└── README.md
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
Awesome-Thermal-Deep-3D-Learning
6 | A curated list of resources for deep 3D vision from thermal image
7 |
8 |
9 |
10 | Table of contents
11 |
12 | - [1. Dataset for Thermal 3D Vision](#1-dataset-for-thermal-3d-vision)
13 | - [2. Deep 3D Vision from Thermal Image](#2-deep-3d-vision-from-thermal-image)
14 | - [2.1 Supervised 3D Vision](#21-supervised-3d-vision-from-thermal-image)
15 | - [2.2 Self-supervised 3D Vision](#22-self-supervised-3d-vision-from-thermal-image)
16 | - [3. Deep 3D Vision from Thermal and Additional Sensor Fusion](#3-deep-3d-vision-from-thermal-and-additional-sensor-fusion)
17 | - [4. Non-Deep 3D Vision from Thermal and Other Sensor](#4-non-deep-3d-vision-from-thermal-and-other-sensor)
18 |
19 | # 1. Dataset for Thermal 3D Vision
20 |
21 | Dataset List
22 |
23 | |Publication|Title|Sensor|Platform|Scene Types|Dataset Link|Highlight|
24 | |-|-|-|-|-|-|-|
25 | CVPR 17 | [CATS: A Color And Thermal Stereo Benchmark](https://openaccess.thecvf.com/content_cvpr_2017/papers/Treible_CATS_A_Color_CVPR_2017_paper.pdf) | Stereo RGB, Stereo Thermal, Lidar | Handheld | In+Outdoor | [Here](http://bigdatavision.org/cats/)| |
26 | ITS 19 | [KAIST Multi-Spectral DayNight Data Set for Autonomous and Assisted Driving](https://ieeexplore.ieee.org/document/8293689) | Co-aligned RGB/Thermal, Stereo RGB, Lidar, GPS/IMU | Vehicle | Outdoor | Here | Large-scale outdoor dataset |
27 | ICRA 21 | [A Multi-spectral Dataset for Evaluating Motion Estimation Systems](https://arxiv.org/abs/2007.00622) | RGB, Thermal, Kinect, IMU | Handheld | In+Outdoor | [Here](https://github.com/NGCLAB/multi-spectral-dataset)| Large-scale indoor datase|
28 | RA-L 22 | [ViViD++: Vision for Visibility Dataset](https://arxiv.org/abs/2204.06183) | RGB-D, Thermal, Lidar, GPS/IMU, Event | Handheld, Vehicle | In+Outdoor| [Here](https://visibilitydataset.github.io/) | Large-scale outdoor dataset |
29 | Arxiv 22 | [OdomBeyondVision; An Indoor Multi-modal Multi-platform Odometry Dataset Beyond the Visible Spectrum](https://arxiv.org/abs/2206.01589) | RGB, Thermal, Lidar, IMU, Radar | Handheld, UGV, UAV | Indoor | [Here](https://github.com/MAPS-Lab/OdomBeyondVision) | Large-scale indoor dataset|
30 | ---
31 |
32 |
33 | # 2. Deep 3D Vision from Thermal Image
34 |
35 | ## 2.1 Supervised 3D Vision from Thermal Image
36 |
37 | Paper List
38 |
39 | |Publication|Title|Task|Dataset|Scene Types|Code|Highlight|
40 | |-|-|-|-|-|-|-|
41 |
42 | ---
43 | ## 2.2 Self-Supervised 3D Vision from Thermal Image
44 |
45 | Paper List
46 |
47 | |Publication|Title|Task|Dataset|Scene Types|Code|Highlight|
48 | |-|-|-|-|-|-|-|
49 | AAAI 18 | [Multispectral Transfer Network: Unsupervised Depth Estimation for All-Day Vision](https://ojs.aaai.org/index.php/AAAI/article/view/12297) | MonoDepth | KAIST Multi-Spectral Dataset | Outdoor | Here | Spatial RGB, thermal image reconstruction |
50 | WACV 21 | [An Alternative of LiDAR in Nighttime: Unsupervised Depth Estimation Based on Single Thermal Image](https://openaccess.thecvf.com/content/WACV2021/papers/Lu_An_Alternative_of_LIDAR_in_Nighttime_Unsupervised_Depth_Estimation_Based_WACV_2021_paper.pdf) | MonoDepth | Own dataset | In+Outdoor | here | Spatial thermal image reconstruction |
51 | RA-L 21 | [SuperThermal: Matching Thermal as Visible Through Thermal Feature Exploration](https://ieeexplore.ieee.org/abstract/document/9359356) | Feature Matching | CSS, KAIST pedestrian dataset | Outdoor | Here | TBA |
52 | RA-L 22& ICRA 22 | [Self-Supervised Depth and Ego-Motion Estimation for Monocular Thermal Video Using Multi-Spectral Consistency Loss](https://ieeexplore.ieee.org/abstract/document/9662239) | MonoDepth, Pose | [ViViD dataset](https://visibilitydataset.github.io/) | In+Outdoor | [Here](https://github.com/UkcheolShin/ThermalSfMLearner-MS) | Temporal RGB, thermal image reconstruction loss |
53 | RA-L 22& IROS 22 | [Maximizing Self-supervision from Thermal Image for Effective Self-supervised Learning of Depth and Ego-motion](https://arxiv.org/abs/2201.04387) | MonoDepth, Pose | [ViViD dataset](https://visibilitydataset.github.io/) | In+Outdoor | [Here](https://github.com/UkcheolShin/ThermalMonoDepth) | Temporal thermal image reconstruction only |
54 | ---
55 |
56 |
57 |
58 | # 3. Deep 3D Vision from Thermal and Additional Sensor Fusion
59 |
60 | Paper List
61 |
62 | |Publication|Title|Task|Sensor|Dataset|Scene Types|Code|Highlight|
63 | |-|-|-|-|-|-|-|-|
64 | RA-L 20 | [DeepTIO: A Deep Thermal-Inertial Odometry With Visual Hallucination](https://ieeexplore.ieee.org/abstract/document/8968430) | Odometry | Thermal, IMU | Own dataset | Here | TBA | TBA |
65 | IROS 20 | [Tp-tio: A robust thermal-inertial odometry with deep thermalpoint](https://ieeexplore.ieee.org/abstract/document/9341716) | Odometry | Thermal, IMU | TBA | TBA | TBA | TBA |
66 | TRO 21 | [Graph-Based Thermal–Inertial SLAM With Probabilistic Neural Networks](https://ieeexplore.ieee.org/abstract/document/9623261)| Odometry | Thermal, IMU | TBA | TBA | TBA | TBA |
67 |
68 | ---
69 |
70 | # 4. Non-Deep 3D Vision from Thermal and Other Sensor
71 |
72 | Paper List
73 |
74 | |Publication|Title|Task|Sensor|Dataset|Scene Types|Code|Highlight|
75 | |-|-|-|-|-|-|-|-|
76 | IROS 21 | [Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions](https://ieeexplore.ieee.org/abstract/document/9636799)| Odometry | Thermal, IMU, Radar | TBA | TBA | TBA | TBA |
77 | CVPR 21 | [Shape from Thermal Radiation:Passive Ranging Using Multi-spectral LWIR Measurements](https://openaccess.thecvf.com/content/CVPR2022/html/Nagase_Shape_From_Thermal_Radiation_Passive_Ranging_Using_Multi-Spectral_LWIR_Measurements_CVPR_2022_paper.html) | MonoDepth | Thermal | Own dataset | In+Outdoor | Here | TBA |
78 | RA-L 22 | [Thermal-Inertial SLAM for the Environments With Challenging Illumination](https://ieeexplore.ieee.org/abstract/document/9804793) | Odometry | Thermal, IMU | TBA | TBA | TBA | TBA |
79 | ---
80 |
--------------------------------------------------------------------------------