcast_attention (`bool`, *optional*):
117 | Whether to upcast the attention computation to float32. This is useful for mixed precision training.
118 | norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
119 | Whether to use learnable elementwise affine parameters for normalization.
120 | norm_type (`str`, *optional*, defaults to `"layer_norm"`):
121 | The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
122 | final_dropout (`bool` *optional*, defaults to False):
123 | Whether to apply a final dropout after the last feed-forward layer.
124 | attention_type (`str`, *optional*, defaults to `"default"`):
125 | The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
126 | positional_embeddings (`str`, *optional*, defaults to `None`):
127 | The type of positional embeddings to apply to.
128 | num_positional_embeddings (`int`, *optional*, defaults to `None`):
129 | The maximum number of positional embeddings to apply.
130 | """
131 |
132 | def __init__(
133 | self,
134 | dim: int,
135 | num_attention_heads: int,
136 | attention_head_dim: int,
137 | dropout=0.0,
138 | cross_attention_dim: Optional[int] = None,
139 | activation_fn: str = "geglu",
140 | num_embeds_ada_norm: Optional[int] = None,
141 | attention_bias: bool = False,
142 | only_cross_attention: bool = False,
143 | double_self_attention: bool = False,
144 | upcast_attention: bool = False,
145 | norm_elementwise_affine: bool = True,
146 | norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
147 | norm_eps: float = 1e-5,
148 | final_dropout: bool = False,
149 | attention_type: str = "default",
150 | positional_embeddings: Optional[str] = None,
151 | num_positional_embeddings: Optional[int] = None,
152 | ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153 | ada_norm_bias: Optional[int] = None,
154 | ff_inner_dim: Optional[int] = None,
155 | ff_bias: bool = True,
156 | attention_out_bias: bool = True,
157 | ):
158 | super().__init__()
159 | self.only_cross_attention = only_cross_attention
160 |
161 | self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
162 | self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
163 | self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
164 | self.use_layer_norm = norm_type == "layer_norm"
165 | self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
166 |
167 | if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
168 | raise ValueError(
169 | f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
170 | f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
171 | )
172 |
173 | if positional_embeddings and (num_positional_embeddings is None):
174 | raise ValueError(
175 | "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
176 | )
177 |
178 | if positional_embeddings == "sinusoidal":
179 | self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
180 | else:
181 | self.pos_embed = None
182 |
183 | # Define 3 blocks. Each block has its own normalization layer.
184 | # 1. Self-Attn
185 | if self.use_ada_layer_norm:
186 | self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
187 | elif self.use_ada_layer_norm_zero:
188 | self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189 | elif self.use_ada_layer_norm_continuous:
190 | self.norm1 = AdaLayerNormContinuous(
191 | dim,
192 | ada_norm_continous_conditioning_embedding_dim,
193 | norm_elementwise_affine,
194 | norm_eps,
195 | ada_norm_bias,
196 | "rms_norm",
197 | )
198 | else:
199 | self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
200 |
201 | self.attn1 = Attention(
202 | query_dim=dim,
203 | heads=num_attention_heads,
204 | dim_head=attention_head_dim,
205 | dropout=dropout,
206 | bias=attention_bias,
207 | cross_attention_dim=cross_attention_dim if only_cross_attention else None,
208 | upcast_attention=upcast_attention,
209 | out_bias=attention_out_bias,
210 | )
211 |
212 | # 2. Cross-Attn
213 | if cross_attention_dim is not None or double_self_attention:
214 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
215 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
216 | # the second cross attention block.
217 | if self.use_ada_layer_norm:
218 | self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219 | elif self.use_ada_layer_norm_continuous:
220 | self.norm2 = AdaLayerNormContinuous(
221 | dim,
222 | ada_norm_continous_conditioning_embedding_dim,
223 | norm_elementwise_affine,
224 | norm_eps,
225 | ada_norm_bias,
226 | "rms_norm",
227 | )
228 | else:
229 | self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230 |
231 | self.attn2 = Attention(
232 | query_dim=dim,
233 | cross_attention_dim=cross_attention_dim if not double_self_attention else None,
234 | heads=num_attention_heads,
235 | dim_head=attention_head_dim,
236 | dropout=dropout,
237 | bias=attention_bias,
238 | upcast_attention=upcast_attention,
239 | out_bias=attention_out_bias,
240 | ) # is self-attn if encoder_hidden_states is none
241 | else:
242 | self.norm2 = None
243 | self.attn2 = None
244 |
245 | # 3. Feed-forward
246 | if self.use_ada_layer_norm_continuous:
247 | self.norm3 = AdaLayerNormContinuous(
248 | dim,
249 | ada_norm_continous_conditioning_embedding_dim,
250 | norm_elementwise_affine,
251 | norm_eps,
252 | ada_norm_bias,
253 | "layer_norm",
254 | )
255 | elif not self.use_ada_layer_norm_single:
256 | self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
257 |
258 | self.ff = FeedForward(
259 | dim,
260 | dropout=dropout,
261 | activation_fn=activation_fn,
262 | final_dropout=final_dropout,
263 | inner_dim=ff_inner_dim,
264 | bias=ff_bias,
265 | )
266 |
267 | # 4. Fuser
268 | if attention_type == "gated" or attention_type == "gated-text-image":
269 | self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
270 |
271 | # 5. Scale-shift for PixArt-Alpha.
272 | if self.use_ada_layer_norm_single:
273 | self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
274 |
275 | # let chunk size default to None
276 | self._chunk_size = None
277 | self._chunk_dim = 0
278 |
279 | def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280 | # Sets chunk feed-forward
281 | self._chunk_size = chunk_size
282 | self._chunk_dim = dim
283 |
284 | def forward(
285 | self,
286 | hidden_states: torch.FloatTensor,
287 | attention_mask: Optional[torch.FloatTensor] = None,
288 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
289 | encoder_attention_mask: Optional[torch.FloatTensor] = None,
290 | timestep: Optional[torch.LongTensor] = None,
291 | cross_attention_kwargs: Dict[str, Any] = None,
292 | class_labels: Optional[torch.LongTensor] = None,
293 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
294 | ) -> torch.FloatTensor:
295 | # Notice that normalization is always applied before the real computation in the following blocks.
296 | # 0. Self-Attention
297 | batch_size = hidden_states.shape[0]
298 | if self.use_ada_layer_norm:
299 | norm_hidden_states = self.norm1(hidden_states, timestep)
300 | elif self.use_ada_layer_norm_zero:
301 | norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
302 | hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
303 | )
304 | elif self.use_layer_norm:
305 | norm_hidden_states = self.norm1(hidden_states)
306 | elif self.use_ada_layer_norm_continuous:
307 | norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
308 | elif self.use_ada_layer_norm_single:
309 | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
310 | self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
311 | ).chunk(6, dim=1)
312 | norm_hidden_states = self.norm1(hidden_states)
313 | norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
314 | norm_hidden_states = norm_hidden_states.squeeze(1)
315 | else:
316 | raise ValueError("Incorrect norm used")
317 |
318 | if self.pos_embed is not None:
319 | norm_hidden_states = self.pos_embed(norm_hidden_states)
320 |
321 | garment_features = []
322 | garment_features.append(norm_hidden_states)
323 |
324 | # 1. Retrieve lora scale.
325 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
326 |
327 | # 2. Prepare GLIGEN inputs
328 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
329 | gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
330 |
331 | attn_output = self.attn1(
332 | norm_hidden_states,
333 | encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
334 | attention_mask=attention_mask,
335 | **cross_attention_kwargs,
336 | )
337 | if self.use_ada_layer_norm_zero:
338 | attn_output = gate_msa.unsqueeze(1) * attn_output
339 | elif self.use_ada_layer_norm_single:
340 | attn_output = gate_msa * attn_output
341 |
342 | hidden_states = attn_output + hidden_states
343 | if hidden_states.ndim == 4:
344 | hidden_states = hidden_states.squeeze(1)
345 |
346 | # 2.5 GLIGEN Control
347 | if gligen_kwargs is not None:
348 | hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
349 |
350 | # 3. Cross-Attention
351 | if self.attn2 is not None:
352 | if self.use_ada_layer_norm:
353 | norm_hidden_states = self.norm2(hidden_states, timestep)
354 | elif self.use_ada_layer_norm_zero or self.use_layer_norm:
355 | norm_hidden_states = self.norm2(hidden_states)
356 | elif self.use_ada_layer_norm_single:
357 | # For PixArt norm2 isn't applied here:
358 | # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
359 | norm_hidden_states = hidden_states
360 | elif self.use_ada_layer_norm_continuous:
361 | norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
362 | else:
363 | raise ValueError("Incorrect norm")
364 |
365 | if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
366 | norm_hidden_states = self.pos_embed(norm_hidden_states)
367 |
368 | attn_output = self.attn2(
369 | norm_hidden_states,
370 | encoder_hidden_states=encoder_hidden_states,
371 | attention_mask=encoder_attention_mask,
372 | **cross_attention_kwargs,
373 | )
374 | hidden_states = attn_output + hidden_states
375 |
376 | # 4. Feed-forward
377 | if self.use_ada_layer_norm_continuous:
378 | norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
379 | elif not self.use_ada_layer_norm_single:
380 | norm_hidden_states = self.norm3(hidden_states)
381 |
382 | if self.use_ada_layer_norm_zero:
383 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
384 |
385 | if self.use_ada_layer_norm_single:
386 | norm_hidden_states = self.norm2(hidden_states)
387 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
388 |
389 | if self._chunk_size is not None:
390 | # "feed_forward_chunk_size" can be used to save memory
391 | ff_output = _chunked_feed_forward(
392 | self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
393 | )
394 | else:
395 | ff_output = self.ff(norm_hidden_states, scale=lora_scale)
396 |
397 | if self.use_ada_layer_norm_zero:
398 | ff_output = gate_mlp.unsqueeze(1) * ff_output
399 | elif self.use_ada_layer_norm_single:
400 | ff_output = gate_mlp * ff_output
401 |
402 | hidden_states = ff_output + hidden_states
403 | if hidden_states.ndim == 4:
404 | hidden_states = hidden_states.squeeze(1)
405 |
406 | return hidden_states, garment_features
407 |
408 |
409 | @maybe_allow_in_graph
410 | class TemporalBasicTransformerBlock(nn.Module):
411 | r"""
412 | A basic Transformer block for video like data.
413 |
414 | Parameters:
415 | dim (`int`): The number of channels in the input and output.
416 | time_mix_inner_dim (`int`): The number of channels for temporal attention.
417 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
418 | attention_head_dim (`int`): The number of channels in each head.
419 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
420 | """
421 |
422 | def __init__(
423 | self,
424 | dim: int,
425 | time_mix_inner_dim: int,
426 | num_attention_heads: int,
427 | attention_head_dim: int,
428 | cross_attention_dim: Optional[int] = None,
429 | ):
430 | super().__init__()
431 | self.is_res = dim == time_mix_inner_dim
432 |
433 | self.norm_in = nn.LayerNorm(dim)
434 |
435 | # Define 3 blocks. Each block has its own normalization layer.
436 | # 1. Self-Attn
437 | self.norm_in = nn.LayerNorm(dim)
438 | self.ff_in = FeedForward(
439 | dim,
440 | dim_out=time_mix_inner_dim,
441 | activation_fn="geglu",
442 | )
443 |
444 | self.norm1 = nn.LayerNorm(time_mix_inner_dim)
445 | self.attn1 = Attention(
446 | query_dim=time_mix_inner_dim,
447 | heads=num_attention_heads,
448 | dim_head=attention_head_dim,
449 | cross_attention_dim=None,
450 | )
451 |
452 | # 2. Cross-Attn
453 | if cross_attention_dim is not None:
454 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
455 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
456 | # the second cross attention block.
457 | self.norm2 = nn.LayerNorm(time_mix_inner_dim)
458 | self.attn2 = Attention(
459 | query_dim=time_mix_inner_dim,
460 | cross_attention_dim=cross_attention_dim,
461 | heads=num_attention_heads,
462 | dim_head=attention_head_dim,
463 | ) # is self-attn if encoder_hidden_states is none
464 | else:
465 | self.norm2 = None
466 | self.attn2 = None
467 |
468 | # 3. Feed-forward
469 | self.norm3 = nn.LayerNorm(time_mix_inner_dim)
470 | self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
471 |
472 | # let chunk size default to None
473 | self._chunk_size = None
474 | self._chunk_dim = None
475 |
476 | def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
477 | # Sets chunk feed-forward
478 | self._chunk_size = chunk_size
479 | # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
480 | self._chunk_dim = 1
481 |
482 | def forward(
483 | self,
484 | hidden_states: torch.FloatTensor,
485 | num_frames: int,
486 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
487 | ) -> torch.FloatTensor:
488 | # Notice that normalization is always applied before the real computation in the following blocks.
489 | # 0. Self-Attention
490 | batch_size = hidden_states.shape[0]
491 |
492 | batch_frames, seq_length, channels = hidden_states.shape
493 | batch_size = batch_frames // num_frames
494 |
495 | hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
496 | hidden_states = hidden_states.permute(0, 2, 1, 3)
497 | hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
498 |
499 | residual = hidden_states
500 | hidden_states = self.norm_in(hidden_states)
501 |
502 | if self._chunk_size is not None:
503 | hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
504 | else:
505 | hidden_states = self.ff_in(hidden_states)
506 |
507 | if self.is_res:
508 | hidden_states = hidden_states + residual
509 |
510 | norm_hidden_states = self.norm1(hidden_states)
511 | attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
512 | hidden_states = attn_output + hidden_states
513 |
514 | # 3. Cross-Attention
515 | if self.attn2 is not None:
516 | norm_hidden_states = self.norm2(hidden_states)
517 | attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
518 | hidden_states = attn_output + hidden_states
519 |
520 | # 4. Feed-forward
521 | norm_hidden_states = self.norm3(hidden_states)
522 |
523 | if self._chunk_size is not None:
524 | ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
525 | else:
526 | ff_output = self.ff(norm_hidden_states)
527 |
528 | if self.is_res:
529 | hidden_states = ff_output + hidden_states
530 | else:
531 | hidden_states = ff_output
532 |
533 | hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
534 | hidden_states = hidden_states.permute(0, 2, 1, 3)
535 | hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
536 |
537 | return hidden_states
538 |
539 |
540 | class SkipFFTransformerBlock(nn.Module):
541 | def __init__(
542 | self,
543 | dim: int,
544 | num_attention_heads: int,
545 | attention_head_dim: int,
546 | kv_input_dim: int,
547 | kv_input_dim_proj_use_bias: bool,
548 | dropout=0.0,
549 | cross_attention_dim: Optional[int] = None,
550 | attention_bias: bool = False,
551 | attention_out_bias: bool = True,
552 | ):
553 | super().__init__()
554 | if kv_input_dim != dim:
555 | self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
556 | else:
557 | self.kv_mapper = None
558 |
559 | self.norm1 = RMSNorm(dim, 1e-06)
560 |
561 | self.attn1 = Attention(
562 | query_dim=dim,
563 | heads=num_attention_heads,
564 | dim_head=attention_head_dim,
565 | dropout=dropout,
566 | bias=attention_bias,
567 | cross_attention_dim=cross_attention_dim,
568 | out_bias=attention_out_bias,
569 | )
570 |
571 | self.norm2 = RMSNorm(dim, 1e-06)
572 |
573 | self.attn2 = Attention(
574 | query_dim=dim,
575 | cross_attention_dim=cross_attention_dim,
576 | heads=num_attention_heads,
577 | dim_head=attention_head_dim,
578 | dropout=dropout,
579 | bias=attention_bias,
580 | out_bias=attention_out_bias,
581 | )
582 |
583 | def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
584 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
585 |
586 | if self.kv_mapper is not None:
587 | encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
588 |
589 | norm_hidden_states = self.norm1(hidden_states)
590 |
591 | attn_output = self.attn1(
592 | norm_hidden_states,
593 | encoder_hidden_states=encoder_hidden_states,
594 | **cross_attention_kwargs,
595 | )
596 |
597 | hidden_states = attn_output + hidden_states
598 |
599 | norm_hidden_states = self.norm2(hidden_states)
600 |
601 | attn_output = self.attn2(
602 | norm_hidden_states,
603 | encoder_hidden_states=encoder_hidden_states,
604 | **cross_attention_kwargs,
605 | )
606 |
607 | hidden_states = attn_output + hidden_states
608 |
609 | return hidden_states
610 |
611 |
612 | class FeedForward(nn.Module):
613 | r"""
614 | A feed-forward layer.
615 |
616 | Parameters:
617 | dim (`int`): The number of channels in the input.
618 | dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
619 | mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
620 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
621 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
622 | final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
623 | bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
624 | """
625 |
626 | def __init__(
627 | self,
628 | dim: int,
629 | dim_out: Optional[int] = None,
630 | mult: int = 4,
631 | dropout: float = 0.0,
632 | activation_fn: str = "geglu",
633 | final_dropout: bool = False,
634 | inner_dim=None,
635 | bias: bool = True,
636 | ):
637 | super().__init__()
638 | if inner_dim is None:
639 | inner_dim = int(dim * mult)
640 | dim_out = dim_out if dim_out is not None else dim
641 | linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
642 |
643 | if activation_fn == "gelu":
644 | act_fn = GELU(dim, inner_dim, bias=bias)
645 | if activation_fn == "gelu-approximate":
646 | act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
647 | elif activation_fn == "geglu":
648 | act_fn = GEGLU(dim, inner_dim, bias=bias)
649 | elif activation_fn == "geglu-approximate":
650 | act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
651 |
652 | self.net = nn.ModuleList([])
653 | # project in
654 | self.net.append(act_fn)
655 | # project dropout
656 | self.net.append(nn.Dropout(dropout))
657 | # project out
658 | self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
659 | # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
660 | if final_dropout:
661 | self.net.append(nn.Dropout(dropout))
662 |
663 | def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
664 | compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
665 | for module in self.net:
666 | if isinstance(module, compatible_cls):
667 | hidden_states = module(hidden_states, scale)
668 | else:
669 | hidden_states = module(hidden_states)
670 | return hidden_states
671 |
--------------------------------------------------------------------------------
/src/idm_vton/attentionhacked_tryon.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from typing import Any, Dict, Optional
15 |
16 | import torch
17 | import torch.nn.functional as F
18 | from torch import nn
19 |
20 | from diffusers.utils import USE_PEFT_BACKEND
21 | from diffusers.utils.torch_utils import maybe_allow_in_graph
22 | from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
23 | from diffusers.models.attention_processor import Attention
24 | from diffusers.models.embeddings import SinusoidalPositionalEmbedding
25 | from diffusers.models.lora import LoRACompatibleLinear
26 | from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27 |
28 |
29 | def _chunked_feed_forward(
30 | ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
31 | ):
32 | # "feed_forward_chunk_size" can be used to save memory
33 | if hidden_states.shape[chunk_dim] % chunk_size != 0:
34 | raise ValueError(
35 | f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
36 | )
37 |
38 | num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39 | if lora_scale is None:
40 | ff_output = torch.cat(
41 | [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
42 | dim=chunk_dim,
43 | )
44 | else:
45 | # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
46 | ff_output = torch.cat(
47 | [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48 | dim=chunk_dim,
49 | )
50 |
51 | return ff_output
52 |
53 |
54 | @maybe_allow_in_graph
55 | class GatedSelfAttentionDense(nn.Module):
56 | r"""
57 | A gated self-attention dense layer that combines visual features and object features.
58 |
59 | Parameters:
60 | query_dim (`int`): The number of channels in the query.
61 | context_dim (`int`): The number of channels in the context.
62 | n_heads (`int`): The number of heads to use for attention.
63 | d_head (`int`): The number of channels in each head.
64 | """
65 |
66 | def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67 | super().__init__()
68 |
69 | # we need a linear projection since we need cat visual feature and obj feature
70 | self.linear = nn.Linear(context_dim, query_dim)
71 |
72 | self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
73 | self.ff = FeedForward(query_dim, activation_fn="geglu")
74 |
75 | self.norm1 = nn.LayerNorm(query_dim)
76 | self.norm2 = nn.LayerNorm(query_dim)
77 |
78 | self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
79 | self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
80 |
81 | self.enabled = True
82 |
83 | def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84 | if not self.enabled:
85 | return x
86 |
87 | n_visual = x.shape[1]
88 | objs = self.linear(objs)
89 |
90 | x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
91 | x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
92 |
93 | return x
94 |
95 |
96 | @maybe_allow_in_graph
97 | class BasicTransformerBlock(nn.Module):
98 | r"""
99 | A basic Transformer block.
100 |
101 | Parameters:
102 | dim (`int`): The number of channels in the input and output.
103 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
104 | attention_head_dim (`int`): The number of channels in each head.
105 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
106 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
107 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
108 | num_embeds_ada_norm (:
109 | obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
110 | attention_bias (:
111 | obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112 | only_cross_attention (`bool`, *optional*):
113 | Whether to use only cross-attention layers. In this case two cross attention layers are used.
114 | double_self_attention (`bool`, *optional*):
115 | Whether to use two self-attention layers. In this case no cross attention layers are used.
116 | upcast_attention (`bool`, *optional*):
117 | Whether to upcast the attention computation to float32. This is useful for mixed precision training.
118 | norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
119 | Whether to use learnable elementwise affine parameters for normalization.
120 | norm_type (`str`, *optional*, defaults to `"layer_norm"`):
121 | The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
122 | final_dropout (`bool` *optional*, defaults to False):
123 | Whether to apply a final dropout after the last feed-forward layer.
124 | attention_type (`str`, *optional*, defaults to `"default"`):
125 | The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
126 | positional_embeddings (`str`, *optional*, defaults to `None`):
127 | The type of positional embeddings to apply to.
128 | num_positional_embeddings (`int`, *optional*, defaults to `None`):
129 | The maximum number of positional embeddings to apply.
130 | """
131 |
132 | def __init__(
133 | self,
134 | dim: int,
135 | num_attention_heads: int,
136 | attention_head_dim: int,
137 | dropout=0.0,
138 | cross_attention_dim: Optional[int] = None,
139 | activation_fn: str = "geglu",
140 | num_embeds_ada_norm: Optional[int] = None,
141 | attention_bias: bool = False,
142 | only_cross_attention: bool = False,
143 | double_self_attention: bool = False,
144 | upcast_attention: bool = False,
145 | norm_elementwise_affine: bool = True,
146 | norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
147 | norm_eps: float = 1e-5,
148 | final_dropout: bool = False,
149 | attention_type: str = "default",
150 | positional_embeddings: Optional[str] = None,
151 | num_positional_embeddings: Optional[int] = None,
152 | ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153 | ada_norm_bias: Optional[int] = None,
154 | ff_inner_dim: Optional[int] = None,
155 | ff_bias: bool = True,
156 | attention_out_bias: bool = True,
157 | ):
158 | super().__init__()
159 | self.only_cross_attention = only_cross_attention
160 |
161 | self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
162 | self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
163 | self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
164 | self.use_layer_norm = norm_type == "layer_norm"
165 | self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
166 |
167 | if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
168 | raise ValueError(
169 | f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
170 | f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
171 | )
172 |
173 | if positional_embeddings and (num_positional_embeddings is None):
174 | raise ValueError(
175 | "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
176 | )
177 |
178 | if positional_embeddings == "sinusoidal":
179 | self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
180 | else:
181 | self.pos_embed = None
182 |
183 | # Define 3 blocks. Each block has its own normalization layer.
184 | # 1. Self-Attn
185 | if self.use_ada_layer_norm:
186 | self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
187 | elif self.use_ada_layer_norm_zero:
188 | self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189 | elif self.use_ada_layer_norm_continuous:
190 | self.norm1 = AdaLayerNormContinuous(
191 | dim,
192 | ada_norm_continous_conditioning_embedding_dim,
193 | norm_elementwise_affine,
194 | norm_eps,
195 | ada_norm_bias,
196 | "rms_norm",
197 | )
198 | else:
199 | self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
200 |
201 | self.attn1 = Attention(
202 | query_dim=dim,
203 | heads=num_attention_heads,
204 | dim_head=attention_head_dim,
205 | dropout=dropout,
206 | bias=attention_bias,
207 | cross_attention_dim=cross_attention_dim if only_cross_attention else None,
208 | upcast_attention=upcast_attention,
209 | out_bias=attention_out_bias,
210 | )
211 |
212 | # 2. Cross-Attn
213 | if cross_attention_dim is not None or double_self_attention:
214 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
215 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
216 | # the second cross attention block.
217 | if self.use_ada_layer_norm:
218 | self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219 | elif self.use_ada_layer_norm_continuous:
220 | self.norm2 = AdaLayerNormContinuous(
221 | dim,
222 | ada_norm_continous_conditioning_embedding_dim,
223 | norm_elementwise_affine,
224 | norm_eps,
225 | ada_norm_bias,
226 | "rms_norm",
227 | )
228 | else:
229 | self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230 |
231 | self.attn2 = Attention(
232 | query_dim=dim,
233 | cross_attention_dim=cross_attention_dim if not double_self_attention else None,
234 | heads=num_attention_heads,
235 | dim_head=attention_head_dim,
236 | dropout=dropout,
237 | bias=attention_bias,
238 | upcast_attention=upcast_attention,
239 | out_bias=attention_out_bias,
240 | ) # is self-attn if encoder_hidden_states is none
241 | else:
242 | self.norm2 = None
243 | self.attn2 = None
244 |
245 | # 3. Feed-forward
246 | if self.use_ada_layer_norm_continuous:
247 | self.norm3 = AdaLayerNormContinuous(
248 | dim,
249 | ada_norm_continous_conditioning_embedding_dim,
250 | norm_elementwise_affine,
251 | norm_eps,
252 | ada_norm_bias,
253 | "layer_norm",
254 | )
255 | elif not self.use_ada_layer_norm_single:
256 | self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
257 |
258 | self.ff = FeedForward(
259 | dim,
260 | dropout=dropout,
261 | activation_fn=activation_fn,
262 | final_dropout=final_dropout,
263 | inner_dim=ff_inner_dim,
264 | bias=ff_bias,
265 | )
266 |
267 | # 4. Fuser
268 | if attention_type == "gated" or attention_type == "gated-text-image":
269 | self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
270 |
271 | # 5. Scale-shift for PixArt-Alpha.
272 | if self.use_ada_layer_norm_single:
273 | self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
274 |
275 | # let chunk size default to None
276 | self._chunk_size = None
277 | self._chunk_dim = 0
278 |
279 | def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280 | # Sets chunk feed-forward
281 | self._chunk_size = chunk_size
282 | self._chunk_dim = dim
283 |
284 | def forward(
285 | self,
286 | hidden_states: torch.FloatTensor,
287 | attention_mask: Optional[torch.FloatTensor] = None,
288 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
289 | encoder_attention_mask: Optional[torch.FloatTensor] = None,
290 | timestep: Optional[torch.LongTensor] = None,
291 | cross_attention_kwargs: Dict[str, Any] = None,
292 | class_labels: Optional[torch.LongTensor] = None,
293 | garment_features=None,
294 | curr_garment_feat_idx=0,
295 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
296 | ) -> torch.FloatTensor:
297 | # Notice that normalization is always applied before the real computation in the following blocks.
298 | # 0. Self-Attention
299 | batch_size = hidden_states.shape[0]
300 |
301 |
302 |
303 | if self.use_ada_layer_norm:
304 | norm_hidden_states = self.norm1(hidden_states, timestep)
305 | elif self.use_ada_layer_norm_zero:
306 | norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
307 | hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
308 | )
309 | elif self.use_layer_norm:
310 | norm_hidden_states = self.norm1(hidden_states)
311 | elif self.use_ada_layer_norm_continuous:
312 | norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
313 | elif self.use_ada_layer_norm_single:
314 | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
315 | self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
316 | ).chunk(6, dim=1)
317 | norm_hidden_states = self.norm1(hidden_states)
318 | norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
319 | norm_hidden_states = norm_hidden_states.squeeze(1)
320 | else:
321 | raise ValueError("Incorrect norm used")
322 |
323 | if self.pos_embed is not None:
324 | norm_hidden_states = self.pos_embed(norm_hidden_states)
325 |
326 | # 1. Retrieve lora scale.
327 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
328 |
329 | # 2. Prepare GLIGEN inputs
330 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
331 | gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
332 |
333 |
334 | modify_norm_hidden_states = torch.cat([norm_hidden_states,garment_features[curr_garment_feat_idx]], dim=1)
335 | curr_garment_feat_idx +=1
336 | attn_output = self.attn1(
337 | #norm_hidden_states,
338 | modify_norm_hidden_states,
339 | encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
340 | attention_mask=attention_mask,
341 | **cross_attention_kwargs,
342 | )
343 | if self.use_ada_layer_norm_zero:
344 | attn_output = gate_msa.unsqueeze(1) * attn_output
345 | elif self.use_ada_layer_norm_single:
346 | attn_output = gate_msa * attn_output
347 |
348 | hidden_states = attn_output[:,:hidden_states.shape[-2],:] + hidden_states
349 |
350 |
351 |
352 |
353 | if hidden_states.ndim == 4:
354 | hidden_states = hidden_states.squeeze(1)
355 |
356 | # 2.5 GLIGEN Control
357 | if gligen_kwargs is not None:
358 | hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
359 |
360 | # 3. Cross-Attention
361 | if self.attn2 is not None:
362 | if self.use_ada_layer_norm:
363 | norm_hidden_states = self.norm2(hidden_states, timestep)
364 | elif self.use_ada_layer_norm_zero or self.use_layer_norm:
365 | norm_hidden_states = self.norm2(hidden_states)
366 | elif self.use_ada_layer_norm_single:
367 | # For PixArt norm2 isn't applied here:
368 | # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
369 | norm_hidden_states = hidden_states
370 | elif self.use_ada_layer_norm_continuous:
371 | norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
372 | else:
373 | raise ValueError("Incorrect norm")
374 |
375 | if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
376 | norm_hidden_states = self.pos_embed(norm_hidden_states)
377 |
378 | attn_output = self.attn2(
379 | norm_hidden_states,
380 | encoder_hidden_states=encoder_hidden_states,
381 | attention_mask=encoder_attention_mask,
382 | **cross_attention_kwargs,
383 | )
384 | hidden_states = attn_output + hidden_states
385 |
386 | # 4. Feed-forward
387 | if self.use_ada_layer_norm_continuous:
388 | norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
389 | elif not self.use_ada_layer_norm_single:
390 | norm_hidden_states = self.norm3(hidden_states)
391 |
392 | if self.use_ada_layer_norm_zero:
393 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
394 |
395 | if self.use_ada_layer_norm_single:
396 | norm_hidden_states = self.norm2(hidden_states)
397 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
398 |
399 | if self._chunk_size is not None:
400 | # "feed_forward_chunk_size" can be used to save memory
401 | ff_output = _chunked_feed_forward(
402 | self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
403 | )
404 | else:
405 | ff_output = self.ff(norm_hidden_states, scale=lora_scale)
406 |
407 | if self.use_ada_layer_norm_zero:
408 | ff_output = gate_mlp.unsqueeze(1) * ff_output
409 | elif self.use_ada_layer_norm_single:
410 | ff_output = gate_mlp * ff_output
411 |
412 | hidden_states = ff_output + hidden_states
413 | if hidden_states.ndim == 4:
414 | hidden_states = hidden_states.squeeze(1)
415 | return hidden_states,curr_garment_feat_idx
416 |
417 |
418 | @maybe_allow_in_graph
419 | class TemporalBasicTransformerBlock(nn.Module):
420 | r"""
421 | A basic Transformer block for video like data.
422 |
423 | Parameters:
424 | dim (`int`): The number of channels in the input and output.
425 | time_mix_inner_dim (`int`): The number of channels for temporal attention.
426 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
427 | attention_head_dim (`int`): The number of channels in each head.
428 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
429 | """
430 |
431 | def __init__(
432 | self,
433 | dim: int,
434 | time_mix_inner_dim: int,
435 | num_attention_heads: int,
436 | attention_head_dim: int,
437 | cross_attention_dim: Optional[int] = None,
438 | ):
439 | super().__init__()
440 | self.is_res = dim == time_mix_inner_dim
441 |
442 | self.norm_in = nn.LayerNorm(dim)
443 |
444 | # Define 3 blocks. Each block has its own normalization layer.
445 | # 1. Self-Attn
446 | self.norm_in = nn.LayerNorm(dim)
447 | self.ff_in = FeedForward(
448 | dim,
449 | dim_out=time_mix_inner_dim,
450 | activation_fn="geglu",
451 | )
452 |
453 | self.norm1 = nn.LayerNorm(time_mix_inner_dim)
454 | self.attn1 = Attention(
455 | query_dim=time_mix_inner_dim,
456 | heads=num_attention_heads,
457 | dim_head=attention_head_dim,
458 | cross_attention_dim=None,
459 | )
460 |
461 | # 2. Cross-Attn
462 | if cross_attention_dim is not None:
463 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
464 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
465 | # the second cross attention block.
466 | self.norm2 = nn.LayerNorm(time_mix_inner_dim)
467 | self.attn2 = Attention(
468 | query_dim=time_mix_inner_dim,
469 | cross_attention_dim=cross_attention_dim,
470 | heads=num_attention_heads,
471 | dim_head=attention_head_dim,
472 | ) # is self-attn if encoder_hidden_states is none
473 | else:
474 | self.norm2 = None
475 | self.attn2 = None
476 |
477 | # 3. Feed-forward
478 | self.norm3 = nn.LayerNorm(time_mix_inner_dim)
479 | self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
480 |
481 | # let chunk size default to None
482 | self._chunk_size = None
483 | self._chunk_dim = None
484 |
485 | def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
486 | # Sets chunk feed-forward
487 | self._chunk_size = chunk_size
488 | # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
489 | self._chunk_dim = 1
490 |
491 | def forward(
492 | self,
493 | hidden_states: torch.FloatTensor,
494 | num_frames: int,
495 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
496 | ) -> torch.FloatTensor:
497 | # Notice that normalization is always applied before the real computation in the following blocks.
498 | # 0. Self-Attention
499 | batch_size = hidden_states.shape[0]
500 |
501 | batch_frames, seq_length, channels = hidden_states.shape
502 | batch_size = batch_frames // num_frames
503 |
504 | hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
505 | hidden_states = hidden_states.permute(0, 2, 1, 3)
506 | hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
507 |
508 | residual = hidden_states
509 | hidden_states = self.norm_in(hidden_states)
510 |
511 | if self._chunk_size is not None:
512 | hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
513 | else:
514 | hidden_states = self.ff_in(hidden_states)
515 |
516 | if self.is_res:
517 | hidden_states = hidden_states + residual
518 |
519 | norm_hidden_states = self.norm1(hidden_states)
520 | attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
521 | hidden_states = attn_output + hidden_states
522 |
523 | # 3. Cross-Attention
524 | if self.attn2 is not None:
525 | norm_hidden_states = self.norm2(hidden_states)
526 | attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
527 | hidden_states = attn_output + hidden_states
528 |
529 | # 4. Feed-forward
530 | norm_hidden_states = self.norm3(hidden_states)
531 |
532 | if self._chunk_size is not None:
533 | ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
534 | else:
535 | ff_output = self.ff(norm_hidden_states)
536 |
537 | if self.is_res:
538 | hidden_states = ff_output + hidden_states
539 | else:
540 | hidden_states = ff_output
541 |
542 | hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
543 | hidden_states = hidden_states.permute(0, 2, 1, 3)
544 | hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
545 |
546 | return hidden_states
547 |
548 |
549 | class SkipFFTransformerBlock(nn.Module):
550 | def __init__(
551 | self,
552 | dim: int,
553 | num_attention_heads: int,
554 | attention_head_dim: int,
555 | kv_input_dim: int,
556 | kv_input_dim_proj_use_bias: bool,
557 | dropout=0.0,
558 | cross_attention_dim: Optional[int] = None,
559 | attention_bias: bool = False,
560 | attention_out_bias: bool = True,
561 | ):
562 | super().__init__()
563 | if kv_input_dim != dim:
564 | self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
565 | else:
566 | self.kv_mapper = None
567 |
568 | self.norm1 = RMSNorm(dim, 1e-06)
569 |
570 | self.attn1 = Attention(
571 | query_dim=dim,
572 | heads=num_attention_heads,
573 | dim_head=attention_head_dim,
574 | dropout=dropout,
575 | bias=attention_bias,
576 | cross_attention_dim=cross_attention_dim,
577 | out_bias=attention_out_bias,
578 | )
579 |
580 | self.norm2 = RMSNorm(dim, 1e-06)
581 |
582 | self.attn2 = Attention(
583 | query_dim=dim,
584 | cross_attention_dim=cross_attention_dim,
585 | heads=num_attention_heads,
586 | dim_head=attention_head_dim,
587 | dropout=dropout,
588 | bias=attention_bias,
589 | out_bias=attention_out_bias,
590 | )
591 |
592 | def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
593 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
594 |
595 | if self.kv_mapper is not None:
596 | encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
597 |
598 | norm_hidden_states = self.norm1(hidden_states)
599 |
600 | attn_output = self.attn1(
601 | norm_hidden_states,
602 | encoder_hidden_states=encoder_hidden_states,
603 | **cross_attention_kwargs,
604 | )
605 |
606 | hidden_states = attn_output + hidden_states
607 |
608 | norm_hidden_states = self.norm2(hidden_states)
609 |
610 | attn_output = self.attn2(
611 | norm_hidden_states,
612 | encoder_hidden_states=encoder_hidden_states,
613 | **cross_attention_kwargs,
614 | )
615 |
616 | hidden_states = attn_output + hidden_states
617 |
618 | return hidden_states
619 |
620 |
621 | class FeedForward(nn.Module):
622 | r"""
623 | A feed-forward layer.
624 |
625 | Parameters:
626 | dim (`int`): The number of channels in the input.
627 | dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
628 | mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
629 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
630 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
631 | final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
632 | bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
633 | """
634 |
635 | def __init__(
636 | self,
637 | dim: int,
638 | dim_out: Optional[int] = None,
639 | mult: int = 4,
640 | dropout: float = 0.0,
641 | activation_fn: str = "geglu",
642 | final_dropout: bool = False,
643 | inner_dim=None,
644 | bias: bool = True,
645 | ):
646 | super().__init__()
647 | if inner_dim is None:
648 | inner_dim = int(dim * mult)
649 | dim_out = dim_out if dim_out is not None else dim
650 | linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
651 |
652 | if activation_fn == "gelu":
653 | act_fn = GELU(dim, inner_dim, bias=bias)
654 | if activation_fn == "gelu-approximate":
655 | act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
656 | elif activation_fn == "geglu":
657 | act_fn = GEGLU(dim, inner_dim, bias=bias)
658 | elif activation_fn == "geglu-approximate":
659 | act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
660 |
661 | self.net = nn.ModuleList([])
662 | # project in
663 | self.net.append(act_fn)
664 | # project dropout
665 | self.net.append(nn.Dropout(dropout))
666 | # project out
667 | self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
668 | # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
669 | if final_dropout:
670 | self.net.append(nn.Dropout(dropout))
671 |
672 | def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
673 | compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
674 | for module in self.net:
675 | if isinstance(module, compatible_cls):
676 | hidden_states = module(hidden_states, scale)
677 | else:
678 | hidden_states = module(hidden_states)
679 | return hidden_states
680 |
--------------------------------------------------------------------------------
/src/idm_vton/transformerhacked_garmnet.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 | from typing import Any, Dict, Optional
16 |
17 | import torch
18 | import torch.nn.functional as F
19 | from torch import nn
20 |
21 | from diffusers.configuration_utils import ConfigMixin, register_to_config
22 | from diffusers.models.embeddings import ImagePositionalEmbeddings
23 | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
24 | from .attentionhacked_garmnet import BasicTransformerBlock
25 | from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
26 | from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
27 | from diffusers.models.modeling_utils import ModelMixin
28 | from diffusers.models.normalization import AdaLayerNormSingle
29 |
30 |
31 | @dataclass
32 | class Transformer2DModelOutput(BaseOutput):
33 | """
34 | The output of [`Transformer2DModel`].
35 |
36 | Args:
37 | sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
38 | The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
39 | distributions for the unnoised latent pixels.
40 | """
41 |
42 | sample: torch.FloatTensor
43 |
44 |
45 | class Transformer2DModel(ModelMixin, ConfigMixin):
46 | """
47 | A 2D Transformer model for image-like data.
48 |
49 | Parameters:
50 | num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
51 | attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
52 | in_channels (`int`, *optional*):
53 | The number of channels in the input and output (specify if the input is **continuous**).
54 | num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
55 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
56 | cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
57 | sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
58 | This is fixed during training since it is used to learn a number of position embeddings.
59 | num_vector_embeds (`int`, *optional*):
60 | The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61 | Includes the class for the masked latent pixel.
62 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
63 | num_embeds_ada_norm ( `int`, *optional*):
64 | The number of diffusion steps used during training. Pass if at least one of the norm_layers is
65 | `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
66 | added to the hidden states.
67 |
68 | During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69 | attention_bias (`bool`, *optional*):
70 | Configure if the `TransformerBlocks` attention should contain a bias parameter.
71 | """
72 |
73 | _supports_gradient_checkpointing = True
74 |
75 | @register_to_config
76 | def __init__(
77 | self,
78 | num_attention_heads: int = 16,
79 | attention_head_dim: int = 88,
80 | in_channels: Optional[int] = None,
81 | out_channels: Optional[int] = None,
82 | num_layers: int = 1,
83 | dropout: float = 0.0,
84 | norm_num_groups: int = 32,
85 | cross_attention_dim: Optional[int] = None,
86 | attention_bias: bool = False,
87 | sample_size: Optional[int] = None,
88 | num_vector_embeds: Optional[int] = None,
89 | patch_size: Optional[int] = None,
90 | activation_fn: str = "geglu",
91 | num_embeds_ada_norm: Optional[int] = None,
92 | use_linear_projection: bool = False,
93 | only_cross_attention: bool = False,
94 | double_self_attention: bool = False,
95 | upcast_attention: bool = False,
96 | norm_type: str = "layer_norm",
97 | norm_elementwise_affine: bool = True,
98 | norm_eps: float = 1e-5,
99 | attention_type: str = "default",
100 | caption_channels: int = None,
101 | ):
102 | super().__init__()
103 | self.use_linear_projection = use_linear_projection
104 | self.num_attention_heads = num_attention_heads
105 | self.attention_head_dim = attention_head_dim
106 | inner_dim = num_attention_heads * attention_head_dim
107 |
108 | conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
109 | linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
110 |
111 | # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
112 | # Define whether input is continuous or discrete depending on configuration
113 | self.is_input_continuous = (in_channels is not None) and (patch_size is None)
114 | self.is_input_vectorized = num_vector_embeds is not None
115 | self.is_input_patches = in_channels is not None and patch_size is not None
116 |
117 | if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
118 | deprecation_message = (
119 | f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
120 | " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
121 | " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
122 | " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
123 | " would be very nice if you could open a Pull request for the `transformer/config.json` file"
124 | )
125 | deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
126 | norm_type = "ada_norm"
127 |
128 | if self.is_input_continuous and self.is_input_vectorized:
129 | raise ValueError(
130 | f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
131 | " sure that either `in_channels` or `num_vector_embeds` is None."
132 | )
133 | elif self.is_input_vectorized and self.is_input_patches:
134 | raise ValueError(
135 | f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
136 | " sure that either `num_vector_embeds` or `num_patches` is None."
137 | )
138 | elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
139 | raise ValueError(
140 | f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
141 | f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
142 | )
143 |
144 | # 2. Define input layers
145 | if self.is_input_continuous:
146 | self.in_channels = in_channels
147 |
148 | self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
149 | if use_linear_projection:
150 | self.proj_in = linear_cls(in_channels, inner_dim)
151 | else:
152 | self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
153 | elif self.is_input_vectorized:
154 | assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
155 | assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
156 |
157 | self.height = sample_size
158 | self.width = sample_size
159 | self.num_vector_embeds = num_vector_embeds
160 | self.num_latent_pixels = self.height * self.width
161 |
162 | self.latent_image_embedding = ImagePositionalEmbeddings(
163 | num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
164 | )
165 | elif self.is_input_patches:
166 | assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
167 |
168 | self.height = sample_size
169 | self.width = sample_size
170 |
171 | self.patch_size = patch_size
172 | interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
173 | interpolation_scale = max(interpolation_scale, 1)
174 | self.pos_embed = PatchEmbed(
175 | height=sample_size,
176 | width=sample_size,
177 | patch_size=patch_size,
178 | in_channels=in_channels,
179 | embed_dim=inner_dim,
180 | interpolation_scale=interpolation_scale,
181 | )
182 |
183 | # 3. Define transformers blocks
184 | self.transformer_blocks = nn.ModuleList(
185 | [
186 | BasicTransformerBlock(
187 | inner_dim,
188 | num_attention_heads,
189 | attention_head_dim,
190 | dropout=dropout,
191 | cross_attention_dim=cross_attention_dim,
192 | activation_fn=activation_fn,
193 | num_embeds_ada_norm=num_embeds_ada_norm,
194 | attention_bias=attention_bias,
195 | only_cross_attention=only_cross_attention,
196 | double_self_attention=double_self_attention,
197 | upcast_attention=upcast_attention,
198 | norm_type=norm_type,
199 | norm_elementwise_affine=norm_elementwise_affine,
200 | norm_eps=norm_eps,
201 | attention_type=attention_type,
202 | )
203 | for d in range(num_layers)
204 | ]
205 | )
206 |
207 | # 4. Define output layers
208 | self.out_channels = in_channels if out_channels is None else out_channels
209 | if self.is_input_continuous:
210 | # TODO: should use out_channels for continuous projections
211 | if use_linear_projection:
212 | self.proj_out = linear_cls(inner_dim, in_channels)
213 | else:
214 | self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
215 | elif self.is_input_vectorized:
216 | self.norm_out = nn.LayerNorm(inner_dim)
217 | self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
218 | elif self.is_input_patches and norm_type != "ada_norm_single":
219 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
220 | self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
221 | self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
222 | elif self.is_input_patches and norm_type == "ada_norm_single":
223 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
224 | self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
225 | self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
226 |
227 | # 5. PixArt-Alpha blocks.
228 | self.adaln_single = None
229 | self.use_additional_conditions = False
230 | if norm_type == "ada_norm_single":
231 | self.use_additional_conditions = self.config.sample_size == 128
232 | # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
233 | # additional conditions until we find better name
234 | self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
235 |
236 | self.caption_projection = None
237 | if caption_channels is not None:
238 | self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
239 |
240 | self.gradient_checkpointing = False
241 |
242 | def _set_gradient_checkpointing(self, module, value=False):
243 | if hasattr(module, "gradient_checkpointing"):
244 | module.gradient_checkpointing = value
245 |
246 | def forward(
247 | self,
248 | hidden_states: torch.Tensor,
249 | encoder_hidden_states: Optional[torch.Tensor] = None,
250 | timestep: Optional[torch.LongTensor] = None,
251 | added_cond_kwargs: Dict[str, torch.Tensor] = None,
252 | class_labels: Optional[torch.LongTensor] = None,
253 | cross_attention_kwargs: Dict[str, Any] = None,
254 | attention_mask: Optional[torch.Tensor] = None,
255 | encoder_attention_mask: Optional[torch.Tensor] = None,
256 | return_dict: bool = True,
257 | ):
258 | """
259 | The [`Transformer2DModel`] forward method.
260 |
261 | Args:
262 | hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
263 | Input `hidden_states`.
264 | encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
265 | Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
266 | self-attention.
267 | timestep ( `torch.LongTensor`, *optional*):
268 | Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
269 | class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
270 | Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
271 | `AdaLayerZeroNorm`.
272 | cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
273 | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
274 | `self.processor` in
275 | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
276 | attention_mask ( `torch.Tensor`, *optional*):
277 | An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
278 | is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
279 | negative values to the attention scores corresponding to "discard" tokens.
280 | encoder_attention_mask ( `torch.Tensor`, *optional*):
281 | Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
282 |
283 | * Mask `(batch, sequence_length)` True = keep, False = discard.
284 | * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
285 |
286 | If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
287 | above. This bias will be added to the cross-attention scores.
288 | return_dict (`bool`, *optional*, defaults to `True`):
289 | Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
290 | tuple.
291 |
292 | Returns:
293 | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
294 | `tuple` where the first element is the sample tensor.
295 | """
296 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
297 | # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
298 | # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
299 | # expects mask of shape:
300 | # [batch, key_tokens]
301 | # adds singleton query_tokens dimension:
302 | # [batch, 1, key_tokens]
303 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
304 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
305 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
306 | if attention_mask is not None and attention_mask.ndim == 2:
307 | # assume that mask is expressed as:
308 | # (1 = keep, 0 = discard)
309 | # convert mask into a bias that can be added to attention scores:
310 | # (keep = +0, discard = -10000.0)
311 | attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
312 | attention_mask = attention_mask.unsqueeze(1)
313 |
314 | # convert encoder_attention_mask to a bias the same way we do for attention_mask
315 | if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
316 | encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
317 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
318 |
319 | # Retrieve lora scale.
320 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
321 |
322 | # 1. Input
323 | if self.is_input_continuous:
324 | batch, _, height, width = hidden_states.shape
325 | residual = hidden_states
326 |
327 | hidden_states = self.norm(hidden_states)
328 | if not self.use_linear_projection:
329 | hidden_states = (
330 | self.proj_in(hidden_states, scale=lora_scale)
331 | if not USE_PEFT_BACKEND
332 | else self.proj_in(hidden_states)
333 | )
334 | inner_dim = hidden_states.shape[1]
335 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
336 | else:
337 | inner_dim = hidden_states.shape[1]
338 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
339 | hidden_states = (
340 | self.proj_in(hidden_states, scale=lora_scale)
341 | if not USE_PEFT_BACKEND
342 | else self.proj_in(hidden_states)
343 | )
344 |
345 | elif self.is_input_vectorized:
346 | hidden_states = self.latent_image_embedding(hidden_states)
347 | elif self.is_input_patches:
348 | height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
349 | hidden_states = self.pos_embed(hidden_states)
350 |
351 | if self.adaln_single is not None:
352 | if self.use_additional_conditions and added_cond_kwargs is None:
353 | raise ValueError(
354 | "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
355 | )
356 | batch_size = hidden_states.shape[0]
357 | timestep, embedded_timestep = self.adaln_single(
358 | timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
359 | )
360 |
361 | # 2. Blocks
362 | if self.caption_projection is not None:
363 | batch_size = hidden_states.shape[0]
364 | encoder_hidden_states = self.caption_projection(encoder_hidden_states)
365 | encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
366 |
367 | garment_features = []
368 | for block in self.transformer_blocks:
369 | if self.training and self.gradient_checkpointing:
370 |
371 | def create_custom_forward(module, return_dict=None):
372 | def custom_forward(*inputs):
373 | if return_dict is not None:
374 | return module(*inputs, return_dict=return_dict)
375 | else:
376 | return module(*inputs)
377 |
378 | return custom_forward
379 |
380 | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
381 | hidden_states,out_garment_feat = torch.utils.checkpoint.checkpoint(
382 | create_custom_forward(block),
383 | hidden_states,
384 | attention_mask,
385 | encoder_hidden_states,
386 | encoder_attention_mask,
387 | timestep,
388 | cross_attention_kwargs,
389 | class_labels,
390 | **ckpt_kwargs,
391 | )
392 | else:
393 | hidden_states,out_garment_feat = block(
394 | hidden_states,
395 | attention_mask=attention_mask,
396 | encoder_hidden_states=encoder_hidden_states,
397 | encoder_attention_mask=encoder_attention_mask,
398 | timestep=timestep,
399 | cross_attention_kwargs=cross_attention_kwargs,
400 | class_labels=class_labels,
401 | )
402 | garment_features += out_garment_feat
403 | # 3. Output
404 | if self.is_input_continuous:
405 | if not self.use_linear_projection:
406 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
407 | hidden_states = (
408 | self.proj_out(hidden_states, scale=lora_scale)
409 | if not USE_PEFT_BACKEND
410 | else self.proj_out(hidden_states)
411 | )
412 | else:
413 | hidden_states = (
414 | self.proj_out(hidden_states, scale=lora_scale)
415 | if not USE_PEFT_BACKEND
416 | else self.proj_out(hidden_states)
417 | )
418 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
419 |
420 | output = hidden_states + residual
421 | elif self.is_input_vectorized:
422 | hidden_states = self.norm_out(hidden_states)
423 | logits = self.out(hidden_states)
424 | # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
425 | logits = logits.permute(0, 2, 1)
426 |
427 | # log(p(x_0))
428 | output = F.log_softmax(logits.double(), dim=1).float()
429 |
430 | if self.is_input_patches:
431 | if self.config.norm_type != "ada_norm_single":
432 | conditioning = self.transformer_blocks[0].norm1.emb(
433 | timestep, class_labels, hidden_dtype=hidden_states.dtype
434 | )
435 | shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
436 | hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
437 | hidden_states = self.proj_out_2(hidden_states)
438 | elif self.config.norm_type == "ada_norm_single":
439 | shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
440 | hidden_states = self.norm_out(hidden_states)
441 | # Modulation
442 | hidden_states = hidden_states * (1 + scale) + shift
443 | hidden_states = self.proj_out(hidden_states)
444 | hidden_states = hidden_states.squeeze(1)
445 |
446 | # unpatchify
447 | if self.adaln_single is None:
448 | height = width = int(hidden_states.shape[1] ** 0.5)
449 | hidden_states = hidden_states.reshape(
450 | shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
451 | )
452 | hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
453 | output = hidden_states.reshape(
454 | shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
455 | )
456 |
457 | if not return_dict:
458 | return (output,) ,garment_features
459 |
460 | return Transformer2DModelOutput(sample=output),garment_features
461 |
--------------------------------------------------------------------------------
/src/idm_vton/transformerhacked_tryon.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 | from typing import Any, Dict, Optional
16 |
17 | import torch
18 | import torch.nn.functional as F
19 | from torch import nn
20 |
21 | from diffusers.configuration_utils import ConfigMixin, register_to_config
22 | from diffusers.models.embeddings import ImagePositionalEmbeddings
23 | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
24 | from .attentionhacked_tryon import BasicTransformerBlock
25 | from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
26 | from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
27 | from diffusers.models.modeling_utils import ModelMixin
28 | from diffusers.models.normalization import AdaLayerNormSingle
29 |
30 |
31 | @dataclass
32 | class Transformer2DModelOutput(BaseOutput):
33 | """
34 | The output of [`Transformer2DModel`].
35 |
36 | Args:
37 | sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
38 | The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
39 | distributions for the unnoised latent pixels.
40 | """
41 |
42 | sample: torch.FloatTensor
43 |
44 |
45 | class Transformer2DModel(ModelMixin, ConfigMixin):
46 | """
47 | A 2D Transformer model for image-like data.
48 |
49 | Parameters:
50 | num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
51 | attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
52 | in_channels (`int`, *optional*):
53 | The number of channels in the input and output (specify if the input is **continuous**).
54 | num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
55 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
56 | cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
57 | sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
58 | This is fixed during training since it is used to learn a number of position embeddings.
59 | num_vector_embeds (`int`, *optional*):
60 | The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61 | Includes the class for the masked latent pixel.
62 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
63 | num_embeds_ada_norm ( `int`, *optional*):
64 | The number of diffusion steps used during training. Pass if at least one of the norm_layers is
65 | `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
66 | added to the hidden states.
67 |
68 | During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69 | attention_bias (`bool`, *optional*):
70 | Configure if the `TransformerBlocks` attention should contain a bias parameter.
71 | """
72 |
73 | _supports_gradient_checkpointing = True
74 |
75 | @register_to_config
76 | def __init__(
77 | self,
78 | num_attention_heads: int = 16,
79 | attention_head_dim: int = 88,
80 | in_channels: Optional[int] = None,
81 | out_channels: Optional[int] = None,
82 | num_layers: int = 1,
83 | dropout: float = 0.0,
84 | norm_num_groups: int = 32,
85 | cross_attention_dim: Optional[int] = None,
86 | attention_bias: bool = False,
87 | sample_size: Optional[int] = None,
88 | num_vector_embeds: Optional[int] = None,
89 | patch_size: Optional[int] = None,
90 | activation_fn: str = "geglu",
91 | num_embeds_ada_norm: Optional[int] = None,
92 | use_linear_projection: bool = False,
93 | only_cross_attention: bool = False,
94 | double_self_attention: bool = False,
95 | upcast_attention: bool = False,
96 | norm_type: str = "layer_norm",
97 | norm_elementwise_affine: bool = True,
98 | norm_eps: float = 1e-5,
99 | attention_type: str = "default",
100 | caption_channels: int = None,
101 | ):
102 | super().__init__()
103 | self.use_linear_projection = use_linear_projection
104 | self.num_attention_heads = num_attention_heads
105 | self.attention_head_dim = attention_head_dim
106 | inner_dim = num_attention_heads * attention_head_dim
107 |
108 | conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
109 | linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
110 |
111 | # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
112 | # Define whether input is continuous or discrete depending on configuration
113 | self.is_input_continuous = (in_channels is not None) and (patch_size is None)
114 | self.is_input_vectorized = num_vector_embeds is not None
115 | self.is_input_patches = in_channels is not None and patch_size is not None
116 |
117 | if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
118 | deprecation_message = (
119 | f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
120 | " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
121 | " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
122 | " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
123 | " would be very nice if you could open a Pull request for the `transformer/config.json` file"
124 | )
125 | deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
126 | norm_type = "ada_norm"
127 |
128 | if self.is_input_continuous and self.is_input_vectorized:
129 | raise ValueError(
130 | f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
131 | " sure that either `in_channels` or `num_vector_embeds` is None."
132 | )
133 | elif self.is_input_vectorized and self.is_input_patches:
134 | raise ValueError(
135 | f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
136 | " sure that either `num_vector_embeds` or `num_patches` is None."
137 | )
138 | elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
139 | raise ValueError(
140 | f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
141 | f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
142 | )
143 |
144 | # 2. Define input layers
145 | if self.is_input_continuous:
146 | self.in_channels = in_channels
147 |
148 | self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
149 | if use_linear_projection:
150 | self.proj_in = linear_cls(in_channels, inner_dim)
151 | else:
152 | self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
153 | elif self.is_input_vectorized:
154 | assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
155 | assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
156 |
157 | self.height = sample_size
158 | self.width = sample_size
159 | self.num_vector_embeds = num_vector_embeds
160 | self.num_latent_pixels = self.height * self.width
161 |
162 | self.latent_image_embedding = ImagePositionalEmbeddings(
163 | num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
164 | )
165 | elif self.is_input_patches:
166 | assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
167 |
168 | self.height = sample_size
169 | self.width = sample_size
170 |
171 | self.patch_size = patch_size
172 | interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
173 | interpolation_scale = max(interpolation_scale, 1)
174 | self.pos_embed = PatchEmbed(
175 | height=sample_size,
176 | width=sample_size,
177 | patch_size=patch_size,
178 | in_channels=in_channels,
179 | embed_dim=inner_dim,
180 | interpolation_scale=interpolation_scale,
181 | )
182 |
183 | # 3. Define transformers blocks
184 | self.transformer_blocks = nn.ModuleList(
185 | [
186 | BasicTransformerBlock(
187 | inner_dim,
188 | num_attention_heads,
189 | attention_head_dim,
190 | dropout=dropout,
191 | cross_attention_dim=cross_attention_dim,
192 | activation_fn=activation_fn,
193 | num_embeds_ada_norm=num_embeds_ada_norm,
194 | attention_bias=attention_bias,
195 | only_cross_attention=only_cross_attention,
196 | double_self_attention=double_self_attention,
197 | upcast_attention=upcast_attention,
198 | norm_type=norm_type,
199 | norm_elementwise_affine=norm_elementwise_affine,
200 | norm_eps=norm_eps,
201 | attention_type=attention_type,
202 | )
203 | for d in range(num_layers)
204 | ]
205 | )
206 |
207 | # 4. Define output layers
208 | self.out_channels = in_channels if out_channels is None else out_channels
209 | if self.is_input_continuous:
210 | # TODO: should use out_channels for continuous projections
211 | if use_linear_projection:
212 | self.proj_out = linear_cls(inner_dim, in_channels)
213 | else:
214 | self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
215 | elif self.is_input_vectorized:
216 | self.norm_out = nn.LayerNorm(inner_dim)
217 | self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
218 | elif self.is_input_patches and norm_type != "ada_norm_single":
219 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
220 | self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
221 | self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
222 | elif self.is_input_patches and norm_type == "ada_norm_single":
223 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
224 | self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
225 | self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
226 |
227 | # 5. PixArt-Alpha blocks.
228 | self.adaln_single = None
229 | self.use_additional_conditions = False
230 | if norm_type == "ada_norm_single":
231 | self.use_additional_conditions = self.config.sample_size == 128
232 | # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
233 | # additional conditions until we find better name
234 | self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
235 |
236 | self.caption_projection = None
237 | if caption_channels is not None:
238 | self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
239 |
240 | self.gradient_checkpointing = False
241 |
242 | def _set_gradient_checkpointing(self, module, value=False):
243 | if hasattr(module, "gradient_checkpointing"):
244 | module.gradient_checkpointing = value
245 |
246 | def forward(
247 | self,
248 | hidden_states: torch.Tensor,
249 | encoder_hidden_states: Optional[torch.Tensor] = None,
250 | timestep: Optional[torch.LongTensor] = None,
251 | added_cond_kwargs: Dict[str, torch.Tensor] = None,
252 | class_labels: Optional[torch.LongTensor] = None,
253 | cross_attention_kwargs: Dict[str, Any] = None,
254 | attention_mask: Optional[torch.Tensor] = None,
255 | encoder_attention_mask: Optional[torch.Tensor] = None,
256 | garment_features=None,
257 | curr_garment_feat_idx=0,
258 | return_dict: bool = True,
259 | ):
260 | """
261 | The [`Transformer2DModel`] forward method.
262 |
263 | Args:
264 | hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
265 | Input `hidden_states`.
266 | encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
267 | Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
268 | self-attention.
269 | timestep ( `torch.LongTensor`, *optional*):
270 | Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
271 | class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
272 | Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
273 | `AdaLayerZeroNorm`.
274 | cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
275 | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
276 | `self.processor` in
277 | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
278 | attention_mask ( `torch.Tensor`, *optional*):
279 | An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
280 | is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
281 | negative values to the attention scores corresponding to "discard" tokens.
282 | encoder_attention_mask ( `torch.Tensor`, *optional*):
283 | Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
284 |
285 | * Mask `(batch, sequence_length)` True = keep, False = discard.
286 | * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
287 |
288 | If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
289 | above. This bias will be added to the cross-attention scores.
290 | return_dict (`bool`, *optional*, defaults to `True`):
291 | Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
292 | tuple.
293 |
294 | Returns:
295 | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
296 | `tuple` where the first element is the sample tensor.
297 | """
298 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
299 | # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
300 | # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
301 | # expects mask of shape:
302 | # [batch, key_tokens]
303 | # adds singleton query_tokens dimension:
304 | # [batch, 1, key_tokens]
305 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
306 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
307 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
308 | if attention_mask is not None and attention_mask.ndim == 2:
309 | # assume that mask is expressed as:
310 | # (1 = keep, 0 = discard)
311 | # convert mask into a bias that can be added to attention scores:
312 | # (keep = +0, discard = -10000.0)
313 | attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
314 | attention_mask = attention_mask.unsqueeze(1)
315 |
316 | # convert encoder_attention_mask to a bias the same way we do for attention_mask
317 | if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
318 | encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
319 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
320 |
321 | # Retrieve lora scale.
322 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
323 |
324 | # 1. Input
325 | if self.is_input_continuous:
326 | batch, _, height, width = hidden_states.shape
327 | residual = hidden_states
328 |
329 | hidden_states = self.norm(hidden_states)
330 | if not self.use_linear_projection:
331 | hidden_states = (
332 | self.proj_in(hidden_states, scale=lora_scale)
333 | if not USE_PEFT_BACKEND
334 | else self.proj_in(hidden_states)
335 | )
336 | inner_dim = hidden_states.shape[1]
337 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
338 | else:
339 | inner_dim = hidden_states.shape[1]
340 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
341 | hidden_states = (
342 | self.proj_in(hidden_states, scale=lora_scale)
343 | if not USE_PEFT_BACKEND
344 | else self.proj_in(hidden_states)
345 | )
346 |
347 | elif self.is_input_vectorized:
348 | hidden_states = self.latent_image_embedding(hidden_states)
349 | elif self.is_input_patches:
350 | height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
351 | hidden_states = self.pos_embed(hidden_states)
352 |
353 | if self.adaln_single is not None:
354 | if self.use_additional_conditions and added_cond_kwargs is None:
355 | raise ValueError(
356 | "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
357 | )
358 | batch_size = hidden_states.shape[0]
359 | timestep, embedded_timestep = self.adaln_single(
360 | timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
361 | )
362 |
363 | # 2. Blocks
364 | if self.caption_projection is not None:
365 | batch_size = hidden_states.shape[0]
366 | encoder_hidden_states = self.caption_projection(encoder_hidden_states)
367 | encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
368 |
369 |
370 | for block in self.transformer_blocks:
371 | if self.training and self.gradient_checkpointing:
372 |
373 | def create_custom_forward(module, return_dict=None):
374 | def custom_forward(*inputs):
375 | if return_dict is not None:
376 | return module(*inputs, return_dict=return_dict)
377 | else:
378 | return module(*inputs)
379 |
380 | return custom_forward
381 |
382 | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
383 | hidden_states,curr_garment_feat_idx = torch.utils.checkpoint.checkpoint(
384 | create_custom_forward(block),
385 | hidden_states,
386 | attention_mask,
387 | encoder_hidden_states,
388 | encoder_attention_mask,
389 | timestep,
390 | cross_attention_kwargs,
391 | class_labels,
392 | garment_features,
393 | curr_garment_feat_idx,
394 | **ckpt_kwargs,
395 | )
396 | else:
397 | hidden_states,curr_garment_feat_idx = block(
398 | hidden_states,
399 | attention_mask=attention_mask,
400 | encoder_hidden_states=encoder_hidden_states,
401 | encoder_attention_mask=encoder_attention_mask,
402 | timestep=timestep,
403 | cross_attention_kwargs=cross_attention_kwargs,
404 | class_labels=class_labels,
405 | garment_features=garment_features,
406 | curr_garment_feat_idx=curr_garment_feat_idx,
407 | )
408 |
409 |
410 | # 3. Output
411 | if self.is_input_continuous:
412 | if not self.use_linear_projection:
413 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
414 | hidden_states = (
415 | self.proj_out(hidden_states, scale=lora_scale)
416 | if not USE_PEFT_BACKEND
417 | else self.proj_out(hidden_states)
418 | )
419 | else:
420 | hidden_states = (
421 | self.proj_out(hidden_states, scale=lora_scale)
422 | if not USE_PEFT_BACKEND
423 | else self.proj_out(hidden_states)
424 | )
425 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
426 |
427 | output = hidden_states + residual
428 | elif self.is_input_vectorized:
429 | hidden_states = self.norm_out(hidden_states)
430 | logits = self.out(hidden_states)
431 | # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
432 | logits = logits.permute(0, 2, 1)
433 |
434 | # log(p(x_0))
435 | output = F.log_softmax(logits.double(), dim=1).float()
436 |
437 | if self.is_input_patches:
438 | if self.config.norm_type != "ada_norm_single":
439 | conditioning = self.transformer_blocks[0].norm1.emb(
440 | timestep, class_labels, hidden_dtype=hidden_states.dtype
441 | )
442 | shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
443 | hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
444 | hidden_states = self.proj_out_2(hidden_states)
445 | elif self.config.norm_type == "ada_norm_single":
446 | shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
447 | hidden_states = self.norm_out(hidden_states)
448 | # Modulation
449 | hidden_states = hidden_states * (1 + scale) + shift
450 | hidden_states = self.proj_out(hidden_states)
451 | hidden_states = hidden_states.squeeze(1)
452 |
453 | # unpatchify
454 | if self.adaln_single is None:
455 | height = width = int(hidden_states.shape[1] ** 0.5)
456 | hidden_states = hidden_states.reshape(
457 | shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
458 | )
459 | hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
460 | output = hidden_states.reshape(
461 | shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
462 | )
463 |
464 | if not return_dict:
465 | return (output,),curr_garment_feat_idx
466 |
467 | return Transformer2DModelOutput(sample=output),curr_garment_feat_idx
468 |
--------------------------------------------------------------------------------
/src/ip_adapter/__init__.py:
--------------------------------------------------------------------------------
1 | from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull, IPAdapterPlus_Lora, IPAdapterPlus_Lora_up
2 |
3 | __all__ = [
4 | "IPAdapter",
5 | "IPAdapterPlus",
6 | "IPAdapterPlusXL",
7 | "IPAdapterXL",
8 | "IPAdapterFull",
9 | "IPAdapterPlus_Lora",
10 | 'IPAdapterPlus_Lora_up',
11 | ]
12 |
--------------------------------------------------------------------------------
/src/ip_adapter/ip_adapter.py:
--------------------------------------------------------------------------------
1 | import os
2 | from typing import List
3 |
4 | import torch
5 | from diffusers import StableDiffusionPipeline
6 | from diffusers.pipelines.controlnet import MultiControlNetModel
7 | from PIL import Image
8 | from safetensors import safe_open
9 | from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10 |
11 | from .utils import is_torch2_available
12 |
13 | if is_torch2_available():
14 | from .attention_processor import (
15 | AttnProcessor2_0 as AttnProcessor,
16 | )
17 | from .attention_processor import (
18 | CNAttnProcessor2_0 as CNAttnProcessor,
19 | )
20 | from .attention_processor import (
21 | IPAttnProcessor2_0 as IPAttnProcessor,
22 | )
23 | from .attention_processor import IPAttnProcessor2_0_Lora
24 | # else:
25 | # from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
26 | from .resampler import Resampler
27 | from diffusers.models.lora import LoRALinearLayer
28 |
29 |
30 | class ImageProjModel(torch.nn.Module):
31 | """Projection Model"""
32 |
33 | def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
34 | super().__init__()
35 |
36 | self.cross_attention_dim = cross_attention_dim
37 | self.clip_extra_context_tokens = clip_extra_context_tokens
38 | self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
39 | self.norm = torch.nn.LayerNorm(cross_attention_dim)
40 |
41 | def forward(self, image_embeds):
42 | embeds = image_embeds
43 | clip_extra_context_tokens = self.proj(embeds).reshape(
44 | -1, self.clip_extra_context_tokens, self.cross_attention_dim
45 | )
46 | clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
47 | return clip_extra_context_tokens
48 |
49 |
50 | class MLPProjModel(torch.nn.Module):
51 | """SD model with image prompt"""
52 | def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
53 | super().__init__()
54 |
55 | self.proj = torch.nn.Sequential(
56 | torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
57 | torch.nn.GELU(),
58 | torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
59 | torch.nn.LayerNorm(cross_attention_dim)
60 | )
61 |
62 | def forward(self, image_embeds):
63 | clip_extra_context_tokens = self.proj(image_embeds)
64 | return clip_extra_context_tokens
65 |
66 |
67 | class IPAdapter:
68 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
69 | self.device = device
70 | self.image_encoder_path = image_encoder_path
71 | self.ip_ckpt = ip_ckpt
72 | self.num_tokens = num_tokens
73 |
74 | self.pipe = sd_pipe.to(self.device)
75 | self.set_ip_adapter()
76 |
77 | # load image encoder
78 | self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
79 | self.device, dtype=torch.float16
80 | )
81 | self.clip_image_processor = CLIPImageProcessor()
82 | # image proj model
83 | self.image_proj_model = self.init_proj()
84 |
85 | self.load_ip_adapter()
86 |
87 | def init_proj(self):
88 | image_proj_model = ImageProjModel(
89 | cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
90 | clip_embeddings_dim=self.image_encoder.config.projection_dim,
91 | clip_extra_context_tokens=self.num_tokens,
92 | ).to(self.device, dtype=torch.float16)
93 | return image_proj_model
94 |
95 | def set_ip_adapter(self):
96 | unet = self.pipe.unet
97 | attn_procs = {}
98 | for name in unet.attn_processors.keys():
99 | cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
100 | if name.startswith("mid_block"):
101 | hidden_size = unet.config.block_out_channels[-1]
102 | elif name.startswith("up_blocks"):
103 | block_id = int(name[len("up_blocks.")])
104 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
105 | elif name.startswith("down_blocks"):
106 | block_id = int(name[len("down_blocks.")])
107 | hidden_size = unet.config.block_out_channels[block_id]
108 | if cross_attention_dim is None:
109 | attn_procs[name] = AttnProcessor()
110 | else:
111 | attn_procs[name] = IPAttnProcessor(
112 | hidden_size=hidden_size,
113 | cross_attention_dim=cross_attention_dim,
114 | scale=1.0,
115 | num_tokens=self.num_tokens,
116 | ).to(self.device, dtype=torch.float16)
117 | unet.set_attn_processor(attn_procs)
118 | if hasattr(self.pipe, "controlnet"):
119 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
120 | for controlnet in self.pipe.controlnet.nets:
121 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
122 | else:
123 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
124 |
125 | def load_ip_adapter(self):
126 | if self.ip_ckpt is not None:
127 | if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
128 | state_dict = {"image_proj": {}, "ip_adapter": {}}
129 | with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
130 | for key in f.keys():
131 | if key.startswith("image_proj."):
132 | state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
133 | elif key.startswith("ip_adapter."):
134 | state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
135 | else:
136 | state_dict = torch.load(self.ip_ckpt, map_location="cpu")
137 | self.image_proj_model.load_state_dict(state_dict["image_proj"])
138 | ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
139 | ip_layers.load_state_dict(state_dict["ip_adapter"])
140 |
141 |
142 | # def load_ip_adapter(self):
143 | # if self.ip_ckpt is not None:
144 | # if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
145 | # state_dict = {"image_proj_model": {}, "ip_adapter": {}}
146 | # with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
147 | # for key in f.keys():
148 | # if key.startswith("image_proj_model."):
149 | # state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
150 | # elif key.startswith("ip_adapter."):
151 | # state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
152 | # else:
153 | # state_dict = torch.load(self.ip_ckpt, map_location="cpu")
154 |
155 | # tmp1 = {}
156 | # for k,v in state_dict.items():
157 | # if 'image_proj_model' in k:
158 | # tmp1[k.replace('image_proj_model.','')] = v
159 | # self.image_proj_model.load_state_dict(tmp1, strict=True)
160 | # # ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
161 | # tmp2 = {}
162 | # for k,v in state_dict.ites():
163 | # if 'adapter_mode' in k:
164 | # tmp1[k] = v
165 |
166 | # print(ip_layers.state_dict())
167 | # ip_layers.load_state_dict(state_dict,strict=False)
168 |
169 |
170 | @torch.inference_mode()
171 | def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
172 | if pil_image is not None:
173 | if isinstance(pil_image, Image.Image):
174 | pil_image = [pil_image]
175 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
176 | clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
177 | else:
178 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
179 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
180 | uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
181 | return image_prompt_embeds, uncond_image_prompt_embeds
182 |
183 | def get_image_embeds_train(self, pil_image=None, clip_image_embeds=None):
184 | if pil_image is not None:
185 | if isinstance(pil_image, Image.Image):
186 | pil_image = [pil_image]
187 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
188 | clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds
189 | else:
190 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float32)
191 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
192 | uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
193 | return image_prompt_embeds, uncond_image_prompt_embeds
194 |
195 |
196 | def set_scale(self, scale):
197 | for attn_processor in self.pipe.unet.attn_processors.values():
198 | if isinstance(attn_processor, IPAttnProcessor):
199 | attn_processor.scale = scale
200 |
201 | def generate(
202 | self,
203 | pil_image=None,
204 | clip_image_embeds=None,
205 | prompt=None,
206 | negative_prompt=None,
207 | scale=1.0,
208 | num_samples=4,
209 | seed=None,
210 | guidance_scale=7.5,
211 | num_inference_steps=50,
212 | **kwargs,
213 | ):
214 | self.set_scale(scale)
215 |
216 | if pil_image is not None:
217 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
218 | else:
219 | num_prompts = clip_image_embeds.size(0)
220 |
221 | if prompt is None:
222 | prompt = "best quality, high quality"
223 | if negative_prompt is None:
224 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
225 |
226 | if not isinstance(prompt, List):
227 | prompt = [prompt] * num_prompts
228 | if not isinstance(negative_prompt, List):
229 | negative_prompt = [negative_prompt] * num_prompts
230 |
231 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
232 | pil_image=pil_image, clip_image_embeds=clip_image_embeds
233 | )
234 | bs_embed, seq_len, _ = image_prompt_embeds.shape
235 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
236 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
237 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
238 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
239 |
240 | with torch.inference_mode():
241 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
242 | prompt,
243 | device=self.device,
244 | num_images_per_prompt=num_samples,
245 | do_classifier_free_guidance=True,
246 | negative_prompt=negative_prompt,
247 | )
248 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
249 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
250 |
251 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
252 | images = self.pipe(
253 | prompt_embeds=prompt_embeds,
254 | negative_prompt_embeds=negative_prompt_embeds,
255 | guidance_scale=guidance_scale,
256 | num_inference_steps=num_inference_steps,
257 | generator=generator,
258 | **kwargs,
259 | ).images
260 |
261 | return images
262 |
263 |
264 | class IPAdapterXL(IPAdapter):
265 | """SDXL"""
266 |
267 | def generate_test(
268 | self,
269 | pil_image,
270 | prompt=None,
271 | negative_prompt=None,
272 | scale=1.0,
273 | num_samples=4,
274 | seed=None,
275 | num_inference_steps=30,
276 | **kwargs,
277 | ):
278 | self.set_scale(scale)
279 |
280 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
281 |
282 | if prompt is None:
283 | prompt = "best quality, high quality"
284 | if negative_prompt is None:
285 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
286 |
287 | if not isinstance(prompt, List):
288 | prompt = [prompt] * num_prompts
289 | if not isinstance(negative_prompt, List):
290 | negative_prompt = [negative_prompt] * num_prompts
291 |
292 |
293 | with torch.inference_mode():
294 | (
295 | prompt_embeds,
296 | negative_prompt_embeds,
297 | pooled_prompt_embeds,
298 | negative_pooled_prompt_embeds,
299 | ) = self.pipe.encode_prompt(
300 | prompt,
301 | num_images_per_prompt=num_samples,
302 | do_classifier_free_guidance=True,
303 | negative_prompt=negative_prompt,
304 | )
305 |
306 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
307 | images = self.pipe(
308 | prompt_embeds=prompt_embeds,
309 | negative_prompt_embeds=negative_prompt_embeds,
310 | pooled_prompt_embeds=pooled_prompt_embeds,
311 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
312 | num_inference_steps=num_inference_steps,
313 | generator=generator,
314 | **kwargs,
315 | ).images
316 |
317 |
318 | # with torch.autocast("cuda"):
319 | # images = self.pipe(
320 | # prompt_embeds=prompt_embeds,
321 | # negative_prompt_embeds=negative_prompt_embeds,
322 | # pooled_prompt_embeds=pooled_prompt_embeds,
323 | # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
324 | # num_inference_steps=num_inference_steps,
325 | # generator=generator,
326 | # **kwargs,
327 | # ).images
328 |
329 | return images
330 |
331 |
332 | def generate(
333 | self,
334 | pil_image,
335 | prompt=None,
336 | negative_prompt=None,
337 | scale=1.0,
338 | num_samples=4,
339 | seed=None,
340 | num_inference_steps=30,
341 | **kwargs,
342 | ):
343 | self.set_scale(scale)
344 |
345 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
346 |
347 | if prompt is None:
348 | prompt = "best quality, high quality"
349 | if negative_prompt is None:
350 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
351 |
352 | if not isinstance(prompt, List):
353 | prompt = [prompt] * num_prompts
354 | if not isinstance(negative_prompt, List):
355 | negative_prompt = [negative_prompt] * num_prompts
356 |
357 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
358 | bs_embed, seq_len, _ = image_prompt_embeds.shape
359 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
360 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
361 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
362 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
363 |
364 | with torch.inference_mode():
365 | (
366 | prompt_embeds,
367 | negative_prompt_embeds,
368 | pooled_prompt_embeds,
369 | negative_pooled_prompt_embeds,
370 | ) = self.pipe.encode_prompt(
371 | prompt,
372 | num_images_per_prompt=num_samples,
373 | do_classifier_free_guidance=True,
374 | negative_prompt=negative_prompt,
375 | )
376 | prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
377 | negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
378 |
379 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
380 | images = self.pipe(
381 | prompt_embeds=prompt_embeds,
382 | negative_prompt_embeds=negative_prompt_embeds,
383 | pooled_prompt_embeds=pooled_prompt_embeds,
384 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
385 | num_inference_steps=num_inference_steps,
386 | generator=generator,
387 | **kwargs,
388 | ).images
389 |
390 |
391 | # with torch.autocast("cuda"):
392 | # images = self.pipe(
393 | # prompt_embeds=prompt_embeds,
394 | # negative_prompt_embeds=negative_prompt_embeds,
395 | # pooled_prompt_embeds=pooled_prompt_embeds,
396 | # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
397 | # num_inference_steps=num_inference_steps,
398 | # generator=generator,
399 | # **kwargs,
400 | # ).images
401 |
402 | return images
403 |
404 |
405 | class IPAdapterPlus(IPAdapter):
406 | """IP-Adapter with fine-grained features"""
407 |
408 | def generate(
409 | self,
410 | pil_image=None,
411 | clip_image_embeds=None,
412 | prompt=None,
413 | negative_prompt=None,
414 | scale=1.0,
415 | num_samples=4,
416 | seed=None,
417 | guidance_scale=7.5,
418 | num_inference_steps=50,
419 | **kwargs,
420 | ):
421 | self.set_scale(scale)
422 |
423 | if pil_image is not None:
424 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
425 | else:
426 | num_prompts = clip_image_embeds.size(0)
427 |
428 | if prompt is None:
429 | prompt = "best quality, high quality"
430 | if negative_prompt is None:
431 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
432 |
433 | if not isinstance(prompt, List):
434 | prompt = [prompt] * num_prompts
435 | if not isinstance(negative_prompt, List):
436 | negative_prompt = [negative_prompt] * num_prompts
437 |
438 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
439 | pil_image=pil_image, clip_image=clip_image_embeds
440 | )
441 | bs_embed, seq_len, _ = image_prompt_embeds.shape
442 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
443 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
444 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
445 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
446 |
447 | with torch.inference_mode():
448 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
449 | prompt,
450 | device=self.device,
451 | num_images_per_prompt=num_samples,
452 | do_classifier_free_guidance=True,
453 | negative_prompt=negative_prompt,
454 | )
455 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
456 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
457 |
458 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
459 | images = self.pipe(
460 | prompt_embeds=prompt_embeds,
461 | negative_prompt_embeds=negative_prompt_embeds,
462 | guidance_scale=guidance_scale,
463 | num_inference_steps=num_inference_steps,
464 | generator=generator,
465 | **kwargs,
466 | ).images
467 |
468 | return images
469 |
470 |
471 | def init_proj(self):
472 | image_proj_model = Resampler(
473 | dim=self.pipe.unet.config.cross_attention_dim,
474 | depth=4,
475 | dim_head=64,
476 | heads=12,
477 | num_queries=self.num_tokens,
478 | embedding_dim=self.image_encoder.config.hidden_size,
479 | output_dim=self.pipe.unet.config.cross_attention_dim,
480 | ff_mult=4,
481 | ).to(self.device, dtype=torch.float16)
482 | return image_proj_model
483 |
484 | @torch.inference_mode()
485 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
486 | if pil_image is not None:
487 | if isinstance(pil_image, Image.Image):
488 | pil_image = [pil_image]
489 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
490 | clip_image = clip_image.to(self.device, dtype=torch.float16)
491 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
492 | else:
493 | clip_image = clip_image.to(self.device, dtype=torch.float16)
494 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
495 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
496 | uncond_clip_image_embeds = self.image_encoder(
497 | torch.zeros_like(clip_image), output_hidden_states=True
498 | ).hidden_states[-2]
499 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
500 | return image_prompt_embeds, uncond_image_prompt_embeds
501 |
502 |
503 |
504 |
505 | class IPAdapterPlus_Lora(IPAdapter):
506 | """IP-Adapter with fine-grained features"""
507 |
508 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
509 | self.rank = rank
510 | super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
511 |
512 |
513 | def generate(
514 | self,
515 | pil_image=None,
516 | clip_image_embeds=None,
517 | prompt=None,
518 | negative_prompt=None,
519 | scale=1.0,
520 | num_samples=4,
521 | seed=None,
522 | guidance_scale=7.5,
523 | num_inference_steps=50,
524 | **kwargs,
525 | ):
526 | self.set_scale(scale)
527 |
528 | if pil_image is not None:
529 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
530 | else:
531 | num_prompts = clip_image_embeds.size(0)
532 |
533 | if prompt is None:
534 | prompt = "best quality, high quality"
535 | if negative_prompt is None:
536 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
537 |
538 | if not isinstance(prompt, List):
539 | prompt = [prompt] * num_prompts
540 | if not isinstance(negative_prompt, List):
541 | negative_prompt = [negative_prompt] * num_prompts
542 |
543 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
544 | pil_image=pil_image, clip_image=clip_image_embeds
545 | )
546 | bs_embed, seq_len, _ = image_prompt_embeds.shape
547 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
548 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
549 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
550 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
551 |
552 | with torch.inference_mode():
553 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
554 | prompt,
555 | device=self.device,
556 | num_images_per_prompt=num_samples,
557 | do_classifier_free_guidance=True,
558 | negative_prompt=negative_prompt,
559 | )
560 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
561 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
562 |
563 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
564 | images = self.pipe(
565 | prompt_embeds=prompt_embeds,
566 | negative_prompt_embeds=negative_prompt_embeds,
567 | guidance_scale=guidance_scale,
568 | num_inference_steps=num_inference_steps,
569 | generator=generator,
570 | **kwargs,
571 | ).images
572 |
573 | return images
574 |
575 |
576 | def init_proj(self):
577 | image_proj_model = Resampler(
578 | dim=self.pipe.unet.config.cross_attention_dim,
579 | depth=4,
580 | dim_head=64,
581 | heads=12,
582 | num_queries=self.num_tokens,
583 | embedding_dim=self.image_encoder.config.hidden_size,
584 | output_dim=self.pipe.unet.config.cross_attention_dim,
585 | ff_mult=4,
586 | ).to(self.device, dtype=torch.float16)
587 | return image_proj_model
588 |
589 | @torch.inference_mode()
590 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
591 | if pil_image is not None:
592 | if isinstance(pil_image, Image.Image):
593 | pil_image = [pil_image]
594 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
595 | clip_image = clip_image.to(self.device, dtype=torch.float16)
596 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
597 | else:
598 | clip_image = clip_image.to(self.device, dtype=torch.float16)
599 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
600 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
601 | uncond_clip_image_embeds = self.image_encoder(
602 | torch.zeros_like(clip_image), output_hidden_states=True
603 | ).hidden_states[-2]
604 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
605 | return image_prompt_embeds, uncond_image_prompt_embeds
606 |
607 | def set_ip_adapter(self):
608 | unet = self.pipe.unet
609 | attn_procs = {}
610 | unet_sd = unet.state_dict()
611 |
612 | for attn_processor_name, attn_processor in unet.attn_processors.items():
613 | # Parse the attention module.
614 | cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
615 | if attn_processor_name.startswith("mid_block"):
616 | hidden_size = unet.config.block_out_channels[-1]
617 | elif attn_processor_name.startswith("up_blocks"):
618 | block_id = int(attn_processor_name[len("up_blocks.")])
619 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
620 | elif attn_processor_name.startswith("down_blocks"):
621 | block_id = int(attn_processor_name[len("down_blocks.")])
622 | hidden_size = unet.config.block_out_channels[block_id]
623 | if cross_attention_dim is None:
624 | attn_procs[attn_processor_name] = AttnProcessor()
625 | else:
626 | layer_name = attn_processor_name.split(".processor")[0]
627 | weights = {
628 | "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
629 | "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
630 | }
631 | attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
632 | attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
633 |
634 | attn_module = unet
635 | for n in attn_processor_name.split(".")[:-1]:
636 | attn_module = getattr(attn_module, n)
637 |
638 | attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
639 | attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
640 | attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
641 | attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
642 |
643 | unet.set_attn_processor(attn_procs)
644 | if hasattr(self.pipe, "controlnet"):
645 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
646 | for controlnet in self.pipe.controlnet.nets:
647 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
648 | else:
649 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
650 |
651 |
652 |
653 | class IPAdapterPlus_Lora_up(IPAdapter):
654 | """IP-Adapter with fine-grained features"""
655 |
656 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
657 | self.rank = rank
658 | super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
659 |
660 |
661 | def generate(
662 | self,
663 | pil_image=None,
664 | clip_image_embeds=None,
665 | prompt=None,
666 | negative_prompt=None,
667 | scale=1.0,
668 | num_samples=4,
669 | seed=None,
670 | guidance_scale=7.5,
671 | num_inference_steps=50,
672 | **kwargs,
673 | ):
674 | self.set_scale(scale)
675 |
676 | if pil_image is not None:
677 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
678 | else:
679 | num_prompts = clip_image_embeds.size(0)
680 |
681 | if prompt is None:
682 | prompt = "best quality, high quality"
683 | if negative_prompt is None:
684 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
685 |
686 | if not isinstance(prompt, List):
687 | prompt = [prompt] * num_prompts
688 | if not isinstance(negative_prompt, List):
689 | negative_prompt = [negative_prompt] * num_prompts
690 |
691 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
692 | pil_image=pil_image, clip_image=clip_image_embeds
693 | )
694 | bs_embed, seq_len, _ = image_prompt_embeds.shape
695 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
696 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
697 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
698 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
699 |
700 | with torch.inference_mode():
701 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
702 | prompt,
703 | device=self.device,
704 | num_images_per_prompt=num_samples,
705 | do_classifier_free_guidance=True,
706 | negative_prompt=negative_prompt,
707 | )
708 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
709 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
710 |
711 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
712 | images = self.pipe(
713 | prompt_embeds=prompt_embeds,
714 | negative_prompt_embeds=negative_prompt_embeds,
715 | guidance_scale=guidance_scale,
716 | num_inference_steps=num_inference_steps,
717 | generator=generator,
718 | **kwargs,
719 | ).images
720 |
721 | return images
722 |
723 |
724 | def init_proj(self):
725 | image_proj_model = Resampler(
726 | dim=self.pipe.unet.config.cross_attention_dim,
727 | depth=4,
728 | dim_head=64,
729 | heads=12,
730 | num_queries=self.num_tokens,
731 | embedding_dim=self.image_encoder.config.hidden_size,
732 | output_dim=self.pipe.unet.config.cross_attention_dim,
733 | ff_mult=4,
734 | ).to(self.device, dtype=torch.float16)
735 | return image_proj_model
736 |
737 | @torch.inference_mode()
738 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
739 | if pil_image is not None:
740 | if isinstance(pil_image, Image.Image):
741 | pil_image = [pil_image]
742 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
743 | clip_image = clip_image.to(self.device, dtype=torch.float16)
744 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
745 | else:
746 | clip_image = clip_image.to(self.device, dtype=torch.float16)
747 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
748 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
749 | uncond_clip_image_embeds = self.image_encoder(
750 | torch.zeros_like(clip_image), output_hidden_states=True
751 | ).hidden_states[-2]
752 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
753 | return image_prompt_embeds, uncond_image_prompt_embeds
754 |
755 | def set_ip_adapter(self):
756 | unet = self.pipe.unet
757 | attn_procs = {}
758 | unet_sd = unet.state_dict()
759 |
760 | for attn_processor_name, attn_processor in unet.attn_processors.items():
761 | # Parse the attention module.
762 | cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
763 | if attn_processor_name.startswith("mid_block"):
764 | hidden_size = unet.config.block_out_channels[-1]
765 | elif attn_processor_name.startswith("up_blocks"):
766 | block_id = int(attn_processor_name[len("up_blocks.")])
767 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
768 | elif attn_processor_name.startswith("down_blocks"):
769 | block_id = int(attn_processor_name[len("down_blocks.")])
770 | hidden_size = unet.config.block_out_channels[block_id]
771 | if cross_attention_dim is None:
772 | attn_procs[attn_processor_name] = AttnProcessor()
773 | else:
774 | layer_name = attn_processor_name.split(".processor")[0]
775 | weights = {
776 | "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
777 | "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
778 | }
779 | attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
780 | attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
781 |
782 | attn_module = unet
783 | for n in attn_processor_name.split(".")[:-1]:
784 | attn_module = getattr(attn_module, n)
785 |
786 |
787 | if "up_blocks" in attn_processor_name:
788 | attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
789 | attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
790 | attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
791 | attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
792 |
793 |
794 |
795 | unet.set_attn_processor(attn_procs)
796 | if hasattr(self.pipe, "controlnet"):
797 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
798 | for controlnet in self.pipe.controlnet.nets:
799 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
800 | else:
801 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
802 |
803 |
804 |
805 | class IPAdapterFull(IPAdapterPlus):
806 | """IP-Adapter with full features"""
807 |
808 | def init_proj(self):
809 | image_proj_model = MLPProjModel(
810 | cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
811 | clip_embeddings_dim=self.image_encoder.config.hidden_size,
812 | ).to(self.device, dtype=torch.float16)
813 | return image_proj_model
814 |
815 |
816 | class IPAdapterPlusXL(IPAdapter):
817 | """SDXL"""
818 |
819 | def init_proj(self):
820 | image_proj_model = Resampler(
821 | dim=1280,
822 | depth=4,
823 | dim_head=64,
824 | heads=20,
825 | num_queries=self.num_tokens,
826 | embedding_dim=self.image_encoder.config.hidden_size,
827 | output_dim=self.pipe.unet.config.cross_attention_dim,
828 | ff_mult=4,
829 | ).to(self.device, dtype=torch.float16)
830 | return image_proj_model
831 |
832 | @torch.inference_mode()
833 | def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
834 | if pil_image is not None:
835 | if isinstance(pil_image, Image.Image):
836 | pil_image = [pil_image]
837 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
838 | clip_image = clip_image.to(self.device, dtype=torch.float16)
839 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
840 | else:
841 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
842 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
843 | uncond_clip_image_embeds = self.image_encoder(
844 | torch.zeros_like(clip_image), output_hidden_states=True
845 | ).hidden_states[-2]
846 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
847 | return image_prompt_embeds, uncond_image_prompt_embeds
848 |
849 | def generate(
850 | self,
851 | pil_image,
852 | prompt=None,
853 | negative_prompt=None,
854 | scale=1.0,
855 | num_samples=4,
856 | seed=None,
857 | num_inference_steps=30,
858 | **kwargs,
859 | ):
860 | self.set_scale(scale)
861 |
862 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
863 |
864 | if prompt is None:
865 | prompt = "best quality, high quality"
866 | if negative_prompt is None:
867 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
868 |
869 | if not isinstance(prompt, List):
870 | prompt = [prompt] * num_prompts
871 | if not isinstance(negative_prompt, List):
872 | negative_prompt = [negative_prompt] * num_prompts
873 |
874 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
875 | bs_embed, seq_len, _ = image_prompt_embeds.shape
876 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
877 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
878 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
879 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
880 |
881 | with torch.inference_mode():
882 | (
883 | prompt_embeds,
884 | negative_prompt_embeds,
885 | pooled_prompt_embeds,
886 | negative_pooled_prompt_embeds,
887 | ) = self.pipe.encode_prompt(
888 | prompt,
889 | num_images_per_prompt=num_samples,
890 | do_classifier_free_guidance=True,
891 | negative_prompt=negative_prompt,
892 | )
893 | prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
894 | negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
895 |
896 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
897 | images = self.pipe(
898 | prompt_embeds=prompt_embeds,
899 | negative_prompt_embeds=negative_prompt_embeds,
900 | pooled_prompt_embeds=pooled_prompt_embeds,
901 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
902 | num_inference_steps=num_inference_steps,
903 | generator=generator,
904 | **kwargs,
905 | ).images
906 |
907 | return images
908 |
--------------------------------------------------------------------------------
/src/ip_adapter/resampler.py:
--------------------------------------------------------------------------------
1 | # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2 | # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3 |
4 | import math
5 |
6 | import torch
7 | import torch.nn as nn
8 | from einops import rearrange
9 | from einops.layers.torch import Rearrange
10 |
11 |
12 | # FFN
13 | def FeedForward(dim, mult=4):
14 | inner_dim = int(dim * mult)
15 | return nn.Sequential(
16 | nn.LayerNorm(dim),
17 | nn.Linear(dim, inner_dim, bias=False),
18 | nn.GELU(),
19 | nn.Linear(inner_dim, dim, bias=False),
20 | )
21 |
22 |
23 | def reshape_tensor(x, heads):
24 | bs, length, width = x.shape
25 | # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26 | x = x.view(bs, length, heads, -1)
27 | # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28 | x = x.transpose(1, 2)
29 | # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30 | x = x.reshape(bs, heads, length, -1)
31 | return x
32 |
33 |
34 | class PerceiverAttention(nn.Module):
35 | def __init__(self, *, dim, dim_head=64, heads=8):
36 | super().__init__()
37 | self.scale = dim_head**-0.5
38 | self.dim_head = dim_head
39 | self.heads = heads
40 | inner_dim = dim_head * heads
41 |
42 | self.norm1 = nn.LayerNorm(dim)
43 | self.norm2 = nn.LayerNorm(dim)
44 |
45 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
46 | self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
48 |
49 | def forward(self, x, latents):
50 | """
51 | Args:
52 | x (torch.Tensor): image features
53 | shape (b, n1, D)
54 | latent (torch.Tensor): latent features
55 | shape (b, n2, D)
56 | """
57 | x = self.norm1(x)
58 | latents = self.norm2(latents)
59 |
60 | b, l, _ = latents.shape
61 |
62 | q = self.to_q(latents)
63 | kv_input = torch.cat((x, latents), dim=-2)
64 | k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65 |
66 | q = reshape_tensor(q, self.heads)
67 | k = reshape_tensor(k, self.heads)
68 | v = reshape_tensor(v, self.heads)
69 |
70 | # attention
71 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74 | out = weight @ v
75 |
76 | out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77 |
78 | return self.to_out(out)
79 |
80 |
81 | class CrossAttention(nn.Module):
82 | def __init__(self, *, dim, dim_head=64, heads=8):
83 | super().__init__()
84 | self.scale = dim_head**-0.5
85 | self.dim_head = dim_head
86 | self.heads = heads
87 | inner_dim = dim_head * heads
88 |
89 | self.norm1 = nn.LayerNorm(dim)
90 | self.norm2 = nn.LayerNorm(dim)
91 |
92 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
93 | self.to_k = nn.Linear(dim, inner_dim, bias=False)
94 | self.to_v = nn.Linear(dim, inner_dim, bias=False)
95 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
96 |
97 |
98 | def forward(self, x, x2):
99 | """
100 | Args:
101 | x (torch.Tensor): image features
102 | shape (b, n1, D)
103 | latent (torch.Tensor): latent features
104 | shape (b, n2, D)
105 | """
106 | x = self.norm1(x)
107 | x2 = self.norm2(x2)
108 |
109 | b, l, _ = x2.shape
110 |
111 | q = self.to_q(x)
112 | k = self.to_k(x2)
113 | v = self.to_v(x2)
114 |
115 | q = reshape_tensor(q, self.heads)
116 | k = reshape_tensor(k, self.heads)
117 | v = reshape_tensor(v, self.heads)
118 |
119 | # attention
120 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
121 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
122 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
123 | out = weight @ v
124 |
125 | out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
126 | return self.to_out(out)
127 |
128 |
129 | class Resampler(nn.Module):
130 | def __init__(
131 | self,
132 | dim=1024,
133 | depth=8,
134 | dim_head=64,
135 | heads=16,
136 | num_queries=8,
137 | embedding_dim=768,
138 | output_dim=1024,
139 | ff_mult=4,
140 | max_seq_len: int = 257, # CLIP tokens + CLS token
141 | apply_pos_emb: bool = False,
142 | num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
143 | ):
144 | super().__init__()
145 |
146 | self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
147 |
148 | self.proj_in = nn.Linear(embedding_dim, dim)
149 |
150 | self.proj_out = nn.Linear(dim, output_dim)
151 | self.norm_out = nn.LayerNorm(output_dim)
152 |
153 | self.layers = nn.ModuleList([])
154 | for _ in range(depth):
155 | self.layers.append(
156 | nn.ModuleList(
157 | [
158 | PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
159 | FeedForward(dim=dim, mult=ff_mult),
160 | ]
161 | )
162 | )
163 |
164 | def forward(self, x):
165 |
166 | latents = self.latents.repeat(x.size(0), 1, 1)
167 |
168 | x = self.proj_in(x)
169 |
170 |
171 | for attn, ff in self.layers:
172 | latents = attn(x, latents) + latents
173 | latents = ff(latents) + latents
174 |
175 | latents = self.proj_out(latents)
176 | return self.norm_out(latents)
177 |
178 |
179 |
180 | def masked_mean(t, *, dim, mask=None):
181 | if mask is None:
182 | return t.mean(dim=dim)
183 |
184 | denom = mask.sum(dim=dim, keepdim=True)
185 | mask = rearrange(mask, "b n -> b n 1")
186 | masked_t = t.masked_fill(~mask, 0.0)
187 |
188 | return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
189 |
--------------------------------------------------------------------------------
/src/ip_adapter/test_resampler.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from resampler import Resampler
3 | from transformers import CLIPVisionModel
4 |
5 | BATCH_SIZE = 2
6 | OUTPUT_DIM = 1280
7 | NUM_QUERIES = 8
8 | NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9 | APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10 | IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11 |
12 |
13 | def main():
14 | image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15 | embedding_dim = image_encoder.config.hidden_size
16 | print(f"image_encoder hidden size: ", embedding_dim)
17 |
18 | image_proj_model = Resampler(
19 | dim=1024,
20 | depth=2,
21 | dim_head=64,
22 | heads=16,
23 | num_queries=NUM_QUERIES,
24 | embedding_dim=embedding_dim,
25 | output_dim=OUTPUT_DIM,
26 | ff_mult=2,
27 | max_seq_len=257,
28 | apply_pos_emb=APPLY_POS_EMB,
29 | num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30 | )
31 |
32 | dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33 | with torch.no_grad():
34 | image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35 | print("image_embds shape: ", image_embeds.shape)
36 |
37 | with torch.no_grad():
38 | ip_tokens = image_proj_model(image_embeds)
39 | print("ip_tokens shape:", ip_tokens.shape)
40 | assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41 |
42 |
43 | if __name__ == "__main__":
44 | main()
45 |
--------------------------------------------------------------------------------
/src/ip_adapter/utils.py:
--------------------------------------------------------------------------------
1 | import torch.nn.functional as F
2 |
3 |
4 | def is_torch2_available():
5 | return hasattr(F, "scaled_dot_product_attention")
6 |
--------------------------------------------------------------------------------
/src/logger.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import copy
3 | import logging
4 |
5 |
6 | class ColoredFormatter(logging.Formatter):
7 | COLORS = {
8 | "DEBUG": "\033[0;36m", # CYAN
9 | "INFO": "\033[0;32m", # GREEN
10 | "WARNING": "\033[0;33m", # YELLOW
11 | "ERROR": "\033[0;31m", # RED
12 | "CRITICAL": "\033[0;37;41m", # WHITE ON RED
13 | "RESET": "\033[0m", # RESET COLOR
14 | }
15 |
16 | def format(self, record):
17 | colored_record = copy.copy(record)
18 | levelname = colored_record.levelname
19 | seq = self.COLORS.get(levelname, self.COLORS["RESET"])
20 | colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
21 | return super().format(colored_record)
22 |
23 |
24 | # Create a new logger
25 | logger = logging.getLogger("ComfyUI-IDM-VTON")
26 | logger.propagate = False
27 |
28 | # Add handler if we don't have one.
29 | if not logger.handlers:
30 | handler = logging.StreamHandler(sys.stdout)
31 | handler.setFormatter(ColoredFormatter("[%(name)s] - %(levelname)s - %(message)s"))
32 | logger.addHandler(handler)
33 |
34 | # Configure logger
35 | loglevel = logging.INFO
36 | logger.setLevel(loglevel)
--------------------------------------------------------------------------------
/src/nodes/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/TemryL/ComfyUI-IDM-VTON/5a8334c58c390381e31a8023cb7ba398ade40b39/src/nodes/__init__.py
--------------------------------------------------------------------------------
/src/nodes/idm_vton.py:
--------------------------------------------------------------------------------
1 | import sys
2 | sys.path.append('.')
3 | sys.path.append('..')
4 |
5 | import torch
6 | from torchvision import transforms
7 | from comfy.model_management import get_torch_device
8 |
9 |
10 | DEVICE = get_torch_device()
11 | MAX_RESOLUTION = 16384
12 |
13 |
14 | class IDM_VTON:
15 | @classmethod
16 | def INPUT_TYPES(s):
17 | return {
18 | "required": {
19 | "pipeline": ("PIPELINE",),
20 | "human_img": ("IMAGE",),
21 | "pose_img": ("IMAGE",),
22 | "mask_img": ("IMAGE",),
23 | "garment_img": ("IMAGE",),
24 | "garment_description": ("STRING", {"multiline": True, "dynamicPrompts": True}),
25 | "negative_prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
26 | "width": ("INT", {"default": 768, "min": 0, "max": MAX_RESOLUTION}),
27 | "height": ("INT", {"default": 1024, "min": 0, "max": MAX_RESOLUTION}),
28 | "num_inference_steps": ("INT", {"default": 30}),
29 | "guidance_scale": ("FLOAT", {"default": 2.0}),
30 | "strength": ("FLOAT", {"default": 1.0}),
31 | "seed": ("INT", {"default": 42, "min": 0, "max": 0xffffffffffffffff}),
32 | }
33 | }
34 |
35 | RETURN_TYPES = ("IMAGE", "MASK")
36 | FUNCTION = "make_inference"
37 | CATEGORY = "ComfyUI-IDM-VTON"
38 |
39 | def preprocess_images(self, human_img, garment_img, pose_img, mask_img, height, width):
40 | human_img = human_img.squeeze().permute(2,0,1)
41 | garment_img = garment_img.squeeze().permute(2,0,1)
42 | pose_img = pose_img.squeeze().permute(2,0,1)
43 | mask_img = mask_img.squeeze().permute(2,0,1)
44 |
45 | human_img = transforms.functional.to_pil_image(human_img)
46 | garment_img = transforms.functional.to_pil_image(garment_img)
47 | pose_img = transforms.functional.to_pil_image(pose_img)
48 | mask_img = transforms.functional.to_pil_image(mask_img)
49 |
50 | human_img = human_img.convert("RGB").resize((width, height))
51 | garment_img = garment_img.convert("RGB").resize((width, height))
52 | mask_img = mask_img.convert("RGB").resize((width, height))
53 | pose_img = pose_img.convert("RGB").resize((width, height))
54 |
55 | return human_img, garment_img, pose_img, mask_img
56 |
57 | def make_inference(self, pipeline, human_img, garment_img, pose_img, mask_img, height, width, garment_description, negative_prompt, num_inference_steps, strength, guidance_scale, seed):
58 | human_img, garment_img, pose_img, mask_img = self.preprocess_images(human_img, garment_img, pose_img, mask_img, height, width)
59 | tensor_transfrom = transforms.Compose(
60 | [
61 | transforms.ToTensor(),
62 | transforms.Normalize([0.5], [0.5]),
63 | ]
64 | )
65 |
66 | with torch.no_grad():
67 | # Extract the images
68 | with torch.cuda.amp.autocast():
69 | with torch.inference_mode():
70 | prompt = "model is wearing " + garment_description
71 | (
72 | prompt_embeds,
73 | negative_prompt_embeds,
74 | pooled_prompt_embeds,
75 | negative_pooled_prompt_embeds,
76 | ) = pipeline.encode_prompt(
77 | prompt,
78 | num_images_per_prompt=1,
79 | do_classifier_free_guidance=True,
80 | negative_prompt=negative_prompt,
81 | )
82 |
83 | prompt = ["a photo of " + garment_description]
84 | negative_prompt = [negative_prompt]
85 | (
86 | prompt_embeds_c,
87 | _,
88 | _,
89 | _,
90 | ) = pipeline.encode_prompt(
91 | prompt,
92 | num_images_per_prompt=1,
93 | do_classifier_free_guidance=False,
94 | negative_prompt=negative_prompt,
95 | )
96 |
97 | pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(DEVICE, pipeline.dtype)
98 | garment_tensor = tensor_transfrom(garment_img).unsqueeze(0).to(DEVICE, pipeline.dtype)
99 |
100 | images = pipeline(
101 | prompt_embeds=prompt_embeds,
102 | negative_prompt_embeds=negative_prompt_embeds,
103 | pooled_prompt_embeds=pooled_prompt_embeds,
104 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
105 | num_inference_steps=num_inference_steps,
106 | generator=torch.Generator(DEVICE).manual_seed(seed),
107 | strength=strength,
108 | pose_img=pose_img,
109 | text_embeds_cloth=prompt_embeds_c,
110 | cloth=garment_tensor,
111 | mask_image=mask_img,
112 | image=human_img,
113 | height=height,
114 | width=width,
115 | ip_adapter_image=garment_img,
116 | guidance_scale=guidance_scale,
117 | )[0]
118 |
119 | images = [transforms.ToTensor()(image) for image in images]
120 | images = [image.permute(1,2,0) for image in images]
121 | images = torch.stack(images)
122 | return (images, )
--------------------------------------------------------------------------------
/src/nodes/pipeline_loader.py:
--------------------------------------------------------------------------------
1 | import sys
2 | sys.path.append('.')
3 | sys.path.append('..')
4 |
5 | import torch
6 | from diffusers import AutoencoderKL, DDPMScheduler
7 | from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel
8 |
9 | from ..idm_vton.unet_hacked_tryon import UNet2DConditionModel
10 | from ..idm_vton.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
11 | from ..idm_vton.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
12 | from comfy.model_management import get_torch_device
13 | from ...install import WEIGHTS_PATH
14 |
15 |
16 | DEVICE = get_torch_device()
17 |
18 |
19 | class PipelineLoader:
20 | @classmethod
21 | def INPUT_TYPES(s):
22 | return {
23 | "required": {
24 | "weight_dtype": (("float32", "float16", "bfloat16"), ),
25 | }
26 | }
27 |
28 | CATEGORY = "ComfyUI-IDM-VTON"
29 | INPUT_NODE = True
30 | RETURN_TYPES = ("PIPELINE",)
31 | FUNCTION = "load_pipeline"
32 |
33 | def load_pipeline(self, weight_dtype):
34 | if weight_dtype == "float32":
35 | weight_dtype = torch.float32
36 | elif weight_dtype == "float16":
37 | weight_dtype = torch.float16
38 | elif weight_dtype == "bfloat16":
39 | weight_dtype = torch.bfloat16
40 |
41 | noise_scheduler = DDPMScheduler.from_pretrained(
42 | WEIGHTS_PATH,
43 | subfolder="scheduler"
44 | )
45 |
46 | vae = AutoencoderKL.from_pretrained(
47 | WEIGHTS_PATH,
48 | subfolder="vae",
49 | torch_dtype=weight_dtype
50 | ).requires_grad_(False).eval().to(DEVICE)
51 |
52 | unet = UNet2DConditionModel.from_pretrained(
53 | WEIGHTS_PATH,
54 | subfolder="unet",
55 | torch_dtype=weight_dtype
56 | ).requires_grad_(False).eval().to(DEVICE)
57 |
58 | image_encoder = CLIPVisionModelWithProjection.from_pretrained(
59 | WEIGHTS_PATH,
60 | subfolder="image_encoder",
61 | torch_dtype=weight_dtype
62 | ).requires_grad_(False).eval().to(DEVICE)
63 |
64 | unet_encoder = UNet2DConditionModel_ref.from_pretrained(
65 | WEIGHTS_PATH,
66 | subfolder="unet_encoder",
67 | torch_dtype=weight_dtype
68 | ).requires_grad_(False).eval().to(DEVICE)
69 |
70 | text_encoder_one = CLIPTextModel.from_pretrained(
71 | WEIGHTS_PATH,
72 | subfolder="text_encoder",
73 | torch_dtype=weight_dtype
74 | ).requires_grad_(False).eval().to(DEVICE)
75 |
76 | text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
77 | WEIGHTS_PATH,
78 | subfolder="text_encoder_2",
79 | torch_dtype=weight_dtype
80 | ).requires_grad_(False).eval().to(DEVICE)
81 |
82 | tokenizer_one = AutoTokenizer.from_pretrained(
83 | WEIGHTS_PATH,
84 | subfolder="tokenizer",
85 | revision=None,
86 | use_fast=False,
87 | )
88 |
89 | tokenizer_two = AutoTokenizer.from_pretrained(
90 | WEIGHTS_PATH,
91 | subfolder="tokenizer_2",
92 | revision=None,
93 | use_fast=False,
94 | )
95 |
96 | pipe = TryonPipeline.from_pretrained(
97 | WEIGHTS_PATH,
98 | unet=unet,
99 | vae=vae,
100 | feature_extractor=CLIPImageProcessor(),
101 | text_encoder=text_encoder_one,
102 | text_encoder_2=text_encoder_two,
103 | tokenizer=tokenizer_one,
104 | tokenizer_2=tokenizer_two,
105 | scheduler=noise_scheduler,
106 | image_encoder=image_encoder,
107 | torch_dtype=weight_dtype,
108 | )
109 | pipe.unet_encoder = unet_encoder
110 | pipe = pipe.to(DEVICE)
111 | pipe.weight_dtype = weight_dtype
112 |
113 | return (pipe, )
--------------------------------------------------------------------------------
/src/nodes_mappings.py:
--------------------------------------------------------------------------------
1 | from .nodes.pipeline_loader import PipelineLoader
2 | from .nodes.idm_vton import IDM_VTON
3 |
4 |
5 | NODE_CLASS_MAPPINGS = {
6 | "PipelineLoader": PipelineLoader,
7 | "IDM-VTON": IDM_VTON,
8 | }
9 |
10 | NODE_DISPLAY_NAME_MAPPINGS = {
11 | "PipelineLoader": "Load IDM-VTON Pipeline",
12 | "IDM-VTON": "Run IDM-VTON Inference",
13 | }
--------------------------------------------------------------------------------
/workflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/TemryL/ComfyUI-IDM-VTON/5a8334c58c390381e31a8023cb7ba398ade40b39/workflow.png
--------------------------------------------------------------------------------