| \n", 155 | " | accuracy | \n", 156 | "precision | \n", 157 | "recall | \n", 158 | "
|---|---|---|---|
| 0 | \n", 163 | "0.701754 | \n", 164 | "0.392857 | \n", 165 | "1.000000 | \n", 166 | "
| 1 | \n", 169 | "0.912281 | \n", 170 | "0.875000 | \n", 171 | "1.000000 | \n", 172 | "
| 2 | \n", 175 | "0.912281 | \n", 176 | "0.918919 | \n", 177 | "0.944444 | \n", 178 | "
| 3 | \n", 181 | "0.894737 | \n", 182 | "0.828571 | \n", 183 | "1.000000 | \n", 184 | "
| 4 | \n", 187 | "0.964912 | \n", 188 | "0.935484 | \n", 189 | "1.000000 | \n", 190 | "
| 5 | \n", 193 | "0.982456 | \n", 194 | "0.978261 | \n", 195 | "1.000000 | \n", 196 | "
| 6 | \n", 199 | "0.947368 | \n", 200 | "0.952381 | \n", 201 | "0.975610 | \n", 202 | "
| 7 | \n", 205 | "0.947368 | \n", 206 | "0.955556 | \n", 207 | "0.977273 | \n", 208 | "
| 8 | \n", 211 | "0.912281 | \n", 212 | "0.953488 | \n", 213 | "0.931818 | \n", 214 | "
| 9 | \n", 217 | "0.982143 | \n", 218 | "0.977273 | \n", 219 | "1.000000 | \n", 220 | "
| \n", 388 | " | accuracy | \n", 389 | "precision | \n", 390 | "recall | \n", 391 | "
|---|---|---|---|
| 0 | \n", 396 | "0.894737 | \n", 397 | "0.853659 | \n", 398 | "1.000000 | \n", 399 | "
| 1 | \n", 402 | "0.842105 | \n", 403 | "0.809524 | \n", 404 | "0.971429 | \n", 405 | "
| 2 | \n", 408 | "0.894737 | \n", 409 | "0.894737 | \n", 410 | "0.944444 | \n", 411 | "
| 3 | \n", 414 | "0.929825 | \n", 415 | "0.900000 | \n", 416 | "1.000000 | \n", 417 | "
| 4 | \n", 420 | "0.929825 | \n", 421 | "0.900000 | \n", 422 | "1.000000 | \n", 423 | "
| 5 | \n", 426 | "0.929825 | \n", 427 | "0.921053 | \n", 428 | "0.972222 | \n", 429 | "
| 6 | \n", 432 | "0.947368 | \n", 433 | "0.945946 | \n", 434 | "0.972222 | \n", 435 | "
| 7 | \n", 438 | "0.929825 | \n", 439 | "0.921053 | \n", 440 | "0.972222 | \n", 441 | "
| 8 | \n", 444 | "0.929825 | \n", 445 | "0.944444 | \n", 446 | "0.944444 | \n", 447 | "
| 9 | \n", 450 | "0.910714 | \n", 451 | "0.875000 | \n", 452 | "1.000000 | \n", 453 | "
| \n", 619 | " | accuracy | \n", 620 | "precision | \n", 621 | "recall | \n", 622 | "
|---|---|---|---|
| 0 | \n", 627 | "0.982456 | \n", 628 | "0.975610 | \n", 629 | "1.000000 | \n", 630 | "
| 1 | \n", 633 | "0.894737 | \n", 634 | "0.857143 | \n", 635 | "1.000000 | \n", 636 | "
| 2 | \n", 639 | "0.912281 | \n", 640 | "0.868421 | \n", 641 | "1.000000 | \n", 642 | "
| 3 | \n", 645 | "0.842105 | \n", 646 | "0.857143 | \n", 647 | "0.923077 | \n", 648 | "
| 4 | \n", 651 | "0.894737 | \n", 652 | "0.860465 | \n", 653 | "1.000000 | \n", 654 | "
| 5 | \n", 657 | "0.947368 | \n", 658 | "0.918919 | \n", 659 | "1.000000 | \n", 660 | "
| 6 | \n", 663 | "0.912281 | \n", 664 | "0.894737 | \n", 665 | "0.971429 | \n", 666 | "
| 7 | \n", 669 | "0.947368 | \n", 670 | "0.928571 | \n", 671 | "1.000000 | \n", 672 | "
| 8 | \n", 675 | "0.947368 | \n", 676 | "0.944444 | \n", 677 | "0.971429 | \n", 678 | "
| 9 | \n", 681 | "0.894737 | \n", 682 | "0.853659 | \n", 683 | "1.000000 | \n", 684 | "
| \n", 852 | " | accuracy | \n", 853 | "precision | \n", 854 | "recall | \n", 855 | "
|---|---|---|---|
| 0 | \n", 860 | "0.947368 | \n", 861 | "0.945946 | \n", 862 | "0.972222 | \n", 863 | "
| 1 | \n", 866 | "0.964912 | \n", 867 | "0.972222 | \n", 868 | "0.972222 | \n", 869 | "
| 2 | \n", 872 | "0.947368 | \n", 873 | "0.971429 | \n", 874 | "0.944444 | \n", 875 | "
| 3 | \n", 878 | "0.894737 | \n", 879 | "0.894737 | \n", 880 | "0.944444 | \n", 881 | "
| 4 | \n", 884 | "0.929825 | \n", 885 | "0.900000 | \n", 886 | "1.000000 | \n", 887 | "
| 5 | \n", 890 | "0.947368 | \n", 891 | "0.923077 | \n", 892 | "1.000000 | \n", 893 | "
| 6 | \n", 896 | "1.000000 | \n", 897 | "1.000000 | \n", 898 | "1.000000 | \n", 899 | "
| 7 | \n", 902 | "0.947368 | \n", 903 | "0.945946 | \n", 904 | "0.972222 | \n", 905 | "
| 8 | \n", 908 | "0.912281 | \n", 909 | "0.878049 | \n", 910 | "1.000000 | \n", 911 | "
| 9 | \n", 914 | "0.929825 | \n", 915 | "0.900000 | \n", 916 | "1.000000 | \n", 917 | "
| \n", 226 | " | sepal length (cm) | \n", 227 | "sepal width (cm) | \n", 228 | "petal length (cm) | \n", 229 | "petal width (cm) | \n", 230 | "
|---|---|---|---|---|
| 0 | \n", 235 | "5.1 | \n", 236 | "3.5 | \n", 237 | "1.4 | \n", 238 | "0.2 | \n", 239 | "
| 1 | \n", 242 | "4.9 | \n", 243 | "3.0 | \n", 244 | "1.4 | \n", 245 | "0.2 | \n", 246 | "
| 2 | \n", 249 | "4.7 | \n", 250 | "3.2 | \n", 251 | "1.3 | \n", 252 | "0.2 | \n", 253 | "
| 3 | \n", 256 | "4.6 | \n", 257 | "3.1 | \n", 258 | "1.5 | \n", 259 | "0.2 | \n", 260 | "
| 4 | \n", 263 | "5.0 | \n", 264 | "3.6 | \n", 265 | "1.4 | \n", 266 | "0.2 | \n", 267 | "
| ... | \n", 270 | "... | \n", 271 | "... | \n", 272 | "... | \n", 273 | "... | \n", 274 | "
| 145 | \n", 277 | "6.7 | \n", 278 | "3.0 | \n", 279 | "5.2 | \n", 280 | "2.3 | \n", 281 | "
| 146 | \n", 284 | "6.3 | \n", 285 | "2.5 | \n", 286 | "5.0 | \n", 287 | "1.9 | \n", 288 | "
| 147 | \n", 291 | "6.5 | \n", 292 | "3.0 | \n", 293 | "5.2 | \n", 294 | "2.0 | \n", 295 | "
| 148 | \n", 298 | "6.2 | \n", 299 | "3.4 | \n", 300 | "5.4 | \n", 301 | "2.3 | \n", 302 | "
| 149 | \n", 305 | "5.9 | \n", 306 | "3.0 | \n", 307 | "5.1 | \n", 308 | "1.8 | \n", 309 | "
150 rows × 4 columns
\n", 313 | "LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()