├── test
├── __init__.py
├── DataSets
│ ├── Tests
│ │ ├── NumericTests
│ │ │ ├── numericFloatsNAN.csv
│ │ │ ├── numericFloats.csv
│ │ │ ├── numericInts.csv
│ │ │ ├── numericFloatsMissing.csv
│ │ │ ├── numericFloatsString.csv
│ │ │ ├── .DS_Store
│ │ │ ├── numericInts.xlsx
│ │ │ ├── numericFloats.xlsx
│ │ │ ├── numericFloatsNAN.xlsx
│ │ │ ├── numericFloatsString.xlsx
│ │ │ └── numericFloatsMissing.xlsx
│ │ ├── .DS_Store
│ │ ├── MissingFeatureData.csv
│ │ ├── MissingFeatureAndPhenotypeData.csv
│ │ ├── StringData.xlsx
│ │ ├── StringData2.xlsx
│ │ ├── StringData.csv
│ │ ├── ContinuousPhenotype.xlsx
│ │ ├── MissingFeatureData.xlsx
│ │ ├── SpecificityTests
│ │ │ ├── .DS_Store
│ │ │ ├── Specifics.csv
│ │ │ └── Specifics.xlsx
│ │ ├── StringData2.csv
│ │ ├── MissingFeatureAndPhenotypeData.xlsx
│ │ └── ContinuousPhenotype.csv
│ ├── .DS_Store
│ └── Real
│ │ ├── .DS_Store
│ │ ├── Multiplexer6.csv
│ │ └── Multiplexer6Modified.csv
├── test_StringEnumerator.py
└── test_XCS.py
├── setup.cfg
├── requirements.txt
├── defaultExportDir
├── .DS_Store
├── savedModel1
├── savedModel2
└── savedModel3
├── .travis.yml
├── MANIFEST.in
├── skXCS
├── Environment.py
├── __init__.py
├── Timer.py
├── PredictionArray.py
├── IterationRecord.py
├── DataManagement.py
├── StringEnumerator.py
├── ClassifierSet.py
├── Classifier.py
└── XCS.py
├── setup.py
├── README.md
└── LICENSE
/test/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [metadata]
2 | description-file = README.md
3 |
4 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 |
2 | numpy==1.16.2
3 | pandas==0.24.2
4 | scikit-learn==0.20.3
5 |
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsNAN.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
,2,0,2
1,,4,0.3
0.5,2,4,
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloats.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
1,2,0,2
1,0.1,4,0.3
0.5,2,-0.2,2
--------------------------------------------------------------------------------
/test/DataSets/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/.DS_Store
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericInts.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
2 | 1,2,1,2
3 | 1,3,4,3
4 | 2,2,1,2
--------------------------------------------------------------------------------
/defaultExportDir/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/defaultExportDir/.DS_Store
--------------------------------------------------------------------------------
/defaultExportDir/savedModel1:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/defaultExportDir/savedModel1
--------------------------------------------------------------------------------
/defaultExportDir/savedModel2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/defaultExportDir/savedModel2
--------------------------------------------------------------------------------
/defaultExportDir/savedModel3:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/defaultExportDir/savedModel3
--------------------------------------------------------------------------------
/test/DataSets/Real/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Real/.DS_Store
--------------------------------------------------------------------------------
/test/DataSets/Tests/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/.DS_Store
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsMissing.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
2 | 1,2,,
3 | 1,,4,0.3
4 | ,2,-0.2,
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsString.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
2 | ,2,0,2
3 | 1,,4,0.3
4 | 0.5,2,hi,2
--------------------------------------------------------------------------------
/test/DataSets/Tests/MissingFeatureData.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,phenotype,N4
1,NA,1,1,4
2,0,1,0,NaN
4,,1,1,2
NULL,1,NA,0,1
6,,1,1,1
--------------------------------------------------------------------------------
/test/DataSets/Tests/MissingFeatureAndPhenotypeData.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,phenotype,N4
1,,1,1,4
2,0,1,NA,NaN
4,NaN,1,,2
,1,,0,1
6,,1,1,1
--------------------------------------------------------------------------------
/test/DataSets/Tests/StringData.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/StringData.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/StringData2.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/StringData2.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/StringData.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,phenotype
male,1.2,young,china
female,0.3,NA,japan
female,-0.4,old,china
NA,0,young,russia
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/.DS_Store
--------------------------------------------------------------------------------
/.travis.yml:
--------------------------------------------------------------------------------
1 | language: python
2 | python:
3 | - '3.7'
4 | install:
5 | - pip install -r requirements.txt
6 | script: python3 -m unittest
7 |
--------------------------------------------------------------------------------
/test/DataSets/Tests/ContinuousPhenotype.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/ContinuousPhenotype.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/MissingFeatureData.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/MissingFeatureData.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/SpecificityTests/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/SpecificityTests/.DS_Store
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include README.md
2 | include LICENSE
3 | global-include test/*
4 | global-include *.csv
5 | global-exclude defaultExportDir/*
6 | prune venv/
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericInts.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/numericInts.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/StringData2.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,phenotype
2 | male,1.2,young,china
3 | female,0.3,NA,
4 | female,-0.4,old,china
5 | NA,0,young,russia
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloats.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/numericFloats.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/SpecificityTests/Specifics.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,class
1,1,1,1
2,1,,2
3,2,2,3
4,3,3,4
5,4,4,5
6,5,5,6
7,6,6,7
8,7,7,8
9,8,8,8
10,9,9,9
11,10,10,10
--------------------------------------------------------------------------------
/test/DataSets/Tests/SpecificityTests/Specifics.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/SpecificityTests/Specifics.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsNAN.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/numericFloatsNAN.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/MissingFeatureAndPhenotypeData.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/MissingFeatureAndPhenotypeData.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsString.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/numericFloatsString.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/NumericTests/numericFloatsMissing.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/UrbsLab/scikit-XCS/HEAD/test/DataSets/Tests/NumericTests/numericFloatsMissing.xlsx
--------------------------------------------------------------------------------
/test/DataSets/Tests/ContinuousPhenotype.csv:
--------------------------------------------------------------------------------
1 | N1,N2,N3,N4,N5,class
1,3,2,1,2,12
2,6,1,1,2,11
3,9,4,1,2,10
4,2,3,2,3,9
5,0,7,2,3,8
6,5,5,2,7,7
7,1,6,1,0,6
8,2,0,8,0,5
9,3,7,0,0,4
10,8,8,1,0,3
11,7,6,0,1,2
12,6,12,3,1,1
--------------------------------------------------------------------------------
/skXCS/Environment.py:
--------------------------------------------------------------------------------
1 |
2 | from skXCS.DataManagement import DataManagement
3 |
4 | class Environment:
5 | def __init__(self,X,y,xcs):
6 | self.dataRef = 0
7 | self.formatData = DataManagement(X,y,xcs)
8 | self.max_payoff = xcs.max_payoff
9 |
10 | self.currentTrainState = self.formatData.trainFormatted[0][self.dataRef]
11 | self.currentTrainPhenotype = self.formatData.trainFormatted[1][self.dataRef]
12 |
13 | def getTrainState(self):
14 | return self.currentTrainState
15 |
16 | def newInstance(self):
17 | if self.dataRef < self.formatData.numTrainInstances-1:
18 | self.dataRef+=1
19 | self.currentTrainState = self.formatData.trainFormatted[0][self.dataRef]
20 | self.currentTrainPhenotype = self.formatData.trainFormatted[1][self.dataRef]
21 | else:
22 | self.resetDataRef()
23 |
24 | def resetDataRef(self):
25 | self.dataRef = 0
26 | self.currentTrainState = self.formatData.trainFormatted[0][self.dataRef]
27 | self.currentTrainPhenotype = self.formatData.trainFormatted[1][self.dataRef]
28 |
29 | def executeAction(self,action):
30 | if action == self.currentTrainPhenotype:
31 | return self.max_payoff
32 | return 0
33 |
34 |
--------------------------------------------------------------------------------
/test/DataSets/Real/Multiplexer6.csv:
--------------------------------------------------------------------------------
1 | A_0,A_1,R_0,R_1,R_2,R_3,class
2 | 0,0,0,0,0,0,0
3 | 0,0,0,0,0,1,0
4 | 0,0,0,0,1,0,0
5 | 0,0,0,0,1,1,0
6 | 0,0,0,1,0,0,0
7 | 0,0,0,1,0,1,0
8 | 0,0,0,1,1,0,0
9 | 0,0,0,1,1,1,0
10 | 0,0,1,0,0,0,1
11 | 0,0,1,0,0,1,1
12 | 0,0,1,0,1,0,1
13 | 0,0,1,0,1,1,1
14 | 0,0,1,1,0,0,1
15 | 0,0,1,1,0,1,1
16 | 0,0,1,1,1,0,1
17 | 0,0,1,1,1,1,1
18 | 0,1,0,0,0,0,0
19 | 0,1,0,0,0,1,0
20 | 0,1,0,0,1,0,0
21 | 0,1,0,0,1,1,0
22 | 0,1,0,1,0,0,1
23 | 0,1,0,1,0,1,1
24 | 0,1,0,1,1,0,1
25 | 0,1,0,1,1,1,1
26 | 0,1,1,0,0,0,0
27 | 0,1,1,0,0,1,0
28 | 0,1,1,0,1,0,0
29 | 0,1,1,0,1,1,0
30 | 0,1,1,1,0,0,1
31 | 0,1,1,1,0,1,1
32 | 0,1,1,1,1,0,1
33 | 0,1,1,1,1,1,1
34 | 1,0,0,0,0,0,0
35 | 1,0,0,0,0,1,0
36 | 1,0,0,0,1,0,1
37 | 1,0,0,0,1,1,1
38 | 1,0,0,1,0,0,0
39 | 1,0,0,1,0,1,0
40 | 1,0,0,1,1,0,1
41 | 1,0,0,1,1,1,1
42 | 1,0,1,0,0,0,0
43 | 1,0,1,0,0,1,0
44 | 1,0,1,0,1,0,1
45 | 1,0,1,0,1,1,1
46 | 1,0,1,1,0,0,0
47 | 1,0,1,1,0,1,0
48 | 1,0,1,1,1,0,1
49 | 1,0,1,1,1,1,1
50 | 1,1,0,0,0,0,0
51 | 1,1,0,0,0,1,1
52 | 1,1,0,0,1,0,0
53 | 1,1,0,0,1,1,1
54 | 1,1,0,1,0,0,0
55 | 1,1,0,1,0,1,1
56 | 1,1,0,1,1,0,0
57 | 1,1,0,1,1,1,1
58 | 1,1,1,0,0,0,0
59 | 1,1,1,0,0,1,1
60 | 1,1,1,0,1,0,0
61 | 1,1,1,0,1,1,1
62 | 1,1,1,1,0,0,0
63 | 1,1,1,1,0,1,1
64 | 1,1,1,1,1,0,0
65 | 1,1,1,1,1,1,1
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | with open("README.md","r") as fh:
4 | ld = fh.read()
5 |
6 | setup(
7 | name = 'scikit-XCS',
8 | packages = ['skXCS'],
9 | version = '1.0.8',
10 | license='License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
11 | description = 'XCS Learning Classifier System',
12 | long_description_content_type="text/markdown",
13 | author = 'Robert Zhang, Ryan J. Urbanowicz',
14 | author_email = 'robertzh@seas.upenn.edu,ryanurb@upenn.edu',
15 | url = 'https://github.com/UrbsLab/scikit-XCS',
16 | download_url = 'https://github.com/UrbsLab/scikit-XCS/archive/refs/tags/v_1.0.8.tar.gz',
17 | keywords = ['machine learning','data analysis','data science','learning classifier systems','xcs'],
18 | install_requires=['numpy','pandas','scikit-learn'],
19 | classifiers=[
20 | 'Development Status :: 5 - Production/Stable',
21 | 'Intended Audience :: Developers',
22 | 'Intended Audience :: Information Technology',
23 | 'Intended Audience :: Science/Research',
24 | 'Topic :: Utilities',
25 | 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
26 | 'Programming Language :: Python :: 3',
27 | 'Programming Language :: Python :: 3.4',
28 | 'Programming Language :: Python :: 3.5',
29 | 'Programming Language :: Python :: 3.6',
30 | 'Programming Language :: Python :: 3.7'
31 | ],
32 | long_description=ld
33 | )
34 |
--------------------------------------------------------------------------------
/skXCS/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | scikit-XCS was primarily developed at the University of Pennsylvania by:
3 | - Robert Zhang (robertzh@seas.upenn.edu)
4 | - Ryan J. Urbanowicz (ryanurb@upenn.edu)
5 | - and many more generous open source contributors
6 |
7 | Permission is hereby granted, free of charge, to any person obtaining a copy of this software
8 | and associated documentation files (the "Software"), to deal in the Software without restriction,
9 | including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 | and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
11 | subject to the following conditions:
12 |
13 | The above copyright notice and this permission notice shall be included in all copies or substantial
14 | portions of the Software.
15 |
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
17 | LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
18 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
19 | WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
20 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 | """
22 |
23 | from .Classifier import Classifier
24 | from .ClassifierSet import ClassifierSet
25 | from .DataManagement import DataManagement
26 | from .IterationRecord import IterationRecord
27 | from .Environment import Environment
28 | from .PredictionArray import PredictionArray
29 | from .StringEnumerator import StringEnumerator
30 | from .Timer import Timer
31 | from .XCS import XCS
--------------------------------------------------------------------------------
/skXCS/Timer.py:
--------------------------------------------------------------------------------
1 | # Import Required Modules---------------
2 | import time
3 |
4 |
5 | # --------------------------------------
6 |
7 | class Timer:
8 | def __init__(self):
9 | # Global Time objects
10 | self.globalStartRef = time.time()
11 | self.globalTime = 0.0
12 | self.globalAdd = 0
13 |
14 | # Match Time Variables
15 | self.startRefMatching = 0.0
16 | self.globalMatching = 0.0
17 |
18 | # Deletion Time Variables
19 | self.startRefDeletion = 0.0
20 | self.globalDeletion = 0.0
21 |
22 | # Subsumption Time Variables
23 | self.startRefSubsumption = 0.0
24 | self.globalSubsumption = 0.0
25 |
26 | # GA Time Variables
27 | self.startRefGA = 0.0
28 | self.globalGA = 0.0
29 |
30 | # Evaluation Time Variables
31 | self.startRefEvaluation = 0.0
32 | self.globalEvaluation = 0.0
33 |
34 | # ************************************************************
35 |
36 | def startTimeMatching(self):
37 | """ Tracks MatchSet Time """
38 | self.startRefMatching = time.time()
39 |
40 | def stopTimeMatching(self):
41 | """ Tracks MatchSet Time """
42 | diff = time.time() - self.startRefMatching
43 | self.globalMatching += diff
44 |
45 | # ************************************************************
46 |
47 | def startTimeDeletion(self):
48 | """ Tracks Deletion Time """
49 | self.startRefDeletion = time.time()
50 |
51 | def stopTimeDeletion(self):
52 | """ Tracks Deletion Time """
53 | diff = time.time() - self.startRefDeletion
54 | self.globalDeletion += diff
55 |
56 | # ************************************************************
57 | def startTimeSubsumption(self):
58 | """Tracks Subsumption Time """
59 | self.startRefSubsumption = time.time()
60 |
61 | def stopTimeSubsumption(self):
62 | """Tracks Subsumption Time """
63 | diff = time.time() - self.startRefSubsumption
64 | self.globalSubsumption += diff
65 |
66 | # ************************************************************
67 |
68 | def startTimeGA(self):
69 | """ Tracks Selection Time """
70 | self.startRefGA = time.time()
71 |
72 | def stopTimeGA(self):
73 | """ Tracks Selection Time """
74 | diff = time.time() - self.startRefGA
75 | self.globalGA += diff
76 |
77 | # ************************************************************
78 | def startTimeEvaluation(self):
79 | """ Tracks Evaluation Time """
80 | self.startRefEvaluation = time.time()
81 |
82 | def stopTimeEvaluation(self):
83 | """ Tracks Evaluation Time """
84 | diff = time.time() - self.startRefEvaluation
85 | self.globalEvaluation += diff
86 |
87 | # ************************************************************
88 |
89 | def updateGlobalTimer(self):
90 | """ Set the global end timer, call at very end of algorithm. """
91 | self.globalTime = (time.time() - self.globalStartRef) + self.globalAdd
92 | return self.globalTime
93 |
--------------------------------------------------------------------------------
/skXCS/PredictionArray.py:
--------------------------------------------------------------------------------
1 | import random
2 | import numpy as np
3 |
4 | class PredictionArray:
5 | def __init__(self,population,xcs):
6 | self.predictionArray = {}
7 | self.fitnesses = {}
8 | self.actionList = xcs.env.formatData.phenotypeList
9 | self.probabilities = {}
10 | self.hasMatch = len(population.matchSet) != 0
11 |
12 | for eachClass in self.actionList:
13 | self.predictionArray[eachClass] = 0.0
14 | self.fitnesses[eachClass] = 0.0
15 |
16 | for ref in population.matchSet:
17 | cl = population.popSet[ref]
18 | self.predictionArray[cl.action] += cl.prediction*cl.fitness
19 | self.fitnesses[cl.action] += cl.fitness
20 |
21 | for eachClass in self.actionList:
22 | if self.fitnesses[eachClass] != 0:
23 | self.predictionArray[eachClass] /= self.fitnesses[eachClass]
24 | else:
25 | self.predictionArray[eachClass] = 0
26 |
27 | #Populate Probabilities
28 | probabilitySum = 0
29 | for action,value in sorted(self.predictionArray.items()):
30 | self.probabilities[action] = value
31 | probabilitySum += value
32 | if probabilitySum == 0:
33 | for action, prob in sorted(self.probabilities.items()):
34 | self.probabilities[action] = 0
35 | else:
36 | for action, prob in sorted(self.probabilities.items()):
37 | self.probabilities[action] = prob/probabilitySum
38 |
39 | def getBestValue(self):
40 | return max(self.predictionArray,key=self.predictionArray.get)
41 |
42 | def getValue(self,action):
43 | return self.predictionArray[action]
44 |
45 | ##*************** Action selection functions ****************
46 | def randomActionWinner(self):
47 | """ Selects an action randomly. The function assures that the chosen action is represented by at least one classifier. """
48 | while True:
49 | ret = random.choice(self.actionList)
50 | if self.fitnesses[ret] != 0:
51 | break
52 | return ret
53 |
54 | def bestActionWinner(self):
55 | """ Selects the action in the prediction array with the best value.
56 | *MODIFIED so that in the case of a tie between actions - an action is selected randomly between the tied highest actions. """
57 | highVal = 0.0
58 | for action,value in self.predictionArray.items():
59 | if value > highVal:
60 | highVal = value
61 | bestIndexList = []
62 | for action,value in self.predictionArray.items():
63 | if value == highVal:
64 | bestIndexList.append(action)
65 | #return random.choice(bestIndexList)
66 | return bestIndexList[0]
67 |
68 | ##*************** Get ActionProbabilities ****************
69 | def getProbabilities(self):
70 | probabilityList = np.empty(len(sorted(self.probabilities.items())))
71 | counter = 0
72 | for action,prob in sorted(self.probabilities.items()):
73 | probabilityList[counter] = prob
74 | counter += 1
75 | return probabilityList
76 |
--------------------------------------------------------------------------------
/skXCS/IterationRecord.py:
--------------------------------------------------------------------------------
1 | import csv
2 | import numpy as np
3 |
4 | class IterationRecord():
5 | '''
6 | IterationRecord Tracks 1 dictionary:
7 | 1) Tracking Dict: Cursory Iteration Evaluation. Frequency determined by trackingFrequency param in eLCS. For each iteration evaluated, it saves:
8 | KEY-iteration number
9 | 0-accuracy (approximate from correct array in eLCS)
10 | 1-average population generality
11 | 2-macropopulation size
12 | 3-micropopulation size
13 | 4-match set size
14 | 5-correct set size
15 | 6-average iteration age of action set classifiers
16 | 7-number of classifiers subsumed (in iteration)
17 | 8-number of crossover operations performed (in iteration)
18 | 9-number of mutation operations performed (in iteration)
19 | 10-number of covering operations performed (in iteration)
20 | 11-number of deleted macroclassifiers performed (in iteration)
21 | 12-total global time at end of iteration
22 | 13-total matching time at end of iteration
23 | 14-total deletion time at end of iteration
24 | 15-total subsumption time at end of iteration
25 | 16-total selection time at end of iteration
26 | 17-total evaluation time at end of iteration
27 | '''
28 |
29 | def __init__(self):
30 | self.trackingDict = {}
31 |
32 | def addToTracking(self,iterationNumber,accuracy,avgPopGenerality,macroSize,microSize,mSize,aSize,iterAvg,
33 | subsumptionCount,crossoverCount,mutationCount,coveringCount,deletionCount,
34 | globalTime,matchingTime,deletionTime,subsumptionTime,gaTime,evaluationTime):
35 |
36 | self.trackingDict[iterationNumber] = [accuracy,avgPopGenerality,macroSize,microSize,mSize,aSize,iterAvg,
37 | subsumptionCount,crossoverCount,mutationCount,coveringCount,deletionCount,
38 | globalTime,matchingTime,deletionTime,subsumptionTime,gaTime,evaluationTime]
39 |
40 | def exportTrackingToCSV(self,filename='iterationData.csv'):
41 | #Exports each entry in Tracking Array as a column
42 | with open(filename,mode='w') as file:
43 | writer = csv.writer(file,delimiter=',',quotechar='"',quoting=csv.QUOTE_MINIMAL)
44 |
45 | writer.writerow(["Iteration","Accuracy (approx)", "Average Population Generality","Macropopulation Size",
46 | "Micropopulation Size", "Match Set Size", "Action Set Size", "Average Iteration Age of Action Set Classifiers",
47 | "# Classifiers Subsumed in Iteration","# Crossover Operations Performed in Iteration","# Mutation Operations Performed in Iteration",
48 | "# Covering Operations Performed in Iteration","# Deletion Operations Performed in Iteration",
49 | "Total Global Time","Total Matching Time","Total Deletion Time","Total Subsumption Time","Total GA Time","Total Evaluation Time"])
50 |
51 | for k,v in sorted(self.trackingDict.items()):
52 | writer.writerow([k,v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15],v[16],v[17]])
53 | file.close()
--------------------------------------------------------------------------------
/skXCS/DataManagement.py:
--------------------------------------------------------------------------------
1 |
2 | import numpy as np
3 |
4 | class DataManagement:
5 | def __init__(self,X,y,xcs):
6 | self.savedRawTrainingData = [X,y]
7 | self.numAttributes = X.shape[1]
8 | self.attributeInfoType = [0] * self.numAttributes # stores false (d) or true (c) depending on its type, which points to parallel reference in one of the below 2 arrays
9 | self.attributeInfoContinuous = [[np.inf,-np.inf] for _ in range(self.numAttributes)] #stores continuous ranges and NaN otherwise
10 | self.attributeInfoDiscrete = [0] * self.numAttributes # stores arrays of discrete values or NaN otherwise.
11 | for i in range(0,self.numAttributes):
12 | self.attributeInfoDiscrete[i] = AttributeInfoDiscreteElement()
13 | self.discretePhenotype = True
14 | self.phenotypeList = [] # Stores all possible discrete phenotype values
15 |
16 | self.isDefault = True # Is discrete attribute limit an int or string
17 | try:
18 | int(xcs.discrete_attribute_limit)
19 | except:
20 | self.isDefault = False
21 |
22 | self.numTrainInstances = X.shape[0] # The number of instances in the training data
23 | self.discriminateClasses(y)
24 | self.isBinaryClassification = len(self.phenotypeList) == 2
25 | self.numberOfActions = len(self.phenotypeList)
26 |
27 | self.discriminateAttributes(X, xcs)
28 | self.characterizeAttributes(X)
29 | self.trainFormatted = self.formatData(X, y)
30 |
31 | def discriminateClasses(self,phenotypes):
32 | currentPhenotypeIndex = 0
33 | classCount = {}
34 | while (currentPhenotypeIndex < self.numTrainInstances):
35 | target = phenotypes[currentPhenotypeIndex]
36 | if target in self.phenotypeList:
37 | classCount[target]+=1
38 | else:
39 | self.phenotypeList.append(target)
40 | classCount[target] = 1
41 | currentPhenotypeIndex+=1
42 |
43 | def discriminateAttributes(self,features,xcs):
44 | for att in range(self.numAttributes):
45 | attIsDiscrete = True
46 | if self.isDefault:
47 | currentInstanceIndex = 0
48 | stateDict = {}
49 | while attIsDiscrete and len(list(stateDict.keys())) <= xcs.discrete_attribute_limit and currentInstanceIndex < self.numTrainInstances:
50 | target = features[currentInstanceIndex,att]
51 | if target in list(stateDict.keys()):
52 | stateDict[target] += 1
53 | elif np.isnan(target):
54 | pass
55 | else:
56 | stateDict[target] = 1
57 | currentInstanceIndex+=1
58 |
59 | if len(list(stateDict.keys())) > xcs.discrete_attribute_limit:
60 | attIsDiscrete = False
61 | elif xcs.discrete_attribute_limit == "c":
62 | if att in xcs.specified_attributes:
63 | attIsDiscrete = False
64 | else:
65 | attIsDiscrete = True
66 | elif xcs.discrete_attribute_limit == "d":
67 | if att in xcs.specified_attributes:
68 | attIsDiscrete = True
69 | else:
70 | attIsDiscrete = False
71 |
72 | if attIsDiscrete:
73 | self.attributeInfoType[att] = False
74 | else:
75 | self.attributeInfoType[att] = True
76 |
77 |
78 | def characterizeAttributes(self,features):
79 | for currentFeatureIndexInAttributeInfo in range(self.numAttributes):
80 | for currentInstanceIndex in range(self.numTrainInstances):
81 | target = features[currentInstanceIndex,currentFeatureIndexInAttributeInfo]
82 | if not self.attributeInfoType[currentFeatureIndexInAttributeInfo]:#if attribute is discrete
83 | if target in self.attributeInfoDiscrete[currentFeatureIndexInAttributeInfo].distinctValues or np.isnan(target):
84 | pass
85 | else:
86 | self.attributeInfoDiscrete[currentFeatureIndexInAttributeInfo].distinctValues.append(target)
87 | else: #if attribute is continuous
88 | if np.isnan(target):
89 | pass
90 | elif float(target) > self.attributeInfoContinuous[currentFeatureIndexInAttributeInfo][1]:
91 | self.attributeInfoContinuous[currentFeatureIndexInAttributeInfo][1] = float(target)
92 | elif float(target) < self.attributeInfoContinuous[currentFeatureIndexInAttributeInfo][0]:
93 | self.attributeInfoContinuous[currentFeatureIndexInAttributeInfo][0] = float(target)
94 | else:
95 | pass
96 |
97 | def formatData(self,features,phenotypes):
98 | formatted = np.insert(features,self.numAttributes,phenotypes,1) #Combines features and phenotypes into one array
99 | np.random.shuffle(formatted)
100 | shuffledFeatures = formatted[:,:-1].tolist()
101 | shuffledLabels = formatted[:,self.numAttributes].tolist()
102 | for i in range(len(shuffledFeatures)):
103 | for j in range(len(shuffledFeatures[i])):
104 | if np.isnan(shuffledFeatures[i][j]):
105 | shuffledFeatures[i][j] = None
106 | if np.isnan(shuffledLabels[i]):
107 | shuffledLabels[i] = None
108 | return [shuffledFeatures,shuffledLabels]
109 |
110 |
111 | class AttributeInfoDiscreteElement():
112 | def __init__(self):
113 | self.distinctValues = []
114 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | Master Status: [](https://travis-ci.com/UrbsLab/scikit-XCS)
2 |
3 | # scikit-XCS
4 |
5 | The scikit-XCS package includes a sklearn-compatible Python implementation of XCS, the most popular and best studied learning classifier system algorithm to date. In general, Learning Classifier Systems (LCSs) are a classification of Rule Based Machine Learning Algorithms that have been shown to perform well on problems involving high amounts of heterogeneity and epistasis. Well designed LCSs are also highly human interpretable. LCS variants have been shown to adeptly handle supervised and reinforced, classification and regression, online and offline learning problems, as well as missing or unbalanced data. These characteristics of versatility and interpretability give LCSs a wide range of potential applications, notably those in biomedicine. This package is **still under active development** and we encourage you to check back on this repository for updates.
6 |
7 | This version of scikit-XCS is suitable for single step, classification problems. It has not yet been developed for multi-step reinforcement learning problems nor regression problems. Within these bounds however, scikit-XCS can be applied to almost any supervised classification data set and supports:
8 |
9 |
10 | - Feature sets that are discrete/categorical, continuous-valued or a mix of both
11 | - Data with missing values
12 | - Binary Classification Problems (Binary Endpoints)
13 | - Multi-class Classification Problems (Multi-class Endpoints)
14 |
15 |
16 | Built into this code, is a strategy to 'automatically' detect from the loaded data, these relevant above characteristics so that they don't need to be parameterized at initialization.
17 |
18 | The core Scikit package only supports numeric data. However, an additional StringEnumerator Class is provided that allows quick data conversion from any type of data into pure numeric data, making it possible for natively string/non-numeric data to be run by scikit-XCS.
19 |
20 | In addition, powerful data tracking collection methods are built into the scikit package, that continuously tracks features every iteration such as:
21 |
22 |
23 | - Approximate Accuracy
24 | - Average Population Generality
25 | - Macro & Micropopulation Size
26 | - Match Set and Action Set Sizes
27 | - Number of classifiers subsumed/deleted/covered
28 | - Number of crossover/mutation operations performed
29 | - Times for matching, deletion, subsumption, selection, evaluation
30 |
31 |
32 | These values can then be exported as a csv after training is complete for analysis using the built in "export_iteration_tracking_data" method.
33 |
34 | In addition, the package includes functionality that allows the final rule population to be exported as a csv after training.
35 |
36 | ## Usage
37 | For more information on how to use scikit-XCS, please refer to the [scikit-XCS User Guide](https://github.com/UrbsLab/scikit-XCS/blob/master/scikit-XCS%20User%20Guide.ipynb) Jupyter Notebook inside this repository.
38 |
39 | ## Usage TLDR
40 | ```python
41 | #Import Necessary Packages/Modules
42 | from skXCS import XCS
43 | import numpy as np
44 | import pandas as pd
45 | from sklearn.model_selection import cross_val_score
46 |
47 | #Load Data Using Pandas
48 | data = pd.read_csv('myDataFile.csv') #REPLACE with your own dataset .csv filename
49 | dataFeatures = data.drop(actionLabel,axis=1).values #DEFINE actionLabel variable as the Str at the top of your dataset's action column
50 | dataActions = data[actionLabel].values
51 |
52 | #Shuffle Data Before CV
53 | formatted = np.insert(dataFeatures,dataFeatures.shape[1],dataActions,1)
54 | np.random.shuffle(formatted)
55 | dataFeatures = np.delete(formatted,-1,axis=1)
56 | dataActions = formatted[:,-1]
57 |
58 | #Initialize XCS Model
59 | model = XCS(learning_iterations = 5000)
60 |
61 | #3-fold CV
62 | print(np.mean(cross_val_score(model,dataFeatures,dataActions,cv=3)))
63 | ```
64 |
65 | ## License
66 | Please see the repository [license](https://github.com/UrbsLab/scikit-XCS/blob/master/LICENSE) for the licensing and usage information for scikit-XCS.
67 |
68 | Generally, we have licensed scikit-XCS to make it as widely usable as possible.
69 |
70 | ## Installation
71 | scikit-XCS is built on top of the following Python packages:
72 |
73 | - numpy
74 | - pandas
75 | - scikit-learn
76 |
77 |
78 | Once the prerequisites are installed, you can install scikit-XCS with a pip command:
79 | ```
80 | pip/pip3 install scikit-XCS
81 | ```
82 | We strongly recommend you use Python 3. scikit-XCS does not support Python 2, given its depreciation in Jan 1 2020. If something goes wrong during installation, make sure that your pip is up to date and try again.
83 | ```
84 | pip/pip3 install --upgrade pip
85 | ```
86 |
87 | ## Contributing to scikit-XCS
88 | scikit-XCS is an open source project and we'd love if you could suggest changes!
89 |
90 |
91 | - Fork the project repository to your personal account and clone this copy to your local disk
92 | - Create a branch from master to hold your changes: (e.g. git checkout -b my-contribution-branch)
93 | - Commit changes on your branch. Remember to never work on any other branch but your own!
94 | - When you are done, push your changes to your forked GitHub repository with git push -u origin my-contribution-branch
95 | - Create a pull request to send your changes to the scikit-XCS maintainers for review.
96 |
97 |
98 | **Before submitting your pull request**
99 |
100 | If your contribution changes XCS in any way, make sure you update the Jupyter Notebook documentation and the README with relevant details. If your contribution involves any code changes, update the project unit tests to test your code changes, and make sure your code is properly commented to explain your rationale behind non-obvious coding practices.
101 |
102 | **After submitting your pull request**
103 |
104 | After submitting your pull request, Travis CI will run all of the project's unit tests. Check back shortly after submitting to make sure your code passes these checks. If any checks come back failed, do your best to address the errors.
105 |
--------------------------------------------------------------------------------
/test/DataSets/Real/Multiplexer6Modified.csv:
--------------------------------------------------------------------------------
1 | A_0,A_1,R_0,R_1,R_2,R_3,Class
2 | 0,0,0,1,0,0,0
3 | 0,1,1,0,1,1,0
4 | 1,1,1,0,1,0,0
5 | 1,0,0,0,0,0,0
6 | 1,0,0,0,1,1,1
7 | 0,1,0,1,1,0,1
8 | 0,1,1,0,1,0,0
9 | 0,1,1,0,0,0,0
10 | 0,0,0,0,0,0,0
11 | 1,1,1,0,1,1,1
12 | 1,1,1,1,1,0,0
13 | 0,1,0,1,1,1,1
14 | 1,0,1,0,0,0,0
15 | 0,1,0,0,1,1,0
16 | 1,1,1,0,0,1,1
17 | 0,1,1,1,1,1,1
18 | 1,1,1,1,1,0,0
19 | 0,0,0,0,0,0,0
20 | 0,0,1,0,0,0,1
21 | 1,1,1,0,1,1,1
22 | 1,0,1,1,1,0,1
23 | 1,1,0,1,0,0,0
24 | 1,1,1,0,0,1,1
25 | 0,0,0,1,0,1,0
26 | 1,1,0,0,1,0,0
27 | 1,1,1,0,1,0,0
28 | 0,1,0,0,0,1,0
29 | 0,0,1,1,1,0,1
30 | 1,1,1,1,1,1,1
31 | 0,1,1,1,1,1,1
32 | 1,0,1,1,0,0,0
33 | 0,1,1,0,0,1,0
34 | 0,0,0,1,0,1,0
35 | 0,0,1,0,1,1,1
36 | 0,0,1,0,1,0,1
37 | 0,1,0,1,1,0,1
38 | 1,0,1,1,0,0,0
39 | 1,0,1,0,0,1,0
40 | 0,0,0,0,0,0,0
41 | 1,1,0,0,0,1,1
42 | 0,1,0,0,1,0,0
43 | 0,1,0,1,0,0,1
44 | 0,1,1,0,1,0,0
45 | 1,1,0,0,1,1,1
46 | 0,1,0,1,1,1,1
47 | 1,0,0,1,0,0,0
48 | 1,1,0,1,1,1,1
49 | 1,1,0,0,1,1,1
50 | 1,1,0,0,0,0,0
51 | 1,1,0,1,1,1,1
52 | 1,0,0,0,0,0,0
53 | 0,1,0,1,1,1,1
54 | 1,0,0,1,0,1,0
55 | 1,1,0,0,0,0,0
56 | 1,1,1,0,0,0,0
57 | 0,1,1,0,1,1,0
58 | 0,0,0,1,0,1,0
59 | 1,0,0,0,0,1,0
60 | 0,1,1,1,1,1,1
61 | 0,0,0,1,0,1,0
62 | 0,1,1,0,1,0,0
63 | 0,0,1,1,0,0,1
64 | 0,0,0,1,0,0,0
65 | 0,1,0,0,1,1,0
66 | 1,1,0,0,0,1,1
67 | 1,1,1,0,0,1,1
68 | 0,0,1,1,1,0,1
69 | 0,1,0,0,1,0,0
70 | 1,1,0,1,0,0,0
71 | 1,1,1,0,1,1,1
72 | 0,1,0,0,1,1,0
73 | 1,1,1,0,1,0,0
74 | 1,1,0,1,1,1,1
75 | 1,0,0,1,1,1,1
76 | 1,1,1,1,1,1,1
77 | 0,0,0,1,0,1,0
78 | 0,1,1,0,1,0,0
79 | 1,0,1,1,1,0,1
80 | 1,0,0,1,1,0,1
81 | 0,1,0,0,0,1,0
82 | 0,1,0,1,0,0,1
83 | 0,1,1,1,0,1,1
84 | 1,1,1,1,1,0,0
85 | 0,0,0,1,0,1,0
86 | 0,1,0,1,1,0,1
87 | 1,0,0,0,1,0,1
88 | 0,1,0,1,0,1,1
89 | 1,1,0,0,0,1,1
90 | 0,0,0,1,1,1,0
91 | 1,1,0,1,1,0,0
92 | 0,0,0,0,0,0,0
93 | 0,0,0,0,0,0,0
94 | 0,0,1,1,0,1,1
95 | 1,1,1,1,1,0,0
96 | 1,1,1,1,1,1,1
97 | 1,0,0,1,1,1,1
98 | 1,1,0,0,0,0,0
99 | 0,0,1,1,0,1,1
100 | 0,1,0,0,0,0,0
101 | 0,0,1,1,1,0,1
102 | 0,0,0,0,0,1,0
103 | 0,1,1,1,1,1,1
104 | 0,1,0,1,1,0,1
105 | 1,1,0,1,1,0,0
106 | 0,0,1,0,0,0,1
107 | 1,0,1,1,1,0,1
108 | 1,0,0,1,1,1,1
109 | 0,0,1,0,0,1,1
110 | 1,1,0,0,0,1,1
111 | 0,1,0,1,1,0,1
112 | 0,0,1,0,1,1,1
113 | 1,0,0,0,0,0,0
114 | 0,0,1,0,0,0,1
115 | 1,0,1,1,0,1,0
116 | 1,0,1,1,1,0,1
117 | 1,0,0,1,1,0,1
118 | 0,0,0,0,0,1,0
119 | 0,0,1,0,0,1,1
120 | 1,1,1,1,1,0,0
121 | 0,0,1,1,1,1,1
122 | 0,1,0,0,1,0,0
123 | 0,0,1,0,1,0,1
124 | 0,1,1,1,1,0,1
125 | 0,0,1,0,1,1,1
126 | 1,0,1,0,0,1,0
127 | 1,1,1,1,1,0,0
128 | 0,1,0,0,0,1,0
129 | 1,0,0,0,0,1,0
130 | 1,1,1,1,1,1,1
131 | 1,1,0,1,0,0,0
132 | 0,0,0,0,1,1,0
133 | 1,0,1,1,1,0,1
134 | 0,0,1,1,1,0,1
135 | 0,0,0,1,0,0,0
136 | 1,1,1,0,0,0,0
137 | 1,0,0,1,1,1,1
138 | 1,0,1,0,1,0,1
139 | 1,1,1,1,1,0,0
140 | 0,0,1,1,0,0,1
141 | 1,1,0,1,0,1,1
142 | 0,1,1,0,0,0,0
143 | 0,1,0,0,1,0,0
144 | 0,1,0,1,0,0,1
145 | 0,1,1,1,0,0,1
146 | 0,0,0,0,1,1,0
147 | 0,0,1,0,0,0,1
148 | 0,1,0,1,1,0,1
149 | 1,1,1,1,0,1,1
150 | 0,0,0,0,1,1,0
151 | 0,1,1,0,0,1,0
152 | 1,1,0,1,1,1,1
153 | 0,1,0,0,1,0,0
154 | 1,0,1,1,1,1,1
155 | 0,1,1,0,0,0,0
156 | 0,1,1,0,1,0,0
157 | 0,1,0,1,1,0,1
158 | 0,0,0,1,1,1,0
159 | 1,1,0,1,1,0,0
160 | 1,1,0,1,0,0,0
161 | 1,0,0,1,1,1,1
162 | 0,0,0,0,0,0,0
163 | 0,0,1,1,1,1,1
164 | 0,1,0,1,0,1,1
165 | 1,1,0,1,0,1,1
166 | 1,1,0,1,0,0,0
167 | 0,1,0,1,0,0,1
168 | 1,0,1,1,1,1,1
169 | 0,0,1,1,0,1,1
170 | 0,1,0,1,1,1,1
171 | 0,0,1,1,0,0,1
172 | 1,0,0,1,1,1,1
173 | 0,1,1,1,1,0,1
174 | 1,0,0,0,1,1,1
175 | 1,0,0,0,0,1,0
176 | 0,1,0,0,1,0,0
177 | 0,0,1,1,0,0,1
178 | 1,0,0,1,0,1,0
179 | 1,0,0,0,0,1,0
180 | 0,0,1,0,1,1,1
181 | 0,0,0,1,0,0,0
182 | 1,0,1,0,1,1,1
183 | 0,0,0,1,1,0,0
184 | 0,1,0,0,0,1,0
185 | 0,1,0,0,0,1,0
186 | 0,0,1,1,1,0,1
187 | 1,0,0,0,1,1,1
188 | 0,1,1,0,0,0,0
189 | 1,1,0,1,0,0,0
190 | 1,0,1,1,1,1,1
191 | 0,1,1,0,0,0,0
192 | 1,1,1,1,0,0,0
193 | 0,0,1,0,1,0,1
194 | 0,0,1,0,0,0,1
195 | 0,1,0,0,0,0,0
196 | 0,1,1,0,0,0,0
197 | 1,0,1,0,1,1,1
198 | 1,0,1,1,0,1,0
199 | 1,1,1,0,0,0,0
200 | 0,1,1,1,0,0,1
201 | 1,1,0,0,0,1,1
202 | 1,0,0,0,1,0,1
203 | 1,0,1,1,1,0,1
204 | 0,0,0,0,1,1,0
205 | 1,0,1,0,0,1,0
206 | 1,1,1,1,1,0,0
207 | 0,0,0,0,1,1,0
208 | 1,0,1,0,1,1,1
209 | 0,0,1,1,1,1,1
210 | 0,0,1,0,0,0,1
211 | 1,1,1,1,1,1,1
212 | 1,0,0,1,1,1,1
213 | 0,1,0,1,1,1,1
214 | 0,1,1,1,1,1,1
215 | 0,1,1,0,0,1,0
216 | 0,0,1,0,1,0,1
217 | 1,0,0,1,0,0,0
218 | 0,1,0,0,0,0,0
219 | 1,0,0,1,0,0,0
220 | 0,0,0,1,1,0,0
221 | 1,1,0,1,0,0,0
222 | 1,0,0,1,0,0,0
223 | 1,1,0,0,1,1,1
224 | 0,1,1,1,0,1,1
225 | 0,0,0,0,1,1,0
226 | 0,0,1,1,0,1,1
227 | 1,0,1,1,1,1,1
228 | 0,0,0,1,0,0,0
229 | 1,1,1,1,0,1,1
230 | 1,1,1,0,1,0,0
231 | 1,0,0,1,0,1,0
232 | 1,1,0,1,0,0,0
233 | 0,1,1,1,1,1,1
234 | 1,1,0,1,1,1,1
235 | 0,0,0,1,1,0,0
236 | 0,1,1,0,0,0,0
237 | 1,1,1,0,0,0,0
238 | 0,0,0,1,0,0,0
239 | 1,0,0,1,1,0,1
240 | 1,0,1,1,0,0,0
241 | 1,1,1,1,0,0,0
242 | 0,1,1,0,0,0,0
243 | 0,1,1,0,0,1,0
244 | 0,0,0,0,1,1,0
245 | 1,1,0,1,0,1,1
246 | 1,1,1,0,0,1,1
247 | 1,1,0,1,0,1,1
248 | 0,1,1,1,1,0,1
249 | 1,1,0,0,1,1,1
250 | 1,1,1,1,1,0,0
251 | 0,0,1,1,1,0,1
252 | 1,0,1,1,1,1,1
253 | 1,0,0,0,0,0,0
254 | 0,0,0,1,0,0,0
255 | 1,0,0,0,1,0,1
256 | 1,0,1,1,1,1,1
257 | 0,1,1,1,1,1,1
258 | 1,1,0,0,0,1,1
259 | 1,1,0,0,0,1,1
260 | 1,1,0,1,1,0,0
261 | 1,1,0,1,0,0,0
262 | 0,1,1,1,0,1,1
263 | 0,0,0,1,0,1,0
264 | 0,0,0,1,1,0,0
265 | 1,0,0,0,0,1,0
266 | 0,1,0,0,1,0,0
267 | 1,0,1,1,0,1,0
268 | 1,0,0,1,0,0,0
269 | 0,0,1,1,1,0,1
270 | 1,1,1,0,0,0,0
271 | 0,1,1,0,1,0,0
272 | 1,1,1,0,1,1,1
273 | 1,1,0,0,0,0,0
274 | 1,0,1,0,1,1,1
275 | 1,1,0,0,1,1,1
276 | 1,1,1,1,0,0,0
277 | 1,0,1,0,1,0,1
278 | 1,0,0,1,1,1,1
279 | 0,0,0,0,1,1,0
280 | 1,0,0,0,1,0,1
281 | 0,0,0,1,1,0,0
282 | 1,0,0,1,0,0,0
283 | 0,0,0,0,1,0,0
284 | 1,1,0,1,1,0,0
285 | 0,1,0,0,0,0,0
286 | 0,1,0,1,0,0,1
287 | 0,0,1,0,0,1,1
288 | 0,0,0,1,1,0,0
289 | 0,0,1,1,0,0,1
290 | 0,1,0,1,0,0,1
291 | 1,0,0,0,0,1,0
292 | 0,0,1,0,1,1,1
293 | 0,0,0,1,0,1,0
294 | 0,1,1,1,1,1,1
295 | 1,0,0,0,0,0,0
296 | 1,1,1,0,0,1,1
297 | 0,0,0,1,0,1,0
298 | 1,0,0,0,1,1,1
299 | 0,1,0,1,0,1,1
300 | 0,0,0,0,1,1,0
301 | 1,0,0,1,0,1,0
302 | 1,1,0,0,1,1,1
303 | 0,0,0,0,0,1,0
304 | 0,1,1,1,0,1,1
305 | 0,1,0,1,1,0,1
306 | 0,0,1,0,1,1,1
307 | 0,1,1,0,0,1,0
308 | 1,0,1,1,0,0,0
309 | 0,0,0,0,1,1,0
310 | 0,1,0,0,1,0,0
311 | 0,1,1,1,0,0,1
312 | 1,0,1,0,0,0,0
313 | 1,0,1,0,1,0,1
314 | 0,0,0,0,0,1,0
315 | 0,0,0,1,1,1,0
316 | 0,1,1,1,1,1,1
317 | 1,0,1,0,0,1,0
318 | 0,0,0,1,1,0,0
319 | 1,1,1,0,0,0,0
320 | 0,1,0,0,0,0,0
321 | 1,0,0,0,1,1,1
322 | 0,0,1,0,0,1,1
323 | 0,0,1,0,0,0,1
324 | 1,1,1,1,1,1,1
325 | 1,0,1,0,0,1,0
326 | 0,0,1,0,0,0,1
327 | 1,0,0,0,1,1,1
328 | 0,0,0,0,0,1,0
329 | 0,0,0,1,1,1,0
330 | 0,0,0,0,0,1,0
331 | 1,1,0,0,1,0,0
332 | 0,0,1,0,0,1,1
333 | 0,0,0,1,1,0,0
334 | 0,0,1,1,0,0,1
335 | 1,0,1,1,1,0,1
336 | 0,0,0,0,0,1,0
337 | 0,1,1,0,0,1,0
338 | 1,1,1,1,1,1,1
339 | 0,1,0,1,1,1,1
340 | 0,0,0,0,0,1,0
341 | 0,1,0,0,1,1,0
342 | 1,1,0,0,0,0,0
343 | 0,0,0,0,0,1,0
344 | 0,1,1,0,1,1,0
345 | 0,0,0,0,0,1,0
346 | 1,1,0,0,1,0,0
347 | 0,0,1,1,0,0,1
348 | 0,1,0,1,0,0,1
349 | 0,1,1,1,1,0,1
350 | 1,1,1,0,0,0,0
351 | 0,1,1,1,1,0,1
352 | 1,1,1,1,0,1,1
353 | 1,0,1,1,1,1,1
354 | 1,0,0,0,0,0,0
355 | 1,1,0,1,1,1,1
356 | 0,1,1,0,0,1,0
357 | 0,0,1,0,0,0,1
358 | 1,1,1,1,0,0,0
359 | 0,1,0,1,0,0,1
360 | 0,0,0,0,1,1,0
361 | 0,0,1,0,1,1,1
362 | 0,0,0,0,1,0,0
363 | 0,1,1,0,0,1,0
364 | 1,0,1,1,0,0,0
365 | 1,1,1,0,0,0,0
366 | 1,0,0,1,0,0,0
367 | 1,1,1,0,1,0,0
368 | 0,1,0,0,1,0,0
369 | 1,1,0,0,0,0,0
370 | 0,0,0,0,1,1,0
371 | 0,0,1,1,0,0,1
372 | 1,0,0,0,1,1,1
373 | 1,0,1,1,1,1,1
374 | 1,0,0,1,0,0,0
375 | 0,1,0,0,0,1,0
376 | 0,1,1,0,0,0,0
377 | 1,0,1,0,0,1,0
378 | 1,0,1,1,1,0,1
379 | 0,1,0,1,1,0,1
380 | 1,1,1,0,1,0,0
381 | 0,1,1,0,1,1,0
382 | 0,1,0,0,0,0,0
383 | 0,1,0,1,1,0,1
384 | 0,1,0,0,0,1,0
385 | 1,1,1,1,1,0,0
386 | 0,1,1,0,0,0,0
387 | 1,0,1,1,0,0,0
388 | 0,0,1,1,1,0,1
389 | 1,1,1,1,0,0,0
390 | 1,1,0,0,0,1,1
391 | 1,1,1,0,1,0,0
392 | 1,1,1,1,1,0,0
393 | 0,1,0,1,0,1,1
394 | 0,1,1,0,0,0,0
395 | 1,1,0,0,0,0,0
396 | 1,1,0,0,0,1,1
397 | 0,1,1,1,0,1,1
398 | 1,1,1,1,0,1,1
399 | 0,0,1,0,1,1,1
400 | 0,1,1,0,1,1,0
401 | 1,0,0,1,0,0,0
402 | 0,0,1,0,0,0,1
403 | 0,1,1,1,1,0,1
404 | 1,0,1,0,1,1,1
405 | 1,0,0,1,0,1,0
406 | 0,0,1,0,1,0,1
407 | 1,1,1,0,1,1,1
408 | 1,0,0,1,0,0,0
409 | 1,1,1,1,1,0,0
410 | 1,0,1,1,0,1,0
411 | 0,0,0,1,1,0,0
412 | 1,1,1,0,0,1,1
413 | 0,0,1,0,0,0,1
414 | 1,1,0,1,0,1,1
415 | 1,1,0,0,0,0,0
416 | 1,1,1,0,1,1,1
417 | 0,1,0,1,1,1,1
418 | 1,0,0,0,0,1,0
419 | 1,1,1,0,0,1,1
420 | 1,1,1,0,1,1,1
421 | 1,0,1,0,0,1,0
422 | 0,1,1,1,1,1,1
423 | 1,1,1,0,0,0,0
424 | 0,0,0,1,1,1,0
425 | 0,1,1,1,1,0,1
426 | 0,1,0,1,0,0,1
427 | 0,1,0,0,0,1,0
428 | 1,1,1,1,0,1,1
429 | 1,0,1,0,1,1,1
430 | 0,0,1,0,1,0,1
431 | 0,0,1,0,0,0,1
432 | 1,1,1,0,1,0,0
433 | 1,0,1,1,0,0,0
434 | 0,1,0,1,0,0,1
435 | 1,1,1,0,1,1,1
436 | 0,0,1,1,1,1,1
437 | 0,0,0,0,0,1,0
438 | 1,1,0,1,0,0,0
439 | 0,1,1,0,0,1,0
440 | 0,1,0,0,0,0,0
441 | 1,1,1,0,0,0,0
442 | 0,0,1,0,1,0,1
443 | 1,0,0,0,1,0,1
444 | 0,1,1,1,0,1,1
445 | 0,1,1,1,1,1,1
446 | 0,0,1,0,1,1,1
447 | 1,0,0,0,0,1,0
448 | 1,1,1,0,0,1,1
449 | 0,0,0,1,1,0,0
450 | 0,0,1,1,0,1,1
451 | 0,1,1,1,1,1,1
452 | 0,1,1,0,0,0,0
453 | 1,0,0,1,0,1,0
454 | 0,0,0,0,0,0,0
455 | 1,1,0,0,0,0,0
456 | 1,0,1,1,1,1,1
457 | 1,1,0,0,0,1,1
458 | 1,0,1,1,1,1,1
459 | 0,0,1,1,0,1,1
460 | 0,1,0,0,1,0,0
461 | 1,1,1,0,1,0,0
462 | 0,1,0,0,1,0,0
463 | 0,1,0,0,0,0,0
464 | 0,0,1,0,0,1,1
465 | 0,0,1,1,0,0,1
466 | 0,1,1,1,1,1,1
467 | 1,0,0,0,0,0,0
468 | 0,0,0,0,1,0,0
469 | 0,1,0,0,0,0,0
470 | 1,1,0,0,0,0,0
471 | 0,0,0,0,0,0,0
472 | 0,1,1,0,0,0,0
473 | 1,1,0,0,0,0,0
474 | 0,0,1,0,0,1,1
475 | 0,0,0,0,0,1,0
476 | 0,0,1,1,0,0,1
477 | 1,1,0,1,0,1,1
478 | 0,1,1,1,0,0,1
479 | 0,0,0,1,1,0,0
480 | 1,1,0,1,1,1,1
481 | 1,1,0,1,0,1,1
482 | 0,0,0,1,1,0,0
483 | 0,0,1,0,1,1,1
484 | 1,0,1,0,0,1,0
485 | 1,0,1,1,0,0,0
486 | 1,1,0,0,0,0,0
487 | 0,1,1,1,1,0,1
488 | 0,0,0,1,0,0,0
489 | 1,0,0,0,0,1,0
490 | 0,0,1,0,1,0,1
491 | 0,0,1,0,0,1,1
492 | 0,1,0,0,0,1,0
493 | 1,1,1,0,1,0,0
494 | 1,0,0,0,1,0,1
495 | 1,0,1,0,1,1,1
496 | 1,0,1,1,0,0,0
497 | 1,1,0,0,0,1,1
498 | 0,0,0,1,1,1,0
499 | 1,0,1,1,0,1,0
500 | 1,1,0,1,0,1,1
501 | 0,0,0,0,1,0,0
--------------------------------------------------------------------------------
/skXCS/StringEnumerator.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | import numpy as np
4 | import pandas as pd
5 | from warnings import simplefilter
6 | # ignore all future warnings
7 | simplefilter(action='ignore', category=FutureWarning)
8 |
9 | class StringEnumerator:
10 | def __init__(self, inputFile, classLabel):
11 | self.classLabel = classLabel
12 | self.map = {} #Dictionary of header names: Attribute dictionaries
13 | data = pd.read_csv(inputFile, sep=',') # Puts data from csv into indexable np arrays
14 | data = data.fillna("NA")
15 | self.dataFeatures = data.drop(classLabel, axis=1).values #splits into an array of instances
16 | self.dataPhenotypes = data[classLabel].values
17 | self.dataHeaders = data.drop(classLabel, axis=1).columns.values
18 |
19 | tempPhenoArray = np.empty(len(self.dataPhenotypes),dtype=object)
20 | for instanceIndex in range(len(self.dataPhenotypes)):
21 | tempPhenoArray[instanceIndex] = str(self.dataPhenotypes[instanceIndex])
22 | self.dataPhenotypes = tempPhenoArray
23 |
24 | tempFeatureArray = np.empty((len(self.dataPhenotypes),len(self.dataHeaders)),dtype=object)
25 | for instanceIndex in range(len(self.dataFeatures)):
26 | for attrInst in range(len(self.dataHeaders)):
27 | tempFeatureArray[instanceIndex][attrInst] = str(self.dataFeatures[instanceIndex][attrInst])
28 | self.dataFeatures = tempFeatureArray
29 |
30 | self.delete_all_instances_without_phenotype()
31 |
32 | def print_invalid_attributes(self):
33 | print("ALL INVALID ATTRIBUTES & THEIR DISTINCT VALUES")
34 | for attr in range(len(self.dataHeaders)):
35 | distinctValues = []
36 | isInvalid = False
37 | for instIndex in range(len(self.dataFeatures)):
38 | val = self.dataFeatures[instIndex,attr]
39 | if not val in distinctValues and val != "NA":
40 | distinctValues.append(self.dataFeatures[instIndex,attr])
41 | if val != "NA":
42 | try:
43 | float(val)
44 | except:
45 | isInvalid = True
46 | if isInvalid:
47 | print(str(self.dataHeaders[attr])+": ",end="")
48 | for i in distinctValues:
49 | print(str(i)+"\t",end="")
50 | print()
51 |
52 | distinctValues = []
53 | isInvalid = False
54 | for instIndex in range(len(self.dataPhenotypes)):
55 | val = self.dataPhenotypes[instIndex]
56 | if not val in distinctValues and val != "NA":
57 | distinctValues.append(self.dataPhenotypes[instIndex])
58 | if val != "NA":
59 | try:
60 | float(val)
61 | except:
62 | isInvalid = True
63 | if isInvalid:
64 | print(str(self.classLabel)+" (the phenotype): ",end="")
65 | for i in distinctValues:
66 | print(str(i)+"\t",end="")
67 | print()
68 |
69 | def change_class_name(self,newName):
70 | if newName in self.dataHeaders:
71 | raise Exception("New Class Name Cannot Be An Already Existing Data Header Name")
72 | if self.classLabel in self.map.keys():
73 | self.map[self.newName] = self.map.pop(self.classLabel)
74 | self.classLabel = newName
75 |
76 | def change_header_name(self,currentName,newName):
77 | if newName in self.dataHeaders or newName == self.classLabel:
78 | raise Exception("New Class Name Cannot Be An Already Existing Data Header or Phenotype Name")
79 | if currentName in self.dataHeaders:
80 | headerIndex = np.where(self.dataHeaders == currentName)[0][0]
81 | self.dataHeaders[headerIndex] = newName
82 | if currentName in self.map.keys():
83 | self.map[newName] = self.map.pop(currentName)
84 | else:
85 | raise Exception("Current Header Doesn't Exist")
86 |
87 | def add_attribute_converter(self,headerName,array):#map is an array of strings, ordered by how it is to be enumerated enumeration
88 | if headerName in self.dataHeaders and not (headerName in self.map):
89 | newAttributeConverter = {}
90 | for index in range(len(array)):
91 | if str(array[index]) != "NA" and str(array[index]) != "" and str(array[index]) != "NaN":
92 | newAttributeConverter[str(array[index])] = str(index)
93 | self.map[headerName] = newAttributeConverter
94 |
95 | def add_attribute_converter_map(self,headerName,map):
96 | if headerName in self.dataHeaders and not (headerName in self.map) and not("" in map) and not("NA" in map) and not("NaN" in map):
97 | self.map[headerName] = map
98 | else:
99 | raise Exception("Invalid Map")
100 |
101 | def add_attribute_converter_random(self,headerName):
102 | if headerName in self.dataHeaders and not (headerName in self.map):
103 | headerIndex = np.where(self.dataHeaders == headerName)[0][0]
104 | uniqueItems = []
105 | for instance in self.dataFeatures:
106 | if not(instance[headerIndex] in uniqueItems) and instance[headerIndex] != "NA":
107 | uniqueItems.append(instance[headerIndex])
108 | self.add_attribute_converter(headerName,np.array(uniqueItems))
109 |
110 | def add_class_converter(self,array):
111 | if not (self.classLabel in self.map.keys()):
112 | newAttributeConverter = {}
113 | for index in range(len(array)):
114 | newAttributeConverter[str(array[index])] = str(index)
115 | self.map[self.classLabel] = newAttributeConverter
116 |
117 | def add_class_converter_random(self):
118 | if not (self.classLabel in self.map.keys()):
119 | uniqueItems = []
120 | for instance in self.dataPhenotypes:
121 | if not (instance in uniqueItems) and instance != "NA":
122 | uniqueItems.append(instance)
123 | self.add_class_converter(np.array(uniqueItems))
124 |
125 | def convert_all_attributes(self):
126 | for attribute in self.dataHeaders:
127 | if attribute in self.map.keys():
128 | i = np.where(self.dataHeaders == attribute)[0][0]
129 | for state in self.dataFeatures:#goes through each instance's state
130 | if (state[i] in self.map[attribute].keys()):
131 | state[i] = self.map[attribute][state[i]]
132 |
133 | if self.classLabel in self.map.keys():
134 | for state in self.dataPhenotypes:
135 | if (state in self.map[self.classLabel].keys()):
136 | i = np.where(self.dataPhenotypes == state)
137 | self.dataPhenotypes[i] = self.map[self.classLabel][state]
138 |
139 | def delete_attribute(self,headerName):
140 | if headerName in self.dataHeaders:
141 | i = np.where(headerName == self.dataHeaders)[0][0]
142 | self.dataHeaders = np.delete(self.dataHeaders,i)
143 | if headerName in self.map.keys():
144 | del self.map[headerName]
145 |
146 | newFeatures = []
147 | for instanceIndex in range(len(self.dataFeatures)):
148 | instance = np.delete(self.dataFeatures[instanceIndex],i)
149 | newFeatures.append(instance)
150 | self.dataFeatures = np.array(newFeatures)
151 | else:
152 | raise Exception("Header Doesn't Exist")
153 |
154 | def delete_all_instances_without_header_data(self,headerName):
155 | newFeatures = []
156 | newPhenotypes = []
157 | attributeIndex = np.where(self.dataHeaders == headerName)[0][0]
158 |
159 | for instanceIndex in range(len(self.dataFeatures)):
160 | instance = self.dataFeatures[instanceIndex]
161 | if instance[attributeIndex] != "NA":
162 | newFeatures.append(instance)
163 | newPhenotypes.append(self.dataPhenotypes[instanceIndex])
164 |
165 | self.dataFeatures = np.array(newFeatures)
166 | self.dataPhenotypes = np.array(newPhenotypes)
167 |
168 | def delete_all_instances_without_phenotype(self):
169 | newFeatures = []
170 | newPhenotypes = []
171 | for instanceIndex in range(len(self.dataFeatures)):
172 | instance = self.dataPhenotypes[instanceIndex]
173 | if instance != "NA":
174 | newFeatures.append(self.dataFeatures[instanceIndex])
175 | newPhenotypes.append(instance)
176 |
177 | self.dataFeatures = np.array(newFeatures)
178 | self.dataPhenotypes = np.array(newPhenotypes)
179 |
180 | def print(self):
181 | isFullNumber = self.check_is_full_numeric()
182 | print("Converted Data Features and Phenotypes")
183 | for header in self.dataHeaders:
184 | print(header,end="\t")
185 | print()
186 | for instanceIndex in range(len(self.dataFeatures)):
187 | for attribute in self.dataFeatures[instanceIndex]:
188 | if attribute != "NA":
189 | if (isFullNumber):
190 | print(float(attribute), end="\t")
191 | else:
192 | print(attribute, end="\t\t")
193 | else:
194 | print("NA", end = "\t")
195 | if self.dataPhenotypes[instanceIndex] != "NA":
196 | if (isFullNumber):
197 | print(float(self.dataPhenotypes[instanceIndex]))
198 | else:
199 | print(self.dataPhenotypes[instanceIndex])
200 | else:
201 | print("NA")
202 | print()
203 |
204 | def print_attribute_conversions(self):
205 | print("Changed Attribute Conversions")
206 | for headerName,conversions in self.map:
207 | print(headerName + " conversions:")
208 | for original,numberVal in conversions:
209 | print("\tOriginal: "+original+" Converted: "+numberVal)
210 | print()
211 | print()
212 |
213 | def check_is_full_numeric(self):
214 | try:
215 | for instance in self.dataFeatures:
216 | for value in instance:
217 | if value != "NA":
218 | float(value)
219 | for value in self.dataPhenotypes:
220 | if value != "NA":
221 | float(value)
222 |
223 | except:
224 | return False
225 |
226 | return True
227 |
228 | def get_params(self):
229 | if not(self.check_is_full_numeric()):
230 | raise Exception("Features and Phenotypes must be fully numeric")
231 |
232 | newFeatures = []
233 | newPhenotypes = []
234 | for instanceIndex in range(len(self.dataFeatures)):
235 | newInstance = []
236 | for attribute in self.dataFeatures[instanceIndex]:
237 | if attribute == "NA":
238 | newInstance.append(np.nan)
239 | else:
240 | newInstance.append(float(attribute))
241 |
242 | newFeatures.append(np.array(newInstance,dtype=float))
243 | if self.dataPhenotypes[instanceIndex] == "NA": #Should never happen. All NaN phenotypes should be removed automatically at init. Just a safety mechanism.
244 | newPhenotypes.append(np.nan)
245 | else:
246 | newPhenotypes.append(float(self.dataPhenotypes[instanceIndex]))
247 |
248 | return self.dataHeaders,self.classLabel,np.array(newFeatures,dtype=float),np.array(newPhenotypes,dtype=float)
--------------------------------------------------------------------------------
/test/test_StringEnumerator.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | from skXCS.StringEnumerator import StringEnumerator
3 | import pandas as pd
4 | import numpy as np
5 | import os
6 |
7 | THIS_DIR = os.path.dirname(os.path.abspath("test_eLCS.py"))
8 | if THIS_DIR[-4:] == "test": #Patch that ensures testing from Scikit not test directory
9 | THIS_DIR = THIS_DIR[:-5]
10 |
11 | class test_StringEnumerator(unittest.TestCase):
12 |
13 | def testInitMissingData(self):
14 | # Tests if init filters missing data into NAs
15 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/MissingFeatureData.csv")
16 | se = StringEnumerator(dataPath, "phenotype")
17 | cFeatures = np.array([["1.0","NA","1.0","4.0"],["2.0","0.0","1.0","NA"],["4.0","NA","1.0","2.0"],["NA","1.0","NA","1.0"],["6.0","NA","1.0","1.0"]])
18 | self.assertTrue(np.array_equal(cFeatures,se.dataFeatures))
19 |
20 | def testInitHeaders(self):
21 | # Tests if init gets the headers correct
22 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/MissingFeatureData.csv")
23 | se = StringEnumerator(dataPath, "phenotype")
24 | cHeaders = np.array(["N1","N2","N3","N4"])
25 | self.assertTrue(np.array_equal(cHeaders, se.dataHeaders))
26 |
27 | def testInitFeaturesAndClass(self):
28 | # Tests if init gets the features and class arrays correct
29 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/MissingFeatureData.csv")
30 | se = StringEnumerator(dataPath, "phenotype")
31 | cFeatures = np.array([["1.0", "NA", "1.0", "4.0"], ["2.0", "0.0", "1.0", "NA"], ["4.0", "NA", "1.0", "2.0"], ["NA", "1.0", "NA", "1.0"],["6.0", "NA", "1.0", "1.0"]])
32 | cClasses = np.array(["1", "0", "1", "0", "1"])
33 | self.assertTrue(np.array_equal(cFeatures, se.dataFeatures))
34 | self.assertTrue(np.array_equal(cClasses, se.dataPhenotypes))
35 |
36 | def testInitFeaturesAndClassRemoval(self):
37 | # Tests if init gets the features and class arrays correct given missing phenotype data
38 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/MissingFeatureAndPhenotypeData.csv")
39 | se = StringEnumerator(dataPath, "phenotype")
40 | cFeatures = np.array([["1.0", "NA", "1.0", "4.0"], ["NA", "1.0", "NA", "1.0"], ["6.0", "NA", "1.0", "1.0"]])
41 | cClasses = np.array(["1.0", "0.0", "1.0"])
42 | self.assertTrue(np.array_equal(cFeatures, se.dataFeatures))
43 | self.assertTrue(np.array_equal(cClasses, se.dataPhenotypes))
44 |
45 | def testChangeClassAndHeaderNames(self):
46 | # Changes header and class names. Checks map, and classLabel/dataHeaders correctness
47 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
48 | se = StringEnumerator(dataPath, "phenotype")
49 | se.change_class_name("country")
50 | se.change_header_name("N1","gender")
51 | se.change_header_name("N2","N1")
52 | se.change_header_name("N1","floats")
53 | se.change_header_name("N3","phenotype")
54 | se.change_header_name("phenotype","age")
55 | cHeaders = np.array(["gender","floats","age"])
56 | self.assertTrue(np.array_equal(cHeaders,se.dataHeaders))
57 | self.assertTrue(np.array_equal("country", se.classLabel))
58 |
59 | def testChangeClassAndHeaderNames2(self):
60 | # Changes header and class names. Checks map, and classLabel/dataHeaders correctness
61 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
62 | se = StringEnumerator(dataPath, "phenotype")
63 | se.add_class_converter_random()
64 | se.change_header_name("N1","gender")
65 | se.add_attribute_converter_random("gender")
66 | se.change_header_name("gender","Gender")
67 | se.add_attribute_converter_random("Gender")
68 | se.add_attribute_converter_random("Gender")
69 | se.add_attribute_converter_random("gender")
70 | se.add_attribute_converter_random("N3")
71 | se.change_header_name("N3","Age")
72 |
73 | cHeaders = np.array(["Gender","N2","Age"])
74 | cMap = {"phenotype":{"china":"0","japan":"1","russia":"2"},"Gender":{"male":"0","female":"1"},"Age":{"young":"0","old":"1"}}
75 | self.assertTrue(np.array_equal(cHeaders,se.dataHeaders))
76 | self.assertTrue(np.array_equal("phenotype", se.classLabel))
77 | self.assertTrue(se.map == cMap)
78 |
79 | def testchange_class_nameInvalid(self):
80 | # Changes class name to an existing header name should raise exception
81 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
82 | se = StringEnumerator(dataPath, "phenotype")
83 | with self.assertRaises(Exception) as context:
84 | se.change_class_name("N1")
85 |
86 | self.assertTrue("New Class Name Cannot Be An Already Existing Data Header Name" in str(context.exception))
87 |
88 |
89 | def testchange_header_nameInvalid(self):
90 | # Changes header name to an existing header or class name should raise exception
91 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
92 | se = StringEnumerator(dataPath, "phenotype")
93 | with self.assertRaises(Exception) as context:
94 | se.change_header_name("N1","N2")
95 |
96 | self.assertTrue("New Class Name Cannot Be An Already Existing Data Header or Phenotype Name" in str(context.exception))
97 |
98 | def testchange_header_nameInvalid2(self):
99 | # Changes non existing header name should raise exception
100 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
101 | se = StringEnumerator(dataPath, "phenotype")
102 | with self.assertRaises(Exception) as context:
103 | se.change_header_name("N", "N5")
104 | self.assertTrue("Current Header Doesn't Exist" in str(context.exception))
105 |
106 | def testdelete_attribute(self):
107 | # Deletes attributes and checks map, headers, and arrays for correctness
108 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
109 | se = StringEnumerator(dataPath, "phenotype")
110 | se.change_header_name("N1","gender")
111 | se.add_attribute_converter_random("gender")
112 | se.add_attribute_converter_random("N3")
113 | se.delete_attribute("gender")
114 | cHeaders = np.array(["N2","N3"])
115 | cMap = {"N3": {"young": "0", "old": "1"}}
116 | self.assertTrue(np.array_equal(cHeaders, se.dataHeaders))
117 | self.assertTrue(np.array_equal("phenotype", se.classLabel))
118 | self.assertTrue(se.map == cMap)
119 |
120 | def testDeleteNonexistentAttribute(self):
121 | # Deletes nonexistent attribute
122 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
123 | se = StringEnumerator(dataPath, "phenotype")
124 | with self.assertRaises(Exception) as context:
125 | se.delete_attribute("N")
126 | self.assertTrue("Header Doesn't Exist" in str(context.exception))
127 |
128 | def testDeleteInstancesWithMissing(self):
129 | # Deletes instances and checks arrays for correctness
130 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
131 | se = StringEnumerator(dataPath, "phenotype")
132 | se.change_header_name("N1","gender")
133 | se.add_attribute_converter_random("gender")
134 | se.add_attribute_converter_random("N3")
135 | se.add_class_converter_random()
136 | se.convert_all_attributes()
137 | se.delete_all_instances_without_header_data("gender")
138 | se.delete_all_instances_without_header_data("N2")
139 | se.delete_all_instances_without_header_data("N3")
140 | cHeaders = np.array(["gender","N2","N3"])
141 | cMap = {"phenotype":{"china":"0","japan":"1","russia":"2"},"gender":{"male":"0","female":"1"},"N3":{"young":"0","old":"1"}}
142 | cArray = np.array([["0","1.2","0"],["1","-0.4","1"]])
143 | cPArray = np.array(["0","0"])
144 | self.assertTrue(np.array_equal(cHeaders, se.dataHeaders))
145 | self.assertTrue(np.array_equal("phenotype", se.classLabel))
146 | self.assertTrue(np.array_equal(cArray, se.dataFeatures))
147 | self.assertTrue(np.array_equal(cPArray, se.dataPhenotypes))
148 | self.assertTrue(se.map == cMap)
149 |
150 | def testDeleteInstancesWithMissing2(self):
151 | # Deletes instances and checks arrays for correctness
152 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
153 | se = StringEnumerator(dataPath, "phenotype")
154 | se.change_header_name("N1","gender")
155 | se.delete_all_instances_without_header_data("gender")
156 | se.delete_all_instances_without_header_data("N2")
157 | se.delete_all_instances_without_header_data("N3")
158 |
159 | se.add_attribute_converter_random("gender")
160 | se.add_attribute_converter_random("N3")
161 | se.add_class_converter_random()
162 | se.convert_all_attributes()
163 |
164 | cHeaders = np.array(["gender","N2","N3"])
165 | cMap = {"phenotype":{"china":"0"},"gender":{"male":"0","female":"1"},"N3":{"young":"0","old":"1"}}
166 | cArray = np.array([["0","1.2","0"],["1","-0.4","1"]])
167 | cPArray = np.array(["0","0"])
168 | self.assertTrue(np.array_equal(cHeaders, se.dataHeaders))
169 | self.assertTrue(np.array_equal("phenotype", se.classLabel))
170 | self.assertTrue(np.array_equal(cArray, se.dataFeatures))
171 | self.assertTrue(np.array_equal(cPArray, se.dataPhenotypes))
172 | self.assertTrue(se.map == cMap)
173 |
174 | def testNumericCheck(self):
175 | # Checks non missing numeric
176 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
177 | se = StringEnumerator(dataPath, "phenotype")
178 | self.assertFalse(se.check_is_full_numeric())
179 | se.add_attribute_converter_random("N1")
180 | se.convert_all_attributes()
181 | self.assertFalse(se.check_is_full_numeric())
182 | se.add_attribute_converter_random("N3")
183 | se.add_class_converter_random()
184 | se.convert_all_attributes()
185 | self.assertTrue(se.check_is_full_numeric())
186 |
187 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/MissingFeatureData.csv")
188 | se2 = StringEnumerator(dataPath, "phenotype")
189 | self.assertTrue(se2.check_is_full_numeric())
190 |
191 | def testget_paramsFail(self):
192 | # Get params when not all features/class have been enumerated
193 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
194 | se = StringEnumerator(dataPath, "phenotype")
195 | with self.assertRaises(Exception) as context:
196 | se.get_params()
197 | self.assertTrue("Features and Phenotypes must be fully numeric" in str(context.exception))
198 |
199 | def testget_params1(self):
200 | # Get Params Test
201 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
202 | se = StringEnumerator(dataPath, "phenotype")
203 | se.change_header_name("N1","gender")
204 | se.change_header_name("N2","floats")
205 | se.change_header_name("N3","age")
206 | se.change_class_name("country")
207 | se.add_attribute_converter_random("gender")
208 | se.add_attribute_converter_random("age")
209 | #se.add_attribute_converter_random("floats") #You can convert "floats" to discrete values as well
210 | se.add_class_converter_random()
211 | se.convert_all_attributes()
212 | dataHeaders,classLabel,dataFeatures,dataPhenotypes = se.get_params()
213 | cHeaders = np.array(["gender","floats","age"])
214 | cFeatures = np.array([[0,1.2,0],[1,0.3,np.nan],[1,-0.4,1],[np.nan,0,0]])
215 | cPhenotypes = np.array([0,1,0,2])
216 | self.assertEqual("country",classLabel)
217 | self.assertTrue(np.array_equal(cHeaders,dataHeaders))
218 | self.assertTrue(np.allclose(cFeatures,dataFeatures,equal_nan=True))
219 | self.assertTrue(np.allclose(cPhenotypes, dataPhenotypes, equal_nan=True))
220 |
221 | def testget_params2(self):
222 | # Get Params Test
223 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
224 | se = StringEnumerator(dataPath, "phenotype")
225 | se.change_header_name("N1", "gender")
226 | se.change_header_name("N2", "floats")
227 | se.change_header_name("N3", "age")
228 | se.change_class_name("country")
229 | se.add_attribute_converter("gender",np.array(["female","male","NA","other"]))
230 | se.add_attribute_converter("age",np.array(["old","young"]))
231 | se.add_class_converter_random()
232 | se.convert_all_attributes()
233 | dataHeaders, classLabel, dataFeatures, dataPhenotypes = se.get_params()
234 | cHeaders = np.array(["gender", "floats", "age"])
235 | cFeatures = np.array([[1, 1.2, 1], [0, 0.3, np.nan], [0, -0.4, 0], [np.nan, 0, 1]])
236 | cPhenotypes = np.array([0, 1, 0, 2])
237 | self.assertEqual("country", classLabel)
238 | self.assertTrue(np.array_equal(cHeaders, dataHeaders))
239 | self.assertTrue(np.allclose(cFeatures, dataFeatures, equal_nan=True))
240 | self.assertTrue(np.allclose(cPhenotypes, dataPhenotypes, equal_nan=True))
241 | #
242 | # def testPrintInvalids(self):
243 | # dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData2.csv")
244 | # se = DataCleanup.StringEnumerator(dataPath, "phenotype")
245 | # se.print_invalid_attributes()
--------------------------------------------------------------------------------
/skXCS/ClassifierSet.py:
--------------------------------------------------------------------------------
1 |
2 | import copy
3 | import random
4 | from skXCS.Classifier import Classifier
5 |
6 | class ClassifierSet:
7 | def __init__(self):
8 | self.popSet = []
9 | self.matchSet = []
10 | self.actionSet = []
11 | self.microPopSize = 0
12 |
13 | ####Match Set Creation####
14 | def createMatchSet(self,state,xcs):
15 | xcs.timer.startTimeMatching()
16 | actionsNotCovered = copy.deepcopy(xcs.env.formatData.phenotypeList)
17 | totalNumActions = len(xcs.env.formatData.phenotypeList)
18 |
19 | for i in range(len(self.popSet)):
20 | classifier = self.popSet[i]
21 | if classifier.match(state,xcs):
22 | self.matchSet.append(i)
23 | if classifier.action in actionsNotCovered:
24 | actionsNotCovered.remove(classifier.action)
25 |
26 | if xcs.env.formatData.isBinaryClassification:
27 | doCovering = totalNumActions - len(actionsNotCovered) < xcs.theta_matching or len(self.matchSet) < 5 #Second condition only holds for 1 covering round
28 | else:
29 | doCovering = totalNumActions - len(actionsNotCovered) < xcs.theta_matching
30 |
31 | while doCovering:
32 | if len(actionsNotCovered) != 0:
33 | action = random.choice(actionsNotCovered)
34 | else:
35 | action = random.choice(copy.deepcopy(xcs.env.formatData.phenotypeList))
36 | coveredClassifier = Classifier(xcs)
37 | coveredClassifier.initializeWithMatchingStateAndGivenAction(1,state,action,xcs)
38 | self.addClassifierToPopulation(xcs,coveredClassifier,True)
39 | self.matchSet.append(len(self.popSet)-1)
40 | if len(actionsNotCovered) != 0:
41 | actionsNotCovered.remove(action)
42 | xcs.trackingObj.coveringCount += 1
43 |
44 | doCovering = totalNumActions - len(actionsNotCovered) < xcs.theta_matching
45 |
46 | for ref in self.matchSet:
47 | self.popSet[ref].matchCount += 1
48 | xcs.timer.stopTimeMatching()
49 |
50 | def getIdenticalClassifier(self,xcs,newClassifier):
51 | for classifier in self.popSet:
52 | if newClassifier.equals(classifier):
53 | return classifier
54 | return None
55 |
56 | def addClassifierToPopulation(self,xcs,classifier,isCovering):
57 | oldCl = None
58 | if not isCovering:
59 | oldCl = self.getIdenticalClassifier(xcs,classifier)
60 | if oldCl != None:
61 | oldCl.updateNumerosity(1)
62 | self.microPopSize += 1
63 | else:
64 | self.popSet.append(classifier)
65 | self.microPopSize += 1
66 |
67 | ####Action Set Creation####
68 | def createActionSet(self,action):
69 | for ref in self.matchSet:
70 | if self.popSet[ref].action == action:
71 | self.actionSet.append(ref)
72 |
73 | ####Update Action Set Statistics####
74 | def updateActionSet(self,reward,xcs):
75 | P = reward
76 |
77 | actionSetNumerositySum = 0
78 | for i in self.actionSet:
79 | ref = self.popSet[i]
80 | actionSetNumerositySum += ref.numerosity
81 |
82 | for cl in self.actionSet:
83 | classifier = self.popSet[cl]
84 | classifier.increaseExperience()
85 | classifier.updatePrediction(P,xcs)
86 | classifier.updatePredictionError(P,xcs)
87 | classifier.updateActionSetSize(actionSetNumerositySum,xcs)
88 |
89 | self.updateFitnessSet(xcs)
90 | if xcs.do_action_set_subsumption:
91 | xcs.timer.startTimeSubsumption()
92 | self.do_action_set_subsumption(xcs)
93 | xcs.timer.stopTimeSubsumption()
94 |
95 | def updateFitnessSet(self,xcs):
96 | accuracySum = 0
97 | accuracies = []
98 |
99 | i = 0
100 | for clRef in self.actionSet:
101 | classifier = self.popSet[clRef]
102 | accuracies.append(classifier.getAccuracy(xcs))
103 | accuracySum = accuracySum + accuracies[i]*classifier.numerosity
104 | i+=1
105 |
106 | i = 0
107 | for clRef in self.actionSet:
108 | classifier = self.popSet[clRef]
109 | classifier.updateFitness(accuracySum,accuracies[i],xcs)
110 | i+=1
111 |
112 | ####Action Set Subsumption####
113 | def do_action_set_subsumption(self,xcs):
114 | subsumer = None
115 | for clRef in self.actionSet:
116 | classifier = self.popSet[clRef]
117 | if classifier.isSubsumer(xcs):
118 | if subsumer == None or classifier.isMoreGeneral(subsumer,xcs):
119 | subsumer = classifier
120 |
121 | if subsumer != None:
122 | i = 0
123 | while i < len(self.actionSet):
124 | ref = self.actionSet[i]
125 | if subsumer.isMoreGeneral(self.popSet[ref],xcs):
126 | xcs.trackingObj.subsumptionCount += 1
127 | subsumer.updateNumerosity(self.popSet[ref].numerosity)
128 | self.removeMacroClassifier(ref)
129 | self.deleteFromMatchSet(ref)
130 | self.deleteFromActionSet(ref)
131 | i -= 1
132 | i+=1
133 |
134 | def removeMacroClassifier(self, ref):
135 | del self.popSet[ref]
136 |
137 | def deleteFromMatchSet(self, deleteRef):
138 | if deleteRef in self.matchSet:
139 | self.matchSet.remove(deleteRef)
140 |
141 | for j in range(len(self.matchSet)):
142 | ref = self.matchSet[j]
143 | if ref > deleteRef:
144 | self.matchSet[j] -= 1
145 |
146 | def deleteFromActionSet(self, deleteRef):
147 | if deleteRef in self.actionSet:
148 | self.actionSet.remove(deleteRef)
149 |
150 | for j in range(len(self.actionSet)):
151 | ref = self.actionSet[j]
152 | if ref > deleteRef:
153 | self.actionSet[j] -= 1
154 |
155 | ####GA####
156 | def runGA(self,state,xcs):
157 | #GA Run Requirement
158 | if (xcs.iterationCount - self.getIterStampAverage()) < xcs.theta_GA:
159 | return
160 |
161 | xcs.timer.startTimeGA()
162 | self.setIterStamps(xcs.iterationCount)
163 | parentClassifiers = self.selectTwoParentViaTournament(xcs)
164 | parentClassifier1 = parentClassifiers[0]
165 | parentClassifier2 = parentClassifiers[1]
166 |
167 | childClassifier1 = Classifier(xcs)
168 | childClassifier1.initializeWithParentClassifier(parentClassifier1)
169 | childClassifier2 = Classifier(xcs)
170 | childClassifier2.initializeWithParentClassifier(parentClassifier2)
171 |
172 | changedByCrossover = False
173 | if not childClassifier1.equals(childClassifier2) and random.random() < xcs.p_crossover:
174 | changedByCrossover = childClassifier1.uniformCrossover(childClassifier2,xcs)
175 |
176 | if changedByCrossover:
177 | childClassifier1.prediction = (childClassifier1.prediction + childClassifier2.prediction)/2
178 | childClassifier2.predictionError = xcs.prediction_error_reduction*(childClassifier1.predictionError + childClassifier2.predictionError)/2
179 | childClassifier1.fitness = xcs.fitness_reduction*(childClassifier1.fitness+childClassifier2.fitness)/2
180 | childClassifier2.prediction = childClassifier1.prediction
181 | childClassifier2.predictionError = childClassifier1.predictionError
182 | childClassifier2.fitness = childClassifier1.fitness
183 | else:
184 | childClassifier1.fitness = xcs.fitness_reduction * childClassifier1.fitness
185 | childClassifier2.fitness = xcs.fitness_reduction * childClassifier2.fitness
186 |
187 | changedByMutation1 = childClassifier1.mutation(state,xcs)
188 | changedByMutation2 = childClassifier2.mutation(state,xcs)
189 | xcs.timer.stopTimeGA()
190 |
191 | if changedByMutation1 or changedByMutation2 or changedByCrossover:
192 | if changedByMutation1 or changedByMutation2:
193 | xcs.trackingObj.mutationCount += 1
194 | if changedByCrossover:
195 | xcs.trackingObj.crossOverCount += 1
196 | self.insertDiscoveredClassifiers(childClassifier1,childClassifier2,parentClassifier1,parentClassifier2,xcs)
197 |
198 | def insertDiscoveredClassifiers(self,child1,child2,parent1,parent2,xcs):
199 | if xcs.do_GA_subsumption:
200 | xcs.timer.startTimeSubsumption()
201 | self.subsumeClassifier(child1,parent1,parent2,xcs)
202 | self.subsumeClassifier(child2,parent1,parent2,xcs)
203 | xcs.timer.stopTimeSubsumption()
204 | else:
205 | if len(child1.specifiedAttList) > 0:
206 | self.addClassifierToPopulation(xcs, child1, False)
207 | if len(child2.specifiedAttList) > 0:
208 | self.addClassifierToPopulation(xcs, child2, False)
209 |
210 | def subsumeClassifier(self,child,parent1,parent2,xcs):
211 | if parent1.subsumes(child,xcs):
212 | self.microPopSize += 1
213 | parent1.updateNumerosity(1)
214 | xcs.trackingObj.subsumptionCount += 1
215 | elif parent2.subsumes(child,xcs):
216 | self.microPopSize += 1
217 | parent2.updateNumerosity(1)
218 | xcs.trackingObj.subsumptionCount += 1
219 | else: #No additional [A] subsumption w/ offspring rules
220 | if len(child.specifiedAttList) > 0:
221 | self.addClassifierToPopulation(xcs, child, False)
222 |
223 | def getIterStampAverage(self): #Average GA Timestamp
224 | sumCl = 0
225 | numSum = 0
226 | for ref in self.actionSet:
227 | sumCl += self.popSet[ref].timestampGA * self.popSet[ref].numerosity
228 | numSum += self.popSet[ref].numerosity
229 | if numSum != 0:
230 | return sumCl/float(numSum)
231 | else:
232 | return 0
233 |
234 | def getInitStampAverage(self): #Average Init Timestamp
235 | sumCl = 0
236 | numSum = 0
237 | for ref in self.actionSet:
238 | sumCl += self.popSet[ref].initTimeStamp * self.popSet[ref].numerosity
239 | numSum += self.popSet[ref].numerosity
240 | if numSum != 0:
241 | return sumCl/float(numSum)
242 | else:
243 | return 0
244 |
245 | def setIterStamps(self,currentIteration):
246 | for ref in self.actionSet:
247 | self.popSet[ref].updateTimestamp(currentIteration)
248 |
249 | def selectTwoParentViaTournament(self,xcs):
250 | selectList = [None,None]
251 | setList = self.actionSet
252 |
253 | for i in range(2):
254 | tSize = int(len(setList) * xcs.theta_select)
255 | possibleClassifiers = random.sample(setList, tSize)
256 |
257 | bestFitness = 0
258 | bestClassifier = self.actionSet[0]
259 | for j in possibleClassifiers:
260 | if self.popSet[j].fitness > bestFitness:
261 | bestFitness = self.popSet[j].fitness
262 | bestClassifier = j
263 | selectList[i] = self.popSet[bestClassifier]
264 | return selectList
265 |
266 | ####Deletion####
267 | def deletion(self,xcs):
268 | xcs.timer.startTimeDeletion()
269 | while (self.microPopSize > xcs.N):
270 | self.deleteFromPopulation(xcs)
271 | xcs.timer.stopTimeDeletion()
272 |
273 | def deleteFromPopulation(self,xcs):
274 | meanFitness = self.getFitnessSum()/self.microPopSize
275 | deletionProbSum = 0
276 | voteList = []
277 | for classifier in self.popSet:
278 | vote = classifier.getDelProp(meanFitness,xcs)
279 | deletionProbSum += vote
280 | voteList.append(vote)
281 | i = 0
282 | for classifier in self.popSet:
283 | classifier.deletionProb = voteList[i]/deletionProbSum
284 | i+=1
285 |
286 | choicePoint = deletionProbSum * random.random()
287 | newSum = 0
288 | for i in range(len(voteList)):
289 | classifier = self.popSet[i]
290 | newSum = newSum + voteList[i]
291 | if newSum > choicePoint:
292 | classifier.updateNumerosity(-1)
293 | self.microPopSize -= 1
294 | if classifier.numerosity < 1:
295 | self.removeMacroClassifier(i)
296 | self.deleteFromMatchSet(i)
297 | self.deleteFromActionSet(i)
298 | xcs.trackingObj.deletionCount += 1
299 | return
300 | return
301 |
302 | def getFitnessSum(self):
303 | sum = 0
304 | for classifier in self.popSet:
305 | sum += classifier.fitness
306 | return sum
307 |
308 | ####Clear Sets####
309 | def clearSets(self):
310 | """ Clears out references in the match and correct sets for the next learning iteration. """
311 | self.matchSet = []
312 | self.actionSet = []
313 |
314 | ####Evaluation####
315 | def makeEvaluationMatchSet(self,state,xcs):
316 | for i in range(len(self.popSet)):
317 | classifier = self.popSet[i]
318 | if classifier.match(state,xcs):
319 | self.matchSet.append(i)
320 |
321 | def getAveGenerality(self,xcs):
322 | generalitySum = 0
323 | for classifier in self.popSet:
324 | generalitySum += (xcs.env.formatData.numAttributes - len(classifier.condition))/xcs.env.formatData.numAttributes*classifier.numerosity
325 | if self.microPopSize == 0:
326 | aveGenerality = 0
327 | else:
328 | aveGenerality = generalitySum/self.microPopSize
329 |
330 | return aveGenerality
331 |
332 | def getAttributeSpecificityList(self,xcs): #To be changed for XCS
333 | attributeSpecList = []
334 | for i in range(xcs.env.formatData.numAttributes):
335 | attributeSpecList.append(0)
336 | for cl in self.popSet:
337 | for ref in cl.specifiedAttList:
338 | attributeSpecList[ref] += cl.numerosity
339 | return attributeSpecList
340 |
341 | def getAttributeAccuracyList(self,xcs): #To be changed for XCS
342 | attributeAccList = []
343 | for i in range(xcs.env.formatData.numAttributes):
344 | attributeAccList.append(0.0)
345 | for cl in self.popSet:
346 | for ref in cl.specifiedAttList:
347 | attributeAccList[ref] += cl.numerosity * cl.getAccuracy(xcs)
348 | return attributeAccList
349 |
350 |
--------------------------------------------------------------------------------
/skXCS/Classifier.py:
--------------------------------------------------------------------------------
1 | import random
2 | import copy
3 |
4 | class Classifier:
5 | def __init__(self,xcs):
6 | self.specifiedAttList = []
7 | self.condition = []
8 | self.action = None
9 |
10 | self.prediction = xcs.init_prediction
11 | self.fitness = xcs.init_fitness
12 | self.predictionError = xcs.init_e
13 |
14 | self.numerosity = 1
15 | self.experience = 0 #aka action set count
16 | self.matchCount = 0
17 |
18 | self.actionSetSize = None
19 | self.timestampGA = xcs.iterationCount
20 | self.initTimeStamp = xcs.iterationCount
21 | self.deletionProb = None
22 |
23 | pass
24 |
25 | def initializeWithParentClassifier(self,classifier):
26 | self.specifiedAttList = copy.deepcopy(classifier.specifiedAttList)
27 | self.condition = copy.deepcopy(classifier.condition)
28 | self.action = copy.deepcopy(classifier.action)
29 |
30 | self.actionSetSize = classifier.actionSetSize
31 | self.prediction = classifier.prediction
32 | self.predictionError = classifier.predictionError
33 | self.fitness = classifier.fitness/classifier.numerosity
34 |
35 | def match(self,state,xcs):
36 | for i in range(len(self.condition)):
37 | specifiedIndex = self.specifiedAttList[i]
38 | attributeInfoType = xcs.env.formatData.attributeInfoType[specifiedIndex]
39 | instanceValue = state[specifiedIndex]
40 |
41 | #Continuous
42 | if attributeInfoType:
43 | if instanceValue == None:
44 | return False
45 | elif self.condition[i][0] < instanceValue < self.condition[i][1]:
46 | pass
47 | else:
48 | return False
49 | else:
50 | if instanceValue == self.condition[i]:
51 | pass
52 | elif instanceValue == None:
53 | return False
54 | else:
55 | return False
56 | return True
57 |
58 | def initializeWithMatchingStateAndGivenAction(self,setSize,state,action,xcs):
59 | self.action = action
60 | self.actionSetSize = setSize
61 |
62 | while len(self.specifiedAttList) < 1:
63 | for attRef in range(len(state)):
64 | if random.random() > xcs.p_general and not(state[attRef] == None):
65 | self.specifiedAttList.append(attRef)
66 | self.createMatchingAttribute(xcs,attRef,state)
67 |
68 |
69 | def createMatchingAttribute(self,xcs,attRef,state):
70 | attributeInfoType = xcs.env.formatData.attributeInfoType[attRef]
71 | if attributeInfoType:
72 | attributeInfoValue = xcs.env.formatData.attributeInfoContinuous[attRef]
73 |
74 | # Continuous attribute
75 | if attributeInfoType:
76 | attRange = attributeInfoValue[1] - attributeInfoValue[0]
77 | rangeRadius = random.randint(25, 75) * 0.01 * attRange / 2.0 # Continuous initialization domain radius.
78 | ar = state[attRef]
79 | Low = ar - rangeRadius
80 | High = ar + rangeRadius
81 | condList = [Low, High]
82 | self.condition.append(condList)
83 |
84 | # Discrete attribute
85 | else:
86 | condList = state[attRef]
87 | self.condition.append(condList)
88 |
89 | def equals(self,classifier):
90 | if classifier.action == self.action and len(classifier.specifiedAttList) == len(self.specifiedAttList):
91 | clRefs = sorted(classifier.specifiedAttList)
92 | selfRefs = sorted(self.specifiedAttList)
93 | if clRefs == selfRefs:
94 | for i in range(len(classifier.specifiedAttList)):
95 | tempIndex = self.specifiedAttList.index(classifier.specifiedAttList[i])
96 | if not (classifier.condition[i] == self.condition[tempIndex]):
97 | return False
98 | return True
99 | return False
100 |
101 | def updateNumerosity(self,num):
102 | self.numerosity += num
103 |
104 | def increaseExperience(self):
105 | self.experience += 1
106 |
107 | def updatePredictionError(self,P,xcs):
108 | if self.experience < 1.0/xcs.beta:
109 | self.predictionError = self.predictionError + (abs(P - self.prediction) - self.predictionError) / float(self.experience)
110 | else:
111 | self.predictionError = self.predictionError + xcs.beta * (abs(P - self.prediction) - self.predictionError)
112 |
113 | def updatePrediction(self,P,xcs):
114 | if self.experience < 1.0 / xcs.beta:
115 | self.prediction = self.prediction + (P-self.prediction) / float(self.experience)
116 | else:
117 | self.prediction = self.prediction + xcs.beta * (P - self.prediction)
118 |
119 | def updateActionSetSize(self,numerositySum,xcs):
120 | if self.experience < 1.0/xcs.beta:
121 | self.actionSetSize = self.actionSetSize + (numerositySum - self.actionSetSize) / float(self.experience)
122 | else:
123 | self.actionSetSize = self.actionSetSize + xcs.beta * (numerositySum - self.actionSetSize)
124 |
125 | def getAccuracy(self,xcs):
126 | """ Returns the accuracy of the classifier.
127 | The accuracy is determined from the prediction error of the classifier using Wilson's
128 | power function as published in 'Get Real! XCS with continuous-valued inputs' (1999) """
129 |
130 | if self.predictionError <= xcs.e_0:
131 | accuracy = 1.0
132 | else:
133 | accuracy = xcs.alpha * ((self.predictionError / xcs.e_0) ** (-xcs.nu))
134 |
135 | return accuracy
136 |
137 | def updateFitness(self, accSum, accuracy,xcs):
138 | """ Updates the fitness of the classifier according to the relative accuracy.
139 | @param accSum The sum of all the accuracies in the action set
140 | @param accuracy The accuracy of the classifier. """
141 |
142 | self.fitness = self.fitness + xcs.beta * ((accuracy * self.numerosity) / float(accSum) - self.fitness)
143 |
144 | def isSubsumer(self,xcs):
145 | """ Returns if the classifier is a possible subsumer. It is affirmed if the classifier
146 | has a sufficient experience and if its reward prediction error is sufficiently low. """
147 |
148 | if self.experience > xcs.theta_sub and self.predictionError < xcs.e_0:
149 | return True
150 | return False
151 |
152 | def isMoreGeneral(self,classifier,xcs):
153 | if len(self.specifiedAttList) >= len(classifier.specifiedAttList):
154 | return False
155 | for i in range(len(self.specifiedAttList)):
156 | if self.specifiedAttList[i] not in classifier.specifiedAttList:
157 | return False
158 |
159 | attributeInfoType = xcs.env.formatData.attributeInfoType[self.specifiedAttList[i]]
160 | if attributeInfoType:
161 | otherRef = classifier.specifiedAttList.index(self.specifiedAttList[i])
162 | if self.condition[i][0] < classifier.condition[otherRef][0]:
163 | return False
164 | if self.condition[i][1] > classifier.condition[otherRef][1]:
165 | return False
166 | return True
167 |
168 | def subsumes(self,classifier,xcs):
169 | return self.action == classifier.action and self.isSubsumer(xcs) and self.isMoreGeneral(classifier,xcs)
170 |
171 | def updateTimestamp(self,timestamp):
172 | self.timestampGA = timestamp
173 |
174 | def uniformCrossover(self,classifier,xcs):
175 | p_self_specifiedAttList = copy.deepcopy(self.specifiedAttList)
176 | p_cl_specifiedAttList = copy.deepcopy(classifier.specifiedAttList)
177 |
178 | # Make list of attribute references appearing in at least one of the parents.-----------------------------
179 | comboAttList = []
180 | for i in p_self_specifiedAttList:
181 | comboAttList.append(i)
182 | for i in p_cl_specifiedAttList:
183 | if i not in comboAttList:
184 | comboAttList.append(i)
185 | elif not xcs.env.formatData.attributeInfoType[i]:
186 | comboAttList.remove(i)
187 | comboAttList.sort()
188 |
189 | changed = False
190 | for attRef in comboAttList:
191 | attributeInfoType = xcs.env.formatData.attributeInfoType[attRef]
192 | probability = 0.5
193 | ref = 0
194 | if attRef in p_self_specifiedAttList:
195 | ref += 1
196 | if attRef in p_cl_specifiedAttList:
197 | ref += 1
198 |
199 | if ref == 0:
200 | pass
201 | elif ref == 1:
202 | if attRef in p_self_specifiedAttList and random.random() > probability:
203 | i = self.specifiedAttList.index(attRef)
204 | classifier.condition.append(self.condition.pop(i))
205 |
206 | classifier.specifiedAttList.append(attRef)
207 | self.specifiedAttList.remove(attRef)
208 | changed = True
209 |
210 | if attRef in p_cl_specifiedAttList and random.random() < probability:
211 | i = classifier.specifiedAttList.index(attRef)
212 | self.condition.append(classifier.condition.pop(i))
213 |
214 | self.specifiedAttList.append(attRef)
215 | classifier.specifiedAttList.remove(attRef)
216 | changed = True
217 | else:
218 | # Continuous Attribute
219 | if attributeInfoType:
220 | i_cl1 = self.specifiedAttList.index(attRef)
221 | i_cl2 = classifier.specifiedAttList.index(attRef)
222 | tempKey = random.randint(0, 3)
223 | if tempKey == 0:
224 | temp = self.condition[i_cl1][0]
225 | self.condition[i_cl1][0] = classifier.condition[i_cl2][0]
226 | classifier.condition[i_cl2][0] = temp
227 | elif tempKey == 1:
228 | temp = self.condition[i_cl1][1]
229 | self.condition[i_cl1][1] = classifier.condition[i_cl2][1]
230 | classifier.condition[i_cl2][1] = temp
231 | else:
232 | allList = self.condition[i_cl1] + classifier.condition[i_cl2]
233 | newMin = min(allList)
234 | newMax = max(allList)
235 | if tempKey == 2:
236 | self.condition[i_cl1] = [newMin, newMax]
237 | classifier.condition.pop(i_cl2)
238 |
239 | classifier.specifiedAttList.remove(attRef)
240 | else:
241 | classifier.condition[i_cl2] = [newMin, newMax]
242 | self.condition.pop(i_cl1)
243 |
244 | self.specifiedAttList.remove(attRef)
245 |
246 | # Discrete Attribute
247 | else:
248 | pass
249 |
250 | tempList1 = copy.deepcopy(p_self_specifiedAttList)
251 | tempList2 = copy.deepcopy(classifier.specifiedAttList)
252 | tempList1.sort()
253 | tempList2.sort()
254 |
255 | if changed and len(set(tempList1) & set(tempList2)) == len(tempList2):
256 | changed = False
257 |
258 | return changed
259 |
260 | def mutation(self,state,xcs):
261 | changedByConditionMutation = self.mutateCondition(state,xcs)
262 | changedByActionMutation = self.mutateAction(xcs)
263 | return changedByConditionMutation or changedByActionMutation
264 |
265 | def mutateCondition(self,state,xcs):
266 | changed = False
267 | for attRef in range(xcs.env.formatData.numAttributes):
268 | attributeInfoType = xcs.env.formatData.attributeInfoType[attRef]
269 | if attributeInfoType:
270 | attributeInfoValue = xcs.env.formatData.attributeInfoContinuous[attRef]
271 |
272 | if random.random() < xcs.p_mutation and not(state[attRef] == None):
273 | if not (attRef in self.specifiedAttList):
274 | self.specifiedAttList.append(attRef)
275 | self.createMatchingAttribute(xcs,attRef,state)
276 | changed = True
277 | elif attRef in self.specifiedAttList:
278 | i = self.specifiedAttList.index(attRef)
279 |
280 | if not attributeInfoType or random.random() > 0.5:
281 | del self.specifiedAttList[i]
282 | del self.condition[i]
283 | changed = True
284 | else:
285 | attRange = float(attributeInfoValue[1]) - float(attributeInfoValue[0])
286 | mutateRange = random.random() * 0.5 * attRange
287 | if random.random() > 0.5:
288 | if random.random() > 0.5:
289 | self.condition[i][0] += mutateRange
290 | else:
291 | self.condition[i][0] -= mutateRange
292 | else:
293 | if random.random() > 0.5:
294 | self.condition[i][1] += mutateRange
295 | else:
296 | self.condition[i][1] -= mutateRange
297 | self.condition[i] = sorted(self.condition[i])
298 | changed = True
299 | else:
300 | pass
301 | return changed
302 |
303 | def mutateAction(self,xcs):
304 | changed = False
305 | if random.random() < xcs.p_mutation:
306 | action = random.choice(xcs.env.formatData.phenotypeList)
307 | while action == self.action:
308 | action = random.choice(xcs.env.formatData.phenotypeList)
309 | self.action = action
310 | changed = True
311 | return changed
312 |
313 | def getDelProp(self,meanFitness,xcs):
314 | if self.fitness / self.numerosity >= xcs.delta * meanFitness or self.experience < xcs.theta_del:
315 | deletionVote = self.actionSetSize * self.numerosity
316 |
317 | elif self.fitness == 0.0:
318 | deletionVote = self.actionSetSize * self.numerosity * meanFitness / (xcs.init_fit / self.numerosity)
319 | else:
320 | deletionVote = self.actionSetSize * self.numerosity * meanFitness / (self.fitness / self.numerosity)
321 | return deletionVote
--------------------------------------------------------------------------------
/test/test_XCS.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import numpy as np
3 | from skXCS.XCS import XCS
4 | from skXCS.StringEnumerator import StringEnumerator
5 | from sklearn.model_selection import cross_val_score
6 | import os
7 |
8 | THIS_DIR = os.path.dirname(os.path.abspath("test_eLCS.py"))
9 | if THIS_DIR[-4:] == 'test': #Patch that ensures testing from Scikit not test directory
10 | THIS_DIR = THIS_DIR[:-5]
11 |
12 | class test_XCS(unittest.TestCase):
13 | #learning_iterations (nonnegative integer)
14 | def testParamLearningIterationsNonnumeric(self):
15 | with self.assertRaises(Exception) as context:
16 | clf = XCS(learning_iterations="hello")
17 | self.assertTrue("learning_iterations param must be nonnegative integer" in str(context.exception))
18 |
19 | def testParamLearningIterationsInvalidNumeric(self):
20 | with self.assertRaises(Exception) as context:
21 | clf = XCS(learning_iterations=3.3)
22 | self.assertTrue("learning_iterations param must be nonnegative integer" in str(context.exception))
23 |
24 | def testParamLearningIterationsInvalidNumeric2(self):
25 | with self.assertRaises(Exception) as context:
26 | clf = XCS(learning_iterations=-2)
27 | self.assertTrue("learning_iterations param must be nonnegative integer" in str(context.exception))
28 |
29 | def testParamLearningIterations(self):
30 | clf = XCS(learning_iterations=2000)
31 | self.assertEqual(clf.learning_iterations,2000)
32 |
33 | #N (nonnegative integer)
34 | def testParamNNonnumeric(self):
35 | with self.assertRaises(Exception) as context:
36 | clf = XCS(N="hello")
37 | self.assertTrue("N param must be nonnegative integer" in str(context.exception))
38 |
39 | def testParamNInvalidNumeric(self):
40 | with self.assertRaises(Exception) as context:
41 | clf = XCS(N=3.3)
42 | self.assertTrue("N param must be nonnegative integer" in str(context.exception))
43 |
44 | def testParamNInvalidNumeric2(self):
45 | with self.assertRaises(Exception) as context:
46 | clf = XCS(N=-2)
47 | self.assertTrue("N param must be nonnegative integer" in str(context.exception))
48 |
49 | def testParamN(self):
50 | clf = XCS(N=2000)
51 | self.assertEqual(clf.N,2000)
52 |
53 | #p_general (float 0-1)
54 | def testParamP_GeneralInv1(self):
55 | with self.assertRaises(Exception) as context:
56 | clf = XCS(p_general="hello")
57 | self.assertTrue("p_general param must be float from 0 - 1" in str(context.exception))
58 |
59 | def testParamP_GeneralInv2(self):
60 | with self.assertRaises(Exception) as context:
61 | clf = XCS(p_general=3)
62 | self.assertTrue("p_general param must be float from 0 - 1" in str(context.exception))
63 |
64 | def testParamP_GeneralInv3(self):
65 | with self.assertRaises(Exception) as context:
66 | clf = XCS(p_general=-1.2)
67 | self.assertTrue("p_general param must be float from 0 - 1" in str(context.exception))
68 |
69 | def testParamP_General1(self):
70 | clf = XCS(p_general=0)
71 | self.assertEqual(clf.p_general,0)
72 |
73 | def testParamP_General2(self):
74 | clf = XCS(p_general=0.3)
75 | self.assertEqual(clf.p_general,0.3)
76 |
77 | def testParamP_General3(self):
78 | clf = XCS(p_general=1)
79 | self.assertEqual(clf.p_general,1)
80 |
81 | #beta (float)
82 | def testBetaInv1(self):
83 | with self.assertRaises(Exception) as context:
84 | clf = XCS(beta="hi")
85 | self.assertTrue("beta param must be float" in str(context.exception))
86 |
87 | def testBeta1(self):
88 | clf = XCS(beta = -1)
89 | self.assertEqual(clf.beta,-1)
90 |
91 | def testBeta2(self):
92 | clf = XCS(beta = 3)
93 | self.assertEqual(clf.beta,3)
94 |
95 | def testBeta3(self):
96 | clf = XCS(beta = 1.2)
97 | self.assertEqual(clf.beta,1.2)
98 |
99 | #alpha (float)
100 | def testAlphaInv1(self):
101 | with self.assertRaises(Exception) as context:
102 | clf = XCS(alpha="hi")
103 | self.assertTrue("alpha param must be float" in str(context.exception))
104 |
105 | def testAlpha1(self):
106 | clf = XCS(alpha = -1)
107 | self.assertEqual(clf.alpha,-1)
108 |
109 | def testAlpha2(self):
110 | clf = XCS(alpha = 3)
111 | self.assertEqual(clf.alpha,3)
112 |
113 | def testAlpha3(self):
114 | clf = XCS(alpha = 1.2)
115 | self.assertEqual(clf.alpha,1.2)
116 |
117 | #e_0 (float)
118 | def testE0Inv1(self):
119 | with self.assertRaises(Exception) as context:
120 | clf = XCS(e_0="hi")
121 | self.assertTrue("e_0 param must be float" in str(context.exception))
122 |
123 | def testE01(self):
124 | clf = XCS(e_0 = -1)
125 | self.assertEqual(clf.e_0,-1)
126 |
127 | def testE02(self):
128 | clf = XCS(e_0 = 3)
129 | self.assertEqual(clf.e_0,3)
130 |
131 | def testE03(self):
132 | clf = XCS(e_0 = 1.2)
133 | self.assertEqual(clf.e_0,1.2)
134 |
135 | #nu (float)
136 | def testNuInv1(self):
137 | with self.assertRaises(Exception) as context:
138 | clf = XCS(nu="hi")
139 | self.assertTrue("nu param must be float" in str(context.exception))
140 |
141 | def testNu1(self):
142 | clf = XCS(nu = -1)
143 | self.assertEqual(clf.nu,-1)
144 |
145 | def testNu2(self):
146 | clf = XCS(nu = 3)
147 | self.assertEqual(clf.nu,3)
148 |
149 | def testNu3(self):
150 | clf = XCS(nu = 1.2)
151 | self.assertEqual(clf.nu,1.2)
152 |
153 | #theta_GA (nonnegative float)
154 | def testParamThetaGAInv1(self):
155 | with self.assertRaises(Exception) as context:
156 | clf = XCS(theta_GA="hello")
157 | self.assertTrue("theta_GA param must be nonnegative float" in str(context.exception))
158 |
159 | def testParamThetaGAInv3(self):
160 | with self.assertRaises(Exception) as context:
161 | clf = XCS(theta_GA=-1.2)
162 | self.assertTrue("theta_GA param must be nonnegative float" in str(context.exception))
163 |
164 | def testParamThetaGA1(self):
165 | clf = XCS(theta_GA=0)
166 | self.assertEqual(clf.theta_GA,0)
167 |
168 | def testParamThetaGA2(self):
169 | clf = XCS(theta_GA=1)
170 | self.assertEqual(clf.theta_GA,1)
171 |
172 | def testParamThetaGA3(self):
173 | clf = XCS(theta_GA=4.3)
174 | self.assertEqual(clf.theta_GA,4.3)
175 |
176 | #p_crossover (float 0-1)
177 | def testParamP_CrossoverInv1(self):
178 | with self.assertRaises(Exception) as context:
179 | clf = XCS(p_crossover="hello")
180 | self.assertTrue("p_crossover param must be float from 0 - 1" in str(context.exception))
181 |
182 | def testParamP_CrossoverInv2(self):
183 | with self.assertRaises(Exception) as context:
184 | clf = XCS(p_crossover=3)
185 | self.assertTrue("p_crossover param must be float from 0 - 1" in str(context.exception))
186 |
187 | def testParamP_CrossoverInv3(self):
188 | with self.assertRaises(Exception) as context:
189 | clf = XCS(p_crossover=-1.2)
190 | self.assertTrue("p_crossover param must be float from 0 - 1" in str(context.exception))
191 |
192 | def testParamP_Crossover1(self):
193 | clf = XCS(p_crossover=0)
194 | self.assertEqual(clf.p_crossover,0)
195 |
196 | def testParamP_Crossover2(self):
197 | clf = XCS(p_crossover=0.3)
198 | self.assertEqual(clf.p_crossover,0.3)
199 |
200 | def testParamP_Crossover3(self):
201 | clf = XCS(p_crossover=1)
202 | self.assertEqual(clf.p_crossover,1)
203 |
204 | #p_mutation (float 0-1)
205 | def testParamP_MutationInv1(self):
206 | with self.assertRaises(Exception) as context:
207 | clf = XCS(p_mutation="hello")
208 | self.assertTrue("p_mutation param must be float from 0 - 1" in str(context.exception))
209 |
210 | def testParamP_MutationInv2(self):
211 | with self.assertRaises(Exception) as context:
212 | clf = XCS(p_mutation=3)
213 | self.assertTrue("p_mutation param must be float from 0 - 1" in str(context.exception))
214 |
215 | def testParamP_MutationInv3(self):
216 | with self.assertRaises(Exception) as context:
217 | clf = XCS(p_mutation=-1.2)
218 | self.assertTrue("p_mutation param must be float from 0 - 1" in str(context.exception))
219 |
220 | def testParamP_Mutation1(self):
221 | clf = XCS(p_mutation=0)
222 | self.assertEqual(clf.p_mutation,0)
223 |
224 | def testParamP_Mutation2(self):
225 | clf = XCS(p_mutation=0.3)
226 | self.assertEqual(clf.p_mutation,0.3)
227 |
228 | def testParamP_Mutation3(self):
229 | clf = XCS(p_mutation=1)
230 | self.assertEqual(clf.p_mutation,1)
231 |
232 | #theta_del (nonnegative integer)
233 | def testParamThetaDelInv1(self):
234 | with self.assertRaises(Exception) as context:
235 | clf = XCS(theta_del="hello")
236 | self.assertTrue("theta_del param must be nonnegative integer" in str(context.exception))
237 |
238 | def testParamThetaDelInv2(self):
239 | with self.assertRaises(Exception) as context:
240 | clf = XCS(theta_del=2.3)
241 | self.assertTrue("theta_del param must be nonnegative integer" in str(context.exception))
242 |
243 | def testParamThetaDelInv3(self):
244 | with self.assertRaises(Exception) as context:
245 | clf = XCS(theta_del=-1.2)
246 | self.assertTrue("theta_del param must be nonnegative integer" in str(context.exception))
247 |
248 | def testParamThetaDelInv4(self):
249 | with self.assertRaises(Exception) as context:
250 | clf = XCS(theta_del=-5)
251 | self.assertTrue("theta_del param must be nonnegative integer" in str(context.exception))
252 |
253 | def testParamThetaDel1(self):
254 | clf = XCS(theta_del=0)
255 | self.assertEqual(clf.theta_del,0)
256 |
257 | def testParamThetaDel2(self):
258 | clf = XCS(theta_del=5)
259 | self.assertEqual(clf.theta_del,5)
260 |
261 | #delta (float)
262 | def testDeltaInv1(self):
263 | with self.assertRaises(Exception) as context:
264 | clf = XCS(delta="hi")
265 | self.assertTrue("delta param must be float" in str(context.exception))
266 |
267 | def testDelta1(self):
268 | clf = XCS(delta = -1)
269 | self.assertEqual(clf.delta,-1)
270 |
271 | def testDelta2(self):
272 | clf = XCS(delta = 3)
273 | self.assertEqual(clf.delta,3)
274 |
275 | def testDelta3(self):
276 | clf = XCS(delta = 1.2)
277 | self.assertEqual(clf.delta,1.2)
278 |
279 | #init_predication (float)
280 | def testInitPredictionInv1(self):
281 | with self.assertRaises(Exception) as context:
282 | clf = XCS(init_prediction="hi")
283 | self.assertTrue("init_prediction param must be float" in str(context.exception))
284 |
285 | def testInitPrediction1(self):
286 | clf = XCS(init_prediction = -1)
287 | self.assertEqual(clf.init_prediction,-1)
288 |
289 | def testInitPrediction2(self):
290 | clf = XCS(init_prediction = 3)
291 | self.assertEqual(clf.init_prediction,3)
292 |
293 | def testInitPrediction3(self):
294 | clf = XCS(init_prediction = 1.2)
295 | self.assertEqual(clf.init_prediction,1.2)
296 |
297 | #init_e (float)
298 | def testInitEInv1(self):
299 | with self.assertRaises(Exception) as context:
300 | clf = XCS(init_e="hi")
301 | self.assertTrue("init_e param must be float" in str(context.exception))
302 |
303 | def testInitE1(self):
304 | clf = XCS(init_e = -1)
305 | self.assertEqual(clf.init_e,-1)
306 |
307 | def testInitE2(self):
308 | clf = XCS(init_e = 3)
309 | self.assertEqual(clf.init_e,3)
310 |
311 | def testInitE3(self):
312 | clf = XCS(init_e = 1.2)
313 | self.assertEqual(clf.init_e,1.2)
314 |
315 | #init_fitness (float)
316 | def testInitFitnessInv1(self):
317 | with self.assertRaises(Exception) as context:
318 | clf = XCS(init_fitness="hi")
319 | self.assertTrue("init_fitness param must be float" in str(context.exception))
320 |
321 | def testInitFitness1(self):
322 | clf = XCS(init_fitness = -1)
323 | self.assertEqual(clf.init_fitness,-1)
324 |
325 | def testInitFitness2(self):
326 | clf = XCS(init_fitness = 3)
327 | self.assertEqual(clf.init_fitness,3)
328 |
329 | def testInitFitness3(self):
330 | clf = XCS(init_fitness = 1.2)
331 | self.assertEqual(clf.init_fitness,1.2)
332 |
333 | #p_explore (float 0-1)
334 | def testParamP_ExploreInv1(self):
335 | with self.assertRaises(Exception) as context:
336 | clf = XCS(p_explore="hello")
337 | self.assertTrue("p_explore param must be float from 0 - 1" in str(context.exception))
338 |
339 | def testParamP_ExploreInv2(self):
340 | with self.assertRaises(Exception) as context:
341 | clf = XCS(p_explore=3)
342 | self.assertTrue("p_explore param must be float from 0 - 1" in str(context.exception))
343 |
344 | def testParamP_ExploreInv3(self):
345 | with self.assertRaises(Exception) as context:
346 | clf = XCS(p_explore=-1.2)
347 | self.assertTrue("p_explore param must be float from 0 - 1" in str(context.exception))
348 |
349 | def testParamP_Explore1(self):
350 | clf = XCS(p_explore=0)
351 | self.assertEqual(clf.p_explore,0)
352 |
353 | def testParamP_Explore2(self):
354 | clf = XCS(p_explore=0.3)
355 | self.assertEqual(clf.p_explore,0.3)
356 |
357 | def testParamP_Explore3(self):
358 | clf = XCS(p_explore=1)
359 | self.assertEqual(clf.p_explore,1)
360 |
361 | #theta_matching (nonnegative integer)
362 | def testParamThetaMatchingInv1(self):
363 | with self.assertRaises(Exception) as context:
364 | clf = XCS(theta_matching="hello")
365 | self.assertTrue("theta_matching param must be nonnegative integer" in str(context.exception))
366 |
367 | def testParamThetaMatchingInv2(self):
368 | with self.assertRaises(Exception) as context:
369 | clf = XCS(theta_matching=2.3)
370 | self.assertTrue("theta_matching param must be nonnegative integer" in str(context.exception))
371 |
372 | def testParamThetaMatchingInv3(self):
373 | with self.assertRaises(Exception) as context:
374 | clf = XCS(theta_matching=-1.2)
375 | self.assertTrue("theta_matching param must be nonnegative integer" in str(context.exception))
376 |
377 | def testParamThetaMatchingInv4(self):
378 | with self.assertRaises(Exception) as context:
379 | clf = XCS(theta_matching=-5)
380 | self.assertTrue("theta_matching param must be nonnegative integer" in str(context.exception))
381 |
382 | def testParamThetaMatching1(self):
383 | clf = XCS(theta_matching=0)
384 | self.assertEqual(clf.theta_matching,0)
385 |
386 | def testParamThetaMatching2(self):
387 | clf = XCS(theta_matching=5)
388 | self.assertEqual(clf.theta_matching,5)
389 |
390 | #do_GA_subsumption (boolean)
391 | def testDoSub2Invalid(self):
392 | with self.assertRaises(Exception) as context:
393 | clf = XCS(do_GA_subsumption=2)
394 | self.assertTrue("do_GA_subsumption param must be boolean" in str(context.exception))
395 |
396 | def testDoSub2(self):
397 | clf = XCS(do_GA_subsumption=True)
398 | self.assertEqual(clf.do_GA_subsumption,True)
399 |
400 | #do_action_set_subsumption (boolean)
401 | def testDoSubInvalid(self):
402 | with self.assertRaises(Exception) as context:
403 | clf = XCS(do_action_set_subsumption=2)
404 | self.assertTrue("do_action_set_subsumption param must be boolean" in str(context.exception))
405 |
406 | def testDoSub(self):
407 | clf = XCS(do_action_set_subsumption=True)
408 | self.assertEqual(clf.do_action_set_subsumption,True)
409 |
410 | #max_payoff (float)
411 | def testMaxPayoffInv1(self):
412 | with self.assertRaises(Exception) as context:
413 | clf = XCS(max_payoff="hi")
414 | self.assertTrue("max_payoff param must be float" in str(context.exception))
415 |
416 | def testMaxPayoff1(self):
417 | clf = XCS(max_payoff = -1)
418 | self.assertEqual(clf.max_payoff,-1)
419 |
420 | def testMaxPayoff2(self):
421 | clf = XCS(max_payoff = 3)
422 | self.assertEqual(clf.max_payoff,3)
423 |
424 | def testMaxPayoff3(self):
425 | clf = XCS(max_payoff = 1.2)
426 | self.assertEqual(clf.max_payoff,1.2)
427 |
428 | #theta_sub (nonnegative integer)
429 | def testParamThetaSubInv1(self):
430 | with self.assertRaises(Exception) as context:
431 | clf = XCS(theta_sub="hello")
432 | self.assertTrue("theta_sub param must be nonnegative integer" in str(context.exception))
433 |
434 | def testParamThetaSubInv2(self):
435 | with self.assertRaises(Exception) as context:
436 | clf = XCS(theta_sub=2.3)
437 | self.assertTrue("theta_sub param must be nonnegative integer" in str(context.exception))
438 |
439 | def testParamThetaSubInv3(self):
440 | with self.assertRaises(Exception) as context:
441 | clf = XCS(theta_sub=-1.2)
442 | self.assertTrue("theta_sub param must be nonnegative integer" in str(context.exception))
443 |
444 | def testParamThetaSubInv4(self):
445 | with self.assertRaises(Exception) as context:
446 | clf = XCS(theta_sub=-5)
447 | self.assertTrue("theta_sub param must be nonnegative integer" in str(context.exception))
448 |
449 | def testParamThetaSub1(self):
450 | clf = XCS(theta_sub=0)
451 | self.assertEqual(clf.theta_sub,0)
452 |
453 | def testParamThetaSub2(self):
454 | clf = XCS(theta_sub=5)
455 | self.assertEqual(clf.theta_sub,5)
456 |
457 | #theta_select (float 0-1)
458 | def testParamThetaSelInv1(self):
459 | with self.assertRaises(Exception) as context:
460 | clf = XCS(theta_select="hello")
461 | self.assertTrue("theta_select param must be float from 0 - 1" in str(context.exception))
462 |
463 | def testParamThetaSelInv2(self):
464 | with self.assertRaises(Exception) as context:
465 | clf = XCS(theta_select=3)
466 | self.assertTrue("theta_select param must be float from 0 - 1" in str(context.exception))
467 |
468 | def testParamThetaSelInv3(self):
469 | with self.assertRaises(Exception) as context:
470 | clf = XCS(theta_select=-1.2)
471 | self.assertTrue("theta_select param must be float from 0 - 1" in str(context.exception))
472 |
473 | def testParamThetaSel1(self):
474 | clf = XCS(theta_select=0)
475 | self.assertEqual(clf.theta_select, 0)
476 |
477 | def testParamThetaSel2(self):
478 | clf = XCS(theta_select=0.3)
479 | self.assertEqual(clf.theta_select, 0.3)
480 |
481 | def testParamThetaSel3(self):
482 | clf = XCS(theta_select=1)
483 | self.assertEqual(clf.theta_select, 1)
484 |
485 | #discrete_attribute_limit (nonnegative integer or 'c/d'
486 | def testDiscreteAttributeLimitInv1(self):
487 | with self.assertRaises(Exception) as context:
488 | clf = XCS(discrete_attribute_limit="h")
489 | self.assertTrue("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'" in str(context.exception))
490 |
491 | def testDiscreteAttributeLimitInv2(self):
492 | with self.assertRaises(Exception) as context:
493 | clf = XCS(discrete_attribute_limit=-10)
494 | self.assertTrue("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'" in str(context.exception))
495 |
496 | def testDiscreteAttributeLimitInv3(self):
497 | with self.assertRaises(Exception) as context:
498 | clf = XCS(discrete_attribute_limit=1.2)
499 | self.assertTrue("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'" in str(context.exception))
500 |
501 | def testDiscreteAttributeLimit1(self):
502 | clf = XCS(discrete_attribute_limit=10)
503 | self.assertEqual(clf.discrete_attribute_limit,10)
504 |
505 | def testDiscreteAttributeLimit2(self):
506 | clf = XCS(discrete_attribute_limit="c")
507 | self.assertEqual(clf.discrete_attribute_limit,"c")
508 |
509 | def testDiscreteAttributeLimit3(self):
510 | clf = XCS(discrete_attribute_limit="d")
511 | self.assertEqual(clf.discrete_attribute_limit,"d")
512 |
513 | #specified_attributes (ndarray of nonnegative integer attributes
514 | def testParamSpecAttrNonarray(self):
515 | with self.assertRaises(Exception) as context:
516 | clf = XCS(specified_attributes=2)
517 | self.assertTrue("specified_attributes param must be ndarray" in str(context.exception))
518 |
519 | def testParamSpecAttrNonnumeric(self):
520 | with self.assertRaises(Exception) as context:
521 | clf = XCS(specified_attributes=np.array([2,100,"hi",200]))
522 | self.assertTrue("All specified_attributes elements param must be nonnegative integers" in str(context.exception))
523 |
524 | def testParamSpecAttrInvalidNumeric(self):
525 | with self.assertRaises(Exception) as context:
526 | clf = XCS(specified_attributes=np.array([2,100,200.2,200]))
527 | self.assertTrue("All specified_attributes elements param must be nonnegative integers" in str(context.exception))
528 |
529 | def testParamSpecAttrInvalidNumeric2(self):
530 | with self.assertRaises(Exception) as context:
531 | clf = XCS(specified_attributes=np.array([2,100,-200,200]))
532 | self.assertTrue("All specified_attributes elements param must be nonnegative integers" in str(context.exception))
533 |
534 | def testParamSpecAttr(self):
535 | clf = XCS(specified_attributes=np.array([2, 100, 200, 300]))
536 | self.assertTrue(np.array_equal(clf.specified_attributes,np.array([2, 100, 200, 300])))
537 |
538 | #random_state (integer or "none")
539 | def testRandomSeedInv1(self):
540 | with self.assertRaises(Exception) as context:
541 | clf = XCS(random_state="hello")
542 | self.assertTrue("random_state param must be integer or None" in str(context.exception))
543 |
544 | def testRandomSeedInv2(self):
545 | with self.assertRaises(Exception) as context:
546 | clf = XCS(random_state=1.2)
547 | self.assertTrue("random_state param must be integer or None" in str(context.exception))
548 |
549 | def testRandomSeed2(self):
550 | clf = XCS(random_state=200)
551 | self.assertEqual(clf.random_state,200)
552 |
553 | def testRandomSeed3(self):
554 | clf = XCS(random_state=None)
555 | self.assertEqual(clf.random_state,None)
556 |
557 | #prediction_error_reduction (float)
558 | def testPredReductionInv1(self):
559 | with self.assertRaises(Exception) as context:
560 | clf = XCS(prediction_error_reduction="hi")
561 | self.assertTrue("prediction_error_reduction param must be float" in str(context.exception))
562 |
563 | def testPredReduction1(self):
564 | clf = XCS(prediction_error_reduction = -1)
565 | self.assertEqual(clf.prediction_error_reduction,-1)
566 |
567 | def testPredReduction2(self):
568 | clf = XCS(prediction_error_reduction = 3)
569 | self.assertEqual(clf.prediction_error_reduction,3)
570 |
571 | def testPredReduction3(self):
572 | clf = XCS(prediction_error_reduction = 1.2)
573 | self.assertEqual(clf.prediction_error_reduction,1.2)
574 |
575 | #fitness_reduction (float)
576 | def testFitnessReductionInv1(self):
577 | with self.assertRaises(Exception) as context:
578 | clf = XCS(fitness_reduction="hi")
579 | self.assertTrue("fitness_reduction param must be float" in str(context.exception))
580 |
581 | def testFitnessReduction1(self):
582 | clf = XCS(fitness_reduction = -1)
583 | self.assertEqual(clf.fitness_reduction,-1)
584 |
585 | def testFitnessReduction2(self):
586 | clf = XCS(fitness_reduction = 3)
587 | self.assertEqual(clf.fitness_reduction,3)
588 |
589 | def testFitnessReduction3(self):
590 | clf = XCS(fitness_reduction = 1.2)
591 | self.assertEqual(clf.fitness_reduction,1.2)
592 |
593 | #reboot_filename (None or String)
594 | def testRebootFilenameInv1(self):
595 | with self.assertRaises(Exception) as context:
596 | clf = XCS(reboot_filename=2)
597 | self.assertTrue("reboot_filename param must be None or String from pickle" in str(context.exception))
598 |
599 | def testRebootFilenameInv2(self):
600 | with self.assertRaises(Exception) as context:
601 | clf = XCS(reboot_filename=True)
602 | self.assertTrue("reboot_filename param must be None or String from pickle" in str(context.exception))
603 |
604 | def testRebootFilename1(self):
605 | clf = XCS()
606 | self.assertEqual(clf.reboot_filename,None)
607 |
608 | def testRebootFilename2(self):
609 | clf = XCS(reboot_filename=None)
610 | self.assertEqual(clf.reboot_filename,None)
611 |
612 | #Performance Tests
613 | #6B MP 1000 iter training
614 | def test6BitMP1000Iterations(self):
615 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer6Modified.csv")
616 | converter = StringEnumerator(dataPath,"Class")
617 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
618 | clf = XCS(learning_iterations=1000,N=500,nu=10)
619 | clf.fit(dataFeatures,dataPhenotypes)
620 | answer = 0.894
621 | #print("6 Bit 1000 Iter: "+str(clf.get_final_training_accuracy()))
622 | self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
623 |
624 | # 6B MP 5000 iter training
625 | def test6BitMP5000Iterations(self):
626 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer6Modified.csv")
627 | converter = StringEnumerator(dataPath, "Class")
628 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
629 | clf = XCS(learning_iterations=5000, N=500, nu=10)
630 | clf.fit(dataFeatures, dataPhenotypes)
631 | answer = 1
632 | #print("6 Bit 5000 Iter: "+str(clf.get_final_training_accuracy()))
633 | self.assertTrue(self.approxEqualOrBetter(0.2, clf.get_final_training_accuracy(), answer, True))
634 |
635 | #11B MP 5000 iter training
636 | def test11BitMP5000Iterations(self):
637 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer11Modified.csv")
638 | converter = StringEnumerator(dataPath,"Class")
639 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
640 | clf = XCS(learning_iterations=5000,N=1000,nu=10)
641 | clf.fit(dataFeatures,dataPhenotypes)
642 | answer = 0.9514
643 | #print("11 Bit 5000 Iter: "+str(clf.get_final_training_accuracy()))
644 | self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
645 |
646 | #20B MP 5000 iter training
647 | def test20BitMP5000Iterations(self):
648 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer20Modified.csv")
649 | converter = StringEnumerator(dataPath,"Class")
650 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
651 | clf = XCS(learning_iterations=5000,N=2000,nu=10)
652 | clf.fit(dataFeatures,dataPhenotypes)
653 | answer = 0.6634
654 | #print("20 Bit 5000 Iter: "+str(clf.get_final_training_accuracy()))
655 | self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
656 |
657 | #Continuous Valued 5000 iter training
658 | def testContValues5000Iterations(self):
659 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/ContinuousAndNonBinaryDiscreteAttributes.csv")
660 | converter = StringEnumerator(dataPath,"Class")
661 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
662 | clf = XCS(learning_iterations=5000)
663 | clf.fit(dataFeatures,dataPhenotypes)
664 | answer = 0.64
665 | #print("Continuous Attributes 5000 Iter: "+str(clf.get_final_training_accuracy()))
666 | self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
667 |
668 | #3-fold testing 6B MP 1000 iter
669 | def test6BitMPTesting1000Iterations(self):
670 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer6Modified.csv")
671 | converter = StringEnumerator(dataPath,"Class")
672 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
673 | formatted = np.insert(dataFeatures, dataFeatures.shape[1], dataPhenotypes, 1)
674 | np.random.shuffle(formatted)
675 | dataFeatures = np.delete(formatted, -1, axis=1)
676 | dataPhenotypes = formatted[:, -1]
677 |
678 | clf = XCS(learning_iterations=1000,N=500,nu=10)
679 | score = np.mean(cross_val_score(clf, dataFeatures, dataPhenotypes, cv=3))
680 |
681 | answer = 0.9
682 | #print("6 Bit Testing 1000 Iter: "+str(score))
683 | self.assertTrue(self.approxEqualOrBetter(0.2,score,answer,True))
684 |
685 | #3-fold testing Continuous Valued + Missing 5000 iter
686 | def testContValuesAndMissingTesting5000Iterations(self):
687 | dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/ContinuousAndNonBinaryDiscreteAttributesMissing.csv")
688 | converter = StringEnumerator(dataPath, "Class")
689 | headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
690 | formatted = np.insert(dataFeatures, dataFeatures.shape[1], dataPhenotypes, 1)
691 | np.random.shuffle(formatted)
692 | dataFeatures = np.delete(formatted, -1, axis=1)
693 | dataPhenotypes = formatted[:, -1]
694 |
695 | clf = XCS(learning_iterations=5000)
696 | score = np.mean(cross_val_score(clf, dataFeatures, dataPhenotypes, cv=3))
697 |
698 | answer = 0.5
699 | #print("Cont & Missing Testing 5000 Iter: " + str(score))
700 | self.assertTrue(self.approxEqualOrBetter(0.2, score, answer, True))
701 |
702 | #Random Seed Testing - Done
703 |
704 | #Reboot Pop Testing -
705 |
706 | ###Util Functions###
707 | def approxEqual(self, threshold, comp, right): # threshold is % tolerance
708 | return abs(abs(comp - right) / right) < threshold
709 |
710 | def approxEqualOrBetter(self, threshold, comp, right,
711 | better): # better is False when better is less, True when better is greater
712 | if not better:
713 | if self.approxEqual(threshold, comp, right) or comp < right:
714 | return True
715 | return False
716 | else:
717 | if self.approxEqual(threshold, comp, right) or comp > right:
718 | return True
719 | return False
720 |
--------------------------------------------------------------------------------
/skXCS/XCS.py:
--------------------------------------------------------------------------------
1 |
2 | from sklearn.base import BaseEstimator, ClassifierMixin
3 | from sklearn.metrics import balanced_accuracy_score
4 | from skXCS.Environment import Environment
5 | from skXCS.Timer import Timer
6 | from skXCS.ClassifierSet import ClassifierSet
7 | from skXCS.PredictionArray import PredictionArray
8 | from skXCS.IterationRecord import IterationRecord
9 |
10 | import random
11 | import numpy as np
12 | import csv
13 | import copy
14 | import pickle
15 | import time
16 |
17 | class XCS(BaseEstimator,ClassifierMixin):
18 | def __init__(self,learning_iterations=10000,N=1000,p_general=0.5,beta=0.2,alpha=0.1,e_0=10,nu=5,theta_GA=25,p_crossover=0.8,p_mutation=0.04,
19 | theta_del=20,delta=0.1,init_prediction=10,init_e=0,init_fitness=0.01,p_explore=0.5,theta_matching=None,do_GA_subsumption=True,
20 | do_action_set_subsumption=False,max_payoff=1000,theta_sub=20,theta_select=0.5,discrete_attribute_limit=10,specified_attributes=np.array([]),
21 | random_state=None,prediction_error_reduction=0.25,fitness_reduction=0.1,reboot_filename=None):
22 |
23 | '''
24 | :param learning_iterations: Must be nonnegative integer. The number of explore or exploit learning iterations to run
25 | :param N: Must be nonnegative integer. Maximum micropopulation size
26 | :param p_general: Must be float from 0 - 1. Probability of generalizing an allele during covering
27 | :param beta: Must be float. Learning Rate for updating statistics
28 | :param alpha: Must be float. The fall of rate in the fitness evaluation
29 | :param e_0: Must be float. The error threshold under which accuracy of a classifier can be set to 1
30 | :param nu: Must be float. Power parameter for fitness evaluation
31 | :param theta_GA: Must be nonnegative float. The threshold for the GA application in an action set
32 | :param p_crossover: Must be float from 0 - 1. The probability of applying crossover in an offspring classifier
33 | :param p_mutation: Must be float from 0 - 1. The probability of mutating one allele and the action in an offspring classifier
34 | :param theta_del: Must be nonnegative integer. Specified the threshold over which the fitness of a classifier may be considered in its deletion probability
35 | :param delta: Must be float. The fraction of the mean fitness of the population below which the fitness of a classifier may be considered in its vote for deletion
36 | :param init_prediction: Must be float. The initial prediction value when generating a new classifier (e.g in covering)
37 | :param init_e: Must be float. The initial prediction error value when generating a new classifier (e.g in covering)
38 | :param init_fitness: Must be float. The initial prediction value when generating a new classifier (e.g in covering)
39 | :param p_explore: Must be float from 0 - 1. Probability of doing an explore cycle instead of an exploit cycle
40 | :param theta_matching: Must be nonnegative integer. Number of unique actions that must be represented in the match set (otherwise, covering)
41 | :param do_GA_subsumption: Must be boolean. Do subsumption in GA
42 | :param do_action_set_subsumption: Must be boolean. Do subsumption in [A]
43 | :param max_payoff: Must be float. For single step problems, what the maximum reward for correctness
44 | :param theta_sub: Must be nonnegative integer. The experience of a classifier required to be a subsumer
45 | :param theta_select: Must be float from 0 - 1. The fraction of the action set to be included in tournament selection
46 | :param discrete_attribute_limit: Must be nonnegative integer OR "c" OR "d". Multipurpose param. If it is a nonnegative integer, discrete_attribute_limit determines the threshold that determines
47 | if an attribute will be treated as a continuous or discrete attribute. For example, if discrete_attribute_limit == 10, if an attribute has more than 10 unique
48 | values in the dataset, the attribute will be continuous. If the attribute has 10 or less unique values, it will be discrete. Alternatively,
49 | discrete_attribute_limit can take the value of "c" or "d". See next param for this
50 | :param specified_attributes: Must be an ndarray type of nonnegative integer attributeIndices (zero indexed).
51 | If "c", attributes specified by index in this param will be continuous and the rest will be discrete. If "d", attributes specified by index in this
52 | param will be discrete and the rest will be continuous.
53 | :param random_state: Must be an integer or None. Set a constant random seed value to some integer (in order to obtain reproducible results). Put None if none (for pseudo-random algorithm runs)
54 | :param prediction_error_reduction: Must be float. The reduction of the prediction error when generating an offspring classifier
55 | :param fitness_reduction: Must be float. The reduction of the fitness when generating an offspring classifier
56 | :param reboot_filename: Must be String or None. Filename of model to be rebooted
57 | '''
58 |
59 | #learning_iterations
60 | if not self.checkIsInt(learning_iterations):
61 | raise Exception("learning_iterations param must be nonnegative integer")
62 |
63 | if learning_iterations < 0:
64 | raise Exception("learning_iterations param must be nonnegative integer")
65 |
66 | #N
67 | if not self.checkIsInt(N):
68 | raise Exception("N param must be nonnegative integer")
69 |
70 | if N < 0:
71 | raise Exception("N param must be nonnegative integer")
72 |
73 | #p_general
74 | if not self.checkIsFloat(p_general):
75 | raise Exception("p_general param must be float from 0 - 1")
76 |
77 | if p_general < 0 or p_general > 1:
78 | raise Exception("p_general param must be float from 0 - 1")
79 |
80 | #beta
81 | if not self.checkIsFloat(beta):
82 | raise Exception("beta param must be float")
83 |
84 | #alpha
85 | if not self.checkIsFloat(alpha):
86 | raise Exception("alpha param must be float")
87 |
88 | #e_0
89 | if not self.checkIsFloat(e_0):
90 | raise Exception("e_0 param must be float")
91 |
92 | #nu
93 | if not self.checkIsFloat(nu):
94 | raise Exception("nu param must be float")
95 |
96 | #theta_GA
97 | if not self.checkIsFloat(theta_GA):
98 | raise Exception("theta_GA param must be nonnegative float")
99 |
100 | if theta_GA < 0:
101 | raise Exception("theta_GA param must be nonnegative float")
102 |
103 | #p_crossover
104 | if not self.checkIsFloat(p_crossover):
105 | raise Exception("p_crossover param must be float from 0 - 1")
106 |
107 | if p_crossover < 0 or p_crossover > 1:
108 | raise Exception("p_crossover param must be float from 0 - 1")
109 |
110 | #p_mutation
111 | if not self.checkIsFloat(p_mutation):
112 | raise Exception("p_mutation param must be float from 0 - 1")
113 |
114 | if p_mutation < 0 or p_mutation > 1:
115 | raise Exception("p_mutation param must be float from 0 - 1")
116 |
117 | #theta_del
118 | if not self.checkIsInt(theta_del):
119 | raise Exception("theta_del param must be nonnegative integer")
120 |
121 | if theta_del < 0:
122 | raise Exception("theta_del param must be nonnegative integer")
123 |
124 | #delta
125 | if not self.checkIsFloat(delta):
126 | raise Exception("delta param must be float")
127 |
128 | #init_prediction
129 | if not self.checkIsFloat(init_prediction):
130 | raise Exception("init_prediction param must be float")
131 |
132 | #init_e
133 | if not self.checkIsFloat(init_e):
134 | raise Exception("init_e param must be float")
135 |
136 | #init_fitness
137 | if not self.checkIsFloat(init_fitness):
138 | raise Exception("init_fitness param must be float")
139 |
140 | #p_explore
141 | if not self.checkIsFloat(p_explore):
142 | raise Exception("p_explore param must be float from 0 - 1")
143 |
144 | if p_explore < 0 or p_explore > 1:
145 | raise Exception("p_explore param must be float from 0 - 1")
146 |
147 | #theta_matching
148 | if not self.checkIsInt(theta_matching) and theta_matching != None:
149 | raise Exception("theta_matching param must be nonnegative integer")
150 |
151 | if theta_matching != None and theta_matching < 0:
152 | raise Exception("theta_matching param must be nonnegative integer")
153 |
154 | #do_GA_subsumption
155 | if not (isinstance(do_GA_subsumption, bool)):
156 | raise Exception("do_GA_subsumption param must be boolean")
157 |
158 | #do_action_set_subsumption
159 | if not (isinstance(do_action_set_subsumption, bool)):
160 | raise Exception("do_action_set_subsumption param must be boolean")
161 |
162 | #max_payoff
163 | if not self.checkIsFloat(max_payoff):
164 | raise Exception("max_payoff param must be float")
165 |
166 | #theta_sub
167 | if not self.checkIsInt(theta_sub):
168 | raise Exception("theta_sub param must be nonnegative integer")
169 |
170 | if theta_sub < 0:
171 | raise Exception("theta_sub param must be nonnegative integer")
172 |
173 | #theta_select
174 | if not self.checkIsFloat(theta_select):
175 | raise Exception("theta_select param must be float from 0 - 1")
176 |
177 | if theta_select < 0 or theta_select > 1:
178 | raise Exception("theta_select param must be float from 0 - 1")
179 |
180 | #discrete_attribute_limit
181 | if discrete_attribute_limit != "c" and discrete_attribute_limit != "d":
182 | try:
183 | dpl = int(discrete_attribute_limit)
184 | if not self.checkIsInt(discrete_attribute_limit):
185 | raise Exception("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'")
186 | if dpl < 0:
187 | raise Exception("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'")
188 | except:
189 | raise Exception("discrete_attribute_limit param must be nonnegative integer or 'c' or 'd'")
190 |
191 | #specified_attributes
192 | if not (isinstance(specified_attributes, np.ndarray)):
193 | raise Exception("specified_attributes param must be ndarray")
194 |
195 | for spAttr in specified_attributes:
196 | if not self.checkIsInt(spAttr):
197 | raise Exception("All specified_attributes elements param must be nonnegative integers")
198 | if int(spAttr) < 0:
199 | raise Exception("All specified_attributes elements param must be nonnegative integers")
200 |
201 | #prediction_error_reduction
202 | if not self.checkIsFloat(prediction_error_reduction):
203 | raise Exception("prediction_error_reduction param must be float")
204 |
205 | #fitness_reduction
206 | if not self.checkIsFloat(fitness_reduction):
207 | raise Exception("fitness_reduction param must be float")
208 |
209 | #rebootPopulationFilename
210 | if reboot_filename != None and not isinstance(reboot_filename,str):
211 | raise Exception("reboot_filename param must be None or String from pickle")
212 |
213 | # random_state
214 | if random_state != None:
215 | try:
216 | if not self.checkIsInt(random_state):
217 | raise Exception("random_state param must be integer or None")
218 | except:
219 | raise Exception("random_state param must be integer or None")
220 |
221 | self.learning_iterations = learning_iterations
222 | self.N = N
223 | self.p_general = p_general
224 | self.beta = beta
225 | self.alpha = alpha
226 | self.e_0 = e_0
227 | self.nu = nu
228 | self.theta_GA = theta_GA
229 | self.p_crossover = p_crossover
230 | self.p_mutation = p_mutation
231 | self.theta_del = theta_del
232 | self.delta = delta
233 | self.init_prediction = init_prediction
234 | self.init_e = init_e
235 | self.init_fitness = init_fitness
236 | self.p_explore = p_explore
237 | self.theta_matching = theta_matching
238 | self.do_GA_subsumption = do_GA_subsumption
239 | self.do_action_set_subsumption = do_action_set_subsumption
240 | self.max_payoff = max_payoff
241 | self.theta_sub = theta_sub
242 | self.theta_select = theta_select
243 | self.discrete_attribute_limit = discrete_attribute_limit
244 | self.specified_attributes = specified_attributes
245 | self.random_state = random_state
246 | self.prediction_error_reduction = prediction_error_reduction
247 | self.fitness_reduction = fitness_reduction
248 |
249 | self.hasTrained = False
250 | self.trackingObj = TempTrackingObj()
251 | self.record = IterationRecord()
252 | self.reboot_filename = reboot_filename
253 |
254 | #Reboot Population
255 | if self.reboot_filename != None:
256 | self.rebootPopulation()
257 | self.hasTrained = True
258 | else:
259 | self.iterationCount = 0
260 | self.population = ClassifierSet()
261 |
262 | def checkIsInt(self, num):
263 | try:
264 | n = float(num)
265 | if num - int(num) == 0:
266 | return True
267 | else:
268 | return False
269 | except:
270 | return False
271 |
272 | def checkIsFloat(self,num):
273 | try:
274 | n = float(num)
275 | return True
276 | except:
277 | return False
278 |
279 | ##*************** Fit ****************
280 | def fit(self,X,y):
281 | """Scikit-learn required: Supervised training of XCS
282 | Parameters
283 | X: array-like {n_samples, n_features} Training instances. ALL INSTANCE ATTRIBUTES MUST BE NUMERIC or NAN
284 | y: array-like {n_samples} Training labels. ALL INSTANCE PHENOTYPES MUST BE NUMERIC NOT NAN OR OTHER TYPE
285 | Returns self
286 | """
287 |
288 | # Check if X and Y are numeric
289 | try:
290 | for instance in X:
291 | for value in instance:
292 | if not (np.isnan(value)):
293 | float(value)
294 | for value in y:
295 | float(value)
296 |
297 | except:
298 | raise Exception("X and y must be fully numeric")
299 |
300 | # Handle repeated fit calls
301 | if self.learning_iterations == self.iterationCount and self.reboot_filename != None:
302 | raise Exception("You cannot call fit(X,y) a second time with a rebooted population.")
303 |
304 | if self.random_state != None:
305 | random.seed(int(self.random_state))
306 | np.random.seed(int(self.random_state))
307 |
308 | if self.reboot_filename == None:
309 | self.timer = Timer()
310 | else:
311 | self.rebootTimer()
312 |
313 | self.env = Environment(X,y,self)
314 |
315 | if self.theta_matching == None:
316 | self.theta_matching = self.env.formatData.numberOfActions
317 | if self.theta_matching > self.env.formatData.numberOfActions:
318 | raise Exception("theta_matching param cannot be greater than the number of actions")
319 |
320 | self.trackedAccuracy = []
321 | self.movingAvgCount = 50
322 | aveGenerality = 0
323 | aveGeneralityFreq = min(self.env.formatData.numTrainInstances,1000)
324 |
325 | while self.iterationCount < self.learning_iterations:
326 | state = self.env.getTrainState()
327 | self.runIteration(state)
328 |
329 | #Basic Evaluation
330 | self.timer.updateGlobalTimer()
331 | self.timer.startTimeEvaluation()
332 | if self.iterationCount%aveGeneralityFreq == (aveGeneralityFreq-1):
333 | aveGenerality = self.population.getAveGenerality(self)
334 |
335 | if len(self.trackedAccuracy) != 0:
336 | accuracy = sum(self.trackedAccuracy)/len(self.trackedAccuracy)
337 | else:
338 | accuracy = 0
339 | self.record.addToTracking(self.iterationCount,accuracy,aveGenerality,
340 | self.trackingObj.macroPopSize,self.trackingObj.microPopSize,
341 | self.trackingObj.matchSetSize, self.trackingObj.actionSetSize,
342 | self.trackingObj.avgIterAge, self.trackingObj.subsumptionCount,
343 | self.trackingObj.crossOverCount, self.trackingObj.mutationCount,
344 | self.trackingObj.coveringCount, self.trackingObj.deletionCount,
345 | self.timer.globalTime, self.timer.globalMatching,
346 | self.timer.globalDeletion, self.timer.globalSubsumption,
347 | self.timer.globalGA, self.timer.globalEvaluation)
348 | self.timer.stopTimeEvaluation()
349 | ###
350 |
351 | self.iterationCount += 1
352 | self.env.newInstance()
353 | self.saveFinalMetrics()
354 | self.hasTrained = True
355 | return self
356 |
357 | def runIteration(self,state):
358 | self.trackingObj.resetAll()
359 | shouldExplore = random.random() < self.p_explore
360 | if shouldExplore:
361 | self.population.createMatchSet(state,self)
362 | predictionArray = PredictionArray(self.population,self)
363 | actionWinner = predictionArray.randomActionWinner()
364 | self.population.createActionSet(actionWinner)
365 | reward = self.env.executeAction(actionWinner)
366 | self.population.updateActionSet(reward,self)
367 | self.population.runGA(state,self)
368 | self.population.deletion(self)
369 | else:
370 | self.population.createMatchSet(state, self)
371 | predictionArray = PredictionArray(self.population, self)
372 | actionWinner = predictionArray.bestActionWinner()
373 | self.population.createActionSet(actionWinner)
374 | reward = self.env.executeAction(actionWinner)
375 | self.population.updateActionSet(reward, self)
376 | self.population.deletion(self)
377 |
378 | if reward == self.max_payoff:
379 | if len(self.trackedAccuracy) == self.movingAvgCount:
380 | del self.trackedAccuracy[0]
381 | self.trackedAccuracy.append(1)
382 | else:
383 | if len(self.trackedAccuracy) == self.movingAvgCount:
384 | del self.trackedAccuracy[0]
385 | self.trackedAccuracy.append(0)
386 |
387 | self.trackingObj.avgIterAge = self.iterationCount - self.population.getInitStampAverage()
388 | self.trackingObj.macroPopSize = len(self.population.popSet)
389 | self.trackingObj.microPopSize = self.population.microPopSize
390 | self.trackingObj.matchSetSize = len(self.population.matchSet)
391 | self.trackingObj.actionSetSize = len(self.population.actionSet)
392 | self.population.clearSets()
393 |
394 | ##*************** Population Reboot ****************
395 | def saveFinalMetrics(self):
396 | self.finalMetrics = [self.learning_iterations,self.timer.globalTime, self.timer.globalMatching,
397 | self.timer.globalDeletion, self.timer.globalSubsumption, self.timer.globalGA,
398 | self.timer.globalEvaluation,copy.deepcopy(self.env),copy.deepcopy(self.population.popSet)]
399 |
400 | def pickle_model(self,filename=None):
401 | if self.hasTrained:
402 | if filename == None:
403 | filename = 'pickled'+str(int(time.time()))
404 | outfile = open(filename,'wb')
405 | pickle.dump(self.finalMetrics,outfile)
406 | outfile.close()
407 | else:
408 | raise Exception("There is model to pickle, as the XCS model has not been trained")
409 |
410 | def rebootPopulation(self):
411 | #Sets popSet and microPopSize of self.population, as well as trackingMetrics,
412 | file = open(self.reboot_filename,'rb')
413 | rawData = pickle.load(file)
414 | file.close()
415 |
416 | popSet = rawData[8]
417 | microPopSize = 0
418 | for rule in popSet:
419 | microPopSize += rule.numerosity
420 | set = ClassifierSet()
421 | set.popSet = popSet
422 | set.microPopSize = microPopSize
423 | self.population = set
424 |
425 | self.learning_iterations += rawData[0]
426 | self.iterationCount = rawData[0]
427 | self.env = rawData[7]
428 |
429 | def rebootTimer(self):
430 | file = open(self.reboot_filename, 'rb')
431 | rawData = pickle.load(file)
432 | file.close()
433 |
434 | self.timer = Timer()
435 | self.timer.globalAdd = rawData[1]
436 | self.timer.globalMatching = rawData[2]
437 | self.timer.globalDeletion = rawData[3]
438 | self.timer.globalSubsumption = rawData[4]
439 | self.timer.globalGA = rawData[5]
440 | self.timer.globalEvaluation = rawData[6]
441 |
442 |
443 | ##*************** Predict and Score ****************
444 | def predict(self,X):
445 | """Scikit-learn required: Test Accuracy of XCS
446 | Parameters
447 | X: array-like {n_samples, n_features} Test instances to classify. ALL INSTANCE ATTRIBUTES MUST BE NUMERIC
448 | Returns
449 | y: array-like {n_samples} Classifications.
450 | """
451 | try:
452 | for instance in X:
453 | for value in instance:
454 | if not (np.isnan(value)):
455 | float(value)
456 | except:
457 | raise Exception("X must be fully numeric")
458 |
459 | numInstances = X.shape[0]
460 | predictionList = []
461 | for instance in range(numInstances):
462 | state = X[instance]
463 | self.population.makeEvaluationMatchSet(state,self)
464 | predictionArray = PredictionArray(self.population, self)
465 | actionWinner = predictionArray.bestActionWinner()
466 | predictionList.append(actionWinner)
467 | self.population.clearSets()
468 | return np.array(predictionList)
469 |
470 | def predict_proba(self,X):
471 | """Scikit-learn required: Test Accuracy of XCS
472 | Parameters
473 | X: array-like {n_samples, n_features} Test instances to classify. ALL INSTANCE ATTRIBUTES MUST BE NUMERIC
474 | Returns
475 | y: array-like {n_samples} Classifications.
476 | """
477 | try:
478 | for instance in X:
479 | for value in instance:
480 | if not (np.isnan(value)):
481 | float(value)
482 | except:
483 | raise Exception("X must be fully numeric")
484 |
485 | numInstances = X.shape[0]
486 | predictionList = []
487 | for instance in range(numInstances):
488 | state = X[instance]
489 | self.population.makeEvaluationMatchSet(state, self)
490 | predictionArray = PredictionArray(self.population, self)
491 | probabilities = predictionArray.getProbabilities()
492 | predictionList.append(probabilities)
493 | self.population.clearSets()
494 | return np.array(predictionList)
495 |
496 | def score(self,X,y):
497 | predictionList = self.predict(X)
498 | return balanced_accuracy_score(y,predictionList)
499 |
500 | ##*************** Export and Evaluation ****************
501 | def export_iteration_tracking_data(self,filename='iterationData.csv'):
502 | if self.hasTrained:
503 | self.record.exportTrackingToCSV(filename)
504 | else:
505 | raise Exception("There is no tracking data to export, as the XCS model has not been trained")
506 |
507 | def export_final_rule_population(self,filename='rulePopulation.csv',headerNames=np.array([]),className="Action"):
508 | if self.hasTrained:
509 | numAttributes = self.env.formatData.numAttributes
510 | headerNames = headerNames.tolist() # Convert to Python List
511 |
512 | # Default headerNames if none provided
513 | if len(headerNames) == 0:
514 | for i in range(numAttributes):
515 | headerNames.append("N" + str(i))
516 |
517 | if len(headerNames) != numAttributes:
518 | raise Exception("# of Header Names provided does not match the number of attributes in dataset instances.")
519 |
520 | with open(filename, mode='w') as file:
521 | writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
522 |
523 | writer.writerow(headerNames + [className] + ["Fitness","Prediction","Prediction Error","Accuracy", "Numerosity", "Avg Action Set Size",
524 | "TimeStamp GA", "Iteration Initialized", "Specificity",
525 | "Deletion Probability", "Experience", "Match Count"])
526 |
527 | classifiers = copy.deepcopy(self.population.popSet)
528 | for classifier in classifiers:
529 | a = []
530 | for attributeIndex in range(numAttributes):
531 | if attributeIndex in classifier.specifiedAttList:
532 | specifiedLocation = classifier.specifiedAttList.index(attributeIndex)
533 | if not isinstance(classifier.condition[specifiedLocation], list): # if discrete
534 | a.append(classifier.condition[specifiedLocation])
535 | else: # if continuous
536 | conditionCont = classifier.condition[specifiedLocation] # cont array [min,max]
537 | s = str(conditionCont[0]) + "," + str(conditionCont[1])
538 | a.append(s)
539 | else:
540 | a.append("#")
541 |
542 | a.append(classifier.action)
543 | a.append(classifier.fitness)
544 | a.append(classifier.prediction)
545 | a.append(classifier.predictionError)
546 | a.append(classifier.getAccuracy(self))
547 | a.append(classifier.numerosity)
548 | a.append(classifier.actionSetSize)
549 | a.append(classifier.timestampGA)
550 | a.append(classifier.initTimeStamp)
551 | a.append(len(classifier.specifiedAttList) / numAttributes)
552 | a.append(classifier.deletionProb)
553 | a.append(classifier.experience)
554 | a.append(classifier.matchCount)
555 | writer.writerow(a)
556 | file.close()
557 | else:
558 | raise Exception("There is no rule population to export, as the XCS model has not been trained")
559 |
560 | def export_final_rule_population_DCAL(self,filename='rulePopulationDCAL.csv',headerNames=np.array([]),className="Action"):
561 | if self.hasTrained:
562 | numAttributes = self.env.formatData.numAttributes
563 |
564 | headerNames = headerNames.tolist() # Convert to Python List
565 |
566 | # Default headerNames if none provided
567 | if len(headerNames) == 0:
568 | for i in range(numAttributes):
569 | headerNames.append("N" + str(i))
570 |
571 | if len(headerNames) != numAttributes:
572 | raise Exception(
573 | "# of Header Names provided does not match the number of attributes in dataset instances.")
574 |
575 | with open(filename, mode='w') as file:
576 | writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
577 |
578 | writer.writerow(
579 | ["Specified Values", "Specified Attribute Names"] + [className] + ["Fitness","Prediction",
580 | "Prediction Error","Accuracy",
581 | "Numerosity", "Avg Action Set Size",
582 | "TimeStamp GA", "Iteration Initialized",
583 | "Specificity", "Deletion Probability",
584 | "Experience", "Match Count"])
585 |
586 | classifiers = copy.deepcopy(self.population.popSet)
587 | for classifier in classifiers:
588 | a = []
589 |
590 | # Add attribute information
591 | headerString = ""
592 | valueString = ""
593 | for attributeIndex in range(numAttributes):
594 | if attributeIndex in classifier.specifiedAttList:
595 | specifiedLocation = classifier.specifiedAttList.index(attributeIndex)
596 | headerString += str(headerNames[attributeIndex]) + ", "
597 | if not isinstance(classifier.condition[specifiedLocation], list): # if discrete
598 | valueString += str(classifier.condition[specifiedLocation]) + ", "
599 | else: # if continuous
600 | conditionCont = classifier.condition[specifiedLocation] # cont array [min,max]
601 | s = "[" + str(conditionCont[0]) + "," + str(conditionCont[1]) + "]"
602 | valueString += s + ", "
603 |
604 | a.append(valueString[:-2])
605 | a.append(headerString[:-2])
606 |
607 | # Add statistics
608 | a.append(classifier.action)
609 | a.append(classifier.fitness)
610 | a.append(classifier.prediction)
611 | a.append(classifier.predictionError)
612 | a.append(classifier.getAccuracy(self))
613 | a.append(classifier.numerosity)
614 | a.append(classifier.actionSetSize)
615 | a.append(classifier.timestampGA)
616 | a.append(classifier.initTimeStamp)
617 | a.append(len(classifier.specifiedAttList) / numAttributes)
618 | a.append(classifier.deletionProb)
619 | a.append(classifier.experience)
620 | a.append(classifier.matchCount)
621 | writer.writerow(a)
622 | file.close()
623 | else:
624 | raise Exception("There is no rule population to export, as the XCS model has not been trained")
625 |
626 | def get_final_training_accuracy(self):
627 | if self.hasTrained:
628 | originalTrainingData = self.env.formatData.savedRawTrainingData
629 | return self.score(originalTrainingData[0],originalTrainingData[1])
630 | else:
631 | raise Exception("There is no final training accuracy to return, as the XCS model has not been trained")
632 |
633 | def get_final_instance_coverage(self):
634 | if self.hasTrained:
635 | numCovered = 0
636 | originalTrainingData = self.env.formatData.savedRawTrainingData
637 | for state in originalTrainingData[0]:
638 | self.population.makeEvaluationMatchSet(state, self)
639 | predictionArray = PredictionArray(self.population, self)
640 | if predictionArray.hasMatch:
641 | numCovered += 1
642 | self.population.clearSets()
643 | return numCovered/len(originalTrainingData[0])
644 | else:
645 | raise Exception("There is no final instance coverage to return, as the XCS model has not been trained")
646 |
647 | def get_final_attribute_specificity_list(self):
648 | if self.hasTrained:
649 | return self.population.getAttributeSpecificityList(self)
650 | else:
651 | raise Exception("There is no final attribute specificity list to return, as the XCS model has not been trained")
652 |
653 | def get_final_attribute_accuracy_list(self):
654 | if self.hasTrained:
655 | return self.population.getAttributeAccuracyList(self)
656 | else:
657 | raise Exception("There is no final attribute accuracy list to return, as the XCS model has not been trained")
658 |
659 | class TempTrackingObj():
660 | #Tracks stats of every iteration (except accuracy, avg generality, and times)
661 | def __init__(self):
662 | self.macroPopSize = 0
663 | self.microPopSize = 0
664 | self.matchSetSize = 0
665 | self.correctSetSize = 0
666 | self.avgIterAge = 0
667 | self.subsumptionCount = 0
668 | self.crossOverCount = 0
669 | self.mutationCount = 0
670 | self.coveringCount = 0
671 | self.deletionCount = 0
672 |
673 | def resetAll(self):
674 | self.macroPopSize = 0
675 | self.microPopSize = 0
676 | self.matchSetSize = 0
677 | self.correctSetSize = 0
678 | self.avgIterAge = 0
679 | self.subsumptionCount = 0
680 | self.crossOverCount = 0
681 | self.mutationCount = 0
682 | self.coveringCount = 0
683 | self.deletionCount = 0
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------