├── Docs and references
├── EWIFingeringOneWatts.pdf
├── MPX5010.pdf
├── casio-dh-recorder-fingering.png
├── joysticks.png
└── mpx5010gp.png
├── LICENSE.md
├── MiniVI-cap
├── MiniVI-cap.ino
└── evi1000.pdf
├── MiniWI-cap-pmt-ArcoreProMicro
└── MiniWI-cap-pmt-ArcoreProMicro.ino
├── MiniWI-cap-pmt
├── MiniWI-cap-pmt-fingering-casiomod.png
├── MiniWI-cap-pmt-schematic.png
├── MiniWI-cap-pmt.ino
├── MiniWI-fingering-casiomod.png
└── pmtver.png
├── MiniWI-cap
├── MiniWI-cap-schematic.png
├── MiniWI-cap.ino
├── capverbottom.png
├── capverinside.png
└── capvertop.png
├── MiniWI-lite
└── MiniWI-lite.ino
├── MiniWI
├── MiniWI-schematic.png
├── MiniWI.ino
└── miniwifirstproto.png
├── README.md
├── T.WI
├── T.WI-fingering.pdf
├── T.WI-settings.pdf
├── T.WI.ino
├── curves.png
├── twi-a4-template.pdf
├── twi-cut.dxf
├── twi-examples.pdf
├── twi-joystick.png
├── twi-schematic.png
├── twi-side1.stl
├── twi-side2.stl
└── twi-userguide.pdf
├── TeensieWI-FSR
└── TeensieWI-FSR.ino
├── TeensieWI-mod
├── TeensieWI-mod.ino
├── twmod-schematic.png
└── twmod.png
└── TeensieWI
├── TeensieWI-fingering.png
├── TeensieWI-schematic.png
└── TeensieWI.ino
/Docs and references/EWIFingeringOneWatts.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/Docs and references/EWIFingeringOneWatts.pdf
--------------------------------------------------------------------------------
/Docs and references/MPX5010.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/Docs and references/MPX5010.pdf
--------------------------------------------------------------------------------
/Docs and references/casio-dh-recorder-fingering.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/Docs and references/casio-dh-recorder-fingering.png
--------------------------------------------------------------------------------
/Docs and references/joysticks.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/Docs and references/joysticks.png
--------------------------------------------------------------------------------
/Docs and references/mpx5010gp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/Docs and references/mpx5010gp.png
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/MiniVI-cap/MiniVI-cap.ino:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | /*
5 | NAME: MiniVI Cap Touch ver.
6 | WRITTEN BY: JOHAN BERGLUND
7 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
8 | DATE: 2016-05-11
9 | FILE SAVED AS: MiniVI-cap.ino
10 | FOR: Arduino Pro Mini, ATmega328, version with breakouts for A6 and A7
11 | CLOCK: 16.00 MHz CRYSTAL
12 | PROGRAMME FUNCTION: Wind Controller with EVI style key setup, Freescale MPX5010GP breath sensor, PS2 style thumb joystick
13 | for pb/mod control, potentiometers for base octave +/- and portamento speed, capacitive touch keys, output to 5-pin DIN MIDI
14 |
15 | HARDWARE NOTES:
16 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
17 | * Socket is seen from solder tags at rear.
18 | * DIN-5 pinout is: _______
19 | * pin 2 - GND / \
20 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
21 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
22 | * all other pins - unconnected \___2___/
23 | *
24 | * A potentiometer controls base octave setting up or down one octave from start note.
25 | * It is connected to Arduino pin A6.
26 | *
27 | * Left hand thumb joystick controls octaves.
28 | * Up/down axis is connected to Arduino pin A7.
29 | *
30 | * +1
31 | * ^
32 | * < o >
33 | * v
34 | * -1
35 | *
36 | * A potentiometer controls portamento speed setting.
37 | * It is connected to Arduino pin A2.
38 | *
39 | * Right hand thumb joystick controls pitch bend and modulation.
40 | * Pitch bend and modulation are connected to Arduino pins A0 and A1,
41 | * on DIP rows.
42 | *
43 | * PB up
44 | * ^
45 | * Mod < o > Mod
46 | * v
47 | * PB dn
48 | *
49 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
50 | *
51 | * Sensor pinout
52 | * 1: V OUT (pin with indent)
53 | * 2: GND
54 | * 3: VCC (to 5V)
55 | * 4: n/c
56 | * 5: n/c
57 | * 6: n/c
58 | *
59 | *
60 | * Adafruit MPR121 board connected to Arduino I2C ports (A4-SDA and A5-SCL on the Pro Mini)
61 | *
62 | * Midi panic on pin 11 and 12 (internal pullup, both pins low sends all notes off)
63 | *
64 | */
65 |
66 | //_______________________________________________________________________________________________ DECLARATIONS
67 |
68 | #define ON_Thr 40 // Set threshold level before switching ON
69 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
70 | #define breath_max 300 // Blowing as hard as you can
71 | #define modsLo_Thr 411 // Low threshold for mod stick center
72 | #define modsHi_Thr 611 // High threshold for mod stick center
73 | #define octsLo_Thr 311 // Low threshold for octave stick center
74 | #define octsHi_Thr 711 // High threshold for octave stick center
75 | #define octsLo1_Thr 409 // Low threshold for octave select pot
76 | #define octsHi1_Thr 613 // High threshold for octave select pot
77 | #define octsLo2_Thr 205 // Low threshold 2 for octave select pot
78 | #define octsHi2_Thr 818 // High threshold 2 for octave select pot
79 | #define PB_sens 4095 // Pitch Bend sensitivity 0 to 8191 where 8191 is full pb range
80 |
81 | // The three states of our state machine
82 |
83 | // No note is sounding
84 | #define NOTE_OFF 1
85 |
86 | // We've observed a transition from below to above the
87 | // threshold value. We wait a while to see how fast the
88 | // breath velocity is increasing
89 | #define RISE_WAIT 2
90 |
91 | // A note is sounding
92 | #define NOTE_ON 3
93 |
94 | // Send CC data no more than every CC_INTERVAL
95 | // milliseconds
96 | #define CC_INTERVAL 15
97 |
98 |
99 | //variables setup
100 |
101 | int state; // The state of the state machine
102 | unsigned long ccSendTime = 0L; // The last time we sent CC values
103 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
104 | int initial_breath_value; // The breath value at the time we observed the transition
105 |
106 | long lastDebounceTime = 0; // The last time the fingering was changed
107 | long debounceDelay = 30; // The debounce time; increase if the output flickers
108 | int lastFingering = 0; // Keep the last fingering value for debouncing
109 |
110 | byte MIDIchannel=0; // MIDI channel 1
111 |
112 | int modLevel;
113 | int oldmod=0;
114 |
115 | int pitchBend;
116 | int oldpb=8192;
117 |
118 | int portLevel;
119 | int oldport=-1;
120 |
121 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
122 |
123 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
124 | byte velocity; // remapped midi velocity from breath sensor
125 |
126 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
127 | byte activeNote; // note playing
128 | byte startNote=72; // set startNote to C (change this value in steps of 12 to start in other octaves)
129 |
130 | byte midistatus=0;
131 | byte x;
132 | byte LedPin = 13; // select the pin for the LED
133 |
134 | Adafruit_MPR121 touchSensor = Adafruit_MPR121(); // This is the 12-input touch sensor
135 |
136 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
137 | byte K1; // First valve (pitch change -2)
138 | byte K2; // Second valve (pitch change -1)
139 | byte K3; // Third valve (pitch change -3)
140 | byte K4; // Cup key (pitch change -5)
141 | byte K5; // First trill key (pitch change +2)
142 | byte K6; // Second trill key (pitch change +1)
143 | byte K7; // Third trill key (pitch change +4)
144 |
145 | byte OCTup; // Octave switch key (pitch change +12)
146 | byte OCTdn; // Octave switch key (pitch change -12)
147 |
148 | byte PortK; // Portamento momentary on switch
149 | byte oldportk;
150 |
151 | int potOct; // Octave shifting by potentiometer (pitch change steps of 12) value from -2 to +2, 0 is center pos
152 |
153 | //_______________________________________________________________________________________________ SETUP
154 |
155 | void setup() {
156 |
157 | state = NOTE_OFF; // initialize state machine
158 |
159 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
160 |
161 | // joystick button for midi panic
162 | pinMode(11,INPUT_PULLUP); // panic pin
163 |
164 | // Set up touch sensor
165 | if (!touchSensor.begin(0x5A)) {
166 | while (1); // Touch sensor initialization failed - stop doing stuff
167 | }
168 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
169 | digitalWrite( LedPin, HIGH );
170 | delay(300);
171 | digitalWrite( LedPin, LOW );
172 | delay(300);
173 | }
174 |
175 | Serial.begin(31250); // start serial with midi baudrate 31250
176 | Serial.flush();
177 | }
178 |
179 | //_______________________________________________________________________________________________ MAIN LOOP
180 |
181 | void loop() {
182 |
183 | // if both joystick buttons are pressed, send all notes off
184 | if ((digitalRead(11) == 0) && (digitalRead(12) == 0)){
185 | midiPanic();
186 | }
187 |
188 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
189 |
190 | if (state == NOTE_OFF) {
191 | if (pressureSensor > ON_Thr) {
192 | // Value has risen above threshold. Move to the ON_Delay
193 | // state. Record time and initial breath value.
194 | breath_on_time = millis();
195 | initial_breath_value = pressureSensor;
196 | state = RISE_WAIT; // Go to next state
197 | }
198 | } else if (state == RISE_WAIT) {
199 | if (pressureSensor > ON_Thr) {
200 | // Has enough time passed for us to collect our second
201 | // sample?
202 | if (millis() - breath_on_time > ON_Delay) {
203 | // Yes, so calculate MIDI note and velocity, then send a note on event
204 | readSwitches();
205 | readOctaves();
206 | oldportk=2; // Set oldportk to a value other than 1 or 0 to make sure it always sends the data for new notes
207 | portamento();
208 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
209 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
210 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
211 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
212 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
213 | activeNote=fingeredNote;
214 | state = NOTE_ON;
215 | }
216 | } else {
217 | // Value fell below threshold before ON_Delay passed. Return to
218 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
219 | state = NOTE_OFF;
220 | }
221 | } else if (state == NOTE_ON) {
222 | if (pressureSensor < ON_Thr) {
223 | // Value has fallen below threshold - turn the note off
224 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
225 | breathLevel=0;
226 | state = NOTE_OFF;
227 | } else {
228 | // Is it time to send more CC data?
229 | if (millis() - ccSendTime > CC_INTERVAL) {
230 | // deal with Breath, Pitch Bend, Modulation and Portamento
231 | breath();
232 | pitch_bend();
233 | modulation();
234 | ccSendTime = millis();
235 | }
236 | readSwitches();
237 | readOctaves();
238 | if (fingeredNote != lastFingering){ //
239 | // reset the debouncing timer
240 | lastDebounceTime = millis();
241 | }
242 | if ((millis() - lastDebounceTime) > debounceDelay) {
243 | // whatever the reading is at, it's been there for longer
244 | // than the debounce delay, so take it as the actual current state
245 | if (fingeredNote != activeNote) {
246 | // Player has moved to a new fingering while still blowing.
247 | // Send a note off for the current note and a note on for
248 | // the new note.
249 | portamento();
250 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
251 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
252 | midiSend((0x80 | MIDIchannel), activeNote, 0); // send Note Off message for previous note (legato)
253 | activeNote=fingeredNote;
254 | }
255 | }
256 | }
257 | }
258 | lastFingering=fingeredNote;
259 | }
260 | //_______________________________________________________________________________________________ FUNCTIONS
261 |
262 | // Send a three byte midi message
263 | void midiSend(byte midistatus, byte data1, byte data2) {
264 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
265 | Serial.write(midistatus);
266 | Serial.write(data1);
267 | Serial.write(data2);
268 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
269 | }
270 |
271 | //**************************************************************
272 |
273 | void midiPanic(){
274 | for (int i = 0; i < 128; i++){
275 | midiSend((0x80 | MIDIchannel), i, 0);
276 | }
277 | }
278 |
279 | //**************************************************************
280 |
281 | void pitch_bend(){
282 | int pitchLSB;
283 | int pitchMSB;
284 | pitchBend = analogRead(A0); // read voltage on analog pin A0
285 | if (pitchBend > modsHi_Thr){
286 | pitchBend = map(pitchBend,modsHi_Thr,1023,8192,(8192 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
287 | } else if (pitchBend < modsLo_Thr){
288 | pitchBend = map(pitchBend,0,modsLo_Thr,(8191 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
289 | } else {
290 | pitchBend = 8192; // 8192 is 0 pitch bend
291 | }
292 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
293 | pitchLSB = pitchBend & 0x007F;
294 | pitchMSB = (pitchBend >>7) & 0x007F;
295 | midiSend((0xE0 | MIDIchannel), pitchLSB, pitchMSB);
296 | oldpb=pitchBend;
297 | }
298 | }
299 |
300 | //***********************************************************
301 |
302 | void modulation(){
303 | modLevel = analogRead(A1); // read voltage on analog pin A1
304 | if (modLevel > modsHi_Thr){
305 | modLevel = map(modLevel,modsHi_Thr,1023,0,127); // go from 0 to full modulation when off center threshold going right(?)
306 | } else if (modLevel < modsLo_Thr){
307 | modLevel = map(modLevel,0,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
308 | } else {
309 | modLevel = 0; // zero modulation in center position
310 | }
311 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
312 | midiSend((0xB0 | MIDIchannel), 1, modLevel);
313 | oldmod=modLevel;
314 | }
315 | }
316 |
317 | //***********************************************************
318 |
319 | void portamento(){
320 | portLevel = map(analogRead(A2),0,1023,0,127); // read voltage on analog pin A7 and map to midi value
321 | if (portLevel != oldport){ // only send midi data if level has changed from previous value
322 | midiSend((0xB0 | MIDIchannel), 5, portLevel);
323 | oldport=portLevel;
324 | }
325 | if (PortK != oldportk){ // only send midi data if status has changed from previous value
326 | if (PortK){
327 | midiSend((0xB0 | MIDIchannel), 65, 127); // send portamento on
328 | }
329 | else {
330 | midiSend((0xB0 | MIDIchannel), 65, 0); // send portamento off
331 | }
332 | oldportk=PortK;
333 | }
334 | }
335 |
336 | //***********************************************************
337 |
338 | void breath(){
339 | int breathCC;
340 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
341 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
342 | midiSend((0xB0 | MIDIchannel), 2, breathCC);
343 | }
344 | //***********************************************************
345 |
346 | void readOctaves(){
347 | // Read octave select pot to shift octave -2 to +2
348 | int octaveReading;
349 | int joyOctaveR;
350 | octaveReading = analogRead(A6); // read voltage on analog pin A6
351 | joyOctaveR = analogRead(A7); // read voltage on analog pin A7
352 | potOct = 0;
353 | if (octaveReading > octsHi1_Thr) {
354 | potOct++;
355 | }
356 | if (octaveReading < octsLo1_Thr) {
357 | potOct--;
358 | }
359 | if (octaveReading > octsHi2_Thr) {
360 | potOct++;
361 | }
362 | if (octaveReading < octsLo2_Thr) {
363 | potOct--;
364 | }
365 | if (joyOctaveR > octsHi_Thr) {
366 | potOct++;
367 | }
368 | if (joyOctaveR < octsLo_Thr) {
369 | potOct--;
370 | }
371 | //calculate midi note number from octave shift
372 | fingeredNote=fingeredNote+potOct*12;
373 | }
374 | //***********************************************************
375 |
376 | void readSwitches(){
377 | // Read switches and put value in variables
378 | uint16_t touchValue = touchSensor.touched();
379 | K1=((touchValue >> 0) & 0x01);
380 | K2=((touchValue >> 1) & 0x01);
381 | K3=((touchValue >> 2) & 0x01);
382 | K4=((touchValue >> 3) & 0x01);
383 | K5=((touchValue >> 4) & 0x01);
384 | K6=((touchValue >> 5) & 0x01);
385 | K7=((touchValue >> 6) & 0x01);
386 | OCTup=((touchValue >> 7) & 0x01); // keep this?
387 | OCTdn=((touchValue >> 8) & 0x01); // keep this?
388 | PortK=((touchValue >> 9) & 0x01); // portamento key
389 | //calculate midi note number from pressed keys
390 | fingeredNote=startNote-2*K1-K2-3*K3-5*K4+2*K5+K6+4*K7+12*OCTup-12*OCTdn;
391 | }
392 |
--------------------------------------------------------------------------------
/MiniVI-cap/evi1000.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniVI-cap/evi1000.pdf
--------------------------------------------------------------------------------
/MiniWI-cap-pmt-ArcoreProMicro/MiniWI-cap-pmt-ArcoreProMicro.ino:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | //Requires the Arcore arduino core
4 |
5 | /*
6 | NAME: MiniWI Cap Touch and Portamento ver.
7 | WRITTEN BY: JOHAN BERGLUND
8 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
9 | DATE: 2016-06-01
10 | FILE SAVED AS: MiniWI-cap-pmt-ArcoreProMicro.ino
11 | FOR: Arduino Pro Micro, ATmega32U4
12 | CLOCK: 16.00 MHz
13 | PROGRAMME FUNCTION: Wind Controller with EWI style key setup (reduced) with optional Casio DH addition,
14 | Freescale MPX5010GP breath sensor, PS2 style thumb joysticks
15 | for octave selection and pb/mod control, capacitive touch keys, output to 5-pin DIN MIDI
16 | and USB MIDI
17 |
18 | HARDWARE NOTES:
19 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
20 | * Socket is seen from solder tags at rear.
21 | * DIN-5 pinout is: _______
22 | * pin 2 - GND / \
23 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
24 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
25 | * all other pins - unconnected \___2___/
26 | *
27 | * Left hand thumb joystick controls octaves.
28 | * Up/down axis is connected to Arduino pin A6.
29 | *
30 | * +1
31 | * ^
32 | * < o >
33 | * v
34 | * -1
35 | *
36 | * A potentiometer connected to Arduino pin A7 sets the base octave -2 to +2 from startnote octave.
37 | *
38 | * Right hand thumb joystick controls pitch bend and modulation.
39 | * Pitch bend and modulation are connected to Arduino pins A0 and A1,
40 | * on DIP rows.
41 | *
42 | * PB up
43 | * ^
44 | * Mod < o > Mod
45 | * v
46 | * PB dn
47 | *
48 | * A potentiometer controls portamento speed setting.
49 | * It is connected to Arduino pin A2.
50 | *
51 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
52 | *
53 | * Sensor pinout
54 | * 1: V OUT (pin with indent)
55 | * 2: GND
56 | * 3: VCC (to 5V)
57 | * 4: n/c
58 | * 5: n/c
59 | * 6: n/c
60 | *
61 | *
62 | * Adafruit MPR121 board connected to Arduino I2C ports (A4-SDA and A5-SCL on the Pro Mini)
63 | * Touch keys including portamento key connected to MPR121 board.
64 | *
65 | * Midi panic on pin 11 and 12 (internal pullup, both pins low sends all notes off)
66 | *
67 | */
68 |
69 | //_______________________________________________________________________________________________ DECLARATIONS
70 |
71 | #define ON_Thr 40 // Set threshold level before switching ON
72 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
73 | #define breath_max 300 // Blowing as hard as you can
74 | #define modsLo_Thr 411 // Low threshold for mod stick center
75 | #define modsHi_Thr 611 // High threshold for mod stick center
76 | #define octsLo_Thr 311 // Low threshold for octave stick center
77 | #define octsHi_Thr 711 // High threshold for octave stick center
78 | #define octsLo1_Thr 409 // Low threshold for octave select pot
79 | #define octsHi1_Thr 613 // High threshold for octave select pot
80 | #define octsLo2_Thr 205 // Low threshold 2 for octave select pot
81 | #define octsHi2_Thr 818 // High threshold 2 for octave select pot
82 | #define PB_sens 4095 // Pitch Bend sensitivity 0 to 8191 where 8191 is full pb range
83 | #define casioMod 0 // Default selection on/off for Casio DH 2nd octave fingering (LH1 lifted)
84 |
85 | // The three states of our state machine
86 |
87 | // No note is sounding
88 | #define NOTE_OFF 1
89 |
90 | // We've observed a transition from below to above the
91 | // threshold value. We wait a while to see how fast the
92 | // breath velocity is increasing
93 | #define RISE_WAIT 2
94 |
95 | // A note is sounding
96 | #define NOTE_ON 3
97 |
98 | // Send CC data no more than every CC_INTERVAL
99 | // milliseconds
100 | #define CC_INTERVAL 15
101 |
102 |
103 | //variables setup
104 |
105 | byte casiomodSelect; // Change the fingering setting w octave stick up at power on
106 |
107 | int state; // The state of the state machine
108 | unsigned long ccSendTime = 0L; // The last time we sent CC values
109 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
110 | int initial_breath_value; // The breath value at the time we observed the transition
111 |
112 | long lastDebounceTime = 0; // The last time the fingering was changed
113 | long debounceDelay = 30; // The debounce time; increase if the output flickers
114 | int lastFingering = 0; // Keep the last fingering value for debouncing
115 |
116 | byte MIDIchannel=0; // MIDI channel 1
117 |
118 | int modLevel;
119 | int oldmod=0;
120 |
121 | int pitchBend;
122 | int oldpb=8192;
123 |
124 | int portLevel;
125 | int oldport=-1;
126 |
127 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
128 |
129 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
130 | byte velocity; // remapped midi velocity from breath sensor
131 |
132 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
133 | byte activeNote; // note playing
134 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
135 |
136 | byte midistatus=0;
137 | byte x;
138 | byte LedPin = 13; // select the pin for the LED
139 |
140 | Adafruit_MPR121 touchSensor = Adafruit_MPR121(); // This is the 12-input touch sensor
141 |
142 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
143 | byte LH1; // Left Hand key 1 (pitch change -2)
144 | // Casio mod addition: If LH1 is not touched when LH2 and LH3 are, pitch change +9
145 | byte LHb; // Left Hand bis key (pitch change -1 unless both LH1 and LH2 are pressed)
146 | // Casio modification: pitch change -1 unless LH2 is pressed
147 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
148 | byte LH3; // Left Hand key 3 (pitch change -2)
149 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
150 | byte LHp2=0; // Left Hand pinky key 2 (pitch change -1) --- Not used in this version
151 | byte RHs=0; // Right Hand side key (pitch change -2 unless LHp1 is pressed) --- Not used in this version
152 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
153 | byte RH2; // Right Hand key 2 (pitch change -1)
154 | byte RH3; // Right Hand key 3 (pitch change -2)
155 | byte RHp1=0; // Right Hand pinky key 1 (pitch change +1) --- Not used in this version
156 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
157 | byte RHp3; // Right Hand pinky key 3 (pitch change -2)
158 | byte OCTup=0; // Octave switch key (pitch change +12) --- Not used in this version
159 | byte OCTdn=0; // Octave switch key (pitch change -12) --- Not used in this version
160 |
161 | byte PortK; // Portamento momentary on switch
162 | byte oldportk;
163 |
164 | int joyOct; // Octave shifting by joystick or potentiometer
165 |
166 | //_______________________________________________________________________________________________ SETUP
167 |
168 | void setup() {
169 |
170 | state = NOTE_OFF; // initialize state machine
171 |
172 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
173 |
174 | // joystick buttons for midi panic
175 | pinMode(16,INPUT_PULLUP); // panic pin 1/2
176 | pinMode(14,INPUT_PULLUP); // panic pin 2/2
177 |
178 | // Set up touch sensor
179 | if (!touchSensor.begin(0x5A)) {
180 | while (1); // Touch sensor initialization failed - stop doing stuff
181 | }
182 | // Set the selection for Casio fingering - Pitch stick up at power on changes from default
183 | if (analogRead(A6) > octsHi_Thr) {
184 | casiomodSelect=!casioMod;
185 | } else{
186 | casiomodSelect=casioMod;
187 | }
188 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
189 | digitalWrite( LedPin, HIGH );
190 | delay(300);
191 | digitalWrite( LedPin, LOW );
192 | delay(300);
193 | }
194 |
195 | Serial.begin(31250); // start serial with midi baudrate 31250
196 | Serial.flush();
197 | }
198 |
199 | //_______________________________________________________________________________________________ MAIN LOOP
200 |
201 | void loop() {
202 |
203 | // if both joystick buttons are pressed, send all notes off
204 | if ((digitalRead(16) == 0) && (digitalRead(14) == 0)){
205 | midiPanic();
206 | }
207 |
208 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
209 |
210 | if (state == NOTE_OFF) {
211 | if (pressureSensor > ON_Thr) {
212 | // Value has risen above threshold. Move to the ON_Delay
213 | // state. Record time and initial breath value.
214 | breath_on_time = millis();
215 | initial_breath_value = pressureSensor;
216 | state = RISE_WAIT; // Go to next state
217 | }
218 | } else if (state == RISE_WAIT) {
219 | if (pressureSensor > ON_Thr) {
220 | // Has enough time passed for us to collect our second
221 | // sample?
222 | if (millis() - breath_on_time > ON_Delay) {
223 | // Yes, so calculate MIDI note and velocity, then send a note on event
224 | readSwitches();
225 | readOctaves();
226 | oldportk=2; // Set oldportk to a value other than 1 or 0 to make sure it always sends the data for new notes
227 | portamento();
228 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
229 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
230 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
231 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
232 | breath();
233 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
234 | noteOn(MIDIchannel, fingeredNote, velocity);
235 | activeNote=fingeredNote;
236 | state = NOTE_ON;
237 | }
238 | } else {
239 | // Value fell below threshold before ON_Delay passed. Return to
240 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
241 | state = NOTE_OFF;
242 | }
243 | } else if (state == NOTE_ON) {
244 | if (pressureSensor < ON_Thr) {
245 | // Value has fallen below threshold - turn the note off
246 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
247 | noteOff(MIDIchannel, activeNote, velocity);
248 | breathLevel=0;
249 | state = NOTE_OFF;
250 | } else {
251 | // Is it time to send more CC data?
252 | if (millis() - ccSendTime > CC_INTERVAL) {
253 | // deal with Breath, Pitch Bend and Modulation
254 | breath();
255 | pitch_bend();
256 | modulation();
257 | ccSendTime = millis();
258 | }
259 | readSwitches();
260 | readOctaves();
261 | if (fingeredNote != lastFingering){ //
262 | // reset the debouncing timer
263 | lastDebounceTime = millis();
264 | }
265 | if ((millis() - lastDebounceTime) > debounceDelay) {
266 | // whatever the reading is at, it's been there for longer
267 | // than the debounce delay, so take it as the actual current state
268 | if (fingeredNote != activeNote) {
269 | // Player has moved to a new fingering while still blowing.
270 | // Send a note off for the current note and a note on for
271 | // the new note.
272 | portamento();
273 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
274 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
275 | noteOn(MIDIchannel, fingeredNote, velocity);
276 | midiSend((0x80 | MIDIchannel), activeNote, 0); // send Note Off message for previous note (legato)
277 | noteOff(MIDIchannel, activeNote, 0);
278 | activeNote=fingeredNote;
279 | }
280 | }
281 | }
282 | }
283 | lastFingering=fingeredNote;
284 | }
285 | //_______________________________________________________________________________________________ FUNCTIONS
286 |
287 | // Send a three byte midi message
288 | void midiSend(byte midistatus, byte data1, byte data2) {
289 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
290 | Serial.write(midistatus);
291 | Serial.write(data1);
292 | Serial.write(data2);
293 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
294 | }
295 |
296 | //**************************************************************
297 |
298 | void midiPanic(){
299 | for (int i = 0; i < 128; i++){
300 | midiSend((0x80 | MIDIchannel), i, 0);
301 | noteOff(MIDIchannel, i, 0);
302 | }
303 | }
304 |
305 | //**************************************************************
306 |
307 | void pitch_bend(){
308 | int pitchLSB;
309 | int pitchMSB;
310 | pitchBend = analogRead(A0); // read voltage on analog pin A0
311 | if (pitchBend > modsHi_Thr){
312 | pitchBend = map(pitchBend,modsHi_Thr,1023,8192,(8192 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
313 | } else if (pitchBend < modsLo_Thr){
314 | pitchBend = map(pitchBend,0,modsLo_Thr,(8191 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
315 | } else {
316 | pitchBend = 8192; // 8192 is 0 pitch bend
317 | }
318 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
319 | pitchLSB = pitchBend & 0x007F;
320 | pitchMSB = (pitchBend >>7) & 0x007F;
321 | midiSend((0xE0 | MIDIchannel), pitchLSB, pitchMSB);
322 | pitchBendChange(MIDIchannel, pitchBend);
323 | oldpb=pitchBend;
324 | }
325 | }
326 |
327 | //***********************************************************
328 |
329 | void modulation(){
330 | modLevel = analogRead(A1); // read voltage on analog pin A1
331 | if (modLevel > modsHi_Thr){
332 | modLevel = map(modLevel,modsHi_Thr,1023,0,127); // go from 0 to full modulation when off center threshold going right(?)
333 | } else if (modLevel < modsLo_Thr){
334 | modLevel = map(modLevel,0,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
335 | } else {
336 | modLevel = 0; // zero modulation in center position
337 | }
338 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
339 | midiSend((0xB0 | MIDIchannel), 1, modLevel);
340 | controlChange(MIDIchannel, 1, modLevel);
341 | oldmod=modLevel;
342 | }
343 | }
344 |
345 | //***********************************************************
346 |
347 | void portamento(){
348 | portLevel = map(analogRead(A2),0,1023,0,127); // read voltage on analog pin A7 and map to midi value
349 | if (portLevel != oldport){ // only send midi data if level has changed from previous value
350 | midiSend((0xB0 | MIDIchannel), 5, portLevel);
351 | controlChange(MIDIchannel, 5, portLevel);
352 | oldport=portLevel;
353 | }
354 | if (PortK != oldportk){ // only send midi data if status has changed from previous value
355 | if (PortK){
356 | midiSend((0xB0 | MIDIchannel), 65, 127); // send portamento on
357 | controlChange(MIDIchannel, 65, 127);
358 | }
359 | else {
360 | midiSend((0xB0 | MIDIchannel), 65, 0); // send portamento off
361 | controlChange(MIDIchannel, 65, 0);
362 | }
363 | oldportk=PortK;
364 | }
365 | }
366 |
367 | //***********************************************************
368 |
369 | void breath(){
370 | int breathCC;
371 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
372 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
373 | midiSend((0xB0 | MIDIchannel), 2, breathCC);
374 | controlChange(MIDIchannel, 2, breathCC);
375 | }
376 | //***********************************************************
377 |
378 | void readOctaves(){
379 | // Read octave joystick and set octave of the fingered note (run after readSwitches)
380 | int xOctaves;
381 | int yOctaves;
382 | xOctaves = analogRead(A6); // read voltage on analog pin A6
383 | yOctaves = analogRead(A7); // read voltage on analog pin A7 (this is now a separate potentiometer, not joystick axis)
384 | joyOct = 0;
385 | // xOctaves is up/down and the only used octave joystick direction in this version
386 | if (xOctaves > octsHi_Thr) {
387 | joyOct++;
388 | } else if (xOctaves < octsLo_Thr) {
389 | joyOct--;
390 | }
391 | // yOctaves in this version is a separate potentiometer setting base octave -2 to +2
392 | if (yOctaves > octsHi1_Thr) {
393 | joyOct++; // ++ or -- depending on joystick orientation
394 | } else if (yOctaves < octsLo1_Thr) {
395 | joyOct--; // ++ or -- depending on joystick orientation
396 | }
397 | if (yOctaves > octsHi2_Thr) {
398 | joyOct++; // ++ or -- depending on joystick orientation
399 | } else if (yOctaves < octsLo2_Thr) {
400 | joyOct--; // ++ or -- depending on joystick orientation
401 | }
402 | //calculate midi note number from octave shifts
403 | fingeredNote=fingeredNote+joyOct*12;
404 | }
405 | //***********************************************************
406 |
407 | void readSwitches(){
408 | // Read switches and put value in variables
409 | uint16_t touchValue = touchSensor.touched();
410 | LH1=((touchValue >> 0) & 0x01);
411 | LHb=((touchValue >> 1) & 0x01);
412 | LH2=((touchValue >> 2) & 0x01);
413 | LH3=((touchValue >> 3) & 0x01);
414 | LHp1=((touchValue >> 4) & 0x01);
415 | RH1=((touchValue >> 6) & 0x01);
416 | RH2=((touchValue >> 7) & 0x01);
417 | RH3=((touchValue >> 8) & 0x01);
418 | RHp2=((touchValue >> 9) & 0x01);
419 | RHp3=((touchValue >> 10) & 0x01);
420 | PortK=((touchValue >> 5) & 0x01); // portamento key
421 | //calculate midi note number from pressed keys
422 | if (casiomodSelect){
423 | fingeredNote=startNote-2*LH1-(LHb && !LH2)-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
424 | } else {
425 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup-12*OCTdn;
426 | }
427 | }
428 |
429 | //***********************************************************
430 | // Arcore MIDI functions
431 |
432 | void controlChange(byte channel, byte control, byte value) {
433 | MIDIEvent event = {0x0B, 0xB0 | channel, control, value};
434 | MIDIUSB.write(event);
435 | }
436 |
437 | void channelAT(byte channel, byte value) {
438 | MIDIEvent event = {0x0D, 0xD0 | channel, value};
439 | MIDIUSB.write(event);
440 | }
441 |
442 | void noteOn(byte channel, byte pitch, byte velocity) {
443 | MIDIEvent noteOn = {0x09, 0x90 | channel, pitch, velocity};
444 | MIDIUSB.write(noteOn);
445 | }
446 |
447 | void noteOff(byte channel, byte pitch, byte velocity) {
448 | MIDIEvent noteOff = {0x08, 0x80 | channel, pitch, velocity};
449 | MIDIUSB.write(noteOff);
450 | }
451 |
452 | void pitchBendChange(byte channel, int value) {
453 | byte lowValue = value & 0x7F;
454 | byte highValue = value >> 7;
455 | MIDIEvent event = {0x0E, 0xE0 | channel, lowValue, highValue};
456 | MIDIUSB.write(event);
457 | }
458 |
--------------------------------------------------------------------------------
/MiniWI-cap-pmt/MiniWI-cap-pmt-fingering-casiomod.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap-pmt/MiniWI-cap-pmt-fingering-casiomod.png
--------------------------------------------------------------------------------
/MiniWI-cap-pmt/MiniWI-cap-pmt-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap-pmt/MiniWI-cap-pmt-schematic.png
--------------------------------------------------------------------------------
/MiniWI-cap-pmt/MiniWI-cap-pmt.ino:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | /*
5 | NAME: MiniWI Cap Touch and Portamento ver.
6 | WRITTEN BY: JOHAN BERGLUND
7 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
8 | DATE: 2016-06-01
9 | FILE SAVED AS: MiniWI-cap-pmt.ino
10 | FOR: Arduino Pro Mini, ATmega328, version with breakouts for A6 and A7
11 | CLOCK: 16.00 MHz CRYSTAL
12 | PROGRAMME FUNCTION: Wind Controller with EWI style key setup (reduced) with optional Casio DH addition,
13 | Freescale MPX5010GP breath sensor, PS2 style thumb joysticks
14 | for octave selection and pb/mod control, capacitive touch keys, output to 5-pin DIN MIDI
15 |
16 | HARDWARE NOTES:
17 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
18 | * Socket is seen from solder tags at rear.
19 | * DIN-5 pinout is: _______
20 | * pin 2 - GND / \
21 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
22 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
23 | * all other pins - unconnected \___2___/
24 | *
25 | * Left hand thumb joystick controls octaves.
26 | * Up/down axis is connected to Arduino pin A6.
27 | *
28 | * +1
29 | * ^
30 | * < o >
31 | * v
32 | * -1
33 | *
34 | * A potentiometer connected to Arduino pin A7 sets the base octave -2 to +2 from startnote octave.
35 | *
36 | * Right hand thumb joystick controls pitch bend and modulation.
37 | * Pitch bend and modulation are connected to Arduino pins A0 and A1,
38 | * on DIP rows.
39 | *
40 | * PB up
41 | * ^
42 | * Mod < o > Mod
43 | * v
44 | * PB dn
45 | *
46 | * A potentiometer controls portamento speed setting.
47 | * It is connected to Arduino pin A2.
48 | *
49 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
50 | *
51 | * Sensor pinout
52 | * 1: V OUT (pin with indent)
53 | * 2: GND
54 | * 3: VCC (to 5V)
55 | * 4: n/c
56 | * 5: n/c
57 | * 6: n/c
58 | *
59 | *
60 | * Adafruit MPR121 board connected to Arduino I2C ports (A4-SDA and A5-SCL on the Pro Mini)
61 | * Touch keys including portamento key connected to MPR121 board.
62 | *
63 | * Midi panic on pin 11 and 12 (internal pullup, both pins low sends all notes off)
64 | *
65 | */
66 |
67 | //_______________________________________________________________________________________________ DECLARATIONS
68 |
69 | #define ON_Thr 40 // Set threshold level before switching ON
70 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
71 | #define breath_max 300 // Blowing as hard as you can
72 | #define modsLo_Thr 411 // Low threshold for mod stick center
73 | #define modsHi_Thr 611 // High threshold for mod stick center
74 | #define octsLo_Thr 311 // Low threshold for octave stick center
75 | #define octsHi_Thr 711 // High threshold for octave stick center
76 | #define octsLo1_Thr 409 // Low threshold for octave select pot
77 | #define octsHi1_Thr 613 // High threshold for octave select pot
78 | #define octsLo2_Thr 205 // Low threshold 2 for octave select pot
79 | #define octsHi2_Thr 818 // High threshold 2 for octave select pot
80 | #define PB_sens 4095 // Pitch Bend sensitivity 0 to 8191 where 8191 is full pb range
81 | #define casioMod 0 // Default selection on/off for Casio DH 2nd octave fingering (LH1 lifted)
82 |
83 | // The three states of our state machine
84 |
85 | // No note is sounding
86 | #define NOTE_OFF 1
87 |
88 | // We've observed a transition from below to above the
89 | // threshold value. We wait a while to see how fast the
90 | // breath velocity is increasing
91 | #define RISE_WAIT 2
92 |
93 | // A note is sounding
94 | #define NOTE_ON 3
95 |
96 | // Send CC data no more than every CC_INTERVAL
97 | // milliseconds
98 | #define CC_INTERVAL 15
99 |
100 |
101 | //variables setup
102 |
103 | byte casiomodSelect; // Change the fingering setting w octave stick up at power on
104 |
105 | int state; // The state of the state machine
106 | unsigned long ccSendTime = 0L; // The last time we sent CC values
107 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
108 | int initial_breath_value; // The breath value at the time we observed the transition
109 |
110 | long lastDebounceTime = 0; // The last time the fingering was changed
111 | long debounceDelay = 30; // The debounce time; increase if the output flickers
112 | int lastFingering = 0; // Keep the last fingering value for debouncing
113 |
114 | byte MIDIchannel=0; // MIDI channel 1
115 |
116 | int modLevel;
117 | int oldmod=0;
118 |
119 | int pitchBend;
120 | int oldpb=8192;
121 |
122 | int portLevel;
123 | int oldport=-1;
124 |
125 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
126 |
127 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
128 | byte velocity; // remapped midi velocity from breath sensor
129 |
130 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
131 | byte activeNote; // note playing
132 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
133 |
134 | byte midistatus=0;
135 | byte x;
136 | byte LedPin = 13; // select the pin for the LED
137 |
138 | Adafruit_MPR121 touchSensor = Adafruit_MPR121(); // This is the 12-input touch sensor
139 |
140 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
141 | byte LH1; // Left Hand key 1 (pitch change -2)
142 | // Casio mod addition: If LH1 is not touched when LH2 and LH3 are, pitch change +9
143 | byte LHb; // Left Hand bis key (pitch change -1 unless both LH1 and LH2 are pressed)
144 | // Casio modification: pitch change -1 unless LH2 is pressed
145 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
146 | byte LH3; // Left Hand key 3 (pitch change -2)
147 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
148 | byte LHp2=0; // Left Hand pinky key 2 (pitch change -1) --- Not used in this version
149 | byte RHs=0; // Right Hand side key (pitch change -2 unless LHp1 is pressed) --- Not used in this version
150 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
151 | byte RH2; // Right Hand key 2 (pitch change -1)
152 | byte RH3; // Right Hand key 3 (pitch change -2)
153 | byte RHp1=0; // Right Hand pinky key 1 (pitch change +1) --- Not used in this version
154 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
155 | byte RHp3; // Right Hand pinky key 3 (pitch change -2)
156 | byte OCTup=0; // Octave switch key (pitch change +12) --- Not used in this version
157 | byte OCTdn=0; // Octave switch key (pitch change -12) --- Not used in this version
158 |
159 | byte PortK; // Portamento momentary on switch
160 | byte oldportk;
161 |
162 | int joyOct; // Octave shifting by joystick or potentiometer
163 |
164 | //_______________________________________________________________________________________________ SETUP
165 |
166 | void setup() {
167 |
168 | state = NOTE_OFF; // initialize state machine
169 |
170 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
171 |
172 | // joystick buttons for midi panic
173 | pinMode(11,INPUT_PULLUP); // panic pin 1/2
174 | pinMode(12,INPUT_PULLUP); // panic pin 2/2
175 |
176 | // Set up touch sensor
177 | if (!touchSensor.begin(0x5A)) {
178 | while (1); // Touch sensor initialization failed - stop doing stuff
179 | }
180 | // Set the selection for Casio fingering - Pitch stick up at power on changes from default
181 | if (analogRead(A6) > octsHi_Thr) {
182 | casiomodSelect=!casioMod;
183 | } else{
184 | casiomodSelect=casioMod;
185 | }
186 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
187 | digitalWrite( LedPin, HIGH );
188 | delay(300);
189 | digitalWrite( LedPin, LOW );
190 | delay(300);
191 | }
192 |
193 | Serial.begin(31250); // start serial with midi baudrate 31250
194 | Serial.flush();
195 | }
196 |
197 | //_______________________________________________________________________________________________ MAIN LOOP
198 |
199 | void loop() {
200 |
201 | // if both joystick buttons are pressed, send all notes off
202 | if ((digitalRead(11) == 0) && (digitalRead(12) == 0)){
203 | midiPanic();
204 | }
205 |
206 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
207 |
208 | if (state == NOTE_OFF) {
209 | if (pressureSensor > ON_Thr) {
210 | // Value has risen above threshold. Move to the ON_Delay
211 | // state. Record time and initial breath value.
212 | breath_on_time = millis();
213 | initial_breath_value = pressureSensor;
214 | state = RISE_WAIT; // Go to next state
215 | }
216 | } else if (state == RISE_WAIT) {
217 | if (pressureSensor > ON_Thr) {
218 | // Has enough time passed for us to collect our second
219 | // sample?
220 | if (millis() - breath_on_time > ON_Delay) {
221 | // Yes, so calculate MIDI note and velocity, then send a note on event
222 | readSwitches();
223 | readOctaves();
224 | oldportk=2; // Set oldportk to a value other than 1 or 0 to make sure it always sends the data for new notes
225 | portamento();
226 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
227 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
228 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
229 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
230 | breath();
231 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
232 | activeNote=fingeredNote;
233 | state = NOTE_ON;
234 | }
235 | } else {
236 | // Value fell below threshold before ON_Delay passed. Return to
237 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
238 | state = NOTE_OFF;
239 | }
240 | } else if (state == NOTE_ON) {
241 | if (pressureSensor < ON_Thr) {
242 | // Value has fallen below threshold - turn the note off
243 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
244 | breathLevel=0;
245 | state = NOTE_OFF;
246 | } else {
247 | // Is it time to send more CC data?
248 | if (millis() - ccSendTime > CC_INTERVAL) {
249 | // deal with Breath, Pitch Bend and Modulation
250 | breath();
251 | pitch_bend();
252 | modulation();
253 | ccSendTime = millis();
254 | }
255 | readSwitches();
256 | readOctaves();
257 | if (fingeredNote != lastFingering){ //
258 | // reset the debouncing timer
259 | lastDebounceTime = millis();
260 | }
261 | if ((millis() - lastDebounceTime) > debounceDelay) {
262 | // whatever the reading is at, it's been there for longer
263 | // than the debounce delay, so take it as the actual current state
264 | if (fingeredNote != activeNote) {
265 | // Player has moved to a new fingering while still blowing.
266 | // Send a note off for the current note and a note on for
267 | // the new note.
268 | portamento();
269 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
270 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
271 | midiSend((0x80 | MIDIchannel), activeNote, 0); // send Note Off message for previous note (legato)
272 | activeNote=fingeredNote;
273 | }
274 | }
275 | }
276 | }
277 | lastFingering=fingeredNote;
278 | }
279 | //_______________________________________________________________________________________________ FUNCTIONS
280 |
281 | // Send a three byte midi message
282 | void midiSend(byte midistatus, byte data1, byte data2) {
283 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
284 | Serial.write(midistatus);
285 | Serial.write(data1);
286 | Serial.write(data2);
287 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
288 | }
289 |
290 | //**************************************************************
291 |
292 | void midiPanic(){
293 | for (int i = 0; i < 128; i++){
294 | midiSend((0x80 | MIDIchannel), i, 0);
295 | }
296 | }
297 |
298 | //**************************************************************
299 |
300 | void pitch_bend(){
301 | int pitchLSB;
302 | int pitchMSB;
303 | pitchBend = analogRead(A0); // read voltage on analog pin A0
304 | if (pitchBend > modsHi_Thr){
305 | pitchBend = map(pitchBend,modsHi_Thr,1023,8192,(8192 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
306 | } else if (pitchBend < modsLo_Thr){
307 | pitchBend = map(pitchBend,0,modsLo_Thr,(8191 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
308 | } else {
309 | pitchBend = 8192; // 8192 is 0 pitch bend
310 | }
311 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
312 | pitchLSB = pitchBend & 0x007F;
313 | pitchMSB = (pitchBend >>7) & 0x007F;
314 | midiSend((0xE0 | MIDIchannel), pitchLSB, pitchMSB);
315 | oldpb=pitchBend;
316 | }
317 | }
318 |
319 | //***********************************************************
320 |
321 | void modulation(){
322 | modLevel = analogRead(A1); // read voltage on analog pin A1
323 | if (modLevel > modsHi_Thr){
324 | modLevel = map(modLevel,modsHi_Thr,1023,0,127); // go from 0 to full modulation when off center threshold going right(?)
325 | } else if (modLevel < modsLo_Thr){
326 | modLevel = map(modLevel,0,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
327 | } else {
328 | modLevel = 0; // zero modulation in center position
329 | }
330 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
331 | midiSend((0xB0 | MIDIchannel), 1, modLevel);
332 | oldmod=modLevel;
333 | }
334 | }
335 |
336 | //***********************************************************
337 |
338 | void portamento(){
339 | portLevel = map(analogRead(A2),0,1023,0,127); // read voltage on analog pin A7 and map to midi value
340 | if (portLevel != oldport){ // only send midi data if level has changed from previous value
341 | midiSend((0xB0 | MIDIchannel), 5, portLevel);
342 | oldport=portLevel;
343 | }
344 | if (PortK != oldportk){ // only send midi data if status has changed from previous value
345 | if (PortK){
346 | midiSend((0xB0 | MIDIchannel), 65, 127); // send portamento on
347 | }
348 | else {
349 | midiSend((0xB0 | MIDIchannel), 65, 0); // send portamento off
350 | }
351 | oldportk=PortK;
352 | }
353 | }
354 |
355 | //***********************************************************
356 |
357 | void breath(){
358 | int breathCC;
359 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
360 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
361 | midiSend((0xB0 | MIDIchannel), 2, breathCC);
362 | }
363 | //***********************************************************
364 |
365 | void readOctaves(){
366 | // Read octave joystick and set octave of the fingered note (run after readSwitches)
367 | int xOctaves;
368 | int yOctaves;
369 | xOctaves = analogRead(A6); // read voltage on analog pin A6
370 | yOctaves = analogRead(A7); // read voltage on analog pin A7 (this is now a separate potentiometer, not joystick axis)
371 | joyOct = 0;
372 | // xOctaves is up/down and the only used octave joystick direction in this version
373 | if (xOctaves > octsHi_Thr) {
374 | joyOct++;
375 | } else if (xOctaves < octsLo_Thr) {
376 | joyOct--;
377 | }
378 | // yOctaves in this version is a separate potentiometer setting base octave -2 to +2
379 | if (yOctaves > octsHi1_Thr) {
380 | joyOct++; // ++ or -- depending on joystick orientation
381 | } else if (yOctaves < octsLo1_Thr) {
382 | joyOct--; // ++ or -- depending on joystick orientation
383 | }
384 | if (yOctaves > octsHi2_Thr) {
385 | joyOct++; // ++ or -- depending on joystick orientation
386 | } else if (yOctaves < octsLo2_Thr) {
387 | joyOct--; // ++ or -- depending on joystick orientation
388 | }
389 | //calculate midi note number from octave shifts
390 | fingeredNote=fingeredNote+joyOct*12;
391 | }
392 | //***********************************************************
393 |
394 | void readSwitches(){
395 | // Read switches and put value in variables
396 | uint16_t touchValue = touchSensor.touched();
397 | LH1=((touchValue >> 0) & 0x01);
398 | LHb=((touchValue >> 1) & 0x01);
399 | LH2=((touchValue >> 2) & 0x01);
400 | LH3=((touchValue >> 3) & 0x01);
401 | LHp1=((touchValue >> 4) & 0x01);
402 | RH1=((touchValue >> 6) & 0x01);
403 | RH2=((touchValue >> 7) & 0x01);
404 | RH3=((touchValue >> 8) & 0x01);
405 | RHp2=((touchValue >> 9) & 0x01);
406 | RHp3=((touchValue >> 10) & 0x01);
407 | PortK=((touchValue >> 5) & 0x01); // portamento key
408 | //calculate midi note number from pressed keys
409 | if (casiomodSelect){
410 | fingeredNote=startNote-2*LH1-(LHb && !LH2)-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
411 | } else {
412 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup-12*OCTdn;
413 | }
414 | }
415 |
--------------------------------------------------------------------------------
/MiniWI-cap-pmt/MiniWI-fingering-casiomod.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap-pmt/MiniWI-fingering-casiomod.png
--------------------------------------------------------------------------------
/MiniWI-cap-pmt/pmtver.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap-pmt/pmtver.png
--------------------------------------------------------------------------------
/MiniWI-cap/MiniWI-cap-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap/MiniWI-cap-schematic.png
--------------------------------------------------------------------------------
/MiniWI-cap/MiniWI-cap.ino:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | /*
5 | NAME: MiniWI Cap Touch ver.
6 | WRITTEN BY: JOHAN BERGLUND
7 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
8 | DATE: 2016-04-13
9 | FILE SAVED AS: MiniWI-cap.ino
10 | FOR: Arduino Pro Mini, ATmega328, version with breakouts for A6 and A7
11 | CLOCK: 16.00 MHz CRYSTAL
12 | PROGRAMME FUNCTION: Wind Controller with EWI style key setup (reduced), Freescale MPX5010GP breath sensor, PS2 style thumb joysticks
13 | for octave selection and pb/mod control, capacitive touch keys, output to 5-pin DIN MIDI
14 |
15 | HARDWARE NOTES:
16 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
17 | * Socket is seen from solder tags at rear.
18 | * DIN-5 pinout is: _______
19 | * pin 2 - GND / \
20 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
21 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
22 | * all other pins - unconnected \___2___/
23 | *
24 | * Left hand thumb joystick controls octaves.
25 | * X and Y are connected to Arduino pins A6 and A7,
26 | * this means a Pro Mini version with breakouts for these pins is required.
27 | *
28 | * +1 +2
29 | * ^
30 | * -1 < o > +1
31 | * v
32 | * -2 -1
33 | *
34 | * Right hand thumb joystick controls pitch bend and modulation.
35 | * Pitch bend and modulation are connected to Arduino pins A0 and A1,
36 | * on DIP rows.
37 | *
38 | * PB up
39 | * ^
40 | * Mod < o > Mod
41 | * v
42 | * PB dn
43 | *
44 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
45 | *
46 | * Sensor pinout
47 | * 1: V OUT (pin with indent)
48 | * 2: GND
49 | * 3: VCC (to 5V)
50 | * 4: n/c
51 | * 5: n/c
52 | * 6: n/c
53 | *
54 | *
55 | * Adafruit MPR121 board connected to Arduino I2C ports (A4-SDA and A5-SCL on the Pro Mini)
56 | *
57 | * Midi panic on pin 11 and 12 (internal pullup, both pins low sends all notes off)
58 | *
59 | */
60 |
61 | //_______________________________________________________________________________________________ DECLARATIONS
62 |
63 | #define ON_Thr 40 // Set threshold level before switching ON
64 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
65 | #define breath_max 300 // Blowing as hard as you can
66 | #define modsLo_Thr 411 // Low threshold for mod stick center
67 | #define modsHi_Thr 611 // High threshold for mod stick center
68 | #define octsLo_Thr 311 // Low threshold for octave stick center
69 | #define octsHi_Thr 711 // High threshold for octave stick center
70 | #define PB_sens 4095 // Pitch Bend sensitivity 0 to 8191 where 8191 is full pb range
71 |
72 | // The three states of our state machine
73 |
74 | // No note is sounding
75 | #define NOTE_OFF 1
76 |
77 | // We've observed a transition from below to above the
78 | // threshold value. We wait a while to see how fast the
79 | // breath velocity is increasing
80 | #define RISE_WAIT 2
81 |
82 | // A note is sounding
83 | #define NOTE_ON 3
84 |
85 | // Send CC data no more than every CC_INTERVAL
86 | // milliseconds
87 | #define CC_INTERVAL 15
88 |
89 |
90 | //variables setup
91 |
92 | int state; // The state of the state machine
93 | unsigned long ccSendTime = 0L; // The last time we sent CC values
94 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
95 | int initial_breath_value; // The breath value at the time we observed the transition
96 |
97 | long lastDebounceTime = 0; // The last time the fingering was changed
98 | long debounceDelay = 30; // The debounce time; increase if the output flickers
99 | int lastFingering = 0; // Keep the last fingering value for debouncing
100 |
101 | byte MIDIchannel=0; // MIDI channel 1
102 |
103 | int modLevel;
104 | int oldmod=0;
105 |
106 | int pitchBend;
107 | int oldpb=8192;
108 |
109 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
110 |
111 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
112 | byte velocity; // remapped midi velocity from breath sensor
113 |
114 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
115 | byte activeNote; // note playing
116 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
117 |
118 | byte midistatus=0;
119 | byte x;
120 | byte LedPin = 13; // select the pin for the LED
121 |
122 | Adafruit_MPR121 touchSensor = Adafruit_MPR121(); // This is the 12-input touch sensor
123 |
124 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
125 | byte LH1; // Left Hand key 1 (pitch change -2)
126 | byte LHb; // Left Hand bis key (pitch change -1 unless both LH1 and LH2 are pressed)
127 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
128 | byte LH3; // Left Hand key 3 (pitch change -2)
129 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
130 | byte LHp2=0; // Left Hand pinky key 2 (pitch change -1) --- Not used in this version
131 | byte RHs=0; // Right Hand side key (pitch change -2 unless LHp1 is pressed) --- Not used in this version
132 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
133 | byte RH2; // Right Hand key 2 (pitch change -1)
134 | byte RH3; // Right Hand key 3 (pitch change -2)
135 | byte RHp1=0; // Right Hand pinky key 1 (pitch change +1) --- Not used in this version
136 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
137 | byte RHp3; // Right Hand pinky key 3 (pitch change -2)
138 | byte OCTup=0; // Octave switch key (pitch change +12) --- Not used in this version
139 | byte OCTdn=0; // Octave switch key (pitch change -12) --- Not used in this version
140 |
141 | int joyOct; // Octave shifting by joystick (pitch change steps of 12) value from -2 to +2, 0 is center pos
142 |
143 | //_______________________________________________________________________________________________ SETUP
144 |
145 | void setup() {
146 |
147 | state = NOTE_OFF; // initialize state machine
148 |
149 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
150 |
151 | // joystick buttons for midi panic
152 | pinMode(11,INPUT_PULLUP); // panic pin 1/2
153 | pinMode(12,INPUT_PULLUP); // panic pin 2/2
154 |
155 | // Set up touch sensor
156 | if (!touchSensor.begin(0x5A)) {
157 | while (1); // Touch sensor initialization failed - stop doing stuff
158 | }
159 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
160 | digitalWrite( LedPin, HIGH );
161 | delay(300);
162 | digitalWrite( LedPin, LOW );
163 | delay(300);
164 | }
165 |
166 | Serial.begin(31250); // start serial with midi baudrate 31250
167 | Serial.flush();
168 | }
169 |
170 | //_______________________________________________________________________________________________ MAIN LOOP
171 |
172 | void loop() {
173 |
174 | // if both joystick buttons are pressed, send all notes off
175 | if ((digitalRead(11) == 0) && (digitalRead(12) == 0)){
176 | midiPanic();
177 | }
178 |
179 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
180 |
181 | if (state == NOTE_OFF) {
182 | if (pressureSensor > ON_Thr) {
183 | // Value has risen above threshold. Move to the ON_Delay
184 | // state. Record time and initial breath value.
185 | breath_on_time = millis();
186 | initial_breath_value = pressureSensor;
187 | state = RISE_WAIT; // Go to next state
188 | }
189 | } else if (state == RISE_WAIT) {
190 | if (pressureSensor > ON_Thr) {
191 | // Has enough time passed for us to collect our second
192 | // sample?
193 | if (millis() - breath_on_time > ON_Delay) {
194 | // Yes, so calculate MIDI note and velocity, then send a note on event
195 | readSwitches();
196 | readOctaves();
197 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
198 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
199 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
200 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
201 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
202 | activeNote=fingeredNote;
203 | state = NOTE_ON;
204 | }
205 | } else {
206 | // Value fell below threshold before ON_Delay passed. Return to
207 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
208 | state = NOTE_OFF;
209 | }
210 | } else if (state == NOTE_ON) {
211 | if (pressureSensor < ON_Thr) {
212 | // Value has fallen below threshold - turn the note off
213 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
214 | breathLevel=0;
215 | state = NOTE_OFF;
216 | } else {
217 | // Is it time to send more CC data?
218 | if (millis() - ccSendTime > CC_INTERVAL) {
219 | // deal with Breath, Pitch Bend and Modulation
220 | breath();
221 | pitch_bend();
222 | modulation();
223 | ccSendTime = millis();
224 | }
225 | readSwitches();
226 | readOctaves();
227 | if (fingeredNote != lastFingering){ //
228 | // reset the debouncing timer
229 | lastDebounceTime = millis();
230 | }
231 | if ((millis() - lastDebounceTime) > debounceDelay) {
232 | // whatever the reading is at, it's been there for longer
233 | // than the debounce delay, so take it as the actual current state
234 | if (fingeredNote != activeNote) {
235 | // Player has moved to a new fingering while still blowing.
236 | // Send a note off for the current note and a note on for
237 | // the new note.
238 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
239 | activeNote=fingeredNote;
240 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
241 | midiSend((0x90 | MIDIchannel), activeNote, velocity); // send Note On message
242 | }
243 | }
244 | }
245 | }
246 | lastFingering=fingeredNote;
247 | }
248 | //_______________________________________________________________________________________________ FUNCTIONS
249 |
250 | // Send a three byte midi message
251 | void midiSend(byte midistatus, byte data1, byte data2) {
252 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
253 | Serial.write(midistatus);
254 | Serial.write(data1);
255 | Serial.write(data2);
256 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
257 | }
258 |
259 | //**************************************************************
260 |
261 | void midiPanic(){
262 | for (int i = 0; i < 128; i++){
263 | midiSend((0x80 | MIDIchannel), i, 0);
264 | }
265 | }
266 |
267 | //**************************************************************
268 |
269 | void pitch_bend(){
270 | int pitchLSB;
271 | int pitchMSB;
272 | pitchBend = analogRead(A0); // read voltage on analog pin A0
273 | if (pitchBend > modsHi_Thr){
274 | pitchBend = map(pitchBend,modsHi_Thr,1023,8192,(8192 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
275 | } else if (pitchBend < modsLo_Thr){
276 | pitchBend = map(pitchBend,0,modsLo_Thr,(8191 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
277 | } else {
278 | pitchBend = 8192; // 8192 is 0 pitch bend
279 | }
280 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
281 | pitchLSB = pitchBend & 0x007F;
282 | pitchMSB = (pitchBend >>7) & 0x007F;
283 | midiSend((0xE0 | MIDIchannel), pitchLSB, pitchMSB);
284 | oldpb=pitchBend;
285 | }
286 | }
287 |
288 | //***********************************************************
289 |
290 | void modulation(){
291 | modLevel = analogRead(A1); // read voltage on analog pin A1
292 | if (modLevel > modsHi_Thr){
293 | modLevel = map(modLevel,modsHi_Thr,1023,0,127); // go from 0 to full modulation when off center threshold going right(?)
294 | } else if (modLevel < modsLo_Thr){
295 | modLevel = map(modLevel,0,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
296 | } else {
297 | modLevel = 0; // zero modulation in center position
298 | }
299 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
300 | midiSend((0xB0 | MIDIchannel), 1, modLevel);
301 | oldmod=modLevel;
302 | }
303 | }
304 |
305 | //***********************************************************
306 |
307 | void breath(){
308 | int breathCC;
309 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
310 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
311 | midiSend((0xB0 | MIDIchannel), 2, breathCC);
312 | }
313 | //***********************************************************
314 |
315 | void readOctaves(){
316 | // Read octave joystick directions combining x and y to a span of 5 octaves (-2 to +2) where 0 is center position
317 | int xOctaves;
318 | int yOctaves;
319 | xOctaves = analogRead(A6); // read voltage on analog pin A6
320 | yOctaves = analogRead(A7); // read voltage on analog pin A7
321 | joyOct = 0;
322 | if (xOctaves > octsHi_Thr) {
323 | joyOct++; // ++ or -- depending on joystick orientation
324 | } else if (xOctaves < octsLo_Thr) {
325 | joyOct--; // ++ or -- depending on joystick orientation
326 | }
327 |
328 | if (yOctaves > octsHi_Thr) {
329 | joyOct++; // ++ or -- depending on joystick orientation
330 | } else if (yOctaves < octsLo_Thr) {
331 | joyOct--; // ++ or -- depending on joystick orientation
332 | }
333 | //calculate midi note number from octave shifts
334 | fingeredNote=fingeredNote+joyOct*12;
335 | }
336 | //***********************************************************
337 |
338 | void readSwitches(){
339 | // Read switches and put value in variables
340 | uint16_t touchValue = touchSensor.touched();
341 | LH1=((touchValue >> 0) & 0x01);
342 | LHb=((touchValue >> 1) & 0x01);
343 | LH2=((touchValue >> 2) & 0x01);
344 | LH3=((touchValue >> 3) & 0x01);
345 | LHp1=((touchValue >> 4) & 0x01);
346 | RH1=((touchValue >> 6) & 0x01);
347 | RH2=((touchValue >> 7) & 0x01);
348 | RH3=((touchValue >> 8) & 0x01);
349 | RHp2=((touchValue >> 9) & 0x01);
350 | RHp3=((touchValue >> 10) & 0x01);
351 | //calculate midi note number from pressed keys
352 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup-12*OCTdn;
353 | }
354 |
--------------------------------------------------------------------------------
/MiniWI-cap/capverbottom.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap/capverbottom.png
--------------------------------------------------------------------------------
/MiniWI-cap/capverinside.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap/capverinside.png
--------------------------------------------------------------------------------
/MiniWI-cap/capvertop.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI-cap/capvertop.png
--------------------------------------------------------------------------------
/MiniWI-lite/MiniWI-lite.ino:
--------------------------------------------------------------------------------
1 | /*
2 | NAME: MiniWI Lite Ver.
3 | WRITTEN BY: JOHAN BERGLUND
4 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
5 | DATE: 2016-04-13
6 | FILE SAVED AS: MiniWI-lite.ino
7 | FOR: Arduino Pro Mini, ATmega328
8 | CLOCK: 16.00 MHz CRYSTAL
9 | PROGRAMME FUNCTION: Wind Controller with EWI style key setup, Freescale MPX5010GP breath sensor
10 | and output to 5-pin DIN MIDI
11 |
12 | HARDWARE NOTES:
13 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
14 | * Socket is seen from solder tags at rear.
15 | * DIN-5 pinout is: _______
16 | * pin 2 - GND / \
17 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
18 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
19 | * all other pins - unconnected \___2___/
20 | *
21 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
22 | *
23 | * Sensor pinout
24 | * 1: V OUT (pin with indent)
25 | * 2: GND
26 | * 3: VCC (to 5V)
27 | * 4: n/c
28 | * 5: n/c
29 | * 6: n/c
30 | *
31 | *
32 | * All key switches connect Ardino digital inputs (with internal pullups) to GND
33 | *
34 | */
35 |
36 | //_______________________________________________________________________________________________ DECLARATIONS
37 |
38 | #define ON_Thr 40 // Set threshold level before switching ON
39 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
40 | #define breath_max 300 // Blowing as hard as you can
41 | #define modsLo_Thr 411 // Low threshold for mod stick center
42 | #define modsHi_Thr 611 // High threshold for mod stick center
43 | #define octsLo_Thr 311 // Low threshold for octave stick center
44 | #define octsHi_Thr 711 // High threshold for octave stick center
45 |
46 | // The three states of our state machine
47 |
48 | // No note is sounding
49 | #define NOTE_OFF 1
50 |
51 | // We've observed a transition from below to above the
52 | // threshold value. We wait a while to see how fast the
53 | // breath velocity is increasing
54 | #define RISE_WAIT 2
55 |
56 | // A note is sounding
57 | #define NOTE_ON 3
58 |
59 | // Send CC data no more than every CC_INTERVAL
60 | // milliseconds
61 | #define CC_INTERVAL 40
62 |
63 |
64 | //variables setup
65 |
66 | int state; // The state of the state machine
67 | unsigned long ccSendTime = 0L; // The last time we sent CC values
68 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
69 | int initial_breath_value; // The breath value at the time we observed the transition
70 |
71 | long lastDebounceTime = 0; // The last time the fingering was changed
72 | long debounceDelay = 30; // The debounce time; increase if the output flickers
73 | int lastFingering = 0; // Keep the last fingering value for debouncing
74 |
75 | byte MIDIchannel=0; // MIDI channel 1
76 |
77 | int breathLevel;
78 |
79 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
80 | byte velocity; // remapped midi velocity from breath sensor
81 |
82 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
83 | byte activeNote; // note playing
84 | byte startNote=61; // set startNote to C# (change this value in steps of 12 to start in other octaves)
85 |
86 | byte midistatus=0;
87 | byte x;
88 | byte LedPin = 13; // select the pin for the LED
89 |
90 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
91 | byte LH1; // Left Hand key 1 (pitch change -2)
92 | byte LHb; // Left Hand bis key (pitch change -1 unless both LH1 and LH2 are pressed)
93 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
94 | byte LH3; // Left Hand key 3 (pitch change -2)
95 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
96 | byte LHp2; // Left Hand pinky key 2 (pitch change -1)
97 | byte RHs; // Right Hand side key (pitch change -2 unless LHp1 is pressed)
98 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
99 | byte RH2; // Right Hand key 2 (pitch change -1)
100 | byte RH3; // Right Hand key 3 (pitch change -2)
101 | byte RHp1; // Right Hand pinky key 1 (pitch change +1)
102 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
103 | byte RHp3; // Right Hand pinky key 3 (pitch change -2)
104 | byte OCTup; // Octave switch key (pitch change +12)
105 |
106 |
107 |
108 | //_______________________________________________________________________________________________ SETUP
109 |
110 | void setup() {
111 | pinMode(2, INPUT_PULLUP); // Set inputs with pull-up
112 | pinMode(3, INPUT_PULLUP);
113 | pinMode(4, INPUT_PULLUP);
114 | pinMode(5, INPUT_PULLUP);
115 | pinMode(6, INPUT_PULLUP);
116 | pinMode(7, INPUT_PULLUP);
117 | pinMode(8, INPUT_PULLUP);
118 | pinMode(9, INPUT_PULLUP);
119 | pinMode(10, INPUT_PULLUP);
120 | pinMode(11, INPUT_PULLUP);
121 | pinMode(12, INPUT_PULLUP);
122 | pinMode(14, INPUT_PULLUP);
123 | pinMode(15, INPUT_PULLUP);
124 | pinMode(16, INPUT_PULLUP);
125 |
126 | state = NOTE_OFF; // initialize state machine
127 |
128 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
129 |
130 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
131 | digitalWrite( LedPin, HIGH );
132 | delay(300);
133 | digitalWrite( LedPin, LOW );
134 | delay(300);
135 | }
136 |
137 | Serial.begin(31250); // start serial with midi baudrate 31250
138 | Serial.flush();
139 | }
140 |
141 | //_______________________________________________________________________________________________ MAIN LOOP
142 |
143 | void loop() {
144 |
145 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
146 |
147 | if (state == NOTE_OFF) {
148 | if (pressureSensor > ON_Thr) {
149 | // Value has risen above threshold. Move to the ON_Delay
150 | // state. Record time and initial breath value.
151 | breath_on_time = millis();
152 | initial_breath_value = pressureSensor;
153 | state = RISE_WAIT; // Go to next state
154 | }
155 | } else if (state == RISE_WAIT) {
156 | if (pressureSensor > ON_Thr) {
157 | // Has enough time passed for us to collect our second
158 | // sample?
159 | if (millis() - breath_on_time > ON_Delay) {
160 | // Yes, so calculate MIDI note and velocity, then send a note on event
161 | readSwitches();
162 |
163 | //calculate midi note number from pressed keys and octave shifts
164 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup;
165 |
166 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
167 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
168 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
169 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
170 | activeNote=fingeredNote;
171 | state = NOTE_ON;
172 | }
173 | } else {
174 | // Value fell below threshold before ON_Delay passed. Return to
175 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
176 | state = NOTE_OFF;
177 | }
178 | } else if (state == NOTE_ON) {
179 | if (pressureSensor < ON_Thr) {
180 | // Value has fallen below threshold - turn the note off
181 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
182 | state = NOTE_OFF;
183 | } else {
184 | // Is it time to send more CC data?
185 | if (millis() - ccSendTime > CC_INTERVAL) {
186 | // deal with Breath
187 | breath();
188 | ccSendTime = millis();
189 | }
190 | readSwitches();
191 | //calculate midi note number from pressed keys
192 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup;
193 |
194 | if (fingeredNote != lastFingering){ //
195 | // reset the debouncing timer
196 | lastDebounceTime = millis();
197 | }
198 | if ((millis() - lastDebounceTime) > debounceDelay) {
199 | // whatever the reading is at, it's been there for longer
200 | // than the debounce delay, so take it as the actual current state
201 | if (fingeredNote != activeNote) {
202 | // Player has moved to a new fingering while still blowing.
203 | // Send a note off for the current note and a note on for
204 | // the new note.
205 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
206 | activeNote=fingeredNote;
207 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
208 | midiSend((0x90 | MIDIchannel), activeNote, velocity); // send Note On message
209 | }
210 | }
211 | }
212 | }
213 | lastFingering=fingeredNote;
214 | }
215 | //_______________________________________________________________________________________________ FUNCTIONS
216 |
217 | // Send a three byte midi message
218 | void midiSend(byte midistatus, byte data1, byte data2) {
219 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
220 | Serial.write(midistatus);
221 | Serial.write(data1);
222 | Serial.write(data2);
223 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
224 | }
225 |
226 | //***********************************************************
227 |
228 | void breath(){
229 | breathLevel = analogRead(A3); // read voltage on analog pin A3
230 | breathLevel = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
231 | midiSend((0xB0 | MIDIchannel), 2, breathLevel);
232 | }
233 |
234 | //***********************************************************
235 |
236 | void readSwitches(){
237 | // Read switches and put inverted value in variables
238 | LH1=!digitalRead(2);
239 | LHb=!digitalRead(3);
240 | LH2=!digitalRead(4);
241 | LH3=!digitalRead(5);
242 | LHp1=!digitalRead(6);
243 | LHp2=!digitalRead(7);
244 | RHs=!digitalRead(8);
245 | RH1=!digitalRead(9);
246 | RH2=!digitalRead(10);
247 | RH3=!digitalRead(11);
248 | RHp1=!digitalRead(12);
249 | RHp2=!digitalRead(14);
250 | RHp3=!digitalRead(15);
251 | OCTup=!digitalRead(16);
252 | }
253 |
254 |
--------------------------------------------------------------------------------
/MiniWI/MiniWI-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI/MiniWI-schematic.png
--------------------------------------------------------------------------------
/MiniWI/MiniWI.ino:
--------------------------------------------------------------------------------
1 | /*
2 | NAME: MiniWI
3 | WRITTEN BY: JOHAN BERGLUND
4 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
5 | DATE: 2016-04-13
6 | FILE SAVED AS: MiniWI.ino
7 | FOR: Arduino Pro Mini, ATmega328, version with breakouts for A6 and A7
8 | CLOCK: 16.00 MHz CRYSTAL
9 | PROGRAMME FUNCTION: Wind Controller with EWI style key setup, Freescale MPX5010GP breath sensor, PS2 style thumb joysticks
10 | for octave selection and pb/mod control, output to 5-pin DIN MIDI
11 |
12 | HARDWARE NOTES:
13 | * For the MIDI connection, attach a MIDI out Female 180 Degree 5-Pin DIN socket to Arduino.
14 | * Socket is seen from solder tags at rear.
15 | * DIN-5 pinout is: _______
16 | * pin 2 - GND / \
17 | * pin 4 - 220 ohm resistor to +5V | 1 3 | MIDI jack
18 | * pin 5 - Arduino Pin 1 (TX) via a 220 ohm resistor | 4 5 |
19 | * all other pins - unconnected \___2___/
20 | *
21 | * Left hand thumb joystick controls octaves.
22 | * X and Y are connected to Arduino pins A6 and A7,
23 | * this means a Pro Mini version with breakouts for these pins is required.
24 | *
25 | * +1 +2
26 | * ^
27 | * -1 < o > +1
28 | * v
29 | * -2 -1
30 | *
31 | * Right hand thumb joystick controls pitch bend and modulation.
32 | * Pitch bend and modulation are connected to Arduino pins A4 and A5,
33 | * not on DIP rows.
34 | *
35 | * PB up
36 | * ^
37 | * Mod < o > Mod
38 | * v
39 | * PB dn
40 | *
41 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to Arduino pin A3.
42 | *
43 | * Sensor pinout
44 | * 1: V OUT (pin with indent)
45 | * 2: GND
46 | * 3: VCC (to 5V)
47 | * 4: n/c
48 | * 5: n/c
49 | * 6: n/c
50 | *
51 | *
52 | * All key switches connect Arduino digital inputs (with internal pullups) to GND
53 | *
54 | */
55 |
56 | //_______________________________________________________________________________________________ DECLARATIONS
57 |
58 | #define ON_Thr 40 // Set threshold level before switching ON
59 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
60 | #define breath_max 300 // Blowing as hard as you can
61 | #define modsLo_Thr 411 // Low threshold for mod stick center
62 | #define modsHi_Thr 611 // High threshold for mod stick center
63 | #define octsLo_Thr 311 // Low threshold for octave stick center
64 | #define octsHi_Thr 711 // High threshold for octave stick center
65 |
66 | // The three states of our state machine
67 |
68 | // No note is sounding
69 | #define NOTE_OFF 1
70 |
71 | // We've observed a transition from below to above the
72 | // threshold value. We wait a while to see how fast the
73 | // breath velocity is increasing
74 | #define RISE_WAIT 2
75 |
76 | // A note is sounding
77 | #define NOTE_ON 3
78 |
79 | // Send CC data no more than every CC_INTERVAL
80 | // milliseconds
81 | #define CC_INTERVAL 15
82 |
83 |
84 | //variables setup
85 |
86 | int state; // The state of the state machine
87 | unsigned long ccSendTime = 0L; // The last time we sent CC values
88 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
89 | int initial_breath_value; // The breath value at the time we observed the transition
90 |
91 | long lastDebounceTime = 0; // The last time the fingering was changed
92 | long debounceDelay = 30; // The debounce time; increase if the output flickers
93 | int lastFingering = 0; // Keep the last fingering value for debouncing
94 |
95 | byte MIDIchannel=0; // MIDI channel 1
96 |
97 | int modLevel;
98 | int oldmod=0;
99 |
100 | int pitchLSB;
101 | int pitchMSB;
102 | int pitchBend;
103 | int oldpb=8192;
104 |
105 | int breathLevel;
106 | int oldBreath=0;
107 |
108 | int xOctaves;
109 | int yOctaves;
110 |
111 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
112 | byte velocity; // remapped midi velocity from breath sensor
113 |
114 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
115 | byte activeNote; // note playing
116 | byte startNote=61; // set startNote to C# (change this value in steps of 12 to start in other octaves)
117 |
118 | byte midistatus=0;
119 | byte x;
120 | byte LedPin = 13; // select the pin for the LED
121 |
122 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
123 | byte LH1; // Left Hand key 1 (pitch change -2)
124 | byte LHb; // Left Hand bis key (pitch change -1 unless both LH1 and LH2 are pressed)
125 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
126 | byte LH3; // Left Hand key 3 (pitch change -2)
127 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
128 | byte LHp2; // Left Hand pinky key 2 (pitch change -1)
129 | byte RHs; // Right Hand side key (pitch change -2 unless LHp1 is pressed)
130 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
131 | byte RH2; // Right Hand key 2 (pitch change -1)
132 | byte RH3; // Right Hand key 3 (pitch change -2)
133 | byte RHp1; // Right Hand pinky key 1 (pitch change +1)
134 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
135 | byte RHp3; // Right Hand pinky key 3 (pitch change -2)
136 | byte OCTup; // Octave switch key (pitch change +12) // Keep this? Octave joystick button?
137 |
138 | int joyOct; // Octave shifting by joystick (pitch change steps of 12) value from -2 to +2, 0 is center pos
139 |
140 | //_______________________________________________________________________________________________ SETUP
141 |
142 | void setup() {
143 | pinMode(2, INPUT_PULLUP); // Set inputs with pull-up
144 | pinMode(3, INPUT_PULLUP);
145 | pinMode(4, INPUT_PULLUP);
146 | pinMode(5, INPUT_PULLUP);
147 | pinMode(6, INPUT_PULLUP);
148 | pinMode(7, INPUT_PULLUP);
149 | pinMode(8, INPUT_PULLUP);
150 | pinMode(9, INPUT_PULLUP);
151 | pinMode(10, INPUT_PULLUP);
152 | pinMode(11, INPUT_PULLUP);
153 | pinMode(12, INPUT_PULLUP);
154 | pinMode(14, INPUT_PULLUP);
155 | pinMode(15, INPUT_PULLUP);
156 | pinMode(16, INPUT_PULLUP);
157 |
158 | state = NOTE_OFF; // initialize state machine
159 |
160 | pinMode(LedPin,OUTPUT); // declare the LED's pin as output
161 |
162 | for (x=1; x<=4; x++){ // Do the flashy-flashy to say we are up and running
163 | digitalWrite( LedPin, HIGH );
164 | delay(300);
165 | digitalWrite( LedPin, LOW );
166 | delay(300);
167 | }
168 |
169 | Serial.begin(31250); // start serial with midi baudrate 31250
170 | Serial.flush();
171 | }
172 |
173 | //_______________________________________________________________________________________________ MAIN LOOP
174 |
175 | void loop() {
176 |
177 | pressureSensor = analogRead(A3); // Get the pressure sensor reading from analog pin A3
178 |
179 | if (state == NOTE_OFF) {
180 | if (pressureSensor > ON_Thr) {
181 | // Value has risen above threshold. Move to the ON_Delay
182 | // state. Record time and initial breath value.
183 | breath_on_time = millis();
184 | initial_breath_value = pressureSensor;
185 | state = RISE_WAIT; // Go to next state
186 | }
187 | } else if (state == RISE_WAIT) {
188 | if (pressureSensor > ON_Thr) {
189 | // Has enough time passed for us to collect our second
190 | // sample?
191 | if (millis() - breath_on_time > ON_Delay) {
192 | // Yes, so calculate MIDI note and velocity, then send a note on event
193 | readSwitches();
194 | readOctaves();
195 |
196 | //calculate midi note number from pressed keys and octave shifts
197 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup;
198 | fingeredNote=fingeredNote+joyOct*12;
199 |
200 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
201 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 7 to 127
202 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,7,127);
203 | midiSend((0x90 | MIDIchannel), fingeredNote, velocity); // send Note On message for new note
204 | activeNote=fingeredNote;
205 | state = NOTE_ON;
206 | }
207 | } else {
208 | // Value fell below threshold before ON_Delay passed. Return to
209 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
210 | state = NOTE_OFF;
211 | }
212 | } else if (state == NOTE_ON) {
213 | if (pressureSensor < ON_Thr) {
214 | // Value has fallen below threshold - turn the note off
215 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
216 | oldBreath=0;
217 | state = NOTE_OFF;
218 | } else {
219 | // Is it time to send more CC data?
220 | if (millis() - ccSendTime > CC_INTERVAL) {
221 | // deal with Breath, Pitch Bend and Modulation
222 | breath();
223 | pitch_bend();
224 | modulation();
225 | ccSendTime = millis();
226 | }
227 | readSwitches();
228 | readOctaves();
229 |
230 | //calculate midi note number from pressed keys and octave shifts
231 | fingeredNote=startNote-2*LH1-(LHb && !(LH1 && LH2))-LH2-(LH2 && LH1)-2*LH3+LHp1-LHp2+(RHs && !LHp1)-RH1-(RH1 && LH3)-RH2-2*RH3+RHp1-RHp2-2*RHp3+12*OCTup;
232 | fingeredNote=fingeredNote+joyOct*12;
233 |
234 | if (fingeredNote != lastFingering){ //
235 | // reset the debouncing timer
236 | lastDebounceTime = millis();
237 | }
238 | if ((millis() - lastDebounceTime) > debounceDelay) {
239 | // whatever the reading is at, it's been there for longer
240 | // than the debounce delay, so take it as the actual current state
241 | if (fingeredNote != activeNote) {
242 | // Player has moved to a new fingering while still blowing.
243 | // Send a note off for the current note and a note on for
244 | // the new note.
245 | midiSend((0x80 | MIDIchannel), activeNote, velocity); // send Note Off message
246 | activeNote=fingeredNote;
247 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
248 | midiSend((0x90 | MIDIchannel), activeNote, velocity); // send Note On message
249 | }
250 | }
251 | }
252 | }
253 | lastFingering=fingeredNote;
254 | }
255 | //_______________________________________________________________________________________________ FUNCTIONS
256 |
257 | // Send a three byte midi message
258 | void midiSend(byte midistatus, byte data1, byte data2) {
259 | digitalWrite(LedPin,HIGH); // indicate we're sending MIDI data
260 | Serial.write(midistatus);
261 | Serial.write(data1);
262 | Serial.write(data2);
263 | digitalWrite(LedPin,LOW); // indicate we're sending MIDI data
264 | }
265 |
266 | //**************************************************************
267 |
268 | void pitch_bend(){
269 | pitchBend = analogRead(A4); // read voltage on analog pin A4
270 | if (pitchBend > modsHi_Thr){
271 | pitchBend = map(pitchBend,modsHi_Thr,1023,8192,16383); // go from 8192 to 16383 (full pb up) when off center threshold going up
272 | } else if (pitchBend < modsLo_Thr){
273 | pitchBend = map(pitchBend,0,modsLo_Thr,0,8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
274 | } else {
275 | pitchBend = 8192; // 8192 is 0 pitch bend
276 | }
277 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
278 | pitchLSB = pitchBend & 0x007F;
279 | pitchMSB = (pitchBend >>7) & 0x007F;
280 | midiSend((0xE0 | MIDIchannel), pitchLSB, pitchMSB);
281 | oldpb=pitchBend;
282 | }
283 | }
284 |
285 | //***********************************************************
286 |
287 | void modulation(){
288 | modLevel = analogRead(A5); // read voltage on analog pin A5
289 | if (modLevel > modsHi_Thr){
290 | modLevel = map(modLevel,modsHi_Thr,1023,0,127); // go from 0 to full modulation when off center threshold going right(?)
291 | } else if (modLevel < modsLo_Thr){
292 | modLevel = map(modLevel,0,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
293 | } else {
294 | modLevel = 0; // zero modulation in center position
295 | }
296 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
297 | midiSend((0xB0 | MIDIchannel), 1, modLevel);
298 | oldmod=modLevel;
299 | }
300 | }
301 |
302 | //***********************************************************
303 |
304 | void breath(){
305 | breathLevel = analogRead(A3); // read voltage on analog pin A3
306 | breathLevel = oldBreath*0.8+breathLevel*0.2;
307 | oldBreath = breathLevel;
308 | breathLevel = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
309 | midiSend((0xB0 | MIDIchannel), 2, breathLevel);
310 | }
311 | //***********************************************************
312 |
313 | void readOctaves(){
314 | // Read octave joystick directions combining x and y to a span of 5 octaves (-2 to +2) where 0 is center position
315 | xOctaves = analogRead(A6); // read voltage on analog pin A6
316 | yOctaves = analogRead(A7); // read voltage on analog pin A7
317 | joyOct = 0;
318 | if (xOctaves > octsHi_Thr) {
319 | joyOct++; // ++ or -- depending on joystick orientation
320 | } else if (xOctaves < octsLo_Thr) {
321 | joyOct--; // ++ or -- depending on joystick orientation
322 | }
323 |
324 | if (yOctaves > octsHi_Thr) {
325 | joyOct++; // ++ or -- depending on joystick orientation
326 | } else if (yOctaves < octsLo_Thr) {
327 | joyOct--; // ++ or -- depending on joystick orientation
328 | }
329 | }
330 | //***********************************************************
331 |
332 | void readSwitches(){
333 | // Read switches and put inverted value in variables
334 | LH1=!digitalRead(2);
335 | LHb=!digitalRead(3);
336 | LH2=!digitalRead(4);
337 | LH3=!digitalRead(5);
338 | LHp1=!digitalRead(6);
339 | LHp2=!digitalRead(7);
340 | RHs=!digitalRead(8);
341 | RH1=!digitalRead(9);
342 | RH2=!digitalRead(10);
343 | RH3=!digitalRead(11);
344 | RHp1=!digitalRead(12);
345 | RHp2=!digitalRead(14);
346 | RHp3=!digitalRead(15);
347 | OCTup=!digitalRead(16);
348 | }
349 |
--------------------------------------------------------------------------------
/MiniWI/miniwifirstproto.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/MiniWI/miniwifirstproto.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MiniWI
2 | MIDI woodwind controller
3 |
4 | 2016-04-17
5 |
6 | This MIDI controller is running on an Arduino Pro Mini with Atmega328 16MHz/5V. It makes use of breakouts for analog pins A6 and A7, so it needs a Pro Mini version with these breakouts. The pressure sensor used for the project is the Freescale MPX5010GP. Fingering is reverse engineered from Akai EWI and note values are calculated from pressed keys. For details on this, read my guest post on the Gordophone blog.
7 |
8 | http://gordophone.blogspot.se/2016/04/guest-post-alternative-way-of-note.html
9 |
10 | Details on the state machine approach for handling the events is also available on Gordon's blog where I borrowed it from. He's got a step-by-step how-to on DIY wind controllers that I highly recommend.
11 |
12 | http://gordophone.blogspot.se/2013/01/a-series-basics-of-diy-wind-controllers.html
13 |
14 | Hardware notes for connection of MIDI, pressure sensor, keys and joysticks are available in the MiniWI.ino file.
15 |
16 | The MIDI routines and the MIDI connections are pretty standard, but I first found them on the midikits.net website, so I'll give Tom Scarff a mention here. Kept his nice MIDI pinout ASCII sketch thing and some comment style too.
17 |
18 | The controller is made to work well with synthesizers using wind controller patches from Patchman Music, with the breath data sent by CC #2 (Breath). For testing I’ve been using their wind controller soundbank for Roland JV-1010.
19 |
20 | http://www.patchmanmusic.com
21 |
22 | Or you can make your own patches optimized for breath control. Pointers for doing that can also be found on the Patchman website.
23 |
24 |
25 | Questions and suggestions are welcome. Just send them to johan@helgo.net.
26 |
27 | -Johan Berglund
28 |
29 |
30 | 2016-05-17
31 |
32 | Variations:
33 |
34 | MiniWI.ino is the original proof of concept breadboard version with regular switches.
35 |
36 | MiniWI-lite.ino is a simplified version (no joysticks) for my guest post on the Gordophone blog.
37 |
38 | MiniWI-cap.ino is the capacitive touch version implemented in my first playable prototype.
39 |
40 | MiniWI-cap-pmt.ino is a modification of the touch version to feature portamento (glide) control and a separate potentiometer for setting base octave instead of using sideways motion of joystick to increase range. This reduces instantly playable range but increases the total range of the controller.
41 |
42 | MiniVI-cap.ino is a not yet realized EVI version (Electronic Valve Instrument) based on the Akai EVI1000 and the Steiner MIDI EVI.
43 |
44 | 2016-05-22
45 |
46 | I’ve added some pictures from my Instagram account. Check it out for more pictures from this and my other projects.
47 |
48 | https://www.instagram.com/trasselfrisyr/
49 |
50 | 2016-05-30
51 |
52 | Project profile for the MiniWI added on Hackaday.io
53 |
54 | https://hackaday.io/project/11843-miniwi-woodwind-midi-controller
55 |
56 | 2016-06-03
57 |
58 | Added optional Casio DH 2nd octave fingerings. Default disabled. Set #define casioMod 1 to set default enabled. Hold octave stick up at power on for manual selection of the setting that is not default.
59 |
60 | 2016-06-12
61 |
62 | Added tested and working version of the new TeensieWI, a simplified version for USB MIDI using the built in capacitive touch sensing in the Teensy LC and breath sensing from the MPX5010GP. Small warning here: the breath sensor output is not limited and could reach values near 5V, while the analog input on the Teensy LC is 3.3V and not rated 5V safe. To reach these levels you’d have to blow really, really hard. If you need to feel safe, go with a Teensy 3.1 or 3.2 as they have 5V tolerant inputs. Only minor alterations needed in the code for use with Teensy 3.x (touch sensing on other pins, some as pads on the back).
63 |
64 | 2017-10-31
65 |
66 | Improved the joystick version of the TeensieWI, now called T.WI, with breath response curves and some other stuff that can be configured at plug-in. Started making these for sale on Tindie. https://www.tindie.com/products/yoe/twi-a-teensy-based-usb-midi-woodwind-controller/
67 |
--------------------------------------------------------------------------------
/T.WI/T.WI-fingering.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/T.WI-fingering.pdf
--------------------------------------------------------------------------------
/T.WI/T.WI-settings.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/T.WI-settings.pdf
--------------------------------------------------------------------------------
/T.WI/T.WI.ino:
--------------------------------------------------------------------------------
1 | #include
2 | #include // for the breath signal LP filtering, https://github.com/edgar-bonet/Filters
3 |
4 | /*
5 | NAME: T.WI
6 | WRITTEN BY: JOHAN BERGLUND
7 | DATE: 2017-10-17
8 | FILE SAVED AS: T.WI.ino
9 | FOR: PJRC Teensy LC and Teensyduino
10 | CLOCK: 48.00 MHz
11 | PROGRAMME FUNCTION: Woodwind Controller using a Freescale MPX5010GP breath sensor,
12 | a PSP1000 joystick and capacitive touch keys. Output to USB MIDI.
13 |
14 | HARDWARE NOTES:
15 |
16 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to pin 21(A7).
17 | * (Warning: no voltage limiting before input, can harm Teensy if excessive pressure is applied.)
18 | *
19 | * Sensor pinout
20 | * 1: V OUT (pin with indent)
21 | * 2: GND (to GND pin of Teensy)
22 | * 3: VCC (to 5V pin of Teensy)
23 | * 4: n/c
24 | * 5: n/c
25 | * 6: n/c
26 | *
27 | * Touch sensors are using the Teensy LC built in touchRead function.
28 | * Electrodes connect directly to Teensy pins.
29 | *
30 | * PSP style thumb slide joystick controls pitch bend and modulation.
31 | * Pitch bend and modulation are connected to pins A6 and A0.
32 | * Connections on joystick, bottom view with connectors towards you, L to R:
33 | * 1: to VCC 3.3V
34 | * 2: X (or Y depending on orientation) to analog input
35 | * 3: to GND
36 | * 4: Y (or X depending on orientation) to analog input
37 | *
38 | * PB up
39 | * ^
40 | * Mod < o > Glide
41 | * v
42 | * PB dn
43 | *
44 | */
45 |
46 | //_______________________________________________________________________________________________ DECLARATIONS
47 |
48 | #define touch_Thr 1500 // threshold for Teensy touchRead, 1300-1800
49 | #define ON_Thr 300 // Set threshold level before switching ON
50 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
51 | #define breath_max 2200 // Threshold for maximum breath
52 | #define modsLo_Thr 1600 // Low threshold for mod stick center
53 | #define modsHi_Thr 2480 // High threshold for mod stick center
54 | #define modsMin 960 // PSP joystick min value
55 | #define modsMax 3080 // PSP joystick max value
56 | #define PB_sen1 4096 // Pitch Bend sensitivity 0 to 8192 where 8192 is full pb range, 4096 is half range
57 | #define PB_sen2 683 // Selectable 1/12 PB sense for synths w fixed 12 semitones pb range
58 | #define CCN_Port 5 // Controller number for portamento level
59 | #define CCN_PortOnOff 65// Controller number for portamento on/off
60 | #define portaMax 30 // 1 to 127, max portamento level
61 |
62 | // The three states of our state machine
63 |
64 | // No note is sounding
65 | #define NOTE_OFF 1
66 |
67 | // We've observed a transition from below to above the
68 | // threshold value. We wait a while to see how fast the
69 | // breath velocity is increasing
70 | #define RISE_WAIT 2
71 |
72 | // A note is sounding
73 | #define NOTE_ON 3
74 |
75 | // Send CC data no more than every CC_INTERVAL
76 | // milliseconds
77 | #define CC_INTERVAL 5
78 |
79 | // EEPROM addresses for settings
80 | #define VERSION_ADDR 0
81 | #define TRANS1_ADDR 14
82 | #define MIDI_ADDR 16
83 | #define BREATH_CC_ADDR 18
84 | #define BREATH_AT_ADDR 20
85 | #define PORTAM_ADDR 24
86 | #define PB_ADDR 26
87 | #define EXTRA_ADDR 28
88 | #define TRANS2_ADDR 40
89 | #define BREATHCURVE_ADDR 44
90 |
91 | //"factory" values for settings
92 | #define VERSION 4
93 | #define MIDI_FACTORY 1 // 1-16
94 | #define BREATH_CC_FACTORY 2 // thats CC#2, see ccList
95 | #define BREATH_AT_FACTORY 0 // aftertouch default off
96 | #define PORTAM_FACTORY 2 // 0 - OFF, 1 - ON, 2 - SW
97 | #define PB_FACTORY 0 // 0 - 1/2, 1 - 1/12
98 | #define EXTRA_FACTORY 0 // 0 - Modulation wheel, 1 - Pitch Bend Vibrato
99 | #define BREATHCURVE_FACTORY 2 // 0 to 12 (-4 to +4, S1 to S4)
100 | #define TRANS1_FACTORY 0 // 1 - +2 semitones (C to D, F to G)
101 | #define TRANS2_FACTORY 0 // 1 - -7 semitones (C to F, D to G) "alto mode"
102 |
103 | #define maxSamplesNum 120
104 |
105 | //variables setup
106 |
107 |
108 | static int waveformsTable[maxSamplesNum] = {
109 | // Sine wave
110 | 0x7ff, 0x86a, 0x8d5, 0x93f, 0x9a9, 0xa11, 0xa78, 0xadd, 0xb40, 0xba1,
111 | 0xbff, 0xc5a, 0xcb2, 0xd08, 0xd59, 0xda7, 0xdf1, 0xe36, 0xe77, 0xeb4,
112 | 0xeec, 0xf1f, 0xf4d, 0xf77, 0xf9a, 0xfb9, 0xfd2, 0xfe5, 0xff3, 0xffc,
113 | 0xfff, 0xffc, 0xff3, 0xfe5, 0xfd2, 0xfb9, 0xf9a, 0xf77, 0xf4d, 0xf1f,
114 | 0xeec, 0xeb4, 0xe77, 0xe36, 0xdf1, 0xda7, 0xd59, 0xd08, 0xcb2, 0xc5a,
115 | 0xbff, 0xba1, 0xb40, 0xadd, 0xa78, 0xa11, 0x9a9, 0x93f, 0x8d5, 0x86a,
116 | 0x7ff, 0x794, 0x729, 0x6bf, 0x655, 0x5ed, 0x586, 0x521, 0x4be, 0x45d,
117 | 0x3ff, 0x3a4, 0x34c, 0x2f6, 0x2a5, 0x257, 0x20d, 0x1c8, 0x187, 0x14a,
118 | 0x112, 0xdf, 0xb1, 0x87, 0x64, 0x45, 0x2c, 0x19, 0xb, 0x2,
119 | 0x0, 0x2, 0xb, 0x19, 0x2c, 0x45, 0x64, 0x87, 0xb1, 0xdf,
120 | 0x112, 0x14a, 0x187, 0x1c8, 0x20d, 0x257, 0x2a5, 0x2f6, 0x34c, 0x3a4,
121 | 0x3ff, 0x45d, 0x4be, 0x521, 0x586, 0x5ed, 0x655, 0x6bf, 0x729, 0x794
122 | };
123 |
124 |
125 | int state; // The state of the state machine
126 | unsigned long ccSendTime = 0L; // The last time we sent CC values
127 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
128 | int initial_breath_value; // The breath value at the time we observed the transition
129 |
130 | unsigned long lastDebounceTime = 0; // The last time the fingering was changed
131 | unsigned long debounceDelay = 20; // The debounce time; increase if the output flickers
132 | int lastFingering = 0; // Keep the last fingering value for debouncing
133 |
134 | byte MIDIchannel=1; // MIDI channel 1
135 |
136 | unsigned short breathCC; // OFF:MW:BR:VL:EX:MW+:BR+:VL+:EX+
137 | unsigned short breathAT;
138 | unsigned short portamento; // switching on cc65? just cc5 enabled? SW:ON:OFF
139 | unsigned short curve; // selected curve
140 | unsigned short PB;
141 | unsigned short mod;
142 | unsigned short trans1;
143 | unsigned short trans2;
144 |
145 | byte ccList[9] = {0,1,2,7,11,1,2,7,11}; // OFF, Modulation, Breath, Volume, Expression,(then same sent in hires)
146 |
147 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
148 | int oldbreath=0;
149 | unsigned int oldbreathhires=0;
150 | unsigned int breathValHires=0;
151 |
152 | byte portIsOn=0; // keep track and make sure we send CC with 0 value when off threshold
153 | int oldport=0;
154 |
155 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
156 | byte velocitySend; // remapped midi velocity from breath sensor
157 |
158 | int modLevel;
159 | int oldmod=0;
160 | int lfoDepth=2;
161 | int lfoLevel=0;
162 | int lfo=0;
163 |
164 | int pitchBend;
165 | int oldpb=8192;
166 | int PB_sens;
167 | int modCCnumber = 1;
168 |
169 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
170 | byte activeNote; // note playing
171 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
172 |
173 | float filterFreq = 30.0;
174 |
175 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
176 | byte LH1; // Left Hand key 1 (pitch change -2)
177 | // Casio style 2nd octave: If LH1 is not touched when LH2 and LH3 are, pitch change +9
178 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
179 | byte LH3; // Left Hand key 3 (pitch change -2)
180 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
181 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
182 | byte RH2; // Right Hand key 2 (pitch change -1)
183 | byte RH3; // Right Hand key 3 (pitch change -2)
184 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
185 | byte RHp3; // Right Hand pinky key 3 (pitch change -2, in this version -1 if RHp2 is pressed)
186 | byte OCTup; // Octave switch key (pitch change +12)
187 | byte OCTdn; // Octave switch key (pitch change -12)
188 |
189 |
190 | unsigned int curveM4[] = {0,4300,7000,8700,9900,10950,11900,12600,13300,13900,14500,15000,15450,15700,16000,16250,16383};
191 | unsigned int curveM3[] = {0,2900,5100,6650,8200,9500,10550,11500,12300,13100,13800,14450,14950,15350,15750,16150,16383};
192 | unsigned int curveM2[] = {0,2000,3600,5000,6450,7850,9000,10100,11100,12100,12900,13700,14400,14950,15500,16000,16383};
193 | unsigned int curveM1[] = {0,1400,2850,4100,5300,6450,7600,8700,9800,10750,11650,12600,13350,14150,14950,15650,16838};
194 | unsigned int curveIn[] = {0,1023,2047,3071,4095,5119,6143,7167,8191,9215,10239,11263,12287,13311,14335,15359,16383};
195 | unsigned int curveP1[] = {0,600,1350,2150,2900,3800,4700,5600,6650,7700,8800,9900,11100,12300,13500,14850,16838};
196 | unsigned int curveP2[] = {0,400,800,1300,2000,2650,3500,4300,5300,6250,7400,8500,9600,11050,12400,14100,16383};
197 | unsigned int curveP3[] = {0,200,500,900,1300,1800,2350,3100,3800,4600,5550,6550,8000,9500,11250,13400,16383};
198 | unsigned int curveP4[] = {0,100,200,400,700,1050,1500,1950,2550,3200,4000,4900,6050,7500,9300,12100,16282};
199 | unsigned int curveS1[] = {0,600,1350,2150,2900,3800,4700,6000,8700,11000,12400,13400,14300,14950,15500,16000,16383};
200 | unsigned int curveS2[] = {0,600,1350,2150,2900,4000,6100,9000,11000,12100,12900,13700,14400,14950,15500,16000,16383};
201 | unsigned int curveS3[] = {0,600,1350,2300,3800,6200,8700,10200,11100,12100,12900,13700,14400,14950,15500,16000,16383};
202 | unsigned int curveS4[] = {0,600,1700,4000,6600,8550,9700,10550,11400,12200,12900,13700,14400,14950,15500,16000,16383};
203 |
204 | //_______________________________________________________________________________________________ SETUP
205 |
206 | void setup() {
207 | analogReadResolution(12); // set resolution of ADCs to 12 bit
208 | state = NOTE_OFF; // initialize state machine
209 | pinMode(13,OUTPUT); // use Teensy LED for breath on indication
210 | digitalWrite(13,LOW);
211 |
212 | // if stored settings are not for current version, they are replaced by factory settings
213 | if (readSetting(VERSION_ADDR) != VERSION){
214 | writeSetting(VERSION_ADDR,VERSION);
215 | writeSetting(MIDI_ADDR,MIDI_FACTORY);
216 | writeSetting(TRANS1_ADDR,TRANS1_FACTORY);
217 | writeSetting(TRANS2_ADDR,TRANS2_FACTORY);
218 | writeSetting(BREATH_CC_ADDR,BREATH_CC_FACTORY);
219 | writeSetting(BREATH_AT_ADDR,BREATH_AT_FACTORY);
220 | writeSetting(PORTAM_ADDR,PORTAM_FACTORY);
221 | writeSetting(PB_ADDR,PB_FACTORY);
222 | writeSetting(EXTRA_ADDR,EXTRA_FACTORY);
223 | writeSetting(BREATHCURVE_ADDR,BREATHCURVE_FACTORY);
224 | }
225 | // read settings from EEPROM
226 | MIDIchannel = readSetting(MIDI_ADDR);
227 | trans1 = readSetting(TRANS1_ADDR);
228 | trans2 = readSetting(TRANS2_ADDR);
229 | breathCC = readSetting(BREATH_CC_ADDR);
230 | breathAT = readSetting(BREATH_AT_ADDR);
231 | portamento = readSetting(PORTAM_ADDR);
232 | PB = readSetting(PB_ADDR);
233 | mod = readSetting(EXTRA_ADDR);
234 | curve = readSetting(BREATHCURVE_ADDR);
235 |
236 | settings();
237 |
238 | if (PB) PB_sens = PB_sen2; else PB_sens = PB_sen1;
239 | if (trans1) startNote += 2;
240 | if (trans2) startNote -= 7;
241 | }
242 |
243 | //_______________________________________________________________________________________________ MAIN LOOP
244 |
245 | void loop() {
246 | mainLoop();
247 | }
248 | void mainLoop() {
249 | FilterOnePole breathFilter( LOWPASS, filterFreq ); // create a one pole (RC) lowpass filter
250 | while(1){
251 | breathFilter.input(analogRead(A7));
252 | pressureSensor = constrain((int)breathFilter.output(),0,4095); // Get the filtered pressure sensor reading from analog pin A7, input from sensor MP3V5004GP
253 |
254 | if (state == NOTE_OFF) {
255 | if (pressureSensor > ON_Thr) {
256 | // Value has risen above threshold. Move to the ON_Delay
257 | // state. Record time and initial breath value.
258 | breath_on_time = millis();
259 | initial_breath_value = pressureSensor;
260 | state = RISE_WAIT; // Go to next state
261 | }
262 | } else if (state == RISE_WAIT) {
263 | if (pressureSensor > ON_Thr) {
264 | // Has enough time passed for us to collect our second
265 | // sample?
266 | if (millis() - breath_on_time > ON_Delay) {
267 | // Yes, so calculate MIDI note and velocity, then send a note on event
268 | readSwitches();
269 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
270 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 1 to 127
271 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
272 | breathValHires = breathCurve(map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,16383));
273 | velocitySend = (breathValHires >>7) & 0x007F;
274 | velocitySend = constrain(velocitySend,1,127);
275 | breath(); // send breath data
276 | usbMIDI.sendNoteOn(fingeredNote, velocitySend, MIDIchannel); // send Note On message for new note
277 | digitalWrite(13,HIGH);
278 | activeNote=fingeredNote;
279 | state = NOTE_ON;
280 | }
281 | } else {
282 | // Value fell below threshold before ON_Delay passed. Return to
283 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
284 | state = NOTE_OFF;
285 | }
286 | } else if (state == NOTE_ON) {
287 | if (pressureSensor < ON_Thr) {
288 | // Value has fallen below threshold - turn the note off
289 | usbMIDI.sendNoteOff(activeNote, velocitySend, MIDIchannel); // send Note Off message
290 | digitalWrite(13,LOW);
291 | breathLevel=0;
292 | state = NOTE_OFF;
293 | } else {
294 | readSwitches();
295 | if (fingeredNote != lastFingering){ //
296 | // reset the debouncing timer
297 | lastDebounceTime = millis();
298 | }
299 | if ((millis() - lastDebounceTime) > debounceDelay) {
300 | // whatever the reading is at, it's been there for longer
301 | // than the debounce delay, so take it as the actual current state
302 | if (fingeredNote != activeNote) {
303 | // Player has moved to a new fingering while still blowing.
304 | // Send a note off for the current note and a note on for
305 | // the new note.
306 | breathValHires = breathCurve(map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,16383));
307 | velocitySend = (breathValHires >>7) & 0x007F;
308 | velocitySend = constrain(velocitySend,1,127); // set new velocity value based on current pressure sensor level
309 | usbMIDI.sendNoteOn(fingeredNote, velocitySend, MIDIchannel); // send Note On message for new note
310 | usbMIDI.sendNoteOff(activeNote, 0, MIDIchannel); // send Note Off message for previous note (legato)
311 | activeNote=fingeredNote;
312 | }
313 | }
314 | }
315 | }
316 | // Is it time to send more CC data?
317 | if (millis() - ccSendTime > CC_INTERVAL) {
318 | // deal with Breath, Pitch Bend and Modulation
319 | breath();
320 | modulation();
321 | pitch_bend();
322 | ccSendTime = millis();
323 | }
324 | lastFingering=fingeredNote;
325 | }
326 | }
327 | //_______________________________________________________________________________________________ FUNCTIONS
328 |
329 | // non linear mapping function (http://playground.arduino.cc/Main/MultiMap)
330 | // note: the _in array should have increasing values
331 | unsigned int multiMap(unsigned int val, unsigned int* _in, unsigned int* _out, uint8_t size)
332 | {
333 | // take care the value is within range
334 | // val = constrain(val, _in[0], _in[size-1]);
335 | if (val <= _in[0]) return _out[0];
336 | if (val >= _in[size-1]) return _out[size-1];
337 |
338 | // search right interval
339 | uint8_t pos = 1; // _in[0] allready tested
340 | while(val > _in[pos]) pos++;
341 |
342 | // this will handle all exact "points" in the _in array
343 | if (val == _in[pos]) return _out[pos];
344 |
345 | // interpolate in the right segment for the rest
346 | return (val - _in[pos-1]) * (_out[pos] - _out[pos-1]) / (_in[pos] - _in[pos-1]) + _out[pos-1];
347 | }
348 |
349 | //**************************************************************
350 |
351 | // map breath values to selected curve
352 | unsigned int breathCurve(unsigned int inputVal){
353 | // 0 to 16383, moving mid value up or down
354 | switch (curve){
355 | case 0:
356 | // -4
357 | return multiMap(inputVal,curveIn,curveM4,17);
358 | break;
359 | case 1:
360 | // -3
361 | return multiMap(inputVal,curveIn,curveM3,17);
362 | break;
363 | case 2:
364 | // -2
365 | return multiMap(inputVal,curveIn,curveM2,17);
366 | break;
367 | case 3:
368 | // -1
369 | return multiMap(inputVal,curveIn,curveM1,17);
370 | break;
371 | case 4:
372 | // 0, linear
373 | return inputVal;
374 | break;
375 | case 5:
376 | // +1
377 | return multiMap(inputVal,curveIn,curveP1,17);
378 | break;
379 | case 6:
380 | // +2
381 | return multiMap(inputVal,curveIn,curveP2,17);
382 | break;
383 | case 7:
384 | // +3
385 | return multiMap(inputVal,curveIn,curveP3,17);
386 | break;
387 | case 8:
388 | // +4
389 | return multiMap(inputVal,curveIn,curveP4,17);
390 | break;
391 | case 9:
392 | // S1
393 | return multiMap(inputVal,curveIn,curveS1,17);
394 | break;
395 | case 10:
396 | // S2
397 | return multiMap(inputVal,curveIn,curveS2,17);
398 | break;
399 | case 11:
400 | // S3
401 | return multiMap(inputVal,curveIn,curveS3,17);
402 | break;
403 | case 12:
404 | // S4
405 | return multiMap(inputVal,curveIn,curveS4,17);
406 | break;
407 | }
408 | }
409 |
410 | //**************************************************************
411 |
412 | void breath(){
413 | int breathCCval,breathCCvalFine;
414 | unsigned int breathCCvalHires;
415 | breathLevel = constrain(pressureSensor,ON_Thr,breath_max);
416 | //breathCCval = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
417 | breathCCvalHires = breathCurve(map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,16383));
418 | breathCCval = (breathCCvalHires >>7) & 0x007F;
419 | breathCCvalFine = breathCCvalHires & 0x007F;
420 |
421 | if (breathCCval != oldbreath){ // only send midi data if breath has changed from previous value
422 | if (breathCC){
423 | // send midi cc
424 | usbMIDI.sendControlChange(ccList[breathCC], breathCCval, MIDIchannel);
425 | }
426 | if (breathAT){
427 | // send aftertouch
428 | usbMIDI.sendAfterTouch(breathCCval, MIDIchannel);
429 | }
430 | oldbreath = breathCCval;
431 | }
432 |
433 | if (breathCCvalHires != oldbreathhires){
434 | if (breathCC > 4){ // send high resolution midi
435 | usbMIDI.sendControlChange(ccList[breathCC]+32, breathCCvalFine, MIDIchannel);
436 | }
437 | oldbreathhires = breathCCvalHires;
438 | }
439 | }
440 |
441 | //**************************************************************
442 |
443 | void pitch_bend(){
444 | pitchBend = analogRead(A0); // read voltage on analog pin A0
445 | if (pitchBend > modsHi_Thr){
446 | pitchBend = oldpb*0.6+0.4*map(constrain(pitchBend,modsHi_Thr,modsMax),modsHi_Thr,modsMax,8192,(8193 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
447 | } else if (pitchBend < modsLo_Thr){
448 | pitchBend = oldpb*0.6+0.4*map(constrain(pitchBend,modsMin,modsLo_Thr),modsMin,modsLo_Thr,(8192 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
449 | } else {
450 | pitchBend = oldpb*0.6+8192*0.4; // released, so smooth your way back to zero
451 | if ((pitchBend > 8187) && (pitchBend < 8197)) pitchBend = 8192; // 8192 is 0 pitch bend, don't miss it bc of smoothing
452 | }
453 | if (mod || (ccList[breathCC]==1)){
454 | if (PB) pitchBend += lfoLevel/6; else pitchBend += lfoLevel;
455 | pitchBend=constrain(pitchBend, 0, 16383);
456 | }
457 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
458 | usbMIDI.sendPitchBend(pitchBend, MIDIchannel);
459 | oldpb=pitchBend;
460 | }
461 | }
462 |
463 | //***********************************************************
464 |
465 | void modulation(){
466 | int modRead = analogRead(A6); // read voltage on analog pin A6
467 | if (modRead < modsLo_Thr){
468 | modLevel = map(constrain(modRead,modsMin,modsLo_Thr),modsMin,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
469 | } else {
470 | modLevel = 0; // zero modulation in center position
471 | }
472 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
473 | if (!mod && (ccList[breathCC] != modCCnumber)) usbMIDI.sendControlChange(modCCnumber, modLevel, MIDIchannel);
474 | oldmod=modLevel;
475 | }
476 | if (mod || (ccList[breathCC] == modCCnumber)) {
477 | lfo = waveformsTable[(millis()/2)%maxSamplesNum] - 2047;
478 | lfoLevel = lfo * modLevel / 1024 * lfoDepth;
479 | }
480 | if (portamento && (modRead > modsHi_Thr)) { // if we are enabled and over the threshold, send portamento
481 | if (!portIsOn) {
482 | if (portamento == 2){ // if portamento midi switching is enabled
483 | usbMIDI.sendControlChange(CCN_PortOnOff, 127, MIDIchannel);
484 | }
485 | portIsOn=1;
486 | }
487 | int portCC;
488 | portCC = map(constrain(modRead,modsHi_Thr,modsMax),modsHi_Thr,modsMax,0,portaMax); // go from 0 to full when off center threshold going right(?)
489 | if (portCC!=oldport){
490 | usbMIDI.sendControlChange(CCN_Port, portCC, MIDIchannel);
491 | }
492 | oldport = portCC;
493 | } else if (portIsOn) { // we have just gone below threshold, so send zero value
494 | usbMIDI.sendControlChange(CCN_Port, 0, MIDIchannel);
495 | if (portamento == 2){ // if portamento midi switching is enabled
496 | usbMIDI.sendControlChange(CCN_PortOnOff, 0, MIDIchannel);
497 | }
498 | portIsOn=0;
499 | oldport = 0;
500 | }
501 | }
502 |
503 | //***********************************************************
504 |
505 | void writeSetting(byte address, unsigned short value){
506 | union {
507 | byte v[2];
508 | unsigned short val;
509 | } data;
510 | data.val = value;
511 | EEPROM.write(address, data.v[0]);
512 | EEPROM.write(address+1, data.v[1]);
513 | }
514 |
515 | //***********************************************************
516 |
517 | unsigned short readSetting(byte address){
518 | union {
519 | byte v[2];
520 | unsigned short val;
521 | } data;
522 | data.v[0] = EEPROM.read(address);
523 | data.v[1] = EEPROM.read(address+1);
524 | return data.val;
525 | }
526 |
527 | //***********************************************************
528 |
529 | void readSwitches(){
530 | // Read switches and put value in variables
531 | LH1=touchRead(17)>touch_Thr;
532 | LH2=touchRead(4)>touch_Thr;
533 | LH3=touchRead(3)>touch_Thr;
534 | LHp1=touchRead(18)>touch_Thr;
535 | RH1=touchRead(19)>touch_Thr;
536 | RH2=touchRead(22)>touch_Thr;
537 | RH3=touchRead(23)>touch_Thr;
538 | RHp2=touchRead(1)>touch_Thr;
539 | RHp3=touchRead(0)>touch_Thr;
540 | OCTup=touchRead(15)>touch_Thr;
541 | OCTdn=touchRead(16)>touch_Thr;
542 | //calculate midi note number from pressed keys
543 | fingeredNote=startNote-2*LH1-LH2-(LH2 && LH1)-2*LH3+LHp1-RH1-(RH1 && LH3)-RH2-2*RH3-RHp2-2*RHp3+(RHp2 && RHp3)+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
544 | }
545 |
546 | //***********************************************************
547 |
548 | void numberBlink(byte number){
549 | for (int i=0; i < number; i++){
550 | digitalWrite(13,HIGH);
551 | delay(200);
552 | digitalWrite(13,LOW);
553 | delay(200);
554 | }
555 | if (number == 0){
556 | digitalWrite(13,HIGH);
557 | delay(30);
558 | digitalWrite(13,LOW);
559 | delay(30);
560 | digitalWrite(13,HIGH);
561 | delay(30);
562 | digitalWrite(13,LOW);
563 | delay(30);
564 | digitalWrite(13,HIGH);
565 | delay(30);
566 | digitalWrite(13,LOW);
567 | delay(30);
568 | digitalWrite(13,HIGH);
569 | delay(30);
570 | digitalWrite(13,LOW);
571 | delay(200);
572 | }
573 | }
574 |
575 | //***********************************************************
576 |
577 | void settings(){
578 | int y = analogRead(A0); // read joystick y axis, A0
579 | int x = analogRead(A6); // read joystick x axis, A6
580 | byte sel = 0;
581 | byte bin = 0;
582 | byte p1,p2;
583 |
584 | if (y > ((modsHi_Thr+modsMax)/2)) sel = 1; // PB up -> Breath CC/AT settings
585 | else if (y < ((modsLo_Thr+modsMin)/2)) sel = 2; // PB dn -> MIDI CH setting
586 | else if (x > ((modsHi_Thr+modsMax)/2)) sel = 3; // Glide -> Various on/off
587 | else if (x < ((modsLo_Thr+modsMin)/2)) sel = 4; // Mod -> Breath curve setting
588 |
589 | numberBlink(sel);
590 |
591 | delay(1000);
592 |
593 | if (sel){
594 | // Read switches and put value in variables
595 | bin = (touchRead(19)>touch_Thr) + (touchRead(22)>touch_Thr)*2 + (touchRead(23)>touch_Thr)*4;
596 | p1 = touchRead(1)>touch_Thr;
597 | p2 = touchRead(0)>touch_Thr;
598 |
599 | switch (sel){
600 | case 1:
601 | breathCC = constrain(bin,0,8);
602 | breathAT = p1;
603 | writeSetting(BREATH_CC_ADDR,breathCC);
604 | writeSetting(BREATH_AT_ADDR,breathAT);
605 | break;
606 | case 2:
607 | MIDIchannel = bin + p1*8 + 1;
608 | writeSetting(MIDI_ADDR,MIDI_FACTORY);
609 | break;
610 | case 3:
611 | if (bitRead(bin,0)){
612 | if (portamento) portamento = 0; else portamento = 2; // portamento 2 is both switch on/off and portamento value, portamento 1 is just value
613 | writeSetting(PORTAM_ADDR,portamento);
614 | }
615 | if (bitRead(bin,1)){
616 | PB = !PB;
617 | writeSetting(PB_ADDR,PB);
618 | }
619 | if (bitRead(bin,2)){
620 | mod = !mod;
621 | writeSetting(EXTRA_ADDR,mod);
622 | }
623 | if (p1){
624 | trans1 = !trans1;
625 | writeSetting(TRANS1_ADDR,trans1);
626 | }
627 | if (p2){
628 | trans2 = !trans2;
629 | writeSetting(TRANS2_ADDR,trans2);
630 | }
631 | if ((bin == 7) && p1 && p2){ //restore factory settings
632 | writeSetting(MIDI_ADDR,MIDI_FACTORY);
633 | writeSetting(TRANS1_ADDR,TRANS1_FACTORY);
634 | writeSetting(TRANS2_ADDR,TRANS2_FACTORY);
635 | writeSetting(BREATH_CC_ADDR,BREATH_CC_FACTORY);
636 | writeSetting(BREATH_AT_ADDR,BREATH_AT_FACTORY);
637 | writeSetting(PORTAM_ADDR,PORTAM_FACTORY);
638 | writeSetting(PB_ADDR,PB_FACTORY);
639 | writeSetting(EXTRA_ADDR,EXTRA_FACTORY);
640 | writeSetting(BREATHCURVE_ADDR,BREATHCURVE_FACTORY);
641 | MIDIchannel = readSetting(MIDI_ADDR);
642 | trans1 = readSetting(TRANS1_ADDR);
643 | trans2 = readSetting(TRANS2_ADDR);
644 | breathCC = readSetting(BREATH_CC_ADDR);
645 | breathAT = readSetting(BREATH_AT_ADDR);
646 | portamento = readSetting(PORTAM_ADDR);
647 | PB = readSetting(PB_ADDR);
648 | mod = readSetting(EXTRA_ADDR);
649 | curve = readSetting(BREATHCURVE_ADDR);
650 | }
651 | break;
652 | case 4:
653 | curve = constrain((bin+p1*8),0,12);
654 | writeSetting(BREATHCURVE_ADDR,curve);
655 | }
656 | numberBlink(bin);
657 | delay(1000);
658 | numberBlink(p1);
659 | delay(1000);
660 | numberBlink(p2);
661 | }
662 | }
663 |
664 |
665 |
666 |
--------------------------------------------------------------------------------
/T.WI/curves.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/curves.png
--------------------------------------------------------------------------------
/T.WI/twi-a4-template.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-a4-template.pdf
--------------------------------------------------------------------------------
/T.WI/twi-examples.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-examples.pdf
--------------------------------------------------------------------------------
/T.WI/twi-joystick.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-joystick.png
--------------------------------------------------------------------------------
/T.WI/twi-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-schematic.png
--------------------------------------------------------------------------------
/T.WI/twi-side1.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-side1.stl
--------------------------------------------------------------------------------
/T.WI/twi-side2.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-side2.stl
--------------------------------------------------------------------------------
/T.WI/twi-userguide.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/T.WI/twi-userguide.pdf
--------------------------------------------------------------------------------
/TeensieWI-FSR/TeensieWI-FSR.ino:
--------------------------------------------------------------------------------
1 | /*
2 | NAME: TeensieWI
3 | WRITTEN BY: JOHAN BERGLUND
4 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
5 | DATE: 2016-06-09
6 | FILE SAVED AS: TeensieWI.ino
7 | FOR: PJRC Teensy LC and Teensyduino
8 | CLOCK: 48.00 MHz
9 | PROGRAMME FUNCTION: Simple Wind Controller using the Freescale MPX5010GP breath sensor
10 | and capacitive touch keys. Output to USB MIDI.
11 |
12 | HARDWARE NOTES:
13 |
14 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to pin 21(A7).
15 | * (Warning: no voltage limiting before input, can harm Teensy if excessive pressure is applied.)
16 | *
17 | * Sensor pinout
18 | * 1: V OUT (pin with indent)
19 | * 2: GND (to GND pin of Teensy)
20 | * 3: VCC (to 5V pin of Teensy)
21 | * 4: n/c
22 | * 5: n/c
23 | * 6: n/c
24 | *
25 | * Touch sensors are using the Teensy LC built in touchRead function.
26 | * Electrodes connect directly to Teensy pins.
27 | *
28 | * Force Sensitive Resistor (DIY or other) connected from 3.3V to pin 14 (A0).
29 | * A resistor is connected from the input to GND. Value about 10K. (Try 1K to 25K if input is too far off).
30 | * Adjust FSR_Thr and FSR_Max to values that makes sense for your FSR.
31 | *
32 | * Slide switch connecting pin 11 to GND for switching FSR between modulation and pitch bend down.
33 | *
34 | */
35 |
36 | //_______________________________________________________________________________________________ DECLARATIONS
37 |
38 | #define ON_Thr 70 // Set threshold level before switching ON
39 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
40 | #define breath_max 550 // Threshold for maximum breath
41 | #define FSR_Thr 30
42 | #define FSR_Max 200
43 | #define PB_sens 4095 // Pitch Bend sensitivity 0 to 8191 where 8191 is full pb range, 4095 half
44 |
45 | // The three states of our state machine
46 |
47 | // No note is sounding
48 | #define NOTE_OFF 1
49 |
50 | // We've observed a transition from below to above the
51 | // threshold value. We wait a while to see how fast the
52 | // breath velocity is increasing
53 | #define RISE_WAIT 2
54 |
55 | // A note is sounding
56 | #define NOTE_ON 3
57 |
58 | // Send CC data no more than every CC_INTERVAL
59 | // milliseconds
60 | #define CC_INTERVAL 20
61 |
62 |
63 | //variables setup
64 |
65 | int state; // The state of the state machine
66 | unsigned long ccSendTime = 0L; // The last time we sent CC values
67 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
68 | int initial_breath_value; // The breath value at the time we observed the transition
69 |
70 | unsigned long lastDebounceTime = 0; // The last time the fingering was changed
71 | unsigned long debounceDelay = 20; // The debounce time; increase if the output flickers
72 | int lastFingering = 0; // Keep the last fingering value for debouncing
73 |
74 | byte MIDIchannel=1; // MIDI channel 1
75 |
76 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
77 |
78 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
79 | byte velocity; // remapped midi velocity from breath sensor
80 |
81 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
82 | byte activeNote; // note playing
83 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
84 | byte fsrMode=1; // 0 is bend down, 1 is Modulation
85 | byte fsrIsOn=0;
86 | int fsrModulation;
87 | int fsrBend;
88 |
89 |
90 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
91 | byte LH1; // Left Hand key 1 (pitch change -2)
92 | // Casio style 2nd octave: If LH1 is not touched when LH2 and LH3 are, pitch change +9
93 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
94 | byte LH3; // Left Hand key 3 (pitch change -2)
95 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
96 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
97 | byte RH2; // Right Hand key 2 (pitch change -1)
98 | byte RH3; // Right Hand key 3 (pitch change -2)
99 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
100 | byte RHp3; // Right Hand pinky key 3 (pitch change -2, in this version -1 if RHp2 is pressed)
101 | byte OCTup; // Octave switch key (pitch change +12)
102 | byte OCTdn; // Octave switch key (pitch change -12)
103 |
104 | //_______________________________________________________________________________________________ SETUP
105 |
106 | void setup() {
107 |
108 | state = NOTE_OFF; // initialize state machine
109 | pinMode(11,INPUT_PULLUP);
110 | fsrMode=digitalRead(11);
111 | }
112 |
113 | //_______________________________________________________________________________________________ MAIN LOOP
114 |
115 | void loop() {
116 |
117 | pressureSensor = analogRead(A7); // Get the pressure sensor reading from analog pin A7
118 |
119 | if (state == NOTE_OFF) {
120 | if (pressureSensor > ON_Thr) {
121 | // Value has risen above threshold. Move to the ON_Delay
122 | // state. Record time and initial breath value.
123 | breath_on_time = millis();
124 | initial_breath_value = pressureSensor;
125 | state = RISE_WAIT; // Go to next state
126 | }
127 | } else if (state == RISE_WAIT) {
128 | if (pressureSensor > ON_Thr) {
129 | // Has enough time passed for us to collect our second
130 | // sample?
131 | if (millis() - breath_on_time > ON_Delay) {
132 | // Yes, so calculate MIDI note and velocity, then send a note on event
133 | readSwitches();
134 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
135 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 1 to 127
136 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,1,127);
137 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
138 | breath(); // send breath data
139 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
140 | activeNote=fingeredNote;
141 | state = NOTE_ON;
142 | }
143 | } else {
144 | // Value fell below threshold before ON_Delay passed. Return to
145 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
146 | state = NOTE_OFF;
147 | }
148 | } else if (state == NOTE_ON) {
149 | if (pressureSensor < ON_Thr) {
150 | // Value has fallen below threshold - turn the note off
151 | usbMIDI.sendNoteOff(activeNote, velocity, MIDIchannel); // send Note Off message
152 | breathLevel=0;
153 | state = NOTE_OFF;
154 | } else {
155 | // Is it time to send more CC data?
156 | if (millis() - ccSendTime > CC_INTERVAL) {
157 | // deal with Breath, Pitch Bend and Modulation
158 | breath();
159 | fsr();
160 | ccSendTime = millis();
161 | }
162 |
163 | readSwitches();
164 | if (fingeredNote != lastFingering){ //
165 | // reset the debouncing timer
166 | lastDebounceTime = millis();
167 | }
168 | if ((millis() - lastDebounceTime) > debounceDelay) {
169 | // whatever the reading is at, it's been there for longer
170 | // than the debounce delay, so take it as the actual current state
171 | if (fingeredNote != activeNote) {
172 | // Player has moved to a new fingering while still blowing.
173 | // Send a note off for the current note and a note on for
174 | // the new note.
175 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
176 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
177 | usbMIDI.sendNoteOff(activeNote, 0, MIDIchannel); // send Note Off message for previous note (legato)
178 | activeNote=fingeredNote;
179 | }
180 | }
181 | }
182 | }
183 | lastFingering=fingeredNote;
184 | }
185 | //_______________________________________________________________________________________________ FUNCTIONS
186 |
187 | void breath(){
188 | int breathCC;
189 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
190 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
191 | usbMIDI.sendControlChange(2, breathCC, MIDIchannel);
192 | }
193 |
194 | //***********************************************************
195 |
196 | void fsr(){
197 | int fsrReading;
198 | fsrReading=analogRead(A0);
199 | if (fsrReading >= FSR_Thr){
200 | if (fsrMode){
201 | // modulation
202 | fsrModulation = map(constrain(fsrReading,FSR_Thr,FSR_Max),FSR_Thr,FSR_Max,0,127);
203 | usbMIDI.sendControlChange(1, fsrModulation, MIDIchannel);
204 | fsrIsOn=1;
205 | } else {
206 | // bend down
207 | fsrBend = map(constrain(fsrReading,FSR_Thr,FSR_Max),FSR_Max,FSR_Thr,(8191 - PB_sens),8192);
208 | usbMIDI.sendPitchBend(fsrBend, MIDIchannel);
209 | fsrIsOn=1;
210 | }
211 | } else if (fsrIsOn){
212 | //send 0 value
213 | if (fsrMode){
214 | usbMIDI.sendControlChange(1, 0, MIDIchannel);
215 | } else {
216 | usbMIDI.sendPitchBend(8192, MIDIchannel); // 8192 is 0 pitch bend
217 | }
218 | fsrIsOn=0;
219 | }
220 | }
221 |
222 | //***********************************************************
223 |
224 | void readSwitches(){
225 | // Read switches and put value in variables
226 | LH1=touchRead(17)>1500;
227 | LH2=touchRead(4)>1500;
228 | LH3=touchRead(3)>1500;
229 | LHp1=touchRead(18)>1500;
230 | RH1=touchRead(19)>1500;
231 | RH2=touchRead(22)>1500;
232 | RH3=touchRead(23)>1500;
233 | RHp2=touchRead(1)>1000;
234 | RHp3=touchRead(0)>1000;
235 | OCTup=touchRead(15)>1500;
236 | OCTdn=touchRead(16)>1500;
237 | //calculate midi note number from pressed keys
238 | fingeredNote=startNote-2*LH1-LH2-(LH2 && LH1)-2*LH3+LHp1-RH1-(RH1 && LH3)-RH2-2*RH3-RHp2-2*RHp3+(RHp2 && RHp3)+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
239 | }
240 |
241 |
--------------------------------------------------------------------------------
/TeensieWI-mod/TeensieWI-mod.ino:
--------------------------------------------------------------------------------
1 | /*
2 | NAME: TeensieWI
3 | WRITTEN BY: JOHAN BERGLUND
4 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
5 | DATE: 2016-06-09
6 | FILE SAVED AS: TeensieWI-mod.ino
7 | FOR: PJRC Teensy LC and Teensyduino
8 | CLOCK: 48.00 MHz
9 | PROGRAMME FUNCTION: Simple Wind Controller using the Freescale MPX5010GP breath sensor
10 | and capacitive touch keys. Output to USB MIDI.
11 |
12 | HARDWARE NOTES:
13 |
14 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to pin 21(A7).
15 | * (Warning: no voltage limiting before input, can harm Teensy if excessive pressure is applied.)
16 | *
17 | * Sensor pinout
18 | * 1: V OUT (pin with indent)
19 | * 2: GND (to GND pin of Teensy)
20 | * 3: VCC (to 5V pin of Teensy)
21 | * 4: n/c
22 | * 5: n/c
23 | * 6: n/c
24 | *
25 | * Touch sensors are using the Teensy LC built in touchRead function.
26 | * Electrodes connect directly to Teensy pins.
27 | *
28 | * PSP style thumb slide joystick controls pitch bend and modulation.
29 | * Pitch bend and modulation are connected to pins A6 and A0.
30 | * Connections on joystick, bottom view with connectors towards you, L to R:
31 | * 1: to VCC 3.3V
32 | * 2: X (or Y depending on orientation) to analog input
33 | * 3: to GND
34 | * 4: Y (or X depending on orientation) to analog input
35 | *
36 | * PB up
37 | * ^
38 | * Mod < o > Mod
39 | * v
40 | * PB dn
41 | *
42 | */
43 |
44 | //_______________________________________________________________________________________________ DECLARATIONS
45 |
46 | #define ON_Thr 70 // Set threshold level before switching ON
47 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
48 | #define breath_max 550 // Threshold for maximum breath
49 | #define modsLo_Thr 411 // Low threshold for mod stick center
50 | #define modsHi_Thr 611 // High threshold for mod stick center
51 | #define modsMin 240 // PSP joystick min value
52 | #define modsMax 770 // PSP joystick max value
53 | #define PB_sens 4096 // Pitch Bend sensitivity 0 to 8192 where 8192 is full pb range, 4096 is half range
54 |
55 |
56 |
57 | // The three states of our state machine
58 |
59 | // No note is sounding
60 | #define NOTE_OFF 1
61 |
62 | // We've observed a transition from below to above the
63 | // threshold value. We wait a while to see how fast the
64 | // breath velocity is increasing
65 | #define RISE_WAIT 2
66 |
67 | // A note is sounding
68 | #define NOTE_ON 3
69 |
70 | // Send CC data no more than every CC_INTERVAL
71 | // milliseconds
72 | #define CC_INTERVAL 5
73 |
74 |
75 | //variables setup
76 |
77 | int state; // The state of the state machine
78 | unsigned long ccSendTime = 0L; // The last time we sent CC values
79 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
80 | int initial_breath_value; // The breath value at the time we observed the transition
81 |
82 | unsigned long lastDebounceTime = 0; // The last time the fingering was changed
83 | unsigned long debounceDelay = 20; // The debounce time; increase if the output flickers
84 | int lastFingering = 0; // Keep the last fingering value for debouncing
85 |
86 | byte MIDIchannel=1; // MIDI channel 1
87 |
88 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
89 | int oldbreath=0;
90 |
91 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
92 | byte velocity; // remapped midi velocity from breath sensor
93 |
94 | int modLevel;
95 | int oldmod=0;
96 |
97 | int pitchBend;
98 | int oldpb=8192;
99 |
100 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
101 | byte activeNote; // note playing
102 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
103 |
104 |
105 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
106 | byte LH1; // Left Hand key 1 (pitch change -2)
107 | // Casio style 2nd octave: If LH1 is not touched when LH2 and LH3 are, pitch change +9
108 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
109 | byte LH3; // Left Hand key 3 (pitch change -2)
110 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
111 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
112 | byte RH2; // Right Hand key 2 (pitch change -1)
113 | byte RH3; // Right Hand key 3 (pitch change -2)
114 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
115 | byte RHp3; // Right Hand pinky key 3 (pitch change -2, in this version -1 if RHp2 is pressed)
116 | byte OCTup; // Octave switch key (pitch change +12)
117 | byte OCTdn; // Octave switch key (pitch change -12)
118 |
119 | //_______________________________________________________________________________________________ SETUP
120 |
121 | void setup() {
122 |
123 | state = NOTE_OFF; // initialize state machine
124 | pinMode(13,OUTPUT);
125 | digitalWrite(13,LOW);
126 | }
127 |
128 | //_______________________________________________________________________________________________ MAIN LOOP
129 |
130 | void loop() {
131 |
132 | pressureSensor = analogRead(A7); // Get the pressure sensor reading from analog pin A7
133 |
134 | if (state == NOTE_OFF) {
135 | if (pressureSensor > ON_Thr) {
136 | // Value has risen above threshold. Move to the ON_Delay
137 | // state. Record time and initial breath value.
138 | breath_on_time = millis();
139 | initial_breath_value = pressureSensor;
140 | state = RISE_WAIT; // Go to next state
141 | }
142 | } else if (state == RISE_WAIT) {
143 | if (pressureSensor > ON_Thr) {
144 | // Has enough time passed for us to collect our second
145 | // sample?
146 | if (millis() - breath_on_time > ON_Delay) {
147 | // Yes, so calculate MIDI note and velocity, then send a note on event
148 | readSwitches();
149 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
150 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 1 to 127
151 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,1,127);
152 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
153 | breath(); // send breath data
154 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
155 | digitalWrite(13,HIGH);
156 | activeNote=fingeredNote;
157 | state = NOTE_ON;
158 | }
159 | } else {
160 | // Value fell below threshold before ON_Delay passed. Return to
161 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
162 | state = NOTE_OFF;
163 | }
164 | } else if (state == NOTE_ON) {
165 | if (pressureSensor < ON_Thr) {
166 | // Value has fallen below threshold - turn the note off
167 | usbMIDI.sendNoteOff(activeNote, velocity, MIDIchannel); // send Note Off message
168 | digitalWrite(13,LOW);
169 | breathLevel=0;
170 | state = NOTE_OFF;
171 | } else {
172 | readSwitches();
173 | if (fingeredNote != lastFingering){ //
174 | // reset the debouncing timer
175 | lastDebounceTime = millis();
176 | }
177 | if ((millis() - lastDebounceTime) > debounceDelay) {
178 | // whatever the reading is at, it's been there for longer
179 | // than the debounce delay, so take it as the actual current state
180 | if (fingeredNote != activeNote) {
181 | // Player has moved to a new fingering while still blowing.
182 | // Send a note off for the current note and a note on for
183 | // the new note.
184 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
185 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
186 | usbMIDI.sendNoteOff(activeNote, 0, MIDIchannel); // send Note Off message for previous note (legato)
187 | activeNote=fingeredNote;
188 | }
189 | }
190 | }
191 | }
192 | // Is it time to send more CC data?
193 | if (millis() - ccSendTime > CC_INTERVAL) {
194 | // deal with Breath, Pitch Bend and Modulation
195 | breath();
196 | pitch_bend();
197 | modulation();
198 | ccSendTime = millis();
199 | }
200 | lastFingering=fingeredNote;
201 | }
202 | //_______________________________________________________________________________________________ FUNCTIONS
203 |
204 | void breath(){
205 | int breathCC;
206 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
207 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
208 | if (breathCC != oldbreath){ // only send midi data if breath has changed from previous value
209 | usbMIDI.sendControlChange(2, breathCC, MIDIchannel);
210 | oldbreath = breathCC;
211 | }
212 | }
213 |
214 | //**************************************************************
215 |
216 | void pitch_bend(){
217 | pitchBend = analogRead(A0); // read voltage on analog pin A0
218 | if (pitchBend > modsHi_Thr){
219 | pitchBend = oldpb*0.6+0.4*map(constrain(pitchBend,modsHi_Thr,modsMax),modsHi_Thr,modsMax,8192,(8193 + PB_sens)); // go from 8192 to 16383 (full pb up) when off center threshold going up
220 | } else if (pitchBend < modsLo_Thr){
221 | pitchBend = oldpb*0.6+0.4*map(constrain(pitchBend,modsMin,modsLo_Thr),modsMin,modsLo_Thr,(8192 - PB_sens),8192); // go from 8192 to 0 (full pb dn) when off center threshold going down
222 | } else {
223 | pitchBend = oldpb*0.6+8192*0.4; // released, so smooth your way back to zero
224 | if ((pitchBend > 8187) && (pitchBend < 8197)) pitchBend = 8192; // 8192 is 0 pitch bend, don't miss it bc of smoothing
225 | }
226 | if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value
227 | usbMIDI.sendPitchBend(pitchBend, MIDIchannel);
228 | oldpb=pitchBend;
229 | }
230 | }
231 |
232 | //***********************************************************
233 |
234 | void modulation(){
235 | modLevel = analogRead(A6); // read voltage on analog pin A6
236 | if (modLevel > modsHi_Thr){
237 | modLevel = map(constrain(modLevel,modsHi_Thr,modsMax),modsHi_Thr,modsMax,0,127); // go from 0 to full modulation when off center threshold going right(?)
238 | } else if (modLevel < modsLo_Thr){
239 | modLevel = map(constrain(modLevel,modsMin,modsLo_Thr),modsMin,modsLo_Thr,127,0); // go from 0 to full modulation when off center threshold going left(?)
240 | } else {
241 | modLevel = 0; // zero modulation in center position
242 | }
243 | if (modLevel != oldmod){ // only send midi data if modulation has changed from previous value
244 | usbMIDI.sendControlChange(1, modLevel, MIDIchannel);
245 | oldmod=modLevel;
246 | }
247 | }
248 |
249 | //***********************************************************
250 |
251 | void readSwitches(){
252 | // Read switches and put value in variables
253 | LH1=touchRead(17)>1500;
254 | LH2=touchRead(4)>1500;
255 | LH3=touchRead(3)>1500;
256 | LHp1=touchRead(18)>1500;
257 | RH1=touchRead(19)>1500;
258 | RH2=touchRead(22)>1500;
259 | RH3=touchRead(23)>1500;
260 | RHp2=touchRead(1)>1500;
261 | RHp3=touchRead(0)>1500;
262 | OCTup=touchRead(15)>1500;
263 | OCTdn=touchRead(16)>1500;
264 | //calculate midi note number from pressed keys
265 | fingeredNote=startNote-2*LH1-LH2-(LH2 && LH1)-2*LH3+LHp1-RH1-(RH1 && LH3)-RH2-2*RH3-RHp2-2*RHp3+(RHp2 && RHp3)+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
266 | }
267 |
268 |
269 |
270 |
--------------------------------------------------------------------------------
/TeensieWI-mod/twmod-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/TeensieWI-mod/twmod-schematic.png
--------------------------------------------------------------------------------
/TeensieWI-mod/twmod.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/TeensieWI-mod/twmod.png
--------------------------------------------------------------------------------
/TeensieWI/TeensieWI-fingering.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/TeensieWI/TeensieWI-fingering.png
--------------------------------------------------------------------------------
/TeensieWI/TeensieWI-schematic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Trasselfrisyr/MiniWI/539163e4f242e2ff6e4cc9de6d08df4fdd62859f/TeensieWI/TeensieWI-schematic.png
--------------------------------------------------------------------------------
/TeensieWI/TeensieWI.ino:
--------------------------------------------------------------------------------
1 | /*
2 | NAME: TeensieWI
3 | WRITTEN BY: JOHAN BERGLUND
4 | CREDITS: State machine from the Gordophone blog by GORDON GOOD
5 | DATE: 2016-06-09
6 | FILE SAVED AS: TeensieWI.ino
7 | FOR: PJRC Teensy LC and Teensyduino
8 | CLOCK: 48.00 MHz
9 | PROGRAMME FUNCTION: Simple Wind Controller using the Freescale MPX5010GP breath sensor
10 | and capacitive touch keys. Output to USB MIDI.
11 |
12 | HARDWARE NOTES:
13 |
14 | * The Freescale MPX5010GP pressure sensor output (V OUT) is connected to pin 21(A7).
15 | * (Warning: no voltage limiting before input, can harm Teensy if excessive pressure is applied.)
16 | *
17 | * Sensor pinout
18 | * 1: V OUT (pin with indent)
19 | * 2: GND (to GND pin of Teensy)
20 | * 3: VCC (to 5V pin of Teensy)
21 | * 4: n/c
22 | * 5: n/c
23 | * 6: n/c
24 | *
25 | * Touch sensors are using the Teensy LC built in touchRead function.
26 | * Electrodes connect directly to Teensy pins.
27 | *
28 | */
29 |
30 | //_______________________________________________________________________________________________ DECLARATIONS
31 |
32 | #define ON_Thr 70 // Set threshold level before switching ON
33 | #define ON_Delay 20 // Set Delay after ON threshold before velocity is checked (wait for tounging peak)
34 | #define breath_max 550 // Threshold for maximum breath
35 |
36 | // The three states of our state machine
37 |
38 | // No note is sounding
39 | #define NOTE_OFF 1
40 |
41 | // We've observed a transition from below to above the
42 | // threshold value. We wait a while to see how fast the
43 | // breath velocity is increasing
44 | #define RISE_WAIT 2
45 |
46 | // A note is sounding
47 | #define NOTE_ON 3
48 |
49 | // Send CC data no more than every CC_INTERVAL
50 | // milliseconds
51 | #define CC_INTERVAL 20
52 |
53 |
54 | //variables setup
55 |
56 | int state; // The state of the state machine
57 | unsigned long ccSendTime = 0L; // The last time we sent CC values
58 | unsigned long breath_on_time = 0L; // Time when breath sensor value went over the ON threshold
59 | int initial_breath_value; // The breath value at the time we observed the transition
60 |
61 | unsigned long lastDebounceTime = 0; // The last time the fingering was changed
62 | unsigned long debounceDelay = 20; // The debounce time; increase if the output flickers
63 | int lastFingering = 0; // Keep the last fingering value for debouncing
64 |
65 | byte MIDIchannel=1; // MIDI channel 1
66 |
67 | int breathLevel=0; // breath level (smoothed) not mapped to CC value
68 |
69 | int pressureSensor; // pressure data from breath sensor, for midi breath cc and breath threshold checks
70 | byte velocity; // remapped midi velocity from breath sensor
71 |
72 | int fingeredNote; // note calculated from fingering (switches) and octave joystick position
73 | byte activeNote; // note playing
74 | byte startNote=73; // set startNote to C# (change this value in steps of 12 to start in other octaves)
75 |
76 |
77 | // Key variables, TRUE (1) for pressed, FALSE (0) for not pressed
78 | byte LH1; // Left Hand key 1 (pitch change -2)
79 | // Casio style 2nd octave: If LH1 is not touched when LH2 and LH3 are, pitch change +9
80 | byte LH2; // Left Hand key 2 (with LH1 also pressed pitch change is -2, otherwise -1)
81 | byte LH3; // Left Hand key 3 (pitch change -2)
82 | byte LHp1; // Left Hand pinky key 1 (pitch change +1)
83 | byte RH1; // Right Hand key 1 (with LH3 also pressed pitch change is -2, otherwise -1)
84 | byte RH2; // Right Hand key 2 (pitch change -1)
85 | byte RH3; // Right Hand key 3 (pitch change -2)
86 | byte RHp2; // Right Hand pinky key 2 (pitch change -1)
87 | byte RHp3; // Right Hand pinky key 3 (pitch change -2, in this version -1 if RHp2 is pressed)
88 | byte OCTup; // Octave switch key (pitch change +12)
89 | byte OCTdn; // Octave switch key (pitch change -12)
90 |
91 | //_______________________________________________________________________________________________ SETUP
92 |
93 | void setup() {
94 |
95 | state = NOTE_OFF; // initialize state machine
96 |
97 | }
98 |
99 | //_______________________________________________________________________________________________ MAIN LOOP
100 |
101 | void loop() {
102 |
103 | pressureSensor = analogRead(A7); // Get the pressure sensor reading from analog pin A7
104 |
105 | if (state == NOTE_OFF) {
106 | if (pressureSensor > ON_Thr) {
107 | // Value has risen above threshold. Move to the ON_Delay
108 | // state. Record time and initial breath value.
109 | breath_on_time = millis();
110 | initial_breath_value = pressureSensor;
111 | state = RISE_WAIT; // Go to next state
112 | }
113 | } else if (state == RISE_WAIT) {
114 | if (pressureSensor > ON_Thr) {
115 | // Has enough time passed for us to collect our second
116 | // sample?
117 | if (millis() - breath_on_time > ON_Delay) {
118 | // Yes, so calculate MIDI note and velocity, then send a note on event
119 | readSwitches();
120 | // We should be at tonguing peak, so set velocity based on current pressureSensor value
121 | // If initial value is greater than value after delay, go with initial value, constrain input to keep mapped output within 1 to 127
122 | velocity = map(constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max),ON_Thr,breath_max,1,127);
123 | breathLevel=constrain(max(pressureSensor,initial_breath_value),ON_Thr,breath_max);
124 | breath(); // send breath data
125 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
126 | activeNote=fingeredNote;
127 | state = NOTE_ON;
128 | }
129 | } else {
130 | // Value fell below threshold before ON_Delay passed. Return to
131 | // NOTE_OFF state (e.g. we're ignoring a short blip of breath)
132 | state = NOTE_OFF;
133 | }
134 | } else if (state == NOTE_ON) {
135 | if (pressureSensor < ON_Thr) {
136 | // Value has fallen below threshold - turn the note off
137 | usbMIDI.sendNoteOff(activeNote, velocity, MIDIchannel); // send Note Off message
138 | breathLevel=0;
139 | state = NOTE_OFF;
140 | } else {
141 | // Is it time to send more CC data?
142 | if (millis() - ccSendTime > CC_INTERVAL) {
143 | // deal with Breath, Pitch Bend and Modulation
144 | breath();
145 | ccSendTime = millis();
146 | }
147 |
148 | readSwitches();
149 | if (fingeredNote != lastFingering){ //
150 | // reset the debouncing timer
151 | lastDebounceTime = millis();
152 | }
153 | if ((millis() - lastDebounceTime) > debounceDelay) {
154 | // whatever the reading is at, it's been there for longer
155 | // than the debounce delay, so take it as the actual current state
156 | if (fingeredNote != activeNote) {
157 | // Player has moved to a new fingering while still blowing.
158 | // Send a note off for the current note and a note on for
159 | // the new note.
160 | velocity = map(constrain(pressureSensor,ON_Thr,breath_max),ON_Thr,breath_max,7,127); // set new velocity value based on current pressure sensor level
161 | usbMIDI.sendNoteOn(fingeredNote, velocity, MIDIchannel); // send Note On message for new note
162 | usbMIDI.sendNoteOff(activeNote, 0, MIDIchannel); // send Note Off message for previous note (legato)
163 | activeNote=fingeredNote;
164 | }
165 | }
166 | }
167 | }
168 | lastFingering=fingeredNote;
169 | }
170 | //_______________________________________________________________________________________________ FUNCTIONS
171 |
172 | void breath(){
173 | int breathCC;
174 | breathLevel = breathLevel*0.8+pressureSensor*0.2; // smoothing of breathLevel value
175 | breathCC = map(constrain(breathLevel,ON_Thr,breath_max),ON_Thr,breath_max,0,127);
176 | usbMIDI.sendControlChange(2, breathCC, MIDIchannel);
177 | }
178 |
179 | //***********************************************************
180 |
181 | void readSwitches(){
182 | // Read switches and put value in variables
183 | LH1=touchRead(17)>1500;
184 | LH2=touchRead(4)>1500;
185 | LH3=touchRead(3)>1500;
186 | LHp1=touchRead(18)>1500;
187 | RH1=touchRead(19)>1500;
188 | RH2=touchRead(22)>1500;
189 | RH3=touchRead(23)>1500;
190 | RHp2=touchRead(1)>1500;
191 | RHp3=touchRead(0)>1500;
192 | OCTup=touchRead(15)>1500;
193 | OCTdn=touchRead(16)>1500;
194 | //calculate midi note number from pressed keys
195 | fingeredNote=startNote-2*LH1-LH2-(LH2 && LH1)-2*LH3+LHp1-RH1-(RH1 && LH3)-RH2-2*RH3-RHp2-2*RHp3+(RHp2 && RHp3)+12*OCTup-12*OCTdn+9*(!LH1 && LH2 && LH3);
196 | }
197 |
198 |
--------------------------------------------------------------------------------