├── .github
└── FUNDING.yml
├── README.md
├── benchmark-eyepacs-airogs-light-v1.md
├── benchmark-eyepacs-airogs-light-v2.md
├── data-availability.md
├── origin.md
└── summary.md
/.github/FUNDING.yml:
--------------------------------------------------------------------------------
1 | # These are supported funding model platforms
2 |
3 | github: TheBeastCoding
4 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## New Updates
2 | * 08/03/24 : A new abstract is available to the public, introducing a novel approach to glaucoma detection: Assessment of Retinal Vasculature for Glaucoma Detection: A Comparative Analysis of Human Expertise and Deep Learning Algorithms.
3 | * 05/15/24 : The EyePACS-light-V2 code folder on Kaggle has a new PyTorch template for quick and easy glaucoma detection setup. This model uses the lightweight MobileNetV3 and achieved a test accuracy of 92.6%: https://www.kaggle.com/code/deathtrooper/pytorch-easy-setup-for-glaucoma-detection-92-6
4 | * 03/09/24 : EyePACS-light-V2 now has a 10.0 Kaggle usability score: supplemental metadata.csv file added to dataset.
5 | * 01/20/24 : EyePACS-light-V2 preprocess high-level overview is now available on the Kaggle dataset link in the about section (scroll all the way down) if you are curious on how the dataset was derived
6 | * 12/28/23 : EyePACS-light-V2 94.94% test accuracy benchmark using ConvNeXtTiny: https://www.kaggle.com/code/deathtrooper/benchmark-94-94-convnexttiny
7 | * 12/12/23 : EyePACS-light-V2 is HERE!!! Be the first to benchmark your model with this improved dataset! Download from kaggle: https://www.kaggle.com/datasets/deathtrooper/glaucoma-dataset-eyepacs-airogs-light-v2/data
8 |
9 | ## Citation Note
10 | If you found this catalog helpful, please consider citing the following:
11 | - Riley Kiefer, Muhammad Abid, Jessica Steen, Mahsa Raeisi Ardali, and Ehsan Amjadian. 2023. A Catalog of Public Glaucoma Datasets for Machine Learning Applications: A detailed description and analysis of public glaucoma datasets available to machine learning engineers tackling glaucoma-related problems using retinal fundus images and OCT images. In Proceedings of the 2023 7th International Conference on Information System and Data Mining (ICISDM '23). Association for Computing Machinery, New York, NY, USA, 24–31. https://doi.org/10.1145/3603765.3603779
12 |
13 |
14 | # Public Glaucoma Dataset Catalog
15 | [Help expand this repository by providing links/publications to new glaucoma datasets!]
16 |
17 | ## Repository Table of Contents
18 | - README.md : Glaucoma overview, relevant research, and dataset access links
19 | - benchmark-eyepacs-airogs-light.md : Leaderboard for the test set evaluation using the train/val sets of the EyePACS-AIROGS-light dataset
20 | - summary.md : Dataset class breakdown, image types, and glaucoma types
21 | - data-availability.md : Dataset image and segmentation availability.
22 | - origin.md : Dataset collection origin and collection years.
23 |
24 | ## Glaucoma Overview
25 | According to AAO, "Glaucoma is a disease that damages your eye’s optic nerve. It usually happens when fluid builds up in the front part of your eye. That extra fluid increases the pressure in your eye, damaging the optic nerve". It is a leading cause of blindness and worsens over time if left untreated. Optometrists diagnose glaucoma through fundus images (a 2D image of the eye) or ocular coherence tomography (OCT) images (a 3D image of the eye). In fundus images, optometrists typically look for optic cup or optic disc damage. In OCT images, optometrists typically look for layer atrophy. To automate the detection of glaucoma, datasets are curated for machine learning. Fundus image datasets are typically designed for either glaucoma classification to distinguish healthy for glaucoma or optic nerve head segmentation to extract and analyze cup or disc damage. High-quality benchmark datasets like EyePACS-AIROGS-light have predetermined train, validation, and test sets for reproducibility.
26 |
27 | ## Relevant Glaucoma Datasets (by me)
28 | - SMDG-19 [Dataset], "Standardized Multi-Channel Dataset for Glaucoma, Version 19", https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset
29 | - EyePACS-AIROGS-light-v1 [Dataset], "EyePACS Artificial Intelligence for Robust Glaucoma Screening Challenge, Lightweight Version 1", https://www.kaggle.com/datasets/deathtrooper/eyepacs-airogs-light
30 | - EyePACS-AIROGS-light-v2 [Dataset], "EyePACS Artificial Intelligence for Robust Glaucoma Screening Challenge, Lightweight Version 2", https://www.kaggle.com/datasets/deathtrooper/glaucoma-dataset-eyepacs-airogs-light-v2
31 |
32 | ## Relevant Glaucoma Research (by me)
33 | - ARVO 2024 [Abstract], "Assessment of Retinal Vasculature for Glaucoma Detection: A Comparative Analysis of Human Expertise and Deep Learning Algorithms", https://iovs.arvojournals.org/article.aspx?articleid=2794846
34 | - AAO 2022 [Abstract], "A Comprehensive Survey of Publicly Available Glaucoma Datasets for Automated Glaucoma Detection", https://aaopt.org/past-meeting-abstract-archives/?SortBy=ArticleYear&ArticleType=&ArticleYear=2022&Title=&Abstract=&Authors=&Affiliation=&PROGRAMNUMBER=225129
35 | - AAO 2023 [Abstract], "The Predictive Power of Fundus Blood Vessels in Glaucoma Detection", accepted as a presentation for AAO 2023
36 | - AAO 2023 [Abstract], "EyePACS-light: A Lightweight Balanced Dataset for Automated Glaucoma Classification Modeling", accepted as a poster for AAO 2023
37 | - ARVO 2023 [Abstract], "Ground truth validation of publicly available datasets utilized in artificial intelligence models for glaucoma detection", https://iovs.arvojournals.org/article.aspx?articleid=2791017
38 | - ARVO 2023 [Abstract], "Standardized and Open-Access Glaucoma Dataset for Artificial Intelligence Applications", https://iovs.arvojournals.org/article.aspx?articleid=2790420
39 | - IEEE-IEMCOM 2022 [Full Paper], "A Survey of Glaucoma Detection Algorithms using Fundus and OCT Images", https://ieeexplore.ieee.org/abstract/document/9946629
40 | - IEEE-ICIVC 2023 [Full Paper], "Automated Fundus Image Standardization Using a Dynamic Global Foreground Threshold Algorithm", https://ieeexplore.ieee.org/abstract/document/10270429
41 | - ICISDM 2023 [Full Paper], "A Catalog of Public Glaucoma Datasets for Machine Learning Applications", https://dl.acm.org/doi/abs/10.1145/3603765.3603779
42 |
43 | ## Example data
44 | Drishti-GS | G1020 | ORIGA-light | REFUGE1-VAL | PAPILA
45 | --- | --- | --- | --- | ---
46 |
|
|
|
|
47 |
48 | ## Use Case Acronyms
49 | - Classification
50 | - BGC = Binary Glaucoma Classification (healthy vs. glaucoma or non-glaucoma vs. glaucoma)
51 | - MGC = Multi Glaucoma Classification (at least 2 glaucoma types, including suspect)
52 | - Segmentation
53 | - ODS = Optic Disc Segmentation
54 | - OCS = Optic Cup Segmentation
55 | - BVS = Blood Vessel Segmentation
56 | - OLS = OCT Layer Segmentation
57 | - RNFLS = Retinal Nerve Fiber Layer Segmentation
58 | - Other
59 | - LT = Localization Task
60 | - IQA = Image Quality Assesment
61 | - MIDI = Multi Image Domain Input
62 | - CDR = Cup-to-Disc Ratio Estimation
63 | - N = Notching
64 | - VF = Visual Field Information/Segmentation
65 |
66 | ## Public Glaucoma Image Datasets
67 | | Dataset | Access Link | Accessibility | Glaucoma Labels? | Use Case |
68 | | ------------- | ------------- | ------------- | ------------- | ------------- |
69 | | ACRIMA | https://figshare.com/s/c2d31f850af14c5b5232 | open | Y | BGC |
70 | | AGE | https://age.grand-challenge.org/Download/ | registration | Y | MGC, LT |
71 | | BEH (Bangladesh Eye Hospital) | https://github.com/mirtanvirislam/Deep-Learning-Based-Glaucoma-Detection-with-Cropped-Optic-Cup-and-Disc-and-Blood-Vessel-Segmentation/tree/master/Dataset | open | Y | BGC |
72 | | BIOMISA | https://data.mendeley.com/datasets/2rnnz5nz74/2 | open | Y | MGC, BGC, MIDI, OLS, CDR |
73 | | Chaksu-IMAGE | https://doi.org/10.6084/m9.figshare.20123135 | open | Y | BGC |
74 | | CRFO-v4 | https://data.mendeley.com/datasets/trghs22fpg/4 | open | Y | BGC, MDI, ODS, OCS |
75 | | DR-HAGIS | https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/ | open | Y | BGC, BVS |
76 | | DRIONS-DB | https://www.researchgate.net/publication/326460478_Glaucoma_dataset_-_DRIONS-DB | open | N | ODS |
77 | | DRISHTI-GS1 | https://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php | open | Y | BGC, ODS, OCS, CDR, N |
78 | | EyePACS-AIROGS | https://airogs.grand-challenge.org/data-and-challenge/ | open | Y | BGC, IQA |
79 | | EyePACS-AIROGS-light (v1) | https://www.kaggle.com/datasets/deathtrooper/eyepacs-airogs-light | registration | Y | BGC |
80 | | EyePACS-AIROGS-light (v2) | https://www.kaggle.com/datasets/deathtrooper/glaucoma-dataset-eyepacs-airogs-light-v2 | registration | Y | BGC |
81 | | FIVES | https://figshare.com/articles/figure/FIVES_A_Fundus_Image_Dataset_for_AI-based_Vessel_Segmentation/19688169/1 | open | Y | BGC, BVS |
82 | | G1020 | https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets | registration | Y | BGC, ODS, OCS |
83 | | GAMMA | https://gamma.grand-challenge.org/ | registration | Y | BGC?, ODS, OCS, OLS?, LT, MIDI |
84 | | GOALS | https://ichallenges.grand-challenge.org/iChallenge-GON3/ | registration | Y | BGC, OLS |
85 | | GRAPE | https://springernature.figshare.com/collections/GRAPE_A_multi-modal_glaucoma_dataset_of_follow-up_visual_field_and_fundus_images_for_glaucoma_management/6406319/1 | open | Y | MGC, VF |
86 | | Harvard-GF | https://ophai.hms.harvard.edu/datasets/harvard-glaucoma-fairness-3300-samples/ | request | N | BGC, VF, RNFLS, MIDI |
87 | | HRF | https://www5.cs.fau.de/research/data/fundus-images/ | open | Y |
88 | | INSPIRE-AVR-test | https://medicine.uiowa.edu/eye/inspire-datasets | open | N |
89 | | INSPIRE-STEREO | https://medicine.uiowa.edu/eye/inspire-datasets | open | N |
90 | | JSIEC-1000 | https://www.kaggle.com/datasets/linchundan/fundusimage1000 | registration | Y |
91 | | KEH (Kim's Eye Hospital) | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/1YRRAC | open | Y |
92 | | LAG | https://github.com/smilell/AG-CNN | request | Y |
93 | | LES-AV | https://figshare.com/articles/dataset/LES-AV_dataset/11857698/1 | open | Y |
94 | | Leuven-Haifa HRF | https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/Z7SHGO | request | Y | MGC, BVS |
95 | | MSHF | https://www.nature.com/articles/s41597-023-02188-x#ref-CR17 | open | Y | BGC, IQA |
96 | | OCTV | https://zenodo.org/record/1481223#.Y20g3XbMIuV | open | Y |
97 | | OIA-ODIR | https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k | registration | Y |
98 | | ONHSD | https://aldiri.info/Image%20Datasets/ONHSD.aspx | inaccessible | Y |
99 | | ORIGA-light | https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection | registration | Y |
100 | | PAPILA | https://doi.org/10.6084/m9.figshare.14798004.v1 | open | Y |
101 | | REFUGE1 | https://refuge.grand-challenge.org/REFUGE2Download/ | registration | Y |
102 | | REFUGE2 | https://refuge.grand-challenge.org/REFUGE2Download/ | registration | Y |
103 | | RIGA-BIN-RUSHED | https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z | open | N |
104 | | RIGA-MAGRABI | https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z | open | N |
105 | | RIGA-MESSIDOR | https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z | open | N |
106 | | RIM-ONE-r1 | http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ | open | Y |
107 | | RIM-ONE-r2 | http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ | open | Y |
108 | | RIM-ONE-r3 | http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ | open | Y |
109 | | RIM-ONE-DL | http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ | open | Y |
110 | | SIGF | https://github.com/XiaofeiWang2018/DeepGF | request | Y |
111 | | SMDG | https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset | registration | Y |
112 | | sjchoi86-HRF | https://github.com/yiweichen04/retina_dataset | open | Y |
113 | | VEIRC | https://github.com/ProfMKD/Glaucoma-dataset | open | Y |
114 |
--------------------------------------------------------------------------------
/benchmark-eyepacs-airogs-light-v1.md:
--------------------------------------------------------------------------------
1 | ## EyePACS-AIROGS-light (v1) Benchmark Leaderboard
2 | Dataset Found Here: https://www.kaggle.com/datasets/deathtrooper/eyepacs-airogs-light
3 |
4 | | Rank | Method | Author | Date | Test Accuracy | Link |
5 | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
6 | | 1 | Xception-Preprocessed | KEREM KARABACAK | Aug, 2023 | 93.5% | https://www.kaggle.com/code/keremkarabacak/xception-93-5 |
7 | | 2 | MobileNetV3-Regularized | Self | Sept, 2023 | 92.1% | https://www.kaggle.com/code/deathtrooper/92-mobilenetv3-glaucoma-detection |
8 | | 3 | MobileNetV3-Preprocessed | Self | Aug, 2023 | 91.7% | https://www.kaggle.com/code/deathtrooper/91-7-glaucoma-detection-with-preprocess-noise |
9 | | 4 | MobileNetV3-Baseline | Self | May, 2023 | 88.9% | https://www.kaggle.com/code/deathtrooper/glaucoma-classification-easy-setup-88-9-baseline |
10 |
--------------------------------------------------------------------------------
/benchmark-eyepacs-airogs-light-v2.md:
--------------------------------------------------------------------------------
1 | ## EyePACS-AIROGS-light (v2) Benchmark Leaderboard
2 | Dataset Found Here: https://www.kaggle.com/datasets/deathtrooper/glaucoma-dataset-eyepacs-airogs-light-v2/data
3 |
4 | | Rank | Method | Author | Date | Test Accuracy | Link |
5 | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
6 | | 1 | ConvNeXtTiny-(Noise, Regularization, Preprocessed) | Riley Kiefer | Dec, 2023 | 94.94% | https://www.kaggle.com/code/deathtrooper/benchmark-94-94-convnexttiny |
7 | | 2 | Xception-(Noise, Regularization, Preprocessed) | Riley Kiefer | Dec, 2023 | 94.16% | https://www.kaggle.com/code/deathtrooper/benchmark-94-16-xception-noise-and-preprocess |
8 | | 3 | MobileNetV3-Baseline | Riley Kiefer | Dec, 2023 | 87.66% | https://www.kaggle.com/code/deathtrooper/glaucoma-classification-template-with-baseline |
9 |
10 |
--------------------------------------------------------------------------------
/data-availability.md:
--------------------------------------------------------------------------------
1 | ## Overview
2 | This table presents the dataset image and segmentation type availability.
3 |
4 | ## Key
5 | - F1 : Cropped Fundus
6 | - F2 : Full Fundus
7 | - F-OD : Fundus Optic Disc Segmentation
8 | - F-OC : Fundus Optic Cup Segmentation
9 | - F-BV : Fundus Blood Vessel Segmentation
10 | - F-V : Fundus Vein Segmentation
11 | - F-A : Fundus Artery Segmentation
12 | - OCT1 : Ocular Coherence Tomography Variant
13 | - OCT-OD : OCT Optic Disc Segmentation
14 | - OCT-OC : OCT Optic Cup Segmentation
15 | - OCT-L : OCT Layer Segmentation
16 | - M1 : Miscellaneous Segmentation
17 |
18 | ## Data Table
19 | | Dataset | F1 | F2 | F-OD | F-OC | F-BV | F-V | F-A | OCT1 | OCT-OD | OCT-OC | OCT-L | M1 |
20 | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
21 | | AGE | | | | | | | | X | | | | |
22 | | ACRIMA | X | | | | | | | | | | | |
23 | | BEH | | X | | | | | | | | | | |
24 | | BIOMISA | | X | | | | | | X | | X | X | |
25 | | Chaksu-IMAGE | | X | X | X | | | | | | | | |
26 | | CRFO-v4 | | X | X | X | | | | X | X | | | |
27 | | DRISHTI-GS1 | | X | X | X | | | | | | | | |
28 | | DR-HAGIS | | X | | | X | | | | | | | |
29 | | EyePACS-AIROGS| | X | | | | | | | | | | |
30 | | FIVES | | X | | | X | | | | | | | |
31 | | G1020 | | X | X | X | | | | | | | | |
32 | | GRAPE | X | X | X | X | | | | | | | | X |
33 | | HARVARD-GF | | | | | | | | X | | | | X |
34 | | HRF | | X | | | X | | | | | | | |
35 | | INSPIRE-AVR | | X | | | | | | | | | | |
36 | | INSPIRE-S | X | | X | | | | | | | | | |
37 | | JSIEC-1000 | | X | | | | | | | | | | |
38 | | KEH | X | | | | | | | | | | | |
39 | | LAG | | X | | | | | | | | | | X |
40 | | LES-AV | | X | | | X | X | X | | | | | |
41 | | Leuven-Haifa | | X? | | | | X | X | | | | | |
42 | | MSHF | | X | | | | | | | | | | |
43 | | OCTV | | | | | | | | X | | | | |
44 | | OIA-ODIR | | X | | | | | | | | | | |
45 | | ORIGA-light | | X | X | X | | | | | | | | |
46 | | PAPILA | | X | X | X | | | | | | | | |
47 | | REFUGE | | X | X | X | | | | | | | | |
48 | | RIM-ONE-r1 | X | | X | | | | | | | | | |
49 | | RIM-ONE-r2 | X | | X | | | | | | | | | |
50 | | RIM-ONE-r3 | X | | X | X | | | | | | | | |
51 | | RIM-ONE-DL | X | | | | | | | | | | | |
52 | | SIGF | X | | | | | | | | | | | |
53 | | sjchoi86-HRF | | X | | | | | | | | | | |
54 | | VEIRC | | X | | | | | | | | | | |
55 |
--------------------------------------------------------------------------------
/origin.md:
--------------------------------------------------------------------------------
1 | ## Overview
2 | This table presents the dataset collection origin (city/state/region/country) and the years of collection.
3 |
4 | ## Key
5 | - NR = Not Reported
6 |
7 | ## Data Table
8 | | Dataset | Collection City/State/Region | Collection Country | Collection Years |
9 | | ------------- | ------------- | ------------- | ------------- |
10 | | AGE | Guangzhou | China | 2016 - 2019 |
11 | | ACRIMA | Valencia | Spain | NR |
12 | | BEH | Dhaka | Bangladesh | 2019 - 2020 |
13 | | BIOMISA | Manipal, Karnataka | India | NR |
14 | | Chaksu-IMAGE | NR | NR | 2-year period, unknown |
15 | | CRFO-v4 | NR | NR | NR |
16 | | DRISHTI-GS1 | Madurai | India | NR |
17 | | DR-HAGIS | Sandbach | United Kingdom | NR |
18 | | EyePACS-AIROGS | mix | United States | NR |
19 | | FIVES | Hangzhou, Zhejiang | China | 2016 - 2021 |
20 | | G1020 | Kaiserslautern | Germany | 2005 - 2017 |
21 | | GRAPE | Hangzhou | China | 2015 - 2022 |
22 | | HARVARD-GF | Cambridge, Massachusetts | United States | NR |
23 | | HRF | NR | Germany, Czech Republic | NR |
24 | | INSPIRE-AVR | Iowa | United States | NR |
25 | | INSPIRE-S | Iowa | United States | NR |
26 | | JSIEC-1000 | Guangdong | China | 2009 - 2018 |
27 | | KEH | Seoul | Korea | NR |
28 | | LAG | Bejing | China | NR |
29 | | LES-AV | NR | NR | NR |
30 | | Leuven-Haifa HRF | Leuven | Belgium | 2010 - 2019 |
31 | | MSHF | Hangzhou | China | NR |
32 | | OCTV | NR | United States | 2008 - 2016 |
33 | | OIA-ODIR | mix | China | NR |
34 | | ORIGA-light | southwestern | Singapore | Full Fundus | 2004 - 2007 |
35 | | PAPILA | Murcia | Spain | 2018 - 2020 |
36 | | REFUGE | Guangzhou | China | NR |
37 | | RIM-ONE-r1 | Tenerife, Zaragoza, and Madrid | Spain | NR |
38 | | RIM-ONE-r2 | Tenerife, Zaragoza | Spain | NR |
39 | | RIM-ONE-r3 | Tenerife | Spain | NR |
40 | | RIM-ONE-DL | Tenerife, Zaragoza, and Madrid | Spain | NR |
41 | | SIGF | NR | NR | 1986 - 2018 |
42 | | sjchoi86-HRF | NR | NR | NR |
43 | | SMDG (v19) | mix | mix | mix |
44 | | VEIRC | New Delhi | India | NR |
45 |
--------------------------------------------------------------------------------
/summary.md:
--------------------------------------------------------------------------------
1 | ## Overview
2 | This table presents the class breakdown (healthy and glaucoma), the image type, and the glaucoma types.
3 |
4 | ## Key
5 | - UG = Unspecified Glaucoma
6 | - OAG = Open Angle Glaucoma
7 | - CAG = Closed Angle Glaucoma
8 | - CSG = Chronic Simple Glaucoma
9 | - RG = Referable Glaucoma
10 | - NTG = Normal Tension Glaucoma
11 | - HTG = High Tension Glaucoma
12 | - EG = Early Glaucoma
13 | - MG = Moderate Glaucoma
14 | - DG = Deep/Severe/Advanced Glaucoma
15 | - SG = Suspect Glaucoma
16 | - OCT = Ocular Coherence Tomography
17 | - AS-OCT = Anterior Segment OCT
18 | - SD-OCT = Spectral Domain OCT
19 | - *Contains other non-glaucoma diseases.
20 |
21 | ## Data Table
22 | | Dataset | Total Healthy | Total Glaucoma | Image Type | Glaucoma Types |
23 | | ------------- | ------------- | ------------- | ------------- | ------------- |
24 | | AGE | 0 | 4800 | AS-OCT | CAG, OAG |
25 | | ACRIMA | 309 | 396 | Cropped Fundus | UG |
26 | | BEH | 463 | 171 | Full Fundus | UG |
27 | | BIOMISA (fundus) | 18 | 32 | Full Fundus | SG, UG |
28 | | BIOMISA (OCT) | 18 | 32 | SD-OCT | SG, UG |
29 | | Chaksu-IMAGE | 1157 | 188 | Full Fundus | SG, UG |
30 | | CRFO-v4 (fundus) | 30 | 48 | Full Fundus | UG |
31 | | CRFO-v4 (OCT) | 13 | 28 | SD-OCT | UG |
32 | | DRISHTI-GS1 (test) | 13 | 38 | Full Fundus | UG |
33 | | DRISHTI-GS1 (train) | 18 | 32 | Full Fundus | UG |
34 | | DR-HAGIS | 0 | 10 | Full Fundus | UG |
35 | | EyePACS-AIROGS (train) | 98172 | 3270 | Full Fundus | RG |
36 | | EyePACS-AIROGS-light (train) | 2500 | 2500 | Full Fundus | RG |
37 | | EyePACS-AIROGS-light (val) | 270 | 270 | Full Fundus | RG |
38 | | EyePACS-AIROGS-light (test) | 500 | 500 | Full Fundus | RG |
39 | | FIVES | 200 | 200 | Full Fundus | CAG, OAG |
40 | | G1020 | 724 | 296 | Full Fundus | UG |
41 | | GRAPE | 0 | 631 | Cropped and Full Fundus | OAG, CAG |
42 | | HARVARD-GF-TRAIN | unknown (2100 total) | unknown (2100 total) | 3D OCT B-scans | UG |
43 | | HARVARD-GF-VAL | unknown (300 total) | unknown (300 total) | 3D OCT B-scans | UG |
44 | | HARVARD-GF-TEST | unknown (900 total) | unknown (900 total) | 3D OCT B-scans | UG |
45 | | HRF | 15 | 15 | Full Fundus | UG |
46 | | INSPIRE-AVR (test) | 0 | 40 | Full Fundus | OAG |
47 | | INSPIRE-S (fundus) | 0 | 30 | Stereo Fundus | UG |
48 | | INSPIRE-S (OCT) | 0 | 30 | Depth OCT | UG |
49 | | JSIEC-1000 | 38 | 13 | Full Fundus | SG |
50 | | KEH | 788 | 756 | Cropped Fundus | DG, EG |
51 | | LAG | 3882 | 4875 | Full Fundus | UG |
52 | | LES-AV | 11 | 11 | Full Fundus | NTG, OAG |
53 | | Leuven-Haifa HRF | 56? | 138? | Full Fundus | NTG, HTG |
54 | | MSHF | 26 | 52 | Full Fundus | UG |
55 | | OCTV | 263 | 847 | OCT Volume | OAG |
56 | | OIA-ODIR (test-offline)| 435 | 36 | Full Fundus | UG |
57 | | OIA-ODIR (test-online)| 843 | 58 | Full Fundus | UG |
58 | | OIA-ODIR (train)| 3038 | 200 | Full Fundus | UG |
59 | | ORIGA-light | 482 | 168 | Full Fundus | UG |
60 | | PAPILA | 333 | 155 | Full Fundus | CSG, SG |
61 | | REFUGE1 | 1080* | 120 | Full Fundus | NTG, OAG |
62 | | REFUGE2 | 1720* | 280 | Full Fundus | NTG, OAG |
63 | | RIM-ONE-r1 | 118 | 40 | Cropped Fundus | DG, EG, MG |
64 | | RIM-ONE-r2 | 255 | 200 | Cropped Fundus | UG |
65 | | RIM-ONE-DL (hospital-train) | 195 | 116 | Cropped Fundus | DG, EG, MG, SG, UG |
66 | | RIM-ONE-DL (hospital-test) | 118 | 56 | Cropped Fundus | DG, EG, MG, SG, UG |
67 | | SIGF | 3303 | 368 | Cropped Fundus | UG |
68 | | sjchoi86-HRF | 300 | 101 | Full Fundus | UG |
69 | | SMDG (v19) | 7499 | 4946 | Full Fundus | many |
70 | | VEIRC | 225 | 139 | Full Fundus | UG |
71 |
--------------------------------------------------------------------------------