├── .circleci
├── config.yml
├── docker
│ └── Dockerfile
└── test.yml
├── .dev_scripts
├── batch_test_list.py
├── batch_train_list.txt
├── benchmark_filter.py
├── benchmark_full_models.txt
├── benchmark_inference_fps.py
├── benchmark_options.py
├── benchmark_test.py
├── benchmark_test_image.py
├── benchmark_train.py
├── benchmark_train_models.txt
├── benchmark_valid_flops.py
├── check_links.py
├── convert_test_benchmark_script.py
├── convert_train_benchmark_script.py
├── covignore.cfg
├── diff_coverage_test.sh
├── download_checkpoints.py
├── gather_models.py
├── gather_test_benchmark_metric.py
├── gather_train_benchmark_metric.py
├── linter.sh
├── test_benchmark.sh
├── test_init_backbone.py
└── train_benchmark.sh
├── .github
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── ISSUE_TEMPLATE
│ ├── config.yml
│ ├── error-report.md
│ ├── feature_request.md
│ ├── general_questions.md
│ └── reimplementation_questions.md
├── pull_request_template.md
└── workflows
│ └── deploy.yml
├── .gitignore
├── .owners.yml
├── .pre-commit-config-zh-cn.yaml
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── CITATION.cff
├── LICENSE
├── MANIFEST.in
├── README.md
├── README_zh-CN.md
├── configs
├── _base_
│ ├── datasets
│ │ ├── ade20k_instance.py
│ │ ├── ade20k_panoptic.py
│ │ ├── ade20k_semantic.py
│ │ ├── cityscapes_detection.py
│ │ ├── cityscapes_instance.py
│ │ ├── coco_caption.py
│ │ ├── coco_detection.py
│ │ ├── coco_instance.py
│ │ ├── coco_instance_semantic.py
│ │ ├── coco_panoptic.py
│ │ ├── coco_semantic.py
│ │ ├── deepfashion.py
│ │ ├── dsdl.py
│ │ ├── isaid_instance.py
│ │ ├── lvis_v0.5_instance.py
│ │ ├── lvis_v1_instance.py
│ │ ├── mot_challenge.py
│ │ ├── mot_challenge_det.py
│ │ ├── mot_challenge_reid.py
│ │ ├── objects365v1_detection.py
│ │ ├── objects365v2_detection.py
│ │ ├── openimages_detection.py
│ │ ├── refcoco+.py
│ │ ├── refcoco.py
│ │ ├── refcocog.py
│ │ ├── semi_coco_detection.py
│ │ ├── v3det.py
│ │ ├── voc0712.py
│ │ ├── wider_face.py
│ │ └── youtube_vis.py
│ ├── default_runtime.py
│ ├── models
│ │ ├── cascade-mask-rcnn_r50_fpn.py
│ │ ├── cascade-rcnn_r50_fpn.py
│ │ ├── fast-rcnn_r50_fpn.py
│ │ ├── faster-rcnn_r50-caffe-c4.py
│ │ ├── faster-rcnn_r50-caffe-dc5.py
│ │ ├── faster-rcnn_r50_fpn.py
│ │ ├── mask-rcnn_r50-caffe-c4.py
│ │ ├── mask-rcnn_r50_fpn.py
│ │ ├── retinanet_r50_fpn.py
│ │ ├── rpn_r50-caffe-c4.py
│ │ ├── rpn_r50_fpn.py
│ │ └── ssd300.py
│ └── schedules
│ │ ├── schedule_1x.py
│ │ ├── schedule_20e.py
│ │ └── schedule_2x.py
├── albu_example
│ ├── README.md
│ ├── mask-rcnn_r50_fpn_albu-1x_coco.py
│ └── metafile.yml
├── atss
│ ├── README.md
│ ├── atss_r101_fpn_1x_coco.py
│ ├── atss_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── atss_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── atss_r50_fpn_1x_coco.py
│ ├── atss_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ └── metafile.yml
├── autoassign
│ ├── README.md
│ ├── autoassign_r50-caffe_fpn_1x_coco.py
│ └── metafile.yml
├── boxinst
│ ├── README.md
│ ├── boxinst_r101_fpn_ms-90k_coco.py
│ ├── boxinst_r50_fpn_ms-90k_coco.py
│ └── metafile.yml
├── bytetrack
│ ├── README.md
│ ├── bytetrack_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
│ ├── bytetrack_yolox_x_8xb4-80e_crowdhuman-mot20train_test-mot20test.py
│ ├── bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
│ ├── bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17test.py
│ ├── bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot20train_test-mot20test.py
│ ├── metafile.yml
│ └── yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
├── carafe
│ ├── README.md
│ ├── faster-rcnn_r50_fpn-carafe_1x_coco.py
│ ├── mask-rcnn_r50_fpn-carafe_1x_coco.py
│ └── metafile.yml
├── cascade_rcnn
│ ├── README.md
│ ├── cascade-mask-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_r101-caffe_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_r101_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_r101_fpn_20e_coco.py
│ ├── cascade-mask-rcnn_r101_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_r50-caffe_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_r50_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_r50_fpn_20e_coco.py
│ ├── cascade-mask-rcnn_r50_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d_fpn_20e_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_x101-32x8d_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-64x4d_fpn_20e_coco.py
│ ├── cascade-mask-rcnn_x101-64x4d_fpn_ms-3x_coco.py
│ ├── cascade-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── cascade-rcnn_r101_fpn_1x_coco.py
│ ├── cascade-rcnn_r101_fpn_20e_coco.py
│ ├── cascade-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── cascade-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── cascade-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── cascade-rcnn_r50_fpn_1x_coco.py
│ ├── cascade-rcnn_r50_fpn_20e_coco.py
│ ├── cascade-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── cascade-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── cascade-rcnn_x101-32x4d_fpn_20e_coco.py
│ ├── cascade-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── cascade-rcnn_x101_64x4d_fpn_20e_coco.py
│ └── metafile.yml
├── cascade_rpn
│ ├── README.md
│ ├── cascade-rpn_fast-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── cascade-rpn_faster-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── cascade-rpn_r50-caffe_fpn_1x_coco.py
│ └── metafile.yml
├── centernet
│ ├── README.md
│ ├── centernet-update_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── centernet-update_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── centernet-update_r50-caffe_fpn_ms-1x_coco.py
│ ├── centernet-update_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── centernet_r18-dcnv2_8xb16-crop512-140e_coco.py
│ ├── centernet_r18_8xb16-crop512-140e_coco.py
│ ├── centernet_tta.py
│ └── metafile.yml
├── centripetalnet
│ ├── README.md
│ ├── centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco.py
│ └── metafile.yml
├── cityscapes
│ ├── README.md
│ ├── faster-rcnn_r50_fpn_1x_cityscapes.py
│ └── mask-rcnn_r50_fpn_1x_cityscapes.py
├── common
│ ├── lsj-100e_coco-detection.py
│ ├── lsj-100e_coco-instance.py
│ ├── lsj-200e_coco-detection.py
│ ├── lsj-200e_coco-instance.py
│ ├── ms-90k_coco.py
│ ├── ms-poly-90k_coco-instance.py
│ ├── ms-poly_3x_coco-instance.py
│ ├── ms_3x_coco-instance.py
│ ├── ms_3x_coco.py
│ ├── ssj_270k_coco-instance.py
│ └── ssj_scp_270k_coco-instance.py
├── condinst
│ ├── README.md
│ ├── condinst_r50_fpn_ms-poly-90k_coco_instance.py
│ └── metafile.yml
├── conditional_detr
│ ├── README.md
│ ├── conditional-detr_r50_8xb2-50e_coco.py
│ └── metafile.yml
├── convnext
│ ├── README.md
│ ├── cascade-mask-rcnn_convnext-s-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
│ ├── cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py
│ ├── mask-rcnn_convnext-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
│ └── metafile.yml
├── cornernet
│ ├── README.md
│ ├── cornernet_hourglass104_10xb5-crop511-210e-mstest_coco.py
│ ├── cornernet_hourglass104_32xb3-210e-mstest_coco.py
│ ├── cornernet_hourglass104_8xb6-210e-mstest_coco.py
│ └── metafile.yml
├── crowddet
│ ├── README.md
│ ├── crowddet-rcnn_r50_fpn_8xb2-30e_crowdhuman.py
│ ├── crowddet-rcnn_refine_r50_fpn_8xb2-30e_crowdhuman.py
│ └── metafile.yml
├── dab_detr
│ ├── README.md
│ ├── dab-detr_r50_8xb2-50e_coco.py
│ └── metafile.yml
├── dcn
│ ├── README.md
│ ├── cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
│ ├── cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
│ ├── cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
│ ├── faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
│ ├── faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
│ ├── faster-rcnn_r50_fpn_dpool_1x_coco.py
│ ├── faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py
│ └── metafile.yml
├── dcnv2
│ ├── README.md
│ ├── faster-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py
│ ├── faster-rcnn_r50-mdconv-group4-c3-c5_fpn_1x_coco.py
│ ├── faster-rcnn_r50_fpn_mdpool_1x_coco.py
│ ├── mask-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-mdconv-c3-c5_fpn_amp-1x_coco.py
│ └── metafile.yml
├── ddod
│ ├── README.md
│ ├── ddod_r50_fpn_1x_coco.py
│ └── metafile.yml
├── ddq
│ ├── README.md
│ ├── ddq-detr-4scale_r50_8xb2-12e_coco.py
│ ├── ddq-detr-4scale_swinl_8xb2-30e_coco.py
│ ├── ddq-detr-5scale_r50_8xb2-12e_coco.py
│ └── metafile.yml
├── deepfashion
│ ├── README.md
│ └── mask-rcnn_r50_fpn_15e_deepfashion.py
├── deepsort
│ ├── README.md
│ ├── deepsort_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
│ ├── deepsort_faster-rcnn_r50_fpn_8xb2-4e_mot17train_test-mot17test.py
│ └── metafile.yml
├── deformable_detr
│ ├── README.md
│ ├── deformable-detr-refine-twostage_r50_16xb2-50e_coco.py
│ ├── deformable-detr-refine_r50_16xb2-50e_coco.py
│ ├── deformable-detr_r50_16xb2-50e_coco.py
│ └── metafile.yml
├── detectors
│ ├── README.md
│ ├── cascade-rcnn_r50-rfp_1x_coco.py
│ ├── cascade-rcnn_r50-sac_1x_coco.py
│ ├── detectors_cascade-rcnn_r50_1x_coco.py
│ ├── detectors_htc-r101_20e_coco.py
│ ├── detectors_htc-r50_1x_coco.py
│ ├── htc_r50-rfp_1x_coco.py
│ ├── htc_r50-sac_1x_coco.py
│ └── metafile.yml
├── detr
│ ├── README.md
│ ├── detr_r101_8xb2-500e_coco.py
│ ├── detr_r18_8xb2-500e_coco.py
│ ├── detr_r50_8xb2-150e_coco.py
│ ├── detr_r50_8xb2-500e_coco.py
│ └── metafile.yml
├── dino
│ ├── README.md
│ ├── dino-4scale_r50_8xb2-12e_coco.py
│ ├── dino-4scale_r50_8xb2-24e_coco.py
│ ├── dino-4scale_r50_8xb2-36e_coco.py
│ ├── dino-4scale_r50_improved_8xb2-12e_coco.py
│ ├── dino-5scale_swin-l_8xb2-12e_coco.py
│ ├── dino-5scale_swin-l_8xb2-36e_coco.py
│ └── metafile.yml
├── double_heads
│ ├── README.md
│ ├── dh-faster-rcnn_r50_fpn_1x_coco.py
│ └── metafile.yml
├── dsdl
│ ├── README.md
│ ├── coco.py
│ ├── coco_instance.py
│ ├── objects365v2.py
│ ├── openimagesv6.py
│ ├── voc07.py
│ └── voc0712.py
├── dyhead
│ ├── README.md
│ ├── atss_r50-caffe_fpn_dyhead_1x_coco.py
│ ├── atss_r50_fpn_dyhead_1x_coco.py
│ ├── atss_swin-l-p4-w12_fpn_dyhead_ms-2x_coco.py
│ └── metafile.yml
├── dynamic_rcnn
│ ├── README.md
│ ├── dynamic-rcnn_r50_fpn_1x_coco.py
│ └── metafile.yml
├── efficientnet
│ ├── README.md
│ ├── metafile.yml
│ └── retinanet_effb3_fpn_8xb4-crop896-1x_coco.py
├── empirical_attention
│ ├── README.md
│ ├── faster-rcnn_r50-attn0010-dcn_fpn_1x_coco.py
│ ├── faster-rcnn_r50-attn0010_fpn_1x_coco.py
│ ├── faster-rcnn_r50-attn1111-dcn_fpn_1x_coco.py
│ ├── faster-rcnn_r50-attn1111_fpn_1x_coco.py
│ └── metafile.yml
├── fast_rcnn
│ ├── README.md
│ ├── fast-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── fast-rcnn_r101_fpn_1x_coco.py
│ ├── fast-rcnn_r101_fpn_2x_coco.py
│ ├── fast-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── fast-rcnn_r50_fpn_1x_coco.py
│ └── fast-rcnn_r50_fpn_2x_coco.py
├── faster_rcnn
│ ├── README.md
│ ├── faster-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── faster-rcnn_r101-caffe_fpn_ms-3x_coco.py
│ ├── faster-rcnn_r101_fpn_1x_coco.py
│ ├── faster-rcnn_r101_fpn_2x_coco.py
│ ├── faster-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── faster-rcnn_r101_fpn_ms-3x_coco.py
│ ├── faster-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── faster-rcnn_r50-caffe-c4_ms-1x_coco.py
│ ├── faster-rcnn_r50-caffe-dc5_1x_coco.py
│ ├── faster-rcnn_r50-caffe-dc5_ms-1x_coco.py
│ ├── faster-rcnn_r50-caffe-dc5_ms-3x_coco.py
│ ├── faster-rcnn_r50-caffe_c4-1x_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_90k_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-1x_coco-person-bicycle-car.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-1x_coco-person.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-1x_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-2x_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-3x_coco.py
│ ├── faster-rcnn_r50-caffe_fpn_ms-90k_coco.py
│ ├── faster-rcnn_r50-tnr-pre_fpn_1x_coco.py
│ ├── faster-rcnn_r50_fpn_1x_coco.py
│ ├── faster-rcnn_r50_fpn_2x_coco.py
│ ├── faster-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── faster-rcnn_r50_fpn_amp-1x_coco.py
│ ├── faster-rcnn_r50_fpn_bounded-iou_1x_coco.py
│ ├── faster-rcnn_r50_fpn_ciou_1x_coco.py
│ ├── faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
│ ├── faster-rcnn_r50_fpn_giou_1x_coco.py
│ ├── faster-rcnn_r50_fpn_iou_1x_coco.py
│ ├── faster-rcnn_r50_fpn_ms-3x_coco.py
│ ├── faster-rcnn_r50_fpn_ohem_1x_coco.py
│ ├── faster-rcnn_r50_fpn_soft-nms_1x_coco.py
│ ├── faster-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── faster-rcnn_x101-32x4d_fpn_2x_coco.py
│ ├── faster-rcnn_x101-32x4d_fpn_ms-3x_coco.py
│ ├── faster-rcnn_x101-32x8d_fpn_ms-3x_coco.py
│ ├── faster-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── faster-rcnn_x101-64x4d_fpn_2x_coco.py
│ ├── faster-rcnn_x101-64x4d_fpn_ms-3x_coco.py
│ └── metafile.yml
├── fcos
│ ├── README.md
│ ├── fcos_r101-caffe_fpn_gn-head-1x_coco.py
│ ├── fcos_r101-caffe_fpn_gn-head_ms-640-800-2x_coco.py
│ ├── fcos_r101_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py
│ ├── fcos_r18_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py
│ ├── fcos_r50-caffe_fpn_gn-head-center-normbbox-centeronreg-giou_1x_coco.py
│ ├── fcos_r50-caffe_fpn_gn-head-center_1x_coco.py
│ ├── fcos_r50-caffe_fpn_gn-head_1x_coco.py
│ ├── fcos_r50-caffe_fpn_gn-head_4xb4-1x_coco.py
│ ├── fcos_r50-caffe_fpn_gn-head_ms-640-800-2x_coco.py
│ ├── fcos_r50-dcn-caffe_fpn_gn-head-center-normbbox-centeronreg-giou_1x_coco.py
│ ├── fcos_r50_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py
│ ├── fcos_x101-64x4d_fpn_gn-head_ms-640-800-2x_coco.py
│ └── metafile.yml
├── foveabox
│ ├── README.md
│ ├── fovea_r101_fpn_4xb4-1x_coco.py
│ ├── fovea_r101_fpn_4xb4-2x_coco.py
│ ├── fovea_r101_fpn_gn-head-align_4xb4-2x_coco.py
│ ├── fovea_r101_fpn_gn-head-align_ms-640-800-4xb4-2x_coco.py
│ ├── fovea_r50_fpn_4xb4-1x_coco.py
│ ├── fovea_r50_fpn_4xb4-2x_coco.py
│ ├── fovea_r50_fpn_gn-head-align_4xb4-2x_coco.py
│ ├── fovea_r50_fpn_gn-head-align_ms-640-800-4xb4-2x_coco.py
│ └── metafile.yml
├── fpg
│ ├── README.md
│ ├── faster-rcnn_r50_fpg-chn128_crop640-50e_coco.py
│ ├── faster-rcnn_r50_fpg_crop640-50e_coco.py
│ ├── faster-rcnn_r50_fpn_crop640-50e_coco.py
│ ├── mask-rcnn_r50_fpg-chn128_crop640-50e_coco.py
│ ├── mask-rcnn_r50_fpg_crop640-50e_coco.py
│ ├── mask-rcnn_r50_fpn_crop640-50e_coco.py
│ ├── metafile.yml
│ ├── retinanet_r50_fpg-chn128_crop640_50e_coco.py
│ └── retinanet_r50_fpg_crop640_50e_coco.py
├── free_anchor
│ ├── README.md
│ ├── freeanchor_r101_fpn_1x_coco.py
│ ├── freeanchor_r50_fpn_1x_coco.py
│ ├── freeanchor_x101-32x4d_fpn_1x_coco.py
│ └── metafile.yml
├── fsaf
│ ├── README.md
│ ├── fsaf_r101_fpn_1x_coco.py
│ ├── fsaf_r50_fpn_1x_coco.py
│ ├── fsaf_x101-64x4d_fpn_1x_coco.py
│ └── metafile.yml
├── gcnet
│ ├── README.md
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r16-gcb-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r4-gcb-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn-r16-gcb-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn-r4-gcb-c3-c5_fpn_1x_coco.py
│ ├── cascade-mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py
│ ├── mask-rcnn_r101-gcb-r16-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r101-gcb-r4-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r101-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r101-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r101-syncbn_fpn_1x_coco.py
│ ├── mask-rcnn_r50-gcb-r16-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-gcb-r4-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_r50-syncbn_fpn_1x_coco.py
│ ├── mask-rcnn_x101-32x4d-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_x101-32x4d-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py
│ └── metafile.yml
├── gfl
│ ├── README.md
│ ├── gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py
│ ├── gfl_r101_fpn_ms-2x_coco.py
│ ├── gfl_r50_fpn_1x_coco.py
│ ├── gfl_r50_fpn_ms-2x_coco.py
│ ├── gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco.py
│ ├── gfl_x101-32x4d_fpn_ms-2x_coco.py
│ └── metafile.yml
├── ghm
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_r101_fpn_ghm-1x_coco.py
│ ├── retinanet_r50_fpn_ghm-1x_coco.py
│ ├── retinanet_x101-32x4d_fpn_ghm-1x_coco.py
│ └── retinanet_x101-64x4d_fpn_ghm-1x_coco.py
├── glip
│ ├── README.md
│ ├── glip_atss_swin-l_fpn_dyhead_16xb2_ms-2x_funtune_coco.py
│ ├── glip_atss_swin-l_fpn_dyhead_pretrain_mixeddata.py
│ ├── glip_atss_swin-t_a_fpn_dyhead_16xb2_ms-2x_funtune_coco.py
│ ├── glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py
│ ├── glip_atss_swin-t_b_fpn_dyhead_16xb2_ms-2x_funtune_coco.py
│ ├── glip_atss_swin-t_b_fpn_dyhead_pretrain_obj365.py
│ ├── glip_atss_swin-t_c_fpn_dyhead_16xb2_ms-2x_funtune_coco.py
│ ├── glip_atss_swin-t_c_fpn_dyhead_pretrain_obj365-goldg.py
│ ├── glip_atss_swin-t_fpn_dyhead_16xb2_ms-2x_funtune_coco.py
│ ├── glip_atss_swin-t_fpn_dyhead_pretrain_obj365-goldg-cc3m-sub.py
│ └── metafile.yml
├── gn+ws
│ ├── README.md
│ ├── faster-rcnn_r101_fpn_gn-ws-all_1x_coco.py
│ ├── faster-rcnn_r50_fpn_gn-ws-all_1x_coco.py
│ ├── faster-rcnn_x101-32x4d_fpn_gn-ws-all_1x_coco.py
│ ├── faster-rcnn_x50-32x4d_fpn_gn-ws-all_1x_coco.py
│ ├── mask-rcnn_r101_fpn_gn-ws-all_20-23-24e_coco.py
│ ├── mask-rcnn_r101_fpn_gn-ws-all_2x_coco.py
│ ├── mask-rcnn_r50_fpn_gn-ws-all_20-23-24e_coco.py
│ ├── mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_gn-ws-all_20-23-24e_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_gn-ws-all_2x_coco.py
│ ├── mask-rcnn_x50-32x4d_fpn_gn-ws-all_20-23-24e_coco.py
│ ├── mask-rcnn_x50-32x4d_fpn_gn-ws-all_2x_coco.py
│ └── metafile.yml
├── gn
│ ├── README.md
│ ├── mask-rcnn_r101_fpn_gn-all_2x_coco.py
│ ├── mask-rcnn_r101_fpn_gn-all_3x_coco.py
│ ├── mask-rcnn_r50-contrib_fpn_gn-all_2x_coco.py
│ ├── mask-rcnn_r50-contrib_fpn_gn-all_3x_coco.py
│ ├── mask-rcnn_r50_fpn_gn-all_2x_coco.py
│ ├── mask-rcnn_r50_fpn_gn-all_3x_coco.py
│ └── metafile.yml
├── grid_rcnn
│ ├── README.md
│ ├── grid-rcnn_r101_fpn_gn-head_2x_coco.py
│ ├── grid-rcnn_r50_fpn_gn-head_1x_coco.py
│ ├── grid-rcnn_r50_fpn_gn-head_2x_coco.py
│ ├── grid-rcnn_x101-32x4d_fpn_gn-head_2x_coco.py
│ ├── grid-rcnn_x101-64x4d_fpn_gn-head_2x_coco.py
│ └── metafile.yml
├── groie
│ ├── README.md
│ ├── faste-rcnn_r50_fpn_groie_1x_coco.py
│ ├── grid-rcnn_r50_fpn_gn-head-groie_1x_coco.py
│ ├── mask-rcnn_r101_fpn_syncbn-r4-gcb_c3-c5-groie_1x_coco.py
│ ├── mask-rcnn_r50_fpn_groie_1x_coco.py
│ ├── mask-rcnn_r50_fpn_syncbn-r4-gcb-c3-c5-groie_1x_coco.py
│ └── metafile.yml
├── grounding_dino
│ ├── README.md
│ ├── grounding_dino_r50_scratch_8xb2_1x_coco.py
│ ├── grounding_dino_swin-b_finetune_16xb2_1x_coco.py
│ ├── grounding_dino_swin-b_pretrain_mixeddata.py
│ ├── grounding_dino_swin-t_finetune_16xb2_1x_coco.py
│ ├── grounding_dino_swin-t_finetune_8xb2_20e_cat.py
│ ├── grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py
│ └── metafile.yml
├── guided_anchoring
│ ├── README.md
│ ├── ga-fast-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── ga-faster-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── ga-faster-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── ga-faster-rcnn_r50_fpn_1x_coco.py
│ ├── ga-faster-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── ga-faster-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── ga-retinanet_r101-caffe_fpn_1x_coco.py
│ ├── ga-retinanet_r101-caffe_fpn_ms-2x.py
│ ├── ga-retinanet_r50-caffe_fpn_1x_coco.py
│ ├── ga-retinanet_r50_fpn_1x_coco.py
│ ├── ga-retinanet_x101-32x4d_fpn_1x_coco.py
│ ├── ga-retinanet_x101-64x4d_fpn_1x_coco.py
│ ├── ga-rpn_r101-caffe_fpn_1x_coco.py
│ ├── ga-rpn_r50-caffe_fpn_1x_coco.py
│ ├── ga-rpn_r50_fpn_1x_coco.py
│ ├── ga-rpn_x101-32x4d_fpn_1x_coco.py
│ ├── ga-rpn_x101-64x4d_fpn_1x_coco.py
│ └── metafile.yml
├── hrnet
│ ├── README.md
│ ├── cascade-mask-rcnn_hrnetv2p-w18_20e_coco.py
│ ├── cascade-mask-rcnn_hrnetv2p-w32_20e_coco.py
│ ├── cascade-mask-rcnn_hrnetv2p-w40-20e_coco.py
│ ├── cascade-rcnn_hrnetv2p-w18-20e_coco.py
│ ├── cascade-rcnn_hrnetv2p-w32-20e_coco.py
│ ├── cascade-rcnn_hrnetv2p-w40-20e_coco.py
│ ├── faster-rcnn_hrnetv2p-w18-1x_coco.py
│ ├── faster-rcnn_hrnetv2p-w18-2x_coco.py
│ ├── faster-rcnn_hrnetv2p-w32-1x_coco.py
│ ├── faster-rcnn_hrnetv2p-w32_2x_coco.py
│ ├── faster-rcnn_hrnetv2p-w40-1x_coco.py
│ ├── faster-rcnn_hrnetv2p-w40_2x_coco.py
│ ├── fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco.py
│ ├── fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco.py
│ ├── fcos_hrnetv2p-w18-gn-head_ms-640-800-4xb4-2x_coco.py
│ ├── fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py
│ ├── fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco.py
│ ├── fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco.py
│ ├── fcos_hrnetv2p-w40-gn-head_ms-640-800-4xb4-2x_coco.py
│ ├── htc_hrnetv2p-w18_20e_coco.py
│ ├── htc_hrnetv2p-w32_20e_coco.py
│ ├── htc_hrnetv2p-w40_20e_coco.py
│ ├── htc_hrnetv2p-w40_28e_coco.py
│ ├── htc_x101-64x4d_fpn_16xb1-28e_coco.py
│ ├── mask-rcnn_hrnetv2p-w18-1x_coco.py
│ ├── mask-rcnn_hrnetv2p-w18-2x_coco.py
│ ├── mask-rcnn_hrnetv2p-w32-1x_coco.py
│ ├── mask-rcnn_hrnetv2p-w32-2x_coco.py
│ ├── mask-rcnn_hrnetv2p-w40-2x_coco.py
│ ├── mask-rcnn_hrnetv2p-w40_1x_coco.py
│ └── metafile.yml
├── htc
│ ├── README.md
│ ├── htc-without-semantic_r50_fpn_1x_coco.py
│ ├── htc_r101_fpn_20e_coco.py
│ ├── htc_r50_fpn_1x_coco.py
│ ├── htc_r50_fpn_20e_coco.py
│ ├── htc_x101-32x4d_fpn_16xb1-20e_coco.py
│ ├── htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco.py
│ ├── htc_x101-64x4d_fpn_16xb1-20e_coco.py
│ └── metafile.yml
├── instaboost
│ ├── README.md
│ ├── cascade-mask-rcnn_r101_fpn_instaboost-4x_coco.py
│ ├── cascade-mask-rcnn_r50_fpn_instaboost-4x_coco.py
│ ├── cascade-mask-rcnn_x101-64x4d_fpn_instaboost-4x_coco.py
│ ├── mask-rcnn_r101_fpn_instaboost-4x_coco.py
│ ├── mask-rcnn_r50_fpn_instaboost-4x_coco.py
│ ├── mask-rcnn_x101-64x4d_fpn_instaboost-4x_coco.py
│ └── metafile.yml
├── lad
│ ├── README.md
│ ├── lad_r101-paa-r50_fpn_2xb8_coco_1x.py
│ ├── lad_r50-paa-r101_fpn_2xb8_coco_1x.py
│ └── metafile.yml
├── ld
│ ├── README.md
│ ├── ld_r101-gflv1-r101-dcn_fpn_2x_coco.py
│ ├── ld_r18-gflv1-r101_fpn_1x_coco.py
│ ├── ld_r34-gflv1-r101_fpn_1x_coco.py
│ ├── ld_r50-gflv1-r101_fpn_1x_coco.py
│ └── metafile.yml
├── legacy_1.x
│ ├── README.md
│ ├── cascade-mask-rcnn_r50_fpn_1x_coco_v1.py
│ ├── faster-rcnn_r50_fpn_1x_coco_v1.py
│ ├── mask-rcnn_r50_fpn_1x_coco_v1.py
│ ├── retinanet_r50-caffe_fpn_1x_coco_v1.py
│ ├── retinanet_r50_fpn_1x_coco_v1.py
│ └── ssd300_coco_v1.py
├── libra_rcnn
│ ├── README.md
│ ├── libra-fast-rcnn_r50_fpn_1x_coco.py
│ ├── libra-faster-rcnn_r101_fpn_1x_coco.py
│ ├── libra-faster-rcnn_r50_fpn_1x_coco.py
│ ├── libra-faster-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── libra-retinanet_r50_fpn_1x_coco.py
│ └── metafile.yml
├── lvis
│ ├── README.md
│ ├── mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1.py
│ ├── mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5.py
│ ├── mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py
│ ├── mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5.py
│ ├── mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-1x_lvis-v1.py
│ ├── mask-rcnn_x101-32x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py
│ ├── mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-1x_lvis-v1.py
│ ├── mask-rcnn_x101-64x4d_fpn_sample1e-3_ms-2x_lvis-v0.5.py
│ └── metafile.yml
├── mask2former
│ ├── README.md
│ ├── mask2former_r101_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_r101_8xb2-lsj-50e_coco.py
│ ├── mask2former_r50_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_r50_8xb2-lsj-50e_coco.py
│ ├── mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic.py
│ ├── mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco.py
│ ├── mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py
│ ├── mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco.py
│ └── metafile.yml
├── mask2former_vis
│ ├── README.md
│ ├── mask2former_r101_8xb2-8e_youtubevis2019.py
│ ├── mask2former_r101_8xb2-8e_youtubevis2021.py
│ ├── mask2former_r50_8xb2-8e_youtubevis2019.py
│ ├── mask2former_r50_8xb2-8e_youtubevis2021.py
│ ├── mask2former_swin-l-p4-w12-384-in21k_8xb2-8e_youtubevis2021.py
│ └── metafile.yml
├── mask_rcnn
│ ├── README.md
│ ├── mask-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── mask-rcnn_r101-caffe_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_r101_fpn_1x_coco.py
│ ├── mask-rcnn_r101_fpn_2x_coco.py
│ ├── mask-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── mask-rcnn_r101_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── mask-rcnn_r50-caffe-c4_1x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_ms-1x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_ms-poly-2x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_poly-1x_coco_v1.py
│ ├── mask-rcnn_r50_fpn_1x-wandb_coco.py
│ ├── mask-rcnn_r50_fpn_1x_coco.py
│ ├── mask-rcnn_r50_fpn_2x_coco.py
│ ├── mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── mask-rcnn_r50_fpn_amp-1x_coco.py
│ ├── mask-rcnn_r50_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_r50_fpn_poly-1x_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_2x_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_x101-32x8d_fpn_1x_coco.py
│ ├── mask-rcnn_x101-32x8d_fpn_ms-poly-1x_coco.py
│ ├── mask-rcnn_x101-32x8d_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_x101-64x4d_fpn_1x_coco.py
│ ├── mask-rcnn_x101-64x4d_fpn_2x_coco.py
│ ├── mask-rcnn_x101-64x4d_fpn_ms-poly_3x_coco.py
│ └── metafile.yml
├── maskformer
│ ├── README.md
│ ├── maskformer_r50_ms-16xb1-75e_coco.py
│ ├── maskformer_swin-l-p4-w12_64xb1-ms-300e_coco.py
│ └── metafile.yml
├── masktrack_rcnn
│ ├── README.md
│ ├── masktrack-rcnn_mask-rcnn_r101_fpn_8xb1-12e_youtubevis2019.py
│ ├── masktrack-rcnn_mask-rcnn_r101_fpn_8xb1-12e_youtubevis2021.py
│ ├── masktrack-rcnn_mask-rcnn_r50_fpn_8xb1-12e_youtubevis2019.py
│ ├── masktrack-rcnn_mask-rcnn_r50_fpn_8xb1-12e_youtubevis2021.py
│ ├── masktrack-rcnn_mask-rcnn_x101_fpn_8xb1-12e_youtubevis2019.py
│ ├── masktrack-rcnn_mask-rcnn_x101_fpn_8xb1-12e_youtubevis2021.py
│ └── metafile.yml
├── misc
│ ├── d2_faster-rcnn_r50-caffe_fpn_ms-90k_coco.py
│ ├── d2_mask-rcnn_r50-caffe_fpn_ms-90k_coco.py
│ └── d2_retinanet_r50-caffe_fpn_ms-90k_coco.py
├── ms_rcnn
│ ├── README.md
│ ├── metafile.yml
│ ├── ms-rcnn_r101-caffe_fpn_1x_coco.py
│ ├── ms-rcnn_r101-caffe_fpn_2x_coco.py
│ ├── ms-rcnn_r50-caffe_fpn_1x_coco.py
│ ├── ms-rcnn_r50-caffe_fpn_2x_coco.py
│ ├── ms-rcnn_r50_fpn_1x_coco.py
│ ├── ms-rcnn_x101-32x4d_fpn_1x_coco.py
│ ├── ms-rcnn_x101-64x4d_fpn_1x_coco.py
│ └── ms-rcnn_x101-64x4d_fpn_2x_coco.py
├── nas_fcos
│ ├── README.md
│ ├── metafile.yml
│ ├── nas-fcos_r50-caffe_fpn_fcoshead-gn-head_4xb4-1x_coco.py
│ └── nas-fcos_r50-caffe_fpn_nashead-gn-head_4xb4-1x_coco.py
├── nas_fpn
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_r50_fpn_crop640-50e_coco.py
│ └── retinanet_r50_nasfpn_crop640-50e_coco.py
├── objects365
│ ├── README.md
│ ├── faster-rcnn_r50-syncbn_fpn_1350k_objects365v1.py
│ ├── faster-rcnn_r50_fpn_16xb4-1x_objects365v1.py
│ ├── faster-rcnn_r50_fpn_16xb4-1x_objects365v2.py
│ ├── metafile.yml
│ ├── retinanet_r50-syncbn_fpn_1350k_objects365v1.py
│ ├── retinanet_r50_fpn_1x_objects365v1.py
│ └── retinanet_r50_fpn_1x_objects365v2.py
├── ocsort
│ ├── README.md
│ ├── metafile.yml
│ ├── ocsort_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
│ └── ocsort_yolox_x_8xb4-amp-80e_crowdhuman-mot20train_test-mot20test.py
├── openimages
│ ├── README.md
│ ├── faster-rcnn_r50_fpn_32xb2-1x_openimages-challenge.py
│ ├── faster-rcnn_r50_fpn_32xb2-1x_openimages.py
│ ├── faster-rcnn_r50_fpn_32xb2-cas-1x_openimages-challenge.py
│ ├── faster-rcnn_r50_fpn_32xb2-cas-1x_openimages.py
│ ├── metafile.yml
│ ├── retinanet_r50_fpn_32xb2-1x_openimages.py
│ └── ssd300_32xb8-36e_openimages.py
├── paa
│ ├── README.md
│ ├── metafile.yml
│ ├── paa_r101_fpn_1x_coco.py
│ ├── paa_r101_fpn_2x_coco.py
│ ├── paa_r101_fpn_ms-3x_coco.py
│ ├── paa_r50_fpn_1.5x_coco.py
│ ├── paa_r50_fpn_1x_coco.py
│ ├── paa_r50_fpn_2x_coco.py
│ └── paa_r50_fpn_ms-3x_coco.py
├── pafpn
│ ├── README.md
│ ├── faster-rcnn_r50_pafpn_1x_coco.py
│ └── metafile.yml
├── panoptic_fpn
│ ├── README.md
│ ├── metafile.yml
│ ├── panoptic-fpn_r101_fpn_1x_coco.py
│ ├── panoptic-fpn_r101_fpn_ms-3x_coco.py
│ ├── panoptic-fpn_r50_fpn_1x_coco.py
│ └── panoptic-fpn_r50_fpn_ms-3x_coco.py
├── pascal_voc
│ ├── README.md
│ ├── faster-rcnn_r50-caffe-c4_ms-18k_voc0712.py
│ ├── faster-rcnn_r50_fpn_1x_voc0712-cocofmt.py
│ ├── faster-rcnn_r50_fpn_1x_voc0712.py
│ ├── retinanet_r50_fpn_1x_voc0712.py
│ ├── ssd300_voc0712.py
│ └── ssd512_voc0712.py
├── pisa
│ ├── README.md
│ ├── faster-rcnn_r50_fpn_pisa_1x_coco.py
│ ├── faster-rcnn_x101-32x4d_fpn_pisa_1x_coco.py
│ ├── mask-rcnn_r50_fpn_pisa_1x_coco.py
│ ├── mask-rcnn_x101-32x4d_fpn_pisa_1x_coco.py
│ ├── metafile.yml
│ ├── retinanet-r50_fpn_pisa_1x_coco.py
│ ├── retinanet_x101-32x4d_fpn_pisa_1x_coco.py
│ ├── ssd300_pisa_coco.py
│ └── ssd512_pisa_coco.py
├── point_rend
│ ├── README.md
│ ├── metafile.yml
│ ├── point-rend_r50-caffe_fpn_ms-1x_coco.py
│ └── point-rend_r50-caffe_fpn_ms-3x_coco.py
├── pvt
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_pvt-l_fpn_1x_coco.py
│ ├── retinanet_pvt-m_fpn_1x_coco.py
│ ├── retinanet_pvt-s_fpn_1x_coco.py
│ ├── retinanet_pvt-t_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b0_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b1_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b2_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b3_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b4_fpn_1x_coco.py
│ └── retinanet_pvtv2-b5_fpn_1x_coco.py
├── qdtrack
│ ├── README.md
│ ├── metafile.yml
│ ├── qdtrack_faster-rcnn_r50_fpn_4e_base.py
│ └── qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
├── queryinst
│ ├── README.md
│ ├── metafile.yml
│ ├── queryinst_r101_fpn_300-proposals_crop-ms-480-800-3x_coco.py
│ ├── queryinst_r101_fpn_ms-480-800-3x_coco.py
│ ├── queryinst_r50_fpn_1x_coco.py
│ ├── queryinst_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py
│ └── queryinst_r50_fpn_ms-480-800-3x_coco.py
├── regnet
│ ├── README.md
│ ├── cascade-mask-rcnn_regnetx-1.6GF_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_regnetx-400MF_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_regnetx-4GF_fpn_ms-3x_coco.py
│ ├── cascade-mask-rcnn_regnetx-800MF_fpn_ms-3x_coco.py
│ ├── faster-rcnn_regnetx-1.6GF_fpn_ms-3x_coco.py
│ ├── faster-rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ ├── faster-rcnn_regnetx-3.2GF_fpn_2x_coco.py
│ ├── faster-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py
│ ├── faster-rcnn_regnetx-400MF_fpn_ms-3x_coco.py
│ ├── faster-rcnn_regnetx-4GF_fpn_ms-3x_coco.py
│ ├── faster-rcnn_regnetx-800MF_fpn_ms-3x_coco.py
│ ├── mask-rcnn_regnetx-1.6GF_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_regnetx-12GF_fpn_1x_coco.py
│ ├── mask-rcnn_regnetx-3.2GF-mdconv-c3-c5_fpn_1x_coco.py
│ ├── mask-rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ ├── mask-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py
│ ├── mask-rcnn_regnetx-400MF_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_regnetx-4GF_fpn_1x_coco.py
│ ├── mask-rcnn_regnetx-4GF_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_regnetx-6.4GF_fpn_1x_coco.py
│ ├── mask-rcnn_regnetx-800MF_fpn_ms-poly-3x_coco.py
│ ├── mask-rcnn_regnetx-8GF_fpn_1x_coco.py
│ ├── metafile.yml
│ ├── retinanet_regnetx-1.6GF_fpn_1x_coco.py
│ ├── retinanet_regnetx-3.2GF_fpn_1x_coco.py
│ └── retinanet_regnetx-800MF_fpn_1x_coco.py
├── reid
│ ├── README.md
│ ├── reid_r50_8xb32-6e_mot15train80_test-mot15val20.py
│ ├── reid_r50_8xb32-6e_mot16train80_test-mot16val20.py
│ ├── reid_r50_8xb32-6e_mot17train80_test-mot17val20.py
│ └── reid_r50_8xb32-6e_mot20train80_test-mot20val20.py
├── reppoints
│ ├── README.md
│ ├── metafile.yml
│ ├── reppoints-bbox_r50-center_fpn-gn_head-gn-grid_1x_coco.py
│ ├── reppoints-bbox_r50_fpn-gn_head-gn-grid_1x_coco.py
│ ├── reppoints-minmax_r50_fpn-gn_head-gn_1x_coco.py
│ ├── reppoints-moment_r101-dconv-c3-c5_fpn-gn_head-gn_2x_coco.py
│ ├── reppoints-moment_r101_fpn-gn_head-gn_2x_coco.py
│ ├── reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py
│ ├── reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py
│ ├── reppoints-moment_r50_fpn_1x_coco.py
│ ├── reppoints-moment_x101-dconv-c3-c5_fpn-gn_head-gn_2x_coco.py
│ ├── reppoints-partial-minmax_r50_fpn-gn_head-gn_1x_coco.py
│ └── reppoints.png
├── res2net
│ ├── README.md
│ ├── cascade-mask-rcnn_res2net-101_fpn_20e_coco.py
│ ├── cascade-rcnn_res2net-101_fpn_20e_coco.py
│ ├── faster-rcnn_res2net-101_fpn_2x_coco.py
│ ├── htc_res2net-101_fpn_20e_coco.py
│ ├── mask-rcnn_res2net-101_fpn_2x_coco.py
│ └── metafile.yml
├── resnest
│ ├── README.md
│ ├── cascade-mask-rcnn_s101_fpn_syncbn-backbone+head_ms-1x_coco.py
│ ├── cascade-mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py
│ ├── cascade-rcnn_s101_fpn_syncbn-backbone+head_ms-range-1x_coco.py
│ ├── cascade-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco.py
│ ├── faster-rcnn_s101_fpn_syncbn-backbone+head_ms-range-1x_coco.py
│ ├── faster-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco.py
│ ├── mask-rcnn_s101_fpn_syncbn-backbone+head_ms-1x_coco.py
│ ├── mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py
│ └── metafile.yml
├── resnet_strikes_back
│ ├── README.md
│ ├── cascade-mask-rcnn_r50-rsb-pre_fpn_1x_coco.py
│ ├── faster-rcnn_r50-rsb-pre_fpn_1x_coco.py
│ ├── mask-rcnn_r50-rsb-pre_fpn_1x_coco.py
│ ├── metafile.yml
│ └── retinanet_r50-rsb-pre_fpn_1x_coco.py
├── retinanet
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_r101-caffe_fpn_1x_coco.py
│ ├── retinanet_r101-caffe_fpn_ms-3x_coco.py
│ ├── retinanet_r101_fpn_1x_coco.py
│ ├── retinanet_r101_fpn_2x_coco.py
│ ├── retinanet_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── retinanet_r101_fpn_ms-640-800-3x_coco.py
│ ├── retinanet_r18_fpn_1x_coco.py
│ ├── retinanet_r18_fpn_1xb8-1x_coco.py
│ ├── retinanet_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── retinanet_r50-caffe_fpn_1x_coco.py
│ ├── retinanet_r50-caffe_fpn_ms-1x_coco.py
│ ├── retinanet_r50-caffe_fpn_ms-2x_coco.py
│ ├── retinanet_r50-caffe_fpn_ms-3x_coco.py
│ ├── retinanet_r50_fpn_1x_coco.py
│ ├── retinanet_r50_fpn_2x_coco.py
│ ├── retinanet_r50_fpn_8xb8-amp-lsj-200e_coco.py
│ ├── retinanet_r50_fpn_90k_coco.py
│ ├── retinanet_r50_fpn_amp-1x_coco.py
│ ├── retinanet_r50_fpn_ms-640-800-3x_coco.py
│ ├── retinanet_tta.py
│ ├── retinanet_x101-32x4d_fpn_1x_coco.py
│ ├── retinanet_x101-32x4d_fpn_2x_coco.py
│ ├── retinanet_x101-64x4d_fpn_1x_coco.py
│ ├── retinanet_x101-64x4d_fpn_2x_coco.py
│ └── retinanet_x101-64x4d_fpn_ms-640-800-3x_coco.py
├── rpn
│ ├── README.md
│ ├── metafile.yml
│ ├── rpn_r101-caffe_fpn_1x_coco.py
│ ├── rpn_r101_fpn_1x_coco.py
│ ├── rpn_r101_fpn_2x_coco.py
│ ├── rpn_r50-caffe-c4_1x_coco.py
│ ├── rpn_r50-caffe_fpn_1x_coco.py
│ ├── rpn_r50_fpn_1x_coco.py
│ ├── rpn_r50_fpn_2x_coco.py
│ ├── rpn_x101-32x4d_fpn_1x_coco.py
│ ├── rpn_x101-32x4d_fpn_2x_coco.py
│ ├── rpn_x101-64x4d_fpn_1x_coco.py
│ └── rpn_x101-64x4d_fpn_2x_coco.py
├── rtmdet
│ ├── README.md
│ ├── classification
│ │ ├── README.md
│ │ ├── cspnext-l_8xb256-rsb-a1-600e_in1k.py
│ │ ├── cspnext-m_8xb256-rsb-a1-600e_in1k.py
│ │ ├── cspnext-s_8xb256-rsb-a1-600e_in1k.py
│ │ ├── cspnext-tiny_8xb256-rsb-a1-600e_in1k.py
│ │ └── cspnext-x_8xb256-rsb-a1-600e_in1k.py
│ ├── metafile.yml
│ ├── rtmdet-ins_l_8xb32-300e_coco.py
│ ├── rtmdet-ins_m_8xb32-300e_coco.py
│ ├── rtmdet-ins_s_8xb32-300e_coco.py
│ ├── rtmdet-ins_tiny_8xb32-300e_coco.py
│ ├── rtmdet-ins_x_8xb16-300e_coco.py
│ ├── rtmdet_l_8xb32-300e_coco.py
│ ├── rtmdet_m_8xb32-300e_coco.py
│ ├── rtmdet_s_8xb32-300e_coco.py
│ ├── rtmdet_tiny_8xb32-300e_coco.py
│ ├── rtmdet_tta.py
│ ├── rtmdet_x_8xb32-300e_coco.py
│ └── rtmdet_x_p6_4xb8-300e_coco.py
├── sabl
│ ├── README.md
│ ├── metafile.yml
│ ├── sabl-cascade-rcnn_r101_fpn_1x_coco.py
│ ├── sabl-cascade-rcnn_r50_fpn_1x_coco.py
│ ├── sabl-faster-rcnn_r101_fpn_1x_coco.py
│ ├── sabl-faster-rcnn_r50_fpn_1x_coco.py
│ ├── sabl-retinanet_r101-gn_fpn_1x_coco.py
│ ├── sabl-retinanet_r101-gn_fpn_ms-480-960-2x_coco.py
│ ├── sabl-retinanet_r101-gn_fpn_ms-640-800-2x_coco.py
│ ├── sabl-retinanet_r101_fpn_1x_coco.py
│ ├── sabl-retinanet_r50-gn_fpn_1x_coco.py
│ └── sabl-retinanet_r50_fpn_1x_coco.py
├── scnet
│ ├── README.md
│ ├── metafile.yml
│ ├── scnet_r101_fpn_20e_coco.py
│ ├── scnet_r50_fpn_1x_coco.py
│ ├── scnet_r50_fpn_20e_coco.py
│ ├── scnet_x101-64x4d_fpn_20e_coco.py
│ └── scnet_x101-64x4d_fpn_8xb1-20e_coco.py
├── scratch
│ ├── README.md
│ ├── faster-rcnn_r50-scratch_fpn_gn-all_6x_coco.py
│ ├── mask-rcnn_r50-scratch_fpn_gn-all_6x_coco.py
│ └── metafile.yml
├── seesaw_loss
│ ├── README.md
│ ├── cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
│ ├── cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
│ ├── cascade-mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
│ ├── cascade-mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r50_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r50_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
│ ├── mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
│ └── metafile.yml
├── selfsup_pretrain
│ ├── README.md
│ ├── mask-rcnn_r50-mocov2-pre_fpn_1x_coco.py
│ ├── mask-rcnn_r50-mocov2-pre_fpn_ms-2x_coco.py
│ ├── mask-rcnn_r50-swav-pre_fpn_1x_coco.py
│ └── mask-rcnn_r50-swav-pre_fpn_ms-2x_coco.py
├── simple_copy_paste
│ ├── README.md
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-270k_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-90k_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-270k_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-90k_coco.py
│ └── metafile.yml
├── soft_teacher
│ ├── README.md
│ ├── metafile.yml
│ ├── soft-teacher_faster-rcnn_r50-caffe_fpn_180k_semi-0.01-coco.py
│ ├── soft-teacher_faster-rcnn_r50-caffe_fpn_180k_semi-0.02-coco.py
│ ├── soft-teacher_faster-rcnn_r50-caffe_fpn_180k_semi-0.05-coco.py
│ └── soft-teacher_faster-rcnn_r50-caffe_fpn_180k_semi-0.1-coco.py
├── solo
│ ├── README.md
│ ├── decoupled-solo-light_r50_fpn_3x_coco.py
│ ├── decoupled-solo_r50_fpn_1x_coco.py
│ ├── decoupled-solo_r50_fpn_3x_coco.py
│ ├── metafile.yml
│ ├── solo_r101_fpn_8xb8-lsj-200e_coco.py
│ ├── solo_r18_fpn_8xb8-lsj-200e_coco.py
│ ├── solo_r50_fpn_1x_coco.py
│ ├── solo_r50_fpn_3x_coco.py
│ └── solo_r50_fpn_8xb8-lsj-200e_coco.py
├── solov2
│ ├── README.md
│ ├── metafile.yml
│ ├── solov2-light_r18_fpn_ms-3x_coco.py
│ ├── solov2-light_r34_fpn_ms-3x_coco.py
│ ├── solov2-light_r50-dcn_fpn_ms-3x_coco.py
│ ├── solov2-light_r50_fpn_ms-3x_coco.py
│ ├── solov2_r101-dcn_fpn_ms-3x_coco.py
│ ├── solov2_r101_fpn_ms-3x_coco.py
│ ├── solov2_r50_fpn_1x_coco.py
│ ├── solov2_r50_fpn_ms-3x_coco.py
│ └── solov2_x101-dcn_fpn_ms-3x_coco.py
├── sort
│ ├── README.md
│ ├── faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
│ ├── faster-rcnn_r50_fpn_8xb2-4e_mot17train_test-mot17train.py
│ ├── faster-rcnn_r50_fpn_8xb2-8e_mot20halftrain_test-mot20halfval.py
│ ├── faster-rcnn_r50_fpn_8xb2-8e_mot20train_test-mot20train.py
│ ├── metafile.yml
│ ├── sort_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
│ └── sort_faster-rcnn_r50_fpn_8xb2-4e_mot17train_test-mot17test.py
├── sparse_rcnn
│ ├── README.md
│ ├── metafile.yml
│ ├── sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco.py
│ ├── sparse-rcnn_r101_fpn_ms-480-800-3x_coco.py
│ ├── sparse-rcnn_r50_fpn_1x_coco.py
│ ├── sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py
│ └── sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py
├── ssd
│ ├── README.md
│ ├── metafile.yml
│ ├── ssd300_coco.py
│ ├── ssd512_coco.py
│ └── ssdlite_mobilenetv2-scratch_8xb24-600e_coco.py
├── strong_baselines
│ ├── README.md
│ ├── mask-rcnn_r50-caffe_fpn_rpn-2conv_4conv1fc_syncbn-all_amp-lsj-100e_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py
│ ├── mask-rcnn_r50-caffe_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-400e_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_amp-lsj-100e_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py
│ ├── mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-50e_coco.py
│ └── metafile.yml
├── strongsort
│ ├── README.md
│ ├── metafile.yml
│ ├── strongsort_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
│ ├── strongsort_yolox_x_8xb4-80e_crowdhuman-mot20train_test-mot20test.py
│ ├── yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py
│ └── yolox_x_8xb4-80e_crowdhuman-mot20train_test-mot20test.py
├── swin
│ ├── README.md
│ ├── mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco.py
│ ├── mask-rcnn_swin-t-p4-w7_fpn_1x_coco.py
│ ├── mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
│ ├── mask-rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py
│ ├── metafile.yml
│ └── retinanet_swin-t-p4-w7_fpn_1x_coco.py
├── timm_example
│ ├── README.md
│ ├── retinanet_timm-efficientnet-b1_fpn_1x_coco.py
│ └── retinanet_timm-tv-resnet50_fpn_1x_coco.py
├── tood
│ ├── README.md
│ ├── metafile.yml
│ ├── tood_r101-dconv-c3-c5_fpn_ms-2x_coco.py
│ ├── tood_r101_fpn_ms-2x_coco.py
│ ├── tood_r50_fpn_1x_coco.py
│ ├── tood_r50_fpn_anchor-based_1x_coco.py
│ ├── tood_r50_fpn_ms-2x_coco.py
│ ├── tood_x101-64x4d-dconv-c4-c5_fpn_ms-2x_coco.py
│ └── tood_x101-64x4d_fpn_ms-2x_coco.py
├── tridentnet
│ ├── README.md
│ ├── metafile.yml
│ ├── tridentnet_r50-caffe_1x_coco.py
│ ├── tridentnet_r50-caffe_ms-1x_coco.py
│ └── tridentnet_r50-caffe_ms-3x_coco.py
├── v3det
│ ├── README.md
│ ├── cascade_rcnn_r50_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ ├── cascade_rcnn_swinb_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ ├── category_name_13204_v3det_2023_v1.txt
│ ├── deformable-detr-refine-twostage_r50_8xb4_sample1e-3_v3det_50e.py
│ ├── deformable-detr-refine-twostage_swin_16xb2_sample1e-3_v3det_50e.py
│ ├── dino-4scale_r50_8xb2_sample1e-3_v3det_36e.py
│ ├── dino-4scale_swin_16xb1_sample1e-3_v3det_36e.py
│ ├── faster_rcnn_r50_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ ├── faster_rcnn_swinb_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ ├── fcos_r50_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ ├── fcos_swinb_fpn_8x4_sample1e-3_mstrain_v3det_2x.py
│ └── v3det_icon.jpg
├── vfnet
│ ├── README.md
│ ├── metafile.yml
│ ├── vfnet_r101-mdconv-c3-c5_fpn_ms-2x_coco.py
│ ├── vfnet_r101_fpn_1x_coco.py
│ ├── vfnet_r101_fpn_2x_coco.py
│ ├── vfnet_r101_fpn_ms-2x_coco.py
│ ├── vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco.py
│ ├── vfnet_r50_fpn_1x_coco.py
│ ├── vfnet_r50_fpn_ms-2x_coco.py
│ ├── vfnet_res2net-101_fpn_ms-2x_coco.py
│ ├── vfnet_res2net101-mdconv-c3-c5_fpn_ms-2x_coco.py
│ ├── vfnet_x101-32x4d-mdconv-c3-c5_fpn_ms-2x_coco.py
│ ├── vfnet_x101-32x4d_fpn_ms-2x_coco.py
│ ├── vfnet_x101-64x4d-mdconv-c3-c5_fpn_ms-2x_coco.py
│ └── vfnet_x101-64x4d_fpn_ms-2x_coco.py
├── wider_face
│ ├── README.md
│ ├── retinanet_r50_fpn_1x_widerface.py
│ └── ssd300_8xb32-24e_widerface.py
├── yolact
│ ├── README.md
│ ├── metafile.yml
│ ├── yolact_r101_1xb8-55e_coco.py
│ ├── yolact_r50_1xb8-55e_coco.py
│ └── yolact_r50_8xb8-55e_coco.py
├── yolo
│ ├── README.md
│ ├── metafile.yml
│ ├── yolov3_d53_8xb8-320-273e_coco.py
│ ├── yolov3_d53_8xb8-amp-ms-608-273e_coco.py
│ ├── yolov3_d53_8xb8-ms-416-273e_coco.py
│ ├── yolov3_d53_8xb8-ms-608-273e_coco.py
│ ├── yolov3_mobilenetv2_8xb24-320-300e_coco.py
│ └── yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py
├── yolof
│ ├── README.md
│ ├── metafile.yml
│ ├── yolof_r50-c5_8xb8-1x_coco.py
│ └── yolof_r50-c5_8xb8-iter-1x_coco.py
└── yolox
│ ├── README.md
│ ├── metafile.yml
│ ├── yolox_l_8xb8-300e_coco.py
│ ├── yolox_m_8xb8-300e_coco.py
│ ├── yolox_nano_8xb8-300e_coco.py
│ ├── yolox_s_8xb8-300e_coco.py
│ ├── yolox_tiny_8xb8-300e_coco.py
│ ├── yolox_tta.py
│ └── yolox_x_8xb8-300e_coco.py
├── dataset-index.yml
├── demo
├── MMDet_InstanceSeg_Tutorial.ipynb
├── MMDet_Tutorial.ipynb
├── create_result_gif.py
├── demo.jpg
├── demo.mp4
├── demo_mot.mp4
├── demo_multi_model.py
├── image_demo.py
├── inference_demo.ipynb
├── large_image.jpg
├── large_image_demo.py
├── mot_demo.py
├── video_demo.py
├── video_gpuaccel_demo.py
└── webcam_demo.py
├── docker
├── Dockerfile
├── serve
│ ├── Dockerfile
│ ├── config.properties
│ └── entrypoint.sh
└── serve_cn
│ └── Dockerfile
├── docs
├── en
│ ├── Makefile
│ ├── _static
│ │ ├── css
│ │ │ └── readthedocs.css
│ │ └── image
│ │ │ └── mmdet-logo.png
│ ├── advanced_guides
│ │ ├── conventions.md
│ │ ├── customize_dataset.md
│ │ ├── customize_losses.md
│ │ ├── customize_models.md
│ │ ├── customize_runtime.md
│ │ ├── customize_transforms.md
│ │ ├── data_flow.md
│ │ ├── datasets.md
│ │ ├── engine.md
│ │ ├── evaluation.md
│ │ ├── how_to.md
│ │ ├── index.rst
│ │ ├── models.md
│ │ ├── structures.md
│ │ └── transforms.md
│ ├── api.rst
│ ├── conf.py
│ ├── dataset_zoo.md
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── migration.md
│ ├── migration
│ │ ├── api_and_registry_migration.md
│ │ ├── config_migration.md
│ │ ├── dataset_migration.md
│ │ ├── migration.md
│ │ ├── migration_faq.md
│ │ └── model_migration.md
│ ├── model_zoo.md
│ ├── notes
│ │ ├── changelog.md
│ │ ├── changelog_v2.x.md
│ │ ├── compatibility.md
│ │ ├── contribution_guide.md
│ │ ├── faq.md
│ │ └── projects.md
│ ├── overview.md
│ ├── stat.py
│ ├── switch_language.md
│ └── user_guides
│ │ ├── config.md
│ │ ├── dataset_prepare.md
│ │ ├── deploy.md
│ │ ├── finetune.md
│ │ ├── index.rst
│ │ ├── inference.md
│ │ ├── init_cfg.md
│ │ ├── label_studio.md
│ │ ├── new_model.md
│ │ ├── robustness_benchmarking.md
│ │ ├── semi_det.md
│ │ ├── single_stage_as_rpn.md
│ │ ├── test.md
│ │ ├── test_results_submission.md
│ │ ├── tracking_analysis_tools.md
│ │ ├── tracking_config.md
│ │ ├── tracking_dataset_prepare.md
│ │ ├── tracking_inference.md
│ │ ├── tracking_train_test.md
│ │ ├── tracking_visualization.md
│ │ ├── train.md
│ │ ├── useful_hooks.md
│ │ ├── useful_tools.md
│ │ └── visualization.md
└── zh_cn
│ ├── Makefile
│ ├── _static
│ ├── css
│ │ └── readthedocs.css
│ └── image
│ │ └── mmdet-logo.png
│ ├── advanced_guides
│ ├── conventions.md
│ ├── customize_dataset.md
│ ├── customize_losses.md
│ ├── customize_models.md
│ ├── customize_runtime.md
│ ├── customize_transforms.md
│ ├── data_flow.md
│ ├── datasets.md
│ ├── engine.md
│ ├── evaluation.md
│ ├── how_to.md
│ ├── index.rst
│ ├── models.md
│ ├── structures.md
│ └── transforms.md
│ ├── api.rst
│ ├── article.md
│ ├── conf.py
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── migration
│ ├── api_and_registry_migration.md
│ ├── config_migration.md
│ ├── dataset_migration.md
│ ├── migration.md
│ ├── migration_faq.md
│ └── model_migration.md
│ ├── model_zoo.md
│ ├── notes
│ ├── compatibility.md
│ ├── faq.md
│ └── projects.md
│ ├── overview.md
│ ├── stat.py
│ ├── switch_language.md
│ └── user_guides
│ ├── config.md
│ ├── dataset_prepare.md
│ ├── deploy.md
│ ├── finetune.md
│ ├── index.rst
│ ├── inference.md
│ ├── init_cfg.md
│ ├── label_studio.md
│ ├── new_model.md
│ ├── robustness_benchmarking.md
│ ├── semi_det.md
│ ├── single_stage_as_rpn.md
│ ├── test.md
│ ├── test_results_submission.md
│ ├── tracking_analysis_tools.md
│ ├── tracking_config.md
│ ├── tracking_dataset_prepare.md
│ ├── tracking_interference.md
│ ├── tracking_train_test_zh_cn.md
│ ├── tracking_visualization.md
│ ├── train.md
│ ├── useful_hooks.md
│ ├── useful_tools.md
│ └── visualization.md
├── mmdet
├── __init__.py
├── apis
│ ├── __init__.py
│ ├── det_inferencer.py
│ └── inference.py
├── configs
│ ├── _base_
│ │ ├── datasets
│ │ │ ├── coco_detection.py
│ │ │ ├── coco_instance.py
│ │ │ ├── coco_instance_semantic.py
│ │ │ ├── coco_panoptic.py
│ │ │ └── mot_challenge.py
│ │ ├── default_runtime.py
│ │ ├── models
│ │ │ ├── cascade_mask_rcnn_r50_fpn.py
│ │ │ ├── cascade_rcnn_r50_fpn.py
│ │ │ ├── faster_rcnn_r50_fpn.py
│ │ │ ├── mask_rcnn_r50_caffe_c4.py
│ │ │ ├── mask_rcnn_r50_fpn.py
│ │ │ └── retinanet_r50_fpn.py
│ │ └── schedules
│ │ │ ├── schedule_1x.py
│ │ │ └── schedule_2x.py
│ ├── cascade_rcnn
│ │ ├── cascade_mask_rcnn_r50_fpn_1x_coco.py
│ │ └── cascade_rcnn_r50_fpn_1x_coco.py
│ ├── common
│ │ ├── lsj_100e_coco_detection.py
│ │ ├── lsj_100e_coco_instance.py
│ │ ├── lsj_200e_coco_detection.py
│ │ ├── lsj_200e_coco_instance.py
│ │ ├── ms_3x_coco.py
│ │ ├── ms_3x_coco_instance.py
│ │ ├── ms_90k_coco.py
│ │ ├── ms_poly_3x_coco_instance.py
│ │ ├── ms_poly_90k_coco_instance.py
│ │ ├── ssj_270_coco_instance.py
│ │ └── ssj_scp_270k_coco_instance.py
│ ├── deformable_detr
│ │ ├── deformable_detr_r50_16xb2_50e_coco.py
│ │ ├── deformable_detr_refine_r50_16xb2_50e_coco.py
│ │ └── deformable_detr_refine_twostage_r50_16xb2_50e_coco.py
│ ├── detr
│ │ ├── detr_r101_8xb2_500e_coco.py
│ │ ├── detr_r18_8xb2_500e_coco.py
│ │ ├── detr_r50_8xb2_150e_coco.py
│ │ └── detr_r50_8xb2_500e_coco.py
│ ├── dino
│ │ ├── dino_4scale_r50_8xb2_12e_coco.py
│ │ ├── dino_4scale_r50_8xb2_24e_coco.py
│ │ ├── dino_4scale_r50_8xb2_36e_coco.py
│ │ ├── dino_4scale_r50_improved_8xb2_12e_coco.py
│ │ ├── dino_5scale_swin_l_8xb2_12e_coco.py
│ │ └── dino_5scale_swin_l_8xb2_36e_coco.py
│ ├── faster_rcnn
│ │ └── faster_rcnn_r50_fpn_1x_coco.py
│ ├── mask_rcnn
│ │ ├── mask_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── mask_rcnn_r101_caffe_fpn_ms_poly_3x_coco.py
│ │ ├── mask_rcnn_r101_fpn_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_2x_coco.py
│ │ ├── mask_rcnn_r101_fpn_8xb8_amp_lsj_200e_coco.py
│ │ ├── mask_rcnn_r101_fpn_ms_poly_3x_coco.py
│ │ ├── mask_rcnn_r18_fpn_8xb8_amp_lsj_200e_coco.py
│ │ ├── mask_rcnn_r50_caffe_c4_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_ms_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_ms_poly_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_ms_poly_2x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_ms_poly_3x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
│ │ ├── mask_rcnn_r50_fpn_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_1x_wandb_coco.py
│ │ ├── mask_rcnn_r50_fpn_2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_8xb8_amp_lsj_200e_coco.py
│ │ ├── mask_rcnn_r50_fpn_amp_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_ms_poly_-3x_coco.py
│ │ ├── mask_rcnn_r50_fpn_poly_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_2x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_ms_poly_3x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_ms_poly_1x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_ms_poly_3x_coco.py
│ │ ├── mask_rcnn_x101_64_4d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_2x_coco.py
│ │ └── mask_rcnn_x101_64x4d_fpn_ms_poly_3x_coco.py
│ ├── maskformer
│ │ ├── maskformer_r50_ms_16xb1_75e_coco.py
│ │ └── maskformer_swin_l_p4_w12_64xb1_ms_300e_coco.py
│ ├── panoptic_fpn
│ │ └── panoptic_fpn_r50_fpn_1x_coco.py
│ ├── qdtrack
│ │ ├── qdtrack_faster_rcnn_r50_fpn_4e_base.py
│ │ └── qdtrack_faster_rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py
│ ├── retinanet
│ │ ├── retinanet_r50_fpn_1x_coco.py
│ │ └── retinanet_tta.py
│ └── rtmdet
│ │ ├── rtmdet_ins_l_8xb32_300e_coco.py
│ │ ├── rtmdet_ins_m_8xb32_300e_coco.py
│ │ ├── rtmdet_ins_s_8xb32_300e_coco.py
│ │ ├── rtmdet_ins_tiny_8xb32_300e_coco.py
│ │ ├── rtmdet_ins_x_8xb16_300e_coco.py
│ │ ├── rtmdet_l_8xb32_300e_coco.py
│ │ ├── rtmdet_m_8xb32_300e_coco.py
│ │ ├── rtmdet_s_8xb32_300e_coco.py
│ │ ├── rtmdet_tiny_8xb32_300e_coco.py
│ │ ├── rtmdet_tta.py
│ │ └── rtmdet_x_8xb32_300e_coco.py
├── datasets
│ ├── __init__.py
│ ├── ade20k.py
│ ├── api_wrappers
│ │ ├── __init__.py
│ │ ├── coco_api.py
│ │ └── cocoeval_mp.py
│ ├── base_det_dataset.py
│ ├── base_semseg_dataset.py
│ ├── base_video_dataset.py
│ ├── cityscapes.py
│ ├── coco.py
│ ├── coco_caption.py
│ ├── coco_panoptic.py
│ ├── coco_semantic.py
│ ├── crowdhuman.py
│ ├── dataset_wrappers.py
│ ├── deepfashion.py
│ ├── dsdl.py
│ ├── isaid.py
│ ├── lvis.py
│ ├── mot_challenge_dataset.py
│ ├── objects365.py
│ ├── openimages.py
│ ├── refcoco.py
│ ├── reid_dataset.py
│ ├── samplers
│ │ ├── __init__.py
│ │ ├── batch_sampler.py
│ │ ├── class_aware_sampler.py
│ │ ├── multi_data_sampler.py
│ │ ├── multi_source_sampler.py
│ │ └── track_img_sampler.py
│ ├── transforms
│ │ ├── __init__.py
│ │ ├── augment_wrappers.py
│ │ ├── colorspace.py
│ │ ├── formatting.py
│ │ ├── frame_sampling.py
│ │ ├── geometric.py
│ │ ├── instaboost.py
│ │ ├── loading.py
│ │ ├── transformers_glip.py
│ │ ├── transforms.py
│ │ └── wrappers.py
│ ├── utils.py
│ ├── v3det.py
│ ├── voc.py
│ ├── wider_face.py
│ ├── xml_style.py
│ └── youtube_vis_dataset.py
├── engine
│ ├── __init__.py
│ ├── hooks
│ │ ├── __init__.py
│ │ ├── checkloss_hook.py
│ │ ├── mean_teacher_hook.py
│ │ ├── memory_profiler_hook.py
│ │ ├── num_class_check_hook.py
│ │ ├── pipeline_switch_hook.py
│ │ ├── set_epoch_info_hook.py
│ │ ├── sync_norm_hook.py
│ │ ├── utils.py
│ │ ├── visualization_hook.py
│ │ └── yolox_mode_switch_hook.py
│ ├── optimizers
│ │ ├── __init__.py
│ │ └── layer_decay_optimizer_constructor.py
│ ├── runner
│ │ ├── __init__.py
│ │ └── loops.py
│ └── schedulers
│ │ ├── __init__.py
│ │ └── quadratic_warmup.py
├── evaluation
│ ├── __init__.py
│ ├── functional
│ │ ├── __init__.py
│ │ ├── bbox_overlaps.py
│ │ ├── cityscapes_utils.py
│ │ ├── class_names.py
│ │ ├── mean_ap.py
│ │ ├── panoptic_utils.py
│ │ ├── recall.py
│ │ ├── ytvis.py
│ │ └── ytviseval.py
│ └── metrics
│ │ ├── __init__.py
│ │ ├── base_video_metric.py
│ │ ├── cityscapes_metric.py
│ │ ├── coco_caption_metric.py
│ │ ├── coco_metric.py
│ │ ├── coco_occluded_metric.py
│ │ ├── coco_panoptic_metric.py
│ │ ├── coco_video_metric.py
│ │ ├── crowdhuman_metric.py
│ │ ├── dump_det_results.py
│ │ ├── dump_proposals_metric.py
│ │ ├── lvis_metric.py
│ │ ├── mot_challenge_metric.py
│ │ ├── openimages_metric.py
│ │ ├── refseg_metric.py
│ │ ├── reid_metric.py
│ │ ├── semseg_metric.py
│ │ ├── voc_metric.py
│ │ └── youtube_vis_metric.py
├── models
│ ├── __init__.py
│ ├── backbones
│ │ ├── __init__.py
│ │ ├── csp_darknet.py
│ │ ├── cspnext.py
│ │ ├── darknet.py
│ │ ├── detectors_resnet.py
│ │ ├── detectors_resnext.py
│ │ ├── efficientnet.py
│ │ ├── hourglass.py
│ │ ├── hrnet.py
│ │ ├── mobilenet_v2.py
│ │ ├── pvt.py
│ │ ├── regnet.py
│ │ ├── res2net.py
│ │ ├── resnest.py
│ │ ├── resnet.py
│ │ ├── resnext.py
│ │ ├── ssd_vgg.py
│ │ ├── swin.py
│ │ └── trident_resnet.py
│ ├── data_preprocessors
│ │ ├── __init__.py
│ │ ├── data_preprocessor.py
│ │ ├── reid_data_preprocessor.py
│ │ └── track_data_preprocessor.py
│ ├── dense_heads
│ │ ├── __init__.py
│ │ ├── anchor_free_head.py
│ │ ├── anchor_head.py
│ │ ├── atss_head.py
│ │ ├── atss_vlfusion_head.py
│ │ ├── autoassign_head.py
│ │ ├── base_dense_head.py
│ │ ├── base_mask_head.py
│ │ ├── boxinst_head.py
│ │ ├── cascade_rpn_head.py
│ │ ├── centernet_head.py
│ │ ├── centernet_update_head.py
│ │ ├── centripetal_head.py
│ │ ├── condinst_head.py
│ │ ├── conditional_detr_head.py
│ │ ├── corner_head.py
│ │ ├── dab_detr_head.py
│ │ ├── ddod_head.py
│ │ ├── ddq_detr_head.py
│ │ ├── deformable_detr_head.py
│ │ ├── dense_test_mixins.py
│ │ ├── detr_head.py
│ │ ├── dino_head.py
│ │ ├── embedding_rpn_head.py
│ │ ├── fcos_head.py
│ │ ├── fovea_head.py
│ │ ├── free_anchor_retina_head.py
│ │ ├── fsaf_head.py
│ │ ├── ga_retina_head.py
│ │ ├── ga_rpn_head.py
│ │ ├── gfl_head.py
│ │ ├── grounding_dino_head.py
│ │ ├── guided_anchor_head.py
│ │ ├── lad_head.py
│ │ ├── ld_head.py
│ │ ├── mask2former_head.py
│ │ ├── maskformer_head.py
│ │ ├── nasfcos_head.py
│ │ ├── paa_head.py
│ │ ├── pisa_retinanet_head.py
│ │ ├── pisa_ssd_head.py
│ │ ├── reppoints_head.py
│ │ ├── retina_head.py
│ │ ├── retina_sepbn_head.py
│ │ ├── rpn_head.py
│ │ ├── rtmdet_head.py
│ │ ├── rtmdet_ins_head.py
│ │ ├── sabl_retina_head.py
│ │ ├── solo_head.py
│ │ ├── solov2_head.py
│ │ ├── ssd_head.py
│ │ ├── tood_head.py
│ │ ├── vfnet_head.py
│ │ ├── yolact_head.py
│ │ ├── yolo_head.py
│ │ ├── yolof_head.py
│ │ └── yolox_head.py
│ ├── detectors
│ │ ├── __init__.py
│ │ ├── atss.py
│ │ ├── autoassign.py
│ │ ├── base.py
│ │ ├── base_detr.py
│ │ ├── boxinst.py
│ │ ├── cascade_rcnn.py
│ │ ├── centernet.py
│ │ ├── condinst.py
│ │ ├── conditional_detr.py
│ │ ├── cornernet.py
│ │ ├── crowddet.py
│ │ ├── d2_wrapper.py
│ │ ├── dab_detr.py
│ │ ├── ddod.py
│ │ ├── ddq_detr.py
│ │ ├── deformable_detr.py
│ │ ├── detr.py
│ │ ├── dino.py
│ │ ├── fast_rcnn.py
│ │ ├── faster_rcnn.py
│ │ ├── fcos.py
│ │ ├── fovea.py
│ │ ├── fsaf.py
│ │ ├── gfl.py
│ │ ├── glip.py
│ │ ├── grid_rcnn.py
│ │ ├── grounding_dino.py
│ │ ├── htc.py
│ │ ├── kd_one_stage.py
│ │ ├── lad.py
│ │ ├── mask2former.py
│ │ ├── mask_rcnn.py
│ │ ├── mask_scoring_rcnn.py
│ │ ├── maskformer.py
│ │ ├── nasfcos.py
│ │ ├── paa.py
│ │ ├── panoptic_fpn.py
│ │ ├── panoptic_two_stage_segmentor.py
│ │ ├── point_rend.py
│ │ ├── queryinst.py
│ │ ├── reppoints_detector.py
│ │ ├── retinanet.py
│ │ ├── rpn.py
│ │ ├── rtmdet.py
│ │ ├── scnet.py
│ │ ├── semi_base.py
│ │ ├── single_stage.py
│ │ ├── single_stage_instance_seg.py
│ │ ├── soft_teacher.py
│ │ ├── solo.py
│ │ ├── solov2.py
│ │ ├── sparse_rcnn.py
│ │ ├── tood.py
│ │ ├── trident_faster_rcnn.py
│ │ ├── two_stage.py
│ │ ├── vfnet.py
│ │ ├── yolact.py
│ │ ├── yolo.py
│ │ ├── yolof.py
│ │ └── yolox.py
│ ├── language_models
│ │ ├── __init__.py
│ │ └── bert.py
│ ├── layers
│ │ ├── __init__.py
│ │ ├── activations.py
│ │ ├── bbox_nms.py
│ │ ├── brick_wrappers.py
│ │ ├── conv_upsample.py
│ │ ├── csp_layer.py
│ │ ├── dropblock.py
│ │ ├── ema.py
│ │ ├── inverted_residual.py
│ │ ├── matrix_nms.py
│ │ ├── msdeformattn_pixel_decoder.py
│ │ ├── normed_predictor.py
│ │ ├── pixel_decoder.py
│ │ ├── positional_encoding.py
│ │ ├── res_layer.py
│ │ ├── se_layer.py
│ │ └── transformer
│ │ │ ├── __init__.py
│ │ │ ├── conditional_detr_layers.py
│ │ │ ├── dab_detr_layers.py
│ │ │ ├── ddq_detr_layers.py
│ │ │ ├── deformable_detr_layers.py
│ │ │ ├── detr_layers.py
│ │ │ ├── dino_layers.py
│ │ │ ├── grounding_dino_layers.py
│ │ │ ├── mask2former_layers.py
│ │ │ └── utils.py
│ ├── losses
│ │ ├── __init__.py
│ │ ├── accuracy.py
│ │ ├── ae_loss.py
│ │ ├── balanced_l1_loss.py
│ │ ├── cross_entropy_loss.py
│ │ ├── ddq_detr_aux_loss.py
│ │ ├── dice_loss.py
│ │ ├── eqlv2_loss.py
│ │ ├── focal_loss.py
│ │ ├── gaussian_focal_loss.py
│ │ ├── gfocal_loss.py
│ │ ├── ghm_loss.py
│ │ ├── iou_loss.py
│ │ ├── kd_loss.py
│ │ ├── l2_loss.py
│ │ ├── margin_loss.py
│ │ ├── mse_loss.py
│ │ ├── multipos_cross_entropy_loss.py
│ │ ├── pisa_loss.py
│ │ ├── seesaw_loss.py
│ │ ├── smooth_l1_loss.py
│ │ ├── triplet_loss.py
│ │ ├── utils.py
│ │ └── varifocal_loss.py
│ ├── mot
│ │ ├── __init__.py
│ │ ├── base.py
│ │ ├── bytetrack.py
│ │ ├── deep_sort.py
│ │ ├── ocsort.py
│ │ ├── qdtrack.py
│ │ └── strongsort.py
│ ├── necks
│ │ ├── __init__.py
│ │ ├── bfp.py
│ │ ├── channel_mapper.py
│ │ ├── cspnext_pafpn.py
│ │ ├── ct_resnet_neck.py
│ │ ├── dilated_encoder.py
│ │ ├── dyhead.py
│ │ ├── fpg.py
│ │ ├── fpn.py
│ │ ├── fpn_carafe.py
│ │ ├── fpn_dropblock.py
│ │ ├── hrfpn.py
│ │ ├── nas_fpn.py
│ │ ├── nasfcos_fpn.py
│ │ ├── pafpn.py
│ │ ├── rfp.py
│ │ ├── ssd_neck.py
│ │ ├── ssh.py
│ │ ├── yolo_neck.py
│ │ └── yolox_pafpn.py
│ ├── reid
│ │ ├── __init__.py
│ │ ├── base_reid.py
│ │ ├── fc_module.py
│ │ ├── gap.py
│ │ └── linear_reid_head.py
│ ├── roi_heads
│ │ ├── __init__.py
│ │ ├── base_roi_head.py
│ │ ├── bbox_heads
│ │ │ ├── __init__.py
│ │ │ ├── bbox_head.py
│ │ │ ├── convfc_bbox_head.py
│ │ │ ├── dii_head.py
│ │ │ ├── double_bbox_head.py
│ │ │ ├── multi_instance_bbox_head.py
│ │ │ ├── sabl_head.py
│ │ │ └── scnet_bbox_head.py
│ │ ├── cascade_roi_head.py
│ │ ├── double_roi_head.py
│ │ ├── dynamic_roi_head.py
│ │ ├── grid_roi_head.py
│ │ ├── htc_roi_head.py
│ │ ├── mask_heads
│ │ │ ├── __init__.py
│ │ │ ├── coarse_mask_head.py
│ │ │ ├── dynamic_mask_head.py
│ │ │ ├── fcn_mask_head.py
│ │ │ ├── feature_relay_head.py
│ │ │ ├── fused_semantic_head.py
│ │ │ ├── global_context_head.py
│ │ │ ├── grid_head.py
│ │ │ ├── htc_mask_head.py
│ │ │ ├── mask_point_head.py
│ │ │ ├── maskiou_head.py
│ │ │ ├── scnet_mask_head.py
│ │ │ └── scnet_semantic_head.py
│ │ ├── mask_scoring_roi_head.py
│ │ ├── multi_instance_roi_head.py
│ │ ├── pisa_roi_head.py
│ │ ├── point_rend_roi_head.py
│ │ ├── roi_extractors
│ │ │ ├── __init__.py
│ │ │ ├── base_roi_extractor.py
│ │ │ ├── generic_roi_extractor.py
│ │ │ └── single_level_roi_extractor.py
│ │ ├── scnet_roi_head.py
│ │ ├── shared_heads
│ │ │ ├── __init__.py
│ │ │ └── res_layer.py
│ │ ├── sparse_roi_head.py
│ │ ├── standard_roi_head.py
│ │ ├── test_mixins.py
│ │ └── trident_roi_head.py
│ ├── seg_heads
│ │ ├── __init__.py
│ │ ├── base_semantic_head.py
│ │ ├── panoptic_fpn_head.py
│ │ └── panoptic_fusion_heads
│ │ │ ├── __init__.py
│ │ │ ├── base_panoptic_fusion_head.py
│ │ │ ├── heuristic_fusion_head.py
│ │ │ └── maskformer_fusion_head.py
│ ├── task_modules
│ │ ├── __init__.py
│ │ ├── assigners
│ │ │ ├── __init__.py
│ │ │ ├── approx_max_iou_assigner.py
│ │ │ ├── assign_result.py
│ │ │ ├── atss_assigner.py
│ │ │ ├── base_assigner.py
│ │ │ ├── center_region_assigner.py
│ │ │ ├── dynamic_soft_label_assigner.py
│ │ │ ├── grid_assigner.py
│ │ │ ├── hungarian_assigner.py
│ │ │ ├── iou2d_calculator.py
│ │ │ ├── match_cost.py
│ │ │ ├── max_iou_assigner.py
│ │ │ ├── multi_instance_assigner.py
│ │ │ ├── point_assigner.py
│ │ │ ├── region_assigner.py
│ │ │ ├── sim_ota_assigner.py
│ │ │ ├── task_aligned_assigner.py
│ │ │ ├── topk_hungarian_assigner.py
│ │ │ └── uniform_assigner.py
│ │ ├── builder.py
│ │ ├── coders
│ │ │ ├── __init__.py
│ │ │ ├── base_bbox_coder.py
│ │ │ ├── bucketing_bbox_coder.py
│ │ │ ├── delta_xywh_bbox_coder.py
│ │ │ ├── distance_point_bbox_coder.py
│ │ │ ├── legacy_delta_xywh_bbox_coder.py
│ │ │ ├── pseudo_bbox_coder.py
│ │ │ ├── tblr_bbox_coder.py
│ │ │ └── yolo_bbox_coder.py
│ │ ├── prior_generators
│ │ │ ├── __init__.py
│ │ │ ├── anchor_generator.py
│ │ │ ├── point_generator.py
│ │ │ └── utils.py
│ │ ├── samplers
│ │ │ ├── __init__.py
│ │ │ ├── base_sampler.py
│ │ │ ├── combined_sampler.py
│ │ │ ├── instance_balanced_pos_sampler.py
│ │ │ ├── iou_balanced_neg_sampler.py
│ │ │ ├── mask_pseudo_sampler.py
│ │ │ ├── mask_sampling_result.py
│ │ │ ├── multi_instance_random_sampler.py
│ │ │ ├── multi_instance_sampling_result.py
│ │ │ ├── ohem_sampler.py
│ │ │ ├── pseudo_sampler.py
│ │ │ ├── random_sampler.py
│ │ │ ├── sampling_result.py
│ │ │ └── score_hlr_sampler.py
│ │ └── tracking
│ │ │ ├── __init__.py
│ │ │ ├── aflink.py
│ │ │ ├── camera_motion_compensation.py
│ │ │ ├── interpolation.py
│ │ │ ├── kalman_filter.py
│ │ │ └── similarity.py
│ ├── test_time_augs
│ │ ├── __init__.py
│ │ ├── det_tta.py
│ │ └── merge_augs.py
│ ├── trackers
│ │ ├── __init__.py
│ │ ├── base_tracker.py
│ │ ├── byte_tracker.py
│ │ ├── masktrack_rcnn_tracker.py
│ │ ├── ocsort_tracker.py
│ │ ├── quasi_dense_tracker.py
│ │ ├── sort_tracker.py
│ │ └── strongsort_tracker.py
│ ├── tracking_heads
│ │ ├── __init__.py
│ │ ├── mask2former_track_head.py
│ │ ├── quasi_dense_embed_head.py
│ │ ├── quasi_dense_track_head.py
│ │ ├── roi_embed_head.py
│ │ └── roi_track_head.py
│ ├── utils
│ │ ├── __init__.py
│ │ ├── gaussian_target.py
│ │ ├── image.py
│ │ ├── make_divisible.py
│ │ ├── misc.py
│ │ ├── panoptic_gt_processing.py
│ │ ├── point_sample.py
│ │ ├── vlfuse_helper.py
│ │ └── wbf.py
│ └── vis
│ │ ├── __init__.py
│ │ ├── mask2former_vis.py
│ │ └── masktrack_rcnn.py
├── registry.py
├── structures
│ ├── __init__.py
│ ├── bbox
│ │ ├── __init__.py
│ │ ├── base_boxes.py
│ │ ├── bbox_overlaps.py
│ │ ├── box_type.py
│ │ ├── horizontal_boxes.py
│ │ └── transforms.py
│ ├── det_data_sample.py
│ ├── mask
│ │ ├── __init__.py
│ │ ├── mask_target.py
│ │ ├── structures.py
│ │ └── utils.py
│ ├── reid_data_sample.py
│ └── track_data_sample.py
├── testing
│ ├── __init__.py
│ ├── _fast_stop_training_hook.py
│ └── _utils.py
├── utils
│ ├── __init__.py
│ ├── benchmark.py
│ ├── collect_env.py
│ ├── compat_config.py
│ ├── contextmanagers.py
│ ├── dist_utils.py
│ ├── large_image.py
│ ├── logger.py
│ ├── memory.py
│ ├── misc.py
│ ├── mot_error_visualize.py
│ ├── profiling.py
│ ├── replace_cfg_vals.py
│ ├── setup_env.py
│ ├── split_batch.py
│ ├── typing_utils.py
│ ├── util_mixins.py
│ └── util_random.py
├── version.py
└── visualization
│ ├── __init__.py
│ ├── local_visualizer.py
│ └── palette.py
├── model-index.yml
├── projects
├── AlignDETR
│ ├── README.md
│ ├── align_detr
│ │ ├── __init__.py
│ │ ├── align_detr_head.py
│ │ ├── mixed_hungarian_assigner.py
│ │ └── utils.py
│ └── configs
│ │ ├── align_detr-4scale_r50_8xb2-12e_coco.py
│ │ └── align_detr-4scale_r50_8xb2-24e_coco.py
├── CO-DETR
│ ├── README.md
│ ├── codetr
│ │ ├── __init__.py
│ │ ├── co_atss_head.py
│ │ ├── co_dino_head.py
│ │ ├── co_roi_head.py
│ │ ├── codetr.py
│ │ └── transformer.py
│ └── configs
│ │ └── codino
│ │ ├── co_dino_5scale_r50_8xb2_1x_coco.py
│ │ ├── co_dino_5scale_r50_lsj_8xb2_1x_coco.py
│ │ ├── co_dino_5scale_r50_lsj_8xb2_3x_coco.py
│ │ ├── co_dino_5scale_swin_l_16xb1_16e_o365tococo.py
│ │ ├── co_dino_5scale_swin_l_16xb1_1x_coco.py
│ │ ├── co_dino_5scale_swin_l_16xb1_3x_coco.py
│ │ ├── co_dino_5scale_swin_l_lsj_16xb1_1x_coco.py
│ │ └── co_dino_5scale_swin_l_lsj_16xb1_3x_coco.py
├── ConvNeXt-V2
│ ├── README.md
│ └── configs
│ │ └── mask-rcnn_convnext-v2-b_fpn_lsj-3x-fcmae_coco.py
├── Detic
│ ├── README.md
│ ├── configs
│ │ └── detic_centernet2_swin-b_fpn_4x_lvis-coco-in21k.py
│ ├── demo.py
│ └── detic
│ │ ├── __init__.py
│ │ ├── centernet_rpn_head.py
│ │ ├── detic_bbox_head.py
│ │ ├── detic_roi_head.py
│ │ ├── text_encoder.py
│ │ ├── utils.py
│ │ └── zero_shot_classifier.py
├── Detic_new
│ ├── README.md
│ ├── configs
│ │ ├── detic_centernet2_r50_fpn_4x_lvis-base_boxsup.py
│ │ ├── detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis.py
│ │ ├── detic_centernet2_r50_fpn_4x_lvis_boxsup.py
│ │ ├── detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py
│ │ ├── detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup.py
│ │ ├── detic_centernet2_swin-b_fpn_4x_lvis-base_in21k-lvis.py
│ │ ├── detic_centernet2_swin-b_fpn_4x_lvis_boxsup.py
│ │ ├── detic_centernet2_swin-b_fpn_4x_lvis_coco_in21k.py
│ │ └── detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis.py
│ └── detic
│ │ ├── __init__.py
│ │ ├── centernet_rpn_head.py
│ │ ├── detic.py
│ │ ├── detic_bbox_head.py
│ │ ├── detic_roi_head.py
│ │ ├── heatmap_focal_loss.py
│ │ ├── imagenet_lvis.py
│ │ ├── iou_loss.py
│ │ └── zero_shot_classifier.py
├── DiffusionDet
│ ├── README.md
│ ├── configs
│ │ └── diffusiondet_r50_fpn_500-proposals_1-step_crop-ms-480-800-450k_coco.py
│ ├── diffusiondet
│ │ ├── __init__.py
│ │ ├── diffusiondet.py
│ │ ├── head.py
│ │ └── loss.py
│ └── model_converters
│ │ └── diffusiondet_resnet_to_mmdet.py
├── EfficientDet
│ ├── README.md
│ ├── configs
│ │ ├── efficientdet_effb0_bifpn_8xb16-crop512-300e_coco.py
│ │ ├── efficientdet_effb3_bifpn_8xb16-crop896-300e_coco-90cls.py
│ │ ├── efficientdet_effb3_bifpn_8xb16-crop896-300e_coco.py
│ │ └── tensorflow
│ │ │ └── efficientdet_effb0_bifpn_8xb16-crop512-300e_coco_tf.py
│ ├── convert_tf_to_pt.py
│ └── efficientdet
│ │ ├── __init__.py
│ │ ├── bifpn.py
│ │ ├── efficientdet.py
│ │ ├── efficientdet_head.py
│ │ ├── huber_loss.py
│ │ ├── tensorflow
│ │ ├── anchor_generator.py
│ │ ├── api_wrappers
│ │ │ ├── __init__.py
│ │ │ └── coco_api.py
│ │ ├── coco_90class.py
│ │ ├── coco_90metric.py
│ │ ├── trans_max_iou_assigner.py
│ │ └── yxyx_bbox_coder.py
│ │ └── utils.py
├── HDINO
│ ├── README.md
│ ├── __init__.py
│ ├── h-dino-4scale_r50_8xb2-12e_coco.py
│ ├── h_dino.py
│ └── h_dino_head.py
├── LabelStudio
│ ├── backend_template
│ │ ├── _wsgi.py
│ │ └── mmdetection.py
│ └── readme.md
├── RF100-Benchmark
│ ├── README.md
│ ├── README_zh-CN.md
│ ├── __init__.py
│ ├── coco.py
│ ├── coco_metric.py
│ ├── configs
│ │ ├── dino_r50_fpn_ms_8xb8_tweeter-profile.py
│ │ ├── faster-rcnn_r50_fpn_ms_8xb8_tweeter-profile.py
│ │ └── tood_r50_fpn_ms_8xb8_tweeter-profile.py
│ └── scripts
│ │ ├── create_new_config.py
│ │ ├── datasets_links_640.txt
│ │ ├── dist_train.sh
│ │ ├── download_dataset.py
│ │ ├── download_datasets.sh
│ │ ├── labels_names.json
│ │ ├── log_extract.py
│ │ ├── parse_dataset_link.py
│ │ └── slurm_train.sh
├── SparseInst
│ ├── README.md
│ ├── configs
│ │ └── sparseinst_r50_iam_8xb8-ms-270k_coco.py
│ └── sparseinst
│ │ ├── __init__.py
│ │ ├── decoder.py
│ │ ├── encoder.py
│ │ ├── loss.py
│ │ └── sparseinst.py
├── VISION-Datasets
│ ├── README.md
│ └── README_zh-CN.md
├── ViTDet
│ ├── README.md
│ ├── configs
│ │ ├── lsj-100e_coco-instance.py
│ │ └── vitdet_mask-rcnn_vit-b-mae_lsj-100e.py
│ └── vitdet
│ │ ├── __init__.py
│ │ ├── fp16_compression_hook.py
│ │ ├── layer_decay_optimizer_constructor.py
│ │ ├── simple_fpn.py
│ │ └── vit.py
├── XDecoder
│ ├── README.md
│ ├── configs
│ │ ├── _base_
│ │ │ ├── xdecoder-tiny_caption.py
│ │ │ ├── xdecoder-tiny_open-vocab-instance.py
│ │ │ ├── xdecoder-tiny_open-vocab-panoptic.py
│ │ │ ├── xdecoder-tiny_open-vocab-semseg.py
│ │ │ └── xdecoder-tiny_ref-seg.py
│ │ ├── xdecoder-tiny_zeroshot_caption_coco2014.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-instance_ade20k.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-instance_coco.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-panoptic_ade20k.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-panoptic_coco.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcoco+.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcoco.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcocog.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-semseg_ade20k.py
│ │ ├── xdecoder-tiny_zeroshot_open-vocab-semseg_coco.py
│ │ ├── xdecoder-tiny_zeroshot_ref-caption.py
│ │ └── xdecoder-tiny_zeroshot_text-image-retrieval.py
│ ├── demo.py
│ └── xdecoder
│ │ ├── __init__.py
│ │ ├── focalnet.py
│ │ ├── inference
│ │ ├── __init__.py
│ │ ├── image_caption.py
│ │ └── texttoimage_regionretrieval_inferencer.py
│ │ ├── language_model.py
│ │ ├── pixel_decoder.py
│ │ ├── transformer_blocks.py
│ │ ├── transformer_decoder.py
│ │ ├── unified_head.py
│ │ ├── utils.py
│ │ └── xdecoder.py
├── example_largemodel
│ ├── README.md
│ ├── README_zh-CN.md
│ ├── __init__.py
│ ├── dino-5scale_swin-l_deepspeed_8xb2-12e_coco.py
│ ├── dino-5scale_swin-l_fsdp_8xb2-12e_coco.py
│ └── fsdp_utils.py
├── example_project
│ ├── README.md
│ ├── configs
│ │ └── faster-rcnn_dummy-resnet_fpn_1x_coco.py
│ └── dummy
│ │ ├── __init__.py
│ │ └── dummy_resnet.py
├── gradio_demo
│ ├── README.md
│ └── launch.py
└── iSAID
│ ├── README.md
│ ├── README_zh-CN.md
│ ├── configs
│ └── mask_rcnn_r50_fpn_1x_isaid.py
│ └── isaid_json.py
├── pytest.ini
├── requirements.txt
├── requirements
├── albu.txt
├── build.txt
├── docs.txt
├── mminstall.txt
├── multimodal.txt
├── optional.txt
├── readthedocs.txt
├── runtime.txt
├── tests.txt
└── tracking.txt
├── resources
├── coco_test_12510.jpg
├── corruptions_sev_3.png
├── data_pipeline.png
├── loss_curve.png
├── miaomiao_qrcode.jpg
├── mmdet-logo.png
└── zhihu_qrcode.jpg
├── setup.cfg
├── setup.py
├── tests
├── data
│ ├── Objects365
│ │ └── unsorted_obj365_sample.json
│ ├── OpenImages
│ │ ├── annotations
│ │ │ ├── annotations-human-imagelabels-boxable.csv
│ │ │ ├── bbox_labels_600_hierarchy.json
│ │ │ ├── class-descriptions-boxable.csv
│ │ │ ├── image-metas.pkl
│ │ │ └── oidv6-train-annotations-bbox.csv
│ │ └── challenge2019
│ │ │ ├── annotations-human-imagelabels-boxable.csv
│ │ │ ├── challenge-2019-train-detection-bbox.txt
│ │ │ ├── class_label_tree.np
│ │ │ └── cls-label-description.csv
│ ├── VOCdevkit
│ │ ├── VOC2007
│ │ │ ├── Annotations
│ │ │ │ └── 000001.xml
│ │ │ ├── ImageSets
│ │ │ │ └── Main
│ │ │ │ │ ├── test.txt
│ │ │ │ │ └── trainval.txt
│ │ │ └── JPEGImages
│ │ │ │ └── 000001.jpg
│ │ └── VOC2012
│ │ │ ├── Annotations
│ │ │ └── 000001.xml
│ │ │ ├── ImageSets
│ │ │ └── Main
│ │ │ │ ├── test.txt
│ │ │ │ └── trainval.txt
│ │ │ └── JPEGImages
│ │ │ └── 000001.jpg
│ ├── WIDERFace
│ │ ├── WIDER_train
│ │ │ ├── 0--Parade
│ │ │ │ └── .gitkeep
│ │ │ └── Annotations
│ │ │ │ └── 0_Parade_marchingband_1_5.xml
│ │ └── train.txt
│ ├── coco_batched_sample.json
│ ├── coco_sample.json
│ ├── coco_wrong_format_sample.json
│ ├── color.jpg
│ ├── configs_mmtrack
│ │ ├── faster_rcnn_r50_dc5.py
│ │ ├── faster_rcnn_r50_fpn.py
│ │ ├── mot_challenge.py
│ │ ├── selsa_faster_rcnn_r101_dc5_1x.py
│ │ └── tracktor_faster-rcnn_r50_fpn_4e.py
│ ├── crowdhuman_dataset
│ │ ├── id_hw_train.json
│ │ └── test_annotation_train.odgt
│ ├── custom_dataset
│ │ ├── images
│ │ │ ├── 000001.jpg
│ │ │ └── 000001.xml
│ │ ├── test.txt
│ │ └── trainval.txt
│ ├── demo_reid_data
│ │ └── mot17_reid
│ │ │ └── ann.txt
│ ├── dsdl_det
│ │ ├── config.py
│ │ ├── defs
│ │ │ ├── class-domain.yaml
│ │ │ └── obejct-detection-def.yaml
│ │ └── set-train
│ │ │ ├── train.yaml
│ │ │ └── train_samples.json
│ ├── gray.jpg
│ ├── mot_sample.json
│ └── vis_sample.json
├── test_apis
│ ├── test_det_inferencer.py
│ └── test_inference.py
├── test_datasets
│ ├── test_cityscapes.py
│ ├── test_coco.py
│ ├── test_coco_api_wrapper.py
│ ├── test_coco_panoptic.py
│ ├── test_crowdhuman.py
│ ├── test_dsdldet.py
│ ├── test_lvis.py
│ ├── test_mot_challenge_dataset.py
│ ├── test_objects365.py
│ ├── test_openimages.py
│ ├── test_pascal_voc.py
│ ├── test_reid_dataset.py
│ ├── test_samplers
│ │ ├── test_batch_sampler.py
│ │ ├── test_multi_source_sampler.py
│ │ └── test_track_img_sampler.py
│ ├── test_transforms
│ │ ├── __init__.py
│ │ ├── test_augment_wrappers.py
│ │ ├── test_colorspace.py
│ │ ├── test_formatting.py
│ │ ├── test_frame_sampling.py
│ │ ├── test_geometric.py
│ │ ├── test_instaboost.py
│ │ ├── test_loading.py
│ │ ├── test_transforms.py
│ │ ├── test_wrappers.py
│ │ └── utils.py
│ ├── test_tta.py
│ ├── test_wider_face.py
│ └── test_youtube_vis_dataset.py
├── test_engine
│ ├── __init__.py
│ ├── test_hooks
│ │ ├── test_checkloss_hook.py
│ │ ├── test_mean_teacher_hook.py
│ │ ├── test_memory_profiler_hook.py
│ │ ├── test_num_class_check_hook.py
│ │ ├── test_pipeline_switch_hook.py
│ │ ├── test_sync_norm_hook.py
│ │ ├── test_visualization_hook.py
│ │ └── test_yolox_mode_switch_hook.py
│ ├── test_optimizers
│ │ ├── __init__.py
│ │ └── test_layer_decay_optimizer_constructor.py
│ ├── test_runner
│ │ └── test_loops.py
│ └── test_schedulers
│ │ └── test_quadratic_warmup.py
├── test_evaluation
│ └── test_metrics
│ │ ├── __init__.py
│ │ ├── test_cityscapes_metric.py
│ │ ├── test_coco_metric.py
│ │ ├── test_coco_occluded_metric.py
│ │ ├── test_coco_panoptic_metric.py
│ │ ├── test_coco_video_metric.py
│ │ ├── test_crowdhuman_metric.py
│ │ ├── test_dump_det_results.py
│ │ ├── test_lvis_metric.py
│ │ ├── test_mot_challenge_metrics.py
│ │ ├── test_openimages_metric.py
│ │ ├── test_reid_metric.py
│ │ └── test_youtube_vis_metric.py
├── test_models
│ ├── test_backbones
│ │ ├── __init__.py
│ │ ├── test_csp_darknet.py
│ │ ├── test_detectors_resnet.py
│ │ ├── test_efficientnet.py
│ │ ├── test_hourglass.py
│ │ ├── test_hrnet.py
│ │ ├── test_mobilenet_v2.py
│ │ ├── test_pvt.py
│ │ ├── test_regnet.py
│ │ ├── test_renext.py
│ │ ├── test_res2net.py
│ │ ├── test_resnest.py
│ │ ├── test_resnet.py
│ │ ├── test_swin.py
│ │ ├── test_trident_resnet.py
│ │ └── utils.py
│ ├── test_data_preprocessors
│ │ ├── test_batch_resize.py
│ │ ├── test_boxinst_preprocessor.py
│ │ ├── test_data_preprocessor.py
│ │ └── test_track_data_preprocessor.py
│ ├── test_dense_heads
│ │ ├── test_anchor_head.py
│ │ ├── test_atss_head.py
│ │ ├── test_autoassign_head.py
│ │ ├── test_boxinst_head.py
│ │ ├── test_cascade_rpn_head.py
│ │ ├── test_centernet_head.py
│ │ ├── test_centernet_update_head.py
│ │ ├── test_centripetal_head.py
│ │ ├── test_condinst_head.py
│ │ ├── test_corner_head.py
│ │ ├── test_ddod_head.py
│ │ ├── test_ddq_detr_head.py
│ │ ├── test_embedding_rpn_head.py
│ │ ├── test_fcos_head.py
│ │ ├── test_fovea_head.py
│ │ ├── test_free_anchor_head.py
│ │ ├── test_fsaf_head.py
│ │ ├── test_ga_retina_head.py
│ │ ├── test_ga_rpn_head.py
│ │ ├── test_gfl_head.py
│ │ ├── test_guided_anchor_head.py
│ │ ├── test_lad_head.py
│ │ ├── test_ld_head.py
│ │ ├── test_nasfcos_head.py
│ │ ├── test_paa_head.py
│ │ ├── test_pisa_retinanet_head.py
│ │ ├── test_pisa_ssd_head.py
│ │ ├── test_reppoints_head.py
│ │ ├── test_retina_sepBN_head.py
│ │ ├── test_rpn_head.py
│ │ ├── test_sabl_retina_head.py
│ │ ├── test_solo_head.py
│ │ ├── test_solov2_head.py
│ │ ├── test_ssd_head.py
│ │ ├── test_tood_head.py
│ │ ├── test_vfnet_head.py
│ │ ├── test_yolo_head.py
│ │ ├── test_yolof_head.py
│ │ └── test_yolox_head.py
│ ├── test_detectors
│ │ ├── test_conditional_detr.py
│ │ ├── test_cornernet.py
│ │ ├── test_dab_detr.py
│ │ ├── test_ddq_detr.py
│ │ ├── test_deformable_detr.py
│ │ ├── test_detr.py
│ │ ├── test_dino.py
│ │ ├── test_glip.py
│ │ ├── test_kd_single_stage.py
│ │ ├── test_maskformer.py
│ │ ├── test_panoptic_two_stage_segmentor.py
│ │ ├── test_rpn.py
│ │ ├── test_semi_base.py
│ │ ├── test_single_stage.py
│ │ ├── test_single_stage_instance_seg.py
│ │ └── test_two_stage.py
│ ├── test_layers
│ │ ├── __init__.py
│ │ ├── test_brick_wrappers.py
│ │ ├── test_conv_upsample.py
│ │ ├── test_ema.py
│ │ ├── test_inverted_residual.py
│ │ ├── test_plugins.py
│ │ ├── test_position_encoding.py
│ │ ├── test_se_layer.py
│ │ └── test_transformer.py
│ ├── test_losses
│ │ ├── test_gaussian_focal_loss.py
│ │ ├── test_l2_loss.py
│ │ ├── test_loss.py
│ │ ├── test_multi_pos_cross_entropy_loss.py
│ │ └── test_triplet_loss.py
│ ├── test_mot
│ │ ├── test_byte_track.py
│ │ ├── test_deep_sort.py
│ │ ├── test_oc_sort.py
│ │ ├── test_qdtrack.py
│ │ ├── test_sort.py
│ │ └── test_strong_sort.py
│ ├── test_necks
│ │ ├── test_ct_resnet_neck.py
│ │ └── test_necks.py
│ ├── test_reid
│ │ ├── test_base_reid.py
│ │ ├── test_fc_module.py
│ │ ├── test_gap.py
│ │ └── test_linear_reid_head.py
│ ├── test_roi_heads
│ │ ├── test_bbox_heads
│ │ │ ├── test_bbox_head.py
│ │ │ ├── test_double_bbox_head.py
│ │ │ ├── test_multi_instance_bbox_head.py
│ │ │ ├── test_sabl_bbox_head.py
│ │ │ └── test_scnet_bbox_head.py
│ │ ├── test_cascade_roi_head.py
│ │ ├── test_dynamic_roi_head.py
│ │ ├── test_grid_roi_head.py
│ │ ├── test_htc_roi_head.py
│ │ ├── test_mask_heads
│ │ │ ├── test_coarse_mask_head.py
│ │ │ ├── test_fcn_mask_head.py
│ │ │ ├── test_feature_relay_head.py
│ │ │ ├── test_fused_semantic_head.py
│ │ │ ├── test_global_context_head.py
│ │ │ ├── test_grid_head.py
│ │ │ ├── test_htc_mask_head.py
│ │ │ ├── test_maskiou_head.py
│ │ │ ├── test_scnet_mask_head.py
│ │ │ └── test_scnet_semantic_head.py
│ │ ├── test_mask_scoring_roI_head.py
│ │ ├── test_multi_instance_roi_head.py
│ │ ├── test_pisa_roi_head.py
│ │ ├── test_point_rend_roi_head.py
│ │ ├── test_roi_extractors
│ │ │ ├── test_generic_roi_extractor.py
│ │ │ └── test_single_level_roi_extractor.py
│ │ ├── test_scnet_roi_head.py
│ │ ├── test_sparse_roi_head.py
│ │ ├── test_standard_roi_head.py
│ │ └── test_trident_roi_head.py
│ ├── test_seg_heads
│ │ ├── test_heuristic_fusion_head.py
│ │ ├── test_maskformer_fusion_head.py
│ │ └── test_panoptic_fpn_head.py
│ ├── test_task_modules
│ │ ├── __init__.py
│ │ ├── test_assigners
│ │ │ ├── test_approx_max_iou_assigner.py
│ │ │ ├── test_atss_assigner.py
│ │ │ ├── test_center_region_assigner.py
│ │ │ ├── test_dynamic_soft_label_assigner.py
│ │ │ ├── test_grid_assigner.py
│ │ │ ├── test_hungarian_assigner.py
│ │ │ ├── test_max_iou_assigner.py
│ │ │ ├── test_point_assigner.py
│ │ │ ├── test_region_assigner.py
│ │ │ ├── test_simota_assigner.py
│ │ │ ├── test_task_aligned_assigner.py
│ │ │ ├── test_task_uniform_assigner.py
│ │ │ └── test_topk_hungarian_assigner.py
│ │ ├── test_coder
│ │ │ └── test_delta_xywh_bbox_coder.py
│ │ ├── test_iou2d_calculator.py
│ │ ├── test_prior_generators
│ │ │ └── test_anchor_generator.py
│ │ ├── test_samplers
│ │ │ └── test_pesudo_sampler.py
│ │ └── test_track
│ │ │ ├── test_aflink.py
│ │ │ ├── test_interpolation.py
│ │ │ ├── test_kalman_filter.py
│ │ │ └── test_similarity.py
│ ├── test_trackers
│ │ ├── test_byte_tracker.py
│ │ ├── test_masktrack_rcnn_tracker.py
│ │ ├── test_oc_sort_tracker.py
│ │ ├── test_sort_tracker.py
│ │ └── test_strong_sort_tracker.py
│ ├── test_tracking_heads
│ │ ├── test_mask2former_track_head.py
│ │ ├── test_quasi_dense_embed_head.py
│ │ ├── test_quasi_dense_track_head.py
│ │ └── test_roi_embed_head.py
│ ├── test_tta
│ │ └── test_det_tta.py
│ ├── test_utils
│ │ ├── test_misc.py
│ │ └── test_model_misc.py
│ └── test_vis
│ │ ├── test_mask2former.py
│ │ └── test_masktrack_rcnn.py
├── test_structures
│ ├── __init__.py
│ ├── test_bbox
│ │ ├── __init__.py
│ │ ├── test_base_boxes.py
│ │ ├── test_box_type.py
│ │ ├── test_horizontal_boxes.py
│ │ └── utils.py
│ ├── test_det_data_sample.py
│ ├── test_mask
│ │ └── test_mask_structures.py
│ ├── test_reid_data_sample.py
│ └── test_track_data_sample.py
├── test_utils
│ ├── test_benchmark.py
│ ├── test_memory.py
│ ├── test_replace_cfg_vals.py
│ └── test_setup_env.py
└── test_visualization
│ ├── test_local_visualizer.py
│ └── test_palette.py
└── tools
├── analysis_tools
├── analyze_logs.py
├── analyze_results.py
├── benchmark.py
├── browse_dataset.py
├── coco_error_analysis.py
├── coco_occluded_separated_recall.py
├── confusion_matrix.py
├── eval_metric.py
├── fuse_results.py
├── get_flops.py
├── mot
│ ├── browse_dataset.py
│ ├── dist_mot_search.sh
│ ├── mot_error_visualize.py
│ ├── mot_param_search.py
│ └── slurm_mot_search.sh
├── optimize_anchors.py
├── robustness_eval.py
└── test_robustness.py
├── dataset_converters
├── ade20k2coco.py
├── cityscapes.py
├── coco_stuff164k.py
├── crowdhuman2coco.py
├── images2coco.py
├── mot2coco.py
├── mot2reid.py
├── pascal_voc.py
├── prepare_coco_semantic_annos_from_panoptic_annos.py
├── scripts
│ ├── preprocess_coco2017.sh
│ ├── preprocess_voc2007.sh
│ └── preprocess_voc2012.sh
└── youtubevis2coco.py
├── deployment
├── mmdet2torchserve.py
├── mmdet_handler.py
└── test_torchserver.py
├── dist_test.sh
├── dist_test_tracking.sh
├── dist_train.sh
├── eval_v3det.py
├── misc
├── download_dataset.py
├── gen_coco_panoptic_test_info.py
├── get_crowdhuman_id_hw.py
├── get_image_metas.py
├── print_config.py
└── split_coco.py
├── model_converters
├── detectron2_to_mmdet.py
├── detectron2pytorch.py
├── detic_to_mmdet.py
├── glip_to_mmdet.py
├── groundingdino_to_mmdet.py
├── publish_model.py
├── regnet2mmdet.py
├── selfsup2mmdet.py
├── swinv1_to_mmdet.py
├── upgrade_model_version.py
└── upgrade_ssd_version.py
├── slurm_test.sh
├── slurm_test_tracking.sh
├── slurm_train.sh
├── test.py
├── test_tracking.py
└── train.py
/.dev_scripts/covignore.cfg:
--------------------------------------------------------------------------------
1 | # Each line should be the relative path to the root directory
2 | # of this repo. Support regular expression as well.
3 | # For example:
4 |
5 | .*/__init__.py
6 |
--------------------------------------------------------------------------------
/.dev_scripts/linter.sh:
--------------------------------------------------------------------------------
1 | yapf -r -i mmdet/ configs/ tests/ tools/
2 | isort -rc mmdet/ configs/ tests/ tools/
3 | flake8 .
4 |
--------------------------------------------------------------------------------
/.github/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
2 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | blank_issues_enabled: false
2 |
3 | contact_links:
4 | - name: Common Issues
5 | url: https://mmdetection.readthedocs.io/en/latest/faq.html
6 | about: Check if your issue already has solutions
7 | - name: MMDetection Documentation
8 | url: https://mmdetection.readthedocs.io/en/latest/
9 | about: Check if your question is answered in docs
10 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/general_questions.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: General questions
3 | about: Ask general questions to get help
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 | ---
8 |
--------------------------------------------------------------------------------
/.owners.yml:
--------------------------------------------------------------------------------
1 | assign:
2 | strategy:
3 | # random
4 | daily-shift-based
5 | scedule:
6 | '*/1 * * * *'
7 | assignees:
8 | - Czm369
9 | - hhaAndroid
10 | - jbwang1997
11 | - RangiLyu
12 | - BIGWangYuDong
13 | - chhluo
14 | - ZwwWayne
15 |
--------------------------------------------------------------------------------
/.readthedocs.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 |
3 | build:
4 | os: ubuntu-22.04
5 | tools:
6 | python: "3.8"
7 |
8 | formats:
9 | - epub
10 |
11 | python:
12 | install:
13 | - requirements: requirements/docs.txt
14 | - requirements: requirements/readthedocs.txt
15 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | message: "If you use this software, please cite it as below."
3 | authors:
4 | - name: "MMDetection Contributors"
5 | title: "OpenMMLab Detection Toolbox and Benchmark"
6 | date-released: 2018-08-22
7 | url: "https://github.com/open-mmlab/mmdetection"
8 | license: Apache-2.0
9 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include requirements/*.txt
2 | include mmdet/VERSION
3 | include mmdet/.mim/model-index.yml
4 | include mmdet/.mim/dataset-index.yml
5 | include mmdet/.mim/demo/*/*
6 | recursive-include mmdet/.mim/configs *.py *.yml
7 | recursive-include mmdet/.mim/tools *.sh *.py
8 |
--------------------------------------------------------------------------------
/configs/atss/atss_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './atss_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/atss/atss_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './atss_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/atss/atss_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './atss_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/boxinst/boxinst_r101_fpn_ms-90k_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './boxinst_r50_fpn_ms-90k_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(
6 | depth=101,
7 | init_cfg=dict(type='Pretrained',
8 | checkpoint='torchvision://resnet101')))
9 |
--------------------------------------------------------------------------------
/configs/bytetrack/bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './bytetrack_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_'
3 | 'test-mot17halfval.py'
4 | ]
5 |
6 | # fp16 settings
7 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
8 | val_cfg = dict(type='ValLoop', fp16=True)
9 | test_cfg = dict(type='TestLoop', fp16=True)
10 |
--------------------------------------------------------------------------------
/configs/bytetrack/bytetrack_yolox_x_8xb4-amp-80e_crowdhuman-mot20train_test-mot20test.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './bytetrack_yolox_x_8xb4-80e_crowdhuman-mot20train_test-mot20test.py'
3 | ]
4 |
5 | # fp16 settings
6 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
7 | val_cfg = dict(type='ValLoop', fp16=True)
8 | test_cfg = dict(type='TestLoop', fp16=True)
9 |
--------------------------------------------------------------------------------
/configs/bytetrack/yolox_x_8xb4-amp-80e_crowdhuman-mot17halftrain_test-mot17halfval.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../strongsort/yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py' # noqa: E501
3 | ]
4 |
5 | # fp16 settings
6 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r101-caffe_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50-caffe_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r101_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r50-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./cascade-mask-rcnn_r50_fpn_1x_coco.py']
2 |
3 | model = dict(
4 | data_preprocessor=dict(
5 | mean=[103.530, 116.280, 123.675],
6 | std=[1.0, 1.0, 1.0],
7 | bgr_to_rgb=False),
8 | backbone=dict(
9 | norm_cfg=dict(requires_grad=False),
10 | norm_eval=True,
11 | style='caffe',
12 | init_cfg=dict(
13 | type='Pretrained',
14 | checkpoint='open-mmlab://detectron2/resnet50_caffe')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_r50_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms_3x_coco-instance.py',
3 | '../_base_/models/cascade-mask-rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-mask-rcnn_x101-64x4d_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade-rcnn_x101-32x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/centernet/centernet-update_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './centernet-update_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/centernet/centernet-update_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './centernet-update_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './centernet_r18-dcnv2_8xb16-crop512-140e_coco.py'
2 |
3 | model = dict(neck=dict(use_dcn=False))
4 |
--------------------------------------------------------------------------------
/configs/common/lsj-200e_coco-detection.py:
--------------------------------------------------------------------------------
1 | _base_ = './lsj-100e_coco-detection.py'
2 |
3 | # 8x25=200e
4 | train_dataloader = dict(dataset=dict(times=8))
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.067, by_epoch=False, begin=0,
10 | end=1000),
11 | dict(
12 | type='MultiStepLR',
13 | begin=0,
14 | end=25,
15 | by_epoch=True,
16 | milestones=[22, 24],
17 | gamma=0.1)
18 | ]
19 |
--------------------------------------------------------------------------------
/configs/common/lsj-200e_coco-instance.py:
--------------------------------------------------------------------------------
1 | _base_ = './lsj-100e_coco-instance.py'
2 |
3 | # 8x25=200e
4 | train_dataloader = dict(dataset=dict(times=8))
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.067, by_epoch=False, begin=0,
10 | end=1000),
11 | dict(
12 | type='MultiStepLR',
13 | begin=0,
14 | end=25,
15 | by_epoch=True,
16 | milestones=[22, 24],
17 | gamma=0.1)
18 | ]
19 |
--------------------------------------------------------------------------------
/configs/cornernet/cornernet_hourglass104_10xb5-crop511-210e-mstest_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cornernet_hourglass104_8xb6-210e-mstest_coco.py'
2 |
3 | train_dataloader = dict(batch_size=5)
4 |
5 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
6 | # USER SHOULD NOT CHANGE ITS VALUES.
7 | # base_batch_size = (10 GPUs) x (5 samples per GPU)
8 | auto_scale_lr = dict(base_batch_size=50)
9 |
--------------------------------------------------------------------------------
/configs/cornernet/cornernet_hourglass104_32xb3-210e-mstest_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cornernet_hourglass104_8xb6-210e-mstest_coco.py'
2 |
3 | train_dataloader = dict(batch_size=3)
4 |
5 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
6 | # USER SHOULD NOT CHANGE ITS VALUES.
7 | # base_batch_size = (32 GPUs) x (3 samples per GPU)
8 | auto_scale_lr = dict(base_batch_size=96)
9 |
--------------------------------------------------------------------------------
/configs/crowddet/crowddet-rcnn_refine_r50_fpn_8xb2-30e_crowdhuman.py:
--------------------------------------------------------------------------------
1 | _base_ = './crowddet-rcnn_r50_fpn_8xb2-30e_crowdhuman.py'
2 |
3 | model = dict(roi_head=dict(bbox_head=dict(with_refine=True)))
4 |
--------------------------------------------------------------------------------
/configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_roi_extractor=dict(
5 | type='SingleRoIExtractor',
6 | roi_layer=dict(
7 | _delete_=True,
8 | type='DeformRoIPoolPack',
9 | output_size=7,
10 | output_channels=256),
11 | out_channels=256,
12 | featmap_strides=[4, 8, 16, 32])))
13 |
--------------------------------------------------------------------------------
/configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | # MMEngine support the following two ways, users can choose
8 | # according to convenience
9 | # optim_wrapper = dict(type='AmpOptimWrapper')
10 | _base_.optim_wrapper.type = 'AmpOptimWrapper'
11 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster-rcnn_r50-mdconv-group4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster-rcnn_r50_fpn_mdpool_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_roi_extractor=dict(
5 | type='SingleRoIExtractor',
6 | roi_layer=dict(
7 | _delete_=True,
8 | type='ModulatedDeformRoIPoolPack',
9 | output_size=7,
10 | output_channels=256),
11 | out_channels=256,
12 | featmap_strides=[4, 8, 16, 32])))
13 |
--------------------------------------------------------------------------------
/configs/dcnv2/mask-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcnv2/mask-rcnn_r50-mdconv-c3-c5_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | # MMEngine support the following two ways, users can choose
8 | # according to convenience
9 | # optim_wrapper = dict(type='AmpOptimWrapper')
10 | _base_.optim_wrapper.type = 'AmpOptimWrapper'
11 |
--------------------------------------------------------------------------------
/configs/deformable_detr/deformable-detr-refine-twostage_r50_16xb2-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable-detr-refine_r50_16xb2-50e_coco.py'
2 | model = dict(as_two_stage=True)
3 |
--------------------------------------------------------------------------------
/configs/deformable_detr/deformable-detr-refine_r50_16xb2-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable-detr_r50_16xb2-50e_coco.py'
2 | model = dict(with_box_refine=True)
3 |
--------------------------------------------------------------------------------
/configs/detectors/cascade-rcnn_r50-sac_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | type='DetectoRS_ResNet',
10 | conv_cfg=dict(type='ConvAWS'),
11 | sac=dict(type='SAC', use_deform=True),
12 | stage_with_sac=(False, True, True, True)))
13 |
--------------------------------------------------------------------------------
/configs/detectors/htc_r50-sac_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | type='DetectoRS_ResNet',
6 | conv_cfg=dict(type='ConvAWS'),
7 | sac=dict(type='SAC', use_deform=True),
8 | stage_with_sac=(False, True, True, True)))
9 |
--------------------------------------------------------------------------------
/configs/detr/detr_r101_8xb2-500e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './detr_r50_8xb2-500e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/detr/detr_r18_8xb2-500e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './detr_r50_8xb2-500e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[512]))
8 |
--------------------------------------------------------------------------------
/configs/dino/dino-4scale_r50_8xb2-24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './dino-4scale_r50_8xb2-12e_coco.py'
2 | max_epochs = 24
3 | train_cfg = dict(
4 | type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
5 | param_scheduler = [
6 | dict(
7 | type='MultiStepLR',
8 | begin=0,
9 | end=max_epochs,
10 | by_epoch=True,
11 | milestones=[20],
12 | gamma=0.1)
13 | ]
14 |
--------------------------------------------------------------------------------
/configs/dino/dino-4scale_r50_8xb2-36e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './dino-4scale_r50_8xb2-12e_coco.py'
2 | max_epochs = 36
3 | train_cfg = dict(
4 | type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
5 | param_scheduler = [
6 | dict(
7 | type='MultiStepLR',
8 | begin=0,
9 | end=max_epochs,
10 | by_epoch=True,
11 | milestones=[30],
12 | gamma=0.1)
13 | ]
14 |
--------------------------------------------------------------------------------
/configs/dino/dino-5scale_swin-l_8xb2-36e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './dino-5scale_swin-l_8xb2-12e_coco.py'
2 | max_epochs = 36
3 | train_cfg = dict(
4 | type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
5 | param_scheduler = [
6 | dict(
7 | type='MultiStepLR',
8 | begin=0,
9 | end=max_epochs,
10 | by_epoch=True,
11 | milestones=[27, 33],
12 | gamma=0.1)
13 | ]
14 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster-rcnn_r50-attn0010_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(
6 | type='GeneralizedAttention',
7 | spatial_range=-1,
8 | num_heads=8,
9 | attention_type='0010',
10 | kv_stride=2),
11 | stages=(False, False, True, True),
12 | position='after_conv2')
13 | ]))
14 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster-rcnn_r50-attn1111_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(
6 | type='GeneralizedAttention',
7 | spatial_range=-1,
8 | num_heads=8,
9 | attention_type='1111',
10 | kv_stride=2),
11 | stages=(False, False, True, True),
12 | position='after_conv2')
13 | ]))
14 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast-rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast-rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast-rcnn_r50_fpn_1x_coco.py'
2 |
3 | train_cfg = dict(max_epochs=24)
4 | param_scheduler = [
5 | dict(
6 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
7 | dict(
8 | type='MultiStepLR',
9 | begin=0,
10 | end=24,
11 | by_epoch=True,
12 | milestones=[16, 22],
13 | gamma=0.1)
14 | ]
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101-caffe_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | norm_cfg=dict(requires_grad=False),
7 | norm_eval=True,
8 | style='caffe',
9 | init_cfg=dict(
10 | type='Pretrained',
11 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
12 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r101_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50-caffe-dc5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster-rcnn_r50-caffe-dc5.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50-caffe_c4-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster-rcnn_r50-caffe-c4.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 |
3 | # MMEngine support the following two ways, users can choose
4 | # according to convenience
5 | # optim_wrapper = dict(type='AmpOptimWrapper')
6 | _base_.optim_wrapper.type = 'AmpOptimWrapper'
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_bounded-iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_ciou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='CIoULoss', loss_weight=12.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_giou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='GIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='IoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../common/ms_3x_coco.py', '../_base_/models/faster-rcnn_r50_fpn.py']
2 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_ohem_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(train_cfg=dict(rcnn=dict(sampler=dict(type='OHEMSampler'))))
3 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_r50_fpn_soft-nms_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | test_cfg=dict(
9 | rcnn=dict(
10 | score_thr=0.05,
11 | nms=dict(type='soft_nms', iou_threshold=0.5),
12 | max_per_img=100)))
13 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_x101-32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster-rcnn_x101-64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r101-caffe_fpn_gn-head-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(
6 | depth=101,
7 | init_cfg=dict(
8 | type='Pretrained',
9 | checkpoint='open-mmlab://detectron/resnet101_caffe')))
10 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r101_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py' # noqa
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r18_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_fpn_gn-head-center-normbbox-centeronreg-giou_8xb8-amp-lsj-200e_coco.py' # noqa
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r50-caffe_fpn_gn-head-center_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py'
2 |
3 | # model settings
4 | model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
5 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r50-caffe_fpn_gn-head_4xb4-1x_coco.py:
--------------------------------------------------------------------------------
1 | # TODO: Remove this config after benchmarking all related configs
2 | _base_ = 'fcos_r50-caffe_fpn_gn-head_1x_coco.py'
3 |
4 | # dataset settings
5 | train_dataloader = dict(batch_size=4, num_workers=4)
6 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r101_fpn_4xb4-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4xb4-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r101_fpn_4xb4-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4xb4-2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r50_fpn_4xb4-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4xb4-1x_coco.py'
2 | # learning policy
3 | max_epochs = 24
4 | param_scheduler = [
5 | dict(
6 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
7 | dict(
8 | type='MultiStepLR',
9 | begin=0,
10 | end=max_epochs,
11 | by_epoch=True,
12 | milestones=[16, 22],
13 | gamma=0.1)
14 | ]
15 | train_cfg = dict(max_epochs=max_epochs)
16 |
--------------------------------------------------------------------------------
/configs/fpg/faster-rcnn_r50_fpg-chn128_crop640-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster-rcnn_r50_fpg_crop640-50e_coco.py'
2 |
3 | norm_cfg = dict(type='BN', requires_grad=True)
4 | model = dict(
5 | neck=dict(out_channels=128, inter_channels=128),
6 | rpn_head=dict(in_channels=128),
7 | roi_head=dict(
8 | bbox_roi_extractor=dict(out_channels=128),
9 | bbox_head=dict(in_channels=128)))
10 |
--------------------------------------------------------------------------------
/configs/fpg/mask-rcnn_r50_fpg-chn128_crop640-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask-rcnn_r50_fpg_crop640-50e_coco.py'
2 |
3 | model = dict(
4 | neck=dict(out_channels=128, inter_channels=128),
5 | rpn_head=dict(in_channels=128),
6 | roi_head=dict(
7 | bbox_roi_extractor=dict(out_channels=128),
8 | bbox_head=dict(in_channels=128),
9 | mask_roi_extractor=dict(out_channels=128),
10 | mask_head=dict(in_channels=128)))
11 |
--------------------------------------------------------------------------------
/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_r50_fpg_crop640_50e_coco.py'
2 |
3 | model = dict(
4 | neck=dict(out_channels=128, inter_channels=128),
5 | bbox_head=dict(in_channels=128))
6 |
--------------------------------------------------------------------------------
/configs/free_anchor/freeanchor_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './freeanchor_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/free_anchor/freeanchor_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './freeanchor_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | style='pytorch',
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
14 |
--------------------------------------------------------------------------------
/configs/fsaf/fsaf_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fsaf_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fsaf/fsaf_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fsaf_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r16-gcb-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r4-gcb-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-r16-gcb-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-r4-gcb-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r101-gcb-r16-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r101-gcb-r4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r101-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r101-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r101-syncbn_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r50-gcb-r16-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r50-gcb-r4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r50-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r50-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_r50-syncbn_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_x101-32x4d-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_x101-32x4d-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gfl/gfl_r101_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './gfl_r50_fpn_ms-2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=101,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | norm_eval=True,
11 | style='pytorch',
12 | init_cfg=dict(type='Pretrained',
13 | checkpoint='torchvision://resnet101')))
14 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_r101_fpn_ghm-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_ghm-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_x101-32x4d_fpn_ghm-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_ghm-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_x101-64x4d_fpn_ghm-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_ghm-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-l_fpn_dyhead_pretrain_mixeddata.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | embed_dims=192,
6 | depths=[2, 2, 18, 2],
7 | num_heads=[6, 12, 24, 48],
8 | window_size=12,
9 | drop_path_rate=0.4,
10 | ),
11 | neck=dict(in_channels=[384, 768, 1536]),
12 | bbox_head=dict(early_fuse=True, num_dyhead_blocks=8))
13 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_b_fpn_dyhead_16xb2_ms-2x_funtune_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_a_fpn_dyhead_16xb2_ms-2x_funtune_coco.py'
2 |
3 | model = dict(bbox_head=dict(early_fuse=True, use_checkpoint=True))
4 |
5 | load_from = 'https://download.openmmlab.com/mmdetection/v3.0/glip/glip_tiny_b_mmdet-6dfbd102.pth' # noqa
6 |
7 | optim_wrapper = dict(
8 | optimizer=dict(lr=0.00001),
9 | clip_grad=dict(_delete_=True, max_norm=1, norm_type=2))
10 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_b_fpn_dyhead_pretrain_obj365.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365.py'
2 |
3 | model = dict(bbox_head=dict(early_fuse=True))
4 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_c_fpn_dyhead_16xb2_ms-2x_funtune_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_b_fpn_dyhead_16xb2_ms-2x_funtune_coco.py'
2 |
3 | load_from = 'https://download.openmmlab.com/mmdetection/v3.0/glip/glip_tiny_c_mmdet-2fc427dd.pth' # noqa
4 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_c_fpn_dyhead_pretrain_obj365-goldg.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_b_fpn_dyhead_pretrain_obj365.py'
2 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_fpn_dyhead_16xb2_ms-2x_funtune_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_b_fpn_dyhead_16xb2_ms-2x_funtune_coco.py'
2 |
3 | load_from = 'https://download.openmmlab.com/mmdetection/v3.0/glip/glip_tiny_mmdet-c24ce662.pth' # noqa
4 |
--------------------------------------------------------------------------------
/configs/glip/glip_atss_swin-t_fpn_dyhead_pretrain_obj365-goldg-cc3m-sub.py:
--------------------------------------------------------------------------------
1 | _base_ = './glip_atss_swin-t_b_fpn_dyhead_pretrain_obj365.py'
2 |
--------------------------------------------------------------------------------
/configs/gn+ws/faster-rcnn_r101_fpn_gn-ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_r50_fpn_gn-ws-all_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask-rcnn_r101_fpn_gn-ws-all_20-23-24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_gn-ws-all_2x_coco.py'
2 | # learning policy
3 | max_epochs = 24
4 | train_cfg = dict(max_epochs=max_epochs)
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=max_epochs,
14 | by_epoch=True,
15 | milestones=[20, 23],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask-rcnn_r101_fpn_gn-ws-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask-rcnn_r50_fpn_gn-ws-all_20-23-24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py'
2 | # learning policy
3 | max_epochs = 24
4 | train_cfg = dict(max_epochs=max_epochs)
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=max_epochs,
14 | by_epoch=True,
15 | milestones=[20, 23],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask-rcnn_x101-32x4d_fpn_gn-ws-all_20-23-24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x101-32x4d_fpn_gn-ws-all_2x_coco.py'
2 | # learning policy
3 | max_epochs = 24
4 | train_cfg = dict(max_epochs=max_epochs)
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=max_epochs,
14 | by_epoch=True,
15 | milestones=[20, 23],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask-rcnn_x50-32x4d_fpn_gn-ws-all_20-23-24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x50-32x4d_fpn_gn-ws-all_2x_coco.py'
2 | # learning policy
3 | max_epochs = 24
4 | train_cfg = dict(max_epochs=max_epochs)
5 |
6 | # learning rate
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=max_epochs,
14 | by_epoch=True,
15 | milestones=[20, 23],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/gn/mask-rcnn_r101_fpn_gn-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_gn-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron/resnet101_gn')))
8 |
--------------------------------------------------------------------------------
/configs/gn/mask-rcnn_r101_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 36
5 | train_cfg = dict(max_epochs=max_epochs)
6 |
7 | # learning rate
8 | param_scheduler = [
9 | dict(
10 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
11 | dict(
12 | type='MultiStepLR',
13 | begin=0,
14 | end=max_epochs,
15 | by_epoch=True,
16 | milestones=[28, 34],
17 | gamma=0.1)
18 | ]
19 |
--------------------------------------------------------------------------------
/configs/gn/mask-rcnn_r50-contrib_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-contrib_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 36
5 | train_cfg = dict(max_epochs=max_epochs)
6 |
7 | # learning rate
8 | param_scheduler = [
9 | dict(
10 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
11 | dict(
12 | type='MultiStepLR',
13 | begin=0,
14 | end=max_epochs,
15 | by_epoch=True,
16 | milestones=[28, 34],
17 | gamma=0.1)
18 | ]
19 |
--------------------------------------------------------------------------------
/configs/gn/mask-rcnn_r50_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 36
5 | train_cfg = dict(max_epochs=max_epochs)
6 |
7 | # learning rate
8 | param_scheduler = [
9 | dict(
10 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
11 | dict(
12 | type='MultiStepLR',
13 | begin=0,
14 | end=max_epochs,
15 | by_epoch=True,
16 | milestones=[28, 34],
17 | gamma=0.1)
18 | ]
19 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid-rcnn_r101_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid-rcnn_r50_fpn_gn-head_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid-rcnn_r50_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid-rcnn_r50_fpn_gn-head_2x_coco.py'
2 |
3 | # training schedule
4 | max_epochs = 12
5 | train_cfg = dict(max_epochs=max_epochs)
6 |
7 | # learning rate
8 | param_scheduler = [
9 | dict(
10 | type='LinearLR', start_factor=0.0001, by_epoch=False, begin=0,
11 | end=500),
12 | dict(
13 | type='MultiStepLR',
14 | begin=0,
15 | end=max_epochs,
16 | by_epoch=True,
17 | milestones=[8, 11],
18 | gamma=0.1)
19 | ]
20 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid-rcnn_x101-32x4d_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid-rcnn_r50_fpn_gn-head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | style='pytorch',
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
14 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid-rcnn_x101-64x4d_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid-rcnn_x101-32x4d_fpn_gn-head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | style='pytorch',
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
14 |
--------------------------------------------------------------------------------
/configs/grounding_dino/grounding_dino_swin-b_pretrain_mixeddata.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './grounding_dino_swin-t_pretrain_obj365_goldg_cap4m.py',
3 | ]
4 |
5 | model = dict(
6 | type='GroundingDINO',
7 | backbone=dict(
8 | pretrain_img_size=384,
9 | embed_dims=128,
10 | depths=[2, 2, 18, 2],
11 | num_heads=[4, 8, 16, 32],
12 | window_size=12,
13 | drop_path_rate=0.3,
14 | patch_norm=True),
15 | neck=dict(in_channels=[256, 512, 1024]),
16 | )
17 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-faster-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-faster-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-faster-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-faster-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-retinanet_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-retinanet_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-retinanet_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-retinanet_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-rpn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-rpn_r50-caffe_fpn_1x_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained',
8 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
9 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-rpn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga-rpn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga-rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/hrnet/cascade-rcnn_hrnetv2p-w18-20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_hrnetv2p-w32-20e_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | extra=dict(
6 | stage2=dict(num_channels=(18, 36)),
7 | stage3=dict(num_channels=(18, 36, 72)),
8 | stage4=dict(num_channels=(18, 36, 72, 144))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
11 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/faster-rcnn_hrnetv2p-w18-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_hrnetv2p-w32-1x_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | extra=dict(
6 | stage2=dict(num_channels=(18, 36)),
7 | stage3=dict(num_channels=(18, 36, 72)),
8 | stage4=dict(num_channels=(18, 36, 72, 144))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
11 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/faster-rcnn_hrnetv2p-w18-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_hrnetv2p-w18-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/faster-rcnn_hrnetv2p-w32_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_hrnetv2p-w32-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/faster-rcnn_hrnetv2p-w40-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_hrnetv2p-w32-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/faster-rcnn_hrnetv2p-w40_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_hrnetv2p-w40-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p-w18_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p-w32_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p-w40_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p-w32_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p-w40_28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p-w40_20e_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 28
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[24, 27],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_x101-64x4d_fpn_16xb1-28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 28
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[24, 27],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/mask-rcnn_hrnetv2p-w18-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_hrnetv2p-w32-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/mask-rcnn_hrnetv2p-w18-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_hrnetv2p-w18-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/mask-rcnn_hrnetv2p-w32-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_hrnetv2p-w32-1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/mask-rcnn_hrnetv2p-w40-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_hrnetv2p-w40_1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/hrnet/mask-rcnn_hrnetv2p-w40_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_hrnetv2p-w18-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/htc/htc_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/htc/htc_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 20
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=max_epochs,
12 | by_epoch=True,
13 | milestones=[16, 19],
14 | gamma=0.1)
15 | ]
16 | train_cfg = dict(max_epochs=max_epochs)
17 |
--------------------------------------------------------------------------------
/configs/htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_x101-32x4d_fpn_16xb1-20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | groups=64,
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
8 |
--------------------------------------------------------------------------------
/configs/instaboost/cascade-mask-rcnn_r101_fpn_instaboost-4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r50_fpn_instaboost-4x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/instaboost/mask-rcnn_r101_fpn_instaboost-4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_instaboost-4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/instaboost/mask-rcnn_x101-64x4d_fpn_instaboost-4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_instaboost-4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/libra_rcnn/libra-faster-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './libra-faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/libra_rcnn/libra-faster-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './libra-faster-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-1x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/lvis/mask-rcnn_r101_fpn_sample1e-3_ms-2x_lvis-v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-1x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/lvis_v1_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 | model = dict(
7 | roi_head=dict(
8 | bbox_head=dict(num_classes=1203), mask_head=dict(num_classes=1203)),
9 | test_cfg=dict(
10 | rcnn=dict(
11 | score_thr=0.0001,
12 | # LVIS allows up to 300
13 | max_per_img=300)))
14 |
--------------------------------------------------------------------------------
/configs/lvis/mask-rcnn_r50_fpn_sample1e-3_ms-2x_lvis-v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/lvis_v0.5_instance.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 | model = dict(
7 | roi_head=dict(
8 | bbox_head=dict(num_classes=1230), mask_head=dict(num_classes=1230)),
9 | test_cfg=dict(
10 | rcnn=dict(
11 | score_thr=0.0001,
12 | # LVIS allows up to 300
13 | max_per_img=300)))
14 |
--------------------------------------------------------------------------------
/configs/mask2former/mask2former_r101_8xb2-lsj-50e_coco-panoptic.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/mask2former/mask2former_r101_8xb2-lsj-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./mask2former_r50_8xb2-lsj-50e_coco.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/mask2former/mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic.py']
2 | pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa
3 |
4 | model = dict(
5 | backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r101_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | depth=101,
9 | init_cfg=dict(type='Pretrained',
10 | checkpoint='torchvision://resnet101')))
11 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50-caffe-c4.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | # use caffe img_norm
4 | data_preprocessor=dict(
5 | mean=[103.530, 116.280, 123.675],
6 | std=[1.0, 1.0, 1.0],
7 | bgr_to_rgb=False),
8 | backbone=dict(
9 | norm_cfg=dict(requires_grad=False),
10 | style='caffe',
11 | init_cfg=dict(
12 | type='Pretrained',
13 | checkpoint='open-mmlab://detectron2/resnet50_caffe')))
14 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'
2 |
3 | train_cfg = dict(max_epochs=24)
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=24,
12 | by_epoch=True,
13 | milestones=[16, 22],
14 | gamma=0.1)
15 | ]
16 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'
2 |
3 | train_cfg = dict(max_epochs=36)
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=24,
12 | by_epoch=True,
13 | milestones=[28, 34],
14 | gamma=0.1)
15 | ]
16 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 |
3 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
4 | optim_wrapper = dict(type='AmpOptimWrapper')
5 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_r50_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_x101-32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask-rcnn_x101-64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x101-32x4d_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/openimages/faster-rcnn_r50_fpn_32xb2-cas-1x_openimages-challenge.py:
--------------------------------------------------------------------------------
1 | _base_ = ['faster-rcnn_r50_fpn_32xb2-1x_openimages-challenge.py']
2 |
3 | # Use ClassAwareSampler
4 | train_dataloader = dict(
5 | sampler=dict(_delete_=True, type='ClassAwareSampler', num_sample_class=1))
6 |
--------------------------------------------------------------------------------
/configs/openimages/faster-rcnn_r50_fpn_32xb2-cas-1x_openimages.py:
--------------------------------------------------------------------------------
1 | _base_ = ['faster-rcnn_r50_fpn_32xb2-1x_openimages.py']
2 |
3 | # Use ClassAwareSampler
4 | train_dataloader = dict(
5 | sampler=dict(_delete_=True, type='ClassAwareSampler', num_sample_class=1))
6 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r101_fpn_1x_coco.py'
2 | max_epochs = 24
3 |
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=max_epochs,
12 | by_epoch=True,
13 | milestones=[16, 22],
14 | gamma=0.1)
15 | ]
16 |
17 | # training schedule for 2x
18 | train_cfg = dict(max_epochs=max_epochs)
19 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/paa/paa_r50_fpn_1.5x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | max_epochs = 18
3 |
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=max_epochs,
12 | by_epoch=True,
13 | milestones=[12, 16],
14 | gamma=0.1)
15 | ]
16 |
17 | # training schedule for 1.5x
18 | train_cfg = dict(max_epochs=max_epochs)
19 |
--------------------------------------------------------------------------------
/configs/paa/paa_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | max_epochs = 24
3 |
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=max_epochs,
12 | by_epoch=True,
13 | milestones=[16, 22],
14 | gamma=0.1)
15 | ]
16 |
17 | # training schedule for 2x
18 | train_cfg = dict(max_epochs=max_epochs)
19 |
--------------------------------------------------------------------------------
/configs/pafpn/faster-rcnn_r50_pafpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | neck=dict(
5 | type='PAFPN',
6 | in_channels=[256, 512, 1024, 2048],
7 | out_channels=256,
8 | num_outs=5))
9 |
--------------------------------------------------------------------------------
/configs/panoptic_fpn/panoptic-fpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic-fpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/panoptic_fpn/panoptic-fpn_r101_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic-fpn_r50_fpn_ms-3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/pisa/retinanet-r50_fpn_pisa_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/configs/pisa/retinanet_x101-32x4d_fpn_pisa_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_x101-32x4d_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/configs/pisa/ssd300_pisa_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd300_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
8 |
--------------------------------------------------------------------------------
/configs/pisa/ssd512_pisa_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd512_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
8 |
--------------------------------------------------------------------------------
/configs/point_rend/point-rend_r50-caffe_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './point-rend_r50-caffe_fpn_ms-1x_coco.py'
2 |
3 | max_epochs = 36
4 |
5 | # learning policy
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[28, 34],
15 | gamma=0.1)
16 | ]
17 |
18 | train_cfg = dict(max_epochs=max_epochs)
19 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-l_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 8, 27, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_large.pth')))
7 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
8 | optim_wrapper = dict(type='AmpOptimWrapper')
9 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-m_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 18, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_medium.pth')))
7 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-s_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 6, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_small.pth')))
7 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b1_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_v2_b1.pth')),
7 | neck=dict(in_channels=[64, 128, 320, 512]))
8 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b2_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 6, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b2.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b3_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 18, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b3.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/configs/qdtrack/qdtrack_faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './qdtrack_faster-rcnn_r50_fpn_4e_base.py',
3 | '../_base_/datasets/mot_challenge.py',
4 | ]
5 |
6 | # evaluator
7 | val_evaluator = [
8 | dict(type='CocoVideoMetric', metric=['bbox'], classwise=True),
9 | dict(type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity'])
10 | ]
11 |
12 | test_evaluator = val_evaluator
13 | # The fluctuation of HOTA is about +-1.
14 | randomness = dict(seed=6)
15 |
--------------------------------------------------------------------------------
/configs/queryinst/queryinst_r101_fpn_300-proposals_crop-ms-480-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './queryinst_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/queryinst/queryinst_r101_fpn_ms-480-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './queryinst_r50_fpn_ms-480-800-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/regnet/faster-rcnn_regnetx-3.2GF_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(max_epochs=max_epochs)
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=max_epochs,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/regnet/mask-rcnn_regnetx-3.2GF-mdconv-c3-c5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask-rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True),
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')))
8 |
--------------------------------------------------------------------------------
/configs/reid/reid_r50_8xb32-6e_mot15train80_test-mot15val20.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./reid_r50_8xb32-6e_mot17train80_test-mot17val20.py']
2 | model = dict(head=dict(num_classes=368))
3 | # data
4 | data_root = 'data/MOT15/'
5 | train_dataloader = dict(dataset=dict(data_root=data_root))
6 | val_dataloader = dict(dataset=dict(data_root=data_root))
7 | test_dataloader = val_dataloader
8 |
--------------------------------------------------------------------------------
/configs/reid/reid_r50_8xb32-6e_mot16train80_test-mot16val20.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./reid_r50_8xb32-6e_mot17train80_test-mot17val20.py']
2 | model = dict(head=dict(num_classes=371))
3 | # data
4 | data_root = 'data/MOT16/'
5 | train_dataloader = dict(dataset=dict(data_root=data_root))
6 | val_dataloader = dict(dataset=dict(data_root=data_root))
7 | test_dataloader = val_dataloader
8 |
--------------------------------------------------------------------------------
/configs/reid/reid_r50_8xb32-6e_mot20train80_test-mot20val20.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./reid_r50_8xb32-6e_mot17train80_test-mot17val20.py']
2 | model = dict(head=dict(num_classes=1701))
3 | # data
4 | data_root = 'data/MOT20/'
5 | train_dataloader = dict(dataset=dict(data_root=data_root))
6 | val_dataloader = dict(dataset=dict(data_root=data_root))
7 | test_dataloader = val_dataloader
8 |
9 | # train, val, test setting
10 | train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6, val_interval=7)
11 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-bbox_r50-center_fpn-gn_head-gn-grid_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax', use_grid_points=True))
3 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-minmax_r50_fpn-gn_head-gn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax'))
3 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-moment_r101-dconv-c3-c5_fpn-gn_head-gn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
6 | stage_with_dcn=(False, True, True, True),
7 | init_cfg=dict(type='Pretrained',
8 | checkpoint='torchvision://resnet101')))
9 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-moment_r101_fpn-gn_head-gn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn_1x_coco.py'
2 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
3 | model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
4 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints-partial-minmax_r50_fpn-gn_head-gn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints-moment_r50_fpn-gn_head-gn_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='partial_minmax'))
3 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/configs/reppoints/reppoints.png
--------------------------------------------------------------------------------
/configs/res2net/cascade-mask-rcnn_res2net-101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/cascade-rcnn_res2net-101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/faster-rcnn_res2net-101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/htc_res2net-101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/mask-rcnn_res2net-101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/resnest/cascade-mask-rcnn_s101_fpn_syncbn-backbone+head_ms-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/cascade-rcnn_s101_fpn_syncbn-backbone+head_ms-range-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/faster-rcnn_s101_fpn_syncbn-backbone+head_ms-range-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/mask-rcnn_s101_fpn_syncbn-backbone+head_ms-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101-caffe_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50-caffe_fpn_ms-3x_coco.py'
2 | # learning policy
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained',
8 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
9 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_ms-640-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../_base_/models/retinanet_r50_fpn.py', '../common/ms_3x_coco.py']
2 | # optimizer
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 | optim_wrapper = dict(
9 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
10 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50-caffe_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50-caffe_fpn_ms-1x_coco.py'
2 | # training schedule for 2x
3 | train_cfg = dict(max_epochs=24)
4 |
5 | # learning rate policy
6 | param_scheduler = [
7 | dict(
8 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
9 | dict(
10 | type='MultiStepLR',
11 | begin=0,
12 | end=24,
13 | by_epoch=True,
14 | milestones=[16, 22],
15 | gamma=0.1)
16 | ]
17 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50-caffe_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50-caffe_fpn_ms-1x_coco.py'
2 |
3 | # training schedule for 2x
4 | train_cfg = dict(max_epochs=36)
5 |
6 | # learning rate policy
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=36,
14 | by_epoch=True,
15 | milestones=[28, 34],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py',
5 | './retinanet_tta.py'
6 | ]
7 |
8 | # optimizer
9 | optim_wrapper = dict(
10 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
11 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 |
3 | # MMEngine support the following two ways, users can choose
4 | # according to convenience
5 | # optim_wrapper = dict(type='AmpOptimWrapper')
6 | _base_.optim_wrapper.type = 'AmpOptimWrapper'
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_ms-640-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../_base_/models/retinanet_r50_fpn.py', '../common/ms_3x_coco.py']
2 | # optimizer
3 | optim_wrapper = dict(
4 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
5 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101-32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101-64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101-64x4d_fpn_ms-640-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../_base_/models/retinanet_r50_fpn.py', '../common/ms_3x_coco.py']
2 | # optimizer
3 | model = dict(
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=64,
8 | base_width=4,
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
11 | optim_wrapper = dict(optimizer=dict(type='SGD', lr=0.01))
12 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r50-caffe-c4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/rpn_r50-caffe-c4.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | val_evaluator = dict(metric='proposal_fast')
8 | test_evaluator = val_evaluator
9 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | max_epochs = 24
5 | train_cfg = dict(
6 | type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
7 | param_scheduler = [
8 | dict(
9 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
10 | dict(
11 | type='MultiStepLR',
12 | begin=0,
13 | end=max_epochs,
14 | by_epoch=True,
15 | milestones=[16, 22],
16 | gamma=0.1)
17 | ]
18 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101-32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101-64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rtmdet/classification/cspnext-l_8xb256-rsb-a1-600e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './cspnext-s_8xb256-rsb-a1-600e_in1k.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=1, widen_factor=1),
5 | head=dict(in_channels=1024))
6 |
--------------------------------------------------------------------------------
/configs/rtmdet/classification/cspnext-m_8xb256-rsb-a1-600e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './cspnext-s_8xb256-rsb-a1-600e_in1k.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
5 | head=dict(in_channels=768))
6 |
--------------------------------------------------------------------------------
/configs/rtmdet/classification/cspnext-tiny_8xb256-rsb-a1-600e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './cspnext-s_8xb256-rsb-a1-600e_in1k.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=0.167, widen_factor=0.375),
5 | head=dict(in_channels=384))
6 |
--------------------------------------------------------------------------------
/configs/rtmdet/classification/cspnext-x_8xb256-rsb-a1-600e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './cspnext-s_8xb256-rsb-a1-600e_in1k.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=1.33, widen_factor=1.25),
5 | head=dict(in_channels=1280))
6 |
--------------------------------------------------------------------------------
/configs/rtmdet/rtmdet-ins_m_8xb32-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rtmdet-ins_l_8xb32-300e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
5 | neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2),
6 | bbox_head=dict(in_channels=192, feat_channels=192))
7 |
--------------------------------------------------------------------------------
/configs/rtmdet/rtmdet_m_8xb32-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rtmdet_l_8xb32-300e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
5 | neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2),
6 | bbox_head=dict(in_channels=192, feat_channels=192))
7 |
--------------------------------------------------------------------------------
/configs/rtmdet/rtmdet_x_8xb32-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rtmdet_l_8xb32-300e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(deepen_factor=1.33, widen_factor=1.25),
5 | neck=dict(
6 | in_channels=[320, 640, 1280], out_channels=320, num_csp_blocks=4),
7 | bbox_head=dict(in_channels=320, feat_channels=320))
8 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_1x_coco.py'
2 | # learning policy
3 | max_epochs = 20
4 | param_scheduler = [
5 | dict(
6 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
7 | dict(
8 | type='MultiStepLR',
9 | begin=0,
10 | end=max_epochs,
11 | by_epoch=True,
12 | milestones=[16, 19],
13 | gamma=0.1)
14 | ]
15 | train_cfg = dict(max_epochs=max_epochs)
16 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_x101-64x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_x101-64x4d_fpn_8xb1-20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_x101-64x4d_fpn_20e_coco.py'
2 | train_dataloader = dict(batch_size=1, num_workers=1)
3 |
4 | optim_wrapper = dict(optimizer=dict(lr=0.01))
5 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
6 | # USER SHOULD NOT CHANGE ITS VALUES.
7 | # base_batch_size = (8 GPUs) x (1 samples per GPU)
8 | auto_scale_lr = dict(base_batch_size=8)
9 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade-mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/selfsup_pretrain/mask-rcnn_r50-mocov2-pre_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | frozen_stages=0,
10 | norm_cfg=dict(type='SyncBN', requires_grad=True),
11 | norm_eval=False,
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth')))
14 |
--------------------------------------------------------------------------------
/configs/selfsup_pretrain/mask-rcnn_r50-swav-pre_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | frozen_stages=0,
10 | norm_cfg=dict(type='SyncBN', requires_grad=True),
11 | norm_eval=False,
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar')))
14 |
--------------------------------------------------------------------------------
/configs/solo/solo_r101_fpn_8xb8-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './solo_r50_fpn_8xb8-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/solo/solo_r18_fpn_8xb8-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './solo_r50_fpn_8xb8-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/solov2/solov2-light_r18_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './solov2-light_r50_fpn_ms-3x_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(
6 | depth=18, init_cfg=dict(checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/solov2/solov2-light_r34_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './solov2-light_r50_fpn_ms-3x_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(
6 | depth=34, init_cfg=dict(checkpoint='torchvision://resnet34')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/configs/solov2/solov2_r101_fpn_ms-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './solov2_r50_fpn_ms-3x_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(
6 | depth=101, init_cfg=dict(checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/sort/faster-rcnn_r50_fpn_8xb2-4e_mot17train_test-mot17train.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./faster-rcnn_r50_fpn_8xb2-4e_mot17halftrain_test-mot17halfval']
2 | # data
3 | data_root = 'data/MOT17/'
4 | train_dataloader = dict(
5 | dataset=dict(ann_file='annotations/train_cocoformat.json'))
6 | val_dataloader = dict(
7 | dataset=dict(ann_file='annotations/train_cocoformat.json'))
8 | test_dataloader = val_dataloader
9 |
10 | val_evaluator = dict(ann_file=data_root + 'annotations/train_cocoformat.json')
11 | test_evaluator = val_evaluator
12 |
--------------------------------------------------------------------------------
/configs/sparse_rcnn/sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/sparse_rcnn/sparse-rcnn_r101_fpn_ms-480-800-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask-rcnn_r50-caffe_fpn_rpn-2conv_4conv1fc_syncbn-all_amp-lsj-100e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask-rcnn_r50-caffe_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py' # noqa
2 |
3 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
4 | optim_wrapper = dict(type='AmpOptimWrapper')
5 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_amp-lsj-100e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py'
2 |
3 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
4 | optim_wrapper = dict(type='AmpOptimWrapper')
5 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py'
2 |
3 | # Use RepeatDataset to speed up training
4 | # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs)
5 | train_dataloader = dict(dataset=dict(times=2))
6 |
--------------------------------------------------------------------------------
/configs/swin/mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py'
2 | pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa
3 | model = dict(
4 | backbone=dict(
5 | depths=[2, 2, 18, 2],
6 | init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
7 |
--------------------------------------------------------------------------------
/configs/swin/mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py'
2 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
3 | optim_wrapper = dict(type='AmpOptimWrapper')
4 |
--------------------------------------------------------------------------------
/configs/tood/tood_r101-dconv-c3-c5_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r101_fpn_ms-2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
6 | stage_with_dcn=(False, True, True, True)),
7 | bbox_head=dict(num_dcn=2))
8 |
--------------------------------------------------------------------------------
/configs/tood/tood_r101_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r50_fpn_ms-2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/tood/tood_r50_fpn_anchor-based_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r50_fpn_1x_coco.py'
2 | model = dict(bbox_head=dict(anchor_type='anchor_based'))
3 |
--------------------------------------------------------------------------------
/configs/tood/tood_x101-64x4d-dconv-c4-c5_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_x101-64x4d_fpn_ms-2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, False, True, True),
6 | ),
7 | bbox_head=dict(num_dcn=2))
8 |
--------------------------------------------------------------------------------
/configs/v3det/v3det_icon.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/configs/v3det/v3det_icon.jpg
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_ms-2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_ms-2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)),
6 | bbox_head=dict(dcn_on_last_conv=True))
7 |
--------------------------------------------------------------------------------
/configs/wider_face/retinanet_r50_fpn_1x_widerface.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/wider_face.py', '../_base_/schedules/schedule_1x.py',
4 | '../_base_/default_runtime.py'
5 | ]
6 | # model settings
7 | model = dict(bbox_head=dict(num_classes=1))
8 | # optimizer
9 | optim_wrapper = dict(
10 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
11 |
--------------------------------------------------------------------------------
/configs/yolact/yolact_r101_1xb8-55e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolact_r50_1xb8-55e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/yolo/yolov3_d53_8xb8-amp-ms-608-273e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolov3_d53_8xb8-ms-608-273e_coco.py'
2 | # fp16 settings
3 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
4 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_l_8xb8-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8xb8-300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.0, widen_factor=1.0),
6 | neck=dict(
7 | in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3),
8 | bbox_head=dict(in_channels=256, feat_channels=256))
9 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_m_8xb8-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8xb8-300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
6 | neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2),
7 | bbox_head=dict(in_channels=192, feat_channels=192),
8 | )
9 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_nano_8xb8-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_tiny_8xb8-300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=0.33, widen_factor=0.25, use_depthwise=True),
6 | neck=dict(
7 | in_channels=[64, 128, 256],
8 | out_channels=64,
9 | num_csp_blocks=1,
10 | use_depthwise=True),
11 | bbox_head=dict(in_channels=64, feat_channels=64, use_depthwise=True))
12 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_x_8xb8-300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8xb8-300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.33, widen_factor=1.25),
6 | neck=dict(
7 | in_channels=[320, 640, 1280], out_channels=320, num_csp_blocks=4),
8 | bbox_head=dict(in_channels=320, feat_channels=320))
9 |
--------------------------------------------------------------------------------
/demo/demo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/demo/demo.jpg
--------------------------------------------------------------------------------
/demo/demo.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/demo/demo.mp4
--------------------------------------------------------------------------------
/demo/demo_mot.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/demo/demo_mot.mp4
--------------------------------------------------------------------------------
/demo/large_image.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/demo/large_image.jpg
--------------------------------------------------------------------------------
/docker/serve/config.properties:
--------------------------------------------------------------------------------
1 | inference_address=http://0.0.0.0:8080
2 | management_address=http://0.0.0.0:8081
3 | metrics_address=http://0.0.0.0:8082
4 | model_store=/home/model-server/model-store
5 | load_models=all
6 |
--------------------------------------------------------------------------------
/docker/serve/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | if [[ "$1" = "serve" ]]; then
5 | shift 1
6 | torchserve --start --ts-config /home/model-server/config.properties
7 | else
8 | eval "$@"
9 | fi
10 |
11 | # prevent docker exit
12 | tail -f /dev/null
13 |
--------------------------------------------------------------------------------
/docs/en/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/docs/en/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/docs/en/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/docs/en/advanced_guides/data_flow.md:
--------------------------------------------------------------------------------
1 | # Data Flow
2 |
--------------------------------------------------------------------------------
/docs/en/advanced_guides/datasets.md:
--------------------------------------------------------------------------------
1 | # Datasets
2 |
--------------------------------------------------------------------------------
/docs/en/advanced_guides/engine.md:
--------------------------------------------------------------------------------
1 | # Engine
2 |
--------------------------------------------------------------------------------
/docs/en/advanced_guides/evaluation.md:
--------------------------------------------------------------------------------
1 | # Evaluation
2 |
--------------------------------------------------------------------------------
/docs/en/advanced_guides/models.md:
--------------------------------------------------------------------------------
1 | # Models
2 |
--------------------------------------------------------------------------------
/docs/en/advanced_guides/structures.md:
--------------------------------------------------------------------------------
1 | # Structures
2 |
--------------------------------------------------------------------------------
/docs/en/dataset_zoo.md:
--------------------------------------------------------------------------------
1 | # Dataset Zoo
2 |
--------------------------------------------------------------------------------
/docs/en/migration.md:
--------------------------------------------------------------------------------
1 | # Migration
2 |
--------------------------------------------------------------------------------
/docs/en/migration/api_and_registry_migration.md:
--------------------------------------------------------------------------------
1 | # Migrate API and Registry from MMDetection 2.x to 3.x
2 |
--------------------------------------------------------------------------------
/docs/en/migration/dataset_migration.md:
--------------------------------------------------------------------------------
1 | # Migrate dataset from MMDetection 2.x to 3.x
2 |
--------------------------------------------------------------------------------
/docs/en/migration/migration_faq.md:
--------------------------------------------------------------------------------
1 | # Migration FAQ
2 |
--------------------------------------------------------------------------------
/docs/en/migration/model_migration.md:
--------------------------------------------------------------------------------
1 | # Migrate models from MMDetection 2.x to 3.x
2 |
--------------------------------------------------------------------------------
/docs/en/notes/contribution_guide.md:
--------------------------------------------------------------------------------
1 | # Contribution
2 |
--------------------------------------------------------------------------------
/docs/en/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/docs/zh_cn/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/docs/zh_cn/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/docs/zh_cn/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/data_flow.md:
--------------------------------------------------------------------------------
1 | # 数据流(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/datasets.md:
--------------------------------------------------------------------------------
1 | # 数据集(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/engine.md:
--------------------------------------------------------------------------------
1 | # 执行引擎(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/evaluation.md:
--------------------------------------------------------------------------------
1 | # 精度评测(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/models.md:
--------------------------------------------------------------------------------
1 | # 模型(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/advanced_guides/structures.md:
--------------------------------------------------------------------------------
1 | # 数据结构(待更新)
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/migration/api_and_registry_migration.md:
--------------------------------------------------------------------------------
1 | # 将 API 和注册器从 MMDetection 2.x 迁移至 3.x
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/migration/dataset_migration.md:
--------------------------------------------------------------------------------
1 | # 将数据集从 MMDetection 2.x 迁移至 3.x
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/migration/migration.md:
--------------------------------------------------------------------------------
1 | # 从 MMDetection 2.x 迁移至 3.x
2 |
3 | MMDetection 3.x 版本是一个重大更新,包含了许多 API 和配置文件的变化。本文档旨在帮助用户从 MMDetection 2.x 版本迁移到 3.x 版本。
4 | 我们将迁移指南分为以下几个部分:
5 |
6 | - [配置文件迁移](./config_migration.md)
7 | - [API 和 Registry 迁移](./api_and_registry_migration.md)
8 | - [数据集迁移](./dataset_migration.md)
9 | - [模型迁移](./model_migration.md)
10 | - [常见问题](./migration_faq.md)
11 |
12 | 如果您在迁移过程中遇到任何问题,欢迎在 issue 中提出。我们也欢迎您为本文档做出贡献。
13 |
--------------------------------------------------------------------------------
/docs/zh_cn/migration/migration_faq.md:
--------------------------------------------------------------------------------
1 | # 迁移 FAQ
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/migration/model_migration.md:
--------------------------------------------------------------------------------
1 | # 将模型从 MMDetection 2.x 迁移至 3.x
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/mmdet/apis/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .det_inferencer import DetInferencer
3 | from .inference import (async_inference_detector, inference_detector,
4 | inference_mot, init_detector, init_track_model)
5 |
6 | __all__ = [
7 | 'init_detector', 'async_inference_detector', 'inference_detector',
8 | 'DetInferencer', 'inference_mot', 'init_track_model'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/configs/deformable_detr/deformable_detr_refine_r50_16xb2_50e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
3 | # Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
4 | # mmcv >= 2.0.1
5 | # mmengine >= 0.8.0
6 |
7 | from mmengine.config import read_base
8 |
9 | with read_base():
10 | from .deformable_detr_r50_16xb2_50e_coco import *
11 |
12 | model.update(dict(with_box_refine=True))
13 |
--------------------------------------------------------------------------------
/mmdet/configs/deformable_detr/deformable_detr_refine_twostage_r50_16xb2_50e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
3 | # Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
4 | # mmcv >= 2.0.1
5 | # mmengine >= 0.8.0
6 |
7 | from mmengine.config import read_base
8 |
9 | with read_base():
10 | from .deformable_detr_refine_r50_16xb2_50e_coco import *
11 |
12 | model.update(dict(as_two_stage=True))
13 |
--------------------------------------------------------------------------------
/mmdet/configs/detr/detr_r101_8xb2_500e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmengine.config import read_base
3 | from mmengine.model.weight_init import PretrainedInit
4 |
5 | with read_base():
6 | from .detr_r50_8xb2_500e_coco import *
7 |
8 | model.update(
9 | dict(
10 | backbone=dict(
11 | depth=101,
12 | init_cfg=dict(
13 | type=PretrainedInit, checkpoint='torchvision://resnet101'))))
14 |
--------------------------------------------------------------------------------
/mmdet/configs/detr/detr_r18_8xb2_500e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmengine.config import read_base
3 | from mmengine.model.weight_init import PretrainedInit
4 |
5 | with read_base():
6 | from .detr_r50_8xb2_500e_coco import *
7 |
8 | model.update(
9 | dict(
10 | backbone=dict(
11 | depth=18,
12 | init_cfg=dict(
13 | type=PretrainedInit, checkpoint='torchvision://resnet18')),
14 | neck=dict(in_channels=[512])))
15 |
--------------------------------------------------------------------------------
/mmdet/configs/dino/dino_4scale_r50_8xb2_24e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmengine.config import read_base
3 | from mmengine.runner.loops import EpochBasedTrainLoop
4 |
5 | with read_base():
6 | from .dino_4scale_r50_8xb2_12e_coco import *
7 |
8 | max_epochs = 24
9 | train_cfg.update(
10 | dict(type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=1))
11 |
12 | param_scheduler[0].update(dict(milestones=[20]))
13 |
--------------------------------------------------------------------------------
/mmdet/configs/dino/dino_4scale_r50_8xb2_36e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmengine.config import read_base
3 | from mmengine.runner.loops import EpochBasedTrainLoop
4 |
5 | with read_base():
6 | from .dino_4scale_r50_8xb2_12e_coco import *
7 |
8 | max_epochs = 36
9 | train_cfg.update(
10 | dict(type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=1))
11 |
12 | param_scheduler[0].update(dict(milestones=[30]))
13 |
--------------------------------------------------------------------------------
/mmdet/configs/dino/dino_5scale_swin_l_8xb2_36e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmengine.config import read_base
3 | from mmengine.runner.loops import EpochBasedTrainLoop
4 |
5 | with read_base():
6 | from .dino_5scale_swin_l_8xb2_12e_coco import *
7 |
8 | max_epochs = 36
9 | train_cfg.update(
10 | dict(type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=1))
11 |
12 | param_scheduler[0].update(dict(milestones=[27, 33]))
13 |
--------------------------------------------------------------------------------
/mmdet/configs/mask_rcnn/mask_rcnn_r50_fpn_8xb8_amp_lsj_200e_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmdet/configs/mask_rcnn/mask_rcnn_r50_fpn_ms_poly_-3x_coco.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
3 | # Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
4 | # mmcv >= 2.0.1
5 | # mmengine >= 0.8.0
6 |
7 | from mmengine.config import read_base
8 |
9 | with read_base():
10 | from .._base_.models.mask_rcnn_r50_fpn import *
11 | from ..common.ms_poly_3x_coco_instance import *
12 |
--------------------------------------------------------------------------------
/mmdet/datasets/api_wrappers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .coco_api import COCO, COCOeval, COCOPanoptic
3 | from .cocoeval_mp import COCOevalMP
4 |
5 | __all__ = ['COCO', 'COCOeval', 'COCOPanoptic', 'COCOevalMP']
6 |
--------------------------------------------------------------------------------
/mmdet/engine/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .hooks import * # noqa: F401, F403
3 | from .optimizers import * # noqa: F401, F403
4 | from .runner import * # noqa: F401, F403
5 | from .schedulers import * # noqa: F401, F403
6 |
--------------------------------------------------------------------------------
/mmdet/engine/optimizers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .layer_decay_optimizer_constructor import \
3 | LearningRateDecayOptimizerConstructor
4 |
5 | __all__ = ['LearningRateDecayOptimizerConstructor']
6 |
--------------------------------------------------------------------------------
/mmdet/engine/runner/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .loops import TeacherStudentValLoop
3 |
4 | __all__ = ['TeacherStudentValLoop']
5 |
--------------------------------------------------------------------------------
/mmdet/engine/schedulers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .quadratic_warmup import (QuadraticWarmupLR, QuadraticWarmupMomentum,
3 | QuadraticWarmupParamScheduler)
4 |
5 | __all__ = [
6 | 'QuadraticWarmupParamScheduler', 'QuadraticWarmupMomentum',
7 | 'QuadraticWarmupLR'
8 | ]
9 |
--------------------------------------------------------------------------------
/mmdet/evaluation/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .functional import * # noqa: F401,F403
3 | from .metrics import * # noqa: F401,F403
4 |
--------------------------------------------------------------------------------
/mmdet/models/detectors/scnet.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmdet.registry import MODELS
3 | from .cascade_rcnn import CascadeRCNN
4 |
5 |
6 | @MODELS.register_module()
7 | class SCNet(CascadeRCNN):
8 | """Implementation of `SCNet `_"""
9 |
10 | def __init__(self, **kwargs) -> None:
11 | super().__init__(**kwargs)
12 |
--------------------------------------------------------------------------------
/mmdet/models/language_models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .bert import BertModel
3 |
4 | __all__ = ['BertModel']
5 |
--------------------------------------------------------------------------------
/mmdet/models/mot/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base import BaseMOTModel
3 | from .bytetrack import ByteTrack
4 | from .deep_sort import DeepSORT
5 | from .ocsort import OCSORT
6 | from .qdtrack import QDTrack
7 | from .strongsort import StrongSORT
8 |
9 | __all__ = [
10 | 'BaseMOTModel', 'ByteTrack', 'QDTrack', 'DeepSORT', 'StrongSORT', 'OCSORT'
11 | ]
12 |
--------------------------------------------------------------------------------
/mmdet/models/reid/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_reid import BaseReID
3 | from .fc_module import FcModule
4 | from .gap import GlobalAveragePooling
5 | from .linear_reid_head import LinearReIDHead
6 |
7 | __all__ = ['BaseReID', 'GlobalAveragePooling', 'LinearReIDHead', 'FcModule']
8 |
--------------------------------------------------------------------------------
/mmdet/models/roi_heads/roi_extractors/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_roi_extractor import BaseRoIExtractor
3 | from .generic_roi_extractor import GenericRoIExtractor
4 | from .single_level_roi_extractor import SingleRoIExtractor
5 |
6 | __all__ = ['BaseRoIExtractor', 'SingleRoIExtractor', 'GenericRoIExtractor']
7 |
--------------------------------------------------------------------------------
/mmdet/models/roi_heads/shared_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .res_layer import ResLayer
3 |
4 | __all__ = ['ResLayer']
5 |
--------------------------------------------------------------------------------
/mmdet/models/seg_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403
3 | from .panoptic_fusion_heads import * # noqa: F401,F403
4 |
--------------------------------------------------------------------------------
/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_panoptic_fusion_head import \
3 | BasePanopticFusionHead # noqa: F401,F403
4 | from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403
5 | from .maskformer_fusion_head import MaskFormerFusionHead # noqa: F401,F403
6 |
--------------------------------------------------------------------------------
/mmdet/models/task_modules/tracking/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .aflink import AppearanceFreeLink
3 | from .camera_motion_compensation import CameraMotionCompensation
4 | from .interpolation import InterpolateTracklets
5 | from .kalman_filter import KalmanFilter
6 | from .similarity import embed_similarity
7 |
8 | __all__ = [
9 | 'KalmanFilter', 'InterpolateTracklets', 'embed_similarity',
10 | 'AppearanceFreeLink', 'CameraMotionCompensation'
11 | ]
12 |
--------------------------------------------------------------------------------
/mmdet/models/test_time_augs/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .det_tta import DetTTAModel
3 | from .merge_augs import (merge_aug_bboxes, merge_aug_masks,
4 | merge_aug_proposals, merge_aug_results,
5 | merge_aug_scores)
6 |
7 | __all__ = [
8 | 'merge_aug_bboxes', 'merge_aug_masks', 'merge_aug_proposals',
9 | 'merge_aug_scores', 'merge_aug_results', 'DetTTAModel'
10 | ]
11 |
--------------------------------------------------------------------------------
/mmdet/models/tracking_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .mask2former_track_head import Mask2FormerTrackHead
3 | from .quasi_dense_embed_head import QuasiDenseEmbedHead
4 | from .quasi_dense_track_head import QuasiDenseTrackHead
5 | from .roi_embed_head import RoIEmbedHead
6 | from .roi_track_head import RoITrackHead
7 |
8 | __all__ = [
9 | 'QuasiDenseEmbedHead', 'QuasiDenseTrackHead', 'Mask2FormerTrackHead',
10 | 'RoIEmbedHead', 'RoITrackHead'
11 | ]
12 |
--------------------------------------------------------------------------------
/mmdet/models/vis/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .mask2former_vis import Mask2FormerVideo
3 | from .masktrack_rcnn import MaskTrackRCNN
4 |
5 | __all__ = ['Mask2FormerVideo', 'MaskTrackRCNN']
6 |
--------------------------------------------------------------------------------
/mmdet/structures/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .det_data_sample import DetDataSample, OptSampleList, SampleList
3 | from .reid_data_sample import ReIDDataSample
4 | from .track_data_sample import (OptTrackSampleList, TrackDataSample,
5 | TrackSampleList)
6 |
7 | __all__ = [
8 | 'DetDataSample', 'SampleList', 'OptSampleList', 'TrackDataSample',
9 | 'TrackSampleList', 'OptTrackSampleList', 'ReIDDataSample'
10 | ]
11 |
--------------------------------------------------------------------------------
/mmdet/visualization/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .local_visualizer import DetLocalVisualizer, TrackLocalVisualizer
3 | from .palette import get_palette, jitter_color, palette_val
4 |
5 | __all__ = [
6 | 'palette_val', 'get_palette', 'DetLocalVisualizer', 'jitter_color',
7 | 'TrackLocalVisualizer'
8 | ]
9 |
--------------------------------------------------------------------------------
/projects/AlignDETR/align_detr/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .align_detr_head import AlignDETRHead
3 | from .mixed_hungarian_assigner import MixedHungarianAssigner
4 |
5 | __all__ = ['AlignDETRHead', 'MixedHungarianAssigner']
6 |
--------------------------------------------------------------------------------
/projects/CO-DETR/configs/codino/co_dino_5scale_r50_lsj_8xb2_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['co_dino_5scale_r50_lsj_8xb2_1x_coco.py']
2 |
3 | param_scheduler = [dict(milestones=[30])]
4 | train_cfg = dict(max_epochs=36)
5 |
--------------------------------------------------------------------------------
/projects/CO-DETR/configs/codino/co_dino_5scale_swin_l_16xb1_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['co_dino_5scale_swin_l_16xb1_1x_coco.py']
2 | # model settings
3 | model = dict(backbone=dict(drop_path_rate=0.6))
4 |
5 | param_scheduler = [dict(milestones=[30])]
6 | train_cfg = dict(max_epochs=36)
7 |
--------------------------------------------------------------------------------
/projects/CO-DETR/configs/codino/co_dino_5scale_swin_l_lsj_16xb1_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['co_dino_5scale_swin_l_lsj_16xb1_1x_coco.py']
2 |
3 | model = dict(backbone=dict(drop_path_rate=0.5))
4 |
5 | param_scheduler = [dict(milestones=[30])]
6 | train_cfg = dict(max_epochs=36)
7 |
--------------------------------------------------------------------------------
/projects/Detic/detic/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .centernet_rpn_head import CenterNetRPNHead
3 | from .detic_bbox_head import DeticBBoxHead
4 | from .detic_roi_head import DeticRoIHead
5 | from .zero_shot_classifier import ZeroShotClassifier
6 |
7 | __all__ = [
8 | 'CenterNetRPNHead', 'DeticBBoxHead', 'DeticRoIHead', 'ZeroShotClassifier'
9 | ]
10 |
--------------------------------------------------------------------------------
/projects/Detic_new/configs/detic_centernet2_r50_fpn_4x_lvis-base_boxsup.py:
--------------------------------------------------------------------------------
1 | _base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py'
2 |
3 | # 'lvis_v1_train_norare.json' is the annotations of lvis_v1
4 | # removing the labels of 337 rare-class
5 | train_dataloader = dict(
6 | dataset=dict(
7 | type='ClassBalancedDataset',
8 | oversample_thr=1e-3,
9 | dataset=dict(ann_file='annotations/lvis_v1_train_norare.json')))
10 |
--------------------------------------------------------------------------------
/projects/Detic_new/configs/detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup.py:
--------------------------------------------------------------------------------
1 | _base_ = './detic_centernet2_swin-b_fpn_4x_lvis_boxsup.py'
2 |
3 | # 'lvis_v1_train_norare.json' is the annotations of lvis_v1
4 | # removing the labels of 337 rare-class
5 | train_dataloader = dict(
6 | dataset=dict(
7 | type='ClassBalancedDataset',
8 | oversample_thr=1e-3,
9 | dataset=dict(ann_file='annotations/lvis_v1_train_norare.json')))
10 |
--------------------------------------------------------------------------------
/projects/Detic_new/configs/detic_centernet2_swin-b_fpn_4x_lvis_coco_in21k.py:
--------------------------------------------------------------------------------
1 | # not support training, only for testing
2 | _base_ = './detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis.py'
3 |
--------------------------------------------------------------------------------
/projects/DiffusionDet/diffusiondet/__init__.py:
--------------------------------------------------------------------------------
1 | from .diffusiondet import DiffusionDet
2 | from .head import (DynamicConv, DynamicDiffusionDetHead,
3 | SingleDiffusionDetHead, SinusoidalPositionEmbeddings)
4 | from .loss import DiffusionDetCriterion, DiffusionDetMatcher
5 |
6 | __all__ = [
7 | 'DiffusionDet', 'DynamicDiffusionDetHead', 'SingleDiffusionDetHead',
8 | 'SinusoidalPositionEmbeddings', 'DynamicConv', 'DiffusionDetCriterion',
9 | 'DiffusionDetMatcher'
10 | ]
11 |
--------------------------------------------------------------------------------
/projects/EfficientDet/efficientdet/tensorflow/api_wrappers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .coco_api import COCO, COCOeval, COCOPanoptic
3 |
4 | __all__ = ['COCO', 'COCOeval', 'COCOPanoptic']
5 |
--------------------------------------------------------------------------------
/projects/HDINO/__init__.py:
--------------------------------------------------------------------------------
1 | from .h_dino import HDINO
2 | from .h_dino_head import HybridDINOHead
3 |
4 | __all__ = ['HDINO', 'HybridDINOHead']
5 |
--------------------------------------------------------------------------------
/projects/LabelStudio/readme.md:
--------------------------------------------------------------------------------
1 | # Semi-automatic Object Detection Annotation with MMDetection and Label-Studio
2 |
3 | Please read the [Docs](../../docs/en/user_guides/label_studio.md) for more details.
4 |
--------------------------------------------------------------------------------
/projects/RF100-Benchmark/__init__.py:
--------------------------------------------------------------------------------
1 | from .coco import RF100CocoDataset
2 | from .coco_metric import RF100CocoMetric
3 |
4 | __all__ = ['RF100CocoDataset', 'RF100CocoMetric']
5 |
--------------------------------------------------------------------------------
/projects/SparseInst/sparseinst/__init__.py:
--------------------------------------------------------------------------------
1 | from .decoder import BaseIAMDecoder, GroupIAMDecoder, GroupIAMSoftDecoder
2 | from .encoder import PyramidPoolingModule
3 | from .loss import SparseInstCriterion, SparseInstMatcher
4 | from .sparseinst import SparseInst
5 |
6 | __all__ = [
7 | 'BaseIAMDecoder', 'GroupIAMDecoder', 'GroupIAMSoftDecoder',
8 | 'PyramidPoolingModule', 'SparseInstCriterion', 'SparseInstMatcher',
9 | 'SparseInst'
10 | ]
11 |
--------------------------------------------------------------------------------
/projects/ViTDet/vitdet/__init__.py:
--------------------------------------------------------------------------------
1 | from .fp16_compression_hook import Fp16CompresssionHook
2 | from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor
3 | from .simple_fpn import SimpleFPN
4 | from .vit import LN2d, ViT
5 |
6 | __all__ = [
7 | 'LayerDecayOptimizerConstructor', 'ViT', 'SimpleFPN', 'LN2d',
8 | 'Fp16CompresssionHook'
9 | ]
10 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/_base_/xdecoder-tiny_caption.py:
--------------------------------------------------------------------------------
1 | _base_ = 'xdecoder-tiny_open-vocab-semseg.py'
2 |
3 | model = dict(head=dict(task='caption'))
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/_base_/xdecoder-tiny_open-vocab-instance.py:
--------------------------------------------------------------------------------
1 | _base_ = 'xdecoder-tiny_open-vocab-semseg.py'
2 |
3 | model = dict(head=dict(task='instance'), test_cfg=dict(max_per_img=100))
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/_base_/xdecoder-tiny_open-vocab-panoptic.py:
--------------------------------------------------------------------------------
1 | _base_ = 'xdecoder-tiny_open-vocab-semseg.py'
2 |
3 | model = dict(
4 | head=dict(task='panoptic'), test_cfg=dict(mask_thr=0.8, overlap_thr=0.8))
5 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/_base_/xdecoder-tiny_ref-seg.py:
--------------------------------------------------------------------------------
1 | _base_ = 'xdecoder-tiny_open-vocab-semseg.py'
2 |
3 | model = dict(head=dict(task='ref-seg'))
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcoco+.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '_base_/xdecoder-tiny_ref-seg.py', 'mmdet::_base_/datasets/refcoco+.py'
3 | ]
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcoco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '_base_/xdecoder-tiny_ref-seg.py', 'mmdet::_base_/datasets/refcoco.py'
3 | ]
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcocog.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '_base_/xdecoder-tiny_ref-seg.py', 'mmdet::_base_/datasets/refcocog.py'
3 | ]
4 |
--------------------------------------------------------------------------------
/projects/XDecoder/xdecoder/__init__.py:
--------------------------------------------------------------------------------
1 | from .focalnet import FocalNet
2 | from .pixel_decoder import XTransformerEncoderPixelDecoder
3 | from .transformer_decoder import XDecoderTransformerDecoder
4 | from .unified_head import XDecoderUnifiedhead
5 | from .xdecoder import XDecoder
6 |
7 | __all__ = [
8 | 'XDecoder', 'FocalNet', 'XDecoderUnifiedhead',
9 | 'XTransformerEncoderPixelDecoder', 'XDecoderTransformerDecoder'
10 | ]
11 |
--------------------------------------------------------------------------------
/projects/XDecoder/xdecoder/inference/__init__.py:
--------------------------------------------------------------------------------
1 | from .image_caption import ImageCaptionInferencer, RefImageCaptionInferencer
2 | from .texttoimage_regionretrieval_inferencer import \
3 | TextToImageRegionRetrievalInferencer
4 |
5 | __all__ = [
6 | 'ImageCaptionInferencer', 'RefImageCaptionInferencer',
7 | 'TextToImageRegionRetrievalInferencer'
8 | ]
9 |
--------------------------------------------------------------------------------
/projects/example_largemodel/__init__.py:
--------------------------------------------------------------------------------
1 | from .fsdp_utils import checkpoint_check_fn, layer_auto_wrap_policy
2 |
3 | __all__ = ['checkpoint_check_fn', 'layer_auto_wrap_policy']
4 |
--------------------------------------------------------------------------------
/projects/example_project/configs/faster-rcnn_dummy-resnet_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../../../configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py']
2 |
3 | custom_imports = dict(imports=['projects.example_project.dummy'])
4 |
5 | _base_.model.backbone.type = 'DummyResNet'
6 |
--------------------------------------------------------------------------------
/projects/example_project/dummy/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .dummy_resnet import DummyResNet
3 |
4 | __all__ = ['DummyResNet']
5 |
--------------------------------------------------------------------------------
/projects/example_project/dummy/dummy_resnet.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmdet.models.backbones import ResNet
3 | from mmdet.registry import MODELS
4 |
5 |
6 | @MODELS.register_module()
7 | class DummyResNet(ResNet):
8 | """Implements a dummy ResNet wrapper for demonstration purpose.
9 | Args:
10 | **kwargs: All the arguments are passed to the parent class.
11 | """
12 |
13 | def __init__(self, **kwargs) -> None:
14 | print('Hello world!')
15 | super().__init__(**kwargs)
16 |
--------------------------------------------------------------------------------
/projects/iSAID/configs/mask_rcnn_r50_fpn_1x_isaid.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../../../configs/_base_/models/mask-rcnn_r50_fpn.py',
3 | '../../../configs/_base_/datasets/isaid_instance.py',
4 | '../../../configs/_base_/schedules/schedule_1x.py',
5 | '../../../configs/_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/pytest.ini:
--------------------------------------------------------------------------------
1 | [pytest]
2 | addopts = --xdoctest --xdoctest-style=auto
3 | norecursedirs = .git ignore build __pycache__ data docker docs .eggs
4 |
5 | filterwarnings= default
6 | ignore:.*No cfgstr given in Cacher constructor or call.*:Warning
7 | ignore:.*Define the __nice__ method for.*:Warning
8 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | -r requirements/build.txt
2 | -r requirements/optional.txt
3 | -r requirements/runtime.txt
4 |
--------------------------------------------------------------------------------
/requirements/albu.txt:
--------------------------------------------------------------------------------
1 | albumentations>=0.3.2 --no-binary qudida,albumentations
2 |
--------------------------------------------------------------------------------
/requirements/build.txt:
--------------------------------------------------------------------------------
1 | # These must be installed before building mmdetection
2 | cython
3 | numpy
4 |
--------------------------------------------------------------------------------
/requirements/docs.txt:
--------------------------------------------------------------------------------
1 | docutils==0.16.0
2 | myst-parser
3 | -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
4 | sphinx==4.0.2
5 | sphinx-copybutton
6 | sphinx_markdown_tables
7 | sphinx_rtd_theme==0.5.2
8 | urllib3<2.0.0
9 |
--------------------------------------------------------------------------------
/requirements/mminstall.txt:
--------------------------------------------------------------------------------
1 | mmcv>=2.0.0rc4,<2.2.0
2 | mmengine>=0.7.1,<1.0.0
3 |
--------------------------------------------------------------------------------
/requirements/multimodal.txt:
--------------------------------------------------------------------------------
1 | fairscale
2 | nltk
3 | pycocoevalcap
4 | transformers
5 |
--------------------------------------------------------------------------------
/requirements/optional.txt:
--------------------------------------------------------------------------------
1 | cityscapesscripts
2 | fairscale
3 | imagecorruptions
4 | scikit-learn
5 |
--------------------------------------------------------------------------------
/requirements/readthedocs.txt:
--------------------------------------------------------------------------------
1 | mmcv>=2.0.0rc4,<2.2.0
2 | mmengine>=0.7.1,<1.0.0
3 | scipy
4 | torch
5 | torchvision
6 | urllib3<2.0.0
7 |
--------------------------------------------------------------------------------
/requirements/runtime.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | pycocotools
4 | scipy
5 | shapely
6 | six
7 | terminaltables
8 | tqdm
9 |
--------------------------------------------------------------------------------
/requirements/tests.txt:
--------------------------------------------------------------------------------
1 | asynctest
2 | cityscapesscripts
3 | codecov
4 | flake8
5 | imagecorruptions
6 | instaboostfast
7 | interrogate
8 | isort==4.3.21
9 | # Note: used for kwarray.group_items, this may be ported to mmcv in the future.
10 | kwarray
11 | memory_profiler
12 | -e git+https://github.com/open-mmlab/mmtracking@dev-1.x#egg=mmtrack
13 | nltk
14 | onnx==1.7.0
15 | onnxruntime>=1.8.0
16 | parameterized
17 | prettytable
18 | protobuf<=3.20.1
19 | psutil
20 | pytest
21 | transformers
22 | ubelt
23 | xdoctest>=0.10.0
24 | yapf
25 |
--------------------------------------------------------------------------------
/requirements/tracking.txt:
--------------------------------------------------------------------------------
1 | mmpretrain
2 | motmetrics
3 | numpy<1.24.0
4 | scikit-learn
5 | seaborn
6 |
--------------------------------------------------------------------------------
/resources/coco_test_12510.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/coco_test_12510.jpg
--------------------------------------------------------------------------------
/resources/corruptions_sev_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/corruptions_sev_3.png
--------------------------------------------------------------------------------
/resources/data_pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/data_pipeline.png
--------------------------------------------------------------------------------
/resources/loss_curve.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/loss_curve.png
--------------------------------------------------------------------------------
/resources/miaomiao_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/miaomiao_qrcode.jpg
--------------------------------------------------------------------------------
/resources/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/mmdet-logo.png
--------------------------------------------------------------------------------
/resources/zhihu_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/resources/zhihu_qrcode.jpg
--------------------------------------------------------------------------------
/tests/data/OpenImages/annotations/annotations-human-imagelabels-boxable.csv:
--------------------------------------------------------------------------------
1 | ImageID,Source,LabelName,Confidence
2 | 0001eeaf4aed83f9,verification,/m/0cmf2,1
3 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/annotations/bbox_labels_600_hierarchy.json:
--------------------------------------------------------------------------------
1 | {
2 | "LabelName": "/m/0bl9f",
3 | "Subcategory": [
4 | {
5 | "LabelName": "/m/0cmf2"
6 | }
7 | ]
8 | }
9 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/annotations/class-descriptions-boxable.csv:
--------------------------------------------------------------------------------
1 | /m/0cmf2,Airplane
2 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/annotations/image-metas.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/OpenImages/annotations/image-metas.pkl
--------------------------------------------------------------------------------
/tests/data/OpenImages/annotations/oidv6-train-annotations-bbox.csv:
--------------------------------------------------------------------------------
1 | ImageID,Source,LabelName,Confidence,XMin,XMax,YMin,YMax,IsOccluded,IsTruncated,IsGroupOf,IsDepiction,IsInside
2 | 0001eeaf4aed83f9,xclick,/m/0cmf2,1,0.022673031,0.9642005,0.07103825,0.80054647,0,0,0,0,0
3 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/challenge2019/annotations-human-imagelabels-boxable.csv:
--------------------------------------------------------------------------------
1 | ImageID,Source,LabelName,Confidence
2 | 0001eeaf4aed83f9,verification,/m/0cmf2,1
3 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/challenge2019/challenge-2019-train-detection-bbox.txt:
--------------------------------------------------------------------------------
1 | validation/0001eeaf4aed83f9.jpg
2 | -1
3 | 1
4 | 86 0.022673031 0.07103825 0.9642004999999999 0.80054647 0
5 |
--------------------------------------------------------------------------------
/tests/data/OpenImages/challenge2019/class_label_tree.np:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/OpenImages/challenge2019/class_label_tree.np
--------------------------------------------------------------------------------
/tests/data/OpenImages/challenge2019/cls-label-description.csv:
--------------------------------------------------------------------------------
1 | /m/0cmf2,Airplane,86
2 |
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2007/ImageSets/Main/test.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2007/JPEGImages/000001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/VOCdevkit/VOC2007/JPEGImages/000001.jpg
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2012/ImageSets/Main/test.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/VOCdevkit/VOC2012/JPEGImages/000001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/VOCdevkit/VOC2012/JPEGImages/000001.jpg
--------------------------------------------------------------------------------
/tests/data/WIDERFace/WIDER_train/0--Parade/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/WIDERFace/WIDER_train/0--Parade/.gitkeep
--------------------------------------------------------------------------------
/tests/data/WIDERFace/train.txt:
--------------------------------------------------------------------------------
1 | 0_Parade_marchingband_1_5
2 |
--------------------------------------------------------------------------------
/tests/data/color.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/color.jpg
--------------------------------------------------------------------------------
/tests/data/crowdhuman_dataset/id_hw_train.json:
--------------------------------------------------------------------------------
1 | {
2 | "283554,35288000868e92d4": [
3 | 1356,
4 | 2048
5 | ]
6 | }
7 |
--------------------------------------------------------------------------------
/tests/data/custom_dataset/images/000001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/custom_dataset/images/000001.jpg
--------------------------------------------------------------------------------
/tests/data/custom_dataset/test.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/custom_dataset/trainval.txt:
--------------------------------------------------------------------------------
1 | 000001
2 |
--------------------------------------------------------------------------------
/tests/data/dsdl_det/config.py:
--------------------------------------------------------------------------------
1 | local = dict(
2 | type='LocalFileReader',
3 | working_dir='local path',
4 | )
5 |
--------------------------------------------------------------------------------
/tests/data/gray.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/data/gray.jpg
--------------------------------------------------------------------------------
/tests/test_datasets/test_transforms/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import construct_toy_data, create_full_masks, create_random_bboxes
3 |
4 | __all__ = ['create_random_bboxes', 'create_full_masks', 'construct_toy_data']
5 |
--------------------------------------------------------------------------------
/tests/test_engine/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_engine/__init__.py
--------------------------------------------------------------------------------
/tests/test_engine/test_optimizers/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_engine/test_optimizers/__init__.py
--------------------------------------------------------------------------------
/tests/test_evaluation/test_metrics/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_evaluation/test_metrics/__init__.py
--------------------------------------------------------------------------------
/tests/test_models/test_backbones/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import check_norm_state, is_block, is_norm
3 |
4 | __all__ = ['is_block', 'is_norm', 'check_norm_state']
5 |
--------------------------------------------------------------------------------
/tests/test_models/test_layers/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_models/test_layers/__init__.py
--------------------------------------------------------------------------------
/tests/test_models/test_task_modules/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_models/test_task_modules/__init__.py
--------------------------------------------------------------------------------
/tests/test_models/test_task_modules/test_samplers/test_pesudo_sampler.py:
--------------------------------------------------------------------------------
1 | # TODO: follow up
2 |
--------------------------------------------------------------------------------
/tests/test_models/test_task_modules/test_track/test_similarity.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from mmdet.models.task_modules import embed_similarity
4 |
5 |
6 | def test_embed_similarity():
7 | """Test embed similarity."""
8 | embeds = torch.rand(2, 3)
9 | similarity = embed_similarity(embeds, embeds)
10 | assert similarity.shape == (2, 2)
11 |
--------------------------------------------------------------------------------
/tests/test_structures/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_structures/__init__.py
--------------------------------------------------------------------------------
/tests/test_structures/test_bbox/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/V3Det/mmdetection-V3Det/efc935821981d07e34e916d4ceae8a87947fe999/tests/test_structures/test_bbox/__init__.py
--------------------------------------------------------------------------------
/tools/analysis_tools/mot/dist_mot_search.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | PORT=${PORT:-29500}
6 |
7 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
8 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
9 | $(dirname "$0")/mot_param_search.py $CONFIG --launcher pytorch ${@:3}
10 |
--------------------------------------------------------------------------------
/tools/dataset_converters/scripts/preprocess_voc2007.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | DOWNLOAD_DIR=$1
4 | DATA_ROOT=$2
5 |
6 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007/raw/VOCtrainval_06-Nov-2007.tar -C $DATA_ROOT
7 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007/raw/VOCtestnoimgs_06-Nov-2007.tar -C $DATA_ROOT
8 | rm -rf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007
9 |
--------------------------------------------------------------------------------
/tools/dataset_converters/scripts/preprocess_voc2012.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | DOWNLOAD_DIR=$1
4 | DATA_ROOT=$2
5 |
6 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012/raw/VOCtrainval_11-May-2012.tar -C $DATA_ROOT
7 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012/raw/VOC2012test.tar -C $DATA_ROOT
8 | rm -rf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012
9 |
--------------------------------------------------------------------------------
/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | NNODES=${NNODES:-1}
6 | NODE_RANK=${NODE_RANK:-0}
7 | PORT=${PORT:-29500}
8 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
9 |
10 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
11 | python -m torch.distributed.launch \
12 | --nnodes=$NNODES \
13 | --node_rank=$NODE_RANK \
14 | --master_addr=$MASTER_ADDR \
15 | --nproc_per_node=$GPUS \
16 | --master_port=$PORT \
17 | $(dirname "$0")/train.py \
18 | $CONFIG \
19 | --launcher pytorch ${@:3}
20 |
--------------------------------------------------------------------------------