├── .gitignore
├── LICENSE
├── README.md
├── docs
├── .buildinfo
├── .nojekyll
├── genindex.html
├── index.html
├── modules.html
├── modules
│ ├── index.html
│ ├── splinelib
│ │ ├── fit.html
│ │ ├── plotting.html
│ │ └── splinelib.html
│ └── tfwavelets
│ │ ├── dwtcoeffs.html
│ │ ├── nodes.html
│ │ ├── utils.html
│ │ └── wrappers.html
├── objects.inv
├── py-modindex.html
├── search.html
├── searchindex.js
├── sources
│ ├── index.rst.txt
│ ├── modules.rst.txt
│ └── tfwavelets.rst.txt
├── static
│ ├── basic.css
│ ├── css
│ │ ├── badge_only.css
│ │ └── theme.css
│ ├── doctools.js
│ ├── documentation_options.js
│ ├── file.png
│ ├── fonts
│ │ ├── Inconsolata-Bold.ttf
│ │ ├── Inconsolata-Regular.ttf
│ │ ├── Inconsolata.ttf
│ │ ├── Lato-Bold.ttf
│ │ ├── Lato-Regular.ttf
│ │ ├── Lato
│ │ │ ├── lato-bold.eot
│ │ │ ├── lato-bold.ttf
│ │ │ ├── lato-bold.woff
│ │ │ ├── lato-bold.woff2
│ │ │ ├── lato-bolditalic.eot
│ │ │ ├── lato-bolditalic.ttf
│ │ │ ├── lato-bolditalic.woff
│ │ │ ├── lato-bolditalic.woff2
│ │ │ ├── lato-italic.eot
│ │ │ ├── lato-italic.ttf
│ │ │ ├── lato-italic.woff
│ │ │ ├── lato-italic.woff2
│ │ │ ├── lato-regular.eot
│ │ │ ├── lato-regular.ttf
│ │ │ ├── lato-regular.woff
│ │ │ └── lato-regular.woff2
│ │ ├── RobotoSlab-Bold.ttf
│ │ ├── RobotoSlab-Regular.ttf
│ │ ├── RobotoSlab
│ │ │ ├── roboto-slab-v7-bold.eot
│ │ │ ├── roboto-slab-v7-bold.ttf
│ │ │ ├── roboto-slab-v7-bold.woff
│ │ │ ├── roboto-slab-v7-bold.woff2
│ │ │ ├── roboto-slab-v7-regular.eot
│ │ │ ├── roboto-slab-v7-regular.ttf
│ │ │ ├── roboto-slab-v7-regular.woff
│ │ │ └── roboto-slab-v7-regular.woff2
│ │ ├── fontawesome-webfont.eot
│ │ ├── fontawesome-webfont.svg
│ │ ├── fontawesome-webfont.ttf
│ │ ├── fontawesome-webfont.woff
│ │ └── fontawesome-webfont.woff2
│ ├── jquery-3.2.1.js
│ ├── jquery.js
│ ├── js
│ │ ├── modernizr.min.js
│ │ └── theme.js
│ ├── language_data.js
│ ├── minus.png
│ ├── plus.png
│ ├── pygments.css
│ ├── searchtools.js
│ ├── underscore-1.3.1.js
│ └── underscore.js
└── tfwavelets.html
├── setup.py
├── styleguide.md
├── tests.py
└── tfwavelets
├── __init__.py
├── dwtcoeffs.py
├── nodes.py
├── utils.py
└── wrappers.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 Kristian Monsen Haug and Mathias Lohne
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # TF-Wavelets
2 | The `tfwavelets` package is a library for computing Descrete Wavelet Transforms (DWT) in TensorFlow.
3 |
4 | To install, clone the repository and install with pip:
5 | ``` bash
6 | $ git clone https://github.com/UiO-CS/tf-wavelets.git
7 | $ cd tf-wavelets
8 | $ pip install .
9 | ```
10 | Add flags to pip (such as `--user`, `-e`) like you normally would.
11 |
12 | For help on how to use `tfwavelets`, please consult the [documentation](https://uio-cs.github.io/tf-wavelets/).
13 |
--------------------------------------------------------------------------------
/docs/.buildinfo:
--------------------------------------------------------------------------------
1 | # Sphinx build info version 1
2 | # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3 | config: 2131cccc255aa0b9b737def41fbce1ac
4 | tags: 645f666f9bcd5a90fca523b33c5a78b7
5 |
--------------------------------------------------------------------------------
/docs/.nojekyll:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/.nojekyll
--------------------------------------------------------------------------------
/docs/genindex.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Index — TF-Wavelets documentation
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 | TF-Wavelets
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 | Docs »
129 |
130 | Index
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
Index
149 |
150 |
151 |
A
152 | |
C
153 | |
D
154 | |
E
155 | |
F
156 | |
I
157 | |
N
158 | |
R
159 | |
T
160 | |
U
161 | |
W
162 | |
Z
163 |
164 |
165 |
A
166 |
172 |
173 |
C
174 |
190 |
191 |
D
192 |
222 |
223 |
E
224 |
230 |
231 |
F
232 |
238 |
239 |
I
240 |
258 |
259 |
N
260 |
270 |
271 |
R
272 |
290 |
291 |
T
292 |
314 |
315 |
U
316 |
322 |
323 |
W
324 |
330 |
331 |
Z
332 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
--------------------------------------------------------------------------------
/docs/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | Welcome to TF-Wavelets’s documentation! — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 | TF-Wavelets
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 | Docs »
129 |
130 | Welcome to TF-Wavelets’s documentation!
131 |
132 |
133 |
134 |
135 |
136 | View page source
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
Welcome to TF-Wavelets’s documentation!
151 |
152 |
Contents:
153 |
164 |
165 |
166 |
167 |
Indices and tables
168 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
--------------------------------------------------------------------------------
/docs/modules.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | tfwavelets — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 | TF-Wavelets
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 | Docs »
128 |
129 | tfwavelets
130 |
131 |
132 |
133 |
134 |
135 | View page source
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
tfwavelets
150 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
--------------------------------------------------------------------------------
/docs/modules/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | Overview: module code — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 | TF-Wavelets
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 | Docs »
128 |
129 | Overview: module code
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
All modules for which code is available
145 |
153 |
154 |
155 |
156 |
157 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
--------------------------------------------------------------------------------
/docs/modules/splinelib/plotting.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | splinelib.plotting — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 | TF-Wavelets
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 | Docs »
128 |
129 | Module code »
130 |
131 | splinelib.plotting
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
Source code for splinelib.plotting
147 | import numpy as np
148 | import matplotlib.pyplot as plt
149 | from .splinelib import *
150 |
151 |
152 | [docs] def add_spline_to_plot ( spline , include_control_polygon = True , include_knots = True ):
153 |
"""
154 |
Adds given spline to current matplotlib plot
155 |
156 |
Args:
157 |
spline (Spline): Spline to add
158 |
include_control_polygon (bool) Optional. Whether to include control polygon in
159 |
plot or not. Default is True.
160 |
include_knots (bool) Optional. Whether to include knots in plot or not.
161 |
Default is True
162 |
163 |
Returns:
164 |
None
165 |
"""
166 |
xs , ps = spline . evaluate_all ()
167 |
plt . plot ( xs , ps )
168 |
169 |
if include_control_polygon :
170 |
plt . plot ( * spline . get_control_polygon ())
171 |
172 |
min_val = np . min ( ps )
173 |
dist = np . max ( ps ) - min_val
174 |
175 |
steps = [ i * ( dist / 8 ) - dist for i in range ( spline . get_degree () + 1 )]
176 |
similar_knots = 0
177 |
previous_knot = None
178 |
179 |
180 |
def double_equals ( d1 , d2 , tol = 1e-10 ):
181 |
if d1 is None or d2 is None :
182 |
return False
183 |
else :
184 |
return abs ( d1 - d2 ) < tol
185 |
186 |
187 |
if not spline . is_parametric () and include_knots :
188 |
for knot in spline . get_knots ():
189 |
if double_equals ( knot , previous_knot ):
190 |
similar_knots += 1
191 |
else :
192 |
similar_knots = 0
193 |
194 |
plt . scatter ( knot , steps [ similar_knots ], color = "k" , s = 10 )
195 |
196 |
previous_knot = knot
197 |
198 |
199 |
200 |
201 |
202 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
--------------------------------------------------------------------------------
/docs/modules/tfwavelets/utils.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | tfwavelets.utils — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 | TF-Wavelets
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 | Docs »
128 |
129 | Module code »
130 |
131 | tfwavelets.utils
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
Source code for tfwavelets.utils
147 | """
148 | The 'utils' module contains some useful helper functions, mostly used during the
149 | implementation of the other modules.
150 | """
151 |
152 | import numpy as np
153 | import tensorflow as tf
154 |
155 |
156 | [docs] def adapt_filter ( filter ):
157 |
"""
158 |
Expands dimensions of a 1d vector to match the required tensor dimensions in a TF
159 |
graph.
160 |
161 |
Args:
162 |
filter (np.ndarray): A 1D vector containing filter coefficients
163 |
164 |
Returns:
165 |
np.ndarray: A 3D vector with two empty dimensions as dim 2 and 3.
166 |
167 |
"""
168 |
# Add empty dimensions for batch size and channel num
169 |
return np . expand_dims ( np . expand_dims ( filter , - 1 ), - 1 )
170 |
171 |
172 | [docs] def to_tf_mat ( matrices ):
173 |
"""
174 |
Expands dimensions of 2D matrices to match the required tensor dimensions in a TF
175 |
graph, and wrapping them as TF constants.
176 |
177 |
Args:
178 |
matrices (iterable): A list (or tuple) of 2D numpy arrays.
179 |
180 |
Returns:
181 |
iterable: A list of all the matrices converted to 3D TF tensors.
182 |
"""
183 |
result = []
184 |
185 |
for matrix in matrices :
186 |
result . append (
187 |
tf . constant ( np . expand_dims ( matrix , 0 ), dtype = tf . float32 )
188 |
)
189 |
190 |
return result
191 |
192 |
193 |
194 |
195 |
196 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
--------------------------------------------------------------------------------
/docs/objects.inv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/objects.inv
--------------------------------------------------------------------------------
/docs/py-modindex.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | Python Module Index — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 | TF-Wavelets
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 | Docs »
131 |
132 | Python Module Index
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
Python Module Index
149 |
150 |
153 |
154 |
191 |
192 |
193 |
194 |
195 |
196 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
--------------------------------------------------------------------------------
/docs/search.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | Search — TF-Wavelets documentation
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 | TF-Wavelets
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 | Docs »
129 |
130 | Search
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 | Please activate JavaScript to enable the search
151 | functionality.
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
193 |
194 |
195 |
196 |
197 |
198 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
--------------------------------------------------------------------------------
/docs/searchindex.js:
--------------------------------------------------------------------------------
1 | Search.setIndex({docnames:["index","modules","tfwavelets"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.todo":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst","modules.rst","tfwavelets.rst"],objects:{"":{tfwavelets:[2,0,0,"-"]},"tfwavelets.dwtcoeffs":{Filter:[2,1,1,""],TrainableFilter:[2,1,1,""],TrainableWavelet:[2,1,1,""],Wavelet:[2,1,1,""]},"tfwavelets.dwtcoeffs.Filter":{coeffs:[2,2,1,""],edge_matrices:[2,2,1,""],num_neg:[2,3,1,""],num_pos:[2,3,1,""],zero:[2,2,1,""]},"tfwavelets.dwtcoeffs.TrainableFilter":{coeffs:[2,2,1,""],zero:[2,2,1,""]},"tfwavelets.dwtcoeffs.TrainableWavelet":{decomp_hp:[2,2,1,""],decomp_lp:[2,2,1,""],recon_hp:[2,2,1,""],recon_lp:[2,2,1,""]},"tfwavelets.dwtcoeffs.Wavelet":{decomp_hp:[2,2,1,""],decomp_lp:[2,2,1,""],recon_hp:[2,2,1,""],recon_lp:[2,2,1,""]},"tfwavelets.nodes":{cyclic_conv1d:[2,4,1,""],cyclic_conv1d_alt:[2,4,1,""],dwt1d:[2,4,1,""],dwt2d:[2,4,1,""],idwt1d:[2,4,1,""],idwt2d:[2,4,1,""],upsample:[2,4,1,""]},"tfwavelets.utils":{adapt_filter:[2,4,1,""],to_tf_mat:[2,4,1,""]},"tfwavelets.wrappers":{dwt1d:[2,4,1,""],dwt2d:[2,4,1,""],idwt1d:[2,4,1,""],idwt2d:[2,4,1,""]},tfwavelets:{dwtcoeffs:[2,0,0,"-"],nodes:[2,0,0,"-"],utils:[2,0,0,"-"],wrappers:[2,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","attribute","Python attribute"],"3":["py","method","Python method"],"4":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:attribute","3":"py:method","4":"py:function"},terms:{"class":2,"default":2,"float":[],"function":2,"int":2,"new":[],"return":2,"t_\u00b5":[],"true":2,The:2,Used:[],Uses:2,abov:[],accident:[],achiev:2,activ:[],actual:2,adapt_filt:2,add:[],add_spline_to_plot:[],addit:[],all:2,altern:2,ani:[],approxim:[],arbitrari:[],arg:[],argument:[],around:2,arrai:2,associ:[],assum:[],avail:[],base:2,basi:[],batch:2,behaviour:2,between:[],bool:2,bound:[],boundari:[],callabl:[],can:2,centripet:[],chang:[],channel:2,circular:2,close:[],coeff:2,coeffici:2,col:2,column:[],combin:2,comput:2,consist:2,constant:2,construct:2,contain:2,content:[0,1],control:[],convert:2,convolut:2,coordin:[],copi:[],cord:[],cord_length:[],correspond:[],creat:2,create_splin:[],current:[],curv:[],cyclic:2,cyclic_conv1d:2,cyclic_conv1d_alt:2,data:[],data_f:[],data_i:[],data_x:[],db2:2,decomp_hp:2,decomp_lp:2,decomposit:2,defin:2,degre:[],desir:[],dim:2,dimens:2,direct:[],discret:2,distribut:[],doesn:[],doubl:2,dure:2,dwt1d:2,dwt2d:2,dwt:2,dwtcoeff:[0,1],each:[],edg:2,edge_matric:2,edit:[],either:[],element:[],empti:2,entir:[],equal:[],estim:[],evalu:2,evaluate_al:[],evaluate_basi:[],evaul:[],even:2,everi:[],exampl:2,exclud:2,expand:2,extend:[],fals:2,fill:2,filter:2,filter_:2,find:[],find_knot_index:[],first:[],fit:[],fit_curv:[],fit_surfac:[],follow:2,forc:[],four:2,from:[],full:2,gener:[],generate_uniform_knot:[],get:[],get_coeff:[],get_control_polygon:[],get_degre:[],get_knot:[],get_spac:[],get_support:[],given:2,graph:2,haar:2,helper:2,high:2,idwt1d:2,idwt2d:2,idwt:2,ignor:[],implement:2,in_channel:2,includ:2,include_control_polygon:[],include_knot:[],indec:2,index:[0,2],individu:[],initial_coeff:2,input:2,input_nod:2,insert_knot:[],insid:[],intend:2,interv:[],invers:2,is_parametr:[],iter:2,its:[],just:2,knot:[],knots_i:[],knots_u:[],knots_v:[],knots_x:[],largest:[],launch:2,least:[],least_squar:[],least_squares_3d:[],length:2,level:2,like:[],list:2,low:2,lower:[],mainli:2,make:[],match:2,matplotlib:[],matric:2,matrix:[],max:[],maximum:[],memori:2,meshgrid:[],method:2,min:[],minimum:[],modifi:[],modul:[0,1],more:2,mostli:2,must:[],name:2,ndarrai:2,ndim:[],necessari:2,need:2,neg:2,new_knot:[],node:[0,1],non:2,none:2,num:[],num_neg:2,num_po:2,number:2,numpi:2,object:2,odd:2,offer:2,old:[],omit:[],onli:[],onto:[],optim:[],option:2,origin:2,other:2,otherwis:2,output:2,outsid:[],overrid:[],own:2,packag:[0,1],page:0,par_u:[],par_v:[],paramatr:[],paramet:2,parametr:[],parametrix:[],pass:2,period:2,place:2,placehold:2,plot:[],point:[],points_u:[],points_v:[],polygon:[],posit:2,possibl:[],predefin:2,product:[],rais:2,rang:[],real:[],recomput:[],recon_hp:2,recon_lp:2,reconstruct:2,regular:[],replac:[],repres:2,requir:2,result:2,row:2,safe:[],same:[],sampl:[],scheme:[],search:0,second:[],session:2,shape:[],should:2,signal:2,singl:[],size:[],some:2,sourc:2,space:[],spatial:2,speak:2,spinelib:[],spline:[],splinelib:[],splinespac:[],splinesurfac:[],sqrt:2,squar:[],store:2,str:2,strictli:2,subgraph:2,submodul:[0,1],subset:[],support:2,surfac:[],t_1:[],tensor:2,tensorflow:2,tensorproductsplinespac:[],tfwavelet:0,than:2,them:2,thi:2,to_tf_mat:2,trainabl:2,trainablefilt:2,trainablewavelet:2,transform:2,tripl:[],tupl:2,two:2,type:2,typeerror:[],typic:[],uniform:[],uniformli:[],upper:[],upsampl:2,used:2,useful:2,user:2,using:[],util:[0,1],valu:[],valueerror:2,variabl:2,vecotr:[],vector:2,wai:2,want:2,wavelet:2,weight:[],weights_i:[],weights_x:[],well:2,whatev:[],when:2,where:[],whether:[],which:2,width:2,within:[],without:[],work:[],wrap:2,wrapper:[0,1],wrong:[],you:2,your:2,zero:2},titles:["Welcome to TF-Wavelets\u2019s documentation!","tfwavelets","tfwavelets package"],titleterms:{content:2,document:0,dwtcoeff:2,fit:[],indic:0,modul:2,node:2,packag:2,plot:[],splinelib:[],submodul:2,tabl:0,tfwavelet:[1,2],util:2,wavelet:0,welcom:0,wrapper:2}})
--------------------------------------------------------------------------------
/docs/sources/index.rst.txt:
--------------------------------------------------------------------------------
1 | .. TF-Wavelets documentation master file, created by
2 | sphinx-quickstart on Mon Apr 29 12:49:12 2019.
3 | You can adapt this file completely to your liking, but it should at least
4 | contain the root `toctree` directive.
5 |
6 | Welcome to TF-Wavelets's documentation!
7 | =======================================
8 |
9 | .. toctree::
10 | :maxdepth: 4
11 | :caption: Contents:
12 |
13 | tfwavelets
14 |
15 |
16 |
17 | Indices and tables
18 | ==================
19 |
20 | * :ref:`genindex`
21 | * :ref:`modindex`
22 | * :ref:`search`
23 |
--------------------------------------------------------------------------------
/docs/sources/modules.rst.txt:
--------------------------------------------------------------------------------
1 | tfwavelets
2 | ==========
3 |
4 | .. toctree::
5 | :maxdepth: 4
6 |
7 | tfwavelets
8 |
--------------------------------------------------------------------------------
/docs/sources/tfwavelets.rst.txt:
--------------------------------------------------------------------------------
1 | tfwavelets package
2 | ==================
3 |
4 | Submodules
5 | ----------
6 |
7 | tfwavelets.dwtcoeffs module
8 | ---------------------------
9 |
10 | .. automodule:: tfwavelets.dwtcoeffs
11 | :members:
12 | :undoc-members:
13 | :show-inheritance:
14 |
15 | tfwavelets.nodes module
16 | -----------------------
17 |
18 | .. automodule:: tfwavelets.nodes
19 | :members:
20 | :undoc-members:
21 | :show-inheritance:
22 |
23 | tfwavelets.utils module
24 | -----------------------
25 |
26 | .. automodule:: tfwavelets.utils
27 | :members:
28 | :undoc-members:
29 | :show-inheritance:
30 |
31 | tfwavelets.wrappers module
32 | --------------------------
33 |
34 | .. automodule:: tfwavelets.wrappers
35 | :members:
36 | :undoc-members:
37 | :show-inheritance:
38 |
39 |
40 | Module contents
41 | ---------------
42 |
43 | .. automodule:: tfwavelets
44 | :members:
45 | :undoc-members:
46 | :show-inheritance:
47 |
--------------------------------------------------------------------------------
/docs/static/basic.css:
--------------------------------------------------------------------------------
1 | /*
2 | * basic.css
3 | * ~~~~~~~~~
4 | *
5 | * Sphinx stylesheet -- basic theme.
6 | *
7 | * :copyright: Copyright 2007-2019 by the Sphinx team, see AUTHORS.
8 | * :license: BSD, see LICENSE for details.
9 | *
10 | */
11 |
12 | /* -- main layout ----------------------------------------------------------- */
13 |
14 | div.clearer {
15 | clear: both;
16 | }
17 |
18 | /* -- relbar ---------------------------------------------------------------- */
19 |
20 | div.related {
21 | width: 100%;
22 | font-size: 90%;
23 | }
24 |
25 | div.related h3 {
26 | display: none;
27 | }
28 |
29 | div.related ul {
30 | margin: 0;
31 | padding: 0 0 0 10px;
32 | list-style: none;
33 | }
34 |
35 | div.related li {
36 | display: inline;
37 | }
38 |
39 | div.related li.right {
40 | float: right;
41 | margin-right: 5px;
42 | }
43 |
44 | /* -- sidebar --------------------------------------------------------------- */
45 |
46 | div.sphinxsidebarwrapper {
47 | padding: 10px 5px 0 10px;
48 | }
49 |
50 | div.sphinxsidebar {
51 | float: left;
52 | width: 230px;
53 | margin-left: -100%;
54 | font-size: 90%;
55 | word-wrap: break-word;
56 | overflow-wrap : break-word;
57 | }
58 |
59 | div.sphinxsidebar ul {
60 | list-style: none;
61 | }
62 |
63 | div.sphinxsidebar ul ul,
64 | div.sphinxsidebar ul.want-points {
65 | margin-left: 20px;
66 | list-style: square;
67 | }
68 |
69 | div.sphinxsidebar ul ul {
70 | margin-top: 0;
71 | margin-bottom: 0;
72 | }
73 |
74 | div.sphinxsidebar form {
75 | margin-top: 10px;
76 | }
77 |
78 | div.sphinxsidebar input {
79 | border: 1px solid #98dbcc;
80 | font-family: sans-serif;
81 | font-size: 1em;
82 | }
83 |
84 | div.sphinxsidebar #searchbox form.search {
85 | overflow: hidden;
86 | }
87 |
88 | div.sphinxsidebar #searchbox input[type="text"] {
89 | float: left;
90 | width: 80%;
91 | padding: 0.25em;
92 | box-sizing: border-box;
93 | }
94 |
95 | div.sphinxsidebar #searchbox input[type="submit"] {
96 | float: left;
97 | width: 20%;
98 | border-left: none;
99 | padding: 0.25em;
100 | box-sizing: border-box;
101 | }
102 |
103 |
104 | img {
105 | border: 0;
106 | max-width: 100%;
107 | }
108 |
109 | /* -- search page ----------------------------------------------------------- */
110 |
111 | ul.search {
112 | margin: 10px 0 0 20px;
113 | padding: 0;
114 | }
115 |
116 | ul.search li {
117 | padding: 5px 0 5px 20px;
118 | background-image: url(file.png);
119 | background-repeat: no-repeat;
120 | background-position: 0 7px;
121 | }
122 |
123 | ul.search li a {
124 | font-weight: bold;
125 | }
126 |
127 | ul.search li div.context {
128 | color: #888;
129 | margin: 2px 0 0 30px;
130 | text-align: left;
131 | }
132 |
133 | ul.keywordmatches li.goodmatch a {
134 | font-weight: bold;
135 | }
136 |
137 | /* -- index page ------------------------------------------------------------ */
138 |
139 | table.contentstable {
140 | width: 90%;
141 | margin-left: auto;
142 | margin-right: auto;
143 | }
144 |
145 | table.contentstable p.biglink {
146 | line-height: 150%;
147 | }
148 |
149 | a.biglink {
150 | font-size: 1.3em;
151 | }
152 |
153 | span.linkdescr {
154 | font-style: italic;
155 | padding-top: 5px;
156 | font-size: 90%;
157 | }
158 |
159 | /* -- general index --------------------------------------------------------- */
160 |
161 | table.indextable {
162 | width: 100%;
163 | }
164 |
165 | table.indextable td {
166 | text-align: left;
167 | vertical-align: top;
168 | }
169 |
170 | table.indextable ul {
171 | margin-top: 0;
172 | margin-bottom: 0;
173 | list-style-type: none;
174 | }
175 |
176 | table.indextable > tbody > tr > td > ul {
177 | padding-left: 0em;
178 | }
179 |
180 | table.indextable tr.pcap {
181 | height: 10px;
182 | }
183 |
184 | table.indextable tr.cap {
185 | margin-top: 10px;
186 | background-color: #f2f2f2;
187 | }
188 |
189 | img.toggler {
190 | margin-right: 3px;
191 | margin-top: 3px;
192 | cursor: pointer;
193 | }
194 |
195 | div.modindex-jumpbox {
196 | border-top: 1px solid #ddd;
197 | border-bottom: 1px solid #ddd;
198 | margin: 1em 0 1em 0;
199 | padding: 0.4em;
200 | }
201 |
202 | div.genindex-jumpbox {
203 | border-top: 1px solid #ddd;
204 | border-bottom: 1px solid #ddd;
205 | margin: 1em 0 1em 0;
206 | padding: 0.4em;
207 | }
208 |
209 | /* -- domain module index --------------------------------------------------- */
210 |
211 | table.modindextable td {
212 | padding: 2px;
213 | border-collapse: collapse;
214 | }
215 |
216 | /* -- general body styles --------------------------------------------------- */
217 |
218 | div.body {
219 | min-width: 450px;
220 | max-width: 800px;
221 | }
222 |
223 | div.body p, div.body dd, div.body li, div.body blockquote {
224 | -moz-hyphens: auto;
225 | -ms-hyphens: auto;
226 | -webkit-hyphens: auto;
227 | hyphens: auto;
228 | }
229 |
230 | a.headerlink {
231 | visibility: hidden;
232 | }
233 |
234 | a.brackets:before,
235 | span.brackets > a:before{
236 | content: "[";
237 | }
238 |
239 | a.brackets:after,
240 | span.brackets > a:after {
241 | content: "]";
242 | }
243 |
244 | h1:hover > a.headerlink,
245 | h2:hover > a.headerlink,
246 | h3:hover > a.headerlink,
247 | h4:hover > a.headerlink,
248 | h5:hover > a.headerlink,
249 | h6:hover > a.headerlink,
250 | dt:hover > a.headerlink,
251 | caption:hover > a.headerlink,
252 | p.caption:hover > a.headerlink,
253 | div.code-block-caption:hover > a.headerlink {
254 | visibility: visible;
255 | }
256 |
257 | div.body p.caption {
258 | text-align: inherit;
259 | }
260 |
261 | div.body td {
262 | text-align: left;
263 | }
264 |
265 | .first {
266 | margin-top: 0 !important;
267 | }
268 |
269 | p.rubric {
270 | margin-top: 30px;
271 | font-weight: bold;
272 | }
273 |
274 | img.align-left, .figure.align-left, object.align-left {
275 | clear: left;
276 | float: left;
277 | margin-right: 1em;
278 | }
279 |
280 | img.align-right, .figure.align-right, object.align-right {
281 | clear: right;
282 | float: right;
283 | margin-left: 1em;
284 | }
285 |
286 | img.align-center, .figure.align-center, object.align-center {
287 | display: block;
288 | margin-left: auto;
289 | margin-right: auto;
290 | }
291 |
292 | .align-left {
293 | text-align: left;
294 | }
295 |
296 | .align-center {
297 | text-align: center;
298 | }
299 |
300 | .align-right {
301 | text-align: right;
302 | }
303 |
304 | /* -- sidebars -------------------------------------------------------------- */
305 |
306 | div.sidebar {
307 | margin: 0 0 0.5em 1em;
308 | border: 1px solid #ddb;
309 | padding: 7px 7px 0 7px;
310 | background-color: #ffe;
311 | width: 40%;
312 | float: right;
313 | }
314 |
315 | p.sidebar-title {
316 | font-weight: bold;
317 | }
318 |
319 | /* -- topics ---------------------------------------------------------------- */
320 |
321 | div.topic {
322 | border: 1px solid #ccc;
323 | padding: 7px 7px 0 7px;
324 | margin: 10px 0 10px 0;
325 | }
326 |
327 | p.topic-title {
328 | font-size: 1.1em;
329 | font-weight: bold;
330 | margin-top: 10px;
331 | }
332 |
333 | /* -- admonitions ----------------------------------------------------------- */
334 |
335 | div.admonition {
336 | margin-top: 10px;
337 | margin-bottom: 10px;
338 | padding: 7px;
339 | }
340 |
341 | div.admonition dt {
342 | font-weight: bold;
343 | }
344 |
345 | div.admonition dl {
346 | margin-bottom: 0;
347 | }
348 |
349 | p.admonition-title {
350 | margin: 0px 10px 5px 0px;
351 | font-weight: bold;
352 | }
353 |
354 | div.body p.centered {
355 | text-align: center;
356 | margin-top: 25px;
357 | }
358 |
359 | /* -- tables ---------------------------------------------------------------- */
360 |
361 | table.docutils {
362 | border: 0;
363 | border-collapse: collapse;
364 | }
365 |
366 | table.align-center {
367 | margin-left: auto;
368 | margin-right: auto;
369 | }
370 |
371 | table caption span.caption-number {
372 | font-style: italic;
373 | }
374 |
375 | table caption span.caption-text {
376 | }
377 |
378 | table.docutils td, table.docutils th {
379 | padding: 1px 8px 1px 5px;
380 | border-top: 0;
381 | border-left: 0;
382 | border-right: 0;
383 | border-bottom: 1px solid #aaa;
384 | }
385 |
386 | table.footnote td, table.footnote th {
387 | border: 0 !important;
388 | }
389 |
390 | th {
391 | text-align: left;
392 | padding-right: 5px;
393 | }
394 |
395 | table.citation {
396 | border-left: solid 1px gray;
397 | margin-left: 1px;
398 | }
399 |
400 | table.citation td {
401 | border-bottom: none;
402 | }
403 |
404 | th > p:first-child,
405 | td > p:first-child {
406 | margin-top: 0px;
407 | }
408 |
409 | th > p:last-child,
410 | td > p:last-child {
411 | margin-bottom: 0px;
412 | }
413 |
414 | /* -- figures --------------------------------------------------------------- */
415 |
416 | div.figure {
417 | margin: 0.5em;
418 | padding: 0.5em;
419 | }
420 |
421 | div.figure p.caption {
422 | padding: 0.3em;
423 | }
424 |
425 | div.figure p.caption span.caption-number {
426 | font-style: italic;
427 | }
428 |
429 | div.figure p.caption span.caption-text {
430 | }
431 |
432 | /* -- field list styles ----------------------------------------------------- */
433 |
434 | table.field-list td, table.field-list th {
435 | border: 0 !important;
436 | }
437 |
438 | .field-list ul {
439 | margin: 0;
440 | padding-left: 1em;
441 | }
442 |
443 | .field-list p {
444 | margin: 0;
445 | }
446 |
447 | .field-name {
448 | -moz-hyphens: manual;
449 | -ms-hyphens: manual;
450 | -webkit-hyphens: manual;
451 | hyphens: manual;
452 | }
453 |
454 | /* -- hlist styles ---------------------------------------------------------- */
455 |
456 | table.hlist td {
457 | vertical-align: top;
458 | }
459 |
460 |
461 | /* -- other body styles ----------------------------------------------------- */
462 |
463 | ol.arabic {
464 | list-style: decimal;
465 | }
466 |
467 | ol.loweralpha {
468 | list-style: lower-alpha;
469 | }
470 |
471 | ol.upperalpha {
472 | list-style: upper-alpha;
473 | }
474 |
475 | ol.lowerroman {
476 | list-style: lower-roman;
477 | }
478 |
479 | ol.upperroman {
480 | list-style: upper-roman;
481 | }
482 |
483 | li > p:first-child {
484 | margin-top: 0px;
485 | }
486 |
487 | li > p:last-child {
488 | margin-bottom: 0px;
489 | }
490 |
491 | dl.footnote > dt,
492 | dl.citation > dt {
493 | float: left;
494 | }
495 |
496 | dl.footnote > dd,
497 | dl.citation > dd {
498 | margin-bottom: 0em;
499 | }
500 |
501 | dl.footnote > dd:after,
502 | dl.citation > dd:after {
503 | content: "";
504 | clear: both;
505 | }
506 |
507 | dl.field-list {
508 | display: flex;
509 | flex-wrap: wrap;
510 | }
511 |
512 | dl.field-list > dt {
513 | flex-basis: 20%;
514 | font-weight: bold;
515 | word-break: break-word;
516 | }
517 |
518 | dl.field-list > dt:after {
519 | content: ":";
520 | }
521 |
522 | dl.field-list > dd {
523 | flex-basis: 70%;
524 | padding-left: 1em;
525 | margin-left: 0em;
526 | margin-bottom: 0em;
527 | }
528 |
529 | dl {
530 | margin-bottom: 15px;
531 | }
532 |
533 | dd > p:first-child {
534 | margin-top: 0px;
535 | }
536 |
537 | dd ul, dd table {
538 | margin-bottom: 10px;
539 | }
540 |
541 | dd {
542 | margin-top: 3px;
543 | margin-bottom: 10px;
544 | margin-left: 30px;
545 | }
546 |
547 | dt:target, span.highlighted {
548 | background-color: #fbe54e;
549 | }
550 |
551 | rect.highlighted {
552 | fill: #fbe54e;
553 | }
554 |
555 | dl.glossary dt {
556 | font-weight: bold;
557 | font-size: 1.1em;
558 | }
559 |
560 | .optional {
561 | font-size: 1.3em;
562 | }
563 |
564 | .sig-paren {
565 | font-size: larger;
566 | }
567 |
568 | .versionmodified {
569 | font-style: italic;
570 | }
571 |
572 | .system-message {
573 | background-color: #fda;
574 | padding: 5px;
575 | border: 3px solid red;
576 | }
577 |
578 | .footnote:target {
579 | background-color: #ffa;
580 | }
581 |
582 | .line-block {
583 | display: block;
584 | margin-top: 1em;
585 | margin-bottom: 1em;
586 | }
587 |
588 | .line-block .line-block {
589 | margin-top: 0;
590 | margin-bottom: 0;
591 | margin-left: 1.5em;
592 | }
593 |
594 | .guilabel, .menuselection {
595 | font-family: sans-serif;
596 | }
597 |
598 | .accelerator {
599 | text-decoration: underline;
600 | }
601 |
602 | .classifier {
603 | font-style: oblique;
604 | }
605 |
606 | .classifier:before {
607 | font-style: normal;
608 | margin: 0.5em;
609 | content: ":";
610 | }
611 |
612 | abbr, acronym {
613 | border-bottom: dotted 1px;
614 | cursor: help;
615 | }
616 |
617 | /* -- code displays --------------------------------------------------------- */
618 |
619 | pre {
620 | overflow: auto;
621 | overflow-y: hidden; /* fixes display issues on Chrome browsers */
622 | }
623 |
624 | span.pre {
625 | -moz-hyphens: none;
626 | -ms-hyphens: none;
627 | -webkit-hyphens: none;
628 | hyphens: none;
629 | }
630 |
631 | td.linenos pre {
632 | padding: 5px 0px;
633 | border: 0;
634 | background-color: transparent;
635 | color: #aaa;
636 | }
637 |
638 | table.highlighttable {
639 | margin-left: 0.5em;
640 | }
641 |
642 | table.highlighttable td {
643 | padding: 0 0.5em 0 0.5em;
644 | }
645 |
646 | div.code-block-caption {
647 | padding: 2px 5px;
648 | font-size: small;
649 | }
650 |
651 | div.code-block-caption code {
652 | background-color: transparent;
653 | }
654 |
655 | div.code-block-caption + div > div.highlight > pre {
656 | margin-top: 0;
657 | }
658 |
659 | div.code-block-caption span.caption-number {
660 | padding: 0.1em 0.3em;
661 | font-style: italic;
662 | }
663 |
664 | div.code-block-caption span.caption-text {
665 | }
666 |
667 | div.literal-block-wrapper {
668 | padding: 1em 1em 0;
669 | }
670 |
671 | div.literal-block-wrapper div.highlight {
672 | margin: 0;
673 | }
674 |
675 | code.descname {
676 | background-color: transparent;
677 | font-weight: bold;
678 | font-size: 1.2em;
679 | }
680 |
681 | code.descclassname {
682 | background-color: transparent;
683 | }
684 |
685 | code.xref, a code {
686 | background-color: transparent;
687 | font-weight: bold;
688 | }
689 |
690 | h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
691 | background-color: transparent;
692 | }
693 |
694 | .viewcode-link {
695 | float: right;
696 | }
697 |
698 | .viewcode-back {
699 | float: right;
700 | font-family: sans-serif;
701 | }
702 |
703 | div.viewcode-block:target {
704 | margin: -1px -10px;
705 | padding: 0 10px;
706 | }
707 |
708 | /* -- math display ---------------------------------------------------------- */
709 |
710 | img.math {
711 | vertical-align: middle;
712 | }
713 |
714 | div.body div.math p {
715 | text-align: center;
716 | }
717 |
718 | span.eqno {
719 | float: right;
720 | }
721 |
722 | span.eqno a.headerlink {
723 | position: relative;
724 | left: 0px;
725 | z-index: 1;
726 | }
727 |
728 | div.math:hover a.headerlink {
729 | visibility: visible;
730 | }
731 |
732 | /* -- printout stylesheet --------------------------------------------------- */
733 |
734 | @media print {
735 | div.document,
736 | div.documentwrapper,
737 | div.bodywrapper {
738 | margin: 0 !important;
739 | width: 100%;
740 | }
741 |
742 | div.sphinxsidebar,
743 | div.related,
744 | div.footer,
745 | #top-link {
746 | display: none;
747 | }
748 | }
--------------------------------------------------------------------------------
/docs/static/css/badge_only.css:
--------------------------------------------------------------------------------
1 | .fa:before{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-weight:normal;font-style:normal;src:url("../fonts/fontawesome-webfont.eot");src:url("../fonts/fontawesome-webfont.eot?#iefix") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff") format("woff"),url("../fonts/fontawesome-webfont.ttf") format("truetype"),url("../fonts/fontawesome-webfont.svg#FontAwesome") format("svg")}.fa:before{display:inline-block;font-family:FontAwesome;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa{display:inline-block;text-decoration:inherit}li .fa{display:inline-block}li .fa-large:before,li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-0.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before,ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before{content:""}.icon-book:before{content:""}.fa-caret-down:before{content:""}.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.icon-caret-up:before{content:""}.fa-caret-left:before{content:""}.icon-caret-left:before{content:""}.fa-caret-right:before{content:""}.icon-caret-right:before{content:""}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge .fa-book{float:none}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge .rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}
2 |
--------------------------------------------------------------------------------
/docs/static/doctools.js:
--------------------------------------------------------------------------------
1 | /*
2 | * doctools.js
3 | * ~~~~~~~~~~~
4 | *
5 | * Sphinx JavaScript utilities for all documentation.
6 | *
7 | * :copyright: Copyright 2007-2019 by the Sphinx team, see AUTHORS.
8 | * :license: BSD, see LICENSE for details.
9 | *
10 | */
11 |
12 | /**
13 | * select a different prefix for underscore
14 | */
15 | $u = _.noConflict();
16 |
17 | /**
18 | * make the code below compatible with browsers without
19 | * an installed firebug like debugger
20 | if (!window.console || !console.firebug) {
21 | var names = ["log", "debug", "info", "warn", "error", "assert", "dir",
22 | "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace",
23 | "profile", "profileEnd"];
24 | window.console = {};
25 | for (var i = 0; i < names.length; ++i)
26 | window.console[names[i]] = function() {};
27 | }
28 | */
29 |
30 | /**
31 | * small helper function to urldecode strings
32 | */
33 | jQuery.urldecode = function(x) {
34 | return decodeURIComponent(x).replace(/\+/g, ' ');
35 | };
36 |
37 | /**
38 | * small helper function to urlencode strings
39 | */
40 | jQuery.urlencode = encodeURIComponent;
41 |
42 | /**
43 | * This function returns the parsed url parameters of the
44 | * current request. Multiple values per key are supported,
45 | * it will always return arrays of strings for the value parts.
46 | */
47 | jQuery.getQueryParameters = function(s) {
48 | if (typeof s === 'undefined')
49 | s = document.location.search;
50 | var parts = s.substr(s.indexOf('?') + 1).split('&');
51 | var result = {};
52 | for (var i = 0; i < parts.length; i++) {
53 | var tmp = parts[i].split('=', 2);
54 | var key = jQuery.urldecode(tmp[0]);
55 | var value = jQuery.urldecode(tmp[1]);
56 | if (key in result)
57 | result[key].push(value);
58 | else
59 | result[key] = [value];
60 | }
61 | return result;
62 | };
63 |
64 | /**
65 | * highlight a given string on a jquery object by wrapping it in
66 | * span elements with the given class name.
67 | */
68 | jQuery.fn.highlightText = function(text, className) {
69 | function highlight(node, addItems) {
70 | if (node.nodeType === 3) {
71 | var val = node.nodeValue;
72 | var pos = val.toLowerCase().indexOf(text);
73 | if (pos >= 0 &&
74 | !jQuery(node.parentNode).hasClass(className) &&
75 | !jQuery(node.parentNode).hasClass("nohighlight")) {
76 | var span;
77 | var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
78 | if (isInSVG) {
79 | span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
80 | } else {
81 | span = document.createElement("span");
82 | span.className = className;
83 | }
84 | span.appendChild(document.createTextNode(val.substr(pos, text.length)));
85 | node.parentNode.insertBefore(span, node.parentNode.insertBefore(
86 | document.createTextNode(val.substr(pos + text.length)),
87 | node.nextSibling));
88 | node.nodeValue = val.substr(0, pos);
89 | if (isInSVG) {
90 | var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
91 | var bbox = node.parentElement.getBBox();
92 | rect.x.baseVal.value = bbox.x;
93 | rect.y.baseVal.value = bbox.y;
94 | rect.width.baseVal.value = bbox.width;
95 | rect.height.baseVal.value = bbox.height;
96 | rect.setAttribute('class', className);
97 | addItems.push({
98 | "parent": node.parentNode,
99 | "target": rect});
100 | }
101 | }
102 | }
103 | else if (!jQuery(node).is("button, select, textarea")) {
104 | jQuery.each(node.childNodes, function() {
105 | highlight(this, addItems);
106 | });
107 | }
108 | }
109 | var addItems = [];
110 | var result = this.each(function() {
111 | highlight(this, addItems);
112 | });
113 | for (var i = 0; i < addItems.length; ++i) {
114 | jQuery(addItems[i].parent).before(addItems[i].target);
115 | }
116 | return result;
117 | };
118 |
119 | /*
120 | * backward compatibility for jQuery.browser
121 | * This will be supported until firefox bug is fixed.
122 | */
123 | if (!jQuery.browser) {
124 | jQuery.uaMatch = function(ua) {
125 | ua = ua.toLowerCase();
126 |
127 | var match = /(chrome)[ \/]([\w.]+)/.exec(ua) ||
128 | /(webkit)[ \/]([\w.]+)/.exec(ua) ||
129 | /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) ||
130 | /(msie) ([\w.]+)/.exec(ua) ||
131 | ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
132 | [];
133 |
134 | return {
135 | browser: match[ 1 ] || "",
136 | version: match[ 2 ] || "0"
137 | };
138 | };
139 | jQuery.browser = {};
140 | jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
141 | }
142 |
143 | /**
144 | * Small JavaScript module for the documentation.
145 | */
146 | var Documentation = {
147 |
148 | init : function() {
149 | this.fixFirefoxAnchorBug();
150 | this.highlightSearchWords();
151 | this.initIndexTable();
152 | if (DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) {
153 | this.initOnKeyListeners();
154 | }
155 | },
156 |
157 | /**
158 | * i18n support
159 | */
160 | TRANSLATIONS : {},
161 | PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; },
162 | LOCALE : 'unknown',
163 |
164 | // gettext and ngettext don't access this so that the functions
165 | // can safely bound to a different name (_ = Documentation.gettext)
166 | gettext : function(string) {
167 | var translated = Documentation.TRANSLATIONS[string];
168 | if (typeof translated === 'undefined')
169 | return string;
170 | return (typeof translated === 'string') ? translated : translated[0];
171 | },
172 |
173 | ngettext : function(singular, plural, n) {
174 | var translated = Documentation.TRANSLATIONS[singular];
175 | if (typeof translated === 'undefined')
176 | return (n == 1) ? singular : plural;
177 | return translated[Documentation.PLURALEXPR(n)];
178 | },
179 |
180 | addTranslations : function(catalog) {
181 | for (var key in catalog.messages)
182 | this.TRANSLATIONS[key] = catalog.messages[key];
183 | this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')');
184 | this.LOCALE = catalog.locale;
185 | },
186 |
187 | /**
188 | * add context elements like header anchor links
189 | */
190 | addContextElements : function() {
191 | $('div[id] > :header:first').each(function() {
192 | $('').
193 | attr('href', '#' + this.id).
194 | attr('title', _('Permalink to this headline')).
195 | appendTo(this);
196 | });
197 | $('dt[id]').each(function() {
198 | $('').
199 | attr('href', '#' + this.id).
200 | attr('title', _('Permalink to this definition')).
201 | appendTo(this);
202 | });
203 | },
204 |
205 | /**
206 | * workaround a firefox stupidity
207 | * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075
208 | */
209 | fixFirefoxAnchorBug : function() {
210 | if (document.location.hash && $.browser.mozilla)
211 | window.setTimeout(function() {
212 | document.location.href += '';
213 | }, 10);
214 | },
215 |
216 | /**
217 | * highlight the search words provided in the url in the text
218 | */
219 | highlightSearchWords : function() {
220 | var params = $.getQueryParameters();
221 | var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : [];
222 | if (terms.length) {
223 | var body = $('div.body');
224 | if (!body.length) {
225 | body = $('body');
226 | }
227 | window.setTimeout(function() {
228 | $.each(terms, function() {
229 | body.highlightText(this.toLowerCase(), 'highlighted');
230 | });
231 | }, 10);
232 | $('' + _('Hide Search Matches') + '
')
234 | .appendTo($('#searchbox'));
235 | }
236 | },
237 |
238 | /**
239 | * init the domain index toggle buttons
240 | */
241 | initIndexTable : function() {
242 | var togglers = $('img.toggler').click(function() {
243 | var src = $(this).attr('src');
244 | var idnum = $(this).attr('id').substr(7);
245 | $('tr.cg-' + idnum).toggle();
246 | if (src.substr(-9) === 'minus.png')
247 | $(this).attr('src', src.substr(0, src.length-9) + 'plus.png');
248 | else
249 | $(this).attr('src', src.substr(0, src.length-8) + 'minus.png');
250 | }).css('display', '');
251 | if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) {
252 | togglers.click();
253 | }
254 | },
255 |
256 | /**
257 | * helper function to hide the search marks again
258 | */
259 | hideSearchWords : function() {
260 | $('#searchbox .highlight-link').fadeOut(300);
261 | $('span.highlighted').removeClass('highlighted');
262 | },
263 |
264 | /**
265 | * make the url absolute
266 | */
267 | makeURL : function(relativeURL) {
268 | return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL;
269 | },
270 |
271 | /**
272 | * get the current relative url
273 | */
274 | getCurrentURL : function() {
275 | var path = document.location.pathname;
276 | var parts = path.split(/\//);
277 | $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() {
278 | if (this === '..')
279 | parts.pop();
280 | });
281 | var url = parts.join('/');
282 | return path.substring(url.lastIndexOf('/') + 1, path.length - 1);
283 | },
284 |
285 | initOnKeyListeners: function() {
286 | $(document).keyup(function(event) {
287 | var activeElementType = document.activeElement.tagName;
288 | // don't navigate when in search box or textarea
289 | if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') {
290 | switch (event.keyCode) {
291 | case 37: // left
292 | var prevHref = $('link[rel="prev"]').prop('href');
293 | if (prevHref) {
294 | window.location.href = prevHref;
295 | return false;
296 | }
297 | case 39: // right
298 | var nextHref = $('link[rel="next"]').prop('href');
299 | if (nextHref) {
300 | window.location.href = nextHref;
301 | return false;
302 | }
303 | }
304 | }
305 | });
306 | }
307 | };
308 |
309 | // quick alias for translations
310 | _ = Documentation.gettext;
311 |
312 | $(document).ready(function() {
313 | Documentation.init();
314 | });
315 |
--------------------------------------------------------------------------------
/docs/static/documentation_options.js:
--------------------------------------------------------------------------------
1 | var DOCUMENTATION_OPTIONS = {
2 | URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
3 | VERSION: '',
4 | LANGUAGE: 'en',
5 | COLLAPSE_INDEX: false,
6 | FILE_SUFFIX: '.html',
7 | HAS_SOURCE: true,
8 | SOURCELINK_SUFFIX: '.txt',
9 | NAVIGATION_WITH_KEYS: false
10 | };
--------------------------------------------------------------------------------
/docs/static/file.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/file.png
--------------------------------------------------------------------------------
/docs/static/fonts/Inconsolata-Bold.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Inconsolata-Bold.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Inconsolata-Regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Inconsolata-Regular.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Inconsolata.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Inconsolata.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato-Bold.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato-Bold.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato-Regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato-Regular.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bold.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bold.eot
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bold.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bold.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bold.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bold.woff
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bold.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bold.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bolditalic.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bolditalic.eot
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bolditalic.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bolditalic.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bolditalic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bolditalic.woff
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-bolditalic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-bolditalic.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-italic.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-italic.eot
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-italic.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-italic.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-italic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-italic.woff
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-italic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-italic.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-regular.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-regular.eot
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-regular.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-regular.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-regular.woff
--------------------------------------------------------------------------------
/docs/static/fonts/Lato/lato-regular.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/Lato/lato-regular.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab-Bold.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab-Bold.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab-Regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab-Regular.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.eot
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.woff
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.eot
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.woff
--------------------------------------------------------------------------------
/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2
--------------------------------------------------------------------------------
/docs/static/fonts/fontawesome-webfont.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/fontawesome-webfont.eot
--------------------------------------------------------------------------------
/docs/static/fonts/fontawesome-webfont.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/fontawesome-webfont.ttf
--------------------------------------------------------------------------------
/docs/static/fonts/fontawesome-webfont.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/fontawesome-webfont.woff
--------------------------------------------------------------------------------
/docs/static/fonts/fontawesome-webfont.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/fonts/fontawesome-webfont.woff2
--------------------------------------------------------------------------------
/docs/static/js/modernizr.min.js:
--------------------------------------------------------------------------------
1 | /* Modernizr 2.6.2 (Custom Build) | MIT & BSD
2 | * Build: http://modernizr.com/download/#-fontface-backgroundsize-borderimage-borderradius-boxshadow-flexbox-hsla-multiplebgs-opacity-rgba-textshadow-cssanimations-csscolumns-generatedcontent-cssgradients-cssreflections-csstransforms-csstransforms3d-csstransitions-applicationcache-canvas-canvastext-draganddrop-hashchange-history-audio-video-indexeddb-input-inputtypes-localstorage-postmessage-sessionstorage-websockets-websqldatabase-webworkers-geolocation-inlinesvg-smil-svg-svgclippaths-touch-webgl-shiv-mq-cssclasses-addtest-prefixed-teststyles-testprop-testallprops-hasevent-prefixes-domprefixes-load
3 | */
4 | ;window.Modernizr=function(a,b,c){function D(a){j.cssText=a}function E(a,b){return D(n.join(a+";")+(b||""))}function F(a,b){return typeof a===b}function G(a,b){return!!~(""+a).indexOf(b)}function H(a,b){for(var d in a){var e=a[d];if(!G(e,"-")&&j[e]!==c)return b=="pfx"?e:!0}return!1}function I(a,b,d){for(var e in a){var f=b[a[e]];if(f!==c)return d===!1?a[e]:F(f,"function")?f.bind(d||b):f}return!1}function J(a,b,c){var d=a.charAt(0).toUpperCase()+a.slice(1),e=(a+" "+p.join(d+" ")+d).split(" ");return F(b,"string")||F(b,"undefined")?H(e,b):(e=(a+" "+q.join(d+" ")+d).split(" "),I(e,b,c))}function K(){e.input=function(c){for(var d=0,e=c.length;d',a,""].join(""),l.id=h,(m?l:n).innerHTML+=f,n.appendChild(l),m||(n.style.background="",n.style.overflow="hidden",k=g.style.overflow,g.style.overflow="hidden",g.appendChild(n)),i=c(l,a),m?l.parentNode.removeChild(l):(n.parentNode.removeChild(n),g.style.overflow=k),!!i},z=function(b){var c=a.matchMedia||a.msMatchMedia;if(c)return c(b).matches;var d;return y("@media "+b+" { #"+h+" { position: absolute; } }",function(b){d=(a.getComputedStyle?getComputedStyle(b,null):b.currentStyle)["position"]=="absolute"}),d},A=function(){function d(d,e){e=e||b.createElement(a[d]||"div"),d="on"+d;var f=d in e;return f||(e.setAttribute||(e=b.createElement("div")),e.setAttribute&&e.removeAttribute&&(e.setAttribute(d,""),f=F(e[d],"function"),F(e[d],"undefined")||(e[d]=c),e.removeAttribute(d))),e=null,f}var a={select:"input",change:"input",submit:"form",reset:"form",error:"img",load:"img",abort:"img"};return d}(),B={}.hasOwnProperty,C;!F(B,"undefined")&&!F(B.call,"undefined")?C=function(a,b){return B.call(a,b)}:C=function(a,b){return b in a&&F(a.constructor.prototype[b],"undefined")},Function.prototype.bind||(Function.prototype.bind=function(b){var c=this;if(typeof c!="function")throw new TypeError;var d=w.call(arguments,1),e=function(){if(this instanceof e){var a=function(){};a.prototype=c.prototype;var f=new a,g=c.apply(f,d.concat(w.call(arguments)));return Object(g)===g?g:f}return c.apply(b,d.concat(w.call(arguments)))};return e}),s.flexbox=function(){return J("flexWrap")},s.canvas=function(){var a=b.createElement("canvas");return!!a.getContext&&!!a.getContext("2d")},s.canvastext=function(){return!!e.canvas&&!!F(b.createElement("canvas").getContext("2d").fillText,"function")},s.webgl=function(){return!!a.WebGLRenderingContext},s.touch=function(){var c;return"ontouchstart"in a||a.DocumentTouch&&b instanceof DocumentTouch?c=!0:y(["@media (",n.join("touch-enabled),("),h,")","{#modernizr{top:9px;position:absolute}}"].join(""),function(a){c=a.offsetTop===9}),c},s.geolocation=function(){return"geolocation"in navigator},s.postmessage=function(){return!!a.postMessage},s.websqldatabase=function(){return!!a.openDatabase},s.indexedDB=function(){return!!J("indexedDB",a)},s.hashchange=function(){return A("hashchange",a)&&(b.documentMode===c||b.documentMode>7)},s.history=function(){return!!a.history&&!!history.pushState},s.draganddrop=function(){var a=b.createElement("div");return"draggable"in a||"ondragstart"in a&&"ondrop"in a},s.websockets=function(){return"WebSocket"in a||"MozWebSocket"in a},s.rgba=function(){return D("background-color:rgba(150,255,150,.5)"),G(j.backgroundColor,"rgba")},s.hsla=function(){return D("background-color:hsla(120,40%,100%,.5)"),G(j.backgroundColor,"rgba")||G(j.backgroundColor,"hsla")},s.multiplebgs=function(){return D("background:url(https://),url(https://),red url(https://)"),/(url\s*\(.*?){3}/.test(j.background)},s.backgroundsize=function(){return J("backgroundSize")},s.borderimage=function(){return J("borderImage")},s.borderradius=function(){return J("borderRadius")},s.boxshadow=function(){return J("boxShadow")},s.textshadow=function(){return b.createElement("div").style.textShadow===""},s.opacity=function(){return E("opacity:.55"),/^0.55$/.test(j.opacity)},s.cssanimations=function(){return J("animationName")},s.csscolumns=function(){return J("columnCount")},s.cssgradients=function(){var a="background-image:",b="gradient(linear,left top,right bottom,from(#9f9),to(white));",c="linear-gradient(left top,#9f9, white);";return D((a+"-webkit- ".split(" ").join(b+a)+n.join(c+a)).slice(0,-a.length)),G(j.backgroundImage,"gradient")},s.cssreflections=function(){return J("boxReflect")},s.csstransforms=function(){return!!J("transform")},s.csstransforms3d=function(){var a=!!J("perspective");return a&&"webkitPerspective"in g.style&&y("@media (transform-3d),(-webkit-transform-3d){#modernizr{left:9px;position:absolute;height:3px;}}",function(b,c){a=b.offsetLeft===9&&b.offsetHeight===3}),a},s.csstransitions=function(){return J("transition")},s.fontface=function(){var a;return y('@font-face {font-family:"font";src:url("https://")}',function(c,d){var e=b.getElementById("smodernizr"),f=e.sheet||e.styleSheet,g=f?f.cssRules&&f.cssRules[0]?f.cssRules[0].cssText:f.cssText||"":"";a=/src/i.test(g)&&g.indexOf(d.split(" ")[0])===0}),a},s.generatedcontent=function(){var a;return y(["#",h,"{font:0/0 a}#",h,':after{content:"',l,'";visibility:hidden;font:3px/1 a}'].join(""),function(b){a=b.offsetHeight>=3}),a},s.video=function(){var a=b.createElement("video"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('video/ogg; codecs="theora"').replace(/^no$/,""),c.h264=a.canPlayType('video/mp4; codecs="avc1.42E01E"').replace(/^no$/,""),c.webm=a.canPlayType('video/webm; codecs="vp8, vorbis"').replace(/^no$/,"")}catch(d){}return c},s.audio=function(){var a=b.createElement("audio"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('audio/ogg; codecs="vorbis"').replace(/^no$/,""),c.mp3=a.canPlayType("audio/mpeg;").replace(/^no$/,""),c.wav=a.canPlayType('audio/wav; codecs="1"').replace(/^no$/,""),c.m4a=(a.canPlayType("audio/x-m4a;")||a.canPlayType("audio/aac;")).replace(/^no$/,"")}catch(d){}return c},s.localstorage=function(){try{return localStorage.setItem(h,h),localStorage.removeItem(h),!0}catch(a){return!1}},s.sessionstorage=function(){try{return sessionStorage.setItem(h,h),sessionStorage.removeItem(h),!0}catch(a){return!1}},s.webworkers=function(){return!!a.Worker},s.applicationcache=function(){return!!a.applicationCache},s.svg=function(){return!!b.createElementNS&&!!b.createElementNS(r.svg,"svg").createSVGRect},s.inlinesvg=function(){var a=b.createElement("div");return a.innerHTML=" ",(a.firstChild&&a.firstChild.namespaceURI)==r.svg},s.smil=function(){return!!b.createElementNS&&/SVGAnimate/.test(m.call(b.createElementNS(r.svg,"animate")))},s.svgclippaths=function(){return!!b.createElementNS&&/SVGClipPath/.test(m.call(b.createElementNS(r.svg,"clipPath")))};for(var L in s)C(s,L)&&(x=L.toLowerCase(),e[x]=s[L](),v.push((e[x]?"":"no-")+x));return e.input||K(),e.addTest=function(a,b){if(typeof a=="object")for(var d in a)C(a,d)&&e.addTest(d,a[d]);else{a=a.toLowerCase();if(e[a]!==c)return e;b=typeof b=="function"?b():b,typeof f!="undefined"&&f&&(g.className+=" "+(b?"":"no-")+a),e[a]=b}return e},D(""),i=k=null,function(a,b){function k(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function l(){var a=r.elements;return typeof a=="string"?a.split(" "):a}function m(a){var b=i[a[g]];return b||(b={},h++,a[g]=h,i[h]=b),b}function n(a,c,f){c||(c=b);if(j)return c.createElement(a);f||(f=m(c));var g;return f.cache[a]?g=f.cache[a].cloneNode():e.test(a)?g=(f.cache[a]=f.createElem(a)).cloneNode():g=f.createElem(a),g.canHaveChildren&&!d.test(a)?f.frag.appendChild(g):g}function o(a,c){a||(a=b);if(j)return a.createDocumentFragment();c=c||m(a);var d=c.frag.cloneNode(),e=0,f=l(),g=f.length;for(;e",f="hidden"in a,j=a.childNodes.length==1||function(){b.createElement("a");var a=b.createDocumentFragment();return typeof a.cloneNode=="undefined"||typeof a.createDocumentFragment=="undefined"||typeof a.createElement=="undefined"}()}catch(c){f=!0,j=!0}})();var r={elements:c.elements||"abbr article aside audio bdi canvas data datalist details figcaption figure footer header hgroup mark meter nav output progress section summary time video",shivCSS:c.shivCSS!==!1,supportsUnknownElements:j,shivMethods:c.shivMethods!==!1,type:"default",shivDocument:q,createElement:n,createDocumentFragment:o};a.html5=r,q(b)}(this,b),e._version=d,e._prefixes=n,e._domPrefixes=q,e._cssomPrefixes=p,e.mq=z,e.hasEvent=A,e.testProp=function(a){return H([a])},e.testAllProps=J,e.testStyles=y,e.prefixed=function(a,b,c){return b?J(a,b,c):J(a,"pfx")},g.className=g.className.replace(/(^|\s)no-js(\s|$)/,"$1$2")+(f?" js "+v.join(" "):""),e}(this,this.document),function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f"),i("table.docutils.footnote").wrap(""),i("table.docutils.citation").wrap("
"),i(".wy-menu-vertical ul").not(".simple").siblings("a").each(function(){var e=i(this);expand=i(' '),expand.on("click",function(n){return t.toggleCurrent(e),n.stopPropagation(),!1}),e.prepend(expand)})},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),i=e.find('[href="'+n+'"]');if(0===i.length){var t=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(i=e.find('[href="#'+t.attr("id")+'"]')).length&&(i=e.find('[href="#"]'))}0this.docHeight||(this.navBar.scrollTop(i),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",function(){this.linkScroll=!1})},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current"),e.siblings().find("li.current").removeClass("current"),e.find("> ul li.current").removeClass("current"),e.toggleClass("current")}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:e.exports.ThemeNav,StickyNav:e.exports.ThemeNav}),function(){for(var r=0,n=["ms","moz","webkit","o"],e=0;e0
62 | var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1
63 | var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1
64 | var s_v = "^(" + C + ")?" + v; // vowel in stem
65 |
66 | this.stemWord = function (w) {
67 | var stem;
68 | var suffix;
69 | var firstch;
70 | var origword = w;
71 |
72 | if (w.length < 3)
73 | return w;
74 |
75 | var re;
76 | var re2;
77 | var re3;
78 | var re4;
79 |
80 | firstch = w.substr(0,1);
81 | if (firstch == "y")
82 | w = firstch.toUpperCase() + w.substr(1);
83 |
84 | // Step 1a
85 | re = /^(.+?)(ss|i)es$/;
86 | re2 = /^(.+?)([^s])s$/;
87 |
88 | if (re.test(w))
89 | w = w.replace(re,"$1$2");
90 | else if (re2.test(w))
91 | w = w.replace(re2,"$1$2");
92 |
93 | // Step 1b
94 | re = /^(.+?)eed$/;
95 | re2 = /^(.+?)(ed|ing)$/;
96 | if (re.test(w)) {
97 | var fp = re.exec(w);
98 | re = new RegExp(mgr0);
99 | if (re.test(fp[1])) {
100 | re = /.$/;
101 | w = w.replace(re,"");
102 | }
103 | }
104 | else if (re2.test(w)) {
105 | var fp = re2.exec(w);
106 | stem = fp[1];
107 | re2 = new RegExp(s_v);
108 | if (re2.test(stem)) {
109 | w = stem;
110 | re2 = /(at|bl|iz)$/;
111 | re3 = new RegExp("([^aeiouylsz])\\1$");
112 | re4 = new RegExp("^" + C + v + "[^aeiouwxy]$");
113 | if (re2.test(w))
114 | w = w + "e";
115 | else if (re3.test(w)) {
116 | re = /.$/;
117 | w = w.replace(re,"");
118 | }
119 | else if (re4.test(w))
120 | w = w + "e";
121 | }
122 | }
123 |
124 | // Step 1c
125 | re = /^(.+?)y$/;
126 | if (re.test(w)) {
127 | var fp = re.exec(w);
128 | stem = fp[1];
129 | re = new RegExp(s_v);
130 | if (re.test(stem))
131 | w = stem + "i";
132 | }
133 |
134 | // Step 2
135 | re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/;
136 | if (re.test(w)) {
137 | var fp = re.exec(w);
138 | stem = fp[1];
139 | suffix = fp[2];
140 | re = new RegExp(mgr0);
141 | if (re.test(stem))
142 | w = stem + step2list[suffix];
143 | }
144 |
145 | // Step 3
146 | re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/;
147 | if (re.test(w)) {
148 | var fp = re.exec(w);
149 | stem = fp[1];
150 | suffix = fp[2];
151 | re = new RegExp(mgr0);
152 | if (re.test(stem))
153 | w = stem + step3list[suffix];
154 | }
155 |
156 | // Step 4
157 | re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/;
158 | re2 = /^(.+?)(s|t)(ion)$/;
159 | if (re.test(w)) {
160 | var fp = re.exec(w);
161 | stem = fp[1];
162 | re = new RegExp(mgr1);
163 | if (re.test(stem))
164 | w = stem;
165 | }
166 | else if (re2.test(w)) {
167 | var fp = re2.exec(w);
168 | stem = fp[1] + fp[2];
169 | re2 = new RegExp(mgr1);
170 | if (re2.test(stem))
171 | w = stem;
172 | }
173 |
174 | // Step 5
175 | re = /^(.+?)e$/;
176 | if (re.test(w)) {
177 | var fp = re.exec(w);
178 | stem = fp[1];
179 | re = new RegExp(mgr1);
180 | re2 = new RegExp(meq1);
181 | re3 = new RegExp("^" + C + v + "[^aeiouwxy]$");
182 | if (re.test(stem) || (re2.test(stem) && !(re3.test(stem))))
183 | w = stem;
184 | }
185 | re = /ll$/;
186 | re2 = new RegExp(mgr1);
187 | if (re.test(w) && re2.test(w)) {
188 | re = /.$/;
189 | w = w.replace(re,"");
190 | }
191 |
192 | // and turn initial Y back to y
193 | if (firstch == "y")
194 | w = firstch.toLowerCase() + w.substr(1);
195 | return w;
196 | }
197 | }
198 |
199 |
200 |
201 |
202 |
203 | var splitChars = (function() {
204 | var result = {};
205 | var singles = [96, 180, 187, 191, 215, 247, 749, 885, 903, 907, 909, 930, 1014, 1648,
206 | 1748, 1809, 2416, 2473, 2481, 2526, 2601, 2609, 2612, 2615, 2653, 2702,
207 | 2706, 2729, 2737, 2740, 2857, 2865, 2868, 2910, 2928, 2948, 2961, 2971,
208 | 2973, 3085, 3089, 3113, 3124, 3213, 3217, 3241, 3252, 3295, 3341, 3345,
209 | 3369, 3506, 3516, 3633, 3715, 3721, 3736, 3744, 3748, 3750, 3756, 3761,
210 | 3781, 3912, 4239, 4347, 4681, 4695, 4697, 4745, 4785, 4799, 4801, 4823,
211 | 4881, 5760, 5901, 5997, 6313, 7405, 8024, 8026, 8028, 8030, 8117, 8125,
212 | 8133, 8181, 8468, 8485, 8487, 8489, 8494, 8527, 11311, 11359, 11687, 11695,
213 | 11703, 11711, 11719, 11727, 11735, 12448, 12539, 43010, 43014, 43019, 43587,
214 | 43696, 43713, 64286, 64297, 64311, 64317, 64319, 64322, 64325, 65141];
215 | var i, j, start, end;
216 | for (i = 0; i < singles.length; i++) {
217 | result[singles[i]] = true;
218 | }
219 | var ranges = [[0, 47], [58, 64], [91, 94], [123, 169], [171, 177], [182, 184], [706, 709],
220 | [722, 735], [741, 747], [751, 879], [888, 889], [894, 901], [1154, 1161],
221 | [1318, 1328], [1367, 1368], [1370, 1376], [1416, 1487], [1515, 1519], [1523, 1568],
222 | [1611, 1631], [1642, 1645], [1750, 1764], [1767, 1773], [1789, 1790], [1792, 1807],
223 | [1840, 1868], [1958, 1968], [1970, 1983], [2027, 2035], [2038, 2041], [2043, 2047],
224 | [2070, 2073], [2075, 2083], [2085, 2087], [2089, 2307], [2362, 2364], [2366, 2383],
225 | [2385, 2391], [2402, 2405], [2419, 2424], [2432, 2436], [2445, 2446], [2449, 2450],
226 | [2483, 2485], [2490, 2492], [2494, 2509], [2511, 2523], [2530, 2533], [2546, 2547],
227 | [2554, 2564], [2571, 2574], [2577, 2578], [2618, 2648], [2655, 2661], [2672, 2673],
228 | [2677, 2692], [2746, 2748], [2750, 2767], [2769, 2783], [2786, 2789], [2800, 2820],
229 | [2829, 2830], [2833, 2834], [2874, 2876], [2878, 2907], [2914, 2917], [2930, 2946],
230 | [2955, 2957], [2966, 2968], [2976, 2978], [2981, 2983], [2987, 2989], [3002, 3023],
231 | [3025, 3045], [3059, 3076], [3130, 3132], [3134, 3159], [3162, 3167], [3170, 3173],
232 | [3184, 3191], [3199, 3204], [3258, 3260], [3262, 3293], [3298, 3301], [3312, 3332],
233 | [3386, 3388], [3390, 3423], [3426, 3429], [3446, 3449], [3456, 3460], [3479, 3481],
234 | [3518, 3519], [3527, 3584], [3636, 3647], [3655, 3663], [3674, 3712], [3717, 3718],
235 | [3723, 3724], [3726, 3731], [3752, 3753], [3764, 3772], [3774, 3775], [3783, 3791],
236 | [3802, 3803], [3806, 3839], [3841, 3871], [3892, 3903], [3949, 3975], [3980, 4095],
237 | [4139, 4158], [4170, 4175], [4182, 4185], [4190, 4192], [4194, 4196], [4199, 4205],
238 | [4209, 4212], [4226, 4237], [4250, 4255], [4294, 4303], [4349, 4351], [4686, 4687],
239 | [4702, 4703], [4750, 4751], [4790, 4791], [4806, 4807], [4886, 4887], [4955, 4968],
240 | [4989, 4991], [5008, 5023], [5109, 5120], [5741, 5742], [5787, 5791], [5867, 5869],
241 | [5873, 5887], [5906, 5919], [5938, 5951], [5970, 5983], [6001, 6015], [6068, 6102],
242 | [6104, 6107], [6109, 6111], [6122, 6127], [6138, 6159], [6170, 6175], [6264, 6271],
243 | [6315, 6319], [6390, 6399], [6429, 6469], [6510, 6511], [6517, 6527], [6572, 6592],
244 | [6600, 6607], [6619, 6655], [6679, 6687], [6741, 6783], [6794, 6799], [6810, 6822],
245 | [6824, 6916], [6964, 6980], [6988, 6991], [7002, 7042], [7073, 7085], [7098, 7167],
246 | [7204, 7231], [7242, 7244], [7294, 7400], [7410, 7423], [7616, 7679], [7958, 7959],
247 | [7966, 7967], [8006, 8007], [8014, 8015], [8062, 8063], [8127, 8129], [8141, 8143],
248 | [8148, 8149], [8156, 8159], [8173, 8177], [8189, 8303], [8306, 8307], [8314, 8318],
249 | [8330, 8335], [8341, 8449], [8451, 8454], [8456, 8457], [8470, 8472], [8478, 8483],
250 | [8506, 8507], [8512, 8516], [8522, 8525], [8586, 9311], [9372, 9449], [9472, 10101],
251 | [10132, 11263], [11493, 11498], [11503, 11516], [11518, 11519], [11558, 11567],
252 | [11622, 11630], [11632, 11647], [11671, 11679], [11743, 11822], [11824, 12292],
253 | [12296, 12320], [12330, 12336], [12342, 12343], [12349, 12352], [12439, 12444],
254 | [12544, 12548], [12590, 12592], [12687, 12689], [12694, 12703], [12728, 12783],
255 | [12800, 12831], [12842, 12880], [12896, 12927], [12938, 12976], [12992, 13311],
256 | [19894, 19967], [40908, 40959], [42125, 42191], [42238, 42239], [42509, 42511],
257 | [42540, 42559], [42592, 42593], [42607, 42622], [42648, 42655], [42736, 42774],
258 | [42784, 42785], [42889, 42890], [42893, 43002], [43043, 43055], [43062, 43071],
259 | [43124, 43137], [43188, 43215], [43226, 43249], [43256, 43258], [43260, 43263],
260 | [43302, 43311], [43335, 43359], [43389, 43395], [43443, 43470], [43482, 43519],
261 | [43561, 43583], [43596, 43599], [43610, 43615], [43639, 43641], [43643, 43647],
262 | [43698, 43700], [43703, 43704], [43710, 43711], [43715, 43738], [43742, 43967],
263 | [44003, 44015], [44026, 44031], [55204, 55215], [55239, 55242], [55292, 55295],
264 | [57344, 63743], [64046, 64047], [64110, 64111], [64218, 64255], [64263, 64274],
265 | [64280, 64284], [64434, 64466], [64830, 64847], [64912, 64913], [64968, 65007],
266 | [65020, 65135], [65277, 65295], [65306, 65312], [65339, 65344], [65371, 65381],
267 | [65471, 65473], [65480, 65481], [65488, 65489], [65496, 65497]];
268 | for (i = 0; i < ranges.length; i++) {
269 | start = ranges[i][0];
270 | end = ranges[i][1];
271 | for (j = start; j <= end; j++) {
272 | result[j] = true;
273 | }
274 | }
275 | return result;
276 | })();
277 |
278 | function splitQuery(query) {
279 | var result = [];
280 | var start = -1;
281 | for (var i = 0; i < query.length; i++) {
282 | if (splitChars[query.charCodeAt(i)]) {
283 | if (start !== -1) {
284 | result.push(query.slice(start, i));
285 | start = -1;
286 | }
287 | } else if (start === -1) {
288 | start = i;
289 | }
290 | }
291 | if (start !== -1) {
292 | result.push(query.slice(start));
293 | }
294 | return result;
295 | }
296 |
297 |
298 |
--------------------------------------------------------------------------------
/docs/static/minus.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/minus.png
--------------------------------------------------------------------------------
/docs/static/plus.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UiO-CS/tf-wavelets/11da39282acc70f38b16330c3473ac43fdfb4353/docs/static/plus.png
--------------------------------------------------------------------------------
/docs/static/pygments.css:
--------------------------------------------------------------------------------
1 | .highlight .hll { background-color: #ffffcc }
2 | .highlight { background: #eeffcc; }
3 | .highlight .c { color: #408090; font-style: italic } /* Comment */
4 | .highlight .err { border: 1px solid #FF0000 } /* Error */
5 | .highlight .k { color: #007020; font-weight: bold } /* Keyword */
6 | .highlight .o { color: #666666 } /* Operator */
7 | .highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */
8 | .highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */
9 | .highlight .cp { color: #007020 } /* Comment.Preproc */
10 | .highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */
11 | .highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */
12 | .highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
13 | .highlight .gd { color: #A00000 } /* Generic.Deleted */
14 | .highlight .ge { font-style: italic } /* Generic.Emph */
15 | .highlight .gr { color: #FF0000 } /* Generic.Error */
16 | .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
17 | .highlight .gi { color: #00A000 } /* Generic.Inserted */
18 | .highlight .go { color: #333333 } /* Generic.Output */
19 | .highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
20 | .highlight .gs { font-weight: bold } /* Generic.Strong */
21 | .highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
22 | .highlight .gt { color: #0044DD } /* Generic.Traceback */
23 | .highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
24 | .highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
25 | .highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
26 | .highlight .kp { color: #007020 } /* Keyword.Pseudo */
27 | .highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
28 | .highlight .kt { color: #902000 } /* Keyword.Type */
29 | .highlight .m { color: #208050 } /* Literal.Number */
30 | .highlight .s { color: #4070a0 } /* Literal.String */
31 | .highlight .na { color: #4070a0 } /* Name.Attribute */
32 | .highlight .nb { color: #007020 } /* Name.Builtin */
33 | .highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
34 | .highlight .no { color: #60add5 } /* Name.Constant */
35 | .highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
36 | .highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
37 | .highlight .ne { color: #007020 } /* Name.Exception */
38 | .highlight .nf { color: #06287e } /* Name.Function */
39 | .highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
40 | .highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
41 | .highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
42 | .highlight .nv { color: #bb60d5 } /* Name.Variable */
43 | .highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
44 | .highlight .w { color: #bbbbbb } /* Text.Whitespace */
45 | .highlight .mb { color: #208050 } /* Literal.Number.Bin */
46 | .highlight .mf { color: #208050 } /* Literal.Number.Float */
47 | .highlight .mh { color: #208050 } /* Literal.Number.Hex */
48 | .highlight .mi { color: #208050 } /* Literal.Number.Integer */
49 | .highlight .mo { color: #208050 } /* Literal.Number.Oct */
50 | .highlight .sa { color: #4070a0 } /* Literal.String.Affix */
51 | .highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
52 | .highlight .sc { color: #4070a0 } /* Literal.String.Char */
53 | .highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
54 | .highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
55 | .highlight .s2 { color: #4070a0 } /* Literal.String.Double */
56 | .highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
57 | .highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
58 | .highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
59 | .highlight .sx { color: #c65d09 } /* Literal.String.Other */
60 | .highlight .sr { color: #235388 } /* Literal.String.Regex */
61 | .highlight .s1 { color: #4070a0 } /* Literal.String.Single */
62 | .highlight .ss { color: #517918 } /* Literal.String.Symbol */
63 | .highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
64 | .highlight .fm { color: #06287e } /* Name.Function.Magic */
65 | .highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
66 | .highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
67 | .highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
68 | .highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
69 | .highlight .il { color: #208050 } /* Literal.Number.Integer.Long */
--------------------------------------------------------------------------------
/docs/static/searchtools.js:
--------------------------------------------------------------------------------
1 | /*
2 | * searchtools.js
3 | * ~~~~~~~~~~~~~~~~
4 | *
5 | * Sphinx JavaScript utilities for the full-text search.
6 | *
7 | * :copyright: Copyright 2007-2019 by the Sphinx team, see AUTHORS.
8 | * :license: BSD, see LICENSE for details.
9 | *
10 | */
11 |
12 | if (!Scorer) {
13 | /**
14 | * Simple result scoring code.
15 | */
16 | var Scorer = {
17 | // Implement the following function to further tweak the score for each result
18 | // The function takes a result array [filename, title, anchor, descr, score]
19 | // and returns the new score.
20 | /*
21 | score: function(result) {
22 | return result[4];
23 | },
24 | */
25 |
26 | // query matches the full name of an object
27 | objNameMatch: 11,
28 | // or matches in the last dotted part of the object name
29 | objPartialMatch: 6,
30 | // Additive scores depending on the priority of the object
31 | objPrio: {0: 15, // used to be importantResults
32 | 1: 5, // used to be objectResults
33 | 2: -5}, // used to be unimportantResults
34 | // Used when the priority is not in the mapping.
35 | objPrioDefault: 0,
36 |
37 | // query found in title
38 | title: 15,
39 | partialTitle: 7,
40 | // query found in terms
41 | term: 5,
42 | partialTerm: 2
43 | };
44 | }
45 |
46 | if (!splitQuery) {
47 | function splitQuery(query) {
48 | return query.split(/\s+/);
49 | }
50 | }
51 |
52 | /**
53 | * Search Module
54 | */
55 | var Search = {
56 |
57 | _index : null,
58 | _queued_query : null,
59 | _pulse_status : -1,
60 |
61 | htmlToText : function(htmlString) {
62 | var htmlElement = document.createElement('span');
63 | htmlElement.innerHTML = htmlString;
64 | $(htmlElement).find('.headerlink').remove();
65 | docContent = $(htmlElement).find('[role=main]')[0];
66 | return docContent.textContent || docContent.innerText;
67 | },
68 |
69 | init : function() {
70 | var params = $.getQueryParameters();
71 | if (params.q) {
72 | var query = params.q[0];
73 | $('input[name="q"]')[0].value = query;
74 | this.performSearch(query);
75 | }
76 | },
77 |
78 | loadIndex : function(url) {
79 | $.ajax({type: "GET", url: url, data: null,
80 | dataType: "script", cache: true,
81 | complete: function(jqxhr, textstatus) {
82 | if (textstatus != "success") {
83 | document.getElementById("searchindexloader").src = url;
84 | }
85 | }});
86 | },
87 |
88 | setIndex : function(index) {
89 | var q;
90 | this._index = index;
91 | if ((q = this._queued_query) !== null) {
92 | this._queued_query = null;
93 | Search.query(q);
94 | }
95 | },
96 |
97 | hasIndex : function() {
98 | return this._index !== null;
99 | },
100 |
101 | deferQuery : function(query) {
102 | this._queued_query = query;
103 | },
104 |
105 | stopPulse : function() {
106 | this._pulse_status = 0;
107 | },
108 |
109 | startPulse : function() {
110 | if (this._pulse_status >= 0)
111 | return;
112 | function pulse() {
113 | var i;
114 | Search._pulse_status = (Search._pulse_status + 1) % 4;
115 | var dotString = '';
116 | for (i = 0; i < Search._pulse_status; i++)
117 | dotString += '.';
118 | Search.dots.text(dotString);
119 | if (Search._pulse_status > -1)
120 | window.setTimeout(pulse, 500);
121 | }
122 | pulse();
123 | },
124 |
125 | /**
126 | * perform a search for something (or wait until index is loaded)
127 | */
128 | performSearch : function(query) {
129 | // create the required interface elements
130 | this.out = $('#search-results');
131 | this.title = $('' + _('Searching') + ' ').appendTo(this.out);
132 | this.dots = $(' ').appendTo(this.title);
133 | this.status = $('
').appendTo(this.out);
134 | this.output = $('').appendTo(this.out);
135 |
136 | $('#search-progress').text(_('Preparing search...'));
137 | this.startPulse();
138 |
139 | // index already loaded, the browser was quick!
140 | if (this.hasIndex())
141 | this.query(query);
142 | else
143 | this.deferQuery(query);
144 | },
145 |
146 | /**
147 | * execute search (requires search index to be loaded)
148 | */
149 | query : function(query) {
150 | var i;
151 |
152 | // stem the searchterms and add them to the correct list
153 | var stemmer = new Stemmer();
154 | var searchterms = [];
155 | var excluded = [];
156 | var hlterms = [];
157 | var tmp = splitQuery(query);
158 | var objectterms = [];
159 | for (i = 0; i < tmp.length; i++) {
160 | if (tmp[i] !== "") {
161 | objectterms.push(tmp[i].toLowerCase());
162 | }
163 |
164 | if ($u.indexOf(stopwords, tmp[i].toLowerCase()) != -1 || tmp[i].match(/^\d+$/) ||
165 | tmp[i] === "") {
166 | // skip this "word"
167 | continue;
168 | }
169 | // stem the word
170 | var word = stemmer.stemWord(tmp[i].toLowerCase());
171 | // prevent stemmer from cutting word smaller than two chars
172 | if(word.length < 3 && tmp[i].length >= 3) {
173 | word = tmp[i];
174 | }
175 | var toAppend;
176 | // select the correct list
177 | if (word[0] == '-') {
178 | toAppend = excluded;
179 | word = word.substr(1);
180 | }
181 | else {
182 | toAppend = searchterms;
183 | hlterms.push(tmp[i].toLowerCase());
184 | }
185 | // only add if not already in the list
186 | if (!$u.contains(toAppend, word))
187 | toAppend.push(word);
188 | }
189 | var highlightstring = '?highlight=' + $.urlencode(hlterms.join(" "));
190 |
191 | // console.debug('SEARCH: searching for:');
192 | // console.info('required: ', searchterms);
193 | // console.info('excluded: ', excluded);
194 |
195 | // prepare search
196 | var terms = this._index.terms;
197 | var titleterms = this._index.titleterms;
198 |
199 | // array of [filename, title, anchor, descr, score]
200 | var results = [];
201 | $('#search-progress').empty();
202 |
203 | // lookup as object
204 | for (i = 0; i < objectterms.length; i++) {
205 | var others = [].concat(objectterms.slice(0, i),
206 | objectterms.slice(i+1, objectterms.length));
207 | results = results.concat(this.performObjectSearch(objectterms[i], others));
208 | }
209 |
210 | // lookup as search terms in fulltext
211 | results = results.concat(this.performTermsSearch(searchterms, excluded, terms, titleterms));
212 |
213 | // let the scorer override scores with a custom scoring function
214 | if (Scorer.score) {
215 | for (i = 0; i < results.length; i++)
216 | results[i][4] = Scorer.score(results[i]);
217 | }
218 |
219 | // now sort the results by score (in opposite order of appearance, since the
220 | // display function below uses pop() to retrieve items) and then
221 | // alphabetically
222 | results.sort(function(a, b) {
223 | var left = a[4];
224 | var right = b[4];
225 | if (left > right) {
226 | return 1;
227 | } else if (left < right) {
228 | return -1;
229 | } else {
230 | // same score: sort alphabetically
231 | left = a[1].toLowerCase();
232 | right = b[1].toLowerCase();
233 | return (left > right) ? -1 : ((left < right) ? 1 : 0);
234 | }
235 | });
236 |
237 | // for debugging
238 | //Search.lastresults = results.slice(); // a copy
239 | //console.info('search results:', Search.lastresults);
240 |
241 | // print the results
242 | var resultCount = results.length;
243 | function displayNextItem() {
244 | // results left, load the summary and display it
245 | if (results.length) {
246 | var item = results.pop();
247 | var listItem = $(' ');
248 | if (DOCUMENTATION_OPTIONS.FILE_SUFFIX === '') {
249 | // dirhtml builder
250 | var dirname = item[0] + '/';
251 | if (dirname.match(/\/index\/$/)) {
252 | dirname = dirname.substring(0, dirname.length-6);
253 | } else if (dirname == 'index/') {
254 | dirname = '';
255 | }
256 | listItem.append($(' ').attr('href',
257 | DOCUMENTATION_OPTIONS.URL_ROOT + dirname +
258 | highlightstring + item[2]).html(item[1]));
259 | } else {
260 | // normal html builders
261 | listItem.append($(' ').attr('href',
262 | item[0] + DOCUMENTATION_OPTIONS.FILE_SUFFIX +
263 | highlightstring + item[2]).html(item[1]));
264 | }
265 | if (item[3]) {
266 | listItem.append($(' (' + item[3] + ') '));
267 | Search.output.append(listItem);
268 | listItem.slideDown(5, function() {
269 | displayNextItem();
270 | });
271 | } else if (DOCUMENTATION_OPTIONS.HAS_SOURCE) {
272 | $.ajax({url: DOCUMENTATION_OPTIONS.URL_ROOT + item[0] + DOCUMENTATION_OPTIONS.FILE_SUFFIX,
273 | dataType: "text",
274 | complete: function(jqxhr, textstatus) {
275 | var data = jqxhr.responseText;
276 | if (data !== '' && data !== undefined) {
277 | listItem.append(Search.makeSearchSummary(data, searchterms, hlterms));
278 | }
279 | Search.output.append(listItem);
280 | listItem.slideDown(5, function() {
281 | displayNextItem();
282 | });
283 | }});
284 | } else {
285 | // no source available, just display title
286 | Search.output.append(listItem);
287 | listItem.slideDown(5, function() {
288 | displayNextItem();
289 | });
290 | }
291 | }
292 | // search finished, update title and status message
293 | else {
294 | Search.stopPulse();
295 | Search.title.text(_('Search Results'));
296 | if (!resultCount)
297 | Search.status.text(_('Your search did not match any documents. Please make sure that all words are spelled correctly and that you\'ve selected enough categories.'));
298 | else
299 | Search.status.text(_('Search finished, found %s page(s) matching the search query.').replace('%s', resultCount));
300 | Search.status.fadeIn(500);
301 | }
302 | }
303 | displayNextItem();
304 | },
305 |
306 | /**
307 | * search for object names
308 | */
309 | performObjectSearch : function(object, otherterms) {
310 | var filenames = this._index.filenames;
311 | var docnames = this._index.docnames;
312 | var objects = this._index.objects;
313 | var objnames = this._index.objnames;
314 | var titles = this._index.titles;
315 |
316 | var i;
317 | var results = [];
318 |
319 | for (var prefix in objects) {
320 | for (var name in objects[prefix]) {
321 | var fullname = (prefix ? prefix + '.' : '') + name;
322 | if (fullname.toLowerCase().indexOf(object) > -1) {
323 | var score = 0;
324 | var parts = fullname.split('.');
325 | // check for different match types: exact matches of full name or
326 | // "last name" (i.e. last dotted part)
327 | if (fullname == object || parts[parts.length - 1] == object) {
328 | score += Scorer.objNameMatch;
329 | // matches in last name
330 | } else if (parts[parts.length - 1].indexOf(object) > -1) {
331 | score += Scorer.objPartialMatch;
332 | }
333 | var match = objects[prefix][name];
334 | var objname = objnames[match[1]][2];
335 | var title = titles[match[0]];
336 | // If more than one term searched for, we require other words to be
337 | // found in the name/title/description
338 | if (otherterms.length > 0) {
339 | var haystack = (prefix + ' ' + name + ' ' +
340 | objname + ' ' + title).toLowerCase();
341 | var allfound = true;
342 | for (i = 0; i < otherterms.length; i++) {
343 | if (haystack.indexOf(otherterms[i]) == -1) {
344 | allfound = false;
345 | break;
346 | }
347 | }
348 | if (!allfound) {
349 | continue;
350 | }
351 | }
352 | var descr = objname + _(', in ') + title;
353 |
354 | var anchor = match[3];
355 | if (anchor === '')
356 | anchor = fullname;
357 | else if (anchor == '-')
358 | anchor = objnames[match[1]][1] + '-' + fullname;
359 | // add custom score for some objects according to scorer
360 | if (Scorer.objPrio.hasOwnProperty(match[2])) {
361 | score += Scorer.objPrio[match[2]];
362 | } else {
363 | score += Scorer.objPrioDefault;
364 | }
365 | results.push([docnames[match[0]], fullname, '#'+anchor, descr, score, filenames[match[0]]]);
366 | }
367 | }
368 | }
369 |
370 | return results;
371 | },
372 |
373 | /**
374 | * search for full-text terms in the index
375 | */
376 | performTermsSearch : function(searchterms, excluded, terms, titleterms) {
377 | var docnames = this._index.docnames;
378 | var filenames = this._index.filenames;
379 | var titles = this._index.titles;
380 |
381 | var i, j, file;
382 | var fileMap = {};
383 | var scoreMap = {};
384 | var results = [];
385 |
386 | // perform the search on the required terms
387 | for (i = 0; i < searchterms.length; i++) {
388 | var word = searchterms[i];
389 | var files = [];
390 | var _o = [
391 | {files: terms[word], score: Scorer.term},
392 | {files: titleterms[word], score: Scorer.title}
393 | ];
394 | // add support for partial matches
395 | if (word.length > 2) {
396 | for (var w in terms) {
397 | if (w.match(word) && !terms[word]) {
398 | _o.push({files: terms[w], score: Scorer.partialTerm})
399 | }
400 | }
401 | for (var w in titleterms) {
402 | if (w.match(word) && !titleterms[word]) {
403 | _o.push({files: titleterms[w], score: Scorer.partialTitle})
404 | }
405 | }
406 | }
407 |
408 | // no match but word was a required one
409 | if ($u.every(_o, function(o){return o.files === undefined;})) {
410 | break;
411 | }
412 | // found search word in contents
413 | $u.each(_o, function(o) {
414 | var _files = o.files;
415 | if (_files === undefined)
416 | return
417 |
418 | if (_files.length === undefined)
419 | _files = [_files];
420 | files = files.concat(_files);
421 |
422 | // set score for the word in each file to Scorer.term
423 | for (j = 0; j < _files.length; j++) {
424 | file = _files[j];
425 | if (!(file in scoreMap))
426 | scoreMap[file] = {}
427 | scoreMap[file][word] = o.score;
428 | }
429 | });
430 |
431 | // create the mapping
432 | for (j = 0; j < files.length; j++) {
433 | file = files[j];
434 | if (file in fileMap)
435 | fileMap[file].push(word);
436 | else
437 | fileMap[file] = [word];
438 | }
439 | }
440 |
441 | // now check if the files don't contain excluded terms
442 | for (file in fileMap) {
443 | var valid = true;
444 |
445 | // check if all requirements are matched
446 | var filteredTermCount = // as search terms with length < 3 are discarded: ignore
447 | searchterms.filter(function(term){return term.length > 2}).length
448 | if (
449 | fileMap[file].length != searchterms.length &&
450 | fileMap[file].length != filteredTermCount
451 | ) continue;
452 |
453 | // ensure that none of the excluded terms is in the search result
454 | for (i = 0; i < excluded.length; i++) {
455 | if (terms[excluded[i]] == file ||
456 | titleterms[excluded[i]] == file ||
457 | $u.contains(terms[excluded[i]] || [], file) ||
458 | $u.contains(titleterms[excluded[i]] || [], file)) {
459 | valid = false;
460 | break;
461 | }
462 | }
463 |
464 | // if we have still a valid result we can add it to the result list
465 | if (valid) {
466 | // select one (max) score for the file.
467 | // for better ranking, we should calculate ranking by using words statistics like basic tf-idf...
468 | var score = $u.max($u.map(fileMap[file], function(w){return scoreMap[file][w]}));
469 | results.push([docnames[file], titles[file], '', null, score, filenames[file]]);
470 | }
471 | }
472 | return results;
473 | },
474 |
475 | /**
476 | * helper function to return a node containing the
477 | * search summary for a given text. keywords is a list
478 | * of stemmed words, hlwords is the list of normal, unstemmed
479 | * words. the first one is used to find the occurrence, the
480 | * latter for highlighting it.
481 | */
482 | makeSearchSummary : function(htmlText, keywords, hlwords) {
483 | var text = Search.htmlToText(htmlText);
484 | var textLower = text.toLowerCase();
485 | var start = 0;
486 | $.each(keywords, function() {
487 | var i = textLower.indexOf(this.toLowerCase());
488 | if (i > -1)
489 | start = i;
490 | });
491 | start = Math.max(start - 120, 0);
492 | var excerpt = ((start > 0) ? '...' : '') +
493 | $.trim(text.substr(start, 240)) +
494 | ((start + 240 - text.length) ? '...' : '');
495 | var rv = $('
').text(excerpt);
496 | $.each(hlwords, function() {
497 | rv = rv.highlightText(this, 'highlighted');
498 | });
499 | return rv;
500 | }
501 | };
502 |
503 | $(document).ready(function() {
504 | Search.init();
505 | });
506 |
--------------------------------------------------------------------------------
/docs/static/underscore.js:
--------------------------------------------------------------------------------
1 | // Underscore.js 1.3.1
2 | // (c) 2009-2012 Jeremy Ashkenas, DocumentCloud Inc.
3 | // Underscore is freely distributable under the MIT license.
4 | // Portions of Underscore are inspired or borrowed from Prototype,
5 | // Oliver Steele's Functional, and John Resig's Micro-Templating.
6 | // For all details and documentation:
7 | // http://documentcloud.github.com/underscore
8 | (function(){function q(a,c,d){if(a===c)return a!==0||1/a==1/c;if(a==null||c==null)return a===c;if(a._chain)a=a._wrapped;if(c._chain)c=c._wrapped;if(a.isEqual&&b.isFunction(a.isEqual))return a.isEqual(c);if(c.isEqual&&b.isFunction(c.isEqual))return c.isEqual(a);var e=l.call(a);if(e!=l.call(c))return false;switch(e){case "[object String]":return a==String(c);case "[object Number]":return a!=+a?c!=+c:a==0?1/a==1/c:a==+c;case "[object Date]":case "[object Boolean]":return+a==+c;case "[object RegExp]":return a.source==
9 | c.source&&a.global==c.global&&a.multiline==c.multiline&&a.ignoreCase==c.ignoreCase}if(typeof a!="object"||typeof c!="object")return false;for(var f=d.length;f--;)if(d[f]==a)return true;d.push(a);var f=0,g=true;if(e=="[object Array]"){if(f=a.length,g=f==c.length)for(;f--;)if(!(g=f in a==f in c&&q(a[f],c[f],d)))break}else{if("constructor"in a!="constructor"in c||a.constructor!=c.constructor)return false;for(var h in a)if(b.has(a,h)&&(f++,!(g=b.has(c,h)&&q(a[h],c[h],d))))break;if(g){for(h in c)if(b.has(c,
10 | h)&&!f--)break;g=!f}}d.pop();return g}var r=this,G=r._,n={},k=Array.prototype,o=Object.prototype,i=k.slice,H=k.unshift,l=o.toString,I=o.hasOwnProperty,w=k.forEach,x=k.map,y=k.reduce,z=k.reduceRight,A=k.filter,B=k.every,C=k.some,p=k.indexOf,D=k.lastIndexOf,o=Array.isArray,J=Object.keys,s=Function.prototype.bind,b=function(a){return new m(a)};if(typeof exports!=="undefined"){if(typeof module!=="undefined"&&module.exports)exports=module.exports=b;exports._=b}else r._=b;b.VERSION="1.3.1";var j=b.each=
11 | b.forEach=function(a,c,d){if(a!=null)if(w&&a.forEach===w)a.forEach(c,d);else if(a.length===+a.length)for(var e=0,f=a.length;e2;a==
12 | null&&(a=[]);if(y&&a.reduce===y)return e&&(c=b.bind(c,e)),f?a.reduce(c,d):a.reduce(c);j(a,function(a,b,i){f?d=c.call(e,d,a,b,i):(d=a,f=true)});if(!f)throw new TypeError("Reduce of empty array with no initial value");return d};b.reduceRight=b.foldr=function(a,c,d,e){var f=arguments.length>2;a==null&&(a=[]);if(z&&a.reduceRight===z)return e&&(c=b.bind(c,e)),f?a.reduceRight(c,d):a.reduceRight(c);var g=b.toArray(a).reverse();e&&!f&&(c=b.bind(c,e));return f?b.reduce(g,c,d,e):b.reduce(g,c)};b.find=b.detect=
13 | function(a,c,b){var e;E(a,function(a,g,h){if(c.call(b,a,g,h))return e=a,true});return e};b.filter=b.select=function(a,c,b){var e=[];if(a==null)return e;if(A&&a.filter===A)return a.filter(c,b);j(a,function(a,g,h){c.call(b,a,g,h)&&(e[e.length]=a)});return e};b.reject=function(a,c,b){var e=[];if(a==null)return e;j(a,function(a,g,h){c.call(b,a,g,h)||(e[e.length]=a)});return e};b.every=b.all=function(a,c,b){var e=true;if(a==null)return e;if(B&&a.every===B)return a.every(c,b);j(a,function(a,g,h){if(!(e=
14 | e&&c.call(b,a,g,h)))return n});return e};var E=b.some=b.any=function(a,c,d){c||(c=b.identity);var e=false;if(a==null)return e;if(C&&a.some===C)return a.some(c,d);j(a,function(a,b,h){if(e||(e=c.call(d,a,b,h)))return n});return!!e};b.include=b.contains=function(a,c){var b=false;if(a==null)return b;return p&&a.indexOf===p?a.indexOf(c)!=-1:b=E(a,function(a){return a===c})};b.invoke=function(a,c){var d=i.call(arguments,2);return b.map(a,function(a){return(b.isFunction(c)?c||a:a[c]).apply(a,d)})};b.pluck=
15 | function(a,c){return b.map(a,function(a){return a[c]})};b.max=function(a,c,d){if(!c&&b.isArray(a))return Math.max.apply(Math,a);if(!c&&b.isEmpty(a))return-Infinity;var e={computed:-Infinity};j(a,function(a,b,h){b=c?c.call(d,a,b,h):a;b>=e.computed&&(e={value:a,computed:b})});return e.value};b.min=function(a,c,d){if(!c&&b.isArray(a))return Math.min.apply(Math,a);if(!c&&b.isEmpty(a))return Infinity;var e={computed:Infinity};j(a,function(a,b,h){b=c?c.call(d,a,b,h):a;bd?1:0}),"value")};b.groupBy=function(a,c){var d={},e=b.isFunction(c)?c:function(a){return a[c]};j(a,function(a,b){var c=e(a,b);(d[c]||(d[c]=[])).push(a)});return d};b.sortedIndex=function(a,
17 | c,d){d||(d=b.identity);for(var e=0,f=a.length;e>1;d(a[g])=0})})};b.difference=function(a){var c=b.flatten(i.call(arguments,1));return b.filter(a,function(a){return!b.include(c,a)})};b.zip=function(){for(var a=i.call(arguments),c=b.max(b.pluck(a,"length")),d=Array(c),e=0;e=0;d--)b=[a[d].apply(this,b)];return b[0]}};
24 | b.after=function(a,b){return a<=0?b():function(){if(--a<1)return b.apply(this,arguments)}};b.keys=J||function(a){if(a!==Object(a))throw new TypeError("Invalid object");var c=[],d;for(d in a)b.has(a,d)&&(c[c.length]=d);return c};b.values=function(a){return b.map(a,b.identity)};b.functions=b.methods=function(a){var c=[],d;for(d in a)b.isFunction(a[d])&&c.push(d);return c.sort()};b.extend=function(a){j(i.call(arguments,1),function(b){for(var d in b)a[d]=b[d]});return a};b.defaults=function(a){j(i.call(arguments,
25 | 1),function(b){for(var d in b)a[d]==null&&(a[d]=b[d])});return a};b.clone=function(a){return!b.isObject(a)?a:b.isArray(a)?a.slice():b.extend({},a)};b.tap=function(a,b){b(a);return a};b.isEqual=function(a,b){return q(a,b,[])};b.isEmpty=function(a){if(b.isArray(a)||b.isString(a))return a.length===0;for(var c in a)if(b.has(a,c))return false;return true};b.isElement=function(a){return!!(a&&a.nodeType==1)};b.isArray=o||function(a){return l.call(a)=="[object Array]"};b.isObject=function(a){return a===Object(a)};
26 | b.isArguments=function(a){return l.call(a)=="[object Arguments]"};if(!b.isArguments(arguments))b.isArguments=function(a){return!(!a||!b.has(a,"callee"))};b.isFunction=function(a){return l.call(a)=="[object Function]"};b.isString=function(a){return l.call(a)=="[object String]"};b.isNumber=function(a){return l.call(a)=="[object Number]"};b.isNaN=function(a){return a!==a};b.isBoolean=function(a){return a===true||a===false||l.call(a)=="[object Boolean]"};b.isDate=function(a){return l.call(a)=="[object Date]"};
27 | b.isRegExp=function(a){return l.call(a)=="[object RegExp]"};b.isNull=function(a){return a===null};b.isUndefined=function(a){return a===void 0};b.has=function(a,b){return I.call(a,b)};b.noConflict=function(){r._=G;return this};b.identity=function(a){return a};b.times=function(a,b,d){for(var e=0;e /g,">").replace(/"/g,""").replace(/'/g,"'").replace(/\//g,"/")};b.mixin=function(a){j(b.functions(a),
28 | function(c){K(c,b[c]=a[c])})};var L=0;b.uniqueId=function(a){var b=L++;return a?a+b:b};b.templateSettings={evaluate:/<%([\s\S]+?)%>/g,interpolate:/<%=([\s\S]+?)%>/g,escape:/<%-([\s\S]+?)%>/g};var t=/.^/,u=function(a){return a.replace(/\\\\/g,"\\").replace(/\\'/g,"'")};b.template=function(a,c){var d=b.templateSettings,d="var __p=[],print=function(){__p.push.apply(__p,arguments);};with(obj||{}){__p.push('"+a.replace(/\\/g,"\\\\").replace(/'/g,"\\'").replace(d.escape||t,function(a,b){return"',_.escape("+
29 | u(b)+"),'"}).replace(d.interpolate||t,function(a,b){return"',"+u(b)+",'"}).replace(d.evaluate||t,function(a,b){return"');"+u(b).replace(/[\r\n\t]/g," ")+";__p.push('"}).replace(/\r/g,"\\r").replace(/\n/g,"\\n").replace(/\t/g,"\\t")+"');}return __p.join('');",e=new Function("obj","_",d);return c?e(c,b):function(a){return e.call(this,a,b)}};b.chain=function(a){return b(a).chain()};var m=function(a){this._wrapped=a};b.prototype=m.prototype;var v=function(a,c){return c?b(a).chain():a},K=function(a,c){m.prototype[a]=
30 | function(){var a=i.call(arguments);H.call(a,this._wrapped);return v(c.apply(b,a),this._chain)}};b.mixin(b);j("pop,push,reverse,shift,sort,splice,unshift".split(","),function(a){var b=k[a];m.prototype[a]=function(){var d=this._wrapped;b.apply(d,arguments);var e=d.length;(a=="shift"||a=="splice")&&e===0&&delete d[0];return v(d,this._chain)}});j(["concat","join","slice"],function(a){var b=k[a];m.prototype[a]=function(){return v(b.apply(this._wrapped,arguments),this._chain)}});m.prototype.chain=function(){this._chain=
31 | true;return this};m.prototype.value=function(){return this._wrapped}}).call(this);
32 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | # Install python package
4 | setup(
5 | name="tfwavelets",
6 | version=0.1,
7 | author="Kristian Monsen Haug, Mathias Lohne",
8 | author_email="mathialo@ifi.uio.no",
9 | license="MIT",
10 | description="TensorFlow implementation of descrete wavelets",
11 | url="https://github.com/UiO-CS/tf-wavelets",
12 | install_requires=["tensorflow", "numpy"],
13 | packages=["tfwavelets"],
14 | zip_safe=False)
15 |
--------------------------------------------------------------------------------
/styleguide.md:
--------------------------------------------------------------------------------
1 | # Project style guide
2 |
3 |
4 | ## General Python style
5 |
6 | * Use 4 spaces for indentation
7 | * Use Google-style docstrings
8 | * Follow PEP-8 for naming of functions, classes, variables, etc
9 | * Use pylint for error detection
10 | * Use yapf for code formatting
11 |
12 |
--------------------------------------------------------------------------------
/tests.py:
--------------------------------------------------------------------------------
1 | import tfwavelets as tfw
2 | import numpy as np
3 |
4 |
5 | def check_orthonormality_1d(wavelet, tol=1e-5, N=8):
6 | matrix = np.zeros((N, N))
7 |
8 | for i in range(N):
9 | unit = np.zeros(N)
10 | unit[i] = 1
11 |
12 | matrix[:, i] = tfw.wrappers.dwt1d(unit, wavelet)
13 |
14 | error1 = np.mean(np.abs(matrix.T @ matrix - np.eye(N)))
15 | error2 = np.mean(np.abs(matrix @ matrix.T - np.eye(N)))
16 | assert error1 < tol, "Mean error: %g" % error1
17 | assert error2 < tol, "Mean error: %g" % error2
18 |
19 |
20 | def check_linearity_1d(wavelet, tol=1e-5, N=256):
21 | x1 = np.random.random(N)
22 | x2 = np.random.random(N)
23 |
24 | c1 = np.random.random(1)
25 | c2 = np.random.random(1)
26 |
27 | test1 = tfw.wrappers.dwt1d(c1 * x1 + c2 * x2)
28 | test2 = c1 * tfw.wrappers.dwt1d(x1) + c2 * tfw.wrappers.dwt1d(x2)
29 |
30 | error = np.mean(np.abs(test1 - test2))
31 | assert error < tol, "Mean error: %g" % error
32 |
33 |
34 | def check_linearity_2d(wavelet, tol=1e-5, N=256):
35 | x1 = np.random.random((N, N))
36 | x2 = np.random.random((N, N))
37 |
38 | c1 = np.random.random(1)
39 | c2 = np.random.random(1)
40 |
41 | test1 = tfw.wrappers.dwt2d(c1 * x1 + c2 * x2)
42 | test2 = c1 * tfw.wrappers.dwt2d(x1) + c2 * tfw.wrappers.dwt2d(x2)
43 |
44 | error = np.mean(np.abs(test1 - test2))
45 | assert error < tol, "Mean error: %g" % error
46 |
47 |
48 | def check_inverse_1d(wavelet, levels=1, tol=1e-4, N=256):
49 | signal = np.random.random(N)
50 |
51 | reconstructed = tfw.wrappers.idwt1d(
52 | tfw.wrappers.dwt1d(signal, levels=levels),
53 | levels=levels
54 | )
55 |
56 | error = np.mean(np.abs(signal - reconstructed))
57 | assert error < tol, "Mean error: %g" % error
58 |
59 |
60 | def check_inverse_2d(wavelet, levels=1, tol=1e-4, N=256):
61 | signal = np.random.random((N, N))
62 |
63 | reconstructed = tfw.wrappers.idwt2d(
64 | tfw.wrappers.dwt2d(signal, levels=levels),
65 | levels=levels
66 | )
67 |
68 | error = np.mean(np.abs(signal - reconstructed))
69 | assert error < tol, "Mean error: %g" % error
70 |
71 |
72 | def test_ortho_haar():
73 | check_orthonormality_1d("haar")
74 |
75 | def test_linear_haar_1d():
76 | check_linearity_1d("haar")
77 |
78 | def test_linear_haar_2d():
79 | check_linearity_2d("haar")
80 |
81 | def test_inverse_haar_1d():
82 | check_inverse_1d("haar", levels=1)
83 |
84 | def test_inverse_haar_1d_level2():
85 | check_inverse_1d("haar", levels=2)
86 |
87 | def test_inverse_haar_2d():
88 | check_inverse_2d("haar", levels=2)
89 |
90 | def test_ortho_db2():
91 | check_orthonormality_1d("db2")
92 |
93 | def test_linear_db2_2d():
94 | check_linearity_2d("db2")
95 |
96 | def test_linear_db2_1d():
97 | check_linearity_1d("db2")
98 |
99 | def test_inverse_db2_1d():
100 | check_inverse_1d("db2", levels=1)
101 |
102 | def test_inverse_db2_1d_level2():
103 | check_inverse_1d("db2", levels=2)
104 |
105 | def test_inverse_db2_2d():
106 | check_inverse_2d("db2", levels=2)
107 |
108 |
109 | def test_ortho_db3():
110 | check_orthonormality_1d("db3")
111 |
112 | def test_linear_db3_2d():
113 | check_linearity_2d("db3")
114 |
115 | def test_linear_db3_1d():
116 | check_linearity_1d("db3")
117 |
118 | def test_inverse_db3_1d():
119 | check_inverse_1d("db3", levels=1)
120 |
121 | def test_inverse_db3_1d_level2():
122 | check_inverse_1d("db3", levels=2)
123 |
124 | def test_inverse_db3_2d():
125 | check_inverse_2d("db3", levels=2)
126 |
127 |
128 | def test_ortho_db4():
129 | check_orthonormality_1d("db4")
130 |
131 | def test_linear_db4_2d():
132 | check_linearity_2d("db4")
133 |
134 | def test_linear_db4_1d():
135 | check_linearity_1d("db4")
136 |
137 | def test_inverse_db4_1d():
138 | check_inverse_1d("db4", levels=1)
139 |
140 | def test_inverse_db4_1d_level2():
141 | check_inverse_1d("db4", levels=2)
142 |
143 | def test_inverse_db4_2d():
144 | check_inverse_2d("db4", levels=2)
145 |
--------------------------------------------------------------------------------
/tfwavelets/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | The tfwavelets package offers ways to achieve discrete wavelet transforms in tensorflow.
3 |
4 | The package consists of the following modules:
5 |
6 | * 'nodes' contains methods to construct TF subgraphs computing the 1D or 2D DWT or
7 | IDWT. Intended to be used if you need a DWT in your own TF graph.
8 | * 'wrappers' contains methods that wraps around the functionality in nodes. The
9 | construct a full TF graph, launches a session, and evaluates the graph. Intended to
10 | be used when you just want to compute the DWT/IDWT of a signal.
11 | * 'dwtcoeffs' contains predefined wavelets, as well as the classes necessary to
12 | create more user-defined wavelets.
13 | * 'utils' contains some useful helper functions, mostly used during the implementation
14 | of the other modules.
15 | """
16 | from . import nodes
17 | from . import wrappers
18 | from . import dwtcoeffs
19 | from . import utils
20 |
21 |
--------------------------------------------------------------------------------
/tfwavelets/dwtcoeffs.py:
--------------------------------------------------------------------------------
1 | """
2 | The 'dwtcoeffs' module contains predefined wavelets, as well as the classes necessary to
3 | create more user-defined wavelets.
4 |
5 | Wavelets are defined by the Wavelet class. A Wavelet object mainly consists of four Filter
6 | objects (defined by the Filter class) representing the decomposition and reconstruction
7 | low pass and high pass filters.
8 |
9 | Examples:
10 | You can define your own wavelet by creating four filters, and combining them to a wavelet:
11 |
12 | >>> decomp_lp = Filter([1 / np.sqrt(2), 1 / np.sqrt(2)], 0)
13 | >>> decomp_hp = Filter([1 / np.sqrt(2), -1 / np.sqrt(2)], 1)
14 | >>> recon_lp = Filter([1 / np.sqrt(2), 1 / np.sqrt(2)], 0)
15 | >>> recon_hp = Filter([-1 / np.sqrt(2), 1 / np.sqrt(2)], 1)
16 | >>> haar = Wavelet(decomp_lp, decomp_hp, recon_lp, recon_hp)
17 |
18 | """
19 |
20 | import numpy as np
21 | import tensorflow as tf
22 | from tfwavelets.utils import adapt_filter, to_tf_mat
23 |
24 |
25 | class Filter:
26 | """
27 | Class representing a filter.
28 |
29 | Attributes:
30 | coeffs (tf.constant): Filter coefficients
31 | zero (int): Origin of filter (which index of coeffs array is
32 | actually indexed as 0).
33 | edge_matrices (iterable): List of edge matrices, used for circular convolution.
34 | Stored as 3D TF tensors (constants).
35 | """
36 |
37 |
38 | def __init__(self, coeffs, zero, dtype=tf.float32):
39 | """
40 | Create a filter based on given filter coefficients
41 |
42 | Args:
43 | coeffs (np.ndarray): Filter coefficients
44 | zero (int): Origin of filter (which index of coeffs array is
45 | actually indexed as 0).
46 | """
47 | self.dtype=dtype;
48 | if dtype == tf.float32:
49 | self.npdtype = np.float32;
50 | elif dtype == tf.float64:
51 | self.npdtype = np.float64;
52 |
53 | self.coeffs = tf.constant(adapt_filter(coeffs), dtype=self.dtype)
54 |
55 | if not isinstance(coeffs, np.ndarray):
56 | coeffs = np.array(self.coeffs)
57 | self._coeffs = coeffs.astype(self.npdtype)
58 |
59 | self.zero = zero
60 |
61 | self.edge_matrices = to_tf_mat(self._edge_matrices(), dtype=self.dtype)
62 |
63 |
64 | def __getitem__(self, item):
65 | """
66 | Returns filter coefficients at requested indeces. Indeces are offset by the filter
67 | origin
68 |
69 | Args:
70 | item (int or slice): Item(s) to get
71 |
72 | Returns:
73 | np.ndarray: Item(s) at specified place(s)
74 | """
75 | if isinstance(item, slice):
76 | return self._coeffs.__getitem__(
77 | slice(item.start + self.zero, item.stop + self.zero, item.step)
78 | )
79 | else:
80 | return self._coeffs.__getitem__(item + self.zero)
81 |
82 |
83 | def num_pos(self):
84 | """
85 | Number of positive indexed coefficients in filter, including the origin. Ie,
86 | strictly speaking it's the number of non-negative indexed coefficients.
87 |
88 | Returns:
89 | int: Number of positive indexed coefficients in filter.
90 | """
91 | return len(self._coeffs) - self.zero
92 |
93 |
94 | def num_neg(self):
95 | """
96 | Number of negative indexed coefficients, excluding the origin.
97 |
98 | Returns:
99 | int: Number of negative indexed coefficients
100 | """
101 | return self.zero
102 |
103 |
104 | def _edge_matrices(self):
105 | """Computes the submatrices needed at the ends for circular convolution.
106 |
107 | Returns:
108 | Tuple of 2d-arrays, (top-left, top-right, bottom-left, bottom-right).
109 | """
110 | if not isinstance(self._coeffs, np.ndarray):
111 | self._coeffs = np.array(self._coeffs)
112 |
113 | n, = self._coeffs.shape
114 | self._coeffs = self._coeffs[::-1]
115 |
116 | # Some padding is necesssary to keep the submatrices
117 | # from having having columns in common
118 | padding = max((self.zero, n - self.zero - 1))
119 | matrix_size = n + padding
120 | filter_matrix = np.zeros((matrix_size, matrix_size), dtype=self.npdtype)
121 | negative = self._coeffs[
122 | -(self.zero + 1):] # negative indexed filter coeffs (and 0)
123 | positive = self._coeffs[
124 | :-(self.zero + 1)] # filter coeffs with strictly positive indeces
125 |
126 | # Insert first row
127 | filter_matrix[0, :len(negative)] = negative
128 |
129 | # Because -0 == 0, a length of 0 makes it impossible to broadcast
130 | # (nor is is necessary)
131 | if len(positive) > 0:
132 | filter_matrix[0, -len(positive):] = positive
133 |
134 | # Cycle previous row to compute the entire filter matrix
135 | for i in range(1, matrix_size):
136 | filter_matrix[i, :] = np.roll(filter_matrix[i - 1, :], 1)
137 |
138 | # TODO: Indexing not thoroughly tested
139 | num_pos = len(positive)
140 | num_neg = len(negative)
141 | top_left = filter_matrix[:num_pos, :(num_pos + num_neg - 1)]
142 | top_right = filter_matrix[:num_pos, -num_pos:]
143 | bottom_left = filter_matrix[-num_neg + 1:, :num_neg - 1]
144 | bottom_right = filter_matrix[-num_neg + 1:, -(num_pos + num_neg - 1):]
145 |
146 | # Indexing wrong when there are no negative indexed coefficients
147 | if num_neg == 1:
148 | bottom_left = np.zeros((0, 0), dtype=self.npdtype)
149 | bottom_right = np.zeros((0, 0), dtype=self.npdtype)
150 |
151 | return top_left, top_right, bottom_left, bottom_right
152 |
153 |
154 | class TrainableFilter(Filter):
155 | """
156 | Class representing a trainable filter.
157 |
158 | Attributes:
159 | coeffs (tf.Variable): Filter coefficients
160 | zero (int): Origin of filter (which index of coeffs array is
161 | actually indexed as 0).
162 | """
163 |
164 |
165 | def __init__(self, initial_coeffs, zero, dtype=tf.float32, name=None):
166 | """
167 | Create a trainable filter initialized with given filter coefficients
168 |
169 | Args:
170 | initial_coeffs (np.ndarray): Initial filter coefficients
171 | zero (int): Origin of filter (which index of coeffs array
172 | is actually indexed as 0).
173 | name (str): Optional. Name of tf variable created to hold
174 | the filter coeffs.
175 | """
176 | super().__init__(initial_coeffs, zero, dtype=dtype)
177 |
178 | self.coeffs = tf.Variable(
179 | initial_value=adapt_filter(initial_coeffs),
180 | trainable=True,
181 | name=name,
182 | dtype=dtype,
183 | constraint=tf.keras.constraints.max_norm(np.sqrt(2), [1, 2])
184 | )
185 |
186 | # Erase stuff that will be invalid once the filter coeffs has changed
187 | self._coeffs = [None]*len(self._coeffs)
188 | self.edge_matrices = None
189 |
190 |
191 | class Wavelet:
192 | """
193 | Class representing a wavelet.
194 |
195 | Attributes:
196 | decomp_lp (Filter): Filter coefficients for decomposition low pass filter
197 | decomp_hp (Filter): Filter coefficients for decomposition high pass filter
198 | recon_lp (Filter): Filter coefficients for reconstruction low pass filter
199 | recon_hp (Filter): Filter coefficients for reconstruction high pass filter
200 | """
201 |
202 |
203 | def __init__(self, decomp_lp, decomp_hp, recon_lp, recon_hp):
204 | """
205 | Create a new wavelet based on specified filters
206 |
207 | Args:
208 | decomp_lp (Filter): Filter coefficients for decomposition low pass filter
209 | decomp_hp (Filter): Filter coefficients for decomposition high pass filter
210 | recon_lp (Filter): Filter coefficients for reconstruction low pass filter
211 | recon_hp (Filter): Filter coefficients for reconstruction high pass filter
212 | """
213 | self.decomp_lp = decomp_lp
214 | self.decomp_hp = decomp_hp
215 | self.recon_lp = recon_lp
216 | self.recon_hp = recon_hp
217 |
218 |
219 | class TrainableWavelet(Wavelet):
220 | """
221 | Class representing a trainable wavelet
222 |
223 | Attributes:
224 | decomp_lp (TrainableFilter): Filter coefficients for decomposition low pass filter
225 | decomp_hp (TrainableFilter): Filter coefficients for decomposition high pass filter
226 | recon_lp (TrainableFilter): Filter coefficients for reconstruction low pass filter
227 | recon_hp (TrainableFilter): Filter coefficients for reconstruction high pass filter
228 | """
229 |
230 |
231 | def __init__(self, wavelet):
232 | """
233 | Create a new trainable wavelet initialized as specified wavelet
234 |
235 | Args:
236 | wavelet (Wavelet): Starting point for the trainable wavelet
237 | """
238 | super().__init__(
239 | TrainableFilter(wavelet.decomp_lp._coeffs, wavelet.decomp_lp.zero),
240 | TrainableFilter(wavelet.decomp_hp._coeffs, wavelet.decomp_hp.zero),
241 | TrainableFilter(wavelet.recon_lp._coeffs, wavelet.recon_lp.zero),
242 | TrainableFilter(wavelet.recon_hp._coeffs, wavelet.recon_hp.zero)
243 | )
244 |
245 |
246 | # Haar wavelet
247 | haar = Wavelet(
248 | Filter(np.array([0.70710677, 0.70710677]), 1),
249 | Filter(np.array([-0.70710677, 0.70710677]), 0),
250 | Filter(np.array([0.70710677, 0.70710677]), 0),
251 | Filter(np.array([0.70710677, -0.70710677]), 1),
252 | )
253 |
254 | # Daubechies wavelets
255 | db1 = haar
256 | db2 = Wavelet(
257 | Filter(np.array([-0.12940952255092145,
258 | 0.22414386804185735,
259 | 0.836516303737469,
260 | 0.48296291314469025]), 3),
261 | Filter(np.array([-0.48296291314469025,
262 | 0.836516303737469,
263 | -0.22414386804185735,
264 | -0.12940952255092145]), 0),
265 | Filter(np.array([0.48296291314469025,
266 | 0.836516303737469,
267 | 0.22414386804185735,
268 | -0.12940952255092145]), 0),
269 | Filter(np.array([-0.12940952255092145,
270 | -0.22414386804185735,
271 | 0.836516303737469,
272 | -0.48296291314469025]), 3)
273 | )
274 | db3 = Wavelet(
275 | Filter(np.array([0.035226291882100656,
276 | -0.08544127388224149,
277 | -0.13501102001039084,
278 | 0.4598775021193313,
279 | 0.8068915093133388,
280 | 0.3326705529509569]), 5),
281 | Filter(np.array([-0.3326705529509569,
282 | 0.8068915093133388,
283 | -0.4598775021193313,
284 | -0.13501102001039084,
285 | 0.08544127388224149,
286 | 0.035226291882100656]), 0),
287 | Filter(np.array([0.3326705529509569,
288 | 0.8068915093133388,
289 | 0.4598775021193313,
290 | -0.13501102001039084,
291 | -0.08544127388224149,
292 | 0.035226291882100656]), 0),
293 | Filter(np.array([0.035226291882100656,
294 | 0.08544127388224149,
295 | -0.13501102001039084,
296 | -0.4598775021193313,
297 | 0.8068915093133388,
298 | -0.3326705529509569]), 5)
299 | )
300 | db4 = Wavelet(
301 | Filter(np.array([-0.010597401784997278,
302 | 0.032883011666982945,
303 | 0.030841381835986965,
304 | -0.18703481171888114,
305 | -0.02798376941698385,
306 | 0.6308807679295904,
307 | 0.7148465705525415,
308 | 0.23037781330885523]), 7),
309 | Filter(np.array([-0.23037781330885523,
310 | 0.7148465705525415,
311 | -0.6308807679295904,
312 | -0.02798376941698385,
313 | 0.18703481171888114,
314 | 0.030841381835986965,
315 | -0.032883011666982945,
316 | -0.010597401784997278]), 0),
317 | Filter(np.array([0.23037781330885523,
318 | 0.7148465705525415,
319 | 0.6308807679295904,
320 | -0.02798376941698385,
321 | -0.18703481171888114,
322 | 0.030841381835986965,
323 | 0.032883011666982945,
324 | -0.010597401784997278]), 0),
325 | Filter(np.array([-0.010597401784997278,
326 | -0.032883011666982945,
327 | 0.030841381835986965,
328 | 0.18703481171888114,
329 | -0.02798376941698385,
330 | -0.6308807679295904,
331 | 0.7148465705525415,
332 | -0.23037781330885523]), 7)
333 | )
334 |
335 | def get_wavelet(wavelet_name, dtype=tf.float32):
336 | """
337 | Get a wavelet based on the wavelets name.
338 |
339 | Args:
340 | wavelet_name (str): Name of the wavelet ('haar', 'db1', 'db2', 'db3' or 'db4').
341 |
342 | Returns:
343 | A wavelet object. If the wavelet name is not recognized, it returns None.
344 | """
345 | wname = wavelet_name.lower()
346 | if wname == 'db1' or wname == 'haar':
347 | # Haar wavelet
348 | a = 1/np.sqrt(2);
349 | haar = Wavelet(
350 | Filter(np.array([a, a]), 1, dtype=dtype),
351 | Filter(np.array([-a, a]), 0, dtype=dtype),
352 | Filter(np.array([a, a]), 0, dtype=dtype),
353 | Filter(np.array([a, -a]), 1, dtype=dtype),
354 | )
355 | return haar
356 | elif wname == 'db2':
357 | db2 = Wavelet(
358 | Filter(np.array([-0.12940952255092145,
359 | 0.22414386804185735,
360 | 0.836516303737469,
361 | 0.48296291314469025]), 3, dtype=dtype),
362 | Filter(np.array([-0.48296291314469025,
363 | 0.836516303737469,
364 | -0.22414386804185735,
365 | -0.12940952255092145]), 0, dtype=dtype),
366 | Filter(np.array([0.48296291314469025,
367 | 0.836516303737469,
368 | 0.22414386804185735,
369 | -0.12940952255092145]), 0, dtype=dtype),
370 | Filter(np.array([-0.12940952255092145,
371 | -0.22414386804185735,
372 | 0.836516303737469,
373 | -0.48296291314469025]), 3, dtype=dtype)
374 | )
375 | return db2
376 | elif wname == 'db3':
377 | db3 = Wavelet(
378 | Filter(np.array([0.035226291882100656,
379 | -0.08544127388224149,
380 | -0.13501102001039084,
381 | 0.4598775021193313,
382 | 0.8068915093133388,
383 | 0.3326705529509569]), 5, dtype=dtype),
384 | Filter(np.array([-0.3326705529509569,
385 | 0.8068915093133388,
386 | -0.4598775021193313,
387 | -0.13501102001039084,
388 | 0.08544127388224149,
389 | 0.035226291882100656]), 0, dtype=dtype),
390 | Filter(np.array([0.3326705529509569,
391 | 0.8068915093133388,
392 | 0.4598775021193313,
393 | -0.13501102001039084,
394 | -0.08544127388224149,
395 | 0.035226291882100656]), 0, dtype=dtype),
396 | Filter(np.array([0.035226291882100656,
397 | 0.08544127388224149,
398 | -0.13501102001039084,
399 | -0.4598775021193313,
400 | 0.8068915093133388,
401 | -0.3326705529509569]), 5, dtype=dtype)
402 | )
403 | return db3
404 | elif wname == 'db4':
405 | db4 = Wavelet(
406 | Filter(np.array([-0.010597401784997278,
407 | 0.032883011666982945,
408 | 0.030841381835986965,
409 | -0.18703481171888114,
410 | -0.02798376941698385,
411 | 0.6308807679295904,
412 | 0.7148465705525415,
413 | 0.23037781330885523]), 7, dtype=dtype),
414 | Filter(np.array([-0.23037781330885523,
415 | 0.7148465705525415,
416 | -0.6308807679295904,
417 | -0.02798376941698385,
418 | 0.18703481171888114,
419 | 0.030841381835986965,
420 | -0.032883011666982945,
421 | -0.010597401784997278]), 0, dtype=dtype),
422 | Filter(np.array([0.23037781330885523,
423 | 0.7148465705525415,
424 | 0.6308807679295904,
425 | -0.02798376941698385,
426 | -0.18703481171888114,
427 | 0.030841381835986965,
428 | 0.032883011666982945,
429 | -0.010597401784997278]), 0, dtype=dtype),
430 | Filter(np.array([-0.010597401784997278,
431 | -0.032883011666982945,
432 | 0.030841381835986965,
433 | 0.18703481171888114,
434 | -0.02798376941698385,
435 | -0.6308807679295904,
436 | 0.7148465705525415,
437 | -0.23037781330885523]), 7, dtype=dtype)
438 | )
439 | return db4
440 | else:
441 | return None
442 |
443 |
--------------------------------------------------------------------------------
/tfwavelets/nodes.py:
--------------------------------------------------------------------------------
1 | """
2 | The 'nodes' module contains methods to construct TF subgraphs computing the 1D or 2D DWT
3 | or IDWT. Intended to be used if you need a DWT in your own TF graph.
4 | """
5 |
6 | import tensorflow as tf
7 |
8 |
9 | def cyclic_conv1d(input_node, filter_):
10 | """
11 | Cyclic convolution
12 |
13 | Args:
14 | input_node: Input signal (3-tensor [batch, width, in_channels])
15 | filter_: Filter
16 |
17 | Returns:
18 | Tensor with the result of a periodic convolution
19 | """
20 | # Create shorthands for TF nodes
21 | kernel_node = filter_.coeffs
22 | tl_node, tr_node, bl_node, br_node = filter_.edge_matrices
23 |
24 | # Do inner convolution
25 | inner = tf.nn.conv1d(input_node, kernel_node[::-1], stride=1, padding='VALID')
26 |
27 | # Create shorthands for shapes
28 | input_shape = tf.shape(input_node)
29 | tl_shape = tf.shape(tl_node)
30 | tr_shape = tf.shape(tr_node)
31 | bl_shape = tf.shape(bl_node)
32 | br_shape = tf.shape(br_node)
33 |
34 | # Slices of the input signal corresponding to the corners
35 | tl_slice = tf.slice(input_node,
36 | [0, 0, 0],
37 | [-1, tl_shape[2], -1])
38 | tr_slice = tf.slice(input_node,
39 | [0, input_shape[1] - tr_shape[2], 0],
40 | [-1, tr_shape[2], -1])
41 | bl_slice = tf.slice(input_node,
42 | [0, 0, 0],
43 | [-1, bl_shape[2], -1])
44 | br_slice = tf.slice(input_node,
45 | [0, input_shape[1] - br_shape[2], 0],
46 | [-1, br_shape[2], -1])
47 |
48 | # TODO: It just werks (It's the magic of the algorithm). i.e. Why do we have to transpose?
49 | tl = tl_node @ tf.transpose(tl_slice, perm=[2, 1, 0])
50 | tr = tr_node @ tf.transpose(tr_slice, perm=[2, 1, 0])
51 | bl = bl_node @ tf.transpose(bl_slice, perm=[2, 1, 0])
52 | br = br_node @ tf.transpose(br_slice, perm=[2, 1, 0])
53 |
54 | head = tf.transpose(tl + tr, perm=[2, 1, 0])
55 | tail = tf.transpose(bl + br, perm=[2, 1, 0])
56 |
57 | return tf.concat((head, inner, tail), axis=1)
58 |
59 |
60 | def cyclic_conv1d_alt(input_node, filter_):
61 | """
62 | Alternative cyclic convolution. Uses more memory than cyclic_conv1d.
63 |
64 | Args:
65 | input_node: Input signal
66 | filter_ (Filter): Filter object
67 |
68 | Returns:
69 | Tensor with the result of a periodic convolution.
70 | """
71 | kernel_node = filter_.coeffs
72 |
73 | N = int(input_node.shape[1])
74 |
75 | start = N - filter_.num_neg()
76 | end = filter_.num_pos() - 1
77 |
78 | # Perodically extend input signal
79 | input_new = tf.concat(
80 | (input_node[:, start:, :], input_node, input_node[:, 0:end, :]),
81 | axis=1
82 | )
83 |
84 | # Convolve with periodic extension
85 | result = tf.nn.conv1d(input_new, kernel_node[::-1], stride=1, padding="VALID")
86 |
87 | return result
88 |
89 |
90 | def upsample(input_node, odd=False):
91 | """Upsamples. Doubles the length of the input, filling with zeros
92 |
93 | Args:
94 | input_node: 3-tensor [batch, spatial dim, channels] to be upsampled
95 | odd: Bool, optional. If True, content of input_node will be
96 | placed on the odd indeces of the output. Otherwise, the
97 | content will be places on the even indeces. This is the
98 | default behaviour.
99 |
100 | Returns:
101 | The upsampled output Tensor.
102 | """
103 |
104 | columns = []
105 | for col in tf.unstack(input_node, axis=1):
106 | columns.extend([col, tf.zeros_like(col)])
107 |
108 | if odd:
109 | # https://stackoverflow.com/questions/30097512/how-to-perform-a-pairwise-swap-of-a-list
110 | # TODO: Understand
111 | # Rounds down to even number
112 | l = len(columns) & -2
113 | columns[1:l:2], columns[:l:2] = columns[:l:2], columns[1:l:2]
114 |
115 | # TODO: Should we actually expand the dimension?
116 | return tf.expand_dims(tf.concat(columns, 1), -1)
117 |
118 |
119 | def dwt1d(input_node, wavelet, levels=1):
120 | """
121 | Constructs a TF computational graph computing the 1D DWT of an input signal.
122 |
123 | Args:
124 | input_node: A 3D tensor containing the signal. The dimensions should be
125 | [batch, signal, channels].
126 | wavelet: Wavelet object
127 | levels: Number of levels.
128 |
129 | Returns:
130 | The output node of the DWT graph.
131 | """
132 | # TODO: Check that level is a reasonable number
133 | # TODO: Check types
134 |
135 | coeffs = [None] * (levels + 1)
136 |
137 | last_level = input_node
138 |
139 | for level in range(levels):
140 | lp_res = cyclic_conv1d_alt(last_level, wavelet.decomp_lp)[:, ::2, :]
141 | hp_res = cyclic_conv1d_alt(last_level, wavelet.decomp_hp)[:, 1::2, :]
142 |
143 | last_level = lp_res
144 | coeffs[levels - level] = hp_res
145 |
146 | coeffs[0] = last_level
147 | return tf.concat(coeffs, axis=1)
148 |
149 |
150 | def dwt2d(input_node, wavelet, levels=1):
151 | """
152 | Constructs a TF computational graph computing the 2D DWT of an input signal.
153 |
154 | Args:
155 | input_node: A 3D tensor containing the signal. The dimensions should be
156 | [rows, cols, channels].
157 | wavelet: Wavelet object.
158 | levels: Number of levels.
159 |
160 | Returns:
161 | The output node of the DWT graph.
162 | """
163 | # TODO: Check that level is a reasonable number
164 | # TODO: Check types
165 |
166 | coeffs = [None] * levels
167 |
168 | last_level = input_node
169 | m, n = int(input_node.shape[0]), int(input_node.shape[1])
170 |
171 | for level in range(levels):
172 | local_m, local_n = m // (2 ** level), n // (2 ** level)
173 |
174 | first_pass = dwt1d(last_level, wavelet, 1)
175 | second_pass = tf.transpose(
176 | dwt1d(
177 | tf.transpose(first_pass, perm=[1, 0, 2]),
178 | wavelet,
179 | 1
180 | ),
181 | perm=[1, 0, 2]
182 | )
183 |
184 | last_level = tf.slice(second_pass, [0, 0, 0], [local_m // 2, local_n // 2, 1])
185 | coeffs[level] = [
186 | tf.slice(second_pass, [local_m // 2, 0, 0], [local_m // 2, local_n // 2, 1]),
187 | tf.slice(second_pass, [0, local_n // 2, 0], [local_m // 2, local_n // 2, 1]),
188 | tf.slice(second_pass, [local_m // 2, local_n // 2, 0],
189 | [local_m // 2, local_n // 2, 1])
190 | ]
191 |
192 | for level in range(levels - 1, -1, -1):
193 | upper_half = tf.concat([last_level, coeffs[level][0]], 0)
194 | lower_half = tf.concat([coeffs[level][1], coeffs[level][2]], 0)
195 |
196 | last_level = tf.concat([upper_half, lower_half], 1)
197 |
198 | return last_level
199 |
200 |
201 | def idwt1d(input_node, wavelet, levels=1):
202 | """
203 | Constructs a TF graph that computes the 1D inverse DWT for a given wavelet.
204 |
205 | Args:
206 | input_node (tf.placeholder): Input signal. A 3D tensor with dimensions
207 | as [batch, signal, channels]
208 | wavelet (tfwavelets.dwtcoeffs.Wavelet): Wavelet object.
209 | levels (int): Number of levels.
210 |
211 | Returns:
212 | Output node of IDWT graph.
213 | """
214 | m, n = int(input_node.shape[0]), int(input_node.shape[1])
215 |
216 | first_n = n // (2 ** levels)
217 | last_level = tf.slice(input_node, [0, 0, 0], [m, first_n, 1])
218 |
219 | for level in range(levels - 1, -1 , -1):
220 | local_n = n // (2 ** level)
221 |
222 | detail = tf.slice(input_node, [0, local_n//2, 0], [m, local_n//2, 1])
223 |
224 | lowres_padded = upsample(last_level, odd=False)
225 | detail_padded = upsample(detail, odd=True)
226 |
227 | lowres_filtered = cyclic_conv1d_alt(lowres_padded, wavelet.recon_lp)
228 | detail_filtered = cyclic_conv1d_alt(detail_padded, wavelet.recon_hp)
229 |
230 | last_level = lowres_filtered + detail_filtered
231 |
232 | return last_level
233 |
234 |
235 | def idwt2d(input_node, wavelet, levels=1):
236 | """
237 | Constructs a TF graph that computes the 2D inverse DWT for a given wavelet.
238 |
239 | Args:
240 | input_node (tf.placeholder): Input signal. A 3D tensor with dimensions
241 | as [rows, cols, channels]
242 | wavelet (tfwavelets.dwtcoeffs.Wavelet): Wavelet object.
243 | levels (int): Number of levels.
244 |
245 | Returns:
246 | Output node of IDWT graph.
247 | """
248 | m, n = int(input_node.shape[0]), int(input_node.shape[1])
249 | first_m, first_n = m // (2 ** levels), n // (2 ** levels)
250 |
251 | last_level = tf.slice(input_node, [0, 0, 0], [first_m, first_n, 1])
252 |
253 | for level in range(levels - 1, -1, -1):
254 | local_m, local_n = m // (2 ** level), n // (2 ** level)
255 |
256 | # Extract detail spaces
257 | detail_tr = tf.slice(input_node, [local_m // 2, 0, 0],
258 | [local_n // 2, local_m // 2, 1])
259 | detail_bl = tf.slice(input_node, [0, local_n // 2, 0],
260 | [local_n // 2, local_m // 2, 1])
261 | detail_br = tf.slice(input_node, [local_n // 2, local_m // 2, 0],
262 | [local_n // 2, local_m // 2, 1])
263 |
264 | # Construct image of this DWT level
265 | upper_half = tf.concat([last_level, detail_tr], 0)
266 | lower_half = tf.concat([detail_bl, detail_br], 0)
267 |
268 | this_level = tf.concat([upper_half, lower_half], 1)
269 |
270 | # First pass, corresponding to second pass in dwt2d
271 | first_pass = tf.transpose(
272 | idwt1d(
273 | tf.transpose(this_level, perm=[1, 0, 2]),
274 | wavelet,
275 | 1
276 | ),
277 | perm=[1, 0, 2]
278 | )
279 | # Second pass, corresponding to first pass in dwt2d
280 | second_pass = idwt1d(first_pass, wavelet, 1)
281 |
282 | last_level = second_pass
283 |
284 | return last_level
285 |
--------------------------------------------------------------------------------
/tfwavelets/utils.py:
--------------------------------------------------------------------------------
1 | """
2 | The 'utils' module contains some useful helper functions, mostly used during the
3 | implementation of the other modules.
4 | """
5 |
6 | import numpy as np
7 | import tensorflow as tf
8 |
9 |
10 | def adapt_filter(filter):
11 | """
12 | Expands dimensions of a 1d vector to match the required tensor dimensions in a TF
13 | graph.
14 |
15 | Args:
16 | filter (np.ndarray): A 1D vector containing filter coefficients
17 |
18 | Returns:
19 | np.ndarray: A 3D vector with two empty dimensions as dim 2 and 3.
20 |
21 | """
22 | # Add empty dimensions for batch size and channel num
23 | return np.expand_dims(np.expand_dims(filter, -1), -1)
24 |
25 |
26 | def to_tf_mat(matrices, dtype=tf.float32):
27 | """
28 | Expands dimensions of 2D matrices to match the required tensor dimensions in a TF
29 | graph, and wrapping them as TF constants.
30 |
31 | Args:
32 | matrices (iterable): A list (or tuple) of 2D numpy arrays.
33 |
34 | Returns:
35 | iterable: A list of all the matrices converted to 3D TF tensors.
36 | """
37 | result = []
38 |
39 | for matrix in matrices:
40 | result.append(
41 | tf.constant(np.expand_dims(matrix, 0), dtype=dtype)
42 | )
43 |
44 | return result
45 |
--------------------------------------------------------------------------------
/tfwavelets/wrappers.py:
--------------------------------------------------------------------------------
1 | """
2 | The 'wrappers' module contains methods that wraps around the functionality in nodes. The
3 | construct a full TF graph, launches a session, and evaluates the graph. Intended to be
4 | used when you just want to compute the DWT/IDWT of a signal.
5 | """
6 |
7 | import numpy as np
8 | import tfwavelets as tfw
9 | import tensorflow as tf
10 |
11 |
12 | def dwt1d(signal, wavelet="haar", levels=1, npdtype=np.float32):
13 | """
14 | Computes the DWT of a 1D signal.
15 |
16 | Args:
17 | signal (np.ndarray): A 1D array to compute DWT of.
18 | wavelet (str): Type of wavelet (haar or db2)
19 | levels (int): Number of DWT levels
20 |
21 | Returns:
22 | np.ndarray: The DWT of the signal.
23 |
24 | Raises:
25 | ValueError: If wavelet is not supported
26 | """
27 | # Prepare signal for tf. Turn into 32bit floats for GPU computation, and
28 | # expand dims to make it into a 3d tensor so tf.nn.conv1d is happy
29 | signal = signal.astype(npdtype)
30 | signal = np.expand_dims(signal, 0)
31 | signal = np.expand_dims(signal, -1)
32 |
33 | # Construct and compute TF graph
34 | return _construct_and_compute_graph(
35 | signal,
36 | tfw.nodes.dwt1d,
37 | _parse_wavelet(wavelet),
38 | levels
39 | )
40 |
41 |
42 | def dwt2d(signal, wavelet="haar", levels=1, npdtype=np.float32):
43 | """
44 | Computes the DWT of a 2D signal.
45 |
46 | Args:
47 | signal (np.ndarray): A 2D array to compute DWT of.
48 | wavelet (str): Type of wavelet (haar or db2)
49 | levels (int): Number of DWT levels
50 |
51 | Returns:
52 | np.ndarray: The DWT of the signal.
53 |
54 | Raises:
55 | ValueError: If wavelet is not supported
56 | """
57 | # Prepare signal for tf. Turn into 32bit floats for GPU computation, and
58 | # expand dims to make it into a 3d tensor so tf.nn.conv1d is happy
59 | signal = signal.astype(npdtype)
60 | signal = np.expand_dims(signal, -1)
61 |
62 | # Construct and compute TF graph
63 | return _construct_and_compute_graph(
64 | signal,
65 | tfw.nodes.dwt2d,
66 | _parse_wavelet(wavelet),
67 | levels
68 | )
69 |
70 |
71 | def idwt1d(signal, wavelet="haar", levels=1, npdtype=np.float32):
72 | """
73 | Computes the inverse DWT of a 1D signal.
74 |
75 | Args:
76 | signal (np.ndarray): A 1D array to compute IDWT of.
77 | wavelet (str): Type of wavelet (haar or db2)
78 | levels (int): Number of DWT levels
79 |
80 | Returns:
81 | np.ndarray: The IDWT of the signal.
82 |
83 | Raises:
84 | ValueError: If wavelet is not supported
85 | """
86 | # Prepare signal for tf. Turn into 32bit floats for GPU computation, and
87 | # expand dims to make it into a 3d tensor so tf.nn.conv1d is happy
88 | signal = signal.astype(npdtype)
89 | signal = np.expand_dims(signal, 0)
90 | signal = np.expand_dims(signal, -1)
91 |
92 | # Construct and compute TF graph
93 | return _construct_and_compute_graph(
94 | signal,
95 | tfw.nodes.idwt1d,
96 | _parse_wavelet(wavelet),
97 | levels
98 | )
99 |
100 |
101 | def idwt2d(signal, wavelet="haar", levels=1, npdtype=np.float32):
102 | """
103 | Computes the inverse DWT of a 2D signal.
104 |
105 | Args:
106 | signal (np.ndarray): A 2D array to compute iDWT of.
107 | wavelet (str): Type of wavelet (haar or db2)
108 | levels (int): Number of DWT levels
109 |
110 | Returns:
111 | np.ndarray: The IDWT of the signal.
112 |
113 | Raises:
114 | ValueError: If wavelet is not supported
115 | """
116 | # Prepare signal for tf. Turn into 32bit floats for GPU computation, and
117 | # expand dims to make it into a 3d tensor so tf.nn.conv1d is happy
118 | signal = signal.astype(npdtype)
119 | signal = np.expand_dims(signal, -1)
120 |
121 | # Construct and compute TF graph
122 | return _construct_and_compute_graph(
123 | signal,
124 | tfw.nodes.idwt2d,
125 | _parse_wavelet(wavelet),
126 | levels
127 | )
128 |
129 |
130 | def _construct_and_compute_graph(input_signal, node, wavelet_obj, levels, npdtype):
131 | """
132 | Constructs a TF graph processing the input signal with given node and evaluates it.
133 |
134 | Args:
135 | input_signal: Input signal. A 3D array with [batch, signal, channels]
136 | node: Node to process signal with, any kind of dwt/idwt
137 | wavelet_obj: Wavelet object to pass to node
138 | levels: Num of levels (passed to node)
139 |
140 | Returns:
141 |
142 | """
143 | if npdtype == np.float32:
144 | dtype=tf.float32;
145 | elif npdtype == np.float64:
146 | dtype=tf.float64;
147 |
148 | # Placeholder for input signal
149 | tf_signal = tf.placeholder(dtype=dtype, shape=input_signal.shape)
150 |
151 | # Set up tf graph
152 | output = node(tf_signal, wavelet=wavelet_obj, levels=levels)
153 |
154 | # Compute graph
155 | with tf.Session() as sess:
156 | signal = sess.run(output, feed_dict={tf_signal: input_signal})
157 |
158 | # Remove empty dimensions and return
159 | return np.squeeze(signal)
160 |
161 |
162 | def _parse_wavelet(wavelet):
163 | """
164 | Look for wavelet coeffs in database, and return them if they exists
165 |
166 | Args:
167 | wavelet (str): Name of wavelet
168 |
169 | Returns:
170 | (np.ndarray, np.ndarray): Filters for wavelet
171 |
172 | Raises:
173 | ValueError: If wavelet is not supported
174 | """
175 | if wavelet == "haar":
176 | return tfw.dwtcoeffs.haar
177 | elif wavelet == "db2":
178 | return tfw.dwtcoeffs.db2
179 | elif wavelet == "db3":
180 | return tfw.dwtcoeffs.db3
181 | elif wavelet == "db4":
182 | return tfw.dwtcoeffs.db4
183 | else:
184 | raise ValueError("dwt1d does not support wavelet {}".format(wavelet))
185 |
--------------------------------------------------------------------------------