├── .gitattributes ├── 1.What_is_Data_Science ├── Readme.md ├── Week 1 - Defining Data Science and What Data Scientists Do │ ├── Quiz 1 - Data Science The Sexiest Job in the 21st Century │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ └── Q4 & Q5.jpg │ ├── Quiz 2 - What Makes Someone a Data Scientist │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ └── Q4 & Q5.jpg │ └── Readme.md ├── Week 2 - Data Science Topics │ ├── Quiz - Data Mining │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ └── Q4 & Q5.jpg │ ├── Quiz - Regression │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ ├── Q4.jpg │ │ └── Q5.jpg │ └── Readme.md └── Week 3 - Data Science in Business │ ├── Quiz 1 - The Final Deliverable │ ├── Q1.jpg │ ├── Q2.jpg │ ├── Q3 & Q4.jpg │ └── Q5.jpg │ ├── Quiz 2 - The Report Structure │ ├── Q1.jpg │ ├── Q2.jpg │ ├── Q3.jpg │ └── Q4 & Q5.jpg │ ├── Quiz 3 - Final Assignment │ └── Readme.md │ └── Readme.md ├── 2.Tools_for_Data_Science ├── Readme.md ├── Week 1 - Data Scientist's Toolkit │ ├── 1. Languages of Data Science │ │ └── Practice Quiz - Languages │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ ├── Q3.JPG │ │ │ ├── Q4.JPG │ │ │ ├── Q5.JPG │ │ │ └── Q6.JPG │ ├── 2. Data Science Tools │ │ └── Practice Quiz - Tools │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ ├── Q3.JPG │ │ │ ├── Q4.JPG │ │ │ ├── Q5.JPG │ │ │ └── Q6.JPG │ ├── 3. Packages, APIs, Data Sets and Model │ │ └── Practice Quiz - Packages, APIs, Data Sets, Models │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ ├── Q3.JPG │ │ │ ├── Q4.JPG │ │ │ ├── Q5.JPG │ │ │ └── Q6.JPG │ ├── 4. Module 1 Assessment - Graded Quiz │ │ ├── Q1.jpg │ │ ├── Q10.jpg │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ ├── Q4.JPG │ │ ├── Q5.JPG │ │ ├── Q6.jpg │ │ ├── Q7.JPG │ │ ├── Q8.JPG │ │ └── Q9.JPG │ └── Readme.md ├── Week 2 - Open Source Tools │ ├── 1. GitHub │ │ └── Practice Quiz - GitHub │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ └── Q3.JPG │ ├── 2. Jupter Notebook and JupyterLab │ │ └── Practice Quiz - Jupter Notebooks │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ └── Q3.JPG │ ├── 3. RStudio IDE │ │ └── Practice Quiz - RStudio IDE │ │ │ ├── Q1.JPG │ │ │ ├── Q2.JPG │ │ │ └── Q3.JPG │ ├── 4. Module 2 Assessment │ │ ├── Q1.JPG │ │ ├── Q10.JPG │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ ├── Q4.JPG │ │ ├── Q5.JPG │ │ ├── Q6.JPG │ │ ├── Q7.JPG │ │ ├── Q8.jpg │ │ └── Q9.JPG │ └── Readme.md ├── Week 3 - IBM Tools for Data Science │ ├── 1. Watson Studio │ │ └── Practice Quiz - Watson Studio │ │ │ ├── Q1.JPG │ │ │ ├── Q10.JPG │ │ │ ├── Q2.JPG │ │ │ ├── Q3.JPG │ │ │ ├── Q4.JPG │ │ │ ├── Q5.JPG │ │ │ ├── Q6.JPG │ │ │ ├── Q7.JPG │ │ │ ├── Q8.JPG │ │ │ └── Q9.JPG │ ├── 2. Other IBM Tools │ │ └── Practice Quiz - Other IBM Tools │ │ │ ├── Q1.JPG │ │ │ ├── Q10.JPG │ │ │ ├── Q11.JPG │ │ │ ├── Q12.JPG │ │ │ ├── Q2.JPG │ │ │ ├── Q3.JPG │ │ │ ├── Q4.JPG │ │ │ ├── Q5.JPG │ │ │ ├── Q6.JPG │ │ │ ├── Q7.JPG │ │ │ ├── Q8.JPG │ │ │ └── Q9.JPG │ ├── 3. Module 3 Assessment │ │ ├── Q1.JPG │ │ ├── Q10.JPG │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ ├── Q4.JPG │ │ ├── Q5.JPG │ │ ├── Q6.jpg │ │ ├── Q7.JPG │ │ ├── Q8.JPG │ │ └── Q9.JPG │ └── Readme.md └── Week 4 - Final Assignment │ ├── Final_Assignment.ipynb │ └── Readme.md ├── 3.Data_Science_Methodology ├── Readme.md ├── Week 1 - From Problem to Approach and From Requirements to Collection │ ├── 1. From Problem to Approach │ │ ├── LAB-1-From-Problem-to-Approach-v2.0.ipynb │ │ └── Quiz - From Problem to Approach │ │ │ ├── Q1.jpg │ │ │ ├── Q2 & Q3.jpg │ │ │ ├── Q4.jpg │ │ │ └── Q5.jpg │ ├── 2. From Requirements to Collection │ │ ├── LAB-From-Requirements-to-Collection-py-v2.0.ipynb │ │ └── Quiz - From Requirements to Collection │ │ │ ├── Q1.jpg │ │ │ ├── Q2 & Q3.jpg │ │ │ └── Q4 & Q5.jpg │ └── Readme.md ├── Week 2 - From Understanding to Preparation and From Modeling to Evaluation │ ├── 1. From Understanding to Preparation │ │ ├── LAB-From-Understanding-to-Preparation-py-v2.0.ipynb │ │ └── Quiz - From Understanding to Preparation │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ ├── Q3.jpg │ │ │ ├── Q4.jpg │ │ │ └── Q5.jpg │ ├── 2. From Modeling to Evaluation │ │ ├── LAB-From-Modeling-to-Evaluation-py-v2.0.ipynb │ │ └── Quiz - From Modeling to Evaluation │ │ │ ├── Q1.jpg │ │ │ ├── Q2 & Q3.jpg │ │ │ └── Q4 & Q5.jpg │ └── Readme.md └── Week 3 - From Understanding to Preparation and From Modeling to Evaluation │ ├── 1. From Deployment to Feedback │ └── Quiz - From Deployment to Feedback │ │ ├── Q1.jpg │ │ ├── Q10.jpg │ │ ├── Q2.jpg │ │ ├── Q3.jpg │ │ ├── Q4.jpg │ │ ├── Q5.jpg │ │ ├── Q6.jpg │ │ ├── Q7 & Q8.jpg │ │ └── Q9.jpg │ ├── 2. Final Assignment │ └── Readme.md │ └── Readme.md ├── 4.Python_for_Data_Science_and_AI ├── Readme.md ├── Week 1 - Python Basics │ ├── 1. Types │ │ └── Quiz - Types │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ ├── Q3.jpg │ │ │ └── Q4.jpg │ ├── 2. Expressions and Variables │ │ └── Quiz - Expressions and Variables │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ ├── Q3.jpg │ │ │ └── Q4.jpg │ ├── 3. Your First Program, Types, Expressions and Variables │ │ └── LAB -Types.ipynb │ ├── 4. String Operations │ │ ├── LAB - Strings.ipynb │ │ └── Quiz - String Operations │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ ├── Q3.jpg │ │ │ ├── Q4.jpg │ │ │ ├── Q5.jpg │ │ │ ├── Q6.jpg │ │ │ └── Q7.jpg │ ├── Quiz - String Operations.docx │ └── Readme.md ├── Week 2 - Python Data Structures │ ├── 1. List and Tuples │ │ ├── LAB 1 - Tuples.ipynb │ │ ├── LAB 2 - Lists.ipynb │ │ └── Quiz - List and Tuples │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ ├── Q3.jpg │ │ │ ├── Q4.jpg │ │ │ ├── Q5.jpg │ │ │ ├── Q6.jpg │ │ │ ├── Q7.jpg │ │ │ └── Q8 & Q9.jpg │ ├── 2. Dictionaries │ │ ├── LAB 1 -Dictionaries.ipynb │ │ └── Quiz - Dictionaries │ │ │ ├── Q1.jpg │ │ │ └── Q2 & Q3.jpg │ ├── 3. Sets │ │ ├── LAB 1 - Sets.ipynb │ │ └── Quiz - Sets │ │ │ ├── Q1 & Q2.jpg │ │ │ └── Q3.jpg │ └── Readme.md ├── Week 3 - Python Programming Fundamentals │ ├── 1. Conditions and Branching │ │ ├── LAB -Conditions and Branching.ipynb │ │ └── Quiz - Conditions and Branching.docx │ ├── 2. Loops │ │ ├── LAB - Loops.ipynb │ │ └── Quiz - Loops.docx │ ├── 3. Functions │ │ ├── LAB - Functions.ipynb │ │ └── Quiz - Functions.docx │ ├── 4. Classes │ │ ├── LAB - Classes.ipynb │ │ └── Quiz - Objects and Classes.docx │ └── Readme.md ├── Week 4 - Working with Data in Python │ ├── 1. Reading Files with Open │ │ ├── LAB - ReadFile.ipynb │ │ └── Quiz - Reading Files with Open │ │ │ ├── Q1.jpg │ │ │ ├── Q2.jpg │ │ │ └── Q3.jpg │ ├── 2. Writing files with open │ │ ├── LAB - WriteFile.ipynb │ │ └── Quiz - Writing Files with Open.docx │ ├── 3. Pandas │ │ ├── LAB - Coding with Pandas.ipynb │ │ └── Quiz - Pandas │ │ │ ├── Q1 & Q2.jpg │ │ │ └── Q3.jpg │ ├── 4. One Dimensional Numpy │ │ ├── LAB - Numpy1D.ipynb │ │ └── Quiz - One Dimensional numpy.docx │ ├── 5. Two Dimensional Numpy │ │ ├── LAB - Numpy2D.ipynb │ │ └── Quiz - Two Dimensional numpy.docx │ ├── 6. Simple API │ │ ├── LAB 1 - Intro_API.ipynb │ │ └── LAB 2 - API_2.ipynb │ └── Readme.md └── Week 5 - Analyzing US Economic Data and Building a Dashboard │ ├── Final Assignment - Python Dashboard.ipynb │ ├── Readme.md │ └── Screenshots │ ├── dashboard.jpg │ ├── gdp_head.jpg │ ├── unemployment_greater_than_8_point_five.jpg │ └── unemployment_head.jpg ├── 5.Databases_and_SQL_for_Data_Science ├── Readme.md ├── Week 1 - Introduction to Databases and Basic SQL │ ├── Lab 1.sql │ ├── Quiz 1 - Databases.docx │ ├── Quiz 2 - Basic SQL.docx │ └── Readme.md ├── Week 2 - Advanced SQL │ ├── 1. String Patterns, Ranges, Sorting, and Grouping │ │ ├── Quiz - String Patterns, Ranges, Sorting and Grouping.docx │ │ ├── Week2Lab1v5.pdf │ │ ├── wk2q1.sql │ │ ├── wk2q2.sql │ │ ├── wk2q3.sql │ │ ├── wk2q4a.sql │ │ ├── wk2q4b.sql │ │ ├── wk2q5a.sql │ │ ├── wk2q5b.sql │ │ ├── wk2q5c.sql │ │ ├── wk2q5d.sql │ │ ├── wk2q5e.sql │ │ └── wk2q6.sql │ ├── 2. Functions, Sub-Queries, Multiple Tables │ │ ├── PETSALE-CREATE.sql │ │ └── Quiz - Functions, Sub-Queries, Multiple Tables.docx │ ├── Readme.md │ └── Table Data │ │ ├── Departments.csv │ │ ├── Employees.csv │ │ ├── Jobs.csv │ │ ├── JobsHistory.csv │ │ ├── Locations.csv │ │ └── Script_Create_Tables.sql ├── Week 3 - Accessing Databases using Python │ ├── Create-Db2-Service-Credentials.pdf │ ├── LAB 1 -Connecting-v4-py.ipynb │ ├── LAB 2 -Querying-v4-py.ipynb │ ├── LAB 3 -SQLmagic-v3-py.ipynb │ ├── LAB 4 -Analyzing-v5-py.ipynb │ ├── Quiz - Database access from Python.docx │ └── Readme.md └── Week 4 - Course Assignment │ ├── Data │ └── Chicago_Public_Schools_-_Progress_Report_Cards__2011-2012-v3.csv │ ├── Final Assignment │ ├── DB0201EN-Week4-2-2-PeerAssign-v5-py.ipynb │ ├── Data │ │ ├── Census_Data_-_Selected_socioeconomic_indicators_in_Chicago__2008___2012-v2.csv │ │ ├── Chicago_Crime_Data-v2.csv │ │ └── Chicago_Public_Schools_-_Progress_Report_Cards__2011-2012-v3.csv │ ├── Readme.md │ └── Screenshots │ │ ├── Q1.jpg │ │ ├── Q10.jpg │ │ ├── Q2.jpg │ │ ├── Q3.jpg │ │ ├── Q4.jpg │ │ ├── Q5.jpg │ │ ├── Q6.jpg │ │ ├── Q7.jpg │ │ ├── Q8.jpg │ │ ├── Q9.jpg │ │ └── Readme.md │ ├── LAB - RealDataPractice-v4-py.ipynb │ └── Readme.md ├── 6.Data_Analysis_with_Python ├── Readme.md ├── Week 1 - Importing Datasets │ ├── LAB - Review-Introduction.ipynb │ ├── Quiz 1 - Understanding the Data.docx │ ├── Quiz 2 - Python Packages for Data Science.docx │ ├── Quiz 3 - Importing and Exporting Data in Python.docx │ ├── Quiz 4 - Getting Started Analyzing Data in Python.docx │ ├── Quiz 5 - Importing Datasets.docx │ └── Readme.md ├── Week 2 - Data Wrangling │ ├── LAB -Review-Data-Wrangling.ipynb │ ├── Quiz 1 - Dealing with Missing Values in Python.docx │ ├── Quiz 2 - Data Formatting in Python.docx │ ├── Quiz 3 - Data Normalization in Python.docx │ ├── Quiz 4 - Turning categorical variables into quantitative variables in Python.docx │ ├── Quiz 5 -Data Wrangling.docx │ └── Readme.md ├── Week 3 - Exploratory Data Analysis │ ├── LAB -Review-Exploratory-Data-Analysis.ipynb │ ├── Quiz 1 - Descriptive Statistics.docx │ ├── Quiz 2 - GroupBy in Python.docx │ ├── Quiz 3 - Correlation.docx │ ├── Quiz 4 - Correlation - Statistics.docx │ ├── Quiz 5 - Exploratory Data Analysis.docx │ └── README.md ├── Week 4 - Model Development │ ├── LAB -Review-Model-Development.ipynb │ ├── Quiz 1 - Linear Regression and Multiple Linear Regression.docx │ ├── Quiz 2 - Model Evaluation using Visualization.docx │ ├── Quiz 3 - Polynomial Regression and Pipelines.docx │ ├── Quiz 4 - Measures for In-Sample Evaluation.docx │ ├── Quiz 5 - Model Development.docx │ └── README.md ├── Week 5 - Model Evaluation │ ├── DA0101EN-Review-Model-Evaluation-and-Refinement.ipynb │ ├── Quiz 1 - Model Evaluation.docx │ ├── Quiz 2 - Overfitting, Underfitting and Model Selection.docx │ ├── Quiz 3 - Ridge Regression.docx │ ├── Quiz 4 - Model Refinement.docx │ └── Readme.md └── Week 6 - Final Assignment │ ├── House Sales in King County, USA.ipynb │ ├── Q1.jpg │ ├── Q10.jpg │ ├── Q2.jpg │ ├── Q3.jpg │ ├── Q4.jpg │ ├── Q5.jpg │ ├── Q6.jpg │ ├── Q7.jpg │ ├── Q8.jpg │ ├── Q9.jpg │ └── README.md ├── 7.Data_Visualization_with_Python ├── Readme.md ├── Week 1 - Introduction to Data Visualization Tools │ ├── DV0101EN-1-1-1-Introduction-to-Matplotlib-and-Line-Plots-py-v2.0.ipynb │ ├── Quiz - Introduction to Data Visualization Tools.docx │ └── Readme.md ├── Week 2 - Basic and Specialized Visualization Tools │ ├── 1. Basic Visualization Tools │ │ ├── LAB-Area-Plots-Histograms-and-Bar-Charts.ipynb │ │ └── Quiz - Basic Visualization Tools.docx │ ├── 2. Specialized Visualization Tools │ │ ├── DV0101EN-2-3-1-Pie-Charts-Box-Pl.ipynb │ │ └── Quiz - Specialized Visualization Tools.docx │ └── Readme.md └── Week 3 - Advanced Visualizations and Geospatial Data │ ├── 1. Advanced Visualization Tools │ ├── DV0101EN-3-4-1-Waffle-Charts-Word-Clo.ipynb │ ├── Quiz - Advanced Visualization Tools.docx │ ├── Readme.md │ ├── waffle_chart.jpg │ └── word_cloud.jpg │ ├── 2. Visualizing Geospatial Data │ ├── LAB-Generating-Maps-in-Python-py-v2.0.ipynb │ └── Quiz - Visualizing Geospatial Data.docx │ ├── 3. Final Assignment │ ├── Data_Visualization_Final_Assingment.ipynb │ ├── Q1.JPG │ ├── Q2.JPG │ ├── Q3.JPG │ ├── Q4.JPG │ └── Readme.md │ └── Readme.md ├── 8.Machine_Learning_with_Python ├── Readme.md ├── Week 1 - Intro to Machine Learning │ ├── Quiz - Intro to Machine Learning │ │ ├── Q1 & Q2.JPG │ │ ├── Q3 & Q4.JPG │ │ └── Q5.JPG │ └── Readme.md ├── Week 2 - Regression │ ├── Linear Regression │ │ ├── LAB1-Reg-Simple-Linear-Regression-Co2.ipynb │ │ └── LAB2-Reg-Mulitple-Linear-Regression-Co2-py-v1.ipynb │ ├── Non-Linear Regression │ │ ├── LAB1-Reg-Polynomial-Regression-Co2-py-v1.ipynb │ │ └── LAB2-Reg-Non-LinearRegression-py-v1.ipynb │ ├── Quiz - Regression │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ └── Q4 & Q5.jpg │ └── Readme.md ├── Week 3 - Classification │ ├── LAB 1 - K nearest Neighbors │ │ └── LAB-Clas-K-Nearest-neighbors-CustCat-py-v1.ipynb │ ├── LAB 2 - Decision Tree │ │ └── ML0101EN-Clas-Decision-Trees-drug-py-v1.ipynb │ ├── LAB 3 - Logistic Regression │ │ └── ML0101EN-Clas-Logistic-Reg-churn-py-v1.ipynb │ ├── LAB 4 - Support Vector Machines │ │ └── ML0101EN-Clas-SVM-cancer-py-v1.ipynb │ ├── Quiz │ │ ├── Q1.JPG │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ └── Q4 & Q5.JPG │ └── Readme.md ├── Week 4 - Clustering │ ├── LAB 1 - k-Means Clustering │ │ └── ML0101EN-Clus-K-Means-Customer-Seg-py-v1.ipynb │ ├── LAB 2 - Hierarchical Clustering │ │ └── ML0101EN-Clus-Hierarchical-Cars-py-v1.ipynb │ ├── LAB 3 - Density based Clustering │ │ └── LAB-DBSCAN-weather-py-v1.ipynb │ └── Quiz - Clustering │ │ ├── Q1.JPG │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ ├── Q4.JPG │ │ └── Q5.JPG ├── Week 5 - Recommendation Systems │ ├── LAB 1 - Content-Based-movies-py-v1.ipynb │ ├── LAB 2 - Collaborative-Filtering-movies-py-v1.ipynb │ └── Quiz - Recommender System │ │ ├── Q1.JPG │ │ ├── Q2.JPG │ │ ├── Q3.JPG │ │ ├── Q4.JPG │ │ └── Q5.JPG └── Week 6 - Final Assignment │ ├── ML Final Assignment.ipynb │ ├── ML0101EN-Proj-Loan-answer-py-v1.ipynb │ └── Readme.md ├── 9.Applied_Data_Science_Capstone ├── Readme.md ├── Week 1 - Introduction │ ├── Data_Science_Capstone_Project.ipynb │ └── Readme.md ├── Week 2 - Foursquare API │ ├── LAB-Foursquare-API-py-v1.0.ipynb │ ├── Quiz - Foursquare API │ │ ├── Q1.jpg │ │ ├── Q2 & Q3.jpg │ │ └── Q4 & Q5.jpg │ └── Readme.md ├── Week_3_-_Neighborhood_Segmentation_and_Clustering │ ├── Applied_Capstone_Week_3_Assignment.ipynb │ ├── LAB 1-Clustering-k-means-py-v1.0.ipynb │ ├── LAB 2-Neighborhoods-New-York-py-v1.0.ipynb │ └── Readme.md ├── Week_4_-_The Battle of Neighborhoods │ └── Readme.md └── Week_5_-The Battle of Neighborhoods (Cont'd) │ └── Readme.md ├── Readme.md └── ibm.svg /.gitattributes: -------------------------------------------------------------------------------- 1 | *.sql linguist-detectable=true 2 | *.sql linguist-language=sql 3 | *.sql text -------------------------------------------------------------------------------- /1.What_is_Data_Science/Readme.md: -------------------------------------------------------------------------------- 1 | # What is Data Science? 2 | 3 |
4 | 5 |

6 | IBM logo 7 |

8 | 9 |
10 | 11 | **Instructors: Alex Aklson & Polong Lin** 12 | 13 | Course Link : [What is Data Science?](https://www.coursera.org/learn/what-is-datascience) 14 | 15 | ## Course Syllabus 16 | 17 | ### Defining Data Science and What Data Scientists Do 18 | - Defining Data Science 19 | - What is Data Science? 20 | - Fundamentals of Data Science 21 | - The Many Paths to Data Science 22 | - Advice for New Data Scientists 23 | - Data Science: The Sexiest Job in the 21st Century 24 | 25 | ### What Do Data Scientists Do? 26 | - A day in the Life of a Data Scientist 27 | - Old problems, new problems, Data Science solutions 28 | - Data Science Topics and Algorithms 29 | - What is the cloud? 30 | - What Makes Someone a Data Scientist? 31 | 32 | ### Data Science Topics 33 | - Foundations of Big Data 34 | - How Big Data is Driving Digital Transformation 35 | - What is Hadoop? 36 | - Data Science Skills & Big Data 37 | - Data Scientists at New York University 38 | - Data Mining 39 | - Quiz: Data Mining 40 | 41 | ### Deep Learning and Machine Learning 42 | - What's the difference? 43 | - Neural Networks and Deep Learning 44 | - Applications of Machine Learning 45 | - Regression 46 | - Quiz: Regression 47 | 48 | ### Data Science in Business 49 | - Applications of Data Science 50 | - How Data Science is Saving Lives 51 | - How Should Companies Get Started in Data Science? 52 | - Applications of Data Science 53 | - The Final Deliverable 54 | - Quiz: The Final Deliverable 55 | 56 | ### Careers and Recruiting in Data Science 57 | - How Can Someone Become a Data Scientist? 58 | - Recruiting for Data Science 59 | - Careers in Data Science 60 | - High School Students and Data Science Careers 61 | 62 | ### The Report Structure 63 | - The Report Structure 64 | - Quiz: The Report Structure 65 | - Final Assignment 66 | -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q2 & Q3.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 1 - Data Science The Sexiest Job in the 21st Century/Q4 & Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q2 & Q3.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Quiz 2 - What Makes Someone a Data Scientist/Q4 & Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 1 - Defining Data Science and What Data Scientists Do/Readme.md: -------------------------------------------------------------------------------- 1 | # Defining Data Science and What Data Scientists Do 2 | 3 | In this module, you will view the course syllabus to learn what will be taught in this course. You will hear from data science professionals to discover what data science is, what data scientists do, and what tools and algorithms data scientists use on a daily basis. Finally, you will complete a reading assignment to find out why data science is considered the sexiest job in the 21st century. 4 | 5 | ## Key Concepts 6 | - Go over the course syllabus to learn what will be taught in this course. 7 | - Hear from data science professionals to learn what data science is. 8 | - Learn about the many paths to data science. 9 | - Hear from data science professionals as they give advice to anyone who is passionate about data science. 10 | - Learn some statistics about the field of data science, the demand for data scientists, and some of the qualities of excelling data scientists. 11 | - Hear from data scientists as they share with you what a typical day in the life of a data scientist looks like. 12 | - Hear from data scientists as they share with you what tools, algorithms, and technologies they use on a daily basis. 13 | - Hear from data scientists as they try to explain the term "cloud". 14 | - Learn why data science is considered the sexiest job in the 21st century. 15 | - Learn about data science, data scientists, and how each is defined. -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q2 & Q3.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Data Mining/Q4 & Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q2 & Q3.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q4.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 2 - Data Science Topics/Quiz - Regression/Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 2 - Data Science Topics/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Science Topics 2 | 3 | In this module, you will hear from Norman White, the Faculty Director of the Stern Centre for Research Computing at New York University, as he talks about data science and the skills required for anyone interested in pursuing a career in this field. He also advises those looking to start a career in data science. Finally, you will complete reading assignments to learn about the process of mining a given dataset and about regression analysis. 4 | 5 | 6 | ## Key Concepts 7 | - Hear from Norman White, the Faculty Director of the Stern Centre for Research Computing, at New York University. 8 | - Hear from Norman White as he talks about data science and what skills are required for anyone interested in pursuing a career in this field. 9 | - Hear from Norman White as he explains some of the popular data science tools and algorithms. 10 | - Hear from Norman White as he gives advice to high schools students, in particular, and anyone, in general, who are looking to start a career in data science. 11 | - Learn about data mining, and the steps the comprise the process of mining a given dataset. 12 | - Learn about regression and what questions can be put to regression analysis. -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q2.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q3 & Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q3 & Q4.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 1 - The Final Deliverable/Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q1.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q2.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q3.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 2 - The Report Structure/Q4 & Q5.jpg -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Quiz 3 - Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Final Assignment about Data Science and Reports 2 | 3 | Q1. Based on the videos and the reading material, how would you define a data scientist and data science? **(3 marks)** 4 | 5 | **Data Science:** 6 | - Data science is something that data scientist do. 7 | - Data science is a way of extracting insights from large volumes of disparate data. 8 | - Data science involves drawing patterns from seemingly random structured and unstructured type of data. 9 | 10 | **Data scientists:** 11 | - Data scientists are curious and analytical thinkers who use a variety of math skills not limited to Mathematics, Statistics and Probability to solve a problem. 12 | - They apply different available methods and algorithms to draw insights and conclusions from various kinds of data. 13 | - After applying data science methodologies, they are effective communicators and story tellers who can present their findings often to present new findings or confirm what was initially suspected. 14 | 15 | Q2. As discussed in the videos and the reading material, data science can be applied to problems across different industries. What industry are you passionate about and would like to pursue a data science career in? **(1 mark)** 16 | 17 | I am passionate about pursuing a data science career in the field of Healthcare with the main focus being improving quality of care provided and making healthcare affordable. I would like to create models to predict diseases very early on by looking at various parameters of a person not limited to genetics, family history, lifestyle, and diet. 18 | 19 | 20 | Q3. Based on the videos and the reading material, what are the ten main components of a report that would be delivered at the end of a data science project? **(5 marks)** 21 | 22 | The 10 main components of a data science project report would be: 23 | 24 | 1. **Cover Page** with Author's name, contacts, affiliations if any and publication date 25 | 2. **Table of Contents** containing main headings, list of contents and figures 26 | 3. **Abstract / Executive summary** to explain gist of the report 27 | 4. **Introduction** to explain the topic to new readers 28 | 5. **Literature Review** including citations of authors and data sources 29 | 6. **Methodology** section to explain the research methods and data sources used for analysis 30 | 7. Detailed _Explanations_ including **Results** and **discussion** sections 31 | 8. **Conclusions** which generalize findings and identify possible future outcomes. 32 | 9. **References** 33 | 10. **Acknowledgement** and **Appendices** (if Needed) 34 | -------------------------------------------------------------------------------- /1.What_is_Data_Science/Week 3 - Data Science in Business/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Science in Business 2 | 3 | In this module, you will learn about the approaches companies can take to start working with data science. You will learn about some of the qualities that differentiate data scientists from other professionals. You will also learn about analytics, story-telling, and the pivotal role data scientists play in creating an effective final deliverable. Finally, you will apply what you learned about data science by answering open-ended questions. 4 | 5 | ## Key Concepts 6 | - Learn about what companies need to do in order to start with data science. 7 | - Learn about some of the qualities that differentiate data scientists from other professionals. 8 | - Learn about some applications of data science. 9 | - Learn about analytics and what important role data scientists play in this process. 10 | - Learn about story-telling and the importance of an effective final deliverable. 11 | - Learn about the main components of an effective final deliverable. 12 | - Apply what you learned about data science to answer open-ended questions. 13 | - Demonstrate your understanding of the readings to define what data science and data scientist mean. 14 | - Demonstrate your understanding of the readings to answer a question about the final deliverable of data science project. -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Readme.md: -------------------------------------------------------------------------------- 1 | # Tools for Data Science 2 | 3 |
4 | 5 |

6 | IBM 7 |

8 | 9 |
10 | 11 | **Instructors: Romeo Kienzler, Svetlana Levitan** 12 | 13 | **Course link:** [IBM Tools for Data Science](https://www.coursera.org/learn/open-source-tools-for-data-science) 14 | 15 | ## Key Concepts 16 | 17 | - Data Scientist's Toolkit 18 | - Open Source Tools 19 | - IBM Tools for Data Science 20 | -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/1. Languages of Data Science/Practice Quiz - Languages/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/2. Data Science Tools/Practice Quiz - Tools/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/3. Packages, APIs, Data Sets and Model/Practice Quiz - Packages, APIs, Data Sets, Models/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q1.jpg -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q10.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q10.jpg -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q6.jpg -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q7.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q7.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q8.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q8.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q9.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/4. Module 1 Assessment - Graded Quiz/Q9.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 1 - Data Scientist's Toolkit/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Scientist's Toolkit 2 | 3 | This week, You will get an overview of the programming languages commonly used, including Python, R, Scala, and SQL. You’ll be introduced to the open source and commercial data science tools available. You’ll also learn about the packages, APIs, data sets and models frequently used by data scientists. 4 | 5 | ## Key Concepts 6 | 7 | - Explore the languages, tools, and data used by data scientists. 8 | - Give examples of popular tools used by data scientists. 9 | - Discover IBM tools focused on data science. -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/1. GitHub/Practice Quiz - GitHub/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/2. Jupter Notebook and JupyterLab/Practice Quiz - Jupter Notebooks/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/3. RStudio IDE/Practice Quiz - RStudio IDE/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q10.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q10.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q7.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q7.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q8.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q8.jpg -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q9.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 2 - Open Source Tools/4. Module 2 Assessment/Q9.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 2 - Open Source Tools/Readme.md: -------------------------------------------------------------------------------- 1 | # Open Source Tools 2 | 3 | This week, you will learn about three popular tools used in data science: GitHub, Jupyter Notebooks, and RStudio IDE. You will become familiar with the features of each tool, and what makes these tools so popular among data scientists today. 4 | 5 | ## Key Concepts 6 | - Explain how to use GitHub to create and manage source code for data science projects. 7 | - Describe the features of Jupyter Notebook that make it popular for data science projects. 8 | - Describe the features of RStudio IDE that make it popular for data science projects. 9 | 10 | -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q10.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q10.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q7.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q7.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q8.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q8.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q9.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/1. Watson Studio/Practice Quiz - Watson Studio/Q9.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q10.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q10.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q11.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q11.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q12.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q12.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q6.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q6.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q7.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q7.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q8.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q8.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q9.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/2. Other IBM Tools/Practice Quiz - Other IBM Tools/Q9.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q1.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q10.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q10.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q2.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q3.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q4.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q5.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q6.jpg -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q7.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q7.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q8.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q8.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q9.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/3. Module 3 Assessment/Q9.JPG -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 3 - IBM Tools for Data Science/Readme.md: -------------------------------------------------------------------------------- 1 | # IBM Tools for Data Science 2 | 3 | ## Key Concepts 4 | - Explain how IBM Watson Studio can be used by data scientists. 5 | - Describe other IBM data science tools. -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 4 - Final Assignment/Final_Assignment.ipynb: -------------------------------------------------------------------------------- 1 | {"cells": [{"metadata": {"collapsed": true}, "cell_type": "markdown", "source": "# My Jupyter Notebook on IBM Watson Studio"}, {"metadata": {}, "cell_type": "markdown", "source": "**Thomas George Thomas**\n\nData Scientist"}, {"metadata": {}, "cell_type": "markdown", "source": "_I am interested in Data Science because I would love to contribute towards affordable and quality healthcare in the future_"}, {"metadata": {}, "cell_type": "markdown", "source": "### The below should print 'Hello World'"}, {"metadata": {}, "cell_type": "code", "source": "print(\"Hello World!\")", "execution_count": 1, "outputs": [{"output_type": "stream", "text": "Hello World!\n", "name": "stdout"}]}, {"metadata": {}, "cell_type": "markdown", "source": "> You miss 100% of the shots you don't take\n>\n - Wayne Gretzky\n - Micheal Scott\n\n
\n\nMade with <3 [My Github](https://github.com/Thomas-George-T)\n"}], "metadata": {"kernelspec": {"name": "python3", "display_name": "Python 3.6", "language": "python"}, "language_info": {"name": "python", "version": "3.6.9", "mimetype": "text/x-python", "codemirror_mode": {"name": "ipython", "version": 3}, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py"}}, "nbformat": 4, "nbformat_minor": 1} -------------------------------------------------------------------------------- /2.Tools_for_Data_Science/Week 4 - Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Final Assignment: Create and Share Your Jupyter Notebook 2 | 3 | ## Key Concepts 4 | - Create a Jupyter Notebook. 5 | - Configure content in the Notebook. 6 | - Share the Notebook for peer review. 7 | 8 | ## Assignment Topic: 9 | 10 | You will create a Jupyter Notebook using IBM Watson Studio. You can choose any language you want (Python, R, or Scala). You will need to include a combination of markdown and code cells. You will likely need to use the Markdown cheatsheet to help you determine the appropriate syntax to style your markdown. 11 | 12 | ### Guidelines for the submission: 13 | 14 | Create your Jupyter Notebook on IBM Watson Studio. 15 | 16 | ### Include at least 6 cells: 17 | 18 | - Cell 1 (rendered as Markdown): The title should be "My Jupyter Notebook on IBM Watson Studio", in H1 header styling. The title does not need to be centered. 19 | - Cell 2 (rendered as Markdown): Include your name, in bold characters. In the line below your name, write your current or desired occupation in regular font. 20 | - Cell 3 (rendered as Markdown): In italic formatting, write one or two sentences about why you are interested in data science. For example, you can start your first sentence with "I am interested in data science because ...". 21 | - Cell 4 (rendered as Markdown): In H3 header styling, explain in a short sentence what your code is supposed to do in Cell 5. 22 | - Cell 5 (code cell): Your code, as described in Cell 4. It must be executed and must display an output. Try to keep the code simple (it can even be "1 + 1"). 23 | - Cell 6 (rendered as Markdown): Using Markdown or HTML, this cell must include at least 3 of the following: horizontal rule, bulleted list, numbered list, tables, hyperlinks, images, code/syntax highlighting, blocked quotes, strikethrough. 24 | 25 | **Submit:** 26 | 27 | Submit the URL of your publicly shared notebook on IBM Watson Studio. 28 | 29 | 30 | The **main grading criteria** will be: 31 | 32 | - Is the notebook publicly viewable? 33 | - Are there, or does there appear to be, at least 5 Markdown cells and 1 code cell? 34 | - Is the criteria for each cell fulfilled, as described in the "Guidelines for Submission"? 35 | 36 | You **will not be judged** on: 37 | 38 | - Your English language, including spelling or grammatical mistakes. 39 | - The content of any text or image(s) or where a link is hyperlinked to. 40 | 41 | 42 | **Link to my Notebook**:https://eu-gb.dataplatform.cloud.ibm.com/analytics/notebooks/v2/ffd4f8a0-9c2c-4300-817e-9a8707b13ba1/view?access_token=7ce23622e8e2931d92a524f95965ad20c1b15f20056bd9517d640170e6bf5f7f -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Science Methodology 2 | 3 |
4 | 5 |

6 | IBM 7 |

8 | 9 |
10 | 11 | **Instructors: Alex Aklson & Polong Lin** 12 | 13 | Course link: [Data Science Methodology](https://www.coursera.org/learn/data-science-methodology) 14 | 15 | ## Syllabus 16 | 17 | ### Module 1: From Problem to Approach and from Requirements to Collection 18 | - Business Understanding 19 | - Analytic Approach 20 | - Data Requirements 21 | - Data Collection 22 | - Lab: From Problem to Approach 23 | - Lab: From Requirement to Collection 24 | - Quiz: From Problem to Approach 25 | - Quiz: From Requirement to Collection 26 | 27 | ### Module 2: From Understanding to Preparation and from Modeling to Evaluation 28 | - Data Understanding 29 | - Data Preparation 30 | - Modeling 31 | - Evaluation 32 | - Lab: From Understanding to Preparation 33 | - Lab: From Modeling to Evaluation 34 | - Quiz: From Understanding to Preparation 35 | - Quiz: From Modeling to Evaluation 36 | 37 | ### Module 3: From Deployment to Feedback 38 | - Deployment 39 | - Feedback 40 | - Quiz: From Deployment to Feedback 41 | - Peer-review Assignment 42 | -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q1.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q2 & Q3.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q4.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/1. From Problem to Approach/Quiz - From Problem to Approach/Q5.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q1.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q2 & Q3.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/2. From Requirements to Collection/Quiz - From Requirements to Collection/Q4 & Q5.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 1 - From Problem to Approach and From Requirements to Collection/Readme.md: -------------------------------------------------------------------------------- 1 | # From Problem to Approach and From Requirements to Collection 2 | 3 | In this module, you will learn about why we are interested in data science, what a methodology is, and why data scientists need a methodology. You will also learn about the data science methodology and its flowchart. You will learn about the first two stages of the data science methodology, namely Business Understanding and Analytic Approach. Finally, through a lab session, you will also obtain how to complete the Business Understanding and the Analytic Approach stages and the Data Requirements and Data Collection stages pertaining to any data science problem. 4 | 5 | ## Key Concepts 6 | - Learn about why we are interested in data science. 7 | - Learn what a methodology is, and why data scientists need a methodology. 8 | - Learn about the data science methodology and its flowchart. 9 | - Learn about the Business Understaning, the Analytic Approach, the Data Requirements, and the Data Understanding stages of the data science methodology. 10 | - Learn about what occurs during data collection. 11 | - Learn how to complete the Business Understanding and the Analytic Approach stages pertaining to any data science problem. 12 | - Learn how to complete the Data Requirements and the Data Collection stages pertaining to any data science problem. 13 | 14 | -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q1.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q2.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q3.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q4.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/1. From Understanding to Preparation/Quiz - From Understanding to Preparation/Q5.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q1.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q2 & Q3.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/2. From Modeling to Evaluation/Quiz - From Modeling to Evaluation/Q4 & Q5.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 2 - From Understanding to Preparation and From Modeling to Evaluation/Readme.md: -------------------------------------------------------------------------------- 1 | # From Understanding to Preparation and From Modeling to Evaluation 2 | 3 | In this module, you will learn what it means to understand data, and prepare or clean data. You will also learn about the purpose of data modeling and some characteristics of the modeling process. Finally, through a lab session, you will learn how to complete the Data Understanding and the Data Preparation stages, as well as the Modeling and the Model Evaluation stages pertaining to any data science problem. 4 | 5 | ## Key Concepts 6 | - Learn what it means to understand data. 7 | - Learn what it means to prepare or clean data. 8 | - Learn about ways in which data is prepared. 9 | - Learn what the purpose of data modeling is. 10 | - Learn about some characteristics of the modeling process. 11 | - Learn about what it means to evaluate a model and ways in which a model is evaluated. 12 | - Learn how to complete the Data Understanding and the Data Preparation stages pertaining to any data science problem. 13 | - Learn how to complete the Modeling and the Model Evaluation stages pertaining to any data science problem. -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q1.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q10.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q10.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q2.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q3.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q4.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q5.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q6.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q7 & Q8.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q7 & Q8.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q9.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/1. From Deployment to Feedback/Quiz - From Deployment to Feedback/Q9.jpg -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/2. Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Science Methodology Final Assignment: Emails 2 | 3 | ### Q1. Which topic did you choose to apply the data science methodology to? 2 marks) 4 | 5 | **Ans:** 6 | The topic that I have chosen to apply data science methodology to is **Emails**. I believe by automatically classifying emails, productivity can be increased drastically. 7 | 8 | 9 | Next, you will play the role of the client and the data scientist. 10 | 11 | ### Q2. Using the topic that you selected, complete the Business Understanding stage by coming up with a problem that you would like to solve and phrasing it in the form of a question that you will use data to answer. **(3 marks)** 12 | 13 | You are required to: 14 | 15 | Describe the problem, related to the topic you selected. 16 | Phrase the problem as a question to be answered using data. 17 | For example, using the food recipes use case discussed in the labs, the question that we defined was, "Can we automatically determine the cuisine of a given dish based on its ingredients?". 18 | 19 | **Ans:** 20 | Daily, we receive 100's of emails every day and it may not be possible to look at all of them. We can determine which emails are worth taking a second look by organizing them into various categories like Promotions, Updates, Social, Order Receipts, Important/Not Important, Spam etc. 21 | 22 | Our Question would be: "Is it possible to automatically determine the type/category of email based on the content of the email?" 23 | 24 | ### Q3. Briefly explain how you would complete each of the following stages for the problem that you described in the Business Understanding stage, so that you are ultimately able to answer the question that you came up with. **(5 marks):** 25 | 26 | 1. Analytic Approach 27 | 2. Data Requirements 28 | 3. Data Collection 29 | 4. Data Understanding and Preparation 30 | 5. Modeling and Evaluation 31 | 32 | You can always refer to the labs as a reference with describing how you would complete each stage for your problem. 33 | 34 | **Ans:** 35 | 36 | 1. **Analytic Approach:** 37 | 38 | A Yes/No answer can be applied to this problem so we can use a classification model. 39 | 40 | 2. **Data Requirements:** 41 | 42 | To create the model, we will require information regarding the sender including email address, domain, subject, language ,if the email has an attachment or not, and body of the email to see if it contains a list (presence of a list could help classify the email as an order). 43 | 44 | 3. **Data Collection:** 45 | 46 | We can gather all these data from email accounts from various email inboxes (Gmail, Hotmail, yahoo, outlook etc.). We can further merge the emails from the various inboxes to create a good dataset. Descriptive statistics & visualizations can be applied to the data set to assess the content quality and if we have the required information. 47 | 48 | 4. **Data Understanding and Preparation:** 49 | 50 | We should remove the redundant data from our dataset. This could be two copies of the same email sent to different inboxes. Since we are working with text, we need to perform text analysis. We should ensure proper groupings to help classify the emails properly. These groupings should be done based on certain keywords present in the subject or content of the email. 51 | 52 | 5. **Modeling and Evaluation:** 53 | 54 | We create the classification model. We evaluate the results of the model and see how much is classified correctly or incorrectly. Using this feedback we can tweak the model to add parameters and perform necessary changes to ensure that we're getting the intended results. 55 | -------------------------------------------------------------------------------- /3.Data_Science_Methodology/Week 3 - From Understanding to Preparation and From Modeling to Evaluation/Readme.md: -------------------------------------------------------------------------------- 1 | # From Deployment to Feedback 2 | 3 | In this module, you will learn about what happens when a model is deployed and why model feedback is important. Also, by completing a peer-reviewed assignment, you will demonstrate your understanding of the data science methodology by applying it to a problem that you define. 4 | 5 | ## Key Concepts 6 | - Learn about what happens when a model is deployed. 7 | - Learn about why model feedback is important. 8 | - Demonstrate your understanding of the data science methodology by applying it to a problem that you define. -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Readme.md: -------------------------------------------------------------------------------- 1 | # Python for Data Science and AI 2 | 3 |
4 | 5 |

6 | IBM logo 7 |

8 | 9 |
10 | 11 | **Instructors: Joseph Santarcangelo** 12 | 13 | Course Link: [Python for Data Science and AI](https://www.coursera.org/learn/python-for-applied-data-science-ai) 14 | 15 | ## About this Course 16 | 17 | This introduction to Python will kickstart your learning of **Python for data science**, as well as programming in general. This beginner-friendly Python course will take you from zero to programming in Python in a matter of hours. 18 | 19 | Upon its completion, you'll be able to write your own Python scripts and perform basic hands-on data analysis using our Jupyter-based lab environment. If you want to learn Python from scratch, this course is for you. This course will not teach you everything about Python, but it should give you the tools to work as a data scientist and enough knowledge to continue to expand your Python learning. In the final project, you will load data and learn a new Python Library on your own. 20 | 21 | ### Module 1 - Python Basics 22 | 23 | 1. Your first program 24 | 2. Types 25 | 3. Expressions and Variables 26 | 4. String Operations 27 | 28 | ### Module 2 - Python Data Structures 29 | 30 | 1. Lists and Tuples 31 | 2. Sets 32 | 3. Dictionaries 33 | 34 | ### Module 3 - Python Programming Fundamentals 35 | 36 | 1. Conditions and Branching 37 | 2. Loops 38 | 3. Functions 39 | 4. Objects and Classes 40 | 41 | ### Module 4 - Working with Data in Python 42 | 43 | 1. Reading files with open 44 | 2. Writing files with open 45 | 3. Loading data with Pandas 46 | 4. Working with and Saving data with Pandas 47 | 5. Numpy 48 | 49 | ### Module 5 - Final Project -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/1. Types/Quiz - Types/Q4.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/2. Expressions and Variables/Quiz - Expressions and Variables/Q4.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q4.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q5.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q6.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q7.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/4. String Operations/Quiz - String Operations/Q7.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/Quiz - String Operations.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/Quiz - String Operations.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 1 - Python Basics/Readme.md: -------------------------------------------------------------------------------- 1 | # Python Basics 2 | 3 | ## Key Concepts 4 | - Demonstrate an understanding of types in python by converting/casting data types: strings, floats, integers. 5 | - Interpret variables and solve expressions by applying mathematical operations. 6 | - Describe how to manipulate strings by using a variety of methods and operations. -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q4.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q5.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q6.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q7.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q7.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q8 & Q9.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/1. List and Tuples/Quiz - List and Tuples/Q8 & Q9.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/2. Dictionaries/Quiz - Dictionaries/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/2. Dictionaries/Quiz - Dictionaries/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/2. Dictionaries/Quiz - Dictionaries/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/2. Dictionaries/Quiz - Dictionaries/Q2 & Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/3. Sets/Quiz - Sets/Q1 & Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/3. Sets/Quiz - Sets/Q1 & Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/3. Sets/Quiz - Sets/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/3. Sets/Quiz - Sets/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 2 - Python Data Structures/Readme.md: -------------------------------------------------------------------------------- 1 | # Python Data Structures 2 | 3 | ## Key Concepts 4 | 1. Understand tuples and lists by describing and manipulating tuple combinations and list data structures. 5 | 2. Demonstrate understanding of dictionaries by writing structures with correct keys and values. 6 | 3. Understand the differences between sets, tuples, and lists by creating sets. -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/1. Conditions and Branching/Quiz - Conditions and Branching.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/1. Conditions and Branching/Quiz - Conditions and Branching.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/2. Loops/Quiz - Loops.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/2. Loops/Quiz - Loops.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/3. Functions/Quiz - Functions.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/3. Functions/Quiz - Functions.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/4. Classes/Quiz - Objects and Classes.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/4. Classes/Quiz - Objects and Classes.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 3 - Python Programming Fundamentals/Readme.md: -------------------------------------------------------------------------------- 1 | # Python Programming Fundamentals 2 | 3 | ## Key Concepts 4 | - Classify conditions and branching by identifying structured scenarios with outputs. 5 | - Understand loops by using visual examples and comparing them to tuples and lists. 6 | - Understand functions by building a function using inputs and outputs. 7 | - Explain objects and classes by identifying data types and creating a class. 8 | -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q1.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/1. Reading Files with Open/Quiz - Reading Files with Open/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/2. Writing files with open/Quiz - Writing Files with Open.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/2. Writing files with open/Quiz - Writing Files with Open.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/3. Pandas/Quiz - Pandas/Q1 & Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/3. Pandas/Quiz - Pandas/Q1 & Q2.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/3. Pandas/Quiz - Pandas/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/3. Pandas/Quiz - Pandas/Q3.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/4. One Dimensional Numpy/Quiz - One Dimensional numpy.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/4. One Dimensional Numpy/Quiz - One Dimensional numpy.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/5. Two Dimensional Numpy/Quiz - Two Dimensional numpy.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/5. Two Dimensional Numpy/Quiz - Two Dimensional numpy.docx -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 4 - Working with Data in Python/Readme.md: -------------------------------------------------------------------------------- 1 | # Working with Data in Python 2 | 3 | ## Key Concepts 4 | - Demonstrate an open function to create and identify a file object. 5 | - Understand how to use pandas for library and data analysis by using commands. 6 | - Demonstrate how to create a text file by using the open function. 7 | - Demonstrate how to use NumPy to create multi-dimensional arrays. 8 | 9 | -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Readme.md: -------------------------------------------------------------------------------- 1 | # Analyzing US Economic Data and Building a Dashboard 2 | 3 | ## Key Concepts 4 | - Create a dashboard that shows key economic indicators from a specific data set. 5 | 6 | __1. Create a dataframe that contains the GDP data and display using the method head() and take a screen shot__ 7 | 8 | ![GDP](gdp_head.jpg) 9 | 10 | __2.Create a dataframe that contains the unemployment data. Display the first five rows of the dataframe using the method head() and take a screen shot.__ 11 | 12 | ![Unemployment](unemployment_head.jpg) 13 | 14 | __3.Display a dataframe where unemployment was greater than 8.5% . Take a screenshot__ 15 | 16 | ![Unemployment > 8.5](unemployment_greater_than_8_point_five.jpg) 17 | 18 | __4.Use the function make_dashboard to make a dashboard, then take a screen shot.__ 19 | 20 | ![make_dashboard](dashboard.jpg) 21 | 22 | __5.input the link for your notebook generated from Watson Studio .__ 23 | 24 | Link to my notebook: https://eu-gb.dataplatform.cloud.ibm.com/analytics/notebooks/v2/7d9c82e3-0c74-4b9c-a43e-68e0ddcc39ba/view?access_token=dad1a6d34f5a266b4ece6b5bb12f51ccd78e88e86426aef4c5496a9c40384fee 25 | -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/dashboard.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/dashboard.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/gdp_head.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/gdp_head.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/unemployment_greater_than_8_point_five.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/unemployment_greater_than_8_point_five.jpg -------------------------------------------------------------------------------- /4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/unemployment_head.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/4.Python_for_Data_Science_and_AI/Week 5 - Analyzing US Economic Data and Building a Dashboard/Screenshots/unemployment_head.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Readme.md: -------------------------------------------------------------------------------- 1 | # Databases and SQL for Data Science 2 | 3 |
4 | 5 |

6 | IBM logo 7 |

8 | 9 |
10 | 11 | **Instructors:Rav Ahuja** 12 | 13 | Course link: [Databases and SQL for Data Science](https://www.coursera.org/learn/sql-data-science) 14 | 15 | ## Program Overview 16 | - Week 1: Introduction to Databases and Basic SQL 17 | - Week 2: Advanced SQL 18 | - Week 3: Accessing Databases using Python 19 | - Week 4: Course Assignment -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Lab 1.sql: -------------------------------------------------------------------------------- 1 | -- DROP THE TABLE INSTRUCTOR FROM THE DATABASE IN CASE IT ALREADY EXISTS. 2 | DROP TABLE INSTRUCTOR; 3 | 4 | 5 | -- CREATE THE INSTRUCTOR TABLE AS DEFINED ABOVE. HAVE THE INS_ID BE THE PRIMARY KEY, AND ENSURE THE LASTNAME AND FIRSTNAME ARE NOT NULL. 6 | -- (HINT: INS_ID IS OF TYPE INTEGER, COUNTRY OF TYPE CHAR(2), AND REST OF THE FIELDS VARCHAR) 7 | CREATE TABLE INSTRUCTOR ( 8 | INS_ID INT NOT NULL PRIMARY KEY, 9 | LASTNAME VARCHAR(30) NOT NULL, 10 | FIRSTNAME VARCHAR(30) NOT NULL, 11 | CITY VARCHAR(30), 12 | COUNTRY CHAR(2) 13 | ); 14 | 15 | 16 | -- INSERT ONE ROW INTO THE INSTRUCTOR TABLE FOR THE THE INSTRUCTOR RAV AHUJA. 17 | -- (HINT: VALUES FOR THE CHARACTER FIELDS REQUIRE A SINGE QUOTATION MARK (') BEFORE AND AFTER EACH VALUE) 18 | INSERT INTO INSTRUCTOR VALUES (1, 'AHUJA', 'RAV','TORONTO','CA'); 19 | 20 | 21 | -- INSERT TWO ROWS AT ONCE IN THE INSTRUCTOR TABLE FOR INSTRUCTORS RAUL CHONG AND HIMA VASUDEVAN. 22 | -- (HINT: LIST THE VALUES FOR THE SECOND ROW AFTER THE FIRST ROW) 23 | INSERT INTO INSTRUCTOR VALUES 24 | (2, 'CHONG', 'RAUL','TORONTO','CA'), 25 | (3,'VASUDEVAN','HIMA','CHICAGO','US'); 26 | 27 | 28 | -- SELECT ALL ROWS FROM THE INSTRUCTOR TABLE. 29 | SELECT * FROM INSTRUCTOR; 30 | 31 | 32 | -- SELECT THE FIRSTNAME, LASTNAME AND COUNTRY WHERE THE CITY IS TORONTO 33 | SELECT FIRSTNAME,LASTNAME,COUNTRY FROM INSTRUCTOR WHERE CITY = 'TORONTO' ; 34 | 35 | 36 | -- UPDATE THE ROW FOR RAV AHUJA AND CHANGE HIS CITY TO MARKHAM. 37 | UPDATE INSTRUCTOR SET CITY='MARKHAM' WHERE INS_ID='1'; 38 | 39 | 40 | -- DELETE THE ROW FOR RAUL CHONG FROM THE TABLE. 41 | DELETE FROM INSTRUCTOR WHERE INS_ID='2'; 42 | 43 | 44 | -- RETRIEVE ALL ROWS IN THE INSTRUCTOR TABLE. 45 | SELECT * FROM INSTRUCTOR; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Quiz 1 - Databases.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Quiz 1 - Databases.docx -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Quiz 2 - Basic SQL.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Quiz 2 - Basic SQL.docx -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 1 - Introduction to Databases and Basic SQL/Readme.md: -------------------------------------------------------------------------------- 1 | # Week 1 - Introduction to Databases and Basic SQL 2 | 3 | ## Key Concepts 4 | - Explain SQL and Relational Databases 5 | - Create a database instance on the Cloud 6 | - Learn how to write basic SQL statements 7 | - Practice basic SQL statements hands-on on a live database -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/Quiz - String Patterns, Ranges, Sorting and Grouping.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/Quiz - String Patterns, Ranges, Sorting and Grouping.docx -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/Week2Lab1v5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/Week2Lab1v5.pdf -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q1.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE ALL EMPLOYEES WHOSE ADDRESS IS IN ELGIN,IL 2 | SELECT * FROM EMPLOYEES 3 | WHERE ADDRESS LIKE '%ELGIN,IL%'; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q2.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE ALL EMPLOYEES WHO WERE BORN DURING THE 1970'S. 2 | SELECT * FROM EMPLOYEES 3 | WHERE B_DATE LIKE '197%'; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q3.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE ALL EMPLOYEES IN DEPARTMENT 5 WHOSE SALARY IS BETWEEN 2 | -- 60000 AND 70000 3 | SELECT * FROM EMPLOYEES 4 | WHERE SALARY BETWEEN 60000 AND 70000; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q4a.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE A LIST OF EMPLOYEES ORDERED BY DEPARTMENT ID. 2 | SELECT * FROM EMPLOYEES 3 | ORDER BY DEP_ID; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q4b.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE A LIST OF EMPLOYEES ORDERED IN DESCENDING ORDER BY 2 | -- DEPARTMENT ID AND WITHIN EACH DEPARTMENT ORDERED ALPHABETICALLY IN 3 | -- DESCENDING ORDER BY LAST NAME. 4 | SELECT * FROM EMPLOYEES 5 | ORDER BY DEP_ID DESC, L_NAME DESC; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q5a.sql: -------------------------------------------------------------------------------- 1 | -- FOR EACH DEPARTMENT ID RETRIEVE THE NUMBER OF EMPLOYEES IN THE 2 | -- DEPARTMENT. 3 | SELECT DEP_ID, COUNT(*) AS NUM_EMP FROM EMPLOYEES 4 | GROUP BY DEP_ID; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q5b.sql: -------------------------------------------------------------------------------- 1 | -- For each department retrieve the number of employees in the 2 | -- department, and the average employees salary in the department. 3 | 4 | select DEP_ID, count(*) as num_emp, avg(SALARY) as avg_salary 5 | from employees 6 | group by DEP_ID; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q5c.sql: -------------------------------------------------------------------------------- 1 | -- Label the computed columns in the result set of Query 5B as 2 | -- “NUM_EMPLOYEES” and “AVG_SALARY”. 3 | 4 | select DEP_ID, count(*) as NUM_EMPLOYEES, avg(SALARY) as AVG_SALARY 5 | from employees 6 | group by DEP_ID; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q5d.sql: -------------------------------------------------------------------------------- 1 | -- IN QUERY 5C ORDER THE RESULT SET BY AVERAGE SALARY. 2 | SELECT DEP_ID, COUNT(*) AS NUM_EMPLOYEES, AVG(SALARY) AS AVG_SALARY 3 | FROM EMPLOYEES 4 | GROUP BY DEP_ID 5 | ORDER BY AVG_SALARY; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q5e.sql: -------------------------------------------------------------------------------- 1 | --IN QUERY 5D LIMIT THE RESULT TO DEPARTMENTS WITH FEWER THAN 4 EMPLOYEES. 2 | SELECT DEP_ID, COUNT(*) AS NUM_EMPLOYEES, AVG(SALARY) AS AVG_SALARY 3 | FROM EMPLOYEES 4 | GROUP BY DEP_ID 5 | HAVING COUNT(*) < 4 6 | ORDER BY AVG_SALARY; 7 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/1. String Patterns, Ranges, Sorting, and Grouping/wk2q6.sql: -------------------------------------------------------------------------------- 1 | -- RETRIEVE A LIST OF EMPLOYEES ORDERED BY DEPARTMENT NAME, AND WITHIN 2 | -- EACH DEPARTMENT ORDERED ALPHABETICALLY IN DESCENDING ORDER BY LAST NAME. 3 | 4 | SELECT * 5 | FROM EMPLOYEES 6 | JOIN DEPARTMENTS 7 | ON DEP_ID = DEPT_ID_DEP 8 | ORDER BY DEP_NAME, L_NAME DESC; 9 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/2. Functions, Sub-Queries, Multiple Tables/PETSALE-CREATE.sql: -------------------------------------------------------------------------------- 1 | -- Drop the PETSALE table in case it exists 2 | drop table PETSALE; 3 | -- Create the PETSALE table 4 | create table PETSALE ( 5 | ID INTEGER PRIMARY KEY NOT NULL, 6 | ANIMAL VARCHAR(20), 7 | QUANTITY INTEGER, 8 | SALEPRICE DECIMAL(6,2), 9 | SALEDATE DATE 10 | ); 11 | -- Insert saple data into PETSALE table 12 | insert into PETSALE values 13 | (1,'Cat',9,450.09,'2018-05-29'), 14 | (2,'Dog',3,666.66,'2018-06-01'), 15 | (3,'Dog',1,100.00,'2018-06-04'), 16 | (4,'Parrot',2,50.00,'2018-06-04'), 17 | (5,'Dog',1,75.75,'2018-06-10'), 18 | (6,'Hamster',6,60.60,'2018-06-11'), 19 | (7,'Cat',1,44.44,'2018-06-11'), 20 | (8,'Goldfish',24,48.48,'2018-06-14'), 21 | (9,'Dog',2,222.22,'2018-06-15') 22 | 23 | ; -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/2. Functions, Sub-Queries, Multiple Tables/Quiz - Functions, Sub-Queries, Multiple Tables.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/2. Functions, Sub-Queries, Multiple Tables/Quiz - Functions, Sub-Queries, Multiple Tables.docx -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Readme.md: -------------------------------------------------------------------------------- 1 | # Week 2 - Advanced SQL 2 | 3 | By the end of this module, you will learn the following: (1) Learn how to use string patterns and ranges to search data and how to sort and group data in result sets. (2) Learn how to work with multiple tables in a relational database using join operations. 4 | 5 | ## Key Concepts 6 | - Explain how to use string patterns and ranges in SQL queries 7 | - Demonstrate how to sort and order result sets 8 | - Practice use of grouping data in result sets 9 | - Employ Built-in functions in Queries 10 | - Demonstrate how to write sub-queries and nested selects 11 | - Build queries to access multiple tables -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/Departments.csv: -------------------------------------------------------------------------------- 1 | 2,Architect Group,30001,L0001 2 | 5,Software Group,30002,L0002 3 | 7,Design Team,30003,L0003 4 | 5,Software Group,30004,L0004 5 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/Employees.csv: -------------------------------------------------------------------------------- 1 | E1001,John,Thomas,123456,01/09/1976,M,"5631 Rice, OakPark,IL",100,100000,30001,2 2 | E1002,Alice,James,123457,07/31/1972,F,"980 Berry ln, Elgin,IL",200,80000,30002,5 3 | E1003,Steve,Wells,123458,08/10/1980,M,"291 Springs, Gary,IL",300,50000,30002,5 4 | E1004,Santosh,Kumar,123459,07/20/1985,M,"511 Aurora Av, Aurora,IL",400,60000,30004,5 5 | E1005,Ahmed,Hussain,123410,01/04/1981,M,"216 Oak Tree, Geneva,IL",500,70000,30001,2 6 | E1006,Nancy,Allen,123411,02/06/1978,F,"111 Green Pl, Elgin,IL",600,90000,30001,2 7 | E1007,Mary,Thomas,123412,05/05/1975,F,"100 Rose Pl, Gary,IL",650,65000,30003,7 8 | E1008,Bharath,Gupta,123413,05/06/1985,M,"145 Berry Ln, Naperville,IL",660,65000,30003,7 9 | E1009,Andrea,Jones,123414,07/09/1990,F,"120 Fall Creek, Gary,IL",234,70000,30003,7 10 | E1010,Ann,Jacob,123415,03/30/1982,F,"111 Britany Springs,Elgin,IL",220,70000,30004,5 11 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/Jobs.csv: -------------------------------------------------------------------------------- 1 | 100,Sr. Architect,60000,100000 2 | 200,Sr. Software Developer,60000,80000 3 | 300,Jr.Software Developer,40000,60000 4 | 400,Jr.Software Developer,40000,60000 5 | 500,Jr. Architect,50000,70000 6 | 600,Lead Architect,70000,100000 7 | 650,Jr. Designer,60000,70000 8 | 660,Jr. Designer,60000,70000 9 | 234,Sr. Designer,70000,90000 10 | 220,Sr. Designer,70000,90000 11 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/JobsHistory.csv: -------------------------------------------------------------------------------- 1 | E1001,08/01/2000,100,2 2 | E1002,08/01/2001,200,5 3 | E1003,08/16/2001,300,5 4 | E1004,08/16/2000,400,5 5 | E1005,05/30/2000,500,2 6 | E1006,08/16/2001,600,2 7 | E1007,05/30/2002,650,7 8 | E1008,05/06/2010,660,7 9 | E1009,08/16/2016,234,7 10 | E1010,08/16/2016,220,5 11 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/Locations.csv: -------------------------------------------------------------------------------- 1 | L0001,2 2 | L0002,5 3 | L0003,7 4 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 2 - Advanced SQL/Table Data/Script_Create_Tables.sql: -------------------------------------------------------------------------------- 1 | ------------------------------------------ 2 | --DDL statement for table 'HR' database-- 3 | -------------------------------------------- 4 | 5 | CREATE TABLE EMPLOYEES ( 6 | EMP_ID CHAR(9) NOT NULL, 7 | F_NAME VARCHAR(15) NOT NULL, 8 | L_NAME VARCHAR(15) NOT NULL, 9 | SSN CHAR(9), 10 | B_DATE DATE, 11 | SEX CHAR, 12 | ADDRESS VARCHAR(30), 13 | JOB_ID CHAR(9), 14 | SALARY DECIMAL(10,2), 15 | MANAGER_ID CHAR(9), 16 | DEP_ID CHAR(9) NOT NULL, 17 | PRIMARY KEY (EMP_ID)); 18 | 19 | CREATE TABLE JOB_HISTORY ( 20 | EMPL_ID CHAR(9) NOT NULL, 21 | START_DATE DATE, 22 | JOBS_ID CHAR(9) NOT NULL, 23 | DEPT_ID CHAR(9), 24 | PRIMARY KEY (EMPL_ID,JOBS_ID)); 25 | 26 | CREATE TABLE JOBS ( 27 | JOB_IDENT CHAR(9) NOT NULL, 28 | JOB_TITLE VARCHAR(15) , 29 | MIN_SALARY DECIMAL(10,2), 30 | MAX_SALARY DECIMAL(10,2), 31 | PRIMARY KEY (JOB_IDENT)); 32 | 33 | CREATE TABLE DEPARTMENTS ( 34 | DEPT_ID_DEP CHAR(9) NOT NULL, 35 | DEP_NAME VARCHAR(15) , 36 | MANAGER_ID CHAR(9), 37 | LOC_ID CHAR(9), 38 | PRIMARY KEY (DEPT_ID_DEP)); 39 | 40 | CREATE TABLE LOCATIONS ( 41 | LOCT_ID CHAR(9) NOT NULL, 42 | DEP_ID_LOC CHAR(9) NOT NULL, 43 | PRIMARY KEY (LOCT_ID,DEP_ID_LOC)); 44 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/Create-Db2-Service-Credentials.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/Create-Db2-Service-Credentials.pdf -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/LAB 1 -Connecting-v4-py.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "\n", 8 | "\n", 9 | "

Lab: Connect to Db2 database on Cloud using Python

" 10 | ] 11 | }, 12 | { 13 | "cell_type": "markdown", 14 | "metadata": {}, 15 | "source": [ 16 | "# Introduction\n", 17 | "\n", 18 | "This notebook illustrates how to access a DB2 database on Cloud using Python by following the steps below:\n", 19 | "1. Import the `ibm_db` Python library\n", 20 | "1. Enter the database connection credentials\n", 21 | "1. Create the database connection\n", 22 | "1. Close the database connection\n", 23 | "\n", 24 | "\n", 25 | "\n", 26 | "__Note:__ Please follow the instructions given in the first Lab of this course to Create a database service instance of Db2 on Cloud and retrieve your database Service Credentials.\n", 27 | "\n", 28 | "## Import the `ibm_db` Python library\n", 29 | "\n", 30 | "The `ibm_db` [API ](https://pypi.python.org/pypi/ibm_db/) provides a variety of useful Python functions for accessing and manipulating data in an IBM® data server database, including functions for connecting to a database, preparing and issuing SQL statements, fetching rows from result sets, calling stored procedures, committing and rolling back transactions, handling errors, and retrieving metadata.\n", 31 | "\n", 32 | "\n", 33 | "We first import the ibm_db library into our Python Application\n", 34 | "\n", 35 | "Execute the following cell by clicking within it and then \n", 36 | "press `Shift` and `Enter` keys simultaneously\n" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "metadata": { 43 | "collapsed": false 44 | }, 45 | "outputs": [], 46 | "source": [ 47 | "import ibm_db" 48 | ] 49 | }, 50 | { 51 | "cell_type": "markdown", 52 | "metadata": {}, 53 | "source": [ 54 | "When the command above completes, the `ibm_db` library is loaded in your notebook. \n", 55 | "\n", 56 | "\n", 57 | "## Identify the database connection credentials\n", 58 | "\n", 59 | "Connecting to dashDB or DB2 database requires the following information:\n", 60 | "* Driver Name\n", 61 | "* Database name \n", 62 | "* Host DNS name or IP address \n", 63 | "* Host port\n", 64 | "* Connection protocol\n", 65 | "* User ID (or username)\n", 66 | "* User Password\n", 67 | "\n", 68 | "\n", 69 | "\n", 70 | "__Notice:__ To obtain credentials please refer to the instructions given in the first Lab of this course\n", 71 | "\n", 72 | "Now enter your database credentials below and execute the cell with `Shift` + `Enter`\n" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": null, 78 | "metadata": { 79 | "collapsed": false 80 | }, 81 | "outputs": [], 82 | "source": [ 83 | "#Replace the placeholder values with your actual Db2 hostname, username, and password:\n", 84 | "dsn_hostname = \"YourDb2Hostname\" # e.g.: \"dashdb-txn-sbox-yp-dal09-04.services.dal.bluemix.net\"\n", 85 | "dsn_uid = \"YourDb2Username\" # e.g. \"abc12345\"\n", 86 | "dsn_pwd = \"YoueDb2Password\" # e.g. \"7dBZ3wWt9XN6$o0J\"\n", 87 | "\n", 88 | "dsn_driver = \"{IBM DB2 ODBC DRIVER}\"\n", 89 | "dsn_database = \"BLUDB\" # e.g. \"BLUDB\"\n", 90 | "dsn_port = \"50000\" # e.g. \"50000\" \n", 91 | "dsn_protocol = \"TCPIP\" # i.e. \"TCPIP\"" 92 | ] 93 | }, 94 | { 95 | "cell_type": "markdown", 96 | "metadata": {}, 97 | "source": [ 98 | "## Create the DB2 database connection\n", 99 | "\n", 100 | "Ibm_db API uses the IBM Data Server Driver for ODBC and CLI APIs to connect to IBM DB2 and Informix.\n", 101 | "\n", 102 | "\n", 103 | "Lets build the dsn connection string using the credentials you entered above\n" 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": null, 109 | "metadata": { 110 | "collapsed": false 111 | }, 112 | "outputs": [], 113 | "source": [ 114 | "#DO NOT MODIFY THIS CELL. Just RUN it with Shift + Enter\n", 115 | "#Create the dsn connection string\n", 116 | "dsn = (\n", 117 | " \"DRIVER={0};\"\n", 118 | " \"DATABASE={1};\"\n", 119 | " \"HOSTNAME={2};\"\n", 120 | " \"PORT={3};\"\n", 121 | " \"PROTOCOL={4};\"\n", 122 | " \"UID={5};\"\n", 123 | " \"PWD={6};\").format(dsn_driver, dsn_database, dsn_hostname, dsn_port, dsn_protocol, dsn_uid, dsn_pwd)\n", 124 | "\n", 125 | "#print the connection string to check correct values are specified\n", 126 | "print(dsn)" 127 | ] 128 | }, 129 | { 130 | "cell_type": "markdown", 131 | "metadata": {}, 132 | "source": [ 133 | "Now establish the connection to the database" 134 | ] 135 | }, 136 | { 137 | "cell_type": "code", 138 | "execution_count": null, 139 | "metadata": { 140 | "collapsed": false 141 | }, 142 | "outputs": [], 143 | "source": [ 144 | "#DO NOT MODIFY THIS CELL. Just RUN it with Shift + Enter\n", 145 | "#Create database connection\n", 146 | "\n", 147 | "try:\n", 148 | " conn = ibm_db.connect(dsn, \"\", \"\")\n", 149 | " print (\"Connected to database: \", dsn_database, \"as user: \", dsn_uid, \"on host: \", dsn_hostname)\n", 150 | "\n", 151 | "except:\n", 152 | " print (\"Unable to connect: \", ibm_db.conn_errormsg() )\n" 153 | ] 154 | }, 155 | { 156 | "cell_type": "markdown", 157 | "metadata": {}, 158 | "source": [ 159 | "Congratulations if you were able to connect successfuly. Otherwise check the error and try again." 160 | ] 161 | }, 162 | { 163 | "cell_type": "code", 164 | "execution_count": null, 165 | "metadata": { 166 | "collapsed": false 167 | }, 168 | "outputs": [], 169 | "source": [ 170 | "#Retrieve Metadata for the Database Server\n", 171 | "server = ibm_db.server_info(conn)\n", 172 | "\n", 173 | "print (\"DBMS_NAME: \", server.DBMS_NAME)\n", 174 | "print (\"DBMS_VER: \", server.DBMS_VER)\n", 175 | "print (\"DB_NAME: \", server.DB_NAME)" 176 | ] 177 | }, 178 | { 179 | "cell_type": "code", 180 | "execution_count": null, 181 | "metadata": { 182 | "collapsed": false 183 | }, 184 | "outputs": [], 185 | "source": [ 186 | "#Retrieve Metadata for the Database Client / Driver\n", 187 | "client = ibm_db.client_info(conn)\n", 188 | "\n", 189 | "print (\"DRIVER_NAME: \", client.DRIVER_NAME) \n", 190 | "print (\"DRIVER_VER: \", client.DRIVER_VER)\n", 191 | "print (\"DATA_SOURCE_NAME: \", client.DATA_SOURCE_NAME)\n", 192 | "print (\"DRIVER_ODBC_VER: \", client.DRIVER_ODBC_VER)\n", 193 | "print (\"ODBC_VER: \", client.ODBC_VER)\n", 194 | "print (\"ODBC_SQL_CONFORMANCE: \", client.ODBC_SQL_CONFORMANCE)\n", 195 | "print (\"APPL_CODEPAGE: \", client.APPL_CODEPAGE)\n", 196 | "print (\"CONN_CODEPAGE: \", client.CONN_CODEPAGE)" 197 | ] 198 | }, 199 | { 200 | "cell_type": "markdown", 201 | "metadata": {}, 202 | "source": [ 203 | "## Close the Connection\n", 204 | "We free all resources by closing the connection. Remember that it is always important to close connections so that we can avoid unused connections taking up resources." 205 | ] 206 | }, 207 | { 208 | "cell_type": "code", 209 | "execution_count": null, 210 | "metadata": { 211 | "collapsed": false 212 | }, 213 | "outputs": [], 214 | "source": [ 215 | "ibm_db.close(conn)" 216 | ] 217 | }, 218 | { 219 | "cell_type": "markdown", 220 | "metadata": {}, 221 | "source": [ 222 | "## Summary\n", 223 | "\n", 224 | "In this tutorial you established a connection to a DB2 database on Cloud database from a Python notebook using ibm_db API. " 225 | ] 226 | }, 227 | { 228 | "cell_type": "markdown", 229 | "metadata": {}, 230 | "source": [ 231 | "Copyright © 2017 [cognitiveclass.ai](cognitiveclass.ai?utm_source=bducopyrightlink&utm_medium=dswb&utm_campaign=bdu). This notebook and its source code are released under the terms of the [MIT License](https://bigdatauniversity.com/mit-license/).\n" 232 | ] 233 | } 234 | ], 235 | "metadata": { 236 | "kernelspec": { 237 | "display_name": "Python 3", 238 | "language": "python", 239 | "name": "python3" 240 | }, 241 | "language_info": { 242 | "codemirror_mode": { 243 | "name": "ipython", 244 | "version": 3 245 | }, 246 | "file_extension": ".py", 247 | "mimetype": "text/x-python", 248 | "name": "python", 249 | "nbconvert_exporter": "python", 250 | "pygments_lexer": "ipython3", 251 | "version": "3.6.5" 252 | }, 253 | "widgets": { 254 | "state": {}, 255 | "version": "1.1.2" 256 | } 257 | }, 258 | "nbformat": 4, 259 | "nbformat_minor": 2 260 | } 261 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/Quiz - Database access from Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/Quiz - Database access from Python.docx -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 3 - Accessing Databases using Python/Readme.md: -------------------------------------------------------------------------------- 1 | # Week 3 - Accessing Databases using Python 2 | 3 | After completing the lessons in this week, you will learn how to explain the basic concepts related to using Python to connect to databases and then create tables, load data, query data using SQL, and analyze data using Python 4 | 5 | ## Key Concepts 6 | - Describe concepts related to accessing Databases using Python 7 | - Learn and Practice how to connect to a database from a Jupyter notebook 8 | - Understand and demonstrate how to create tables and insert data from Python 9 | - Write SQL queries and retrieve result sets from Python 10 | - Practice how to perform simplified database access from Python using SQL magic 11 | - Enumerate different type of JOIN operations 12 | - Explain what is an INNER JOIN and practice hands-on 13 | - Distinguish between different types of OUTER JOINs and apply your understanding -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Data/Census_Data_-_Selected_socioeconomic_indicators_in_Chicago__2008___2012-v2.csv: -------------------------------------------------------------------------------- 1 | COMMUNITY_AREA_NUMBER,COMMUNITY_AREA_NAME,PERCENT OF HOUSING CROWDED,PERCENT HOUSEHOLDS BELOW POVERTY,PERCENT AGED 16+ UNEMPLOYED,PERCENT AGED 25+ WITHOUT HIGH SCHOOL DIPLOMA,PERCENT AGED UNDER 18 OR OVER 64,PER_CAPITA_INCOME ,HARDSHIP_INDEX 2 | 1,Rogers Park,7.7,23.6,8.7,18.2,27.5,23939,39 3 | 2,West Ridge,7.8,17.2,8.8,20.8,38.5,23040,46 4 | 3,Uptown,3.8,24,8.9,11.8,22.2,35787,20 5 | 4,Lincoln Square,3.4,10.9,8.2,13.4,25.5,37524,17 6 | 5,North Center,0.3,7.5,5.2,4.5,26.2,57123,6 7 | 6,Lake View,1.1,11.4,4.7,2.6,17,60058,5 8 | 7,Lincoln Park,0.8,12.3,5.1,3.6,21.5,71551,2 9 | 8,Near North Side,1.9,12.9,7,2.5,22.6,88669,1 10 | 9,Edison Park,1.1,3.3,6.5,7.4,35.3,40959,8 11 | 10,Norwood Park,2,5.4,9,11.5,39.5,32875,21 12 | 11,Jefferson Park,2.7,8.6,12.4,13.4,35.5,27751,25 13 | 12,Forest Glen,1.1,7.5,6.8,4.9,40.5,44164,11 14 | 13,North Park,3.9,13.2,9.9,14.4,39,26576,33 15 | 14,Albany Park,11.3,19.2,10,32.9,32,21323,53 16 | 15,Portage Park,4.1,11.6,12.6,19.3,34,24336,35 17 | 16,Irving Park,6.3,13.1,10,22.4,31.6,27249,34 18 | 17,Dunning,5.2,10.6,10,16.2,33.6,26282,28 19 | 18,Montclaire,8.1,15.3,13.8,23.5,38.6,22014,50 20 | 19,Belmont Cragin,10.8,18.7,14.6,37.3,37.3,15461,70 21 | 20,Hermosa,6.9,20.5,13.1,41.6,36.4,15089,71 22 | 21,Avondale,6,15.3,9.2,24.7,31,20039,42 23 | 22,Logan Square,3.2,16.8,8.2,14.8,26.2,31908,23 24 | 23,Humboldt park,14.8,33.9,17.3,35.4,38,13781,85 25 | 24,West Town,2.3,14.7,6.6,12.9,21.7,43198,10 26 | 25,Austin,6.3,28.6,22.6,24.4,37.9,15957,73 27 | 26,West Garfield Park,9.4,41.7,25.8,24.5,43.6,10934,92 28 | 27,East Garfield Park,8.2,42.4,19.6,21.3,43.2,12961,83 29 | 28,Near West Side,3.8,20.6,10.7,9.6,22.2,44689,15 30 | 29,North Lawndale,7.4,43.1,21.2,27.6,42.7,12034,87 31 | 30,South Lawndale,15.2,30.7,15.8,54.8,33.8,10402,96 32 | 31,Lower West Side,9.6,25.8,15.8,40.7,32.6,16444,76 33 | 32,Loop,1.5,14.7,5.7,3.1,13.5,65526,3 34 | 33,Near South Side,1.3,13.8,4.9,7.4,21.8,59077,7 35 | 34,Armour Square,5.7,40.1,16.7,34.5,38.3,16148,82 36 | 35,Douglas,1.8,29.6,18.2,14.3,30.7,23791,47 37 | 36,Oakland,1.3,39.7,28.7,18.4,40.4,19252,78 38 | 37,Fuller Park,3.2,51.2,33.9,26.6,44.9,10432,97 39 | 38,Grand Boulevard,3.3,29.3,24.3,15.9,39.5,23472,57 40 | 39,Kenwood,2.4,21.7,15.7,11.3,35.4,35911,26 41 | 40,Washington Park,5.6,42.1,28.6,25.4,42.8,13785,88 42 | 41,Hyde Park,1.5,18.4,8.4,4.3,26.2,39056,14 43 | 42,Woodlawn,2.9,30.7,23.4,16.5,36.1,18672,58 44 | 43,South Shore,2.8,31.1,20,14,35.7,19398,55 45 | 44,Chatham,3.3,27.8,24,14.5,40.3,18881,60 46 | 45,Avalon Park,1.4,17.2,21.1,10.6,39.3,24454,41 47 | 46,South Chicago,4.7,29.8,19.7,26.6,41.1,16579,75 48 | 47,Burnside,6.8,33,18.6,19.3,42.7,12515,79 49 | 48,Calumet Heights,2.1,11.5,20,11,44,28887,38 50 | 49,Roseland,2.5,19.8,20.3,16.9,41.2,17949,52 51 | 50,Pullman,1.5,21.6,22.8,13.1,38.6,20588,51 52 | 51,South Deering,4,29.2,16.3,21,39.5,14685,65 53 | 52,East Side,6.8,19.2,12.1,31.9,42.8,17104,64 54 | 53,West Pullman,3.3,25.9,19.4,20.5,42.1,16563,62 55 | 54,Riverdale,5.8,56.5,34.6,27.5,51.5,8201,98 56 | 55,Hegewisch,3.3,17.1,9.6,19.2,42.9,22677,44 57 | 56,Garfield Ridge,2.6,8.8,11.3,19.3,38.1,26353,32 58 | 57,Archer Heights,8.5,14.1,16.5,35.9,39.2,16134,67 59 | 58,Brighton Park,14.4,23.6,13.9,45.1,39.3,13089,84 60 | 59,McKinley Park,7.2,18.7,13.4,32.9,35.6,16954,61 61 | 60,Bridgeport,4.5,18.9,13.7,22.2,31.3,22694,43 62 | 61,New City,11.9,29,23,41.5,38.9,12765,91 63 | 62,West Elsdon,11.1,15.6,16.7,37,37.7,15754,69 64 | 63,Gage Park,15.8,23.4,18.2,51.5,38.8,12171,93 65 | 64,Clearing,2.7,8.9,9.5,18.8,37.6,25113,29 66 | 65,West Lawn,5.8,14.9,9.6,33.6,39.6,16907,56 67 | 66,Chicago Lawn,7.6,27.9,17.1,31.2,40.6,13231,80 68 | 67,West Englewood,4.8,34.4,35.9,26.3,40.7,11317,89 69 | 68,Englewood,3.8,46.6,28,28.5,42.5,11888,94 70 | 69,Greater Grand Crossing,3.6,29.6,23,16.5,41,17285,66 71 | 70,Ashburn,4,10.4,11.7,17.7,36.9,23482,37 72 | 71,Auburn Gresham,4,27.6,28.3,18.5,41.9,15528,74 73 | 72,Beverly,0.9,5.1,8,3.7,40.5,39523,12 74 | 73,Washington Height,1.1,16.9,20.8,13.7,42.6,19713,48 75 | 74,Mount Greenwood,1,3.4,8.7,4.3,36.8,34381,16 76 | 75,Morgan Park,0.8,13.2,15,10.8,40.3,27149,30 77 | 76,O'Hare,3.6,15.4,7.1,10.9,30.3,25828,24 78 | 77,Edgewater,4.1,18.2,9.2,9.7,23.8,33385,19 79 | ,CHICAGO,4.7,19.7,12.9,19.5,33.5,28202, -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Peer-graded Assignment: Peer Reviewed Assignment 2 | 3 | As a hands on Data Science Assignment, you will be working on a real world dataset provided by the Chicago Data Portal. You will be asked questions that will help you understand the data just like a data scientist would. You will be assessed both on the correctness of your SQL queries and results. 4 | 5 | A Jupyter notebook has been provided to help with completing this assignment. Follow the instructions to complete all the problems. Then share the Queries and Results with your peers for reviewing. 6 | 7 | 8 | ## Step-By-Step Assignment Instructionsless 9 | **Assignment Topic:** 10 | 11 | In this assignment, you will download the datasets provided, load them into a database, write and execute SQL queries to answer the problems provided, and upload a screenshot showing the correct SQL query and result for review by your peers. A Jupyter notebook is provided in the preceding lesson to help you with the process. 12 | 13 | This assignment involves 3 datasets for the city of Chicago obtained from the Chicago Data Portal: 14 | 15 | **1. Chicago Socioeconomic Indicators** 16 | 17 | This [dataset](https://data.cityofchicago.org/Health-Human-Services/Census-Data-Selected-socioeconomic-indicators-in-C/kn9c-c2s2) contains a selection of six socioeconomic indicators of public health significance and a “hardship index,” by Chicago community area, for the years 2008 – 2012. 18 | 19 | **2. Chicago Public Schools** 20 | 21 | This [dataset](https://data.cityofchicago.org/Education/Chicago-Public-Schools-Progress-Report-Cards-2011-/9xs2-f89t) shows all school level performance data used to create CPS School Report Cards for the 2011-2012 school year. 22 | 23 | **3. Chicago Crime Data** 24 | 25 | This [dataset](https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2) reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. 26 | 27 | **Instructions:** 28 | 29 | **1. Review the datasets** 30 | 31 | Before you begin, you will need to become familiar with the datasets. Snapshots for the three datasets in .CSV format can be downloaded from the following links: 32 | 33 | - Chicago Socioeconomic Indicators: https://ibm.box.com/shared/static/05c3415cbfbtfnr2fx4atenb2sd361ze.csv 34 | - Chicago Public Schools: https://ibm.box.com/shared/static/f9gjvj1gjmxxzycdhplzt01qtz0s7ew7.csv 35 | - Chicago Crime Data: https://ibm.box.com/shared/static/svflyugsr9zbqy5bmowgswqemfpm1x7f.csv 36 | 37 | **NOTE:** Ensure you have downloaded the datasets using the links above instead of directly from the Chicago Data Portal. The versions linked here are subsets of the original datasets and have some of the column names modified to be more database friendly which will make it easier to complete this assignment. The CSV file provided above for the Chicago Crime Data is a very small subset of the full dataset available from the Chicago Data Portal. The original dataset is over 1.55GB in size and contains over 6.5 million rows. For the purposes of this assignment you will use a much smaller sample with only about 500 rows. 38 | 39 | **2. Load the datasets into a database** 40 | 41 | Perform this step using the LOAD tool in the Db2 console. You will need to create 3 tables in the database, one for each dataset, named as follows, and then load the respective .CSV file into the table: 42 | 43 | 1. CENSUS_DATA 44 | 2. CHICAGO_PUBLIC_SCHOOLS 45 | 3. CHICAGO_CRIME_DATA 46 | 47 | To load the data into the tables the steps are similar to Week 2 Lab 1 Part II. The only difference with that lab is that in Step 5 of the instructions you will need to click on create "(+) New Table" and specify the name of the table you want to create and then click "Next". 48 | 49 | 50 | **3. Write and execute queries** 51 | 52 | Perform this step in the Jupyter notebook provided in the previous section. Carefully read and understand each problem. Compose and execute the appropriate SQL queries to answer each of the problems. Take a screenshot of each query and its results and save it as a jpg file.. 53 | 54 | Problem 1: Find the total number of crimes recorded in the crime table. 55 | 56 | Problem 2: Retrieve first 10 rows from the CRIME table. 57 | 58 | Problem 3: How many crimes involve an arrest. 59 | 60 | Problem 4: Which unique types of crimes (e.g. THEFT) have been recorded at a GAS STATION locations? 61 | 62 | Problem 5: In the CENUS_DATA table list all community areas whose names start with the letter ‘B’. 63 | 64 | Problem 6: List the schools in community areas 10 to 15 that are healthy school certified. 65 | 66 | Problem 7: What is the average school Safety Score? 67 | 68 | Problem 8: Find the top 5 Community Areas by average College Enrollment [number of students]. 69 | 70 | Problem 9: Use a sub-query todeterminewhich Community Area has the least value for school Safety Score? 71 | 72 | Problem 10: [Without using an explicit JOIN operator] Find the Per Capita Income of the Community Area which has a school Safety Score of 1. 73 | 74 | How to submit: 75 | 76 | A screenshot in JPEG format is required to be submitted for solution to each of the problems. The screenshot for each problem should clearly show the SQL query and results for the query. The screenshots will be uploaded in the following sections. 77 | 78 | -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q1.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q10.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q10.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q2.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q3.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q4.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q5.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q6.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q7.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q7.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q8.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q8.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q9.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Q9.jpg -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Final Assignment/Screenshots/Readme.md: -------------------------------------------------------------------------------- 1 | # Peer-graded Assignment: Peer Reviewed Assignment 2 | 3 | **Problem 1: Find the total number of crimes recorded in the Crime table Take a screenshot showing the SQL query and its results. Upload the JPEG (.jpg) file below for your peers to review.** 4 | 5 | **Problem 2: Retrieve first 10 rows from the CRIME table** 6 | 7 | **Problem 3: How many crimes involve an arrest** 8 | 9 | **Problem 4: Which unique types of crimes have been recorded at a GAS STATION?** 10 | 11 | **Problem 5: In the CENUS_DATA table list all community areas whose names start with the letter ‘B’.** 12 | 13 | **Problem 6: List the schools in Community Areas 10 to 15 that are healthy school certified?** 14 | 15 | **Problem 7: What is the average school Safety Score?** 16 | 17 | **Problem 8: List the top 5 Community Areas by average College Enrollments (number of students)** 18 | 19 | **Problem 9: Use a sub-query to determine which Community Area has the least value for Safety Score?** 20 | 21 | **Problem 10: Find the Per Capita Income of the Community Area which has a school Safety Score of 1.** -------------------------------------------------------------------------------- /5.Databases_and_SQL_for_Data_Science/Week 4 - Course Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Course Assignment 2 | 3 | As a hands-on Data Science assignment, you will be working with multiple real world datasets for the city of Chicago. You will be asked questions that will help you understand the data just like a data scientist would. You will be assessed both on the correctness of your SQL queries and results. 4 | 5 | ## Key Concepts 6 | - Demonstrate effective use of formulating SQL queries 7 | - Demonstrate use of invoking SQL queries from Jupyter notebooks using Python 8 | - Demonstrate skill in retrieving SQL query results and analyzing data -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Analysis with Python 2 | 3 |
4 | 5 |

6 | IBM 7 |

8 | 9 |
10 | 11 | **Instructors: Joseph Santarcangelo** 12 | 13 | Course Link: [Data Analysis with Python](https://www.coursera.org/learn/data-analysis-with-python/) 14 | 15 | ## Program Overview 16 | - Importing Datasets 17 | - Data Wrangling 18 | - Exploratory Data Analysis 19 | - Model Development 20 | - Model Evaluation 21 | - Final Assignment -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 1 - Understanding the Data.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 1 - Understanding the Data.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 2 - Python Packages for Data Science.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 2 - Python Packages for Data Science.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 3 - Importing and Exporting Data in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 3 - Importing and Exporting Data in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 4 - Getting Started Analyzing Data in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 4 - Getting Started Analyzing Data in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 5 - Importing Datasets.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Quiz 5 - Importing Datasets.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 1 - Importing Datasets/Readme.md: -------------------------------------------------------------------------------- 1 | # Importing Datasets 2 | 3 | ## Key Concepts 4 | - Understanding the Data 5 | - Importing and Exporting Data in Python 6 | - Getting Started Analyzing Data in Python 7 | - Python Packages for Data Science -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 1 - Dealing with Missing Values in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 1 - Dealing with Missing Values in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 2 - Data Formatting in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 2 - Data Formatting in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 3 - Data Normalization in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 3 - Data Normalization in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 4 - Turning categorical variables into quantitative variables in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 4 - Turning categorical variables into quantitative variables in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 5 -Data Wrangling.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Quiz 5 -Data Wrangling.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 2 - Data Wrangling/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Wrangling 2 | 3 | ## Key Concepts 4 | - Identify and Handle Missing Values 5 | - Data Formatting 6 | - Data Normalization 7 | - Binning 8 | - Indicator variables 9 | -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 1 - Descriptive Statistics.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 1 - Descriptive Statistics.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 2 - GroupBy in Python.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 2 - GroupBy in Python.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 3 - Correlation.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 3 - Correlation.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 4 - Correlation - Statistics.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 4 - Correlation - Statistics.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 5 - Exploratory Data Analysis.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/Quiz 5 - Exploratory Data Analysis.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 3 - Exploratory Data Analysis/README.md: -------------------------------------------------------------------------------- 1 | # Exploratory Data Analysis 2 | Preliminary step in Data Analysis is to: 3 | - Summarize main characteristics of the data. 4 | - Gain better understanding of the data set. 5 | - Uncover relationships between the variables. 6 | - Extract important variables. -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 1 - Linear Regression and Multiple Linear Regression.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 1 - Linear Regression and Multiple Linear Regression.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 2 - Model Evaluation using Visualization.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 2 - Model Evaluation using Visualization.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 3 - Polynomial Regression and Pipelines.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 3 - Polynomial Regression and Pipelines.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 4 - Measures for In-Sample Evaluation.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 4 - Measures for In-Sample Evaluation.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 5 - Model Development.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 4 - Model Development/Quiz 5 - Model Development.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 4 - Model Development/README.md: -------------------------------------------------------------------------------- 1 | # Model Development 2 | 3 | ## Key Concepts 4 | - Simple and Multiple Linear Regression 5 | - Model Evaluation Using Visualization 6 | - Polynomial Regression and Pipelines 7 | - R-squared and MSE for In-Sample Evaluation 8 | - Prediction and Decision Making -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 1 - Model Evaluation.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 1 - Model Evaluation.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 2 - Overfitting, Underfitting and Model Selection.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 2 - Overfitting, Underfitting and Model Selection.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 3 - Ridge Regression.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 3 - Ridge Regression.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 4 - Model Refinement.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Quiz 4 - Model Refinement.docx -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 5 - Model Evaluation/Readme.md: -------------------------------------------------------------------------------- 1 | # Model Evaluation and Refinement 2 | 3 | ## Key Concepts 4 | - Model Evaluation 5 | - Over-fitting, Under-fitting and Model Selection 6 | - Ridge Regression 7 | - Grid Search 8 | - Model Refinement -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q1.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q10.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q10.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q2.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q3.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q4.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q5.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q6.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q6.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q7.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q7.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q8.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q8.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q9.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/6.Data_Analysis_with_Python/Week 6 - Final Assignment/Q9.jpg -------------------------------------------------------------------------------- /6.Data_Analysis_with_Python/Week 6 - Final Assignment/README.md: -------------------------------------------------------------------------------- 1 | # Final Assignment 2 | 3 | ## Key Concepts 4 | - Create a Jupyter notebook 5 | - Housing price data 6 | 7 | # Peer-graded Assignment: House Sales in King County, USA 8 | 9 | 10 | **Question 1) Display the data types of each column using the attribute dtype, then take a screenshot and submit it, include your code in the image.** 11 | ![dtype](Q1.jpg) 12 | 13 | 14 | **Question 2) Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True.** 15 | ![drop id and Unnamed](Q2.jpg) 16 | 17 | 18 | **Question 3) Use the method value_counts to count the number of houses with unique floor values, use the method .to_frame() to convert it to a dataframe** 19 | ![unique floors](Q3.jpg) 20 | 21 | **Question 4) Use the function boxplot in the seaborn library to produce a plot that can be used to determine whether houses with a waterfront view or without a waterfront view have more price outliers.** 22 | ![boxplot](Q4.jpg) 23 | 24 | **Question 5) Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price. Take a screenshot of the plot and the code used to generate it.** 25 | ![regplot](Q5.jpg) 26 | 27 | **Question 6) Fit a linear regression model to predict the price using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.** 28 | ![lr sqft_living](Q6.jpg) 29 | 30 | 31 | **Question 7) Fit a linear regression model to predict the 'price' using the list of features:** 32 | 33 | - **"floors"** 34 | - **"waterfront"** 35 | - **"lat"** 36 | - **"bedrooms"** 37 | - **"sqft_basement"** 38 | - **"view"** 39 | - **"bathrooms"** 40 | - **"sqft_living15"** 41 | - **"sqft_above"** 42 | - **"grade"** 43 | - **"sqft_living"** 44 | - **The calculate the R^2. Take a screenshot of your code and the value of the R^2.** 45 | ![mlr](Q7.jpg) 46 | 47 | **Question 8) Create a pipeline object that scales the data performs a polynomial transform and fits a linear regression model. Fit the object using the features in the question above, then fit the model and calculate the R^2. Take a screenshot of your code and the R^2.** 48 | ![pipeline](Q8.jpg) 49 | 50 | **Question 9) Create and fit a Ridge regression object using the training data, setting the regularization parameter to 0.1 and calculate the R^2 using the test data. Take a screenshot for your code and the R^2** 51 | ![ridge](Q9.jpg) 52 | 53 | **Question 10) Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, setting the regularisation parameter to 0.1. Calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.** 54 | ![ridge on polynomial](Q10.jpg) 55 | 56 | **Share the link for your notebook:** [URL](https://eu-gb.dataplatform.cloud.ibm.com/analytics/notebooks/v2/3cd171cd-9b26-4dd3-b2d5-d02c4dcda826/view?access_token=aad17c79b4b9813b71caf706b64943a36be90d47b8097c031d005387c7bc8a86) 57 | -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Readme.md: -------------------------------------------------------------------------------- 1 | # Data Visualization with Python 2 | 3 |
4 | 5 |

6 | IBM 7 |

8 | 9 |
10 | 11 | **Instructors:Alex Aklson** 12 | 13 | Course Link: [Data Visualization with Python](https://www.coursera.org/learn/python-for-data-visualization/) 14 | 15 | ## Syllabus 16 | 17 | ### Week 1 - Introduction to Data Visualization Tools 18 | - Introduction to Data Visualization 19 | - Introduction to Matplotlib 20 | - Basic Plotting with Matplotlib 21 | - Dataset on Immigration to Canada 22 | - Line Plots 23 | - Lab: Introduction to Matplotlib and Line Plots 24 | - Quiz: Introduction to Data Visualization Tools 25 | 26 | ### Week 2 - Basic and Specialized Visualization Tools 27 | - Area Plots 28 | - Histograms 29 | - Bar Charts 30 | - Pie Charts 31 | - Box Plots 32 | - Scatter Plots 33 | - Bubble Plots 34 | - Lab: Basic Visualization Tools 35 | - Lab: Specialized Visualization Tools 36 | - Quiz: Basic Visualization Tools 37 | - Quiz: Specialized Visualization Tools 38 | 39 | ### Week 3 - Advanced Visualizations and Geospatial Data 40 | - Waffle Charts 41 | - Word Clouds 42 | - Seaborn and Regression Plots 43 | - Introduction to Folium and Map Styles 44 | - Maps with Markers 45 | - Choropleth Maps 46 | - Lab: Advanced Visualization Tools 47 | - Lab: Creating Maps and Visualizing Geospatial Data 48 | - Quiz: Advanced Visualization Tools 49 | - Quiz: Visualizing Geospatial Data 50 | - Peer-review Assignment 51 | -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 1 - Introduction to Data Visualization Tools/Quiz - Introduction to Data Visualization Tools.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 1 - Introduction to Data Visualization Tools/Quiz - Introduction to Data Visualization Tools.docx -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 1 - Introduction to Data Visualization Tools/Readme.md: -------------------------------------------------------------------------------- 1 | # Introduction to Data Visualization 2 | 3 | **Instructor: Alex Aklson** 4 | 5 | ## Key Concepts 6 | 7 | Learn about: 8 | - Data visualization and some of the best practices to keep in mind when creating plots and visuals. 9 | - History and the architecture of Matplotlib. 10 | - Basic plotting with Matplotlib. 11 | - Dataset on immigration to Canada, which will be used extensively throughout the course. 12 | - Read csv files into a pandas dataframe and process and manipulate the data in the dataframe. 13 | - Generate line plots using Matplotlib. 14 | 15 | ## Main Idea 16 | Less is more effective, attractive and impactive. 17 | [Dark Horse Analytics](https://www.darkhorseanalytics.com) are good at conveying this idea especially in geospatial graphs. -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 2 - Basic and Specialized Visualization Tools/1. Basic Visualization Tools/Quiz - Basic Visualization Tools.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 2 - Basic and Specialized Visualization Tools/1. Basic Visualization Tools/Quiz - Basic Visualization Tools.docx -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 2 - Basic and Specialized Visualization Tools/2. Specialized Visualization Tools/Quiz - Specialized Visualization Tools.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 2 - Basic and Specialized Visualization Tools/2. Specialized Visualization Tools/Quiz - Specialized Visualization Tools.docx -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 2 - Basic and Specialized Visualization Tools/Readme.md: -------------------------------------------------------------------------------- 1 | # Basic and Specialized Visualization Tools 2 | 3 | **Instructor: Alex Aklson** 4 | 5 | ## Key Concepts 6 | 7 | Create with Matplotlib 8 | - Area plots 9 | - Histograms 10 | - Bar charts 11 | - Pie charts 12 | - Box plots 13 | - Scatter plots 14 | - Bubble plots 15 | 16 | Many Data Scientists are vocal about how Pie charts don't convey information correctly and believe that a Bar chart can do the same but in a more informative and effective way. 17 | 18 | Bubble plots 19 | 20 | They are a variation of scatter plots displaying 3 dimensions (x,y,z) -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/Quiz - Advanced Visualization Tools.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/Quiz - Advanced Visualization Tools.docx -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/Readme.md: -------------------------------------------------------------------------------- 1 | # Advanced Visualization Tools 2 | 3 | ## Waffle Chart 4 | - A waffle chart is am interesting visualization that is normally created to display progress towards goals. 5 | - Part of the Folium package. 6 | - An easy example to remember a Waffle Chart is the GitHub Activity chart. 7 | 8 | ![Waffle Chart](waffle_chart.jpg) 9 | 10 | Python package for generating `waffle charts` called [PyWaffle](https://github.com/ligyxy/PyWaffle). 11 | 12 | ## Word Clouds 13 | - A word cloud is a depiction of the frequency of different words in some textual data. 14 | - Python package by Andreas Mueller 15 | 16 | ![Waffle Chart](word_cloud.jpg) 17 | 18 | ## Seaborn 19 | - Seaborn is a Python visualization library based on Matplotlib 20 | -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/waffle_chart.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/waffle_chart.jpg -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/word_cloud.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/1. Advanced Visualization Tools/word_cloud.jpg -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/2. Visualizing Geospatial Data/Quiz - Visualizing Geospatial Data.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/2. Visualizing Geospatial Data/Quiz - Visualizing Geospatial Data.docx -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q1.JPG -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q2.JPG -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q3.JPG -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Q4.JPG -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/3. Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | ## Data Visualization Final Assignment 2 | 3 | Final assignment of Data visualization with Python contains 4 questions where Questions 1 and 2 are on bar charts. Questions 3 and 4 are on Choropleth maps generated using Folium. 4 | 5 | The [notebook](Data_Visualization_Final_Assingment.ipynb) has detailed descriptions of the questions and answers. -------------------------------------------------------------------------------- /7.Data_Visualization_with_Python/Week 3 - Advanced Visualizations and Geospatial Data/Readme.md: -------------------------------------------------------------------------------- 1 | # Advanced Visualizations and Geospatial Data 2 | 3 | **Instructor: Alex Aklson** 4 | 5 | ## Key Concepts 6 | 7 | Learn about: 8 | - Advanced visualization tools such as waffle charts and word clouds, and how to create them. 9 | - Seaborn, which is another visualization library, and how to use it to generate attractive regression plots. 10 | - Folium, which is another visualization library, designed especially for visualizing geospatial data. 11 | - Use Folium to create maps of different regions of the world and how to superimpose markers on top of a map. 12 | - Use Folium to create choropleth maps. 13 | -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Readme.md: -------------------------------------------------------------------------------- 1 | # Machine Learning with Python 2 |
3 | 4 |

5 | IBM 6 |

7 | 8 |
9 | 10 | **Instructors: SAEED AGHABOZORGI, Joseph Santarcangelo** 11 | 12 | **Course link:** [Machine Learning with Python](https://www.coursera.org/learn/machine-learning-with-python/) 13 | 14 | ## Program Overview 15 | - Introduction to Machine Learning 16 | - Regression 17 | - Classification 18 | - Clustering 19 | - Recommendation Systems 20 | - Final Assignment 21 | -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q1 & Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q1 & Q2.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q3 & Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q3 & Q4.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Quiz - Intro to Machine Learning/Q5.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 1 - Intro to Machine Learning/Readme.md: -------------------------------------------------------------------------------- 1 | # Introduction to Machine Learning 2 | 3 | **Instructors: SAEED AGHABOZORGI & Joseph Santarcangelo** 4 | 5 | In this week, you will learn about applications of Machine Learning in different fields such as health care, banking, telecommunication, and so on. You’ll get a general overview of Machine Learning topics such as supervised vs unsupervised learning, and the usage of each algorithm. Also, you understand the advantage of using Python libraries for implementing Machine Learning models. 6 | 7 | 8 | ## Key Concepts 9 | - To give examples of Machine Learning 10 | - To demonstrate the Python libraries for Machine Learning 11 | - To classify Supervised vs. Unsupervised algorithms 12 | -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q1.jpg -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q2 & Q3.jpg -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 2 - Regression/Quiz - Regression/Q4 & Q5.jpg -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 2 - Regression/Readme.md: -------------------------------------------------------------------------------- 1 | # Regression 2 | 3 | **Instructors: SAEED AGHABOZORGI & Joseph Santarcangelo** 4 | 5 | In this week, you will get a brief intro to regression. You learn about Linear, Non-linear, Simple and Multiple regression, and their applications. You apply all these methods on two different datasets, in the lab part. Also, you learn how to evaluate your regression model, and calculate its accuracy 6 | 7 | # Key Concepts 8 | - To understand the basics of regression 9 | - To apply Simple and Multiple, Linear and Non-Linear Regression on a dataset for estimation. -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q1.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q2.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q3.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q4 & Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 3 - Classification/Quiz/Q4 & Q5.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 3 - Classification/Readme.md: -------------------------------------------------------------------------------- 1 | # Classification 2 | 3 | ## Key Concepts 4 | - To understand different Classification methods. 5 | - To apply Classification algorithms on various datasets to solve real world problems. 6 | - To understand evaluation methods in Classification. 7 | 8 | ## Classification methods 9 | - K-Nearest Neighbours 10 | - Decision Trees 11 | - Logistic Regression 12 | - Support Vector Machine -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q1.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q2.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q3.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q4.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 4 - Clustering/Quiz - Clustering/Q5.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q1.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q1.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q2.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q2.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q3.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q3.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q4.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q4.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q5.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/8.Machine_Learning_with_Python/Week 5 - Recommendation Systems/Quiz - Recommender System/Q5.JPG -------------------------------------------------------------------------------- /8.Machine_Learning_with_Python/Week 6 - Final Assignment/Readme.md: -------------------------------------------------------------------------------- 1 | # Final Assignment 2 | 3 | ## Review Criteria 4 | 5 | This final project will be graded by your peers who are completing this course during the same session. This project is worth **25** marks of your total grade, broken down as follows: 6 | 7 | 1. Building model using KNN, finding the best k and accuracy evaluation (**7 marks**) 8 | 2. Building model using Decision Tree, finding the best k and accuracy evaluation (**6 marks**) 9 | 3. Building model using SVM, finding the best k and accuracy evaluation (**6 marks**) 10 | 4. Building model using Logistic Regression, finding the best k and accuracy evaluation (**6 marks**) 11 | 12 | [Link to notebook](https://eu-gb.dataplatform.cloud.ibm.com/analytics/notebooks/v2/4d6db394-4d29-4627-aa4b-28bd502c368e/view?access_token=0aa62299e7b37c3b9040fbada756fcaa5bda15542045fdc0a4beb29e234204f3) -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Readme.md: -------------------------------------------------------------------------------- 1 | # Applied Data Science Capstone 2 | 3 |
4 |

5 | IBM logo 6 |

7 | 8 | **Instructor: Alex Aklson** 9 | 10 | Link to course: https://www.coursera.org/learn/applied-data-science-capstone/home/welcome 11 | 12 | ## Syllabus 13 | 14 | ### Week 1 - Introduction to Capstone Project 15 | - Introduction to Capstone Project 16 | - Location Data Providers 17 | - Signing-up for a Watson Studio Account 18 | - Peer-review Assignment: Capstone Project Notebook 19 | 20 | ### Week 2 - Foursquare API 21 | - Introduction to Foursquare 22 | - Getting Foursquare API Credentials 23 | - Using Foursquare API 24 | - Lab: Foursquare API 25 | - Quiz: Foursquare API 26 | 27 | ### Week 3 - Neighborhood Segmentation and Clustering 28 | - Clustering 29 | - Lab: Clustering 30 | - Lab: Segmenting and Clustering Neighborhoods in New York City 31 | - Peer-review Assignment: Segmenting and Clustering Neighborhoods in Toronto 32 | 33 | ### Week 4 - Capstone Project 34 | 35 | ### Week 5 - Capstone Project (Cont'd) 36 | -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 1 - Introduction/Data_Science_Capstone_Project.ipynb: -------------------------------------------------------------------------------- 1 | {"nbformat":4,"nbformat_minor":0,"metadata":{"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.8.3"},"colab":{"name":"Data_Science_Capstone_Project.ipynb","provenance":[],"collapsed_sections":[]}},"cells":[{"cell_type":"markdown","metadata":{"id":"vEuP0Zi2NxvD","colab_type":"text"},"source":["# Data Science Coursera Capstone\n","\n","The Aim of this notebook is to complete the IBM Data Science Coursera Capstone project."]},{"cell_type":"code","metadata":{"id":"TBS-ha5hNxvF","colab_type":"code","colab":{},"executionInfo":{"status":"ok","timestamp":1596456391387,"user_tz":-330,"elapsed":1051,"user":{"displayName":"Thomas George Thomas","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhRjmtno5yCmJOUjYiFNGHi_xP5YZBJ1ZpWGKsZ=s64","userId":"09561174857978505545"}}},"source":["import pandas as pd\n","import numpy as np"],"execution_count":1,"outputs":[]},{"cell_type":"code","metadata":{"id":"SIut6CL0NxvK","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":34},"executionInfo":{"status":"ok","timestamp":1596456399949,"user_tz":-330,"elapsed":1024,"user":{"displayName":"Thomas George Thomas","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhRjmtno5yCmJOUjYiFNGHi_xP5YZBJ1ZpWGKsZ=s64","userId":"09561174857978505545"}},"outputId":"a23383bd-e312-46a4-db91-aa96503eed87"},"source":["print('Hello Capstone Project Course!')"],"execution_count":2,"outputs":[{"output_type":"stream","text":["Hello Capstone Project Course!\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"i3EdoAxhNxvO","colab_type":"code","colab":{}},"source":[""],"execution_count":null,"outputs":[]}]} -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 1 - Introduction/Readme.md: -------------------------------------------------------------------------------- 1 | # Introduction 2 | 3 | ## Key Concepts 4 | - Learn about the problem that you will be working on in this capstone course 5 | - Learn how to get started with Git and Github 6 | - Apply your data analysis and machine learning skills to solve a problem using real world data 7 | - Create a project on Watson Studio, create a project, start a notebook and share it with your peers. 8 | 9 | ## Peer-graded Assignment: Capstone Project Notebook 10 | 11 | ### Overview 12 | In this assignment, you will be asked to create a new repository on your Github account, and to create a Jupyter Notebook and submit a shareable link to it for peer evaluation. 13 | 14 | ### Instructions 15 | Create a new repository on your GitHub account and name it Coursera_Capstone. 16 | 17 | Now, start a Jupyter Notebook using any platform that you are comfortable with and do the following: 18 | 19 | 1. Write some markdown to explain that this notebook will be mainly used for the capstone project. 20 | 2. Import the _pandas_ library as pd. 21 | 3. Import the Numpy library as np. 22 | 4. Print the following the statement: Hello Capstone Project Course! 23 | 24 | Push the Notebook to your Github repository and submit a link to the notebook on your Github repository. 25 | 26 | **Link to my notebook**:https://github.com/Thomas-George-T/A-Tale-of-Two-Cities/blob/master/DS_Capstone_template.ipynb 27 | -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q1.jpg -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q2 & Q3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q2 & Q3.jpg -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q4 & Q5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Thomas-George-T/IBM-Data-Science-Professional-Certification/a6d2697ca04c76da53957d07ef6e20a957e0917d/9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Quiz - Foursquare API/Q4 & Q5.jpg -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week 2 - Foursquare API/Readme.md: -------------------------------------------------------------------------------- 1 | # Foursquare API 2 | 3 | In this module, you will learn in details about Foursquare, which is the location data provider we will be using in this course, and its API. Essentially, you will learn how to create a Foursquare developer account, and use your credentials to search for nearby venues of a specific type, explore a particular venue, and search for trending venues around a location. 4 | 5 | ## Key Concepts 6 | - Learn about Foursquare and its API. 7 | - Learn how to create a Foursquare developer account. 8 | - Create a Foursquare developer account. 9 | - Learn how to use the Foursquare API to search for a specific type of venues, explore a given venue, and search for trending venue around a location. 10 | - Complete a lab to better understand how to make calls to the Foursquare API and retrieve location data from its database. 11 | 12 | ## Known Issues & Fixes 13 | 14 | - [Resolution to Week 2 Lab Problem (Search Foursquare User)](https://www.coursera.org/learn/applied-data-science-capstone/discussions/weeks/2/threads/-LJs_M9XQ-KybPzPVzPi6w?page=2) 15 | 16 | - [Get Relevant part of JSON](https://www.coursera.org/learn/applied-data-science-capstone/discussions/weeks/2/threads/YV4rUtOHQbqeK1LTh8G6FQ/replies/U8jSf0TdSuOI0n9E3frjqA) 17 | -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week_3_-_Neighborhood_Segmentation_and_Clustering/Readme.md: -------------------------------------------------------------------------------- 1 | # Neighbourhood Segmentation and Clustering 2 | 3 | In this module, you will learn about k-means clustering, which is a form of unsupervised learning. Then you will use clustering and the Foursquare API to segment and cluster the neighborhoods in the city of New York. Furthermore, you will learn how to scrape website and parse HTML code using the Python package Beautifulsoup, and convert data into a pandas dataframe. 4 | 5 | ## Key Concepts 6 | - Hone your communication skills by documenting your work and submitting a full project report and a presentation or a blog post 7 | - Decide what is the suitable algorithm for the capstone project 8 | - Learn how to deal with missing attributes' values and imbalanced data . 9 | - Learn about CRISP DM framework for machine Learning 10 | 11 | ## My Final Assignment Notebook 12 | 13 | [Notebook](https://nbviewer.jupyter.org/github/Thomas-George-T/IBM-Data-Science-Professional-Certification/blob/master/9.Applied_Data_Science_Capstone/Week_3_-_Neighborhood_Segmentation_and_Clustering/Applied_Capstone_Week_3_Assignment.ipynb) 14 | -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week_4_-_The Battle of Neighborhoods/Readme.md: -------------------------------------------------------------------------------- 1 | # The Battle of Neighborhoods 2 | 3 | In this module, you will start working on the capstone project. You will clearly define a problem and discuss the data that you will be using to solve the problem. 4 | 5 | ## Key Concepts 6 | - Define a problem for your capstone project. 7 | - Finding the data that you will use for the capstone project. 8 | 9 | ## Question 1 10 | 11 | Clearly define a problem or an idea of your choice, where you would need to leverage the Foursquare location data to solve or execute. Remember that data science problems always target an audience and are meant to help a group of stakeholders solve a problem, so make sure that you explicitly describe your audience and why they would care about your problem. 12 | 13 | This submission will eventually become your **Introduction/Business Problem** section in your final report. So I recommend that you push the report (having your Introduction/Business Problem section only for now) to your Github repository and submit a link to it. 14 | 15 | ## Question 2 16 | 17 | Describe the data that you will be using to solve the problem or execute your idea. Remember that you will need to use the Foursquare location data to solve the problem or execute your idea. You can absolutely use other datasets in combination with the Foursquare location data. So make sure that you provide adequate explanation and discussion, with examples, of the data that you will be using, even if it is only Foursquare location data. 18 | 19 | This submission will eventually become your **Data** section in your final report. So I recommend that you push the report (having your Data section) to your Github repository and submit a link to it. 20 | 21 | **Link to my Notebook:** https://github.com/Thomas-George-T/A-Tale-of-Two-Cities/blob/master/DS_Report.ipynb 22 | -------------------------------------------------------------------------------- /9.Applied_Data_Science_Capstone/Week_5_-The Battle of Neighborhoods (Cont'd)/Readme.md: -------------------------------------------------------------------------------- 1 | # The Battle of Neighborhoods (Cont'd) 2 | 3 | In this module, you will carry out all the remaining work to complete your capstone project. You will submit a report of your project for peer evaluation. 4 | 5 | ## Key Concepts 6 | - Carry out the remaining work to complete the capstone project. 7 | - Submit a link to your project notebook and a complete project report. 8 | 9 | ## Instructions 10 | 11 | In this week, you will continue working on your capstone project. Please remember by the end of this week, you will need to submit the following: 12 | 13 | 1. A full report consisting of all of the following components (**15 marks**): 14 | 15 | - Introduction where you discuss the business problem and who would be interested in this project. 16 | - Data where you describe the data that will be used to solve the problem and the source of the data. 17 | - Methodology section which represents the main component of the report where you discuss and describe any exploratory data analysis that you did, any inferential statistical testing that you performed, if any, and what machine learnings were used and why. 18 | - Results section where you discuss the results. 19 | - Discussion section where you discuss any observations you noted and any recommendations you can make based on the results. 20 | - Conclusion section where you conclude the report. 21 | 22 | 2. A link to your Notebook on your GitHub repository pushed showing your code. (**15 marks**) 23 | 24 | 3. Your choice of a presentation or blog post. (**10 marks**) 25 | 26 | **Here are examples of previous outstanding submissions that should give you an idea of what your report would look like, what your notebook would look like in terms of clean, clear, and well-commented code, and what your presentation would look like or your blog post would look like:** 27 | 28 | 1. **Report:** https://cocl.us/coursera_capstone_report 29 | 2. **Notebook:** https://cocl.us/coursera_capstone_notebook 30 | 3. **Presentation:** https://cocl.us/coursera_capstone_presentation 31 | 4. **Blog post:** https://cocl.us/coursera_capstone_blogpost 32 | 33 | ## My Work 34 | 35 | 1. **Report:** https://github.com/Thomas-George-T/A-Tale-of-Two-Cities/blob/master/DS_Report.ipynb 36 | 2. **Notebook:** https://github.com/Thomas-George-T/A-Tale-of-Two-Cities/blob/master/Tale_of_Two_Cities_A_Data_Science_Take.ipynb 37 | 3. **Blog Post:** https://medium.com/@tgt555/a-tale-of-two-cities-clustering-neighborhoods-of-london-and-paris-5328f69cd8b6?sk=79abb05dd7eed6157e7a87c7c52a98b4 -------------------------------------------------------------------------------- /Readme.md: -------------------------------------------------------------------------------- 1 | ![ViewCount](https://views.whatilearened.today/views/github/Thomas-George-T/IBM-Data-Science-Professional-Certification.svg?cache=remove) 2 | ![GitHub top language](https://img.shields.io/github/languages/top/Thomas-George-T/IBM-Data-Science-Professional-Certification?style=flat) 3 | ![GitHub language count](https://img.shields.io/github/languages/count/Thomas-George-T/IBM-Data-Science-Professional-Certification?style=flat) 4 | 5 | # IBM Data Science Professional Certificate 6 | 7 |
8 | 9 |

10 | IBM logo 11 |

12 | 13 | ## About this Professional Certificate 14 | 15 | Data science is one of the hottest professions of the decade, and the demand for data scientists who can analyze data and communicate results to inform data driven decisions has never been greater. This Professional Certificate from IBM will help anyone interested in pursuing a **career in data science** or **machine learning** develop career-relevant skills and experience. 16 | 17 | It’s a myth that to become a data scientist you need a Ph.D. Anyone with a passion for learning can take this Professional Certificate – **no prior knowledge of computer science or programming languages required** – and develop the skills, tools, and portfolio to have a competitive edge in the job market as an entry level data scientist. 18 | 19 | The program consists of 9 online courses that will provide you with the **latest job-ready tools and skills**, including open source tools and libraries, Python, databases, SQL, data visualization, data analysis, statistical analysis, predictive modeling, and machine learning algorithms. You’ll learn data science through hands-on practice in the IBM Cloud using real data science tools and real-world data sets. 20 | 21 | Upon successfully completing these courses, you will have built a portfolio of data science projects to provide you with the confidence to plunge into an exciting profession in data science. 22 | 23 | In addition to earning a Professional Certificate from Coursera, you'll also receive a **digital badge from IBM** recognizing your proficiency in data science. 24 | 25 | ## Applied Learning Project 26 | This Professional Certificate has a strong emphasis on applied learning. Except for the first course, all other courses include a series of hands-on labs in the IBM Cloud that will give you **practical skills with applicability to real jobs**, including: 27 | 28 | **Tools:** Jupyter / JupyterLab, GitHub, R Studio, and Watson Studio 29 | 30 | **Libraries:** Pandas, NumPy, Matplotlib, Seaborn, Folium, ipython-sql, Scikit-learn, ScipPy, etc. 31 | 32 | **Projects:** random album generator, predict housing prices, best classifier model, battle of neighborhoods 33 | 34 | Read more below: 35 | 36 | **Course Link:** [IBM Data Science Professional Certificate](https://www.coursera.org/professional-certificates/ibm-data-science) 37 | 38 | ## Instructors 39 | - Alex Aklson 40 | - Polong Lin 41 | - Romeo Kienzler 42 | - Svetlana Levitan 43 | - Joseph Santarcangelo 44 | - Rav Ahuja 45 | - SAEED AGHABOZORGI 46 | 47 | ## Specialization Overview 48 | 49 | | Sr. No | Course | 50 | |:------:|----------------------------------------------------------------------------| 51 | | 1. | [What is Data Science?](1.What_is_Data_Science) | 52 | | 2. | [Tools for Data Science](2.Tools_for_Data_Science) | 53 | | 3. | [Data Science Methodology](3.Data_Science_Methodology) | 54 | | 4. | [Python for Data Science and AI](4.Python_for_Data_Science_and_AI) | 55 | | 5. | [Databases and SQL for Data Science](5.Databases_and_SQL_for_Data_Science) | 56 | | 6. | [Data Analysis with Python](6.Data_Analysis_with_Python) | 57 | | 7. | [Data Visualization with Python](7.Data_Visualization_with_Python) | 58 | | 8. | [Machine Learning with Python](8.Machine_Learning_with_Python) | 59 | | 9. | [Applied Data Science Capstone](9.Applied_Data_Science_Capstone) | 60 | 61 | ## Resources 62 | 63 | #### Capstone 64 | - [A Tale of Two Cities: Clustering neighborhoods of London and Paris](https://medium.com/analytics-vidhya/a-tale-of-two-cities-clustering-neighborhoods-of-london-and-paris-5328f69cd8b6) 65 | 66 | #### Data Science Toolkit 67 | - [IBM Developer Skills Network](https://labs.cognitiveclass.ai/login?logout=true) : Data Science toolkit including JupyterLab, JupterNotebook, Apache Zeppelin, RStudio, etc. in your browser. 68 | - [Google Colab](https://colab.research.google.com) : Practice Python in your browser and execute Machine learning Models with Google Colab. 69 | - [Online Notebook viewer](https://nbviewer.jupyter.org) : View jupyter notebooks online. 70 | - [Foursquare API](https://developer.foursquare.com) : Foursquare API developer credentials portal. 71 | - [ArcGis](https://developers.arcgis.com/labs/python/search-for-an-address/) : Search for an address with Python. 72 | 73 | #### Useful Functions 74 | 75 | - [Check for NaN in Pandas DataFrame](https://datatofish.com/check-nan-pandas-dataframe/) 76 | - [Pandas get dummies or One Hot encoding](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html) 77 | - [Rename a column in Pandas in Python](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html) 78 | - [Data cleaning with Pandas](https://towardsdatascience.com/data-cleaning-with-python-using-pandas-library-c6f4a68ea8eb) 79 | - [RStudio](https://cran.rstudio.com) 80 | - [RStudio package: Shiny](https://shiny.rstudio.com/) 81 | - [RStudio package: leaflet](https://rstudio.github.io/leaflet/) 82 | - [Importing JSON and HTML into pandas](https://www.datacamp.com/community/tutorials/importing-data-into-pandas) 83 | 84 | 85 | #### Useful Resources 86 | - [End to End Machine learning library](https://e2eml.school/blog.html#skills) 87 | - [Beginning with Exploratory data Analysis (EDA)](https://nbviewer.jupyter.org/github/Tanu-N-Prabhu/Python/blob/master/Exploratory_data_Analysis.ipynb) 88 | - [In depth Exploratory data Analysis (EDA)](https://www.kaggle.com/lalitharajesh/iris-dataset-exploratory-data-analysis) 89 | - [K-means Clustering](https://nbviewer.jupyter.org/github/temporaer/tutorial_ml_gkbionics/blob/master/2%20-%20KMeans.ipynb) 90 | - [Understanding K-Means Clustering](https://www.appliedaicourse.com/blog/k-means-clustering/) 91 | 92 | #### Building Portfolio and Real world Experience 93 | - [Building an effective Data science Portfolio](https://towardsdatascience.com/how-to-build-an-effective-data-science-portfolio-56d19b885aa8) 94 | - [Getting real life Data science experience](https://towardsdatascience.com/3-ways-to-get-real-life-data-science-experience-before-your-first-job-545db436ef12) 95 | - [How not to build a data science project](https://towardsdatascience.com/how-not-to-build-a-data-science-project-baa494d98da4) 96 | 97 | -------------------------------------------------------------------------------- /ibm.svg: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | --------------------------------------------------------------------------------