├── Assignment2.ipynb ├── Assignment3.ipynb ├── Assignment4.ipynb ├── Dejunkifying a Plot.ipynb ├── LICENSE ├── README.md ├── Rain_1961_1990.xls ├── Temp_1961_1990.xls ├── UNdata_Export_20180725_144821933.csv ├── UnderstandingDistributionsThroughSampling.ipynb ├── Week2.ipynb ├── Week3.ipynb ├── Week4.ipynb ├── heroes_information.csv └── iris.csv /Assignment4.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Did Snowfall and Rainfall Effect Temperature of United States of America (1961 - 1990)" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "## Assignment 4\n", 15 | "\n", 16 | "Before working on this assignment please read these instructions fully. In the submission area, you will notice that you can click the link to **Preview the Grading** for each step of the assignment. This is the criteria that will be used for peer grading. Please familiarize yourself with the criteria before beginning the assignment.\n", 17 | "\n", 18 | "This assignment requires that you to find **at least** two datasets on the web which are related, and that you visualize these datasets to answer a question with the broad topic of **weather phenomena** (see below) for the region of **Ann Arbor, Michigan, United States**, or **United States** more broadly.\n", 19 | "\n", 20 | "You can merge these datasets with data from different regions if you like! For instance, you might want to compare **Ann Arbor, Michigan, United States** to Ann Arbor, USA. In that case at least one source file must be about **Ann Arbor, Michigan, United States**.\n", 21 | "\n", 22 | "You are welcome to choose datasets at your discretion, but keep in mind **they will be shared with your peers**, so choose appropriate datasets. Sensitive, confidential, illicit, and proprietary materials are not good choices for datasets for this assignment. You are welcome to upload datasets of your own as well, and link to them using a third party repository such as github, bitbucket, pastebin, etc. Please be aware of the Coursera terms of service with respect to intellectual property.\n", 23 | "\n", 24 | "Also, you are welcome to preserve data in its original language, but for the purposes of grading you should provide english translations. You are welcome to provide multiple visuals in different languages if you would like!\n", 25 | "\n", 26 | "As this assignment is for the whole course, you must incorporate principles discussed in the first week, such as having as high data-ink ratio (Tufte) and aligning with Cairo’s principles of truth, beauty, function, and insight.\n", 27 | "\n", 28 | "Here are the assignment instructions:\n", 29 | "\n", 30 | " * State the region and the domain category that your data sets are about (e.g., **Ann Arbor, Michigan, United States** and **weather phenomena**).\n", 31 | " * You must state a question about the domain category and region that you identified as being interesting.\n", 32 | " * You must provide at least two links to available datasets. These could be links to files such as CSV or Excel files, or links to websites which might have data in tabular form, such as Wikipedia pages.\n", 33 | " * You must upload an image which addresses the research question you stated. In addition to addressing the question, this visual should follow Cairo's principles of truthfulness, functionality, beauty, and insightfulness.\n", 34 | " * You must contribute a short (1-2 paragraph) written justification of how your visualization addresses your stated research question.\n", 35 | "\n", 36 | "What do we mean by **weather phenomena**? For this category you might want to consider seasonal changes, natural disasters, or historical trends.\n", 37 | "\n", 38 | "## Tips\n", 39 | "* Wikipedia is an excellent source of data, and I strongly encourage you to explore it for new data sources.\n", 40 | "* Many governments run open data initiatives at the city, region, and country levels, and these are wonderful resources for localized data sources.\n", 41 | "* Several international agencies, such as the [United Nations](http://data.un.org/), the [World Bank](http://data.worldbank.org/), the [Global Open Data Index](http://index.okfn.org/place/) are other great places to look for data.\n", 42 | "* This assignment requires you to convert and clean datafiles. Check out the discussion forums for tips on how to do this from various sources, and share your successes with your fellow students!\n", 43 | "\n", 44 | "## Example\n", 45 | "Looking for an example? Here's what our course assistant put together for the **Ann Arbor, MI, USA** area using **sports and athletics** as the topic. [Example Solution File](./readonly/Assignment4_example.pdf)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 1, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [ 54 | "import pandas as pd \n", 55 | "import numpy as np\n", 56 | "import matplotlib.pyplot as plt\n", 57 | "\n", 58 | "%matplotlib notebook" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 2, 64 | "metadata": {}, 65 | "outputs": [], 66 | "source": [ 67 | "plt.style.use('seaborn-colorblind')" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": 3, 73 | "metadata": { 74 | "scrolled": false 75 | }, 76 | "outputs": [ 77 | { 78 | "data": { 79 | "text/html": [ 80 | "
\n", 81 | "\n", 94 | "\n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | "
Country or TerritoryStation NameWMO Station NumberNational Station Id NumberPeriodElement-Statistic Qualifier CodeStatistic DescriptionUnitJanJan Footnotes...OctOct FootnotesNovNov FootnotesDecDec FootnotesAnnualAnnual FootnotesAnnual NCDC Computed ValueAnnual NCDC Computed Value Footnotes
0UNITED STATES OF AMERICABARROW/W. POST W. ROGERS, AK70026.0500546.01961-1990NaNMedian Valuecm4.3NaN...14.0NaN6.6NaN5.1NaN-9999.92.0-9999.92.0
1UNITED STATES OF AMERICAKOTZEBUE/RALPH WIEN, AK70133.0505076.01961-1990NaNMedian Valuecm14.2NaN...15.2NaN19.0NaN16.5NaN-9999.92.0-9999.92.0
2UNITED STATES OF AMERICABETTLES/FIELD AK70174.0500761.01961-1990NaNMedian Valuecm26.4NaN...28.7NaN27.4NaN36.3NaN-9999.92.0-9999.92.0
3UNITED STATES OF AMERICANOME, AK70200.0506496.01961-1990NaNMedian Valuecm17.3NaN...10.4NaN27.4NaN22.9NaN-9999.92.0-9999.92.0
4UNITED STATES OF AMERICABETHEL/BETHEL AIRPORT, AK70219.0500754.01961-1990NaNMedian Valuecm14.2NaN...9.4NaN18.8NaN17.3NaN-9999.92.0-9999.92.0
\n", 244 | "

5 rows × 36 columns

\n", 245 | "
" 246 | ], 247 | "text/plain": [ 248 | " Country or Territory Station Name WMO Station Number \\\n", 249 | "0 UNITED STATES OF AMERICA BARROW/W. POST W. ROGERS, AK 70026.0 \n", 250 | "1 UNITED STATES OF AMERICA KOTZEBUE/RALPH WIEN, AK 70133.0 \n", 251 | "2 UNITED STATES OF AMERICA BETTLES/FIELD AK 70174.0 \n", 252 | "3 UNITED STATES OF AMERICA NOME, AK 70200.0 \n", 253 | "4 UNITED STATES OF AMERICA BETHEL/BETHEL AIRPORT, AK 70219.0 \n", 254 | "\n", 255 | " National Station Id Number Period Element-Statistic Qualifier Code \\\n", 256 | "0 500546.0 1961-1990 NaN \n", 257 | "1 505076.0 1961-1990 NaN \n", 258 | "2 500761.0 1961-1990 NaN \n", 259 | "3 506496.0 1961-1990 NaN \n", 260 | "4 500754.0 1961-1990 NaN \n", 261 | "\n", 262 | " Statistic Description Unit Jan Jan Footnotes \\\n", 263 | "0 Median Value cm 4.3 NaN \n", 264 | "1 Median Value cm 14.2 NaN \n", 265 | "2 Median Value cm 26.4 NaN \n", 266 | "3 Median Value cm 17.3 NaN \n", 267 | "4 Median Value cm 14.2 NaN \n", 268 | "\n", 269 | " ... Oct Oct Footnotes Nov \\\n", 270 | "0 ... 14.0 NaN 6.6 \n", 271 | "1 ... 15.2 NaN 19.0 \n", 272 | "2 ... 28.7 NaN 27.4 \n", 273 | "3 ... 10.4 NaN 27.4 \n", 274 | "4 ... 9.4 NaN 18.8 \n", 275 | "\n", 276 | " Nov Footnotes Dec Dec Footnotes Annual Annual Footnotes \\\n", 277 | "0 NaN 5.1 NaN -9999.9 2.0 \n", 278 | "1 NaN 16.5 NaN -9999.9 2.0 \n", 279 | "2 NaN 36.3 NaN -9999.9 2.0 \n", 280 | "3 NaN 22.9 NaN -9999.9 2.0 \n", 281 | "4 NaN 17.3 NaN -9999.9 2.0 \n", 282 | "\n", 283 | " Annual NCDC Computed Value Annual NCDC Computed Value Footnotes \n", 284 | "0 -9999.9 2.0 \n", 285 | "1 -9999.9 2.0 \n", 286 | "2 -9999.9 2.0 \n", 287 | "3 -9999.9 2.0 \n", 288 | "4 -9999.9 2.0 \n", 289 | "\n", 290 | "[5 rows x 36 columns]" 291 | ] 292 | }, 293 | "execution_count": 3, 294 | "metadata": {}, 295 | "output_type": "execute_result" 296 | } 297 | ], 298 | "source": [ 299 | "Snowfall = pd.read_csv('UNdata_Snowfall.csv')\n", 300 | "Snowfall.head()" 301 | ] 302 | }, 303 | { 304 | "cell_type": "code", 305 | "execution_count": 4, 306 | "metadata": {}, 307 | "outputs": [ 308 | { 309 | "data": { 310 | "text/html": [ 311 | "
\n", 312 | "\n", 325 | "\n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | "
tasYearMonthCountryISO3ISO2
0-5.2146019611USANaNNaN
1-3.2140019612USANaNNaN
2-0.1508019613USANaNNaN
34.5207219614USANaNNaN
411.8612019615USANaNNaN
\n", 385 | "
" 386 | ], 387 | "text/plain": [ 388 | " tas \\tYear Month Country ISO3 ISO2\n", 389 | "0 -5.21460 1961 1 USA NaN NaN\n", 390 | "1 -3.21400 1961 2 USA NaN NaN\n", 391 | "2 -0.15080 1961 3 USA NaN NaN\n", 392 | "3 4.52072 1961 4 USA NaN NaN\n", 393 | "4 11.86120 1961 5 USA NaN NaN" 394 | ] 395 | }, 396 | "execution_count": 4, 397 | "metadata": {}, 398 | "output_type": "execute_result" 399 | } 400 | ], 401 | "source": [ 402 | "Temperature = pd.read_excel('Temp_1961_1990.xls')\n", 403 | "Temperature.head()" 404 | ] 405 | }, 406 | { 407 | "cell_type": "code", 408 | "execution_count": 5, 409 | "metadata": {}, 410 | "outputs": [ 411 | { 412 | "data": { 413 | "text/html": [ 414 | "
\n", 415 | "\n", 428 | "\n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | "
prYearMonthCountryISO3ISO2
029.874419611USANaNNaN
152.706519612USANaNNaN
259.543619613USANaNNaN
348.610819614USANaNNaN
457.437919615USANaNNaN
\n", 488 | "
" 489 | ], 490 | "text/plain": [ 491 | " pr \\tYear Month Country ISO3 ISO2\n", 492 | "0 29.8744 1961 1 USA NaN NaN\n", 493 | "1 52.7065 1961 2 USA NaN NaN\n", 494 | "2 59.5436 1961 3 USA NaN NaN\n", 495 | "3 48.6108 1961 4 USA NaN NaN\n", 496 | "4 57.4379 1961 5 USA NaN NaN" 497 | ] 498 | }, 499 | "execution_count": 5, 500 | "metadata": {}, 501 | "output_type": "execute_result" 502 | } 503 | ], 504 | "source": [ 505 | "Rainfall = pd.read_excel('Rain_1961_1990.xls')\n", 506 | "Rainfall.head()" 507 | ] 508 | }, 509 | { 510 | "cell_type": "code", 511 | "execution_count": 6, 512 | "metadata": {}, 513 | "outputs": [], 514 | "source": [ 515 | "Jan = Snowfall['Jan'].mean()\n", 516 | "Feb = Snowfall['Feb'].mean()\n", 517 | "Mar = Snowfall['Mar'].mean()\n", 518 | "Apr = Snowfall['Apr'].mean()\n", 519 | "May = Snowfall['May'].mean()\n", 520 | "Jun = Snowfall['Jun'].mean()\n", 521 | "Jul = Snowfall['Jul'].mean()\n", 522 | "Aug = Snowfall['Aug'].mean()\n", 523 | "Sep = Snowfall['Sep'].mean()\n", 524 | "Oct = Snowfall['Oct'].mean()\n", 525 | "Nov = Snowfall['Nov'].mean()\n", 526 | "Dec = Snowfall['Dec'].mean()" 527 | ] 528 | }, 529 | { 530 | "cell_type": "code", 531 | "execution_count": 7, 532 | "metadata": {}, 533 | "outputs": [ 534 | { 535 | "data": { 536 | "text/html": [ 537 | "
\n", 538 | "\n", 551 | "\n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | "
Snowfall
032910.929764
132099.560367
232814.367087
335263.127507
435805.531129
530106.764987
629014.876535
728906.219423
832462.127717
935576.560892
1034939.955171
1133215.316745
\n", 609 | "
" 610 | ], 611 | "text/plain": [ 612 | " Snowfall\n", 613 | "0 32910.929764\n", 614 | "1 32099.560367\n", 615 | "2 32814.367087\n", 616 | "3 35263.127507\n", 617 | "4 35805.531129\n", 618 | "5 30106.764987\n", 619 | "6 29014.876535\n", 620 | "7 28906.219423\n", 621 | "8 32462.127717\n", 622 | "9 35576.560892\n", 623 | "10 34939.955171\n", 624 | "11 33215.316745" 625 | ] 626 | }, 627 | "execution_count": 7, 628 | "metadata": {}, 629 | "output_type": "execute_result" 630 | } 631 | ], 632 | "source": [ 633 | "Weather = pd.DataFrame({'Snowfall': [Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec]})\n", 634 | "Weather" 635 | ] 636 | }, 637 | { 638 | "cell_type": "code", 639 | "execution_count": 8, 640 | "metadata": {}, 641 | "outputs": [], 642 | "source": [ 643 | "Monthly_Temp = Temperature.groupby(' Month').mean()['tas']\n", 644 | "Jan = Monthly_Temp.iloc[0]\n", 645 | "Feb = Monthly_Temp.iloc[1]\n", 646 | "Mar = Monthly_Temp.iloc[2]\n", 647 | "Apr = Monthly_Temp.iloc[3]\n", 648 | "May = Monthly_Temp.iloc[4]\n", 649 | "Jun = Monthly_Temp.iloc[5]\n", 650 | "Jul = Monthly_Temp.iloc[6]\n", 651 | "Aug = Monthly_Temp.iloc[7]\n", 652 | "Sep = Monthly_Temp.iloc[8]\n", 653 | "Oct = Monthly_Temp.iloc[9]\n", 654 | "Nov = Monthly_Temp.iloc[10]\n", 655 | "Dec = Monthly_Temp.iloc[11]" 656 | ] 657 | }, 658 | { 659 | "cell_type": "code", 660 | "execution_count": 9, 661 | "metadata": {}, 662 | "outputs": [ 663 | { 664 | "data": { 665 | "text/html": [ 666 | "
\n", 667 | "\n", 680 | "\n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | "
SnowfallTemperature
032910.929764-6.266277
132099.560367-4.228557
232814.3670870.161376
335263.1275075.987872
435805.53112912.186650
530106.76498717.210970
629014.87653520.030330
728906.21942318.935290
832462.12771714.488357
935576.5608927.789156
1034939.9551710.468967
1133215.316745-4.694447
\n", 751 | "
" 752 | ], 753 | "text/plain": [ 754 | " Snowfall Temperature\n", 755 | "0 32910.929764 -6.266277\n", 756 | "1 32099.560367 -4.228557\n", 757 | "2 32814.367087 0.161376\n", 758 | "3 35263.127507 5.987872\n", 759 | "4 35805.531129 12.186650\n", 760 | "5 30106.764987 17.210970\n", 761 | "6 29014.876535 20.030330\n", 762 | "7 28906.219423 18.935290\n", 763 | "8 32462.127717 14.488357\n", 764 | "9 35576.560892 7.789156\n", 765 | "10 34939.955171 0.468967\n", 766 | "11 33215.316745 -4.694447" 767 | ] 768 | }, 769 | "execution_count": 9, 770 | "metadata": {}, 771 | "output_type": "execute_result" 772 | } 773 | ], 774 | "source": [ 775 | "Weather['Temperature'] = [Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec]\n", 776 | "Weather" 777 | ] 778 | }, 779 | { 780 | "cell_type": "code", 781 | "execution_count": 10, 782 | "metadata": {}, 783 | "outputs": [], 784 | "source": [ 785 | "Monthly_Rain = Rainfall.groupby(' Month').mean()['pr']\n", 786 | "Monthly_Rain.iloc[0]\n", 787 | "Jan = Monthly_Rain.iloc[0]\n", 788 | "Feb = Monthly_Rain.iloc[1]\n", 789 | "Mar = Monthly_Rain.iloc[2]\n", 790 | "Apr = Monthly_Rain.iloc[3]\n", 791 | "May = Monthly_Rain.iloc[4]\n", 792 | "Jun = Monthly_Rain.iloc[5]\n", 793 | "Jul = Monthly_Rain.iloc[6]\n", 794 | "Aug = Monthly_Rain.iloc[7]\n", 795 | "Sep = Monthly_Rain.iloc[8]\n", 796 | "Oct = Monthly_Rain.iloc[9]\n", 797 | "Nov = Monthly_Rain.iloc[10]\n", 798 | "Dec = Monthly_Rain.iloc[11]" 799 | ] 800 | }, 801 | { 802 | "cell_type": "code", 803 | "execution_count": 11, 804 | "metadata": {}, 805 | "outputs": [ 806 | { 807 | "data": { 808 | "text/html": [ 809 | "
\n", 810 | "\n", 823 | "\n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | "
SnowfallTemperatureRainfall
032910.929764-6.26627744.567710
132099.560367-4.22855741.915983
232814.3670870.16137651.627430
335263.1275075.98787249.433157
435805.53112912.18665060.396267
530106.76498717.21097064.473557
629014.87653520.03033065.537783
728906.21942318.93529065.038193
832462.12771714.48835761.432697
935576.5608927.78915649.504067
1034939.9551710.46896750.642860
1133215.316745-4.69444750.472827
\n", 907 | "
" 908 | ], 909 | "text/plain": [ 910 | " Snowfall Temperature Rainfall\n", 911 | "0 32910.929764 -6.266277 44.567710\n", 912 | "1 32099.560367 -4.228557 41.915983\n", 913 | "2 32814.367087 0.161376 51.627430\n", 914 | "3 35263.127507 5.987872 49.433157\n", 915 | "4 35805.531129 12.186650 60.396267\n", 916 | "5 30106.764987 17.210970 64.473557\n", 917 | "6 29014.876535 20.030330 65.537783\n", 918 | "7 28906.219423 18.935290 65.038193\n", 919 | "8 32462.127717 14.488357 61.432697\n", 920 | "9 35576.560892 7.789156 49.504067\n", 921 | "10 34939.955171 0.468967 50.642860\n", 922 | "11 33215.316745 -4.694447 50.472827" 923 | ] 924 | }, 925 | "execution_count": 11, 926 | "metadata": {}, 927 | "output_type": "execute_result" 928 | } 929 | ], 930 | "source": [ 931 | "Weather['Rainfall'] = [Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec]\n", 932 | "Weather" 933 | ] 934 | }, 935 | { 936 | "cell_type": "code", 937 | "execution_count": 12, 938 | "metadata": {}, 939 | "outputs": [ 940 | { 941 | "data": { 942 | "text/html": [ 943 | "
\n", 944 | "\n", 957 | "\n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | " \n", 1021 | " \n", 1022 | " \n", 1023 | " \n", 1024 | " \n", 1025 | " \n", 1026 | " \n", 1027 | " \n", 1028 | " \n", 1029 | " \n", 1030 | " \n", 1031 | " \n", 1032 | " \n", 1033 | " \n", 1034 | " \n", 1035 | " \n", 1036 | " \n", 1037 | " \n", 1038 | " \n", 1039 | " \n", 1040 | "
SnowfallTemperatureRainfall
032.910930-6.26627744.567710
132.099560-4.22855741.915983
232.8143670.16137651.627430
335.2631285.98787249.433157
435.80553112.18665060.396267
530.10676517.21097064.473557
629.01487720.03033065.537783
728.90621918.93529065.038193
832.46212814.48835761.432697
935.5765617.78915649.504067
1034.9399550.46896750.642860
1133.215317-4.69444750.472827
\n", 1041 | "
" 1042 | ], 1043 | "text/plain": [ 1044 | " Snowfall Temperature Rainfall\n", 1045 | "0 32.910930 -6.266277 44.567710\n", 1046 | "1 32.099560 -4.228557 41.915983\n", 1047 | "2 32.814367 0.161376 51.627430\n", 1048 | "3 35.263128 5.987872 49.433157\n", 1049 | "4 35.805531 12.186650 60.396267\n", 1050 | "5 30.106765 17.210970 64.473557\n", 1051 | "6 29.014877 20.030330 65.537783\n", 1052 | "7 28.906219 18.935290 65.038193\n", 1053 | "8 32.462128 14.488357 61.432697\n", 1054 | "9 35.576561 7.789156 49.504067\n", 1055 | "10 34.939955 0.468967 50.642860\n", 1056 | "11 33.215317 -4.694447 50.472827" 1057 | ] 1058 | }, 1059 | "execution_count": 12, 1060 | "metadata": {}, 1061 | "output_type": "execute_result" 1062 | } 1063 | ], 1064 | "source": [ 1065 | "Weather['Snowfall'] = Weather['Snowfall']/1000\n", 1066 | "Weather" 1067 | ] 1068 | }, 1069 | { 1070 | "cell_type": "code", 1071 | "execution_count": 13, 1072 | "metadata": {}, 1073 | "outputs": [ 1074 | { 1075 | "data": { 1076 | "text/html": [ 1077 | "
\n", 1078 | "\n", 1091 | "\n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | "
SnowfallTemperatureRainfall
Jan32.910930-6.26627744.567710
Feb32.099560-4.22855741.915983
Mar32.8143670.16137651.627430
Apr35.2631285.98787249.433157
May35.80553112.18665060.396267
Jun30.10676517.21097064.473557
Jul29.01487720.03033065.537783
Aug28.90621918.93529065.038193
Sep32.46212814.48835761.432697
Oct35.5765617.78915649.504067
Nov34.9399550.46896750.642860
Dec33.215317-4.69444750.472827
\n", 1175 | "
" 1176 | ], 1177 | "text/plain": [ 1178 | " Snowfall Temperature Rainfall\n", 1179 | "Jan 32.910930 -6.266277 44.567710\n", 1180 | "Feb 32.099560 -4.228557 41.915983\n", 1181 | "Mar 32.814367 0.161376 51.627430\n", 1182 | "Apr 35.263128 5.987872 49.433157\n", 1183 | "May 35.805531 12.186650 60.396267\n", 1184 | "Jun 30.106765 17.210970 64.473557\n", 1185 | "Jul 29.014877 20.030330 65.537783\n", 1186 | "Aug 28.906219 18.935290 65.038193\n", 1187 | "Sep 32.462128 14.488357 61.432697\n", 1188 | "Oct 35.576561 7.789156 49.504067\n", 1189 | "Nov 34.939955 0.468967 50.642860\n", 1190 | "Dec 33.215317 -4.694447 50.472827" 1191 | ] 1192 | }, 1193 | "execution_count": 13, 1194 | "metadata": {}, 1195 | "output_type": "execute_result" 1196 | } 1197 | ], 1198 | "source": [ 1199 | "Weather.index = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n", 1200 | "Weather" 1201 | ] 1202 | }, 1203 | { 1204 | "cell_type": "code", 1205 | "execution_count": 14, 1206 | "metadata": {}, 1207 | "outputs": [ 1208 | { 1209 | "data": { 1210 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAEICAYAAADbSWReAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VGX68PHvnUwqIQkJLSQk9A6CICDSFBVUwMbuzy6oi6irCLquu+y+oq6u7qKoa8WKK3ZdEVQURQQpIiAgIF1aSAHSe5nn/eOchEmcFCDJZDL357pyZU6/z5kz536e5zQxxqCUUkqpivw8HYBSSinVGGmCVEoppdzQBKmUUkq5oQlSKaWUckMTpFJKKeWGJkillFLKDU2QqskRkd+LSKKI5IhIzxrGnSYiX9ufg0XEiEhcA8RYvtx6mPfNIrLoJMb/t4gcF5H9tRj3XRH5m/15nIjsqWK8IHv7t6t14HVIRPaKyNl1NK8eIlJSF/NqaCJyqYi86+k4GhMR+UxERtdm3FonSBFZLiLpIhJ0ypE1EiKyzf7x5ohIqYgUuHT/1dPxnQ4RWSsi13lw+cEi8oxLgtonIo83cBhzgZuMMWHGmF8aeNmnzT4gG5d9cp+IzKzt9MaYV40xE2q5rK7AbUBXY0yHUwzZXQyF9vY/crLTVpV4T2bfNsZ0Nsassad7TEReOdk4aktERtuxZdoFjZUicoY97KQKQvWQjB8BHnOZ/+MistU+7t1fadl+IvKgiBwSkSwR+a+INKs0zkUisklEckXkoIhc6jLsDRHZLSJOEbmqpsCqG19EQkTkWRFJEpE0EXlKRPxdhvcVkRV2nLtE5BI3ce6y4/y6UqH3cXu71KhWCVJEOgAjAANMrM00J0tEHPUxX3eMMb3tH28YsBL4Y1m3MebRhorjZDXENqqDZTwA9ATOBJoD5wNbTjeu2hKRAKAdsK2hlllPSl320WuBR0RkRD0sJwFINsak1cO8mzwRiQYWAv8GWgDtgUeBYk/GBVC2vxhjNrn03gncAyx1M8kfgCuAIUAc0BJ40mV+/YHXgXuBcGAgFX/bG4GpwNZahljd+P8P6zhS9jcSuM+OIwj4FHgPa5vfBbxv5ylEJMYe9id7HbYDb7nMeyXQXkT61hihMabGPzvYVVgba7FL/6FAMuDv0u9yYIv92Q+4H9gLHAfeB6LsYR2wEu7NwEFghd3/A3uemcAKoLfLvKOBRUAW8CPwD+B7l+E9sL74NKwd4fe1WLflwC1u+t9qzyMN+AyItfsH23FPs9crC/gb0B1YZ8e9AHDY448D9gAP2vPaB/zOZTkhwFPAIXu9/wMEVZr270AK8DLQCvgCOGrPbyEQY4//BFAKFAA5dncPoKTSuq0FrrM/TwOWAc8B6cDfqlv/WmzPr4Fp1QxPBmZg/SjKtlWgy/A7XPaXj4E2dv/HgX+7bLNC4CG7O9xe5wh7vQ2QC2xz2X9/BbLt5V7isrxpwNeVvtu4KmK/Fdhhz2cPVi21bFjZd/VX+7tJBK51Gd4a+NzeX9YA/yxbrpvluPvOtgB3VvpNnsw6/cHerunAXHvYeCAfcNrb7UXAAXxk728ZwLdAd5d5v+uyj4wD9lSxDhW2pT3dU8CXdsyrgIQqpnU7Xyrut4/Z+8479vy2AP0r7WfDgcuAIqyElQOss4dHAW/a4x3CKtj52cMcwNNY++Ae4M7K34fLcoZjFTDcDRuAtV+W2MtOdjlGbrb3hQPAX12mSbW3W479N6CG45E/8Ky9z2Xa8+1uD3sUeLaK2D4E7q/Ub3Glfew8O4ZAu/tjYFYtjgHrgatqc7yoanysfXqCS/dNwG778yDgeKXxV5TFhpUwl7kMi7T3gQ4u/f4L/Lmm2GrbxHoD1s64ABgrIm0AjDFrsQ5E57mMew3wtv35LqwddBRWqT4d60DsahRWCWGs3f0F0BXrgLLRXmaZ5+zltQVutP8AsJsCltrLbg1cDTwvIr1ruY7l7Or+3cAEoA3wExVLIABjgDPs+B/ASmy/AzoCg4ErXcbtAATacU8F5otIR3vYXKzSWl+sJNsNq1DhOm0AVsn0LqxCx4tAvL2ssnlgjLkHq+Bwi7FqH/fUcpVHApuwSltP1HL9q7IW+LPdtFTVtp+Etf26YJVWrwEQkYuxCgOXA7HAMZflfgeMtj+fDRzG2vZgHaQ2G2My7XUA6yBRtvydwDCsBPo48K6IlI13MpKAi7AS8jTguUrrmAAI1r7+R+BFEQmzh83DOri1wWrSvKk2CxTLCKz9wrXZ8WTX6SKsA/aZwBQRGW2MWYy1rffZ+8s0e9xPgc5Y++sOYH5tYq2Fa4C/YCWnJKxC4+m4HHgN6wD4DVYCrsAY8wlWwX6+vY6D7UELsBJKJ6zf62XA9fawP2Id0/pi7Wv/V00MvwAhIvKqiIwVkUiXZf+E9Ttabi+7rT0oC2tbRNrrcK+IjLOHjcSl9cAY81MNv8fxWDW5zli1qWuwjrPY8e+sJvbKxP5z7W7GiePMUMBhn6JKEpH5IhJxEvM/Ge5i6SIiwZX6uw7vY3/ujVVQAMAYk4FVCXP9rf6CdfyuXi2y+3Cs0ldLu3sHMMNl+D+A1+zPzbESWILd/QswxmXcGHteDk7UIDtVs+xIe5wIrJJSMRVLs+U1SKydeGWl6V8CHqhh/ZZTqQaJVWp2Lf0H2Mtuw4mS8UCX4duA6S7dzwGPmROl4QIg2GX4p1jVfwdWySbWZdi5wC8u0+YCAdXEPxRIcukuL2Xb3bWpQe6q7frXYn8JAKZj1ZIKsRLZ1S7Dk4FJLt3PAE/Znxdg1wpdvn8n1oE63J5fODAbq5knyf4+Hgf+ZU9TbS3QZR8e67L+tapBupnPEuBWl+8qE7sWYvfLAvrb83VSsQT7JNXXIA1WDS7f/vxIDbHUtE6DKu1/d7vE7bYWaA9va8cebHefTg3yWZfhVwCbqpi2tjVI19asM4GMSvvZcJdxX3EZlkCl3xUwBfjC/rwamOwybCJV1CDt4X2waqNHsH4nH3PieFn+XVQz/YvAP6v5vVZ3PLoY6/gzGJBK0610XY9Kw9zVIP9oz6s9VrJdYn+HA7COv05gN1ahIhyrNe9VN/OuixrkHKxjczRWgXOjHUsLe986hHWcCQAuwaqlL7SnXQDMrjS/Da7LwGoV+Lym2GpTg7wR+MoYc8zufhuXmpvdfYXdLnwFsNEYc8AelgD8T0QyRCQDK2GW2l9smUNlH0TE3z6hvldEsoD99qCWWE2LDtfxK31OAIaULcte3rVYP/CTlYBV+i+bz1GsL8D1RG+Ky+d8N91hLt1HjTEFLt0HsL70dlhf8DaXZX2CVQMuk2yMKT+fISLNReQ1+wR5FvAVJ2pNp+pQpe7arL9bxphiY8zTxpizsXbmJ4E3RaSz6zq5fM7jxLZqh7VtyuaVgZVkYo0xWcDPWAW2kVgHjR+xaqCjsGqYbol1VecWl/XpwilsMxGZKCLr7IsGMrBqGa7zOWqMcbpZt7ZYJVzX7XyA6pUaYyKxCp2zgHNdzw+fwjpVtc0rr6NDROaIdWFQFlbiFawD1emqVQxY+1qAm/5lieFk51dZAtZB9qjL9nuaE8eldpzEd2WM2WqMucEY0w6rQNQZ65ykWyJyjoh8JyJHRSQTmEz13111v8cvgFexKgMpIvK8S6tFOtb+U1svYJ2yWYXVZF12nvKwMaYUqzD/ijFmn/17fAwrQVdLTlzRXPbXuqZpsFrldmL95ldgFTpyjTHp9rH0UqyWqGTgdnv4YXvaHKwE7iocqym+THOsAmi1qk2QIhIC/B4YJSLJIlJ2/ugMsa/SMsZsx9qBLqJi8ypYO9lFxphIl79gY0yiyzjG5fM1WCt+PlatsUNZKLg/SLevtKzvKi0rzBhzW00bwY1DWCUv13mFGGM2nMK8AFraTQNl4rFKm0lY69TZZTkRxhjXg5Hr9gGr+TUOOMsYEw5cSMUmh8rj5wL+UvHq48qFhsrT1Mn6G2PyjDFPYtX8etRikiNYBwMA7OabcKzzeWAlwQuwmuQ32d2XYB2Uvnc3QxHphtX8PRXr/HckVlOlu2aaKtlN+B8ADwOt7fksq+V8krG2sev+Gl+b5RpjSrDOVwYCt9ix1Mk6VWEK1j51LtZvsOx7q4t519ZBoK3rb0ZE/LC2WU0FC3fc7d85QAuX/TvcGHOmPTyJU/iuAIwx27DOb5U191VeNljXYrwHtDfGRABvcGL7uhu/yt+jsTxpjBkA9MNqNpxuT7cFq2m+trGXGmP+aoyJN8a0x6ot/mqMOWqP8nMV8dU037Irmsv+UmsxTa4x5lZjTDtjTBdOXHdSNnyjMWaEMSbaGHMJVqFknT14Gy7Np/ZxJIGKF+71xKUZtio11SAvw6rx9cI6CPW3Z7wS67xkmbexzo+NxDqIlHkR6+q7BDvQVuJyWbAbzbEOpseBUKyTzID15WGVEmaLSKiI9KgUw2Kgm4hcLyIB9t9ZUsN9cFV4EfibiHS3424hIlfWME11AoC/i0igiJyHdZD/yK4ZvgY8LSIt7fNN7UXkgmrm1RyrtJxhn3P6W6XhKVhNIGWOYBUurrVr6Ldjnd+rTrXrL9Yl7fe7m1BE7hGREWLd7hEgIlOxmmdq3BmxLrj4g4j0sQ+Oj2OdbC+rKXyHdVHXRnt/WI7VhLXNWOcf3QnDaho6CviJyDSs2tbJCsH6HlMBp4hM5MQ50WrZJd5FwINiXb7eD6t1o1aM1Sb0GPAXsa7Srat1cqc51imB41jnn/5RR/M9GbuxLtL4p4g0s/eFWVg1oo2nML8UoKOICIAx5les5tp/2S0yfiLSVUSG2+O/D8wQkRj7N3ZfVTMW63aDu0Uk1u7ugHW6Z63Lstvb3xt2DGFYF5kUiMgwrGsXyqRiFWhdk3KVv0cRGSoig+zWhVysWl6pPd3nnDhPXxZvgL09/bDOJwbbhY+y43MH+zjUF/gX1umMMq8Dt4hIvF1g/BPWcbds3oFy4hxhgD3vKgtW1Y1vHwfb2t/NcKyKwWyXafvZNdNmIjLL3qZl16t8CJwlIhPs+T8IrDbG7Hf5DkZi1b6rVVOCvBF43Rhz0BiTXPaHddXUtXKiyecdrIPFMpemWLCaLT4FvhKRbKydZkg1y3sTq4SYiHVp7tpKw/+IVapNxiqlvYOVUDHGZGOVfK/CSgrJWAfYk75v0xjzjr2OH4vVzLQJK6mdqv1YNcVkrIQ4xRizzx52tx3veqxzWEuo/mA3B6s55jhWrenzSsPnAjeIdc/qv+xEcgtWk8UxrJJxtTXBWqx/HNZ5GncKsc4rpmD92KcAlxljDlcxvutyF2PVlj7F2iZtOXHhBFgFs2ZYTS7YcTldut3NcyPWAWY9Vs2go/35pNj79b1Yie44VuGx8ravzq1YTXgpWM1hr59kCB9jNS9Orqt1qsKrWIk3GavG4LZmXp/sAsGVWC1Iv2I1nZ2NdVVj0SnM8l2sAneaiJTtt1djnePegXXx1HucaGJ9Fmtf2wb8gJUwq5KF1ez/o4jkYm2vdZy40G4J1u8/VUQO2+s2DZhjHxPvw6VSYYxJx0pMG8RqUu1fw+8xEqsGmoF1hfwBrN8fxpjVWPnA9WKU/2KdArocqzUkH6uVEHv9l2Il2k+B54wxb7pM+wLWFc4/YX0v6Vi3jJRZYc/vTKxjeT7VH++rG7/sroAcrKv37zbGuJ5GuQVrH03G2jfG2q0tGOve2//DOr2ThlWbd71/djiQaIyp8fYzsb4v7yTWDehtjTE31jiyh4h1ddqzdjOB1xORLsDLxphzPR2LUqp6dkvHNcaYGm/c9xUishh40hizrMZxvSlB2s2qgVgl27OwSvC3GOtS7kapqSVIpZTyFQ329Jo60hyrWbUdVvPdE1hXXSmllFJ1yqtqkEoppVRD0bd5KKWUUm54WxNrnRg3bpxZsmSJp8NQSilv0pD3wjYKPlmDPHbsWM0jKaWU8mk+mSCVUkqpmmiCVEoppdzQBKmUUkq5oQlSKaWUckMTpFJKKeWGJkilvFjG6gXsmtmB7Tf6sWtmBzJWL6h5IqVUrfjkfZBKNQUZqxeQ9PpUTFEeACXHD5D0+lQAIofV+m1aSqkqaIJUysuU5mdTkp5Iyjszy5NjGVOUR8rbd+MIi8YvuLn9F1b+WQKCqOYVfTXKWL2A1A9nUXL8II7oeFpPekSTsWqyNEEqVYdOJ4EYZyklWamUpCdSkp5IcXoixWmHK3SXpCfiLMiudj6l2cc4+MRF7gf6O/ALshKmf3BzJDgM//JEWjGZ+oU0Lx/XL7g5eXvWkPbFvzHFBYDWWFXT55MPKx80aJBZv76u3i+rlKVykyeABIYSM2Ue4QMvL09wJ5Ld4fJ+xemJlGQkgbO04kz9/HFExhDQIhZHi1j7fxwBLWJJfuceSrNSfhOHIyKGuLs+wpmfjbMgG2dhTvnn0oJsTGEOpWXDCrJxFuSc+FxofTbFhbVeb0d0At2e3H+qm015D5971JzWIJWqI6kfznLb5Hlk3vUccVMQ9QtuXp70mvUaUykJ2n/hrRE/f7fLM+A2Ibe+6t+Edjn7tNbFlBSXJ8yyZLr/4WH2UisqOX6AtGUvEj74dzjCok9ruUo1JpoglaoDRSl7KTl+wP1AY2g96dHypFeWAP1Dmp/WMsuaNevjnKA4AvAPi8I/LIoAu58jOt79Ovo7SJ5/G8lv3UVYv4uIHHYdYf3H4xcYctpxKOVJ2sSq1CkyJcVkb1pE+rIXyd22tMrxmkoTZJVNyJPnERzXm4zVb5G19h1KMo7gFxJO+FmTiBh2HaHdRyF+ekdZE+BzTayaIJU6ScXHD5H+3ctkfPcKJRlJOKLiaDF6Kn6hLUh9/89uz0E2lYtYaroIyThLyf1lOZmr3yJ7/Uc4C7JxRMURMfRqIs6+juD4fh6MXp0mTZC+QBOkOlnGWUrOz1+SvuxFcjZ/BhjC+l1Ei3OnEdbvIsTfOluht0Gc4CzMI3vTIjJXv0XOz0ugtISguL5EDLuOiLOvISAqztMhqpOjCdIXaIJUtVWSkUz6ytfIWD6P4mMH8I9oQ4uRNxM56g8Eturg6fC8Rkn2MbLWvU/m6rfI37MGRAjtMZqIYdcRPuhK/EMjPB2iqpkmSF+gCVJVxzid5P7yLenfvkj2xk+gtITQXucRde40mp95KeII9HSIXq0oZS+ZaxaQufotilJ2IwFBhPWfYF3c0+8i3b6NlyZIX6AJUrlTknOczJVvkP7tSxSl7Ma/WRQRI6bQ4typBLXt5unwmhxjDAW/ridz9Vtkrn2H0uyj+DeLInzw74kYdh1FR/eT+pE2VzcimiB9gSZIVcYYQ/7u1aR/+yJZP36AKS4kpOs5tDh3GuFnTcIvMNjTIfoEU1JMzravyVzzFtkb/ocpysc6Hp84PjW1C568kCZIX6AJ0re4u3Cmef/xZK76L+nfvkhh4jb8QsKJGHY9Lc69leD2fT0dsk8rzc9mz70dKc05/pthTeWWGS/lcwnSqx4UICKRwCtAH6yi5U3ATuA9oAOwH/i9MSbdQyGqRsbdGy+OvHwjiB+UFhPccRAxN71CxNCr8Atq5uFoFYB/SHNKc9LcDis5frCBo1G+zKsSJPA0sMQYM0lEAoFQ4K/AN8aYx0TkfuB+4M+eDFI1Hu4e/4azFAkKocPfVxPScZBnAlPVquqpPQ69NUQ1IK95vIWIhAMjgVcBjDFFxpgM4FJgvj3afOAyz0SoGqOqahymMFeTYyPWetIjSGDob/r7N2+FqfxAd6XqidckSKATcBR4XUR+EpFXRKQZ0MYYkwRg/2/tbmIRmSoi60Vk/dGjRxsuauVRflXcX+eIjm/gSNTJiBx2LTFT5uGITgAER3QC4efcSOGBjaS+f7+nw1M+wpuaWB3AmcCdxpgfRORprObUWjHGzAPmgXWRTv2EqBqT9OUv48zLAD//Cq+RksBQWk96xIORqdqIHHbtb65YTQoO4/gXcwiM6UGLUTd7KDLlK7ypBnkYOGyM+cHu/hArYaaISAyA/T/VQ/GpRiRr/cckvWE9Bq7dTa9VqInorQLeq+21T9Gsz4UkzZ9G7i/LPR2OauK86jYPEVkJ3GKM2Skis4Gyyw6Pu1ykE2WMua+6+ehtHk1b7vZlHHziIoI7DCThvqV6dWoTU5qXyf6Hh1GcmUTH//cDQW27ejokX+Fzt3l4Uw0S4E5ggYhsAfoDjwKPAReIyG7gArtb+aj8Xzdw6OlLCWzTlfgZizU5NkH+oRG0n7EI8fPn0NzxVd4SotTp8qoaZF3RGmTTVJi8i/3/GI5fUCgdZq0iICrW0yGpepS363sOPD6GkG7DSbhnCeIIqHkidTq0BqmUNypOS+Tgvy8EIP5PX2ly9AGh3YYTM+Vl8rYvI+m/f8QXC/uqfnnTVaxKuVWak8bBOWMpzUkj4f5v9cHiPiRy+A0UJe/k2KJHCYrpQfS4GZ4OSTUhmiCVV3MW5nFw7gSKUnYTf+8SQjoO9HRIqoG1uuJhCpN2kvLuPQS26ULzARM8HZJqIrSJVXktU1LM4Wcnkb93LbG3vUOznud6OiTlAeLnR+zU+QQnnEnii9dQcHCLp0NSTYQmSOWVjNPJkVemkLPlC2Imv0j4oCs8HZLyIL+gZrS/+1P8QiI49NQESjKSPR2SagI0QSqvY4wh5Z2ZZK5ZQKtJj9Bi9B88HZJqBAJatKP93Z9Skn2MQ89chrMo39MhKS+nCVJ5nWOL/0naV08TdeHdtBz/F0+HoxqRkA5nEnvrW+Tv/YEjr9ykV7aq06IJUnmV9G/ncfTDWUQMu442Vz+BiM/dmqVqED7oclr//jGyfniXY5885OlwlBfTq1iV18j68SOS5t9G2BkX0+7m1xA/Ld8p96Ivvo/CIzs4+slsAtt2I+Lsqz0dkvJCeoRRXiF3+zISX7yGkM5DibvjA31qiqqWiNBuykuEdhvBkVenkLdnradDUl5IE6Rq9Co+X3URfkG/fZGuUpWJI5C4uz7GERnLoacvpejYAU+HpLyMJkjVqBUm7+LgExfhHxZN/L1f4h8W5emQlBdxNG9J/MzFmJJCDs2dQGl+tqdDUl5EE6RqtCo+X3WpPl9VnZKgdj2Ju+MDCo9sJ/GFqzEuL89WqjqaIFWj5Pp81fh7l+g7/9RpCetzAW2v+w85mz8j5d0/eToc5SX0KlbV6DgLczk4d/yJ56t2ONPTIakmIGrMbRQl7SDty7kExfSgxblTPR2SauS0BqnIWL2AXTM7sP1GP3bN7EDG6gUei8V6vurvyN/7gz5fVdW5Nlc/QVi/i0j67x3kbPvG0+GoRk4TpI/LWL2ApNenUnL8AGAoOX6ApNeneiRJ6vNVVX0Tfwext79LUNvuHH52EoVJOz0dkmrENEH6uNQPZ2GK8ir0M0V5JL95O9mbFlOSdbRB4tDnq6qG4h8STvsZixD/AA7NHU9JznGPxNGYWm6Ue+KLzyocNGiQWb9+vafDaBS23+gHVL8PBLTuTGjnoYR0HkpI5yEEx5+BOALrNI6jix7l6IeziLrwbtpc86Q+Qk7Vu7zdqznw2LmEdBlGwp++rPN9ujplLTeuhVMJDCVmyjwih11bL8tL/XAWJccP4oiOp/WkR05lOT73o/Sqi3REZD+QDZQCJcaYQSISBbwHdAD2A783xqR7KkZvUpJ1FPwdUFr8m2GOqPbETltA/t615O9dS+4vy8hcY5VwJSCI4ISBhHQZWp44HVFxp5zU9PmqyhNCuw6j3c2vkfjSdSTNv42Ym16p933PWZBDcdohUt6Z6b7l5r934szLQPwd4OdA/APcf3YEIH4Oq9v/xGfxDwB/h91tfc7esJCUd2di7LeblJ1GAeolGTclXlWDtBPkIGPMMZd+/wLSjDGPicj9QAtjzJ+rm4/WIKE4I4kDj4+hKGUPIn6YksLyYe5KssYYStIOk793LXl715K/Zy0FBzZgiq3pHJHtCOlSVsscSkiHgbV64k3Wjx9x+LnfE9ZvHO3v+kQfIacaXOpHf+fYp/+g+dCryd+9+pRrWc6iAkrSD1Ocdoji44coTjtESdqhCt3OvIx6XJOT44hOoNuT+09mEp8ruTaFBLkTGG2MSRKRGGC5MaZ7dfPx9QRZfPwQBx4/j5LMZNrPWExx2uFTan4xJUUUHNpC/p615YmzOHWvNdDPn+D2/U4kzC5DCWzTFRGp0NwDhoDWXen8j036CDnlEcbp5NeHzqbg13UV+rsWFE1JMcUZR6yEZye78gRod5dm//Z8vX/zlgREtccR1Z6AqPYERFv/k9+eSWlWym/Gd0TF0enBjRhnCZQWY0pLMM4STEkxOEus7tKKn01pid3t/nPSG9OqWHOh13znyWwqTZCNmYj8CqRjnTR7yRgzT0QyjDGRLuOkG2NauJl2KjAVID4+fuCBA775XMaio79y4LHzKM21bsAP7XJ2nc6/JOso+ft+KE+a+fvW4SywHu/l3ywKR1QchUd+qdCsK4EhxEx5WZt7lMfsmhFPSdqh3/QXRyD+YS0pyUyCSsdKv9AIK+m5SYBWdxx+gSFul9eQ5yB3zexgX6VekdYga+ZtCbKdMeaIiLQGlgJ3Ap/WJkG68tUaZGHyLg48dh6mKJ/4P31FSMeB9b5M4yyl8MiO8nOZGd/Pd3/O8+R/rErVmeouVoscMcVtAvQPaX5ay6yjC2dqtZw6SsaaIL2FiMwGcoA/oE2sNSo4vI0D/xoDTicJ931NcHw/j8RR9YHopJt7lKozdVjLapT0KtZT4zVXsYpIM8DPGJNtf74QeAj4FLgReMz+v9BzUTZOBQc2ceDfFyD+AST89VuC2vX0WCyO6PgqDkTxHohGKUvrSY+4rWW1nvSIB6OqO5HDrtVTGKfAmx4U0Ab4XkQ2A+uAz4wxS7AS4wUishu4wO5Wtvy969j/2Ln4BYbS4a8rPJocwToQSWDFi3Ga0oFIeafIYdcSM2UejugEQHBEJ9TbPYnKe3htE+vp8JUm1rxd33PwiYvxb96KhPuXEdgywdMhAQ137kUpVad8rolVE2QTlbt9GQfnTiAguj0J932j71JUSp0un0uQXnMOUtVezpYlHHrmcgLbdCHhvq9xRLTxdEhKKeVMwuoVAAAgAElEQVR1vOkcpKqF7I0LOfjURILa9STh/m81OSql1CnSGmQTkvnD+yS+dC0hHQYSf88S/JtF1jyRUkopt7QG2URkfP8miS9cTWjns4n/01JNjkopdZq0BtkEpH87j6T502jWawztp3+CX1AzT4eklFJeT2uQtdRYX26atvQ/JL1xK2H9LqL93Ys0OSqlVB3RGmQtVH6WYWN5n9qxz/5F6vt/pvnAy4m7/d0GfeGrUko1dVqDrIXUD2e5fblp6oezPBKPMYajnzxE6vt/JnzIVcTd/p4mR6WUqmOaIGvBem+hu/4HSJp/O1k/fkRpTlqDxGKMIfWDv3L0fw8QMXwysdPe0pcMK6VUPdAm1lqo6gHbEhBMxqo3SV/2AogQ3GEgzXqNoVnv8wntek6V74I7VcYYUt6eQdpXT9Pi3Ftpe8PziJ+WcZRSqj7oo+Zqobr3qUUM/h35+9aRu+0bcrZ/Tf7etVBaggQEEdL1HJr1GkNYr/MJ7jgQ8fM/5ZiN00nym7eT/u1LRF04nTbXzEXE5578pJTyHJ874GiCrKXaPmDbWZBD7s4V5G7/htxtX1N4aAsAfqGRNOsxmma9z6dZrzEExnSvdYIzzlKOvHoLmd+/QfQl99P6d49qclRKNTSfO+hogqxnJVmp5G5fZifMpRQfs5pqHS1iy5tjm/UaQ0CLdhWmc03IEhiCKcqj1eUP0vLSv2tyVEp5gs8dePQcZD1zhLcmYuhVRAy9CmMMxan7ymuXOZs/I3PVmwAEtutJmJ0si7OOkrJgenmTrinKA/8AAlp31uSolFINRGuQHmScTgoObSZ32zfkbv+avJ0rMEX5VY7viE6g25P7Gy5ApZQ6wedK51qD9CDx8yMkYQAhCQNoefG9OIsLyd+7lgP/HO12/KpuN1FKKVX39B6BRsQvIIhmPUbhiE5wO9wRHd/AESmllO/yugQpIv4i8pOILLa7O4rIDyKyW0TeExGvf6RM60mPIIGhFfpJYCitJz3ioYiUUsr3eF2CBKYDv7h0Pw7MNcZ0BdKBmz0SVR2KHHYtMVPm2TVJwRGdQMyUeR597qtSSvkar7pIR0TigPnAI8BMYAJwFGhrjCkRkbOB2caYsdXNp7FcpKOUUl7E5y7S8bYa5FPAfYDT7o4GMowxJXb3YSDWE4EppZRqWrwmQYrIeCDVGLPBtbebUd1WiUVkqoisF5H1R48erZcYlVJKNR1ekyCBc4CJIrIfeBc4D6tGGSkiZberxAFH3E1sjJlnjBlkjBnUqlWrhohXKaWUF/OaBGmM+YsxJs4Y0wG4ClhmjLkW+BaYZI92I7DQQyEqpZRqQrwmQVbjz8BMEdmDdU7yVQ/Ho5RSqgnwyifpGGOWA8vtz/uAwZ6MRymlVNPTFGqQSimlVJ3TBKmUUkq5oQlSKaWUcsMrz0EqVVttZ39FSnbhb/q3aR5E8uwLPRCRUspbaIJUTZq75Fhdf+WbtCCl3NEEqRpUXR2ISp2G7MISsgtKyCosIaugmCz784l+JTXPSCkaviClCdk7aIJUDaq6A9Hzq/aTVVBMtp3cypKc9bm4QuLLLSpt4MhVU5VbWH1BaswLa4gMcdAiJJDIEAeRIQFEhgTQwv5fsdtBSIA/ItU/11tbNryDJkjVIA6m5/Hd3uPVjnPHxz8D4PATwoMd1l9QAM2D/GnVLIjO0c3sfg6aB9nDgwPK+4UHV+wfFuhPwH2fVbm8rIJiwoMD6nQ9lXdIyS5k0bZkFm5LYemu6p/NXFBSyo7UAjLyS8goKCavhsJZgL9YSTM4gBah1v9IO3mWJVnlHfSbUnXOGMOeY7ms2JfGd3uPs2LfcQ6k59c4XcrsC2ke7CDY4VdjCbwudPnnMv4xrgc3D4nH38/n3uTjc3am5rBwazILtyWz5kA6xkBCixBuPTuBZ1b+WuV0q+4cXqG7qMRJRn4xGQXF1v/8Yit55heTnu/azxonPa+YA+l5ZBSUkJ5XTFGps4olWeZ+t5c+bcPpE9Octs2DGuS3oNzTBKlOm9Np+CU1pzwZrth3nKQsq6moVVggozpFc8+ozozsHEX/J1ZUOZ/WzYPqPLY2zYPcNltFhQbQvVUYt364hWdX/cqTE3tzfjd9iH1T4nQafjiYzsKtKXyyNYmdR3MBGBAbzgMXdOOyvm3pFxOOiFSbICsLdPjRunnQKe+vBcWlhNz/eZXDZ366vfxzVGgAfdo2L0+Yfdo2p3fb5kSFBp7SstXJ0QSpTlqp07D5SGZ5DXHlvuMczysGIDYimHM7t2Rk5yhGdYqme+swj5aAq7vgwRjDR1uSuG/xL1zw0lrG92rDnAm96N46rAEjVHWpoLiUb3YfY+G2ZD7dlkJKdiEOP2FU52juOKcjE3u3ISEq9DfTVVWQalMPhbbgAP9qh6fMvpBtKdlsTcpma3IWW5OzWbDxMJkuF521Cw+2EqedNPu0DadXmzCaBf32kK4XBJ06TZC10JR3sNqsW3Gpkw2HM8triN//mlZ+hWin6FAm9m7LyE7RjOwcRceo0GoTYkMeiGoiIkw6ox3je7XhmZW/8o+vd9Pn38u5/ZwOPHBhNy2le4m0vCI+257Cwm0pLNmRSm5RKWFB/lzUozWX9m7LxT1b06KG77Khf8fV/Q7KaqfndmlZ3t8YQ2JmAVuTKybOF1bvJ7/4RJNtx6jQ3yROvSDo1Ikxbt8v3KQNGjTIrF+/vtbjyz2LqhxmnphQFyF5THXr9tC47ny39zhrDqSXX5jQo3UYozpHM7JTFCM7RRMXGdJQoda7lOxC/t+SHbzyw0EiggOYPbYbtw3rQIC/PnCqodVUcNuflld+PnHFvjRKnYaY8CAm9m7LZX3acm6XaIIc1dfUmoJSp+HXtDy2JlkJs+xvZ2oOJc6aj+0nefzyuZOhmiBrobok8tGNg2gVFkjLZoG0ahZIVGggfqd5wUd911iLSpyk5xeTlldEr38tr3I8EegXE87ITtGM6hzFiI7R9XKesLH5OSmLmQu38fXuY3Rv1Yw5E3tzSc/WerFEA6ruN3dGu3A2H8kCoFebMC7tYyXFQXGRp/3bayqKSpzsPpbL1qQsrnprY5XjaYKsnjaxnqYr51dMtH4C0c1OJMxWYUEun8v6B9Eq7ER35ZJubZtEikqcpOUVkZZXXP7/eKXuE/1OdGfXcN9XmeMPja2xaaop6hsTzle3DuWzX1K559NtTHh1Hed3bcmTl/amb0y4p8Pzec2DHPx7fC8u7dOGrq30fLE7gQ4/etsX9FSXIFX1NEGepp9mjuRoThHHcos4mlvo8rmIozmF/JKSzdHcIo7nFlFVi0fzIEeFWmh1BjzxHWl27S+nsOr7sfz9hKjQAKJCAogKDSQ2IoS+MeFWv9BAokMDiQoN4Opqfjy+mBzLiAjje7VhbPdWPL9qPw9+tYv+T3zHH4Ym8NDY7j5Rk/YEYww/J2VXO87KP57TQNEoX6cJ8jT1j42o1XhOpyE9v5ijOYUczbWTaI6VVMs/5xSRVMOJ8/aRIZzRLpwoO8FFNwssT4Llya9ZAM2DHLVqEqwuQSoI8Pdj+shOXD8ojge/2sXzq/bzzk+JzBrTlekjO/rEea6GsD8tj3d+SmTBxkS2JVefINXJaUwXxnkbTZC1UBc7mJ+fEN0skOhmgfSoYdzqzr98evPgWi+zNvTHUztRoYE8fVkfbh/WgXsXbefPn/3Ci2sO8K/xPbmyX4yenzwFx3IK+WBLEgs2HGbV/nQAhnVowXNX9C1/qpI6fd5+pb0n6UU6jVBTvmq2qVi68ygzP93G1uRsRnSKYu7E3gxsH+npsBq93MISFm5L5u2NiXy58yglTkOvNmFce2YcVw+IpWO0dY9iU761yov5XCnQaxKkiAQDK4AgrJrvh8aYB0SkI/AuEAVsBK43xhRVN6/GniD14OAdSkqdvLruIH9fspOjOUUEO/woKPntY8R8/XsrLnWydNdR3t6YyCdbk8ktKiUuIpirB8Ry7cDY8qfZqEbP574kb0qQAjQzxuSISADwPTAdmAl8bIx5V0ReBDYbY16obl6NPUEq75KZX8yj3+zmX9/urXIcX6v5G2NYsz+dBRsTeX/zEY7lFtEiJIDfnRHDNWfGMqJjtN6S4X187gvzmnOQxsrkOXZngP1ngPOAa+z+84HZQLUJUqm6FBESwOPje1WbIP/fkh3ERYQQGxFMXGQwcREhRIUGNLma07bkbN7eeJi3f0pkf1o+wQ4/JvZuy7VnxjK2Ryu9qEl5Fa9JkAAi4g9sALoAzwF7gQxjTNmNfYeB2CqmnQpMBYiPj6//YJVy8cjXu39zm0+ww4+4SDtpRlhJ00qewcTan1uHBVX5ppGGboqvanmtmgXyp3M7s2BjIpuPZOEncH7XVjw4tjuX9WmrrxRTXsurEqQxphToLyKRwP+Anu5Gq2LaecA8sJpY6y1IpdwofPwSkrMLScws4HBmPoczCjicWcDhjHwOZxawan8aiZkFFJdW3DUdfkI7lwTqWgNt6GdsVjXfo7lF3Lf4FwbHR/L0Zb35v/6xehW0ahK8KkGWMcZkiMhyYCgQKSIOuxYZBxzxaHBKueHwt2qLcZEhDKGF23GcTsOx3KKKCTQz30qqGQVsOpLJ4l9SanxhL0DrB77ETwR/Efz9rAdH+ItY/fzEpZsauk+MX53dfzmPLi2bndK2Uaqx8poEKSKtgGI7OYYA5wOPA98Ck7CuZL0RWOi5KJUvO917Sv38pPxNDmfGuR/HGENGfjGJmQX0nfNdlfO6sm8MpcbgdEKpMZQ6rT+nMRW6Sw1Wv/Jug9NAcamhwOksH9dZw8V8mhxVU+Q1CRKIAebb5yH9gPeNMYtFZDvwroj8A/gJeNWTQSrf1RC3cogILUIDa3wM4AuT+tX9squ5P1eppshrEqQxZgswwE3/fUDdPl5GKaWUz9MX3Snlpapquq2vC2QaenlKeZrXPCigLumDApRS6qQ1rZt2a0FrkEoppZQbmiCVUkopNzRBKqWUUm5oglRKKaXc0ASplFJKuaEJUimllHJDE6RSSinlhiZIpZRSyg1NkEoppZQbmiCVUkopNzRBKqWUUm5oglRKKaXc0ASplFJKuaEJUimllHJDE6RSSinlhiZIpZRSyg2vSZAi0l5EvhWRX0Rkm4hMt/tHichSEdlt/2/h6ViVUkp5P69JkEAJcI8xpicwFLhDRHoB9wPfGGO6At/Y3Ur5jKS8LEZ9/jzJeVmeDkWpJsVrEqQxJskYs9H+nA38AsQClwLz7dHmA5d5JkKlGp4xhnvXLWJlyj5mbfwCY4ynQ1KqyRBv/EGJSAdgBdAHOGiMiXQZlm6MqbaZddCgQWb9+vX1GqNS9SW7uIBlR/Zw5bfzKXXz+xVgTLuuxIVGENcsktjQcOKaRZZ3RweFIiINH7jydj630zg8HcDJEpEw4CPgbmNMVm1/6CIyFZgKEB8fX38BKlXHjDFsSU9iyeEdLEncyarU/RQ7SwnxDyAqKJTUghyKnaUEiB+dmkfTNbwlxwrz+PrIbo7kZ+GslESD/B12sowgLjTS/h9BrP0/rlkkrYPD8Pdz38CUlJfFVcvf4r3R19E2NLwhNoFSHuFVCVJEArCS4wJjzMd27xQRiTHGJIlIDJDqblpjzDxgHlg1yAYJWKlTdLwgl6VHdrEkcSdfJu4kOT8bgDOi2jGj1wjGxfXgnNYdmP7DQubtXEuwv4Oi0lLOi+nC88OuLJ9PibOUlPwcDudlcDg3k8S8TA7nZnI4L5PDuRmsTt1PYl4mRc7SCst3iB/tKtQ8I8o/v/vrT3yf8isPbVpaYVlKNTVe08QqVlVxPpBmjLnbpf+/gePGmMdE5H4gyhhzX3Xz0iZW1diUOp2sO3aQLxN3siRxJ+uOHsJgaBEYwoWx3RkX250LY7vRLjSiwnRXfPMGMSHhTO0xlHk71pKUn8XHYyaf1LKdxsmxgtwTCbQsieZmnPicl0FeSbHb6YP9HeTf8NgprrnyIj7XxOpNCXI4sBL4GXDavf8K/AC8D8QDB4HfGWPSqpuXJkjVGBzJy7QS4uGdLD2yi/SifPxEGNwynnGx3RkX151B0e2rbOpsSMYYdmSmcu+6RXydtLu8xhkgftzSbQj39zuP+DC9w6qJ87kE6TVNrMaY76n6CxrTkLEoVZ2qztEVlpawKuVXlti1xJ/TkwCICQnnsoQ+jG3XnfPbdSU6uJmnQq+SiNAzsg3xYS0ocToJ9ndQWFpCfFgL5u36gXm7fuDKhL7M7DOSIa0SPB2uUnXCaxKkUt7i4U1Ly8/R3dNnVHmz6bKkPeSWFBHg58/w1h14fNAljIvtTt8WMV5zVWlKfjbTup9doUl32bhpPPvLKubtWsv7+zdzdqsEZvQeyeUJfXD4+Xs6ZKVOmdc0sdYlbWJV9SHkzfspKC1xO6xjWBQXxfVgXGx3zo3pQlhAUANHV/+yiwt4Y/d6ntq+kn3Zx0kIa8FdPYdzc7fBRASGeDo8dfq8oxRXhzRBKlVHvjy8k5tXvUei/UQbP4QB0bE8M+RSzm7dwWtqiaer1Olk0aHtzN22ghUp+2geEMRNXQdzV6/hdGoe7enw1KnzjR3YhSZIpU7ThmOHeXDTVyw6tJ1AP3+KnaUE+jsoLi3l1u5DffpWiA3HDjN32wre+3UTTgyXxfdhRu+RnONDBYYmxOe+ME2QSp0i18TYIjCEmb1H8cPRA8Q3a3Fat100RYm5mTy3YxUv7lhDelE+g1rGMbP3KCZ16EeAnqf0FpogfYEmSHU63CXGO3udo+fZaiG3uJA3927gqW0r2ZV1lLjQCP7Y8xymdh9Ki6BQT4enqqcJ0hdoglSnQhNj3XEaJ58f3sHcbStYlrSHUEcAU7qcxfReI+ga0crT4Sn3NEH6Ak2Q6mRoYqxfm9OO8NS2Fby97yeKnU7Gt+/JjN4jGd22M8n52frc18ZDE6Qv0ASpakMTY8NKzsvi+R2reWHHGo4V5tI/qh1RQaEsT9rr8xc7NRKaIH2BJkhVHU2MnpVfUkzEW7MoNs7fDNPnvnqUzyVIfZKOUrbKifHhAeM0MXpAiCOAA7//G/esW8THB7ZQaD/3tVNYNF9ceLOHo1O+RBOk8nmaGBufmNBwIgKDKbaf+1pQWsK+nOOMWfISL5/zO8bF9fB0iMoHaIJUPksTY+NW+bmv2zNTSMnP5qKlr3BT18E8OXiCfleqXuk5SOUTXN+wkZiXpecYvVRBSTEPblrKv7Z+S7uQcK1NNiyfOwepCVL5hNtXf8SLO9cQ36wFB3LTNTF6uXVHDzJ55bv8kpmqtcmGownSF2iC9B1VvWEjyM9BwY16NaQ309pkg/O5BOn5V5UrVU8KSoq5rcewCr/qEP8Aru10Jvt/91ePxaXqRrAjgH8Oupg1l9xJ84AgLlr6Cjd//z4ZhfmeDk01EZogVZP0VeJO+n7yBHO3raBz82gEIdjfQWFpCeEBQfpUliZkcKt4Nk6cwf19z+ONPT/S55M5fHH4F0+HpZoATZCqSUnKy+Lq5W8x9quXEYGlY6fSt0UMt3U/m7Xj72Ja97NJzs/2dJiqjrnWJsMDgrh46atam1SnzWvOQYrIa8B4INUY08fuFwW8B3QA9gO/N8ak1zQvPQfZ9JQ6nby4cw1/3fAFBaXF/LXfGP7c91yCHQGeDk01MNdzkzEh4bx8ziQuiuvp6bCaAj0H2Yi9AYyr1O9+4BtjTFfgG7tb+ZgNxw4z9LNn+OPa/zG4VXt+vuxeHhhwoSZHH1VWm1x7yZ1EBAZrbVKdMq+pQQKISAdgsUsNcicw2hiTJCIxwHJjTPea5qM1yKYhsyifv2/8kud2rKJVcBhzB0/kqo799U31qpzWJuuUz/2wvD1BZhhjIl2GpxtjWlQx7VRgKkB8fPzAAwcO1H/Aql4YY/hg/2bu/uFTkvOzua3H2Txy5kVEBul9cMq9H48eZPL377E9I4Wbug7mibMm6P5y8jRBNmankyBdaQ3Se+3NOsYda//Hl4k7GRAVy0vDruSsVvGeDkt5Aa1NnjafS5DedA7SnRS7aRX7f6qH41H1pLC0hH9s+po+n8xhdep+nh5yKesm3KXJUdWau3OTN33/np6bVFXy9gT5KXCj/flGYKEHY1H1JOrvnxN83xf8/b/5FGw+h+yfhjL91QziHvrmtOb7yCOP0Lt3b/r160f//v354Ycf6iji37r66qvp168fc+fOrXKc2bNnM2fOHAAmT57Mhx9+6Ha8u+++mxUrVgBwyy23sH379lrHYYzhrrvuokuXLvTr14+NGze6HW/WrFm0b9+esLCw30y/fPlyli9fzsm2Pp1//vmkp9d4kXm9O6tVPBsm3M39fc9j/p71Fe6bTMrLYtTnz5Ocl+XhKFVj4DUJUkTeAdYA3UXksIjcDDwGXCAiu4EL7G7VRKTmZ3PDindIzyt1Ozwlu/CU571mzRoWL17Mxo0b2bJlC19//TXt27c/5flVJzk5mdWrV7NlyxZmzJhxWvNKS0tj7dq1jBw5EoBXXnmFXr161Xr6L774gt27d7N7927mzZvHbbfd5na8CRMmsG7dugr98vPzmTx5Mlu3bmXr1q1MnjyZ/Pza176uv/56nn/++VqPX5+qqk3+bcMXfJ/yKw9tWurpEFUj4DWvuzLGXF3FoDENGoiqc3d/spVNR1xK7MaQlJ/N3uzjOGuopYx+frXb/v3bhfPUZX2qnC4pKYmWLVsSFBQEQMuWLcuHdejQgRtvvJFFixZRXFzMBx98QI8ePUhLS+Omm25i3759hIaGMm/ePPr160ffvn1ZuXIlERERtGzZkrlz53LDDTdw/fXXc+ONNzJz5kxSU1Pp378///nPf9ixYwfz5s2jqKiILl268N///pfQ0NBabasPP/yQceNO3O00evRo5syZw6BBgwgLC2P69OksXryYkJAQFi5cSJs2bSpMv3DhQm644QZEhKFDh5KRkUFSUhIxMTEVxhs6dOhvlh0SEsILL7zAiBEjAFi5ciUhISFMnjyZkJAQduzYwYEDB3j99deZP38+a9asYciQIbzxxhsATJw4kREjRjBr1qxarWtDKKtNhr01i9d3/1je/4Wda3hh5xqC/R3k36Dlbl/lNTVI5RtyigvZmHaEXZlHCXMEMahlXL0s58ILL+TQoUN069aN22+/ne+++67C8JYtW7Jx40Zuu+228mbPBx54gAEDBrBlyxYeffRRbrjhBgDOOeccVq1axbZt2+jUqRMrV64EYO3atQwdOpRPP/2Uzp07s2nTJkaMGMEVV1zBjz/+yObNm+nZsyevvvpqreNetWoVAwcOdDssNzeXoUOHsnnzZkaOHMnLL7/8m3ESExMr1JTj4uJITEys1bLz8/O54447mDJlClOmTOGOO+4or0Gmp6ezbNky5s6dy4QJE5gxYwbbtm3j559/ZtOmTQC0aNGCwsJCjh8/Xuv1bQjBjgAO/f5vjG3XrfwqFIf4cVXH/vw6SZ/Z68u8pgapmq6nLutDTnEhD/z0JU9v/56o1iE8d9ZErut8JiKC3LOoymmX3z7slJYZFhbGhg0bWLlyJd9++y3/93//x2OPPcbkyZMBuOKKKwAYOHAgH3/8MQDff/89H330EQDnnXcex48fJzMzkxEjRrBixQoSEhK47bbbmDdvHomJiURFRREWFsaxY8cqLHvr1q387W9/IyMjg5ycHMaOHVvruJOSkmjVqpXbYYGBgYwfP7487qVLf9tM6O68YW3vGw0JCeG1114rL0zccccd5dNOmDABEaFv3760adOGvn37AtC7d2/2799P//79AWjdujVHjhwhOjq6VstsKDGh4XS0n9nrJ1BinHx9ZDc5JUWeDk15kNYglUeUXQyRlJvJ/w78TM+P/8WT21Zwc9fB7Ljiz1zfZWC93/Dv7+/P6NGjefDBB3n22WfLkx9Q3vTq7+9PSYn1uqyqksvIkSNZuXIlK1euZPTo0bRq1YoPP/ywvCmyssmTJ/Pss8/y888/88ADD1BQUFDrmENCQqocPyAgoHybucbtKi4ujkOHDpV3Hz58mHbt2tV6+SLC6NGjGT16dIXvp2x7+fn5lX8u63aNo6CggJCQxnn/YUp+NtO6n82GiTMY2647GUX5DFg4l7f2bvB0aMpDNEEqj3h401JWpvzK2Z/9hyuWzScqKJTVl/yRl86ZRFRQxfNxbZoHuZ1HVf1rY+fOnezevbu8e9OmTSQkJFQ7zciRI1mwYAEAy5cvp2XLloSHh9O+fXuOHTvG7t276dSpE8OHD2fOnDlVJsjs7GxiYmIoLi4un19t9ezZkz179pzUNK4mTpzIm2++iTGGtWvXEhER8Zvzj/XFGENycjIdOnRokOWdrI/HTOa5YVdwRlQ7loz9A3sn/YX+0e24fsU73LjiHbKLa1+QUU2DNrGqBlX5BcYHcjMA2JV1lLNbd3A7TfLsC+s8jpycHO68804yMjJwOBx06dKFefPmVTvN7NmzmTJlCv369SM0NJT58+eXDxsyZAilpdbVtiNGjOAvf/kLw4cPdzufhx9+mCFDhpCQkEDfvn3Jzq7920UuueQSXnrpJW655ZZaT+Pq4osv5vPPP6dLly6Ehoby+uuvlw/r379/+fnC++67j7fffpu8vDzi4uK45ZZbmD179ikts8yGDRsYOnQoDod3HHbiw1rw7bhp/GPz1zy8+WtWpx7g3dHXMbCezourxsernqRTV/RJOp5hjGH+nvXcufZ/5ed2gv0dXJnQjzlnjdd3NNbS8OHDWbx4MZGRkTWP3IhMnz6diRMnMmaM9114/l3yXq797m1SC3J4bODF3N17BH7icw1w+iQdperD9oxkxn71MlO+f48AP38EKzkWlZbqC4xP0hNPPMHBgwc9HcZJ69Onj1cmR4BRbTuz+dKZXBzXg3t+XMQlS18lVd8r2uRpDVLVq/TCPGb/9BXP7bCWPnEAAB2ESURBVFhN84AgHhxwIcuS9hAbEsHUHkOZt2MtSflZfDxmsqdDVapGxhhe2LGamT8uIjIwhP+OuJoLYrt5OqyG4nM1SE2Qql6UOp28vGstf9u4hPSifG7tPpSHBoyjZXAzT4em1GnbknaEq5a/xS+ZqdzXZzT/GHgRAX7+ng6rvmmC9AWaIOvX8qQ9TP9hIVvSkxjVthNPD7mMM6JqfyuBUt4gr6SIGT98yrxdaxncsj3vjL6OTs0b1/2ddUwTpC/QBFk/9men8af1i/lw/xYSwlow56zxXJnQT19grJq0D37dzB9Wf4DTGF4aNomrOw3wdEj1xed+yN5xvbVq1HKLC3n852/599blCMJDA8Zyb5/RhDgCPB2aUvXudx3PYHCr9lzz3dtc890Clh7ZxTNDLiMs4NTv01WNg9Yg1SkzxvDur5u478fFHM7L5JpOA3hs4CW0D/Ou2w+UqgslzlIe3LSURzZ/Q7eIlrwz6joGRMd6Oqy65HM1SL3NQ52SDccOM+Lz57jmuwW0Dgnj+4vvYMGoazU5KsB6rdasWbNwOp2eDqXBOPz8efjMcXwz7layiwsZuvgZnt628qTfm6kaD02Q6qSk5Gdzy/fvc9aip9mddYxXzvkd68ZP55w2Het92XX5Mtvjx4/Tv39/+vfvT9u2bYmNjS3vLipqnA+ozsjIqPf3Kebn5zNq1KjypwING3ZqD4NfsWIFZ511FmvWrCnvl5yczFVXXUXnzp3p1asXF198Mbt27aKoqIiRI0e6fXasNzo3pgubL72HsbHduXvdQiZ8/RpHC3I8HZY6BZogVa0UlZbwxNbldPvocebvWc/M3iPZdeWfubnbEPz9GmY3enjT0jp7mW10dDSbNm1i06ZNTJs2jRkzZpR3BwYG1kG0p8YYU2Wt61QTZHXzrOy1117jiiuuwN/fumVh9Wr379usib+/PwsWLKBnz57lMVx++eWMHj2avXv3sn37dh599FFSUlIIDAxkzJgxvPfee6e0rMaoZXAzFo6ZwjNDLmPpkV2c8cmTLDuyu+YJVaOi5yBVjT47tJ0Z6z5ld9YxLonryRODJ9A9onWdzf/uHxayKa3qdxKuTP4VJ7/dT/0QRrR1X3PtHxXLU0MurdXyZ8+eTVhYGPfee295v7feeotnnnmGoqIihgwZwvPPP8+hQ4cYN24cw4cPZ+3atZxxxhlMmTKFBx54gNTUVBYsWMDgwYPZv38/48aNY8iQIfz0009069aNN998k9DQ0Crne9FFF3HuueeyZs0aPvnkE6ZPn86hQ4coKChg+vTpTJ06lauuuoqFCxfSvXt3LrjgAu644w7Gjx/P1q1bAZgzZw45OTnMnj2b/fv3/2aeK/9/e+cel1WVLv7vw0UuiohcTEVFLTVRREHxQqWZpg7maFo5etKmcvJUWJ3yN+nUYSatPpM1xqRpOpn3Ls6xHE9TmYl3G0GRRPFyEBFFEfA6Igiu3x97gy/wcnlf7rC+n48f2Wuv/TxrvXvt9ex12c+zc2cp3YWGsJDBgwezbt26IofiLVq04Pr160XywsPD2bNnD+3bt+ebb76pdGSOn376iaioKHbs2GH1/KFDh3j99df59ttvKyWvIXEo+xyPx6zm+JVMXg96kKi+IxvqN5N6DVKjKSTpcgZjflhOxI+fIgjfjniazSOerlbjWBkG+HbAz7U5Dubz6YDg59qcMN8OFVxpH0ePHuWLL75g9+7dxMfHF42GAE6ePMmsWbNISEggKSmJdevWsWvXLhYsWMDbb79dJOPYsWPMmDGDhIQEWrZsyeLFi8uVe+zYMZ588kkOHjxIp06d+PTTT4mLiyM2Npbo6GiysrJ49913iwIvv/feexXWw1LmjRs3ytRdSF5eHsnJyWVG2zhx4gTPP/88iYmJtGrVqlh4sIo4fPhwmYGewXBDt3///krLa0j0ad2OuLEv8dt7+vN2wlbu/3YxKdeygepdNtBUP/ozDw1gPKhPxKzhi6FTcXV05q1DW4g+sgt3p2a8338sL9w7hGaONdNcKjPSm7nn73xybF+R/9ZHOwWxePCjNVKerVu3EhcXR//+/QFjXc7Pz4/777+fzp07FwsGPHz48KJAwSkpKUUyOnTowJAhQwCYOnUq0dHRuLq6lim3U6dODBw4sOj66OhoNm7cCMCZM2c4ceIEd911l031sJRZVp0syczMLNcBeufOnYsCH4eEhBSrb1VxdHSkWbNmXLt2DQ8Pj2qTW19o7uzC8vDHGNGuGzP2bCB40wcsGzyJbekni5YNaqo9a+ynURhIERkFfAg4AsuVUu/WcZEaHIXre0/ErOHIlQtk3rzB090GML/fKPzc6r7DKgxma+m/taZQSjFt2jTeeeedYukpKSmlggFbBgq23GRS0jmCiJQrt3nzOy74YmJi+PHHH9m7dy/u7u4MHTrUapBkJyenYmuLJfNYyixLtyXlBWMGitXd0dGRnJycMvOWJDAwkA0bNpSbJzc3F1dX10rLbIg83iWYAb4d6LrhXR6LWV2U/vGxvXx8bC+ujk7kPKm7r/pCg59iFRFHYBEwGugJTBaRnnVbqoaD26rfIyte5eNje7mNYvuFZC7e/DfODg4sGzKpXhhHKB7MdtHgCTXq3Hz48OFs2LCBjIwMALKzszl9+rRNMlJTU4t2cK5fv57w8PBKy71y5QpeXl64u7uTlJTEvn37APDw8CgWO7JNmzZkZGSQlZVFbm4umzdvrlKdvLy8KCgoKNdI2suDDz5Ibm4uy5YtK0rbv38/27dvB4xdxb6+vjg7N37nEp09vEmZNIfAVm2K0pzFgccCgjg1cU4dlkxTkgZvIIEBwEmlVLJSKg/4HKjc7owmzvVbubzZZwQeTndGBs0cHPlN576cnjS3DktWt/Ts2ZN58+YxcuRIgoKCGDFiBOnp6TbJuPfee1m5ciVBQUFkZ2czc+bMSssdNWoU+fn5BAUF8cYbbxRNk3p7ezNkyBB69erFa6+9hrOzM2+++SZhYWFERETQo0ePKtdp5MiR7Nq1y6a6VgYRYePGjWzZsoWuXbsSGBhIVFQU7doZPnq3bdvGmDFjql1vfaVjCy/ua9MFwVhTv6Vu803qEdYmH+BGfv38zKgp0uB3sYrIRGCUUuoZ8/g/gDCl1Asl8s0AZgB07NgxxNYRQWMi9folPjq6m2XHf+ZyXg4+Ls3Jyv03Lub63u+6D9TrIVUgJSWl2O7ShsTBgwf54IMPWL16dcWZq5EJEybwzjvv0L1791rVW5dM2PoZbd1aMqPHQN6K38LOC6fIuHmdu9w8mBM0nBndB+JSQ+v+dtLkdrHWq1/fTqzdtFJWXyn1CfAJGJ951HSh6htKKfZkpLDwyE42njY67kc79WZWz/tYcDim6EGt6fU9Tf2mb9++DBs2jIKCglKfgNQUeXl5/PrXv25SxhEotkyw4cFpAOw8n8wfDnxH5M9f897hGN7o8xDT7+nfUD8LafA0hhHkICBKKfWwefw6gFKqzN0ITek7yLyCfL5KSWDhkR3EZqbRqpkbM7qF8fy9Q+jYwquui6fRaEqglGJr+gneOPA9+y6epouHN/8dPIIpXfrVmlOOMmhyI8jGYCCdgOPAcOAssB/4jVIqsaxrmoKBvHjzOkuT9rE4aQ/pOVfp7unLSz3v4z+6htBcRxnQaOo9Sin+mZbEHw58x8Hss3T39CUqeCSPde6Dg9SJodQGsiEiImOAhRifeXyqlJpfXv7GbCB/yU7nwyM7WZN8gNyCfMMfZM/7GNm+W109VBqNpgoopfg69TBvHPiOxMsX6O3Vlj/1fZhxHQNrO9aqNpBNgcZmIG+r2/zvmaN8eGQXW9NP4ObozLS7Q4nsGc69FlvJNRpNw6Xg9m2+TDlE1MEfOH71IiHe/rzV72FGte9RW4ZSG8imQGMxkNdu3eSzE7FEH9nFyWuZ+Lt78sK9Q3i2+0Bau7jXdfE0Gk0NkH+7gLX/d4A/xm/h1PVsBvl2Yl6/UTzY7p6aVq0NZFOgoRvIU9ey+OvR3fzt+L+4eusmg3w7MavnfUwI6K13u2k0TYS8gnw+OxnLW/FbSLtxhaF3deWtfqMIr7nQc9pANgUaioG09I/axs2DnReSWZi4k2/OJOKAMKlzH2b1DCfMt1NdF1Wj0dQRN/Nvsez4z8xP2MqFnGs83L47b/V9mP6+HatbVZMzkHrXRj2m0D/qb7avJWTTQh7458dsv5DM/+s9jFOT5rDugSlNxjhe3rOW468EcGSaA8dfCeDynrUVX1QBjo6OBAcH06tXL8aOHcvly5crvKYyAYR37txJYGAgwcHB5forbdGiBWA4FujVq5fVPOnp6URERAAQGxtLZGRkhfotiYuLo3fv3tx9991ERkZajW6flJTEoEGDcHFxYcGCBUXphXmjoqKKHVeFhx56iEuXLlVZjuYOrk7OvNgznOSJr/NeaASxmWcYsDmacT+u4FD2ubouXoNGjyDrIa4rf0/u7dLR1Z3FgctT5+HuVHcBfeuCy3vWkr5iBirvRlGaNHOn7VOf0GrwFLvlFsY6BJg2bRrdunVj7tyqu9h77rnnCAsL46mnnqqU/vI877z22muEh4czbpx93hMHDBjAhx9+yMCBAxkzZgyRkZGMHj26WJ6MjAxOnz7N119/jZeXV1FczDVr1nDu3Dmys7Np3bo17dq1Y+rUqXaVo5CVK1eSlpZWLb+zxjrXbt0k+sguFhzezuW8HCYFBPHHvg/Tqplb0YzUXe4t7RHd5EaQ2kDWMddv5RKffY7YzDPEZqYRm3WGY1cuFsvj4uDIo52CeH/AWHsbdr3m/NqXuJkaX+b5nJP7UPm5pdLFyQW3uwdauQJcOwZz15SF5eq1NJBLliwhISGBxYsXc/36dcaNG8elS5e4desW8+bNKzJQhdfExMQQFRWFj49PUazDNWvW8Le//Y3Zs2fj6enJ4MGDWbp0aYWyyjOQXbp04ejRo7i4uBATE8OCBQvYvHkzUVFRpKamkpycTGpqKi+99FKp0WV6ejrDhg0jKSkJMJymx8TEsHTpUqu/h7XA0evXr2fKlCmsW7eOJ554AoBVq1axYMECRISgoCBWr17N9OnTcXNzIykpidOnT7NixQpWrlzJ3r17CQsL47PPPgPg0qVL3HfffQ3SDV9D43JuDh8kbucviTu5UZBHVw9vTl7N5Lnug+x1JdnkDGRjcDXXYLiRn8eh7HOGIcw8Q2xWGklXMrhtvqS0d/ck1MefqV1C2JuRwndnj9HM0ZG8ggI8m7k2SuNYGawZx/LSbaWgoICtW7fy9NNPA+Dq6srGjRtp2bIlmZmZDBw4kEceeaTUVvqDBw+SmJhIu3btGDJkCLt37+aZZ55h165dREREMHHiRPLz8yslyxqnTp3Cy8urWJgpS5KSkti2bRvXrl2je/fuzJw5s1g0jLNnz+Lv71907O/vz9mzZyv9u6xbt460tDRmz55Namoq69ato0+fPsyfP5/du3fj4+NDdnZ2Uf5Lly7x008/sWnTJsaOHcvu3btZvnw5/fv3Jz4+nuDgYLy8vMjNzSUrKwtvb+9Kl0VjO61c3PhTv1H8+ZcYbivFiauZgA6tZQvaQNYQuQX5JGSfIzYrrcggJl6+QIEy4ve1cfMg1NufSQFBhPp0IMTbn7YWBnDC1s9qLf5hXVPRSO/4KwHkZ5V2Lu/k3YmA12Ps1puTk0NwcDApKSmEhIQwYsQIwFhrmzNnDjt27MDBwYGzZ89y4cKFUgGLBwwYUGSACuWEh4cXy1NZWdZIT0/H19e3zPO/+tWvcHFxwcXFBT8/Py5cuFDMIFqbHbLle7nJkycjIkRFRTF79myUUnz00UdMnDgRHx8fAFq3bl2Uf+zYsUXBo9u0aVMssHRKSkpRsGU/Pz/OnTunDWQtcWrSHF7d/w82nv6FnIJ83B2dGd+pNwv6R9R10eo92kDagOWuUsvRXF5BPomXLxSbJv3l0nlu3S4AwMelOaE+/jzSMZBQb39CfPxp7+5Zbmdl6ch40eAJNVWlBoHfxPlW1yD9JpbrMKlC3NzciI+P58qVK0RERLBo0SIiIyNZu3YtFy9eJC4uDmdnZwICAqzGSCwZQNgyYHIhlZVVVvlsCWBcUr+/vz9paWlFx2lpaUXhpSpDYfss3KRTGPS5rHZrGTy6ZGBpy7LdvHkTNze3SpdDUzXaurekpbMruQUFuDo6cbMgn5bOLk12RsoWtIG0gcJdpZE/f82o9j2IzTIMYsKldHILjA6gVTM3Qn38+a/ABwj18SfUx5+Ozb1q2yVUo6JwI07GhrnkZ6Xi5N0Rv4nzq7RBxxJPT0+io6MZN24cM2fO5MqVK/j5+eHs7My2bdtsDpZsSVVkdevWjZSUFLt1t23bFg8PD/bt20dYWBirVq3ixRdftFseGIGXx48fz8svv4y3t3fRBp7KopTi/PnzBAQEVKkcGtu4kHOtycxIVSfaQFYCt1W/52bBnTfgr1IS+ColAYBhd3Ul8t5wQrwNY9jFw1sbwxqg1eAp1WYQrdG3b1/69OnD559/zpQpUxg7diyhoaEEBweXG4i4Iqoiq3nz5nTt2pWTJ09y991326X/448/Zvr06eTk5DB69OiiHaxLliwBjB2358+fJzQ0lKtXr+Lg4MDChQs5cuQILVuWHmEEBgYyd+5cHnjgARwdHenbt2/RBpzKEBcXx8CBA3Fy0l1PbaJnpOxD72KtBOk3rvLq/n/w5alD5KvbNHNw5OH23Vky6FHaNfeswZJqmjobN24kLi6OefPm1XVRqoVZs2bxyCOPMHz48LouisZ2mtybv36NqwSFc/i3lcLV0Ym8ggL83T21cdTUOOPHjycrK6uui1Ft9OrVSxtHTYNBG8hKoufwNXXFM888U9dFqDaeffbZui6CRlNp9BSrRqPRaCpDk5ti1b5YNRqNRqOxgjaQGo1Go9FYQRtIjUaj0Wis0CAMpIhMEpFEEbktIqElzr0uIidF5JiIPFxXZdRoNBpN46Kh7GI9DEwAioUhEJGewBNAINAO+FFEuimlCmq/iBqNRqNpTDSIEaRS6qhS6piVU+OAz5VSuUqpU8BJYEDtlk6j0Wg0jZGGMoIsi/bAPovjNDOtFCIyA5hhHl4XEWsGtzL4AJl2Xlvf9TXmutW2vsZct9rW15jrVtv6qqLrO6XUqOosTH2n3hhIEfkRsBYDaK5S6puyLrOSZvXDTqXUJ8AndhbvjkKRWKVUaMU5q4fa1NeY61bb+hpz3WpbX2OuW23rq+26NXTqjYFUSj1kx2VpQAeLY3/gXPWUSKPRaDRNmQaxBlkOm4AnRMRFRDoD9wD/quMyaTQajaYR0CAMpIiMF5E0YBDwvyLyPYBSKhH4EjgCfAc8Xws7WKs8TVuP9TXmutW2vsZct9rW15jrVtv6artuDZom6YtVo9FoNJqKaBAjSI1Go9FoahttIDUajUajsYI2kGUgItdrQUeBiMRb/AsoJ+9QEdlcRX1KRFZbHDuJyMWqyq1A53hTb48a1FHr9bLQVePtxFadIhJT0iWjHTpq/L6V0DfXdCeZYD4LYTWsz19EvhGREyLyfyLyoYg0Kyf/SyLiboceJSLvWxy/KiJRdha7MvoK+5REETkkIq+IiO7n7UT/cHVLjlIq2OJfSg3r+zfQS0TczOMRwFlbBIiIrZ8GTQZ2YbgEtEWPow3Zq1wvTSnsum/2ICKDgAign1IqCHgIOFOD+gT4H+BrpdQ9QDegBTC/nMteAmw2kEAuMEFEfOy41h4K+5RAjOdgDPDftaS70aENZDmISAsR2SoiB0TkFxEZZ6YHiMhREVlmvqn9YNE5V1Wno4i8JyL7zbfp31mcbikiG0XkiIgssfPN8J/Ar8y/JwPrLXQPEJE9InLQ/L+7mT5dRL4SkX8AP9hQlxbAEOBpzI7WHAnvsFYPEbkuIn8SkZ8xdizXdL12ikiwRb7dIhJko95So3sR+UhEppt/p4jIHy3aULWMyMrTWQ2yy7pvZdVxjIgkicguEYm2Y+TeFshUSuUCKKUylVLnRCRERLaLSJyIfC8ibU19MSKy0LyXh0XEVveSDwI3lVIrTH0FwMvAb0WkuYgsMO9Vgoi8KCKRGL6et4nINht15WPsHH255AkR6WT2Lwnm/x1FxNNsM4XPhLuInBERZxv1opTKwPAe9oIYlNm3iMhss86HRORdW3U1VrSBLJ+bwHilVD9gGPC++fYJxjeXi8w3tcvAo3bId5M706sbzbSngStKqf5Af+BZMb7xBMPP7H8BvYGuGA7cbeVzjG9HXYEg4GeLc0nA/UqpvsCbwNsW5wYB05RSD9qg69cY7qmOA9ki0q+CejQHDiulwpRSu2qhXsuB6QAi0g1wUUol2Ki3MmSabehj4NUakF/dlHXfSmH+3kuB0UqpcMDXDn0/AB1E5LiILBaRB0yD8FdgolIqBPiU4iO85kqpwcB/mudsIRCIs0xQSl0FUoFngM5AX3M0u1YpFY3hgGSYUmqYHfVbBEwREc8S6R8Bqwr1ANFKqSvAIeABM89Y4Hul1C079KKUSsbo5/0oo28RkdEY9zxMKdUH+LM9uhoj2kCWjwBvi0gC8COGn9c25rlTSql48+84IMAO+ZZTrOPNtJHAkyISj9HJe2MYY4B/KaWSzTfe9UC4rQpNAxCAMcr6tsRpT+ArETkM/AWjIylki1Iq20Z1kzEMF+b/k82/y6pHAfB3G3UAdtfrKyDC7Ix/C3xmj+5K8D/m//a2k9qmrPtmjR5AshksACxG7pVFKXUdCMEY7VwEvgB+B/QCtpjPwh8wPGUVst68dgfGzEorG1QK1l1SCnA/sEQplW/Kt7XNl8I0vquAyBKnBgHrzL9Xc+c5+AJ43Pz7CfO4KhS+1JfVtzwErFBK3TDLW+U6Nxbqjau5esoUjDfiEKXULRFJAVzNc7kW+QqAaplixWjMLyqlvi+WKDKU0g+1vR+xbgIWAEMxHpJC3gK2KaXGi7FhKMbi3L9tUSAi3hhTWb1ERAGOZnm/tVLuwuObVXT0YFO9lFI3RGQLRlSYxwB7N7bkU/xl07XE+cK2UkD1PXMV6bSLcu7bpjL0WfOHbDPmfY8BYkTkF+B5IFEpVdZUe1WehURKzPiISEsMt5XJNsqqLAuBA8CKcvIU6t0EvCMirTFeHH6yV6mIdMFodxmU3beMombq3ODRI8jy8QQyTOM4DOhUCzq/B2YWrjmISDcRaW6eG2BOiThgvGHaOg1ZyKfAn5RSv5RI9+TO5pbpdsouZCLG9FEnpVSAUqoDcArjLbm66lESe+q1HIgG9lfhzfk00FMMl4eewHA75dQHnWXdN8rQlwR0kTs7sB/HRkSku4jcY5EUDBwFfMXYwIOIOIuI5YzG42Z6OMa04RUbVG4F3EXkSVOGI/A+xgzCD8BzYm5GM40UwDXAw9a6FWK2rS8xpjkL2cOdTVBTMJ8Dc0T9L+BDYLO9L40i4gssAT5ShkeYsvqWHzDWX93N9NZlyWxq6BGkFcyHIxdjXeAfIhILxGN0BjXNcoxpuAPmeudFjPUBgL3AuxhrdzuAjdYEVIRSKg3j4SvJn4GVIvIKVXhrNZmMUVZL/g7MpJrqURJ76qWUihORq5T/Zm+VwnailDojIl8CCcAJ4KDNha8/Osu6b7/B6OCL6VNK5YjIfwLfiUgm9vlCbgH81ZwmzceI6zoDY3NLtGmQnTBGYYnmNZdEZA/QEmN6vNIopZSIjAcWi8gbGAOFb4E5GKOtbkCCiNwClmGsFX4C/FNE0u1chwTDCL9gcRwJfCoir2E8509ZnPsCYwlgqI063MwpVGeM33I18IF5zmrfopT6TozNarEiksed36LJo13NWUFE+gDLlFI6+HI1Y04Vv6qUiqjrsgCISDuMqb0eSqnbNl5b6+2kPrZNEWmhlLpudrqLgBNKqb/UoL4YjDYUW1M6NBrQU6ylEJHnMDYA/KGuy6KpWcwptp8xYo7aahxrvZ3U47b5rDlqScSYzl5ax+XRaKoFPYLUaDQajcYKegSp0Wg0Go0VtIHUaDQajcYK2kBqNBqNRmMFbSA1Go1Go7GCNpAajUaj0Vjh/wMrUUSpzCEDLQAAAABJRU5ErkJggg==\n", 1211 | "text/plain": [ 1212 | "
" 1213 | ] 1214 | }, 1215 | "metadata": {}, 1216 | "output_type": "display_data" 1217 | } 1218 | ], 1219 | "source": [ 1220 | "x = Weather.index.tolist()\n", 1221 | "y1 = Weather['Snowfall'].tolist()\n", 1222 | "y2 = Weather['Temperature'].tolist()\n", 1223 | "y3 = Weather['Rainfall'].tolist()\n", 1224 | "\n", 1225 | "plt.plot(x, y1, '-s', label = \"Snowfall (in 0.1*m)\")\n", 1226 | "plt.plot(x, y2, '-*', label = \"Temperature (in $\\,^{\\circ}\\mathrm{C}$)\")\n", 1227 | "plt.plot(x, y3, '-o', label = \"Rainfall (in 0.1*cm)\")\n", 1228 | "\n", 1229 | "plt.title('Average Temperature, Snowfall and Rainfall in United States(1961-1990)')\n", 1230 | " \n", 1231 | "plt.legend(frameon=False)\n", 1232 | "[plt.gca().spines[loc].set_visible(False) for loc in ['top', 'right']]\n", 1233 | "\n", 1234 | "plt.show()" 1235 | ] 1236 | } 1237 | ], 1238 | "metadata": { 1239 | "kernelspec": { 1240 | "display_name": "Python 3", 1241 | "language": "python", 1242 | "name": "python3" 1243 | }, 1244 | "language_info": { 1245 | "codemirror_mode": { 1246 | "name": "ipython", 1247 | "version": 3 1248 | }, 1249 | "file_extension": ".py", 1250 | "mimetype": "text/x-python", 1251 | "name": "python", 1252 | "nbconvert_exporter": "python", 1253 | "pygments_lexer": "ipython3", 1254 | "version": "3.6.5" 1255 | } 1256 | }, 1257 | "nbformat": 4, 1258 | "nbformat_minor": 2 1259 | } 1260 | -------------------------------------------------------------------------------- /Dejunkifying a Plot.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "metadata": {}, 7 | "outputs": [ 8 | { 9 | "data": { 10 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEXCAYAAACgUUN5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xm8XfO5x/HPNyJmIoTE1KCplg5E0FJDaq7WVFW0StHopFRvW1q91Rpq6KXDbaspJVWlKEKQIBJjW5JQsxouipDEULSCxHP/+P22rOzsvc8+SfbeOWd936/XeZ295mftYT1r/dZaz1JEYGZm5dWn0wGYmVlnORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOB2SIkaVlJP5d0s6QfdTqeRiSdJ+njnY7DOq9vpwOwxiTdUuhcGngLmJO7T46Iaxfhsk4GRgCzc685EbFdnXE/BWwfEV9ZVMvvJXYGlgW2i4i3F3ZmkrYEfg6Mj4jvFfp/ADgX+EtEHNHEfI4A+kfECQsRywDgeOBDwH+A8yPijw3G7wfcDswCAngTeBi4NCJubHKZWwLfjog9FzRu65oTwWIuIrauvJZ0FXBCRNzRwkWeHRHntHD+vd1g4MkFSQKSloiIOTUGzQQ2k7RcRPw799sNeGoh4lwQB5M26DsCywDvanK6vSNiuqSVga2B4yStHRGjWxOmdZebhno4SUtJ+o6k8ZKukXSkpL552JaSrpB0uKQbJV0paYc2xLS3pD/n5pErJO1eGFaJ6RBJN0i6VtKuheEDCk0r50k6QtKv8rAhku6oWtY7zRt5+Ki8rjdI+qGkZQvjbiTpwjzvkySdLunQwvARki6SNEnS2ZLWKww7LL/HN0u6VNImNdb768DngU9IukXSrpL65Pf/aknXSfrvSkyV9ZG0l6RrSHv+tcwi7VnvkKdbknTkNq5q+cfm78DNkn6fjxqQtB3w2UJcvy9MtlZ+D2/O7/uKdWKAdCT6QkS8GRH/ioh7Gow7n4h4KSKuBH4CjJS0XI6v5vdF0kp53DVz3LdIWknShySNlnSTpHGSjpa0RHdisXk5EfR8hwNDgc8AnwM2JW2MKtYAliQ1WZwI/FDSGg3m99m8IT1f0jYLGNNM4AhgW+Bk4JjiRpW01wywC3AacGxhg/094GXSXudJwCe6uezfktb1M6Q91kPhnWaK/wEuJW1EbwLeWb+80TwG+CHwMeAa4CeSlpD0HmB3YP+8TkcCz1cvOCJ+DlwAjI2IrXOz3afyuhwG7AUMAI4uTNYHeD+wd1X/aleTjgIg7VXfT3qfiu4B9svxTwJOldQ3IiZVxVX8fuwCHJffs+Xz9PXcT0omuzYYpxkTgaWA9+Xumt+XiPgX8F/AMznurXO/2cCppM/xMNLn6KajheBE0PPtCvwmIl6OiBeBc5i7wYD0oxkVEW/lJqW/kfcsazif9IPaCTgbOEnSht0NKCJujohnI7kDmAJsXBhlFnBeRMyOiIm531p5Y70N8OuIeCMiHgGaPgcSEU9ExJ15XV8A/ggMy4OHAW9GxJ8jYk5EXAf8ozD53sCfIuLBiHg7Ii4D+pE2VrNJG671gD4R8UxEPNtkWLsCv4+IablZ51fArpJUGOesiJgVEW80mM9kYHBO4rsBY2us/9UR8UpEzCadP1gJWLOL+C6PiKcj4nVgArBBrZEkrUvaKB8OfEnSLrn/spL+KmnpLpZTjPN14DVgxdzd1felevr7I+KB/Dk9DVxB2gGyBeRzBD1Y3pisAkwr9J4GDCx0vxwRbxa6nwNWrTW/iHiw0HmTpAnAdsAD3YxrG9Ke2lqknY2lgbsKo7xU1YY+i3SCdVVAzLu3/TzwniaXO5C0sfogsFye18w8eCDz78UXuwcDO0oq7i0vCawWETdK+gXwFWCIpNuBM3Li7cqqpPe8YhopqVSaYN6OiBldzSQiQtI40lHJB4BjqdoLlvQF4JOk70SQEll/4MkGs36h8HoWqe2/lr2AWyLiLqUTz6NyLvsXcE9EzOpqHQpxLkM6+ngld3f1famefj3gKOC9edwlgL83u3ybnxNBD5Y3Di+QNmJP596DgOKGpb+kfoVkMAi4u9lFkDamTcs/8lOB7wC3RcScvBFtZj4z8zJXY+7Gc/XC8NeBPlXrs0ph+JF5nM9ExCuSdiJtvCvzLs6rMu9K8nseuDUi/lArsIgYC4yVtALw/TzfE5tcp0GF7kHAG6SN4MpNTF90NXAJcFlEvFk8qJC0Bak57CvA/5He75uZ+74vbJnhvuSr1SLiKUlHAr8mrcfJ3ZzXCNJ78GAT35dacR9HOkI6JiL+I+lgYPNuxmAFbhrq+cYDX8wn0QaQ2sSvKQzvCxwmaUlJmwFbkJoA5pHbwkdIWiaf4PwoqQnplupxC/pI6lf8I+3t9gVeBCLv7TV12J437rcAh+f5rU9qw66YAbwE7JJj/DQpaVQsS7qs8TVJg0jnTCqmAkvlE5NLSNqReY80LgM+I2lDJctK2kbS0pLWkzQsr98b+a/Zq4LGAQdKGpTPg3wZGBcLUP89Ip4gNc2MqjF4OVIT1kukI5kvkY4IKl4E1qhqkuqOG4DdJH1UUh/gVeBR0jmopuTv6CeAbwLn5Kayrr4vLwADCueQIH3Or+UksB7paMUWgo8Ier6zgG+Q9hTfBq4DileFPEvakxsP/Bv4YUQ8U2M+Ag4kXScu0hHGD7q4MmQ46WqWircjYnNJPwXOJH2/JgK3dWN9TiKdsL0BeDzHPQQgIt6WdALwbdI6/5m5e/SQ3ovjSSeCnwSuJ28kIuINSd8inYw+ipRw/kK6L4OI+Luk04HvAmuTjiymks6pLJWX9y7SxvauvH7NuJTUPPQ70gb6NuCMpt+NKhExtc6gm0nNeGNIn/P5zHsyeTzppPWNkv4vIg7p7nIlHQ98jXQE8BwpeV5KOil9WEQ8VmfyyyQF6b1+GDglIq7P8325i+/LI6TPc2xOQLuT3r9jJH2R9PlfB2zUnfWxeckPpum91AtuxpH0X0C/iOhu80Mz876QdNJ6/KKet1lP4qYhW6xIWj83xUjSB0lXyExaRPMernSfQl9Je5NOTv5tUczbrCdz05AtbpYHTiCdBH6B1JZ8e+NJmrYe8GPSlSb/BL4VEdXX4puVjpuGzMxKzk1DZmYl50TQA0i6SlJpr5Ne2PVXqlHT1R22vdbi/v3Jly1fkz+nDRb3eHsjJ4ISkbS6UoGxGyV9o2rYL7QA5SR6glyj5hkAScdLWixKZ0vaQ3OLrV0n6WeaW5CuI3Hmk/Sfl3S5pNuViuUdke+haJWjgFPz5/RwC5djdfhkcbl8gVSjZhxwgaTxEfFAvgP3mYjoVimJxZ3ql3XuOEnDgK8CR0TEw0pVPxe0yN+i9C3gI8APSEXm3kW6N2NdGhfF67bC5zOYdM+IdYiPCHqOjSRdImmipB9U9tAkXaxCldB8aeQEpYqZ1dYA7oyI10g/8jWVSgEfDPyyqwAkTZa0n1I56wlKJa/75GF9JB0qaayk6yX9SNLyedgaedq9lcoGj5f0ucJ859n7lbSpUlnmWjFsJOlcpVLR4yV9W6ksczHGfSVdDlxe6Ld2vmR0V+DzuRnizLz3e1rVMr4t6Zt1lr+uUqnrSTXe++OVSoL/LO/lj5a0Vp23cyPg3soecC4WNzbfLTtfnHn+B0sak+d9iaQRVbHtpVQiuzL8vTXiH5I/v51qDFsH2Ac4LiLuycX5HicnB0mbSfpAPnrpU5huhKSL8us+hThvlHRKTnLF78Eekq4GzlZ68FIf4EJJY2rE1E/SN/P3Zlx+Xfnuj5L0sfx64zzvrXL35pLqPjTH5uVE0HPsSrqrcw/SXtphuf/YPKxiK2BmRPyD+T0GbKFUL2dD0l7Yl4E/RsSrTcYxglS64bOkssGVZw18glTw7PAc4zKkO4CLhpPu9P0qcLAWrB34bdKdpduTjnA2Bz5dNc52wEHV/XNF0WtJ1UC3johvkMpxbJnfE5Tq2u/IvGU6yMP6ku6A/Wse53TgREnFB7TsTCoBMYJ0iWq95p37SBvXw5Xq67/T9FInTkh3ex+W1++3wAmSVs2x7QCMBP6b9LkcTSoIV4z/vaSEf3quvlptM2B6RNxf9b49D9wLbBER95Luut6sMMouzH02wn45vi/m/q+QynsXbUpKOF+KuQ9e2j8i9qgR0yGkInsHkArubUQuLU6683t4fj0MeIa55SmG5eHWBCeCnuNPEfF8RLxCKjW9c+5/LbBV3rOHdAPW1XXmcS6wCWlDdTGpaXAoUHlQy28l7dtFHKPz3utzwIWFOHYFLsglmv8D/C+ws+Z9YMioiHg9Ih4FrmTeOkJNyWWi7817q8+SyhwMqxrt3Bxjo7LOlfnNJG0wKqW5tyRVbH2wxugfINW5OS+Xur4TuJW57wHAxFwmeQ7ps6lZ1jki7iJVSn0v8DNggtIDVur+JiPihoiYkcsvX0d6QlmltMKepMTxQC7n/M+IKFal3YSUQH8QEfXqR/VnbrXWajPzcEjlKnaGVIaatPNRuTt7b+BXETE9144aBWxf9T34Tf4edPn5kL5Xv42IFyPiJVICrDxneSpzP/tNSN/vYtlxJ4Im+RxBz1EsmfxOqemImCHp76Qf20TShuwntWaQk8ixkA7hST+qk0lNQ4+R2oIvkDQ5NwnUUl1SuVLyeiDzl8NegnmrgxbX4Tng3XWWUVduvjiadERTKUFcvdGe76ExXRhL2kO9nLThqdksRVrH56pKaE9j3sJ3zZZ1Jt8od3v+LIYDpwBPkJLbfCTtRjoSqxR6W5a5G+fVmVuBtpZPAVMjYnKDcV6mTony3L9Sd2oc8DtJp5AegvNQIekMJj3Qp/gezaH+96Artb5Xle/cPcA6SsUWNyB9Lw6X1J/0sB8ngib5iKDnKJZQri41XWke2oFUG356E/Pbi9RG/Rhpg/xARLxFqii5foPpqksqV+KYwdwnj1WGzWHeDWP1OlT2Pl8nbdQrihuNaseSNpZ7RsQ2pKaO6oqaje6SrDVsEjBUqdrp1tR/GM4MYFDVXvsgoJn3u35AaQ//DlJp5UpynCdOSYNJ5ZdPAz4WEduRPqvKuj9PKplRz49z7I1O+N4JrC5pngJuklYnHQ3dkeN9nLRB3pJ5m4UqcRwREdsV/ras+k525y7WWt+rGTmOWcBDpCajR/P39x5Ssnzad403z4mg59hX0mr5xNshpIqLFZNITQz7U79Z6B15D2pf5pYzfhYYng/z30dqa63nQEkr5o3D/qQKn5CaBg7IJwSXJZ3PuK7qqp3DlMs6k84nVNbhH6TmrRUlrUJqD65nOVJ1zdclDSHtyXfHi1Q9tSs3YUwgVT69Pzd71XIfKWl9Xumk/KakxFGrvb0hSdtK2imvs/LGdxipLb5WnMuQNqAv5el3Z94jqitIn8378vzWzsmj4t+kx0EOU3qwzHwi4ilSRdcT80nhPvmzOh24IyerinGk8wHDSJViKy4FvlpZtqSVJW3b9Bszv/HAoXk+/UnnHoqJegrpOQxTq7qnLMQyS8dNQz3HONLe70BSWd5zKgNyieUbSe22E2tPPo+jSO2u/8nd55L2ND8FXNnFZaQ3AX8g1QS6irQBgtTmP5D0iMt+pBLPp1dNOzWP3wc4PyL+mvtfTTrpO5aUlK5k3mcJFP2UVEr686SSxtcx74nLrowBTpE0CZgSEZWrg8aS2tl/VG/CiHhL6f6LY0gnqqeT2tyf6MbyK14lbUi/QypPPZPUxl/ZyM0Xp6Q/kD6rIL1n7zxgKCJuUHrY+0nMbU75PoVmlYh4VenqrN9Imh0Rv64R12mkcuQnkJq8XiZ9986qGm88KdnfXrXnfRHpKOWX+UT2S6TP6KZuvDdFZ5OS/0W5+4bcr2Iq6bMoJoJlafCEM5ufaw31Ekq12deJiO+3cBmTgb0i4p/dnG4N0sZ9i8X4uv5BpL3hnSI9MMWsNNw01Avk5qI9yNfNW/fkNv/PAuOdBKyMnAh6OEl7ka5yuT3qP73K6lB6Zu5NpEd4/qbD4Zh1hJuGzMxKzkcEZmYl1yOuGlp11VVjyJAhnQ7DzKxHmTJlysyIGNjVeD0iEQwZMoTJkxvdEGlmZtUkPdnMeG4aMjMrOScCM7OScyIwMys5JwIzs5JzIjAzKzknAjOzknMiMDMrOScCM7OScyIwMyu5HnFn8cIYckyXD+zqMZ44ZbdOh2BmvZCPCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrORa+qhKSU8ArwJzgNkRMVzSAOBPwBDgCWDfiHiplXGYmVl97TgiGBERG0fE8Nx9DDAhIoYCE3K3mZl1SCeahvYARufXo4E9OxCDmZllrU4EAVwnaYqkkbnf6hExDSD/X63WhJJGSposafKMGTNaHKaZWXm19BwBsFVEPCtpNeB6SQ81O2FEjAJGAQwfPjxaFaCZWdm19IggIp7N/6cDlwObA89LGgyQ/09vZQxmZtZYyxKBpOUkrVB5DewE3AdcCRyURzsIGNOqGMzMrGutbBpaHbhcUmU5f4yIcZLuBC6WdCjwFPDpFsZgZmZdaFkiiIjHgQ/V6P8CsH2rlmtmZt3jO4vNzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5FqeCCQtIekuSWNz97qS/ibpEUl/ktSv1TGYmVl97TgiOBJ4sNB9KnBmRAwFXgIObUMMZmZWR0sTgaS1gN2As3O3gI8Bl+ZRRgN7tjIGMzNrrNVHBD8Fvg28nbtXAV6OiNm5+2lgzVoTShopabKkyTNmzGhxmGZm5dWyRCDpE8D0iJhS7F1j1Kg1fUSMiojhETF84MCBLYnRzMygbwvnvRWwu6SPA0sDK5KOEPpL6puPCtYCnm1hDGZm1oWWHRFExLERsVZEDAH2A26MiM8CE4F98mgHAWNaFYOZmXWtlUcE9XwHuEjSicBdwDkdiKEUhhxzdadDWGSeOGW3Todg1mu1JRFExCRgUn79OLB5O5ZrZmZd853FZmYl50RgZlZyTgRmZiXXZSKQ9DVJK7cjGDMza79mjggGAXdKuljSLrlMhJmZ9RJdJoKIOA4YSrrM82DgEUknS1q/xbGZmVkbNHWOICICeC7/zQZWBi6VdFoLYzMzszbo8j4CSV8n3QE8k1RF9FsR8ZakPsAjpKJyZmbWQzVzQ9mqwN4R8WSxZ0S8nQvLmZlZD9ZM09C61UlA0vkAEfFg7UnMzKynaCYRbFTskLQEsGlrwjEzs3armwgkHSvpVeCDkl7Jf68C03HFUDOzXqNuIoiIH0fECsDpEbFi/lshIlaJiGPbGKOZmbVQ3ZPFkt4bEQ8Bl0gaVj08Iqa2NDIzM2uLRlcNHQ2MBP6nxrAgPYTezMx6uLqJICJG5nsFjouI29oYk5mZtVHD+wjyvQI/AT7SpnjMFpkyP6GtzOtu3dfM5aPXSfqUi82ZmfVOzdxZfDSwHDBb0ixApPJDK7Y0MjMza4suE0G+hNTMzHqpph5enx9MMxRYutIvIm5uVVBmZtY+zVQfPQw4ElgLuBv4MPAXfPmomVmv0MzJ4iOBzYAnI2IEsAkwo6VRmZlZ2zSTCGZFxCwASUvlu403aG1YZmbWLs2cI3haUn/gCuB6SS8Bz7Y2LDMza5dmrhraK788XtJEYCVgXEujMjOztmlUdG5Ajd735v/LAy+2JCIzM2urRkcEU0jF5WrdURzAei2JyMzM2qpR0bl1F2bGkpYGbgaWysu5NCJ+IGld4CJgADAVODAi3lyYZZmZ2YJr5j6CbWr1b+KGsjeAj0XEa5KWBG6VdC2pZMWZEXGRpLOAQ4FfdzNuMzNbRJq5auhbhddLA5uTmo0a3lAWEQG8ljuXzH+V5xgckPuPBo7HicDMrGOauWrok8VuSWsDpzUz8/yg+ynAu4FfAo8BL0fE7DzK08CadaYdSXowDuuss04zizMzswXQzA1l1Z4G3t/MiBExJyI2JpWn2Bx4X63R6kw7KiKGR8TwgQMHLkCYZmbWjGbOEfyCuRvrPsDGwN+7s5CIeFnSJFKdov6S+uajgrXwzWlmZh3VzDmCyYXXs4ELm3l0paSBwFs5CSwD7ACcCkwE9iFdOXQQMKbbUZuZ2SLTzDmC0ZL6Ae8lHRk83OS8BwOj83mCPsDFETFW0gPARZJOBO4Czlmw0M3Maustj+ps12M6m2ka+jjwG9KJXgHrSjo8Iq5tNF1E3EOqVFrd/3HS+QIzM1sMNNM0dAYwIiIeBZC0PnA10DARmJlZz9DMVUPTK0kgexyY3qJ4zMyszZo5Irhf0jXAxaRzBJ8G7pS0N0BEXNbC+MzMrMWaSQRLA88D2+buGaQ6QZ8kJQYnAjOzHqyZq4a+0I5AzMysM7o8RyBpLUmXS5ou6XlJf5a0VjuCMzOz1mvmZPG5wJXAGqS6QFflfmZm1gs0kwgGRsS5ETE7/50HuPiPmVkv0UwimCnpc5KWyH+fA15odWBmZtYezSSCQ4B9geeAaaQ6QYe0MigzM2ufZi4f/U9E7N7ySMzMrCPqHhFI+qSkGcC9kp6WtGUb4zIzszZp1DR0ErB1RAwGPgX8uD0hmZlZOzVKBLMj4iGAiPgbsEJ7QjIzs3ZqdI5gNUlH1+uOiDNaF5aZmbVLo0TwW+Y9CqjuNjOzXqBuIoiIH7YzEDMz64xm7iMwM7NezInAzKzknAjMzEqu6UQg6cOSbpR0m6Q9WxmUmZm1T92TxZIGRcRzhV5HA7sDAm4HrmhxbGZm1gaNLh89S9IU4PSImAW8DBwAvA280o7gzMys9eo2DUXEnsDdwFhJBwJHkZLAsoCbhszMeomG5wgi4ipgZ6A/6SH1D0fEzyNiRjuCMzOz1mtUfXR3SbcCNwL3AfsBe0m6UNL67QrQzMxaq9E5ghOBjwDLANdExObA0ZKGkiqT7teG+MzMrMUaJYJ/kTb2ywDTKz0j4hGcBMzMeo1G5wj2Ip0Ynk26WqhbJK0taaKkByXdL+nI3H+ApOslPZL/r7xgoZuZ2aLQ6KqhmRHxi4g4KyIW5HLR2cA3I+J9wIeBr0raEDgGmBARQ4EJudvMzDqkZSUmImJaREzNr18FHgTWBPYARufRRuNLUc3MOqottYYkDQE2Af4GrB4R0yAlC2C1OtOMlDRZ0uQZM3y1qplZq7Q8EUhaHvgzcFR3mpgiYlREDI+I4QMHDmxdgGZmJdfSRCBpSVISuCAiLsu9n5c0OA8fTOGKJDMza7+WJQJJAs4BHqx6vvGVwEH59UHAmFbFYGZmXWt0H8HC2go4ELhX0t2533eBU4CLJR0KPAV8uoUxmJlZF1qWCCLiVlLJ6lq2b9Vyzcyse/yEMjOzknMiMDMrOScCM7OScyIwMys5JwIzs5JzIjAzKzknAjOzknMiMDMrOScCM7OScyIwMys5JwIzs5JzIjAzKzknAjOzknMiMDMrOScCM7OScyIwMys5JwIzs5JzIjAzKzknAjOzknMiMDMrOScCM7OScyIwMys5JwIzs5JzIjAzKzknAjOzknMiMDMrOScCM7OScyIwMyu5liUCSb+TNF3SfYV+AyRdL+mR/H/lVi3fzMya08ojgvOAXar6HQNMiIihwITcbWZmHdSyRBARNwMvVvXeAxidX48G9mzV8s3MrDntPkewekRMA8j/V6s3oqSRkiZLmjxjxoy2BWhmVjaL7cniiBgVEcMjYvjAgQM7HY6ZWa/V7kTwvKTBAPn/9DYv38zMqrQ7EVwJHJRfHwSMafPyzcysSisvH70Q+AuwgaSnJR0KnALsKOkRYMfcbWZmHdS3VTOOiP3rDNq+Vcs0M7PuW2xPFpuZWXs4EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVXEcSgaRdJD0s6VFJx3QiBjMzS9qeCCQtAfwS2BXYENhf0obtjsPMzJJOHBFsDjwaEY9HxJvARcAeHYjDzMwARUR7FyjtA+wSEYfl7gOBLSLia1XjjQRG5s4NgIfbGmj3rArM7HQQHVTm9S/zukO5178nrPu7ImJgVyP1bUckVVSj33zZKCJGAaNaH87CkzQ5IoZ3Oo5OKfP6l3ndodzr35vWvRNNQ08Daxe61wKe7UAcZmZGZxLBncBQSetK6gfsB1zZgTjMzIwONA1FxGxJXwPGA0sAv4uI+9sdxyLWI5qwWqjM61/mdYdyr3+vWfe2nyw2M7PFi+8sNjMrOScCM7OScyIAJM2RdLek+yRdImnZBuMOkXRAoftgSf/bnkg7Q9L3JN0v6Z78Pm0hqZ+kn0p6LJcKGStpncI0r3Uy5kWhN6zDgpA0SNJF+bN9QNI1kt7T6bgWxKL+DGv9Frox7RqSLu1inP6SvrLwkXaPE0HyekRsHBHvB94EvtRg3CHAAQ2G9yqSPgJ8AhgWER8EdgD+CZwMrAC8JyLeDfwZGCPJ36keTJKAy4FJEbF+RGwIfBdYvTDOwZKO72I+T7Qyzk5o8FtoZtq+EfFsROzTxaj9ASeCxcAtwLslnSDpyEpPSSdJ+jpwCrB13hv4Rh68hqRxkh6RdFphmv0l3ZuPNE4t9H8tz+/vkv4q6Z0f2WJoMDAzIt4AiIiZwMvAF4BvRMSc3P9c4DXSj6PXkLS8pAmSpubPco/c/9Tinpuk4yV9s974PcgI4K2IOKvSIyLujohbOhjTQlmEn+F8v4WIeDZPu5mk2/Nv+g5+kqByAAAD9ElEQVRJK+SEeYmkq4DrcmvCfXn8gyWNyduNhyX9IC/jFGD9vH05vU1vEURE6f+A1/L/vsAY4MukPf+puX8f4DFgFWA7YGxh2oOBx4GVgKWBJ0k3zK0BPAUMzPO9EdgzTxPAJ/Pr04DjOv0eNHhvlgfuBv4B/ArYFvggcFeNcc8Ejiq+pz35j5TY+gIr5u5VgUdJd8dvAtxUGPcBYJ1643d6Xbqxzl8HzuxinIOB47sY54lOr8ui/gxr/RbyOP3yNmCz3L1insfBpBtoB+T+Q4D7Cu/htLxNWQa4DxheHKedf50oMbE4WkbS3fn1LcA5EfGmpBckbUI6LL4rIl5IR87zmRAR/wKQ9ADwLtIHPCkiZuT+FwDbAFeQmp/G5mmnADu2aL0WWkS8JmlTYGvS3uKfgB9ToywItcuH9HQCTpa0DfA2sCawekTcJWk1SWuQkv1LEfGUpCVrjQ8816H4FwlJqwATcucAoJ+kPXP3gRFxr6RfAlvlfmsUflOXRMRJbQy32iL5DCPiuerfglIZ/SnAtIi4EyAiXgHI24rrI+LFOnFdHxEv5HEvAz5K2j60nRNB8npEbFyj/9mkzD0I+F2D6d8ovJ5Del8bbRTfirxbUBh/sRWp+WcSMEnSvcDhwLskrRARrxZGHQY0PBnWA32WtJHYNCLeym3fS+dhlwL7kL4fFzUxfk9wP2md5pE3WBtDatYAhkTE8VXjfLXyWtITdX5TnbDIPsMav4WDgKnU3jEC+HeDuKqn6dhNXT5H0NjlwC7AZqQ7oQFeJZ0k7crfgG0lrar0DIb9gZtaEmULSdpA0tBCr41JlWBHA2fkdUPS54FZwG3tj7KlVgKm5w3CCNLRXsVFpBIp+zA3ATYavye4EVhK0hcrPXL797YdjGlhLZLPsM5v4UngIdIR0GZ5vBUkNbNzt6OkAZKWAfYk/Xaa3b4sUov1nmin5eahicDLeU8A4B5gtqS/A+cBL9WZdpqkY4GJpKODayJiTBvCXtSWB34hqT8wm9ReOpL0hT0deDh/kWcAHykc6Swr6enCfM6IiDPaGPdCyT/kN4ALgKskTSa1Dz9UGSci7pe0AvBMREzLveuO3xNEREjaC/hpbvaYBTwBHNXRwBZACz7Dmr+FvJ34TB62DPA6zV00cStwPvBu4I8RMTnHfVs+qXxtRHxrId6CprnERANKl0JOBT4dEY90Op7FlaRBwDjgV5HKh/d4kj4E/DYiNu90LLZgFufPMDevDY+q57B0io8I6lB6fOZY4HIngcYi4jly+3FvIOlLpKtnetxesCX+DLvHRwRmZiXnk8VmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYl9//dhRUMpjpgcAAAAABJRU5ErkJggg==\n", 11 | "text/plain": [ 12 | "
" 13 | ] 14 | }, 15 | "metadata": {}, 16 | "output_type": "display_data" 17 | } 18 | ], 19 | "source": [ 20 | "import matplotlib.pyplot as plt\n", 21 | "import numpy as np\n", 22 | "\n", 23 | "plt.figure()\n", 24 | "\n", 25 | "languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']\n", 26 | "pos = np.arange(len(languages))\n", 27 | "popularity = [56, 39, 34, 34, 29]\n", 28 | "\n", 29 | "plt.bar(pos, popularity, align='center')\n", 30 | "plt.xticks(pos, languages)\n", 31 | "plt.ylabel('% Popularity')\n", 32 | "plt.title('Top 5 Languages for Math & Data \\nby % popularity on Stack Overflow', alpha=0.8)\n", 33 | "\n", 34 | "plt.show()" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 7, 40 | "metadata": {}, 41 | "outputs": [ 42 | { 43 | "name": "stderr", 44 | "output_type": "stream", 45 | "text": [ 46 | "c:\\users\\5559\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.\n", 47 | " warnings.warn(message, mplDeprecation, stacklevel=1)\n" 48 | ] 49 | }, 50 | { 51 | "data": { 52 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEXCAYAAACNj66GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHy9JREFUeJzt3Xm4HFWdxvHvG2IgYYtAJESQAKIoLhC2EWWJyjYgEHABF4yK4oYsDgojDlEEWRQXxg1QQERQkDVAwhICCCpL2BEEHECWkIRFQAmQ8Js/zmlSt9Pdt29y+3bO5f08T57crq6u/nV39dunTlWdUkRgZmblGNLtAszMrG8c3GZmhXFwm5kVxsFtZlYYB7eZWWEc3GZmhXFw26uepBGSfizpaknf7nY9rUg6RdJ/drsO666h3S5gMJJ0TeXmMsBLwPx8+8iIuKQfn+tIYDwwL0+aHxFbN5l3d+B9EfHF/nr+QWI7YASwdUS8vLgLk7Q58GNgakR8ozL97cDJwJ8iYt82lrMvMDIiDl+MWlYCJgHvBP4NnBYRv20x/zDgOmAuEMCLwD3A2RExrc3n3Bz4WkTsuqh1W2sO7g6IiC1qf0u6EDg8Iq7v4FOeFBG/7ODyB7vVgAcXJbQlLRUR8xvcNQfYRNKyEfGvPG1H4KHFqHNRTCQF8DbAcGDNNh+3W0TMkvRaYAvgUElrRMSpnSnT+sJdJV0gaWlJX5c0VdLFkvaTNDTft7mk8yTtI2mapAskvX8AatpN0h9yd8F5knau3Fer6dOSLpd0iaQdKvevVOlqOEXSvpJ+mu8bK+n6uud6ZXM/339Cfq2XS/qWpBGVedeXdEZe9hGSjpX0mcr94yWdKWm6pJMkrV25b+/8Hl8t6WxJGzZ43V8B9gJ2knSNpB0kDcnv/0WSLpX0P7Waaq9H0gRJF5Na1o3MJbVc358f9xrSltGUuuc/JK8DV0v6dW6VI2lr4GOVun5dedjq+T28Or/vKzSpAdKW3hMR8WJE/DMibmsx70Ii4qmIuAD4HvA5Scvm+hquL5JWzPO+Ptd9jaQVJb1T0qmSrpI0RdKBkpbqSy22gIO7O/YB1gU+Anwc2IgUHjVjgNeQNuG/A3xL0pgWy/tYDr7TJG25iDXNAfYFtgKOBA6uhiCpVQqwPXAMcEglYL8BPE1q1R0B7NTH5z6R9Fo/QmoRfgZe2Wz/PnA2KfSuAl55fTnkDga+BbwXuBj4nqSlJL0J2BnYM7+m/YDH6584In4MnA5MjogtcjfW7vm17A1MAFYCDqw8bAjwNmC3uun1LiK1siG1Wu8kvU9VtwF75PqnA0dLGhoR0+vqqq4f2wOH5vdsufz4Zu4khf8OLeZpx5XA0sBb8u2G60tE/BP4L+CRXPcWedo84GjS57g36XN0V8oicnB3xw7ALyLi6Yh4EvglC77gkFbyEyLipdzF8hdyy62B00hfgG2Bk4AjJL21rwVFxNUR8Wgk1wM3ARtUZpkLnBIR8yLiyjxt9RyuWwI/i4gXIuJeoO0+/Ih4ICJuyK/1CeC3wLh89zjgxYj4Q0TMj4hLgb9VHr4b8LuI+GtEvBwR5wDDSOEyjxQ0awNDIuKRiHi0zbJ2AH4dEY/lbo6fAjtIUmWen0fE3Ih4ocVybgRWyz+6OwKTG7z+iyLimYiYR+r/XhF4fS/1nRsRD0fE88AVwJsbzSRpLVKI7gN8XtL2efoISX+WtEwvz1Ot83ngOWCFfLu39aX+8XdGxF35c3oYOI/UYLFF4D7uAZa//CsDj1UmPwaMqtx+OiJerNyeCazSaHkR8dfKzaskXQFsDdzVx7q2JLWEVif9oC8D3FyZ5am6PuC5pB16qwCiZ2v2ceBNbT7vKFK4vANYNi9rTr57FAu3kqu3VwO2kVRtjb4GeF1ETJN0PPBFYKyk64Dj8g9lb1Yhvec1j5F+BGpdEi9HxOzeFhIRIWkKqdX/duAQ6lqZkj4FfIC0TgTph2ck8GCLRT9R+Xsuqe+6kQnANRFxs9KOzhPyb88/gdsiYm5vr6FS53BS6/6ZfLu39aX+8WsD+wPr5XmXAm5t9/mtJwf3AMtf5idIofNwnjwaqAbBSEnDKuE9Gril3acghV/b8pfyaODrwLURMT+HXjvLmZOf83UsCLtVK/c/Dwypez0rV+7fL8/zkYh4RtK2pLCtLbu6rNqyaz9WjwN/jIjfNCosIiYDkyUtD3wzL/c7bb6m0ZXbo4EXSKH12jYeX3URcBZwTkS8WG20S9qM1D30ReD/SO/31Sx43xd36M6h5KOZIuIhSfsBPyO9jiP7uKzxpPfgr22sL43qPpS0BXJwRPxb0kRg0z7WYJm7SrpjKvDZvNNmJVKf7sWV+4cCe0t6jaRNgM1Im8Q95L7c8ZKG5x1q7yF1qVxTP2/FEEnDqv9IrcmhwJNA5NZUW5uxOYyvAfbJy1uH1AdbMxt4Ctg+1/ghUsjXjCAdpvacpNGkPv+aGcDSeUfYUpK2oWdL/hzgI5LeqmSEpC0lLSNpbUnj8ut7If9r96iRKcAnJI3O/fhfAKbEIoyBHBEPkLoqTmhw97KkLp2nSFsKnye1uGueBMbUddH0xeXAjpLeI2kI8CxwH2kfSlvyOroT8FXgl7nrqLf15Qlgpco+EEif83M5tNcmbQ3YInKLuzt+DhxAaom9DFwKVI8aeJTUUpoK/Av4VkQ80mA5Aj5BOk5XpBb8Yb0cObAx6WiHmpcjYlNJPwR+QFonrgSu7cPrOYK0g/By4O+57rEAEfGypMOBr5Fe8x9Y0GKG9F5MIu14fBC4jPyljogXJB1E2vm5P+kH4k+k4+KJiFslHQv8N7AGqeU+g7RPYOn8fGuSwvHm/PracTapu+RXpEC9Fjiu7XejTkTMaHLX1aRurfNJn/Np9Nx5OZW0k3SapP+LiE/39XklTQK+TGphzyT92J1N2gm6d0Tc3+Th50gK0nt9D3BURFyWl/t0L+vLvaTPc3L+wdiZ9P4dLOmzpM//UmD9vrweW0C+kMKSRYPg5AVJ/wUMi4i+bo63s+wzSDtJp/b3ss1K4a4SW2yS1sldE5L0DtIRFNP7adkbKx0nPlTSbqSdYX/pj2WblcpdJdYflgMOJ+10fILUF3pd64e0bW3gu6QjEf4BHBQR9cdCm72quKvEzKww7ioxMyuMg7sDJF0o6VV7jOrivn6l8S16O3tw0FrS1598COrF+XN685Je72Dk4F6CSVpVaTChaZIOqLvveC3Cqe0lyONbPAIgaZKkJWIYWkm7aMHASpdK+pEWDD7VlTrzDuG9JJ0r6TqlgbH2zcevd8r+wNH5c7qng89jTXjn5JLtU6TxLaYAp0uaGhF35bMLH4mIPp3WvqRT8yFSu07SOOBLwL4RcY/SiHyLOqBXfzoIeBdwGGlAqTVJx8WvResBsPqs8vmsRjpe37rELe7OWV/SWZKulHRYrQUk6feqjOCXD3O7Qmk0u3pjgBsi4jnSl/L1SsNqTgR+0lsBkm6UtIfS0LBXKA0fOyTfN0TSZyRNlnSZpG9LWi7fNyY/djelITinSvp4Zbk9WpeSNlIa4rRRDetLOllp2NWpkr6mNMRptcYPSzoXOLcybY18+N8OwF55s/wHuXV5TN1zfE3SV5s8/1pKw8ZOb/DeT1IaXvdHuRV9qqTVm7yd6wO311qYeWCoyflMwIXqzMufKOn8vOyzJI2vq22C0nCztfvXa1D/2Pz5bdvgvjcAHwQOjYjb8kBcfyeHuaRNJL09bx0MqTxuvKQz899DKnVOk3RU/lGqrge7SLoIOEnpIiFDgDMknd+gpmGSvprXmyn579q6f4Kk9+a/N8jLfne+vamkphd4sJ4c3J2zA+mMtV1IraC98/TJ+b6adwNzIuJvLOx+YDOlsTbeSmrlfAH4bUQ822Yd40mnkX+MNARnbZztnUiDG+2TaxxOOruxamPSWYxfAiZq0foxXyadNfc+0hbEpsCH6ubZGvhk/fQ82t8lpJH6toiIA0hDA2ye3xOUxnTehp5DBpDvG0o6u+/PeZ5jge9Iql5MYDvS6ejjSYcbNuvuuIMUhvsojS39SldEkzohncm6d359JwKHS1ol1/Z+4HPA/5A+lwNJgz9V61+P9AN9bB4Zsd4mwKyIuLPufXscuB3YLCJuJ51Ruklllu1ZMC74Hrm+z+bpz5CGyq3aiPQD8flYcJGQPSNilwY1fZo0oNZHSYNrrU8eppd0VuvG+e9xwCMsOFV+XL7f2uDg7pzfRcTjEfEMadjW7fL0S4B355YzpJNVLmqyjJOBDUnB8ntS19a6QO2iAidK+nAvdZyaW4czgTMqdewAnJ6HO/038L/Aduo5uP0JEfF8RNwHXEDPMUjakodcvT23Bh8lnXI9rm62k3ONrYZIrS1vDukLXhvmdnPSaIp/bTD720ljZJySh429AfgjC94DgCvzkKPzSZ9NwyFSI+Jm0iiG6wE/Aq5QuhhA0+9QRFweEbPzUKaXkq5+UzvNe1dS0N+Vh0b9R0RUR4zckPSDd1hENBt7ZiQLRlKsNyffD+nU+e0gDelKaizUzjzdDfhpRMzK486cALyvbj34RV4Pev18SOvViRHxZEQ8RfrBql0jcwYLPvsNSet3dQhfB3eb3MfdOdXhR18ZtjUiZku6lfTluJIUPN9rtIAc+odA2qQlfQmOJHWV3E/qyzxd0o15E7mR+uFJa8PHjmLhoWWXoufIfdXXMBN4Y5PnaCpvzh9I2mKoDedZH7ILXeCgF5NJLcBzSUHRsJuG9Bpn1g1H+xg9B7lqd4hU8klF1+XPYmPgKOAB0o/RQiTtSNrSqQ3qNIIFYboqC0aHbGR3YEZE3NhinqdpMtxvnl4bs2YK8CtJR5Eu2HB35UdiNdLFJ6rv0Xyarwe9abRe1da524A3KA2s9mbSerGPpJGkC1M4uNvkFnfnVIcjrR+2tdZd8n7SuMiz2ljeBFIf6/2kAL0rIl4ijfa2TovH1Q9PWqtjNguualO7bz49g6z+NdRad8+TQrim+iWvdwgp3HaNiC1Jm/71o921Ogus0X3TgXWVRiLcguYXbpgNjK5rFY8G2nm/mxeUWtDXk4Yprf2Y9ahT0mqkoUyPAd4b6QLO97HgtT9OOn2/me/m2lvtYLwBWFVSj8GaJK1K2tq4Ptf7d1KAbk7PbpJaHftGxNaVf5vXrZN9OUuv0Xo1O9cxF7ib1IVyX15/byP9uD3sM2Lb5+DunA9Lel3e0fNp0mhoNdNJm9x70ryb5BW5hfJhFgwN+iiwcd7sfQupr7CZT0haIX+Z9ySNvgdpU/mjeQfUCFJ//KV1R3XsrTxEKqk/vPYa/kbq7llB0sqk/sxmliWNfPe8pLGklnJfPEndFWHyJv0VpFEJ78zdQI3cQfqR2UtpJ/BGpKBv1F/ckqStJG2bX7NyWI4j9SU3qnM4KfCeyo/fmZ5bLOeRPpu35OWtkcO+5l+kS4ONU7oIwkIi4iHSaIvfyTshh+TP6ljg+uh5geoppP7scaRRHGvOBr5Ue25Jr5W0VdtvzMKmAp/JyxlJ6juv/rDeRBqDfEbd7ZsW4zlfddxV0jlTSK3LUaQhLl+5CnsernQaqd/xysYP72F/Ur/hv/Ptk0ktud2BC3o5LPAq4Dek8UQuJAUGpD7rUaTLnQ0jDZd6bN1jZ+T5hwCnRcSf8/SLSDsZJ5N+RC6g5zjaVT8kDcu6F2l40EvpuaOsN+cDR0maDtwUEbWjRyaT+om/3eyBEfGS0vHvB5N2jM4i9Rk/0Ifnr3mWFHxfJw31OofUR10LpYXqlPQb0mcVpPfslYthRMTlShfWPYIF3QvfpNLNEBHPKh298wtJ8yLiZw3qOoY0tO/hpC6gp0nr3s/r5ptK+nG+rq5leyZpK+AnecfpU6TP6Ko+vDdVJ5F+rM/Mty/P02pmkD6LanCPoMXVc2xhHqukS5TGJX5DRHyzg89xIzAhIv7Rx8eNIYXxZkvwcdWjSa3NbSMN7m/2quGuki7I3Se7kI9btr7JfdYfA6Y6tO3VyME9wCRNIB0FcV00vzKKNaF0vcOrSJdz+0WXyzHrCneVmJkVxi1uM7PCdOSoklVWWSXGjh3biUWbmQ1aN91005yIGNXbfB0J7rFjx3Ljja1O+DIzs3qSHmxnPneVmJkVxsFtZlYYB7eZWWEc3GZmhXFwm5kVxsFtZlYYB7eZWWEc3GZmhXFwm5kVZom7kMLYg3u9IEwxHjhqx26XYGaDkFvcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRVmaLcLsJ7GHnxRt0voNw8ctWO3SzAblNziNjMrjIPbzKwwDm4zs8I4uM3MCtNrcEv6sqTXDkQxZmbWu3Za3KOBGyT9XtL2ktTposzMrLlegzsiDgXWBX4JTATulXSkpHU6XJuZmTXQVh93RAQwM/+bB7wWOFvSMR2szczMGuj1BBxJXwE+CcwBTgIOioiXJA0B7gW+1tkSzcysqp0zJ1cBdouIB6sTI+JlSTt1piwzM2umna6StepDW9JpABHx145UZWZmTbUT3OtXb0haCtioM+WYmVlvmga3pEMkPQu8Q9Iz+d+zwCzg/AGr0MzMemga3BHx3YhYHjg2IlbI/5aPiJUj4pABrNHMzCqa7pyUtF5E3A2cJWlc/f0RMaOjlZmZWUOtjio5EPgc8P0G9wXw3o5UZGZmLTUN7oj4XD5W+9CIuHYAazIzsxZaHsedj9X+HvCuAarHXsVe7Vf/GSyv31c+6rx2Dge8VNLuHlzKzGzJ0M6ZkwcCywLzJM0FRBq+ZIWOVmZmZg31Gtz5kEAzM1tCtHWV93whhXWBZWrTIuLqThVlZmbNtTM64N7AfsDqwC3AfwB/wocDmpl1RTs7J/cDNgEejIjxwIbA7I5WZWZmTbUT3HMjYi6ApKXz2ZRv7mxZZmbWTDt93A9LGgmcB1wm6Sng0c6WZWZmzbRzVMmE/OckSVcCKwJTOlqVmZk11WqQqZUaTL49/78c8GRHKjIzs5ZatbhvIg0m1eiMyQDW7khFZmbWUqtBptYayELMzKw97RzHvWWj6T4Bx8ysO9o5quSgyt/LAJuSulF8Ao6ZWRe0c1TJB6q3Ja0BHNOxiszMrKV2TsCp9zDwtv4uxMzM2tNOH/fxpKNIIAX9BsCtnSzKzMyaa6eP+8bK3/OAM3wpMzOz7mmnj/tUScOA9Ugt73s6XpWZvaoMlsu2wcBcuq2drpL/BH4B3E86GWctSftExCWdLs7MzBbWTlfJccD4iLgPQNI6wEWAg9vMrAvaOapkVi20s78DszpUj5mZ9aKdFvedki4Gfk/q4/4QcIOk3QAi4pwO1mdmZnXaCe5lgMeBrfLt2cBKwAdIQe7gNjMbQO0cVfKpgSjEzMza02sft6TVJZ0raZakxyX9QdLqA1GcmZktrJ2dkycDFwBjgNcDF+ZpZmbWBe0E96iIODki5uV/pwCjOlyXmZk10U5wz5H0cUlL5X8fB57odGFmZtZYO8H9aeDDwEzgMeCDeZqZmXVBO4cD/jsidu54JWZm1pamLW5JH5A0G7hd0sOSNh/AuszMrIlWXSVHAFtExGrA7sB3B6YkMzNrpVVwz4uIuwEi4i/A8gNTkpmZtdKqj/t1kg5sdjsijutcWWZm1kyr4D6Rnq3s+ttmZtYFTYM7Ir41kIWYmVl7FuUq72Zm1kUObjOzwji4zcwK03ZwS/oPSdMkXStp104WZWZmzTXdOSlpdETMrEw6ENiZdKX364DzOlybmZk10OpwwJ9Lugk4NiLmAk8DHwVeBp4ZiOLMzGxhTbtKImJX4BZgsqRPAPuTQnsE4K4SM7MuadnHHREXAtsBI0kXBb4nIn4cEbMHojgzM1tYq9EBd5b0R2AacAewBzBB0hmS1hmoAs3MrKdWfdzfAd4FDAcujohNgQMlrUsaOXCPAajPzMzqtAruf5LCeTgwqzYxIu7FoW1m1jWt+rgnkHZEziMdTWJmZkuAVoNMzQGOH8BazMysDT7l3cysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzAqjiOj/hUqzgQf7fcFmZoPbmhExqreZOhLcZmbWOe4qMTMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwxQa3pPmSbpF0h6SzJI1oMe9YSR+t3J4o6X8HptKBJ+kbku6UdFt+jzaTNEzSDyXdL+k+SZMlvaHymOe6WXN/GSyvo68kjZZ0Zv5875J0saQ3dbuuvurvz6/Rd6EPjx0j6exe5hkp6YuLX2nfFBvcwPMRsUFEvA14Efh8i3nHAh9tcf+gIeldwE7AuIh4B/B+4B/AkcDywJsi4o3AH4DzJZW8DhggScC5wPSIWCci3gr8N7BqZZ6Jkib1spwHOlnnQGvxXWjnsUMj4tGI+GAvs44EHNyL6BrgjZIOl7RfbaKkIyR9BTgK2CL/4h6Q7x4jaYqkeyUdU3nMnpJuzy35oyvTn8vLu1XSnyW98qVYwqwGzImIFwAiYg7wNPAp4ICImJ+nnww8R1qZBxVJy0m6QtKM/FnukqcfXW0dSZok6avN5i/IeOCliPh5bUJE3BIR13SxpkXWj5/fQt+FiHg0P3YTSdfl7/P1kpbPP25nSboQuDRvqd+R558o6fycGfdIOiw/x1HAOjlbjh2gtwgiosh/wHP5/6HA+cAXSC3rGXn6EOB+YGVga2By5bETgb8DKwLLkE7PXwMYAzwEjMrLnQbsmh8TwAfy38cAh3b7PWjyviwH3AL8DfgpsBXwDuDmBvP+ANi/+n6W/o/0YzQUWCHfXgW4DxCwIXBVZd67gDc0m7/br6UPr/krwA96mWciMKmXeR5YAl5Lv31+jb4LeZ5h+fu/Sb69Ql7GROBhYKU8fSxwR+X9eyznyXDgDmDj6jwD+W8o5Rou6Zb89zXALyPiRUlPSNqQtJl4c0Q8kbYkF3JFRPwTQNJdwJqkD2V6RMzO008HtgTOI3XHTM6PvQnYpkOva7FExHOSNgK2ILXEfgd8l/TDU6/hGzMICDhS0pbAy8DrgVUj4mZJr5M0hvTj/FREPCTpNY3mB2Z2qf5+IWll4Ip8cyVgmKRd8+1PRMTtkn4CvDtPG1P5Tp0VEUcMYLlV/fL5RcTM+u+CpINJ39/HIuIGgIh4BiDnxGUR8WSTui6LiCfyvOcA7yFlw4ArObifj4gNGkw/ifTrOBr4VYvHv1D5ez7pvWgVZC9F/umtzL9EitQdMh2YLul2YB9gTUnLR8SzlVnHAS13vhTqY6Qv9kYR8VLuu10m33c28EHS+nFmG/OX4E7Sa+ohh8wGkDb1gbERMaluni/V/pb0QJPv1EDrt8+vwXfhk8AMGjdkAP7Voq76x3RtoKfB0sdddS6wPbAJMDVPe5a0Y643fwG2krSKpKWAPYGrOlJlh0h6s6R1K5M2AO4BTgWOy68LSXsBc4FrB77KjlsRmJW/xONJW1M1ZwJ7kL78Z7cxfwmmAUtL+mxtQu7D3aqLNS2Ofvn8mnwXHgTuJm1dbJLnW15SOw2xbSStJGk4sCvpu9NutvSrJbbVuKhyd8mVwNP51xbgNmCepFuBU4Cnmjz2MUmHAFeSWt8XR8T5A1B2f1oOOF7SSGAeqb/vc6QV7FjgnrzizQbeVdmKGCHp4cpyjouI4waw7sWWv3wvAKcDF0q6kdTHeXdtnoi4U9LywCMR8Vie3HT+EkRESJoA/DB3BcwFHgD272phfdSBz6/hdyFnxEfyfcOB52lvJ/0fgdOANwK/jYgbc93X5p2Yl0TEQYvxFrRt0A3rqnR42wzgQxFxb7frWRJJGg1MAX4aESd0u57+IumdwIkRsWm3a7G+W5I/v9zVtHFEfLnbtcAga3FLeitpB+K5Du3mImImue9zsJD0edLRFUW1Mi3x59c3g67FbWY22A3GnZNmZoOag9vMrDAObjOzwji4zcwK4+A2MyvM/wPjVv3b4N/a6QAAAABJRU5ErkJggg==\n", 53 | "text/plain": [ 54 | "
" 55 | ] 56 | }, 57 | "metadata": {}, 58 | "output_type": "display_data" 59 | } 60 | ], 61 | "source": [ 62 | "import matplotlib.pyplot as plt\n", 63 | "import numpy as np\n", 64 | "\n", 65 | "plt.figure()\n", 66 | "\n", 67 | "languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']\n", 68 | "pos = np.arange(len(languages))\n", 69 | "popularity = [56, 39, 34, 34, 29]\n", 70 | "\n", 71 | "plt.bar(pos, popularity, align='center')\n", 72 | "plt.xticks(pos, languages)\n", 73 | "plt.ylabel('% Popularity')\n", 74 | "plt.title('Top 5 Languages for Math & Data \\nby % popularity on Stack Overflow', alpha=0.8)\n", 75 | "\n", 76 | "# remove all the ticks (both axes), and tick labels on the Y axis\n", 77 | "plt.tick_params(top='off', bottom='off', left='off', right='off', labelleft='off', labelbottom='on')\n", 78 | "\n", 79 | "plt.show()" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": 9, 85 | "metadata": {}, 86 | "outputs": [ 87 | { 88 | "name": "stderr", 89 | "output_type": "stream", 90 | "text": [ 91 | "c:\\users\\5559\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.\n", 92 | " warnings.warn(message, mplDeprecation, stacklevel=1)\n" 93 | ] 94 | }, 95 | { 96 | "data": { 97 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEXCAYAAACNj66GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHwBJREFUeJzt3Xe4XFW9xvHvG2IgoUWKhAgSQATBAqFdUUpU2gWBgAUsGBXFhhQvCFe8oAhSFAtXpSkgIihIDZBQQgBBpYTepFxASkhCRwmQ8Lt/rDVkn8nMnDlJ5kzW4f08T56c2bNnz29m9ryz9tp7r62IwMzMyjGo2wWYmVnfOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4LY3PUnDJP1C0jWSftDtelqRdKqk/+x2HdZdg7tdwEAk6drKzcWA14DZ+fYREXHpAnyuI4AxwKw8aXZEbNFk3l2Aj0TE1xfU8w8QWwPDgC0i4vX5XZikTYBfABMj4ruV6e8FTgH+GhF7tbGcvYDhEXHYfNSyDHAo8H7g38DpEfGHFvMPAa4HZgIBvArcB5wTEZPafM5NgAMiYqd5rdtac3B3QERsWvtb0kXAYRFxQwef8uSI+E0Hlz/QrQg8Mi+hLWmRiJjd4K4ZwIaSFo+If+Vp2wGPzked82IcKYC3BIYCq7T5uJ0jYpqktwKbAgdLWjkiTutMmdYX7irpAkmLSvqOpImSLpG0t6TB+b5NJJ0vaU9JkyRdKOmj/VDTzpL+nLsLzpe0Q+W+Wk1flHSFpEslbVu5f5lKV8OpkvaS9Kt83yhJN9Q91xub+/n+E/NrvULS9yUNq8y7jqQz87IPl3SMpC9V7h8j6SxJkyWdLGm1yn175Pf4GknnSFqvwev+FrA7sL2kayVtK2lQfv8vlnSZpP+p1VR7PZLGSrqE1LJuZCap5frR/Li3kLaMJtQ9/0F5HbhG0u9yqxxJWwCfqdT1u8rDVsrv4TX5fV+qSQ2QtvSejohXI+L5iLi9xbxziYhnI+JC4MfAVyQtnutruL5IWjrP+/Zc97WSlpb0fkmnSbpa0gRJ+0lapC+12BwO7u7YE1gD+BTwWWB9UnjUjATeQtqE/yHwfUkjWyzvMzn4Tpe02TzWNAPYC9gcOAI4sBqCpFYpwDbA0cBBlYD9LvAcqVV3OLB9H5/7JNJr/RSpRfgleGOz/SfAOaTQuxp44/XlkDsQ+D7wYeAS4MeSFpH0LmAHYLf8mvYGnqp/4oj4BXAGMD4iNs3dWLvk17IHMBZYBtiv8rBBwHuAneum17uY1MqG1Gq9i/Q+Vd0O7JrrnwwcJWlwREyuq6u6fmwDHJzfsyXy45u5ixT+27aYpx1XAYsC7863G64vEfE88F/A47nuTfO0WcBRpM9xD9Ln6K6UeeTg7o5tgRMi4rmIeAb4DXO+4JBW8hMj4rXcxfJ3csutgdNJX4CtgJOBwyWt3deCIuKaiHgikhuAm4F1K7PMBE6NiFkRcVWetlIO182AX0fEKxFxP9B2H35EPBwRN+bX+jTwB2B0vns08GpE/DkiZkfEZcA/Kg/fGfhjRNwTEa9HxLnAEFK4zCIFzWrAoIh4PCKeaLOsbYHfRcSTuZvjV8C2klSZ5/iImBkRr7RYzk3AivlHdztgfIPXf3FEvBARs0j930sDb++lvvMi4rGIeBm4Eliz0UySViWF6J7AVyVtk6cPk/Q3SYv18jzVOl8GXgKWyrd7W1/qH39XRNydP6fHgPNJDRabB+7j7mf5y78s8GRl8pPA8pXbz0XEq5XbU4HlGi0vIu6p3Lxa0pXAFsDdfaxrM1JLaCXSD/piwC2VWZ6t6wOeSdqhtxwgerZmnwLe1ebzLk8Kl/cBi+dlzch3L8/creTq7RWBLSVVW6NvAd4WEZMkHQd8HRgl6Xrg2PxD2ZvlSO95zZOkH4Fal8TrETG9t4VEREiaQGr1vxc4iLpWpqQvAB8jrRNB+uEZDjzSYtFPV/6eSeq7bmQscG1E3KK0o/PE/NvzPHB7RMzs7TVU6hxKat2/kG/3tr7UP341YB9grTzvIsBt7T6/9eTg7mf5y/w0KXQey5NHANUgGC5pSCW8RwC3tvsUpPBrW/5SHgV8B7guImbn0GtnOTPyc76NOWG3QuX+l4FBda9n2cr9e+d5PhURL0jaihS2tWVXl1Vbdu3H6ingLxHx+0aFRcR4YLykJYHv5eX+sM3XNKJyewTwCim03trG46suBs4Gzo2IV6uNdkkbk7qHvg78H+n9voY57/v8Dt05mHw0U0Q8Kmlv4Nek13FEH5c1hvQe3NPG+tKo7oNJWyAHRsS/JY0DNupjDZa5q6Q7JgJfzjttliH16V5SuX8wsIekt0jaENiYtEncQ+7LHSNpaN6h9iFSl8q19fNWDJI0pPqP1JocDDwDRG5NtbUZm8P4WmDPvLzVSX2wNdOBZ4Ftco2fIIV8zTDSYWovSRpB6vOvmQIsmneELSJpS3q25M8FPiVpbSXDJG0maTFJq0kanV/fK/lfu0eNTAA+J2lE7sf/GjAh5mEM5Ih4mNRVcWKDuxcndek8S9pS+CqpxV3zDDCyroumL64AtpP0IUmDgBeBB0j7UNqS19HtgW8Dv8ldR72tL08Dy1T2gUD6nF/Kob0aaWvA5pFb3N1xPLAvqSX2OnAZUD1q4AlSS2ki8C/g+xHxeIPlCPgc6ThdkVrwh/Ry5MAGpKMdal6PiI0k/Qz4KWmduAq4rg+v53DSDsIrgIdy3aMAIuJ1SYcBB5Be85+Z02KG9F4cStrx+AhwOflLHRGvSNqftPNzH9IPxF9Jx8UTEbdJOgb4b2BlUst9CmmfwKL5+VYhheMt+fW14xxSd8lvSYF6HXBs2+9GnYiY0uSua0jdWheQPufT6bnzciJpJ+kkSf8XEV/s6/NKOhT4JqmFPZX0Y3cOaSfoHhHxYJOHnyspSO/1fcCREXF5Xu5zvawv95M+z/H5B2MH0vt3oKQvkz7/y4B1+vJ6bA75QgoLFw2Akxck/RcwJCL6ujnezrLPJO0knbigl21WCneV2HyTtHrumpCk95GOoJi8gJa9gdJx4oMl7UzaGfb3BbFss1K5q8QWhCWAw0g7HZ8m9YVe3/ohbVsN+BHpSIR/AvtHRP2x0GZvKu4qMTMrjLtKzMwK4+DuAEkXSXrTHqM6v69faXyL3s4eHLAW9vUnH4J6Sf6c1lzY6x2IHNwLMUkrKA0mNEnSvnX3Had5OLW9BHl8i8cBJB0qaaEYhlbSjpozsNJlkn6uOYNPdaXOvEN4d0nnSbpeaWCsvfLx652yD3BU/pzu6+DzWBPeOblw+wJpfIsJwBmSJkbE3fnswscjok+ntS/s1HyI1K6TNBr4BrBXRNynNCLfvA7otSDtD3wAOIQ0oNQqpOPiV6X1AFh9Vvl8ViQdr29d4hZ356wj6WxJV0k6pNYCkvQnVUbwy4e5Xak0ml29kcCNEfES6Uv5dqVhNccBv+ytAEk3SdpVaWjYK5WGjx2U7xsk6UuSxku6XNIPJC2R7xuZH7uz0hCcEyV9trLcHq1LSesrDXHaqIZ1JJ2iNOzqREkHKA1xWq3xk5LOA86rTFs5H/63LbB73iz/aW5dHl33HAdI+naT519VadjYyQ3e+0OVhtf9eW5FnyZppSZv5zrAHbUWZh4Yanw+E3CuOvPyx0m6IC/7bElj6mobqzTcbO3+tRrUPyp/fls1uO8dwMeBgyPi9jwQ10PkMJe0oaT35q2DQZXHjZF0Vv57UKXOSZKOzD9K1fVgR0kXAycrXSRkEHCmpAsa1DRE0rfzejMh/11b90+U9OH897p52R/MtzeS1PQCD9aTg7tztiWdsbYjqRW0R54+Pt9X80FgRkT8g7k9CGysNNbG2qRWzteAP0TEi23WMYZ0GvlnSENw1sbZ3p40uNGeucahpLMbqzYgncX4DWCc5q0f83XSWXMfIW1BbAR8om6eLYDP10/Po/1dShqpb9OI2Jc0NMAm+T1BaUznLek5ZAD5vsGks/v+luc5BvihpOrFBLYmnY4+hnS4YbPujjtJYbin0tjSb3RFNKkT0pmse+TXdxJwmKTlcm0fBb4C/A/pc9mPNPhTtf61SD/Qx+SREettCEyLiLvq3rengDuAjSPiDtIZpRtWZtmGOeOC75rr+3Ke/gJpqNyq9Uk/EF+NORcJ2S0idmxQ0xdJA2p9mjS41jrkYXpJZ7VukP8eDTzOnFPlR+f7rQ0O7s75Y0Q8FREvkIZt3TpPvxT4YG45QzpZ5eImyzgFWI8ULH8idW2tAdQuKnCSpE/2UsdpuXU4FTizUse2wBl5uNN/A/8LbK2eg9ufGBEvR8QDwIX0HIOkLXnI1Ttya/AJ0inXo+tmOyXX2GqI1NryZpC+4LVhbjchjaZ4T4PZ30saI+PUPGzsjcBfmPMeAFyVhxydTfpsGg6RGhG3kEYxXAv4OXCl0sUAmn6HIuKKiJiehzK9jHT1m9pp3juRgv7uPDTqPyOiOmLkeqQfvEMiotnYM8OZM5JivRn5fkinzm8NaUhXUmOhdubpzsCvImJaHnfmROAjdevBCXk96PXzIa1XJ0XEMxHxLOkHq3aNzCnM+ezXI63f1SF8Hdxtch9351SHH31j2NaImC7pNtKX4ypS8Py40QJy6B8EaZOW9CU4gtRV8iCpL/MMSTflTeRG6ocnrQ0fuzxzDy27CD1H7qu+hqnAO5s8R1N5c34/0hZDbTjP+pCd6wIHvRhPagGeRwqKht00pNc4tW442ifpOchVu0Okkk8quj5/FhsARwIPk36M5iJpO9KWTm1Qp2HMCdMVmDM6ZCO7AFMi4qYW8zxHk+F+8/TamDUTgN9KOpJ0wYZ7Kz8SK5IuPlF9j2bTfD3oTaP1qrbO3Q68Q2lgtTVJ68WekoaTLkzh4G6TW9ydUx2OtH7Y1lp3yUdJ4yJPa2N5Y0l9rA+SAvTuiHiNNNrb6i0eVz88aa2O6cy5qk3tvtn0DLL611Br3b1MCuGa6pe83kGkcNspIjYjbfrXj3bX6iywRvdNBtZQGolwU5pfuGE6MKKuVTwCaOf9bl5QakHfQBqmtPZj1qNOSSuShjI9GvhwpAs4P8Cc1/4U6fT9Zn6Ua2+1g/FGYAVJPQZrkrQCaWvjhlzvQ6QA3YSe3SS1OvaKiC0q/zapWyf7cpZeo/Vqeq5jJnAvqQvlgbz+3k76cXvMZ8S2z8HdOZ+U9La8o+eLpNHQaiaTNrl3o3k3yRtyC+WTzBka9Algg7zZ+25SX2Ezn5O0VP4y70YafQ/SpvKn8w6oYaT++MvqjurYQ3mIVFJ/eO01/IPU3bOUpGVJ/ZnNLE4a+e5lSaNILeW+eIa6K8LkTforSaMS3pW7gRq5k/Qjs7vSTuD1SUHfqL+4JUmbS9oqv2blsBxN6ktuVOdQUuA9mx+/Az23WM4nfTbvzstbOYd9zb9IlwYbrXQRhLlExKOk0RZ/mHdCDsqf1THADdHzAtUTSP3Zo0mjONacA3yj9tyS3ipp87bfmLlNBL6UlzOc1Hde/WG9mTQG+ZS62zfPx3O+6birpHMmkFqXy5OGuHzjKux5uNJJpH7Hqxo/vId9SP2G/863TyG15HYBLuzlsMCrgd+TxhO5iBQYkPqslydd7mwIabjUY+oeOyXPPwg4PSL+lqdfTNrJOJ70I3IhPcfRrvoZaVjW3UnDg15Gzx1lvbkAOFLSZODmiKgdPTKe1E/8g2YPjIjXlI5/P5C0Y3Qaqc/44T48f82LpOD7Dmmo1xmkPupaKM1Vp6Tfkz6rIL1nb1wMIyKuULqw7uHM6V74HpVuhoh4UenonRMkzYqIXzeo62jS0L6HkbqAniOte8fXzTeR9ON8fV3L9izSVsAv847TZ0mf0dV9eG+qTib9WJ+Vb1+Rp9VMIX0W1eAeRour59jcPFZJlyiNS/yOiPheB5/jJmBsRPyzj48bSQrjjRfi46pHkFqbW0Ua3N/sTcNdJV2Qu092JB+3bH2T+6w/A0x0aNubkYO7n0kaSzoK4vpofmUUa0LpeodXky7ndkKXyzHrCneVmJkVxi1uM7PCdOqoEjfjzcz6rv4ch4bc4jYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMAvdhRRGHdjrBWGK8fCR23W7BDMbgNziNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwDm4zs8I4uM3MCuPgNjMrjIPbzKwwg7tdgPU06sCLu13CAvPwkdt1uwSzAcktbjOzwji4zcwK4+A2MyuMg9vMrDC9Brekb0p6a38UY2ZmvWunxT0CuFHSnyRtI0mdLsrMzJrrNbgj4mBgDeA3wDjgfklHSFq9w7WZmVkDbfVxR0QAU/O/WcBbgXMkHd3B2szMrIFeT8CR9C3g88AM4GRg/4h4TdIg4H7ggM6WaGZmVe2cObkcsHNEPFKdGBGvS9q+M2WZmVkz7XSVrFof2pJOB4iIezpSlZmZNdVOcK9TvSFpEWD9zpRjZma9aRrckg6S9CLwPkkv5H8vAtOAC/qtQjMz66FpcEfEjyJiSeCYiFgq/1syIpaNiIP6sUYzM6tounNS0loRcS9wtqTR9fdHxJSOVmZmZg21OqpkP+ArwE8a3BfAhztSkZmZtdQ0uCPiK/lY7YMj4rp+rMnMzFpoeRx3Plb7x8AH+qkeexN7s1/9Z6C8fl/5qPPaORzwMkm7eHApM7OFQztnTu4HLA7MkjQTEGn4kqU6WpmZmTXUa3DnQwLNzGwh0dZV3vOFFNYAFqtNi4hrOlWUmZk1187ogHsAewMrAbcC/wH8FR8OaGbWFe3snNwb2BB4JCLGAOsB0ztalZmZNdVOcM+MiJkAkhbNZ1Ou2dmyzMysmXb6uB+TNBw4H7hc0rPAE50ty8zMmmnnqJKx+c9DJV0FLA1M6GhVZmbWVKtBppZpMPmO/P8SwDMdqcjMzFpq1eK+mTSYVKMzJgNYrSMVmZlZS60GmVq1PwsxM7P2tHMc92aNpvsEHDOz7mjnqJL9K38vBmxE6kbxCThmZl3QzlElH6velrQycHTHKjIzs5baOQGn3mPAexZ0IWZm1p52+riPIx1FAino1wVu62RRZmbWXDt93DdV/p4FnOlLmZmZdU87fdynSRoCrEVqed/X8arM7E1loFy2Dfrn0m3tdJX8J3AC8CDpZJxVJe0ZEZd2ujgzM5tbO10lxwJjIuIBAEmrAxcDDm4zsy5o56iSabXQzh4CpnWoHjMz60U7Le67JF0C/InUx/0J4EZJOwNExLkdrM/MzOq0E9yLAU8Bm+fb04FlgI+RgtzBbWbWj9o5quQL/VGImZm1p9c+bkkrSTpP0jRJT0n6s6SV+qM4MzObWzs7J08BLgRGAm8HLsrTzMysC9oJ7uUj4pSImJX/nQos3+G6zMysiXaCe4akz0paJP/7LPB0pwszM7PG2gnuLwKfBKYCTwIfz9PMzKwL2jkc8N8RsUPHKzEzs7Y0bXFL+pik6cAdkh6TtEk/1mVmZk206io5HNg0IlYEdgF+1D8lmZlZK62Ce1ZE3AsQEX8HluyfkszMrJVWfdxvk7Rfs9sRcWznyjIzs2ZaBfdJ9Gxl1982M7MuaBrcEfH9/izEzMzaMy9XeTczsy5ycJuZFcbBbWZWmLaDW9J/SJok6TpJO3WyKDMza67pzklJIyJiamXSfsAOpCu9Xw+c3+HazMysgVaHAx4v6WbgmIiYCTwHfBp4HXihP4ozM7O5Ne0qiYidgFuB8ZI+B+xDCu1hgLtKzMy6pGUfd0RcBGwNDCddFPi+iPhFREzvj+LMzGxurUYH3EHSX4BJwJ3ArsBYSWdKWr2/CjQzs55a9XH/EPgAMBS4JCI2AvaTtAZp5MBd+6E+MzOr0yq4nyeF81BgWm1iRNyPQ9vMrGta9XGPJe2InEU6msTMzBYCrQaZmgEc14+1mJlZG3zKu5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRXGwW1mVhgHt5lZYRzcZmaFcXCbmRVGEdHtGszMrA/c4jYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCFBvckmZLulXSnZLOljSsxbyjJH26cnucpP/tn0r7n6TvSrpL0u35PdpY0hBJP5P0oKQHJI2X9I7KY17qZs0LykB5HX0laYSks/Lne7ekSyS9q9t19dWC/vwafRf68NiRks7pZZ7hkr4+/5X2TbHBDbwcEetGxHuAV4Gvtph3FPDpFvcPGJI+AGwPjI6I9wEfBf4JHAEsCbwrIt4J/Bm4QFLJ64ABkgScB0yOiNUjYm3gv4EVKvOMk3RoL8t5uJN19rcW34V2Hjs4Ip6IiI/3MutwwME9j64F3inpMEl71yZKOlzSt4AjgU3zL+6++e6RkiZIul/S0ZXH7CbpjtySP6oy/aW8vNsk/U3SG1+KhcyKwIyIeAUgImYAzwFfAPaNiNl5+inAS6SVeUCRtISkKyVNyZ/ljnn6UdXWkaRDJX272fwFGQO8FhHH1yZExK0RcW0Xa5pnC/Dzm+u7EBFP5MduKOn6/H2+QdKS+cftbEkXAZflLfU78/zjJF2QM+M+SYfk5zgSWD1nyzH99BZBRBT5D3gp/z8YuAD4GqllPSVPHwQ8CCwLbAGMrzx2HPAQsDSwGPAIsDIwEngUWD4vdxKwU35MAB/Lfx8NHNzt96DJ+7IEcCvwD+BXwObA+4BbGsz7U2Cf6vtZ+j/Sj9FgYKl8ezngAUDAesDVlXnvBt7RbP5uv5Y+vOZvAT/tZZ5xwKG9zPPwQvBaFtjn1+i7kOcZkr//G+bbS+VljAMeA5bJ00cBd1bevydzngwF7gQ2qM7Tn/8GU66hkm7Nf18L/CYiXpX0tKT1SJuJt0TE02lLci5XRsTzAJLuBlYhfSiTI2J6nn4GsBlwPqk7Znx+7M3Alh16XfMlIl6StD6wKakl9kfgR6QfnnoN35gBQMARkjYDXgfeDqwQEbdIepukkaQf52cj4lFJb2k0PzC1S/UvEJKWBa7MN5cBhkjaKd/+XETcIemXwAfztJGV79TZEXF4P5ZbtUA+v4iYWv9dkHQg6fv7ZETcCBARLwDknLg8Ip5pUtflEfF0nvdc4EOkbOh3JQf3yxGxboPpJ5N+HUcAv23x+Fcqf88mvRetguy1yD+9lfkXSpG6QyYDkyXdAewJrCJpyYh4sTLraKDlzpdCfYb0xV4/Il7LfbeL5fvOAT5OWj/OamP+EtxFek095JBZF9KmPjAqIg6tm+cbtb8lPdzkO9XfFtjn1+C78HlgCo0bMgD/alFX/WO6NkLfQOnjrjoP2AbYEJiYp71I2jHXm78Dm0taTtIiwG7A1R2pskMkrSlpjcqkdYH7gNOAY/PrQtLuwEzguv6vsuOWBqblL/EY0tZUzVnArqQv/zltzF+CScCikr5cm5D7cDfvYk3zY4F8fk2+C48A95K2LjbM8y0pqZ2G2JaSlpE0FNiJ9N1pN1sWqIW21TivcnfJVcBz+dcW4HZglqTbgFOBZ5s89klJBwFXkVrfl0TEBf1Q9oK0BHCcpOHALFJ/31dIK9gxwH15xZsOfKCyFTFM0mOV5RwbEcf2Y93zLX/5XgHOAC6SdBOpj/Pe2jwRcZekJYHHI+LJPLnp/CWIiJA0FvhZ7gqYCTwM7NPVwvqoA59fw+9CzohP5fuGAi/T3k76vwCnA+8E/hARN+W6r8s7MS+NiP3n4y1o24Abj1vp8LYpwCci4v5u17MwkjQCmAD8KiJO7HY9C4qk9wMnRcRG3a7F+m5h/vxyV9MGEfHNbtcCA6zFLWlt0g7E8xzazUXEVHLf50Ah6aukoyuKamVa4s+vbwZci9vMbKAbiDsnzcwGNAe3mVlhHNxmZoVxcJuZFcbBbWZWmP8Hhz7rNcgKm58AAAAASUVORK5CYII=\n", 98 | "text/plain": [ 99 | "
" 100 | ] 101 | }, 102 | "metadata": {}, 103 | "output_type": "display_data" 104 | } 105 | ], 106 | "source": [ 107 | "import matplotlib.pyplot as plt\n", 108 | "import numpy as np\n", 109 | "\n", 110 | "plt.figure()\n", 111 | "\n", 112 | "languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']\n", 113 | "pos = np.arange(len(languages))\n", 114 | "popularity = [56, 39, 34, 34, 29]\n", 115 | "\n", 116 | "plt.bar(pos, popularity, align='center')\n", 117 | "plt.xticks(pos, languages)\n", 118 | "plt.ylabel('% Popularity')\n", 119 | "plt.title('Top 5 Languages for Math & Data \\nby % popularity on Stack Overflow', alpha=0.8)\n", 120 | "\n", 121 | "# remove all the ticks (both axes), and tick labels on the Y axis\n", 122 | "plt.tick_params(top='off', bottom='off', left='off', right='off', labelleft='off', labelbottom='on')\n", 123 | "\n", 124 | "# remove the frame of the chart\n", 125 | "for spine in plt.gca().spines.values():\n", 126 | " spine.set_visible(False)\n", 127 | "\n", 128 | "plt.show()" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": 10, 134 | "metadata": {}, 135 | "outputs": [ 136 | { 137 | "name": "stderr", 138 | "output_type": "stream", 139 | "text": [ 140 | "c:\\users\\5559\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.\n", 141 | " warnings.warn(message, mplDeprecation, stacklevel=1)\n" 142 | ] 143 | }, 144 | { 145 | "data": { 146 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEXCAYAAACNj66GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHwlJREFUeJzt3Xm0HFW9xfHvDiFAwgyREEERn4IgogFkPRQEUSAyCTwRBXlMAoI4MDsjCA/EAXBAIoqKDAIyBkgwQCAKigwCMgqIKHNCwkwgye/9cU5z63a6+/ZN0rdzLvuzVlZuV1dXnxp616lTVacUEZiZWTmGdLsAZmbWPw5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjtDU/ScEmnSLpe0tHdLk8rkn4l6WPdLod119BuF2AwkjSl8nJx4DVgdn59XERcuQC/6zhgM2BWHjQ7IjZtMu5OwOYRccCC+v5BYktgOLBpRMyZ34lJ2gg4BZgYEV+rDF8HOAO4MSIOamM6BwHLRsQx81GW5YGjgHWBl4AzI+LsFuMPA24AXgECeBW4D7ggIq5p8zs3Ag6PiI/Pa7mtNQd3B0TExrW/JV0GHBMRN3XwK0+PiF90cPqD3crAv+YltCUtEhGzG7w1FdhA0oiIeDEP2xp4ZD7KOS/2IAXwR4ElgLe2+bkdI+IpScsBGwNfl7RqRPy6M8W0/nBTSRdIWkzSEZImSrpC0hclDc3vbSTpYkn7SbpG0qWSPjIAZdpR0u9zc8HFkrarvFcr016SJkm6UtLYyvvLV5oafiXpIEk/ze+tJummuu96/XA/vz8uz+skSd+WNLwy7tqSzsnTPlbSiZL2rry/maRzJU2WdLqk1Svv7ZOX8fWSLpD0vgbz/QVgd2AbSVMkjZU0JC//yyVdJembtTLV5kfSDpKuINWsG3mFVHP9SP7coqQjowl13/+VvA1cL+k3uVaOpE2BXSvl+k3lY6vkZXh9Xu5LNykDpCO9aRHxakQ8GxF3tBh3LhExPSIuBb4H7CtpRC5fw+1F0jJ53Dfnck+RtIykdSX9WtJ1kiZIOljSIv0pi/VwcHfHfsA7gE8CuwHrkcKjZjSwKOkQ/jvAtyWNbjG9XXPwnSlpk3ks01TgIOBDwHHAkdUQJNVKAbYCvgt8pRKwXwNmkGp1xwLb9PO7f06a10+SaoR7w+uH7d8HLiCF3nXA6/OXQ+5I4NvAh4ErgO9JWkTSO4HtgE/lefoi8GT9F0fEKcBZwPiI2Dg3Y+2U52UfYAdgeeDgyseGAO8GdqwbXu9yUi0bUq31LtJyqroD2CWXfzJwgqShETG5rlzV7WMr4Ot5mS2ZP9/MXaTwH9tinHZcCywGvCu/bri9RMSzwKHAo7ncG+dhs4ATSOtxH9J6dFPKPHJwd8dY4LSImBERzwC/oOcHDmkjHxcRr+Umlr+Qa24NnEn6AWwBnA4cK2mt/hYoIq6PiMciuQm4BXhvZZRXgF9FxKyIuDYPWyWH6ybAqRExMyL+AbTdhh8RD0fEX/O8TgPOBsbkt8cAr0bE7yNidkRcBdxf+fiOwO8i4p6ImBMRFwLDSOEyixQ0qwNDIuLRiHiszWKNBX4TEY/nZo6fAmMlqTLOzyLilYiY2WI6NwMr553u1sD4BvN/eUQ8FxGzSO3fywBv7qN8F0XEfyLiZeBqYI1GI0l6GylE9wP2l7RVHj5c0p8lLd7H91TL+TLwArB0ft3X9lL/+bsi4u68nv4DXEyqsNg8cBv3AMs//hWAxyuDHwdGVl7PiIhXK6+fAFZsNL2IuKfy8jpJVwObAnf3s1ybkGpCq5B26IsDt1VGmV7XBvwK6YTeioDoXZt9Enhnm987khQu7wFG5GlNzW+PZO5acvX1ysBHJVVro4sCb4qIayT9CDgAWE3SDcAP8o6yLyuSlnnN46SdQK1JYk5EPN3XRCIiJE0g1frXAb5CXS1T0p7AtqRtIkg7nmWBf7WY9LTK36+Q2q4b2QGYEhG3KZ3oHJf3Pc8Cd0TEK33NQ6WcS5Bq98/l131tL/WfXx34ErBmHncR4PZ2v996c3APsPxjnkYKnf/kwaOAahAsK2lYJbxHAX9r9ytI4de2/KM8ATgC+FNEzM6h1850pubvfBM9YbdS5f2XgSF187NC5f0v5nE+GRHPSdqCFLa1aVenVZt2bWf1JPDHiPhto4JFxHhgvKSlgG/k6X6nzXkaVXk9CphJCq3l2vh81eXA+cCFEfFqtdIuaUNS89ABwD9Jy/t6epb7/HbdOZR8NVNEPCLpi8CppPk4rp/T2oy0DO5pY3tpVO6vk45AjoyIlyTtAby/n2WwzE0l3TER+Gw+abM8qU33isr7Q4F9JC0qaQNgQ9IhcS+5LXczSUvkE2ofJDWpTKkft2KIpGHVf6Ta5FDgGSBybaqtw9gcxlOA/fL03k5qg615GpgObJXL+AlSyNcMJ12m9oKkUaQ2/5pbgcXyibBFJH2U3jX5C4FPSlpLyXBJm0haXNLqksbk+ZuZ/7V71cgE4DOSRuV2/M8BE2Ie+kCOiIdJTRXjGrw9gtSkM510pLA/qcZd8wwwuq6Jpj8mAVtL+qCkIcDzwAOkcyhtydvoNsAhwC9y01Ff28s0YPnKORBI6/mFHNqrk44GbB65xt0dPwO+TKqJzQGuAqpXDTxGqilNBF4Evh0RjzaYjoDPkK7TFakG/60+rhxYn3S1Q82ciHi/pJOAH5K2iWuBP/Vjfo4lnSCcBDyUy70aQETMkXQMcDhpnn9PT40Z0rI4inTi8V/AH8g/6oiYKekw0snPL5F2EDeSrosnIm6XdCLwVWBVUs39VtI5gcXy972VFI635flrxwWk5pJfkgL1T8AP2l4adSLi1iZvXU9q1rqEtJ7PpPfJy4mkk6TXSPpnROzV3++VdBTweVIN+wnSzu4C0knQfSLiwSYfv1BSkJb1fcDxEfGHPN0ZfWwv/yCtz/F5h7EdafkdKemzpPV/FbB2f+bHesgPUli4aBDcvCDpUGBYRPT3cLydaZ9DOkk6cUFP26wUbiqx+Sbp7blpQpLeQ7qCYvICmvb6SteJD5W0I+lk2F8WxLTNSuWmElsQlgSOIZ10nEZqC72h9Ufatjrwf6QrEf4NHBYR9ddCm72huKnEzKwwbioxMyuMg7sDJF0m6Q17jer8zr9S/xZ93T04aC3s20++BPWKvJ7WWNjLOxg5uBdiklZS6kzoGklfrnvvR5qHW9tLkPu3eBRA0lGSFopuaCVtr56Ola6SdLJ6Op/qSjnzCeHdJV0k6QaljrEOytevd8qXgBPyerqvg99jTfjk5MJtT1L/FhOAsyRNjIi7892Fj0ZEv25rX9ipeRepXSdpDHAgcFBE3KfUI9+8dui1IB0G/DfwLVKHUm8lXRf/Nlp3gNVvlfWzMul6fesS17g7Z21J50u6VtK3ajUgSeep0oNfvsztaqXe7OqNBv4aES+QfpRvVupWcw/gJ30VQNLNknZR6hr2aqXuY4fk94ZI2lvSeEl/kHS0pCXze6PzZ3dU6oJzoqTdKtPtVbuUtJ5SF6eNyrC2pDOUul2dKOlwpS5Oq2XcWdJFwEWVYavmy//GArvnw/If5trld+u+43BJhzT5/rcpdRs7ucGyP0qpe92Tcy3615JWabI41wburNUwc8dQ4/OdgHOVM09/D0mX5GmfL2mzurLtoNTdbO39NRuUf7W8/rZo8N5bgP8Bvh4Rd+SOuB4ih7mkDSStk48OhlQ+t5mkc/PfQyrlvEbS8XmnVN0Otpd0OXC60kNChgDnSLqkQZmGSTokbzcT8t+1bX+cpA/nv9+bp/2B/Pr9kpo+4MF6c3B3zljSHWvbk2pB++Th4/N7NR8ApkbE/cztQWBDpb421iLVcj4HnB0Rz7dZjs1It5HvSuqCs9bP9jakzo32y2VcgnR3Y9X6pLsYDwT20Ly1Y84h3TW3OekI4v3AJ+rG2RT43/rhube/K0k99W0cEV8mdQ2wUV4mKPXp/FF6dxlAfm8o6e6+P+dxTgS+I6n6MIEtSbejb0a63LBZc8ffSWG4n1Lf0q83RTQpJ6Q7WffJ8/dz4BhJK+ayfQTYF/gmab0cTOr8qVr+NUk76BNzz4j1NgCeioi76pbbk8CdwIYRcSfpjtINKqNsRU+/4Lvk8n02D3+O1FVu1XqkHcT+0fOQkE9FxPYNyrQXqUOtT5M611qb3E0v6a7W9fPfY4BH6blVfkx+39rg4O6c30XEkxHxHKnb1i3z8CuBD+SaM6SbVS5vMo0zgPeRguU8UtPWO4DaQwV+LmnnPsrx61w7fAI4p1KOscBZubvTl4AfA1uqd+f24yLi5Yh4ALiU3n2QtCV3uXpnrg0+RrrlekzdaGfkMrbqIrU2vamkH3itm9uNSL0p3tNg9HVIfWT8Kncb+1fgj/QsA4Brc5ejs0nrpmEXqRFxG6kXwzWBk4GrlR4G0PQ3FBGTIuLp3JXpVaSn39Ru8/44Kejvzl2j/jsiqj1Gvo+0w/tWRDTre2ZZenpSrDc1vw/p1vktIXXpSqos1O483RH4aUQ8lfudGQdsXrcdnJa3gz7XD2m7+nlEPBMR00k7rNozMm+lZ92/j7R9V7vwdXC3yW3cnVPtfvT1blsj4mlJt5N+HNeSgud7jSaQQ/8rkA5pST+C40hNJQ+S2jLPknRzPkRupL570lr3sSOZu2vZRejdc191Hp4A/qvJdzSVD+cPJh0x1LrzrA/ZuR5w0IfxpBrgRaSgaNhMQ5rHJ+q6o32c3p1ctdtFKvmmohvyulgfOB54mLQzmoukrUlHOrVOnYbTE6Yr0dM7ZCM7AbdGxM0txplBk+5+8/BanzUTgF9KOp70wIZ7KzuJlUkPn6guo9k03w760mi7qm1zdwBvUepYbQ3SdrGfpGVJD6ZwcLfJNe7OqXZHWt9ta6255COkfpGfamN6O5DaWB8kBejdEfEaqbe3t7f4XH33pLVyPE3PU21q782md5DVz0OtdvcyKYRrqj/yel8hhdvHI2IT0qF/fW93re4Ca/TeZOAdSj0RbkzzBzc8DYyqqxWPAtpZ3s0LlGrQN5G6Ka3tzHqVU9LKpK5Mvwt8ONIDnB+gZ96fJN2+38z/5bK3OsH4V2AlSb06a5K0Eulo46Zc3odIAboRvZtJauU4KCI2rfzbqG6b7M9deo22q6dzOV4B7iU1oTyQt987SDu3//iO2PY5uDtnZ0lvyid69iL1hlYzmXTI/SmaN5O8LtdQdqana9DHgPXzYe+7SG2FzXxG0tL5x/wpUu97kA6VP51PQA0ntcdfVXdVxz7KXaSS2sNr83A/qblnaUkrkNozmxlB6vnuZUmrkWrK/fEMdU+EyYf0V5N6JbwrNwM18nfSTmZ3pZPA65GCvlF7cUuSPiRpizzPymE5htSW3KicS5ACb3r+/Hb0PmK5mLRu3pWnt2oO+5oXSY8GG6P0EIS5RMQjpN4Wv5NPQg7J6+pE4Kbo/YDqCaT27DGkXhxrLgAOrH23pOUkfajtBTO3icDeeTrLktrOqzvWW0h9kN9a9/qW+fjONxw3lXTOBFLtciSpi8vXn8Keuyu9htTueG3jj/fyJVK74Uv59RmkmtxOwKV9XBZ4HfBbUn8il5ECA1Kb9UjS486GkbpLPbHus7fm8YcAZ0bEn/Pwy0knGceTdiKX0rsf7aqTSN2y7k7qHvQqep8o68slwPGSJgO3RETt6pHxpHbio5t9MCJeU7r+/UjSidGnSG3GD/fj+2ueJwXfEaSuXqeS2qhroTRXOSX9lrSugrTMXn8YRkRMUnqw7rH0NC98g0ozQ0Q8r3T1zmmSZkXEqQ3K9V1S177HkJqAZpC2vZ/VjTeRtHO+oa5mey7pKOAn+cTpdNI6uq4fy6bqdNLO+tz8elIeVnMraV1Ug3s4LZ6eY3NzXyVdotQv8Vsi4hsd/I6bgR0i4t/9/NxoUhhvuBBfVz2KVNvcIlLn/mZvGG4q6YLcfLI9+bpl65/cZr0rMNGhbW9EDu4BJmkH0lUQN0TzJ6NYE0rPO7yO9Di307pcHLOucFOJmVlhXOM2MytMp64qcTXezKz/6u9xaMg1bjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwKs9A9SGG1I/t8IEwxHj5+624XwcwGIde4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyuMg9vMrDAObjOzwji4zcwK4+A2MyvM0G4XwHo78oRx3S7CAnP8Eft2uwhmg5Jr3GZmhXFwm5kVxsFtZlYYB7eZWWH6DG5JO0taeiAKY2ZmfWvnqpIVgN9Iuhe4FLgxIqKzxTIzs2b6rHFHxKnADsAlwDbARZIOlLRKpwtnZmZza6uNO9ewp+V/s4ClgRMkfaGDZTMzswb6bCqRtAuppj0DuBg4OSJmSRoCXAic0tkimplZVTtt3MsCh0XE49WBETFH0pc7UywzM2umnaaS0fWhLelogIj4Z0dKZWZmTbUT3KtXX0haBHhXZ4pjZmZ9adpUImlPYE9gMUnX1QYDrwEXDUDZzMysgabBHRFnAGdI+nxE/HgAy2RmZi20qnGvFhEPA5MkrVn/fkTc28mCmZlZY62uKtkVOBZodOVIAPt3pERmZtZSq6aSY/O12j+NiNsHsExmZtZCy+u487XaXyKdpDTrqDf6038Gy/z7yUed187lgH+W9GFJ6nhpzMysT+3cObkrsAQwW9JM0iWBEREf6mjJzMysoT6DOyI2GYiCmJlZe9p6ynt+kMKqwGK1YRFxa6cKZWZmzbXTO+DHgV2AlYD7gXcDd+LLAc3MuqKdk5O7AP8LPB4R+5HavKd3tFRmZtZUO8H9akTMBJA0LN9N+daOlsrMzJpqp437KUlLAZOBn0h6Dni6o6UyM7Om2rmq5ND85zhJtwAjgBs7WiozM2uqVSdTyzQY/ED+fzjwbEdKZGZmLbWqcZ9J6kyq0R2TAWzfkRKZmVlLrTqZ2m4gC2JmZu1p5zruMY2G+wYcM7PuaOeqks9U/h4GrA3ci2/AMTPrinauKun1IAVJKwFf6FiJzMyspXZuwKn3FPD2BV0QMzNrTztt3IdVXwLvBP7RsRKZmVlL7bRx31P5ezYw0Y8yMzPrnnbauMdLWhRYjXT99r86XSgze2MZLI9tg4F5dFs7TSUfAL4K/IfUVDJa0nERcUOnC2dmZnNrp6nky8D+EfFvAEmrACcBDm4zsy5o56qS6bXQzh7F/XGbmXVNOzXuhySdDEwitXF/BLhb0ocBIuKaDpbPzMzqtBPcw4BngNqt79OBpYGNSUHu4DYzG0DtXFXy7YEoiJmZtaedq0pWAg4D1iXVsP8GfD8inuxw2czMrIF2Tk5+E7ge2AoYC0zJw8zMrAvaCe7lIuLSiJid/10GLNfpgpmZWWPtBPcMSR+TtEj+9zH82DIzs65pJ7iPJl0COBGYAGyeh5mZWRe0czngKxFxcMdLYmZmbWla45a0iaRJwLmSrpC07gCWy8zMmmhV4z4A2CciHpb0btJTbzrf7ZWZmbXUqo17VkQ8DBARfweGD0iJzMyspVY17uUl7drsdUSc1blimZlZM62C+2JgRIvXZmbWBU2DOyIGzyMpzMwGkXl5yruZmXWRg9vMrDAObjOzwrRz5yQAktYBDgQWBc6MiMmdKpSZmTXXNLglrRAR0yqDdgUOJj3p/RfA5M4WzczMGmlV4/6qpHtIteuZwPOkPrnnAC8OROHMzGxuTdu4I+IQ4H7gh7kr1++TQntx4NCBKZ6ZmdVreXIyIq4HDgKWAk4E/hUR50bE9IEonJmZza2v3gFPB04FHgS+Cmwq6VhJqwxUAc3MrLdWNe4DSLXtw4GDIuL5iPghcFp+z8zMuqDVyckXgC2AxYDXm0Yi4hFS7dvMzLqgVY37UNKJyNnA1wamOGZm1pdWnUzNAH43gGUxM7M2+JZ3M7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzArj4DYzK4wiottlMDOzfnCN28ysMA5uM7PCOLjNzArj4DYzK4yD28ysMA5uM7PCOLjNzApTbHBLuknS2ZLOk3SCpMVbjDta0laV19tKOnxgSjrwJO2Vl8u5eRm9W9Kikg6RdImkiyWdJGlU5TNTulnmBWWwzEd/SVpB0nF5/Z4v6RRJb+l2ufprQa+/Rr+Ffnx2pKTv9jHOUpI+Mf8l7Z+hA/2FC9DMiPg0gKTvADsBZzUZd2VgK2DCAJWtayS9B9gY2C0iXpW0LLAocCAwAtghIuZI2g74gaTdImJOF4ts80mSgO8B4yPiq3nYO4EVgEfy622BlSNiXIvpXBYR2w5AkQdEi99CO59dJCKeBvqq4C0FfAI4f74K208lB3fVbcA7JH0OmBER5wBIOgB4hhTab5N0NjAeeB4YKelHwCrAtRFxSv7MlsBegIA/VoZPAc4hbQgzgYMj4pkBnMd2rUhaBq8CRMSMfDSyHbBtLaQj4tIc3u8H/ty10naApOHA94GlSdv4TyPiOklfAB6PiPPzePsCLwEXNhq/K4WfN+sDsyLi97UBEXF/F8szXxbg+pvrt1D5jrWAQ4ElgNeA/YHNgQ8Cw4AlJB0NnBQRO+cd32ak4H8zMCHvBD8PrJKz5S8RcXIHF02PiCjyHzAl/78I8APgf4DRwFl5+BDgEmAZYL28Amqf3Ra4FFgyr6TxwErASOByYLk83Z8Bm+bP3Axskv/+ArB3t5dBk+UyHDibtDEfCYwB3gGc3WDcg4FPV5dn6f+AKXndjcivlwUuJu2I1wDGVcY9HxjVbPxuz0s/5nkXUkWi1TjbAvv2Mc5lC8G8LLD11+i3kMdZNP/+18qvR+RpbAtcASydh48Gzqssv4k5TxYDzgPWqo4zkP9KrnEvlvdyAH8DLomI1yQ9K2kN0mHifRHxbDqSnMtNEfECgKSHSM0pywC3RMT0PPxKUvBNJu2Va+1v9wIbdma25k9EvCRpN+B9pJrY8cAZQKNOaRoumEFAwIGSxgBzgDcBy0fEfZKWlzSStHN+PiKekDS00fjAtC6Vf4GQtAxwan65DLCopE3z629GxAOSjgDWzcNGVn5TkyLilwNX2l4WyPqLiGn1v4V8lH0PMDUi7gaIiBcBck78JSKea1Kuv0TEs3nca4D3krJhwJUc3K+3cde5mLR3XIFU427m1crfc0h73FZBNivyrheYncdfKEVqDrkFuEXSA6T2/5UlDY+Ilyqjrglc3Y0ydthY0g97t4iYJekyUi0J0vxuTto+JrYxfgkeIs1TLzlkaueBGrZxR8QJtb9zG3ej39RAW2Drr8FvYRtSxatZ73ovtyhX/We61kNfsVeVtHAtsBGwNnBjHvYS6bCpL38HxkhaVtIQYEvSSi+GpLfWXU2wBvAwqTno4DxfSNqatPO6fcAL2XlLAtPzj3h90tFUzURgC9KP/+o2xi/BX4FhknaoDZC0Vq6BlmiBrL8mv4XHSb+HkbmdG0nDJbVTEdtQ0tKSFgM2Jf12XqS9bFmgSq5xN5SbS24mHUbVrpb4BzBb0jnAZaSTk40+O1XSj4HT6Dk5WdJJKkgb0WGSliIdGfwbOJa08/oicGHe8KYDe1aOIhaXdEVlOmdFRLOrdBZK+cf3GnAl8ENJZwL3k36oAETEQ5JGAE9HxNQ8uOn4JYiIkHQocIikPUgnzx8nnbArRgfWX8PfQs6II4HD829hJnBAG0X8G3AMsCrp5OTdudy3SzoP+FMM0MnJQdcfd65R/hY4MiIe6XZ5FkaSVgB+BFwQERd2uzwLSr4E7usRsXu3y2L9tzCvv9zU9K6IaHld90AZVDVuSasDJ5Eu73NoNxER08htn4OFpJ1IV1cUVcu0xOuvfwZdjdvMbLAbjCcnzcwGNQe3mVlhHNxmZoVxcJuZFcbBbWZWmP8H7hYAsy5oqQcAAAAASUVORK5CYII=\n", 147 | "text/plain": [ 148 | "
" 149 | ] 150 | }, 151 | "metadata": {}, 152 | "output_type": "display_data" 153 | } 154 | ], 155 | "source": [ 156 | "import matplotlib.pyplot as plt\n", 157 | "import numpy as np\n", 158 | "\n", 159 | "plt.figure()\n", 160 | "\n", 161 | "languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']\n", 162 | "pos = np.arange(len(languages))\n", 163 | "popularity = [56, 39, 34, 34, 29]\n", 164 | "\n", 165 | "# change the bar colors to be less bright blue\n", 166 | "bars = plt.bar(pos, popularity, align='center', linewidth=0, color='lightslategrey')\n", 167 | "# make one bar, the python bar, a contrasting color\n", 168 | "bars[0].set_color('#1F77B4')\n", 169 | "\n", 170 | "# soften all labels by turning grey\n", 171 | "plt.xticks(pos, languages, alpha=0.8)\n", 172 | "plt.ylabel('% Popularity', alpha=0.8)\n", 173 | "plt.title('Top 5 Languages for Math & Data \\nby % popularity on Stack Overflow', alpha=0.8)\n", 174 | "\n", 175 | "# remove all the ticks (both axes), and tick labels on the Y axis\n", 176 | "plt.tick_params(top='off', bottom='off', left='off', right='off', labelleft='off', labelbottom='on')\n", 177 | "\n", 178 | "# remove the frame of the chart\n", 179 | "for spine in plt.gca().spines.values():\n", 180 | " spine.set_visible(False)\n", 181 | "plt.show()" 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": 12, 187 | "metadata": {}, 188 | "outputs": [ 189 | { 190 | "name": "stderr", 191 | "output_type": "stream", 192 | "text": [ 193 | "c:\\users\\5559\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.\n", 194 | " warnings.warn(message, mplDeprecation, stacklevel=1)\n" 195 | ] 196 | }, 197 | { 198 | "data": { 199 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAEXCAYAAACarT5PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XeYVdW9xvHvb4ahVwEFBHvFWECQhIiCBhA7Eo0tXluiSa6amERNrklMjF7bTaLJTWyJGmO5YgFFmlJVjKCoJCgKKoJId2jCUGZ+94+1DpwZzjQYZtbA+3keHubss/c+a5fz7rXX3mdtc3dERKTu5dV1AUREJFAgi4gkQoEsIpIIBbKISCIUyCIiiVAgi4gkQoEsOyUza2pm95jZZDP7TV2XpyJm9rCZnVzX5ZC616CuC1BfmNkrWS8bAxuB4vj6VncfVYOfdSvQD9gUBxW7e99yxh0CnOju36+pz99JDASaAn3dvWR7Z2ZmvYF7gDHu/l9Zww8HHgJed/erqjCfq4DW7n7zdpRlN+Am4EhgLfCouz9ewfgNgSlAEeDABuAD4Gl3H1/Fz+wNXOfuZ25ruaVyCuQqcvc+mb/N7AXgZnefugM/8kF3/+sOnP/OriPw6baEsZnlu3txjreWAT3NrJm7fxmHnQLM245ybouLCcHaH2gC7F3F6c5y9yVm1gboA9xoZl3c/ZEdU0ypLjVZ1BAza2Rm15vZGDMbaWbXmFmD+F5vMxtmZleY2Xgze97MvlELZTrLzJ6Jp+3DzOz0rPcyZbrUzF42s1FmNijr/d2yTvkfNrOrzOzP8b19zGxqmc/afNod378/LuvLZvZrM2uaNe5hZvZEnPctZnanmV2W9X4/M3vSzCaa2YNmtl/We5fHdTzZzJ42s245lvtq4CLgVDN7xcwGmVleXP8vmtlYM/tlpkyZ5TGzwWY2klATzqWIUNP8RpyugHAmM7rM5/8s7gOTzezvsRaNmfUFLsgq19+zJusc1+HkuN5bllMGCGdmy919g7uvdPcZFYy7FXcvdPfngbuA75pZs1i+nPuLmbWK4+4Zy/2KmbUysyPN7BEzm2Rmo83sWjPLr05ZpDQFcs25AjgQ+BZwIXA0IRQyOgEFhFPp3wK/NrNOFczvghhoj5rZcdtYpmXAVcDxwK3ADdnhRqhFApwE3AH8LCs4/wtYQaiF3QKcWs3PfoCwrN8i1OAug82nz/8DPE0Is0nA5uWL4XUD8GvgBGAkcJeZ5ZvZQcDpwHlxma4BFpf9YHe/B3gMGOHufWJz0pC4LJcDg4HdgGuzJssDvgKcVWZ4WS8SasUQapkzCesp2wzg3Fj+icDtZtbA3SeWKVf2/nEScGNcZ83j9OWZSQj1QRWMUxUTgEbAofF1zv3F3VcCPwEWxHL3icM2AbcTtuPlhO2oJo3toECuOYOA+9x9hbt/AfyVLV9cCDvv/e6+MTZ1vEGsaeXwKGHHHgA8CNxiZl2rWyB3n+zun3swFXgLOCprlCLgYXff5O4T4rDOMTSPA/7i7uvdfTZQ5TZyd5/r7tPisi4HHge6x7e7Axvc/Rl3L3b3scCHWZOfBfyfu7/v7iXu/izQkBAamwgBsh+Q5+4L3P3zKhZrEPB3d18Ymxv+DAwyM8sa5153L3L39RXM502gYzyYngKMyLH8L7r7KnffRGhfbgXsWUn5nnP3z9x9HTAOODjXSGa2LyEcrwCuNLOT4vCmZvZPM2tcyedkl3MdsAZoGV9Xtr+UnX6mu78Xt9NnwDBCRUS2kdqQa0D8UrcFFmYNXgi0z3q9wt03ZL1eBLTLNT93fz/r5SQzGwf0Bd6rZrmOI9RcOhMOvo2Bt7NGKSzTxlpEuBDWDjBK1z4XAwdV8XPbE0LjCKBZnNey+HZ7tq7VZr/uCPQ3s+zaYwGwu7uPN7M/At8H9jGzKcDv4gGwMu0I6zxjISHcM00DJe6+tLKZuLub2WhCLf1w4GeUqRWa2SXAaYR9wgkHlNbApxXMennW30WEtuFcBgOvuPvbFi4Q3h+PKSuBGe5eVNkyZJWzCaE2viq+rmx/KTv9fsAPgUPiuPnAu1X9fNmaArkGxC/pckKYfBYHdwCyv+CtzaxhVih3AN6p6kcQQq3K4pftduB64DV3L45hVpX5LIufuTtbQmyPrPfXAXlllqdt1vvXxHG+5e6rzGwAIUQz886eV2bemYPQYuBVd/9HroK5+whghJm1AH4R5/vbKi5Th6zXHYD1hDBqU4Xps70IDAWedfcN2ZVsM+tFaKb5PvAJYX1PZst6397uFRsQ7+5x93lmdg3wF8Jy3FrNefUjrIP3q7C/5Cr3jYQzhhvcfa2ZXQwcU80ySBY1WdScMcB34sWO3QhtpiOz3m8AXG5mBWbWE+hFODUtJbaV9jOzJvFC1LGEpo1Xyo6bJc/MGmb/I9T+GgBfAB5rP1U6nYwh+wpwRZzf/oQ2zoylQCFwUizj2YTwzmhKuB1rjZl1ILSpZ0wHGsULSPlm1p/SNe9ngW+ZWVcLmprZcWbW2Mz2M7PucfnWx39VvYtiNPBtM+sQ28m/B4z2beh/1t3nEpoM7s/xdjNC00ohoWZ/JaGGnPEF0KlMU0l1vAycYmbHmlkesBqYQ7hGUSVxHz0V+DHw19iEU9n+shzYLesaA4TtvCaG8X6E2rtsB9WQa869wI8INacSYCyQfRX9c0LNZgzwJfBrd1+QYz4GfJtwn6kRaty/quRKeg/C1f+MEnc/xsz+APyesJ0nAK9VY3luIVxYexn4OJZ7HwB3LzGzm4HrCMv8DFtquBDWxU2EC3afAi8Rv6zuvt7Mfkq4aPhDQvC/TrivG3d/18zuBH4OdCHUtKcT2twbxc/bmxB6b8flq4qnCc0WfyME5WvA76q8Nspw9+nlvDWZ0Lw0nLCdH6X0Rb8xhIuL483sE3e/tLqfa2Y3Af9JqBEvIhzEniZcPLzc3T8qZ/JnzcwJ6/oD4DZ3fynOd0Ul+8tswvYcEQ8EpxPW3w1m9h3C9h8LHFad5ZHSTB3U73i2E9xUb2Y/ARq6e3VPi6sy7ycIFxfH1PS8ReoTNVlITma2f2wiMDM7gnBHwcQamncPC/c5NzCzswgXkd6oiXmL1GdqspDyNAduJlysW05oa5xS8SRVth/w34Qr8/OBn7p72Xt5RXY5arIQEUmEmixERBKhQK4GM3vBzHbZ+yy3d/kt9IFQ2S/Wdlqp7z/xdsuRcTsdnHp5d0YK5DpgZntY6EhmvJn9qMx7f7Rt+Jl0fRD7QFgAYGY3mVkSXYaa2Rm2pVOdsWZ2t23peKhOyhkvpl5kZs+Z2RQLnSJdFe/B3lF+CNwet9MHO/BzpBy6qFc3LiH0gTAaeMzMxrj7e/EXbQvcvVo/kU6dld+dZZ0zs+7AD4Cr3P0DC72sbWtnTjXpp8DXgF8ROhPam3Bv975U3PlRtWVtn46Ee86ljqiGXH2HmdlQM5tgZr/K1FjM7CnL6pUt3tI1zkIPZWV1Aqa5+xrCl21PC10gXgz8b2UFMLM3zexcC914jrPQ1WdefC/PzC4zsxFm9pKZ/cbMmsf3OsVpz7LQXeIYM7swa76laoNmdrSF7ihzleEwM3vIQheZY8zsOgvdUWaX8Rwzew54LmtYl3ir2yDgonh6/PtYG7yjzGdcZ2Y/Lufz97XQxefEHOv+Jgtdod4da72PmFnnclbnYcC/MjXC2CnQiPjrs63KGed/sZkNj/Meamb9ypRtsIWuQTPvH5Kj/PvE7Tcgx3t7Ad8EbnT3GbETpo+JIW1mPc3s8Fibz8uarp+ZPRn/zssq53gzuy0ebLL3gzPM7EXgQQsPYMgDnjCz4TnK1NDMfhz3m9Hx78y+f7+ZnRD/PirO++vx9TFmVm7n+VKaArn6BhF+JXUGodZyeRw+Ir6X8XVgmbt/yNY+AnpZ6I+hK6FW8j3gcXdfXcVy9CP8JPkCQneJmb6OTyV0bHNFLGMTwi/qsvUg/HLuB8DFtm3thCWEX2qdSKjxHwOcXWacvsB/lB0ee3AbReh9rY+7/4jwM/PecZ1goV/d/pT++TnxvQaEX5T9M45zJ/BbM8vuqH0g4afN/Qi31pXX7PBvQshdYaF/381NAuWUE8KvJy+Py/cAcLOZtYtl+wbwXeCXhO1yLaHjn+zyH0I48N4Ze7srqyewxN1nlllvi4F/Ab3c/V+EXzH2zBrlJLb0zXxuLN934vBVhG5Nsx1NCP4rfcsDGM5z9zNylOlSQmdK5xM6VjqM2KUq4ZeUPeLf3YEFbPnZdff4vlSBArn6/s/dF7v7KkIXmwPj8FHA12NNF8IPKV4sZx4PAd0IgfEUoenoQCDTYfsDZnZOJeV4JNbmFgFPZJVjEPBY7JpyLfAnYKCV7jj8fndf5+5zgOcp3U9FlcTuMf8Va2+fE36+273MaA/FMlbUnWVmfssIX9xMl6S9CT3kvZ9j9MMJ/Sg8HLv4nAa8ypZ1ADAhdg9ZTNg2ObuzdPe3CT3THQLcDYyz0NF6ud8Nd3/Z3ZfGbifHEp4YkvnJ8JmEAH8vdmM5392zewHsRjiQ/crdy+ufpDVbescra1l8H8LPsAdC6H6TUAnI/NrxLODP7r4k9k1yP3Bimf3gvrgfVLp9CPvVA+7+hbsXEg5EmecATmfLtu9G2L+zu1tVIFeR2pCrL7uryM1dbLr7UjN7l7DTTyAEyl25ZhDD/GcQTi0JO/ethCaLjwhthY+Z2ZvxVDWXsl1JZrr6bM/W3YDmU7o3tuxlWAQcUM5nlCueVl9LqOFnul4sG55bdR5fiRGEGttzhADI2VxCWMZFZboOXUjpDo6q2p0l8QcvU+K26AHcBswlHGS2YmanEM5MMh36NGVLSO7Blh7/chkCTHf3NysYZwXldM0ah2f6NRkN/M3MbiN0hj8rK/w7Ejr2z15HxZS/H1Qm136V2edmAHtZ6FTrYMJ+cYWZtSZ0+q9AriLVkKsvu+vIsl1sZpotvkHom3ZJFeY3mNCG+REhGN9z942EHrz2r2C6sl1JZsqxlC1PAsm8V0zpgCq7DJna2DpCuGZkf3nL+hkhtM509+MIp+BlezCr6FdHud6bCBxooXe5PpTfKf5SoEOZWmwHoCrru/wChRrvVEKXkpmDVKlymllHQreTdwAneHj47By2LPtiwk/By/PfsewVXZibBuxhZqU66jGzPQhnB1NjeT8mBGNvSjdXZMpxlbv3zfrXu8w+WZ1fheXar5bGchQBswhNGXPi/juDcND6TL/CrDoFcvWdY2a7xwsklxJ6uMqYSDj1PY/ymys2izWKc9jSjePnQI94+nkooS2uPN82s5bxS3oeoUc1CKes58cLN00J7d1jy9zlcLnF7iwJ7c2ZZfiQ0OzS0szaEtoLy9OM0JvZOjPbh1CzrY4vKPMUjXhqPY7Q09zM2ByTy78JB4+LLFw8PZoQ4LnaYytkZseb2YC4zBZDsDuhrTZXOZsQgqwwTn86pc8whhG2zaFxfl1iiGd8SXhMUncLHcxvxd3nEXrQ+228eJcXt9WdwFQv/XDd0YT24u6EnvkyngZ+kPlsM2tjZsdXecVsbQxwWZxPa0LbdPYB8y1CP9DTy7x+azs+c5ejJovqG02oDbYndEe4+cnQsWvJ8YR2vQm5Jy/lh4R2ubXx9UOEmtcQ4PlKbn+bBPyD0OfEC4QggNAm3J7w6KeGhK4t7ywz7fQ4fh7hEfL/jMNfJFycG0E4ODxP6b6Ms/2B0IXmRYSuHMdS+gJTZYYDt5nZROAtd8/cTTGC0A77m/ImdPeNFu7fvoFwQXEJoU12bjU+P2M1IdCuJ3TLuYzQBpwJm63KaWb/IGwrJ6yzzQ8acPeXLTwU9Ba2nOb/gqzTfXdfbeFulvvMbJO7/yVHue4gdMN6M6EpZgVh37u3zHhjCAfdKWVqok8Sau3/Gy84FhK20aRqrJtsDxIOwk/G1y/HYRnTCdsiO5CbUsETR2Rr6suihlnoG3Yvd//FDvyMN4HB7j6/mtN1IoRsr4TvC+5AqB0O8NBxusguQ00WNSg2Y5xBvO9Wqie2CV8AjFEYy65IgVxDzGww4a6AKV7+0ySkHBae6TaJ8Gir++q4OCJ1Qk0WIiKJUA1ZRCQR1b3LQtVpEZHqq9JTxlVDFhFJhAJZRCQRCmQRkUQokEVEEqFAFhFJhAJZRCQRCmQRkUQokEVEEqFAFhFJhAJZRCQRtdZB/T43VPoAjXpj7m2n1HURRGQnpBqyiEgiFMgiIolQIIuIJEKBLCKSCAWyiEgiFMgiIolQIIuIJEKBLCKSCAWyiEgiFMgiIomotZ9Ob49Xr+/H+o0lrN9UDMBto2YxefYyWjUp4OYzDuMre7ZiU4kzYsbn3DNuDi2bNOC+C3vQplkB0z4p5BfD/w3Avu2aceMph3LZI2/W5eKIiORULwIZ4HuPvcWHi9eUGnbX2Ufy+kfLuPrJdwBo17whAGcetSevf7yMe8bN4fHv9OKgPZrz4eI1/PLUrtz0wsxaL7uISFXU2yaLfdo25dCOLfjba3M3D1u2ZgMAm4qdJgX5mEHD/Dw2FjtDuu/JW/MK+XT52joqsYhIxepNDfnuc7sB8ObcQu4cM4sD92jBwpVF3D7kCA7r1JKlq9dz68j3mb1kDcPeWcBdZx/JyKv7MHbmIgrXbuCcnl248ME36ngpRETKZ+5enfGrNXK27el+s2OrxixcWUTD/Dx+eVpXmjVqwJiZi/jTed0474F/Mm1uIQMP68DPTz6E4++cuNX0tw85gmemf0ZBvnHhV/dmw6YS7hj9AQtWrNum8qj7TRGpJqvKSPWiyWLhyiIANhSX8Ojrn9Jj7zYsKFzH5yuKmDa3EIAxMxexe4vGtGlaUGraY/bdDceZ+skX/Pr0r/CTp97lyanzubb/QbW+HCIiFUk+kJsU5NOi0ZaWldOO7MR7C1fxrwUrWbtxEwfu3hwIwbti3QYK127cPG5BvvHjAQdx26hZADQuyKPEocSdpo3ya3dBREQqkXwbcrsWDbn3wqPJMyM/z5i9eA03Dgu3sf106AzuPPtIGjXIY92GYq589K1S015x/P48NW0+K2JI/2n8HF646lg2Fpdw3dMzan1ZREQqUi/akFOjNmQRqaadpw1ZRGRXoEAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEKZBGRRCiQRUQSoUAWEUmEAllEJBEN6roAu4Ibbr+/rotQY267/rt1XQSRnZZqyCIiiVAgi4gkQoEsIpIIBbKISCIUyCIiiVAgi4gkQoEsIpIIBbKISCIUyCIiiVAgi4gkQj+dTty3Bw9gt9YtcHfWb9jI8y9PYeGS5Ry8XxcG9OlJfn4ea9cVMXTkJApXriYvz7jgjP7s1roFywtX8fjwlylxp2njRnz7rAE88OQISkq8rhdLRHJQICfuqRcnsH7DRgC6HrA33xx0PA8+OYJzTunHX/4xnGWFKzmq6wGcOeBYHho6ioP27cK6ovXc/dBYvjnoeA7arwuzPprHyf2+ypjJ0xTGIglTk0XiMmEM0LhRQ9ydtm1asWbtWpYVrgTgg4/nc/B+XWjapBHFJSUUFITjbEFBA4qLi9m3S0dKvIS5ny2qk2UQkapRDbkeGHLScRy4b2cA/jZ0FCtXraF5s6Z07tCezxYtpVvXAwBo3bI5cz75jMMP3pdrLhnCvM+X8Mn8RVz2rZP5+7Nj63IRRKQKFMj1wDOjJwPQ7bADOblvLx5+ejRPDB/HqSd+jQb5+XzwyXzWFa2nuLgEB54d/crmaU/s3Z2p786iTcvmDB7YB4AJU6azcOkXdbEoIlIBBXI98vbM2Zw1sA9NGzdizqcLmPPpAgCaN23CccccwRcrV5cav22blnTptDvjpkznivNP46kRE8CMs08+nvufGFEXiyAiFVAbcsIaFjSgVYtmm18fuv9erC1az9qi9TRv1gQAAwYe35M33nmfjRs3lZr+tBN7M2Lc63FeBTjg7jRsWFBbiyAi1aAacsIaFhRwwZnfoGFBASUlJawrWs8jz4wGYGCfnuzdeQ/y8/KZPfczRk+cWmrao7oewPyFSzZf+Hvp1Te55OyTABg54Y1aXY6d5Ykp2/K0lJ1l2UFPi6kNCuSErVm7jj8/Ojzne5l25fK8896cUq9nfTSPWR/Nq7GyiUjNU5OFiEgiFMgiIolQIIuIJEKBLCKSCAWyiEgiFMgiIolQIIuIJEKBLCKSCAWyiEgi9Es9SVp5T0zJOPHr3el/bA9+/9ehLF5WSJNGDblw8ACaNW3MJ/MXMvyl1wBo16YVp5zwVR55ZkxdLUq17crLvqtSIEvScj0x5Y+PPAtApz3aslen3SnM6uXuqMMO5ON5nzNuynS+c+4p7NGuDYuXFXLqiV/jhZen1MkybKtdedl3VWqykKTlemIKQH5+Hmf0P5ZhY18rNX5xcXhiigH5+fkUF5fQ/SsHMm/BYpavWFWbRd9uu/Ky76pUQ5bklX1iCkD/Y3vw9szZpWqIAO+8N5uzT+nL1ZcMYebsuaxdV0TPIw7hwSdfrPVy14Rdedl3RQpkSV7ZJ6aMnzKdLh3bM3rS1K3G3bBxE48Ne3nz6yGDjmPs5Gns26UjX+3WlU3FxYyeNJUVq9bUWvm3x6687LsiNVlIvfH2zNnsv1cn9t97T9rv1prrrzyP6688j5YtmnHpOSdz4D57lhp/384dwOGTzxZxev/ePDVyIlPffZ/+x/aooyXYdrvysu9KVEOWZDUsaECTxo1YufpLYMsTUya8/jYTXn9783jXX3keDz89msXLCjcPy8/LY8BxPXk0Pty1oEED3B13aFQPnpiyKy/7rkyBLMmq6IkplTm+15FMmzGLtUXrARj/+ttc9R+DKS4u4elRk3ZksWvErrzsuzIFsiSroiemZLv93ie2GjY+qxYJMO3dWUx7d1aNlW1H21mWfWd5hFVtPb5KbcgiIolQIIuIJEKBLCKSCAWyiEgiFMgiIolQIIuIJEKBLCKSCAWyiEgiFMgiIolQIIuIJEI/nRaR5DRt3IhzTu1H29Yt2VRczPLCVTw35hW+XFfE0YcfxLE9Dicvz/hixWqeenEi64rW7xSPsFIgi0hyHJj8xrt8PH8hAIP69uKkvscweeoMBvTpyT0PPcOX64o44WvdGHhcT4aNfXWneISVmixEJDnritZvDmOA+Z8voXXL5nRo14aFS5bz5boiAGZ9PI9uXQ8Ado5HWCmQRSRpBvTqdijvz/mUhUu+YM8O7WjTqgUAR3U9gEaNGtKkcSPeeW82bdu05OpLhjDn0wWbH2E16Y1363YBqkFNFiKStNP7f50NGzbx+lszceCFca9z/ukn4sB7s+cCUFJSslM8wkqBLCLJOrlfL9q2acUjz4zG47AZ73/EjPc/AqBzx/asXL2m1BO6ofQjrK69/Gz+9PdhdO7Qjv7H9mDoyIm1uxDVoCYLEUnSgD492XOP9jz67BiKi0s2D2/erAkADfLz6X/s0UyeOqPUdJlHWI2a+AZQvx5hpRqyiCRn93ZtOKF3N5YuX8H3LjwDgMKVq3n0uZc4++Tjad2yBfn5ecx4/yOmvPnvUtPW50dYKZBFJDlLlhWW+/inh4ZW/GzBlB5hVV1qshARSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEKJBFRBKhQBYRSYQCWUQkEQpkEZFEmLvXdRlERATVkEVEkqFAFhFJhAJZRCQRCmQRkUQokEVEEqFAFhFJhAJZRCQRSQWymU01s8fN7Ckzu93MGlcwbiczOynr9Wlmdl3tlLRumNmlcd08GdfTV8yswMx+bGbDzWyYmf3BzDpkTfNKXZa5JuwMy7AtzKytmd0at+1QM7vHzPaq63JVV01vv1zfg2pM297M7qhknBZmdvb2l7T6GtTFh1ZgvbufD2BmvwWGAI+VM25H4CRgdC2VrU6Z2RFAH+BCd99gZq2BAuAHQDNgsLuXmNnpwO/M7EJ3L6nDIst2MDMD7gJGuPvP47CDgLbAvPj6NKCju99fwXxecPfTaqHItaKC70FVps1396VAZRW3FsDZwNDtKuw2SC2Qs70NHGhm3wNWuPsTAGb2feALQhjva2aPAyOA1UB7M/sj0BmY4O73xGkGApcCBryaNfwV4AnCBl4PXOvuX9TiMlZHO8J62ADg7iviGcTpwGmZ8HX352MoHwP8s85KW8PMrCnwP0BLwn77Z3efZGZXAwvdfWgc77vAWuDZXOPXSeG3TQ9gk7s/kxng7h/WYXm2Sw1uv62+B1mf0RX4CdAE2AhcCZwIHAs0BJqY2W+AP7j7OfGA1o8Q6HsCo+PB7T+BzjFb3nD3u3fgqinN3ZP5B7wS/88Hfgd6znVMAAADuUlEQVR8E+gEPBaH5wHDgVbA0XHFZqY9DXgeaE5Y+SOAPYD2wItAmzjfe4G+cZo3gePi31cDl9X1Oqhg3TQFHifsqDcA3YEDgcdzjHstcH72Oq3P/4BX4rZrFl+3BoYRDrAHA/dnjTsU6FDe+HW9LNVY5nMJFYSKxjkN+G4l47yQwLLU2PbL9T2I4xTE73/X+LpZnMdpwEigZRzeCXgqa/2NiXnSCHgK6Jo9Tm3/S62G3CgelQDeAYa7+0YzW2lmBxNO1z5w95XhjG4rU919DYCZfUxo1mgFvOXuhXH4KEKYTSQcRTPtW7OAXjtmsbafu681swuBboTa023AQ0Cuzkhyrpx6zoAfmFl3oATYHdjN3T8ws93MrD3hoLva3ReZWYNc4wPL66j8NcLMWgF/iS9bAQVm1je+/qW7zzGz64Ej47D2Wd+pl939b7VX2lJqZPu5+/Ky34N4Vvw+sMzd3wNw9y8BYk684e6ryinXG+6+Mo47HjiKkA11IrVA3tyGXMYwwtGsLaGGXJ4NWX+XEI6QFYXTJo+HSqA4jp8sD80SbwFvmdkcQht7RzNr6u5rs0Y9BBhXF2XcgQYRvrAXuvsmM3uBUKuBsKwnEvaPMVUYvz74mLBMpcTwyFxnydmG7O63Z/6Obci5vlO1rca2X47vwamEClV5PaWtq6BcZaep097WkrrLogITgN7AYcDrcdhawulLZf4NdDez1maWBwwkbMx6xcz2LnOF/WBgLqFp5tq4bJjZKYQD07u1XsgdqzlQGL+cPQhnPxljgAGEL/W4KoxfH0wDGprZ4MwAM+saa4z1UY1sv3K+BwsJ34X2sR0ZM2tqZlWpYPUys5Zm1gjoS/jefEnVsqXGpVZDzik2W7xJOJ3J3DkwGyg2syeAFwgX9XJNu8zM/gTcx5aLevXp4k5GU+CnZtaCUJufD9xCODBdAzwbd6pC4JKsmn9jMxuZNZ/H3L28O1eSE79UG4FRwO/N7FHgQ8IXEAB3/9jMmgFL3X1ZHFzu+PWBu7uZ/QT4sZldTLjovJBwoave2AHbL+f3IGbEDcB18XuwHvh+FYr4DnAz0IVwUe+9WO53zewp4DWvxYt69aI/5Fj7+wdwg7vPq+vypMrM2gJ/BJ5292frujw1Id7qdaO7X1TXZZHqS3n7xSafQ929wvuSa1PyNWQz2w/4A+E2NoVxBdx9ObF9cWdgZkMIdxvUq1qhBNp+1VcvasgiIruC+nJRT0Rkp6dAFhFJhAJZRCQRCmQRkUQokEVEEvH/5djaAei+dZYAAAAASUVORK5CYII=\n", 200 | "text/plain": [ 201 | "
" 202 | ] 203 | }, 204 | "metadata": {}, 205 | "output_type": "display_data" 206 | } 207 | ], 208 | "source": [ 209 | "import matplotlib.pyplot as plt\n", 210 | "import numpy as np\n", 211 | "\n", 212 | "plt.figure()\n", 213 | "\n", 214 | "languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']\n", 215 | "pos = np.arange(len(languages))\n", 216 | "popularity = [56, 39, 34, 34, 29]\n", 217 | "\n", 218 | "# change the bar colors to be less bright blue\n", 219 | "bars = plt.bar(pos, popularity, align='center', linewidth=0, color='lightslategrey')\n", 220 | "# make one bar, the python bar, a contrasting color\n", 221 | "bars[0].set_color('#1F77B4')\n", 222 | "\n", 223 | "# soften all labels by turning grey\n", 224 | "plt.xticks(pos, languages, alpha=0.8)\n", 225 | "\n", 226 | "# remove the Y label since bars are directly labeled\n", 227 | "# plt.ylabel('% Popularity', alpha=0.8)\n", 228 | "\n", 229 | "plt.title('Top 5 Languages for Math & Data \\nby % popularity on Stack Overflow', alpha=0.8)\n", 230 | "\n", 231 | "# remove all the ticks (both axes), and tick labels on the Y axis\n", 232 | "plt.tick_params(top='off', bottom='off', left='off', right='off', labelleft='off', labelbottom='on')\n", 233 | "\n", 234 | "# remove the frame of the chart\n", 235 | "for spine in plt.gca().spines.values():\n", 236 | " spine.set_visible(False)\n", 237 | "\n", 238 | "# direct label each bar with Y axis values\n", 239 | "for bar in bars:\n", 240 | " plt.gca().text(bar.get_x() + bar.get_width()/2, bar.get_height() - 5, str(int(bar.get_height())) + '%', \n", 241 | " ha='center', color='w', fontsize=11)\n", 242 | "plt.show()" 243 | ] 244 | } 245 | ], 246 | "metadata": { 247 | "kernelspec": { 248 | "display_name": "Python 3", 249 | "language": "python", 250 | "name": "python3" 251 | }, 252 | "language_info": { 253 | "codemirror_mode": { 254 | "name": "ipython", 255 | "version": 3 256 | }, 257 | "file_extension": ".py", 258 | "mimetype": "text/x-python", 259 | "name": "python", 260 | "nbconvert_exporter": "python", 261 | "pygments_lexer": "ipython3", 262 | "version": "3.6.5" 263 | } 264 | }, 265 | "nbformat": 4, 266 | "nbformat_minor": 2 267 | } 268 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2018 VaaibhaviSingh 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Applied-Plotting-Charting-and-Data-Representation-in-Python 2 | Coursera 3 | -------------------------------------------------------------------------------- /Rain_1961_1990.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/VaaibhaviSingh/Applied-Plotting-Charting-and-Data-Representation-in-Python/438fc7bc403c25bc57a5929e3ae1358baff62b2b/Rain_1961_1990.xls -------------------------------------------------------------------------------- /Temp_1961_1990.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/VaaibhaviSingh/Applied-Plotting-Charting-and-Data-Representation-in-Python/438fc7bc403c25bc57a5929e3ae1358baff62b2b/Temp_1961_1990.xls -------------------------------------------------------------------------------- /heroes_information.csv: -------------------------------------------------------------------------------- 1 | ,name,Gender,Eye color,Race,Hair color,Height,Publisher,Skin color,Alignment,Weight 2 | 0,A-Bomb,Male,yellow,Human,No Hair,203.0,Marvel Comics,-,good,441.0 3 | 1,Abe Sapien,Male,blue,Icthyo Sapien,No Hair,191.0,Dark Horse Comics,blue,good,65.0 4 | 2,Abin Sur,Male,blue,Ungaran,No Hair,185.0,DC Comics,red,good,90.0 5 | 3,Abomination,Male,green,Human / Radiation,No Hair,203.0,Marvel Comics,-,bad,441.0 6 | 4,Abraxas,Male,blue,Cosmic Entity,Black,-99.0,Marvel Comics,-,bad,-99.0 7 | 5,Absorbing Man,Male,blue,Human,No Hair,193.0,Marvel Comics,-,bad,122.0 8 | 6,Adam Monroe,Male,blue,-,Blond,-99.0,NBC - Heroes,-,good,-99.0 9 | 7,Adam Strange,Male,blue,Human,Blond,185.0,DC Comics,-,good,88.0 10 | 8,Agent 13,Female,blue,-,Blond,173.0,Marvel Comics,-,good,61.0 11 | 9,Agent Bob,Male,brown,Human,Brown,178.0,Marvel Comics,-,good,81.0 12 | 10,Agent Zero,Male,-,-,-,191.0,Marvel Comics,-,good,104.0 13 | 11,Air-Walker,Male,blue,-,White,188.0,Marvel Comics,-,bad,108.0 14 | 12,Ajax,Male,brown,Cyborg,Black,193.0,Marvel Comics,-,bad,90.0 15 | 13,Alan Scott,Male,blue,-,Blond,180.0,DC Comics,-,good,90.0 16 | 14,Alex Mercer,Male,-,Human,-,-99.0,Wildstorm,-,bad,-99.0 17 | 15,Alex Woolsly,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 18 | 16,Alfred Pennyworth,Male,blue,Human,Black,178.0,DC Comics,-,good,72.0 19 | 17,Alien,Male,-,Xenomorph XX121,No Hair,244.0,Dark Horse Comics,black,bad,169.0 20 | 18,Allan Quatermain,Male,-,-,-,-99.0,Wildstorm,-,good,-99.0 21 | 19,Amazo,Male,red,Android,-,257.0,DC Comics,-,bad,173.0 22 | 20,Ammo,Male,brown,Human,Black,188.0,Marvel Comics,-,bad,101.0 23 | 21,Ando Masahashi,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 24 | 22,Angel,Male,blue,-,Blond,183.0,Marvel Comics,-,good,68.0 25 | 23,Angel,Male,-,Vampire,-,-99.0,Dark Horse Comics,-,good,-99.0 26 | 24,Angel Dust,Female,yellow,Mutant,Black,165.0,Marvel Comics,-,good,57.0 27 | 25,Angel Salvadore,Female,brown,-,Black,163.0,Marvel Comics,-,good,54.0 28 | 26,Angela,Female,-,-,-,-99.0,Image Comics,-,bad,-99.0 29 | 27,Animal Man,Male,blue,Human,Blond,183.0,DC Comics,-,good,83.0 30 | 28,Annihilus,Male,green,-,No Hair,180.0,Marvel Comics,-,bad,90.0 31 | 29,Ant-Man,Male,blue,Human,Blond,211.0,Marvel Comics,-,good,122.0 32 | 30,Ant-Man II,Male,blue,Human,Blond,183.0,Marvel Comics,-,good,86.0 33 | 31,Anti-Monitor,Male,yellow,God / Eternal,No Hair,61.0,DC Comics,-,bad,-99.0 34 | 32,Anti-Spawn,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 35 | 33,Anti-Venom,Male,blue,Symbiote,Blond,229.0,Marvel Comics,-,-,358.0 36 | 34,Apocalypse,Male,red,Mutant,Black,213.0,Marvel Comics,grey,bad,135.0 37 | 35,Aquababy,Male,blue,-,Blond,-99.0,DC Comics,-,good,-99.0 38 | 36,Aqualad,Male,blue,Atlantean,Black,178.0,DC Comics,-,good,106.0 39 | 37,Aquaman,Male,blue,Atlantean,Blond,185.0,DC Comics,-,good,146.0 40 | 38,Arachne,Female,blue,Human,Blond,175.0,Marvel Comics,-,good,63.0 41 | 39,Archangel,Male,blue,Mutant,Blond,183.0,Marvel Comics,blue,good,68.0 42 | 40,Arclight,Female,violet,-,Purple,173.0,Marvel Comics,-,bad,57.0 43 | 41,Ardina,Female,white,Alien,Orange,193.0,Marvel Comics,gold,good,98.0 44 | 42,Ares,Male,brown,-,Brown,185.0,Marvel Comics,-,good,270.0 45 | 43,Ariel,Female,purple,-,Pink,165.0,Marvel Comics,-,good,59.0 46 | 44,Armor,Female,black,-,Black,163.0,Marvel Comics,-,good,50.0 47 | 45,Arsenal,Male,-,Human,-,-99.0,DC Comics,-,good,-99.0 48 | 46,Astro Boy,Male,brown,-,Black,-99.0,,-,good,-99.0 49 | 47,Atlas,Male,brown,Mutant,Red,183.0,Marvel Comics,-,good,101.0 50 | 48,Atlas,Male,blue,God / Eternal,Brown,198.0,DC Comics,-,bad,126.0 51 | 49,Atom,Male,blue,-,Red,178.0,DC Comics,-,good,68.0 52 | 50,Atom,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 53 | 51,Atom Girl,Female,black,-,Black,168.0,DC Comics,-,good,54.0 54 | 52,Atom II,Male,brown,Human,Auburn,183.0,DC Comics,-,good,81.0 55 | 53,Atom III,Male,-,-,Red,-99.0,DC Comics,-,good,-99.0 56 | 54,Atom IV,Male,brown,-,Black,-99.0,DC Comics,-,good,72.0 57 | 55,Aurora,Female,blue,Mutant,Black,180.0,Marvel Comics,-,good,63.0 58 | 56,Azazel,Male,yellow,Neyaphem,Black,183.0,Marvel Comics,red,bad,67.0 59 | 57,Azrael,Male,brown,Human,Black,-99.0,DC Comics,-,good,-99.0 60 | 58,Aztar,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 61 | 59,Bane,Male,-,Human,-,203.0,DC Comics,-,bad,180.0 62 | 60,Banshee,Male,green,Human,Strawberry Blond,183.0,Marvel Comics,-,good,77.0 63 | 61,Bantam,Male,brown,-,Black,165.0,Marvel Comics,-,good,54.0 64 | 62,Batgirl,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 65 | 63,Batgirl,Female,green,Human,Red,170.0,DC Comics,-,good,57.0 66 | 64,Batgirl III,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 67 | 65,Batgirl IV,Female,green,Human,Black,165.0,DC Comics,-,good,52.0 68 | 66,Batgirl V,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 69 | 67,Batgirl VI,Female,blue,-,Blond,168.0,DC Comics,-,good,61.0 70 | 68,Batman,Male,blue,Human,black,188.0,DC Comics,-,good,95.0 71 | 69,Batman,Male,blue,Human,Black,178.0,DC Comics,-,good,77.0 72 | 70,Batman II,Male,blue,Human,Black,178.0,DC Comics,-,good,79.0 73 | 71,Battlestar,Male,brown,-,Black,198.0,Marvel Comics,-,good,133.0 74 | 72,Batwoman V,Female,green,Human,Red,178.0,DC Comics,-,good,-99.0 75 | 73,Beak,Male,black,-,White,175.0,Marvel Comics,-,good,63.0 76 | 74,Beast,Male,blue,Mutant,Blue,180.0,Marvel Comics,blue,good,181.0 77 | 75,Beast Boy,Male,green,Human,Green,173.0,DC Comics,green,good,68.0 78 | 76,Beetle,Male,-,-,-,-99.0,Marvel Comics,-,bad,-99.0 79 | 77,Ben 10,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 80 | 78,Beta Ray Bill,Male,-,-,No Hair,201.0,Marvel Comics,-,good,216.0 81 | 79,Beyonder,Male,-,God / Eternal,-,-99.0,Marvel Comics,-,good,-99.0 82 | 80,Big Barda,Female,blue,New God,Black,188.0,DC Comics,-,bad,135.0 83 | 81,Big Daddy,Male,-,-,-,-99.0,Icon Comics,-,good,-99.0 84 | 82,Big Man,Male,blue,-,Brown,165.0,Marvel Comics,-,bad,71.0 85 | 83,Bill Harken,Male,-,Alpha,-,-99.0,SyFy,-,good,-99.0 86 | 84,Billy Kincaid,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 87 | 85,Binary,Female,blue,-,Blond,180.0,Marvel Comics,-,good,54.0 88 | 86,Bionic Woman,Female,blue,Cyborg,Black,-99.0,,-,good,-99.0 89 | 87,Bird-Brain,-,-,-,-,-99.0,Marvel Comics,-,good,-99.0 90 | 88,Bird-Man,Male,-,Human,-,-99.0,Marvel Comics,-,bad,-99.0 91 | 89,Bird-Man II,Male,-,Human,-,-99.0,Marvel Comics,-,bad,-99.0 92 | 90,Birdman,Male,-,God / Eternal,-,-99.0,Hanna-Barbera,-,good,-99.0 93 | 91,Bishop,Male,brown,Mutant,No Hair,198.0,Marvel Comics,-,good,124.0 94 | 92,Bizarro,Male,black,Bizarro,Black,191.0,DC Comics,white,neutral,155.0 95 | 93,Black Abbott,Male,red,-,Black,-99.0,Marvel Comics,-,bad,-99.0 96 | 94,Black Adam,Male,brown,-,Black,191.0,DC Comics,-,bad,113.0 97 | 95,Black Bolt,Male,blue,Inhuman,Black,188.0,Marvel Comics,-,good,95.0 98 | 96,Black Canary,Female,blue,Human,Blond,165.0,DC Comics,-,good,58.0 99 | 97,Black Canary,Female,blue,Metahuman,Blond,170.0,DC Comics,-,good,59.0 100 | 98,Black Cat,Female,green,Human,Blond,178.0,Marvel Comics,-,good,54.0 101 | 99,Black Flash,Male,-,God / Eternal,-,-99.0,DC Comics,-,neutral,-99.0 102 | 100,Black Goliath,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 103 | 101,Black Knight III,Male,brown,Human,Brown,183.0,Marvel Comics,-,good,86.0 104 | 102,Black Lightning,Male,brown,-,No Hair,185.0,DC Comics,-,good,90.0 105 | 103,Black Mamba,Female,green,-,Black,170.0,Marvel Comics,-,bad,52.0 106 | 104,Black Manta,Male,black,Human,No Hair,188.0,DC Comics,-,bad,92.0 107 | 105,Black Panther,Male,brown,Human,Black,183.0,Marvel Comics,-,good,90.0 108 | 106,Black Widow,Female,green,Human,Auburn,170.0,Marvel Comics,-,good,59.0 109 | 107,Black Widow II,Female,blue,-,Blond,170.0,Marvel Comics,-,good,61.0 110 | 108,Blackout,Male,red,Demon,White,191.0,Marvel Comics,white,bad,104.0 111 | 109,Blackwing,Male,blue,-,Black,185.0,Marvel Comics,-,bad,86.0 112 | 110,Blackwulf,Male,red,Alien,White,188.0,Marvel Comics,-,-,88.0 113 | 111,Blade,Male,brown,Vampire,Black,188.0,Marvel Comics,-,good,97.0 114 | 112,Blaquesmith,-,black,-,No Hair,-99.0,Marvel Comics,-,good,-99.0 115 | 113,Bling!,Female,-,-,-,168.0,Marvel Comics,-,good,68.0 116 | 114,Blink,Female,green,Mutant,Magenta,165.0,Marvel Comics,pink,good,56.0 117 | 115,Blizzard,Male,-,-,-,-99.0,Marvel Comics,-,bad,-99.0 118 | 116,Blizzard,Male,-,-,Brown,-99.0,Marvel Comics,-,bad,-99.0 119 | 117,Blizzard II,Male,brown,-,Brown,175.0,Marvel Comics,-,bad,77.0 120 | 118,Blob,Male,brown,-,Brown,178.0,Marvel Comics,-,bad,230.0 121 | 119,Bloodaxe,Female,blue,Human,Brown,218.0,Marvel Comics,-,bad,495.0 122 | 120,Bloodhawk,Male,black,Mutant,No Hair,-99.0,Marvel Comics,-,good,-99.0 123 | 121,Bloodwraith,Male,white,-,No Hair,30.5,Marvel Comics,-,bad,-99.0 124 | 122,Blue Beetle,Male,blue,-,Brown,-99.0,DC Comics,-,good,-99.0 125 | 123,Blue Beetle,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 126 | 124,Blue Beetle II,Male,blue,-,Brown,183.0,DC Comics,-,good,86.0 127 | 125,Blue Beetle III,Male,brown,Human,Black,-99.0,DC Comics,-,good,-99.0 128 | 126,Boba Fett,Male,brown,Human / Clone,Black,183.0,George Lucas,-,bad,-99.0 129 | 127,Bolt,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 130 | 128,Bomb Queen,Female,-,-,-,-99.0,Image Comics,-,bad,-99.0 131 | 129,Boom-Boom,Female,blue,Mutant,Blond,165.0,Marvel Comics,-,good,55.0 132 | 130,Boomer,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 133 | 131,Booster Gold,Male,blue,Human,Blond,196.0,DC Comics,-,good,97.0 134 | 132,Box,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 135 | 133,Box III,-,blue,-,Blond,193.0,Marvel Comics,-,good,110.0 136 | 134,Box IV,-,brown,-,Brown / Black,-99.0,Marvel Comics,-,good,-99.0 137 | 135,Brainiac,Male,green,Android,No Hair,198.0,DC Comics,green,bad,135.0 138 | 136,Brainiac 5,Male,green,-,Blond,170.0,DC Comics,-,good,61.0 139 | 137,Brother Voodoo,Male,brown,Human,Brown / White,183.0,Marvel Comics,-,good,99.0 140 | 138,Brundlefly,Male,-,Mutant,-,193.0,,-,-,-99.0 141 | 139,Buffy,Female,green,Human,Blond,157.0,Dark Horse Comics,-,good,52.0 142 | 140,Bullseye,Male,blue,Human,blond,183.0,Marvel Comics,-,bad,90.0 143 | 141,Bumblebee,Female,brown,Human,Black,170.0,DC Comics,-,good,59.0 144 | 142,Bumbleboy,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 145 | 143,Bushido,Male,-,Human,-,-99.0,DC Comics,-,good,-99.0 146 | 144,Cable,Male,blue,Mutant,White,203.0,Marvel Comics,-,good,158.0 147 | 145,Callisto,Female,blue,-,Black,175.0,Marvel Comics,-,bad,74.0 148 | 146,Cameron Hicks,Male,-,Alpha,-,-99.0,SyFy,-,good,-99.0 149 | 147,Cannonball,Male,blue,-,Blond,183.0,Marvel Comics,-,good,81.0 150 | 148,Captain America,Male,blue,Human,blond,188.0,Marvel Comics,-,good,108.0 151 | 149,Captain Atom,Male,blue,Human / Radiation,Silver,193.0,DC Comics,silver,good,90.0 152 | 150,Captain Britain,Male,blue,Human,Blond,198.0,Marvel Comics,-,good,116.0 153 | 151,Captain Cold,Male,brown,Human,Brown,-99.0,DC Comics,-,neutral,-99.0 154 | 152,Captain Epic,Male,blue,-,Brown,188.0,Team Epic TV,-,good,-99.0 155 | 153,Captain Hindsight,Male,-,Human,Black,-99.0,South Park,-,good,-99.0 156 | 154,Captain Mar-vell,Male,blue,-,Blond,188.0,Marvel Comics,-,good,108.0 157 | 155,Captain Marvel,Female,blue,Human-Kree,Blond,180.0,Marvel Comics,-,good,74.0 158 | 156,Captain Marvel,Male,blue,Human,Black,193.0,DC Comics,-,good,101.0 159 | 157,Captain Marvel II,Male,blue,Human,Black,175.0,DC Comics,-,good,74.0 160 | 158,Captain Midnight,Male,-,Human,-,-99.0,Dark Horse Comics,-,good,-99.0 161 | 159,Captain Planet,Male,red,God / Eternal,Green,-99.0,Marvel Comics,-,good,-99.0 162 | 160,Captain Universe,-,-,God / Eternal,-,-99.0,Marvel Comics,-,good,-99.0 163 | 161,Carnage,Male,green,Symbiote,Red,185.0,Marvel Comics,-,bad,86.0 164 | 162,Cat,Female,blue,-,Blond,173.0,Marvel Comics,-,good,61.0 165 | 163,Cat II,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 166 | 164,Catwoman,Female,green,Human,Black,175.0,DC Comics,-,good,61.0 167 | 165,Cecilia Reyes,-,brown,-,Brown,170.0,Marvel Comics,-,good,62.0 168 | 166,Century,Male,white,Alien,White,201.0,Marvel Comics,grey,good,97.0 169 | 167,Cerebra,Female,-,Mutant,-,-99.0,Marvel Comics,-,good,-99.0 170 | 168,Chamber,Male,brown,Mutant,Brown,175.0,Marvel Comics,-,good,63.0 171 | 169,Chameleon,Male,-,-,-,-99.0,DC Comics,-,bad,-99.0 172 | 170,Changeling,Male,brown,-,Black,180.0,Marvel Comics,-,bad,81.0 173 | 171,Cheetah,Female,green,Human,Blond,163.0,DC Comics,-,bad,50.0 174 | 172,Cheetah II,Female,green,Human,Brown,170.0,DC Comics,-,bad,55.0 175 | 173,Cheetah III,Female,brown,Human,Brown,175.0,DC Comics,-,bad,54.0 176 | 174,Chromos,Male,brown,-,Red / Grey,185.0,Team Epic TV,-,bad,86.0 177 | 175,Chuck Norris,Male,-,-,-,178.0,,-,good,-99.0 178 | 176,Citizen Steel,Male,green,Human,Red,183.0,DC Comics,-,good,170.0 179 | 177,Claire Bennet,Female,blue,-,Blond,-99.0,NBC - Heroes,-,good,-99.0 180 | 178,Clea,-,-,-,White,-99.0,Marvel Comics,-,good,-99.0 181 | 179,Cloak,Male,brown,-,black,226.0,Marvel Comics,-,good,70.0 182 | 180,Clock King,Male,blue,Human,Black,178.0,DC Comics,-,bad,78.0 183 | 181,Cogliostro,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 184 | 182,Colin Wagner,Male,grey,-,Brown,-99.0,HarperCollins,-,good,-99.0 185 | 183,Colossal Boy,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 186 | 184,Colossus,Male,silver,Mutant,Black,226.0,Marvel Comics,-,good,225.0 187 | 185,Copycat,Female,red,Mutant,White,183.0,Marvel Comics,blue,neutral,67.0 188 | 186,Corsair,Male,brown,-,Brown,191.0,Marvel Comics,-,good,79.0 189 | 187,Cottonmouth,Male,brown,Human,Black,183.0,Marvel Comics,-,bad,99.0 190 | 188,Crimson Crusader,Male,blue,-,Strawberry Blond,-99.0,Marvel Comics,-,good,-99.0 191 | 189,Crimson Dynamo,Male,brown,-,No Hair,180.0,Marvel Comics,-,good,104.0 192 | 190,Crystal,Female,green,Inhuman,Red,168.0,Marvel Comics,-,good,50.0 193 | 191,Curse,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 194 | 192,Cy-Gor,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 195 | 193,Cyborg,Male,brown,Cyborg,Black,198.0,DC Comics,-,good,173.0 196 | 194,Cyborg Superman,Male,blue,Cyborg,Black,-99.0,DC Comics,-,bad,-99.0 197 | 195,Cyclops,Male,brown,Mutant,Brown,191.0,Marvel Comics,-,good,88.0 198 | 196,Cypher,-,blue,-,Blond,175.0,Marvel Comics,-,good,68.0 199 | 197,Dagger,Female,blue,-,Blond,165.0,Marvel Comics,-,good,52.0 200 | 198,Danny Cooper,Male,brown,-,Blond,-99.0,HarperCollins,-,good,-99.0 201 | 199,Daphne Powell,Female,-,-,-,-99.0,ABC Studios,-,good,-99.0 202 | 200,Daredevil,Male,blue,Human,Red,183.0,Marvel Comics,-,good,90.0 203 | 201,Darkhawk,Male,brown,Human,Brown,185.0,Marvel Comics,-,good,81.0 204 | 202,Darkman,Male,-,-,-,-99.0,Universal Studios,-,good,-99.0 205 | 203,Darkseid,Male,red,New God,No Hair,267.0,DC Comics,grey,bad,817.0 206 | 204,Darkside,-,-,-,-,-99.0,,-,bad,-99.0 207 | 205,Darkstar,Female,brown,Mutant,Blond,168.0,Marvel Comics,-,good,56.0 208 | 206,Darth Maul,Male,yellow / red,Dathomirian Zabrak,-,170.0,George Lucas,red / black,bad,-99.0 209 | 207,Darth Vader,Male,yellow,Cyborg,No Hair,198.0,George Lucas,-,bad,135.0 210 | 208,Dash,Male,blue,Human,Blond,122.0,Dark Horse Comics,-,good,27.0 211 | 209,Data,Male,yellow,Android,Brown,-99.0,Star Trek,-,good,-99.0 212 | 210,Dazzler,Female,blue,Mutant,Blond,173.0,Marvel Comics,-,good,52.0 213 | 211,Deadman,Male,blue,Human,Black,183.0,DC Comics,-,good,90.0 214 | 212,Deadpool,Male,brown,Mutant,No Hair,188.0,Marvel Comics,-,neutral,95.0 215 | 213,Deadshot,Male,brown,Human,Brown,185.0,DC Comics,-,bad,91.0 216 | 214,Deathlok,Male,brown,Cyborg,Grey,193.0,Marvel Comics,-,good,178.0 217 | 215,Deathstroke,Male,blue,Human,White,193.0,DC Comics,-,neutral,101.0 218 | 216,Demogoblin,Male,red,Demon,No Hair,185.0,Marvel Comics,-,bad,95.0 219 | 217,Destroyer,Male,-,-,-,188.0,Marvel Comics,-,bad,383.0 220 | 218,Diamondback,Male,brown,Human,Black,193.0,Marvel Comics,-,bad,90.0 221 | 219,DL Hawkins,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 222 | 220,Doc Samson,Male,blue,Human / Radiation,Green,198.0,Marvel Comics,-,good,171.0 223 | 221,Doctor Doom,Male,brown,Human,Brown,201.0,Marvel Comics,-,bad,187.0 224 | 222,Doctor Doom II,Male,brown,-,Brown,201.0,Marvel Comics,-,bad,132.0 225 | 223,Doctor Fate,Male,blue,Human,Blond,188.0,DC Comics,-,good,89.0 226 | 224,Doctor Octopus,Male,brown,Human,Brown,175.0,Marvel Comics,-,bad,110.0 227 | 225,Doctor Strange,Male,grey,Human,Black,188.0,Marvel Comics,-,good,81.0 228 | 226,Domino,Female,blue,Human,Black,173.0,Marvel Comics,white,good,54.0 229 | 227,Donatello,Male,green,Mutant,No Hair,-99.0,IDW Publishing,green,good,-99.0 230 | 228,Donna Troy,Female,blue,Amazon,Black,175.0,DC Comics,-,good,63.0 231 | 229,Doomsday,Male,red,Alien,White,244.0,DC Comics,-,bad,412.0 232 | 230,Doppelganger,Male,white,-,No Hair,196.0,Marvel Comics,-,bad,104.0 233 | 231,Dormammu,Male,yellow,-,No Hair,185.0,Marvel Comics,-,bad,-99.0 234 | 232,Dr Manhattan,Male,white,Human / Cosmic,No Hair,-99.0,DC Comics,blue,good,-99.0 235 | 233,Drax the Destroyer,Male,red,Human / Altered,No Hair,193.0,Marvel Comics,green,good,306.0 236 | 234,Ego,-,-,-,-,-99.0,Marvel Comics,-,bad,-99.0 237 | 235,Elastigirl,Female,brown,Human,Brown,168.0,Dark Horse Comics,-,good,56.0 238 | 236,Electro,Male,blue,Human,Auburn,180.0,Marvel Comics,-,bad,74.0 239 | 237,Elektra,Female,blue,Human,Black,175.0,Marvel Comics,-,good,59.0 240 | 238,Elle Bishop,Female,blue,-,Blond,-99.0,NBC - Heroes,-,bad,-99.0 241 | 239,Elongated Man,Male,blue,-,Red,185.0,DC Comics,-,good,80.0 242 | 240,Emma Frost,Female,blue,-,Blond,178.0,Marvel Comics,-,good,65.0 243 | 241,Enchantress,Female,blue,Human,Blond,168.0,DC Comics,-,good,57.0 244 | 242,Energy,Female,-,-,-,-99.0,HarperCollins,-,good,-99.0 245 | 243,ERG-1,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 246 | 244,Ethan Hunt,Male,brown,Human,Brown,168.0,,-,good,-99.0 247 | 245,Etrigan,Male,red,Demon,No Hair,193.0,DC Comics,yellow,neutral,203.0 248 | 246,Evil Deadpool,Male,white,Mutant,Red,188.0,Marvel Comics,-,bad,95.0 249 | 247,Evilhawk,Male,red,Alien,Black,191.0,Marvel Comics,green,bad,106.0 250 | 248,Exodus,Male,blue,Mutant,Black,183.0,Marvel Comics,red,bad,88.0 251 | 249,Fabian Cortez,-,blue,-,Brown,196.0,Marvel Comics,-,bad,96.0 252 | 250,Falcon,Male,brown,Human,Black,188.0,Marvel Comics,-,good,108.0 253 | 251,Fallen One II,Male,black,-,Blue,-99.0,Marvel Comics,-,bad,-99.0 254 | 252,Faora,Female,-,Kryptonian,-,-99.0,DC Comics,-,bad,-99.0 255 | 253,Feral,-,yellow (without irises),-,Orange / White,175.0,Marvel Comics,-,good,50.0 256 | 254,Fighting Spirit,Female,-,-,Red,-99.0,DC Comics,-,good,-99.0 257 | 255,Fin Fang Foom,Male,red,Kakarantharaian,No Hair,975.0,Marvel Comics,green,good,18.0 258 | 256,Firebird,Female,brown,-,Black,165.0,Marvel Comics,-,good,56.0 259 | 257,Firelord,-,white,-,Yellow,193.0,Marvel Comics,-,good,99.0 260 | 258,Firestar,Female,green,Mutant,Red,173.0,Marvel Comics,-,good,56.0 261 | 259,Firestorm,Male,brown,-,Black,-99.0,DC Comics,-,good,-99.0 262 | 260,Firestorm,Male,blue,Human,Auburn,188.0,DC Comics,-,good,91.0 263 | 261,Fixer,-,red,-,No Hair,-99.0,Marvel Comics,-,bad,-99.0 264 | 262,Flash,Male,blue,Human,Brown / White,180.0,DC Comics,-,good,81.0 265 | 263,Flash Gordon,Male,-,-,-,-99.0,,-,good,-99.0 266 | 264,Flash II,Male,blue,Human,Blond,183.0,DC Comics,-,good,88.0 267 | 265,Flash III,Male,-,Human,-,183.0,DC Comics,-,good,86.0 268 | 266,Flash IV,Male,yellow,Human,Auburn,157.0,DC Comics,-,good,52.0 269 | 267,Forge,-,brown,-,Black,183.0,Marvel Comics,-,good,81.0 270 | 268,Franklin Richards,Male,blue,Mutant,Blond,142.0,Marvel Comics,-,good,45.0 271 | 269,Franklin Storm,-,blue,-,Grey,188.0,Marvel Comics,-,good,92.0 272 | 270,Frenzy,Female,brown,-,Black,211.0,Marvel Comics,-,bad,104.0 273 | 271,Frigga,Female,blue,-,White,180.0,Marvel Comics,-,good,167.0 274 | 272,Galactus,Male,black,Cosmic Entity,Black,876.0,Marvel Comics,-,neutral,16.0 275 | 273,Gambit,Male,red,Mutant,Brown,185.0,Marvel Comics,-,good,81.0 276 | 274,Gamora,Female,yellow,Zen-Whoberian,Black,183.0,Marvel Comics,green,good,77.0 277 | 275,Garbage Man,Male,-,Mutant,-,-99.0,DC Comics,-,good,-99.0 278 | 276,Gary Bell,Male,-,Alpha,-,-99.0,SyFy,-,good,-99.0 279 | 277,General Zod,Male,black,Kryptonian,Black,-99.0,DC Comics,-,bad,-99.0 280 | 278,Genesis,Male,blue,-,Blond,185.0,Marvel Comics,-,good,86.0 281 | 279,Ghost Rider,Male,red,Demon,No Hair,188.0,Marvel Comics,-,good,99.0 282 | 280,Ghost Rider II,-,-,-,-,-99.0,Marvel Comics,-,good,-99.0 283 | 281,Giant-Man,Male,-,Human,-,-99.0,Marvel Comics,-,good,-99.0 284 | 282,Giant-Man II,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 285 | 283,Giganta,Female,green,-,Red,62.5,DC Comics,-,bad,630.0 286 | 284,Gladiator,Male,blue,Strontian,Blue,198.0,Marvel Comics,purple,neutral,268.0 287 | 285,Goblin Queen,Female,green,-,Red,168.0,Marvel Comics,-,bad,50.0 288 | 286,Godzilla,-,-,Kaiju,-,108.0,,grey,bad, 289 | 287,Gog,Male,-,-,-,-99.0,DC Comics,-,bad,-99.0 290 | 288,Goku,Male,-,Saiyan,-,175.0,Shueisha,-,good,62.0 291 | 289,Goliath,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 292 | 290,Goliath,Male,-,Human,-,-99.0,Marvel Comics,-,good,-99.0 293 | 291,Goliath,Male,-,Human,-,-99.0,Marvel Comics,-,good,-99.0 294 | 292,Goliath IV,Male,brown,-,Black,183.0,Marvel Comics,-,good,90.0 295 | 293,Gorilla Grodd,Male,yellow,Gorilla,Black,198.0,DC Comics,-,bad,270.0 296 | 294,Granny Goodness,Female,blue,-,White,178.0,DC Comics,-,bad,115.0 297 | 295,Gravity,Male,blue,Human,Brown,178.0,Marvel Comics,-,good,79.0 298 | 296,Greedo,Male,purple,Rodian,-,170.0,George Lucas,green,bad,-99.0 299 | 297,Green Arrow,Male,green,Human,Blond,188.0,DC Comics,-,good,88.0 300 | 298,Green Goblin,Male,blue,Human,Auburn,180.0,Marvel Comics,-,bad,83.0 301 | 299,Green Goblin II,Male,blue,-,Auburn,178.0,Marvel Comics,-,bad,77.0 302 | 300,Green Goblin III,Male,-,-,-,183.0,Marvel Comics,-,good,88.0 303 | 301,Green Goblin IV,Male,green,-,Brown,178.0,Marvel Comics,-,good,79.0 304 | 302,Groot,Male,yellow,Flora Colossus,-,701.0,Marvel Comics,-,good,4.0 305 | 303,Guardian,Male,brown,Human,Black,-99.0,Marvel Comics,-,good,-99.0 306 | 304,Guy Gardner,Male,blue,Human-Vuldarian,Red,188.0,DC Comics,-,good,95.0 307 | 305,Hal Jordan,Male,brown,Human,Brown,188.0,DC Comics,-,good,90.0 308 | 306,Han Solo,Male,brown,Human,Brown,183.0,George Lucas,-,good,79.0 309 | 307,Hancock,Male,brown,Human,Black,188.0,Sony Pictures,-,good,-99.0 310 | 308,Harley Quinn,Female,blue,Human,Blond,170.0,DC Comics,-,bad,63.0 311 | 309,Harry Potter,Male,green,Human,Black,-99.0,J. K. Rowling,-,good,-99.0 312 | 310,Havok,Male,blue,Mutant,Blond,183.0,Marvel Comics,-,good,79.0 313 | 311,Hawk,Male,red,-,Brown,185.0,DC Comics,-,good,89.0 314 | 312,Hawkeye,Male,blue,Human,Blond,191.0,Marvel Comics,-,good,104.0 315 | 313,Hawkeye II,Female,blue,Human,Black,165.0,Marvel Comics,-,good,57.0 316 | 314,Hawkgirl,Female,green,-,Red,175.0,DC Comics,-,good,61.0 317 | 315,Hawkman,Male,blue,-,Brown,185.0,DC Comics,-,good,88.0 318 | 316,Hawkwoman,Female,green,-,Red,175.0,DC Comics,-,good,54.0 319 | 317,Hawkwoman II,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 320 | 318,Hawkwoman III,Female,blue,-,Red,170.0,DC Comics,-,good,65.0 321 | 319,Heat Wave,Male,blue,Human,No Hair,180.0,DC Comics,-,bad,81.0 322 | 320,Hela,Female,green,Asgardian,Black,213.0,Marvel Comics,-,bad,225.0 323 | 321,Hellboy,Male,gold,Demon,Black,259.0,Dark Horse Comics,-,good,158.0 324 | 322,Hellcat,Female,blue,Human,Red,173.0,Marvel Comics,-,good,61.0 325 | 323,Hellstorm,Male,red,-,Red,185.0,Marvel Comics,-,good,81.0 326 | 324,Hercules,Male,blue,Demi-God,Brown,196.0,Marvel Comics,-,good,146.0 327 | 325,Hiro Nakamura,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 328 | 326,Hit-Girl,Female,-,Human,-,-99.0,Icon Comics,-,good,-99.0 329 | 327,Hobgoblin,Male,blue,-,Grey,180.0,Marvel Comics,-,bad,83.0 330 | 328,Hollow,Female,blue,-,Red,170.0,Marvel Comics,-,good,-99.0 331 | 329,Hope Summers,Female,green,-,Red,168.0,Marvel Comics,-,good,48.0 332 | 330,Howard the Duck,Male,brown,-,Yellow,79.0,Marvel Comics,-,good,18.0 333 | 331,Hulk,Male,green,Human / Radiation,Green,244.0,Marvel Comics,green,good,630.0 334 | 332,Human Torch,Male,blue,Human / Radiation,Blond,178.0,Marvel Comics,-,good,77.0 335 | 333,Huntress,Female,blue,-,Black,180.0,DC Comics,-,good,59.0 336 | 334,Husk,Female,blue,Mutant,Blond,170.0,Marvel Comics,-,good,58.0 337 | 335,Hybrid,Male,brown,Symbiote,Black,175.0,Marvel Comics,-,good,77.0 338 | 336,Hydro-Man,Male,brown,-,Brown,188.0,Marvel Comics,-,bad,119.0 339 | 337,Hyperion,Male,blue,Eternal,Red,183.0,Marvel Comics,-,good,207.0 340 | 338,Iceman,Male,brown,Mutant,Brown,173.0,Marvel Comics,-,good,65.0 341 | 339,Impulse,Male,yellow,Human,Auburn,170.0,DC Comics,-,good,65.0 342 | 340,Indiana Jones,Male,-,Human,-,183.0,George Lucas,-,good,79.0 343 | 341,Indigo,Female,-,Alien,Purple,-99.0,DC Comics,-,neutral,-99.0 344 | 342,Ink,Male,blue,Mutant,No Hair,180.0,Marvel Comics,-,good,81.0 345 | 343,Invisible Woman,Female,blue,Human / Radiation,Blond,168.0,Marvel Comics,-,good,54.0 346 | 344,Iron Fist,Male,blue,Human,Blond,180.0,Marvel Comics,-,good,79.0 347 | 345,Iron Man,Male,blue,Human,Black,198.0,Marvel Comics,-,good,191.0 348 | 346,Iron Monger,Male,blue,-,No Hair,-99.0,Marvel Comics,-,bad,2.0 349 | 347,Isis,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 350 | 348,Jack Bauer,Male,-,-,-,-99.0,,-,good,-99.0 351 | 349,Jack of Hearts,Male,blue / white,Human,Brown,155.0,Marvel Comics,-,good,79.0 352 | 350,Jack-Jack,Male,blue,Human,Brown,71.0,Dark Horse Comics,-,good,14.0 353 | 351,James Bond,Male,blue,Human,Blond,183.0,Titan Books,-,good,-99.0 354 | 352,James T. Kirk,Male,hazel,Human,Brown,178.0,Star Trek,-,good,77.0 355 | 353,Jar Jar Binks,Male,yellow,Gungan,-,193.0,George Lucas,orange / white,good,-99.0 356 | 354,Jason Bourne,Male,-,Human,-,-99.0,,-,good,-99.0 357 | 355,Jean Grey,Female,green,Mutant,Red,168.0,Marvel Comics,-,good,52.0 358 | 356,Jean-Luc Picard,Male,-,Human,-,-99.0,Star Trek,-,good,-99.0 359 | 357,Jennifer Kale,Female,blue,-,Blond,168.0,Marvel Comics,-,good,55.0 360 | 358,Jesse Quick,Female,-,Human,-,-99.0,DC Comics,-,good,-99.0 361 | 359,Jessica Cruz,Female,green,Human,Brown,-99.0,DC Comics,-,good,-99.0 362 | 360,Jessica Jones,Female,brown,Human,Brown,170.0,Marvel Comics,-,good,56.0 363 | 361,Jessica Sanders,Female,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 364 | 362,Jigsaw,Male,blue,-,Black,188.0,Marvel Comics,-,bad,113.0 365 | 363,Jim Powell,Male,-,-,-,-99.0,ABC Studios,-,good,-99.0 366 | 364,JJ Powell,Male,-,-,-,-99.0,ABC Studios,-,good,-99.0 367 | 365,Johann Krauss,Male,-,-,-,-99.0,Dark Horse Comics,-,good,-99.0 368 | 366,John Constantine,Male,blue,Human,Blond,183.0,DC Comics,-,good,-99.0 369 | 367,John Stewart,Male,green,Human,Black,185.0,DC Comics,-,good,90.0 370 | 368,John Wraith,Male,brown,-,Black,183.0,Marvel Comics,-,good,88.0 371 | 369,Joker,Male,green,Human,Green,196.0,DC Comics,white,bad,86.0 372 | 370,Jolt,Female,blue,-,Black,165.0,Marvel Comics,-,good,49.0 373 | 371,Jubilee,Female,red,Mutant,Black,165.0,Marvel Comics,-,good,52.0 374 | 372,Judge Dredd,Male,-,Human,-,188.0,Rebellion,-,good,-99.0 375 | 373,Juggernaut,Male,blue,Human,Red,287.0,Marvel Comics,-,neutral,855.0 376 | 374,Junkpile,Male,-,Mutant,-,-99.0,Marvel Comics,-,bad,-99.0 377 | 375,Justice,Male,hazel,Human,Brown,178.0,Marvel Comics,-,good,81.0 378 | 376,Jyn Erso,Female,green,Human,Brown,-99.0,George Lucas,-,good,-99.0 379 | 377,K-2SO,Male,white,Android,No Hair,213.0,George Lucas,gray,good,-99.0 380 | 378,Kang,Male,brown,-,Brown,191.0,Marvel Comics,-,bad,104.0 381 | 379,Karate Kid,Male,brown,Human,Brown,173.0,DC Comics,-,good,72.0 382 | 380,Kathryn Janeway,Female,-,Human,-,-99.0,Star Trek,-,good,-99.0 383 | 381,Katniss Everdeen,Female,-,Human,-,-99.0,,-,good,-99.0 384 | 382,Kevin 11,Male,-,Human,Black,-99.0,DC Comics,-,good,-99.0 385 | 383,Kick-Ass,Male,blue,Human,Blond,-99.0,Icon Comics,-,good,-99.0 386 | 384,Kid Flash,Male,green,Human,Red,-99.0,DC Comics,-,good,-99.0 387 | 385,Kid Flash II,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 388 | 386,Killer Croc,Male,red,Metahuman,No Hair,244.0,DC Comics,green,bad,356.0 389 | 387,Killer Frost,Female,blue,Human,Blond,-99.0,DC Comics,blue,bad,-99.0 390 | 388,Kilowog,Male,red,Bolovaxian,No Hair,234.0,DC Comics,pink,good,324.0 391 | 389,King Kong,Male,yellow,Animal,Black,30.5,,-,good, 392 | 390,King Shark,Male,black,Animal,No Hair,-99.0,DC Comics,-,bad,-99.0 393 | 391,Kingpin,Male,blue,Human,No Hair,201.0,Marvel Comics,-,bad,203.0 394 | 392,Klaw,Male,red,Human,No Hair,188.0,Marvel Comics,red,bad,97.0 395 | 393,Kool-Aid Man,Male,black,-,No Hair,-99.0,,red,good,-99.0 396 | 394,Kraven II,Male,brown,Human,Black,191.0,Marvel Comics,-,bad,99.0 397 | 395,Kraven the Hunter,Male,brown,Human,Black,183.0,Marvel Comics,-,bad,106.0 398 | 396,Krypto,Male,blue,Kryptonian,White,64.0,DC Comics,-,good,18.0 399 | 397,Kyle Rayner,Male,green,Human,Black,180.0,DC Comics,-,good,79.0 400 | 398,Kylo Ren,Male,-,Human,-,-99.0,George Lucas,-,bad,-99.0 401 | 399,Lady Bullseye,Female,-,-,Black,-99.0,Marvel Comics,-,bad,-99.0 402 | 400,Lady Deathstrike,Female,brown,Cyborg,Black,175.0,Marvel Comics,-,bad,58.0 403 | 401,Leader,Male,green,-,No Hair,178.0,Marvel Comics,-,bad,63.0 404 | 402,Leech,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 405 | 403,Legion,Male,green / blue,Mutant,Black,175.0,Marvel Comics,-,good,59.0 406 | 404,Leonardo,Male,blue,Mutant,No Hair,-99.0,IDW Publishing,green,good,-99.0 407 | 405,Lex Luthor,Male,green,Human,No Hair,188.0,DC Comics,-,bad,95.0 408 | 406,Light Lass,Female,blue,-,Red,165.0,DC Comics,-,good,54.0 409 | 407,Lightning Lad,Male,blue,-,Red,155.0,DC Comics,-,good,65.0 410 | 408,Lightning Lord,Male,blue,-,Red,191.0,DC Comics,-,bad,95.0 411 | 409,Living Brain,-,yellow,-,-,198.0,Marvel Comics,-,bad,360.0 412 | 410,Living Tribunal,-,blue,Cosmic Entity,No Hair,-99.0,Marvel Comics,gold,neutral,-99.0 413 | 411,Liz Sherman,Female,-,-,-,-99.0,Dark Horse Comics,-,good,-99.0 414 | 412,Lizard,Male,red,Human,No Hair,203.0,Marvel Comics,-,bad,230.0 415 | 413,Lobo,Male,red,Czarnian,Black,229.0,DC Comics,blue-white,neutral,288.0 416 | 414,Loki,Male,green,Asgardian,Black,193.0,Marvel Comics,-,bad,236.0 417 | 415,Longshot,Male,blue,Human,Blond,188.0,Marvel Comics,-,good,36.0 418 | 416,Luke Cage,Male,brown,Human,Black,198.0,Marvel Comics,-,good,191.0 419 | 417,Luke Campbell,Male,-,-,-,-99.0,NBC - Heroes,-,bad,-99.0 420 | 418,Luke Skywalker,Male,blue,Human,Blond,168.0,George Lucas,-,good,77.0 421 | 419,Luna,Female,-,Human,-,-99.0,Marvel Comics,-,good,-99.0 422 | 420,Lyja,Female,green,-,Green,-99.0,Marvel Comics,-,good,-99.0 423 | 421,Mach-IV,Male,brown,-,Brown,180.0,Marvel Comics,-,bad,79.0 424 | 422,Machine Man,-,red,-,Black,183.0,Marvel Comics,-,good,383.0 425 | 423,Magneto,Male,grey,Mutant,White,188.0,Marvel Comics,-,bad,86.0 426 | 424,Magog,Male,blue,-,Blond,-99.0,DC Comics,-,good,-99.0 427 | 425,Magus,Male,black,-,-,183.0,Marvel Comics,-,bad,-99.0 428 | 426,Man of Miracles,-,blue,God / Eternal,Silver,-99.0,Image Comics,-,-,-99.0 429 | 427,Man-Bat,Male,brown,Human,Brown,-99.0,DC Comics,-,neutral,-99.0 430 | 428,Man-Thing,Male,red,-,No Hair,213.0,Marvel Comics,green,good,225.0 431 | 429,Man-Wolf,Male,brown,-,Auburn,188.0,Marvel Comics,-,good,90.0 432 | 430,Mandarin,Male,blue,Human,White,188.0,Marvel Comics,-,bad,97.0 433 | 431,Mantis,Female,green,Human-Kree,Black,168.0,Marvel Comics,green,good,52.0 434 | 432,Martian Manhunter,Male,red,Martian,No Hair,201.0,DC Comics,green,good,135.0 435 | 433,Marvel Girl,Female,green,-,Red,170.0,Marvel Comics,-,good,56.0 436 | 434,Master Brood,Male,blue,-,Black,183.0,Team Epic TV,-,good,81.0 437 | 435,Master Chief,Male,brown,Human / Altered,Brown,213.0,Microsoft,-,good,-99.0 438 | 436,Match,Male,black,-,Black,-99.0,DC Comics,-,bad,-99.0 439 | 437,Matt Parkman,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 440 | 438,Maverick,Male,blue,-,Black,193.0,Marvel Comics,-,good,110.0 441 | 439,Maxima,Female,brown,-,Red,180.0,DC Comics,-,bad,72.0 442 | 440,Maya Herrera,Female,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 443 | 441,Medusa,Female,green,Inhuman,Red,180.0,Marvel Comics,-,good,59.0 444 | 442,Meltdown,Female,blue,-,Blond,165.0,Marvel Comics,-,good,54.0 445 | 443,Mephisto,Male,white,-,Black,198.0,Marvel Comics,-,bad,140.0 446 | 444,Mera,Female,blue,Atlantean,Red,175.0,DC Comics,-,good,72.0 447 | 445,Metallo,Male,green,Android,Brown,196.0,DC Comics,-,bad,90.0 448 | 446,Metamorpho,Male,black,-,No Hair,185.0,DC Comics,-,good,90.0 449 | 447,Meteorite,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 450 | 448,Metron,Male,blue,-,Black,185.0,DC Comics,-,good,86.0 451 | 449,Micah Sanders,Male,brown,-,Black,-99.0,NBC - Heroes,-,good,-99.0 452 | 450,Michelangelo,Male,blue,Mutant,-,-99.0,IDW Publishing,green,good,-99.0 453 | 451,Micro Lad,Male,grey,-,Brown,183.0,DC Comics,-,good,77.0 454 | 452,Mimic,Male,brown,-,Brown,188.0,Marvel Comics,-,good,101.0 455 | 453,Minna Murray,Female,-,-,-,-99.0,Wildstorm,-,good,-99.0 456 | 454,Misfit,Female,blue,-,Red,-99.0,DC Comics,-,good,-99.0 457 | 455,Miss Martian,Female,red,-,Red,178.0,DC Comics,-,good,61.0 458 | 456,Mister Fantastic,Male,brown,Human / Radiation,Brown,185.0,Marvel Comics,-,good,81.0 459 | 457,Mister Freeze,Male,-,Human,-,183.0,DC Comics,-,bad,86.0 460 | 458,Mister Knife,Male,blue,Spartoi,Brown,-99.0,Marvel Comics,-,bad,-99.0 461 | 459,Mister Mxyzptlk,Male,-,God / Eternal,-,-99.0,DC Comics,-,bad,-99.0 462 | 460,Mister Sinister,Male,red,Human / Altered,Black,196.0,Marvel Comics,-,bad,128.0 463 | 461,Mister Zsasz,Male,blue,Human,Blond,-99.0,DC Comics,-,bad,-99.0 464 | 462,Mockingbird,Female,blue,Human,Blond,175.0,Marvel Comics,-,good,61.0 465 | 463,MODOK,Male,white,Cyborg,Brownn,366.0,Marvel Comics,-,bad,338.0 466 | 464,Mogo,Male,-,Planet,-,-99.0,DC Comics,-,good,-99.0 467 | 465,Mohinder Suresh,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 468 | 466,Moloch,Male,-,-,-,-99.0,DC Comics,-,bad,-99.0 469 | 467,Molten Man,Male,gold,-,Gold,196.0,Marvel Comics,-,bad,248.0 470 | 468,Monarch,Male,blue,-,White,193.0,DC Comics,-,good,90.0 471 | 469,Monica Dawson,Female,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 472 | 470,Moon Knight,Male,brown,Human,Brown,188.0,Marvel Comics,-,good,101.0 473 | 471,Moonstone,Female,blue,-,Blond,180.0,Marvel Comics,-,bad,59.0 474 | 472,Morlun,Male,white / red,-,Black,188.0,Marvel Comics,-,bad,79.0 475 | 473,Morph,Male,white,-,No Hair,178.0,Marvel Comics,-,good,79.0 476 | 474,Moses Magnum,Male,brown,-,Black,175.0,Marvel Comics,-,bad,72.0 477 | 475,Mr Immortal,Male,blue,Mutant,Blond,188.0,Marvel Comics,-,good,70.0 478 | 476,Mr Incredible,Male,blue,Human,Blond,201.0,Dark Horse Comics,-,good,158.0 479 | 477,Ms Marvel II,Female,blue,-,Red,173.0,Marvel Comics,-,good,61.0 480 | 478,Multiple Man,Male,blue,-,Brown,180.0,Marvel Comics,-,good,70.0 481 | 479,Mysterio,Male,brown,Human,No Hair,180.0,Marvel Comics,-,bad,79.0 482 | 480,Mystique,Female,yellow (without irises),Mutant,Red / Orange,178.0,Marvel Comics,blue,bad,54.0 483 | 481,Namor,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 484 | 482,Namor,Male,grey,Atlantean,Black,188.0,Marvel Comics,-,good,125.0 485 | 483,Namora,Female,blue,-,Blond,180.0,Marvel Comics,-,good,85.0 486 | 484,Namorita,Female,blue,-,Blond,168.0,Marvel Comics,-,good,101.0 487 | 485,Naruto Uzumaki,Male,-,Human,-,168.0,Shueisha,-,good,54.0 488 | 486,Nathan Petrelli,Male,brown,-,-,-99.0,NBC - Heroes,-,good,-99.0 489 | 487,Nebula,Female,blue,Luphomoid,No Hair,185.0,Marvel Comics,blue,bad,83.0 490 | 488,Negasonic Teenage Warhead,Female,black,Mutant,Black,-99.0,Marvel Comics,-,good,-99.0 491 | 489,Nick Fury,Male,brown,Human,Brown / White,185.0,Marvel Comics,-,good,99.0 492 | 490,Nightcrawler,Male,yellow,-,Indigo,175.0,Marvel Comics,-,good,88.0 493 | 491,Nightwing,Male,blue,Human,Black,178.0,DC Comics,-,good,79.0 494 | 492,Niki Sanders,Female,blue,-,Blond,-99.0,NBC - Heroes,-,good,-99.0 495 | 493,Nina Theroux,Female,-,Alpha,-,-99.0,SyFy,-,good,-99.0 496 | 494,Nite Owl II,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 497 | 495,Northstar,Male,blue,-,Black,180.0,Marvel Comics,-,good,83.0 498 | 496,Nova,Male,brown,Human,Brown,185.0,Marvel Comics,-,good,86.0 499 | 497,Nova,Female,white,Human / Cosmic,Red,163.0,Marvel Comics,gold,good,59.0 500 | 498,Odin,Male,blue,God / Eternal,White,206.0,Marvel Comics,-,good,293.0 501 | 499,Offspring,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 502 | 500,Omega Red,Male,red,-,Blond,211.0,Marvel Comics,-,bad,191.0 503 | 501,Omniscient,Male,brown,-,Black,180.0,Team Epic TV,-,good,65.0 504 | 502,One Punch Man,Male,-,Human,No Hair,175.0,Shueisha,-,good,69.0 505 | 503,One-Above-All,-,-,Cosmic Entity,-,-99.0,Marvel Comics,-,neutral,-99.0 506 | 504,Onslaught,Male,red,Mutant,No Hair,305.0,Marvel Comics,-,bad,405.0 507 | 505,Oracle,Female,blue,Human,Red,178.0,DC Comics,-,good,59.0 508 | 506,Osiris,Male,brown,-,Brown,-99.0,DC Comics,-,good,-99.0 509 | 507,Overtkill,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 510 | 508,Ozymandias,Male,blue,Human,Blond,-99.0,DC Comics,-,bad,-99.0 511 | 509,Parademon,-,-,Parademon,-,-99.0,DC Comics,-,bad,-99.0 512 | 510,Paul Blart,Male,-,Human,-,170.0,Sony Pictures,-,good,117.0 513 | 511,Penance,-,-,-,-,-99.0,Marvel Comics,-,good,-99.0 514 | 512,Penance I,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 515 | 513,Penance II,Male,blue,-,Blond,183.0,Marvel Comics,-,good,89.0 516 | 514,Penguin,Male,blue,Human,Black,157.0,DC Comics,-,bad,79.0 517 | 515,Peter Petrelli,Male,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 518 | 516,Phantom,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 519 | 517,Phantom Girl,Female,blue,-,Black,168.0,DC Comics,-,good,54.0 520 | 518,Phoenix,Female,green,Mutant,Red,168.0,Marvel Comics,-,good,52.0 521 | 519,Plantman,Male,green,Mutant,Grey,183.0,Marvel Comics,-,bad,87.0 522 | 520,Plastic Lad,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 523 | 521,Plastic Man,Male,blue,Human,Black,185.0,DC Comics,-,good,80.0 524 | 522,Plastique,Female,blue,-,Red,168.0,DC Comics,-,bad,55.0 525 | 523,Poison Ivy,Female,green,Human,Red,168.0,DC Comics,green,bad,50.0 526 | 524,Polaris,Female,green,Mutant,Green,170.0,Marvel Comics,-,good,52.0 527 | 525,Power Girl,Female,blue,Kryptonian,blond,180.0,DC Comics,-,good,81.0 528 | 526,Power Man,Male,-,Mutant,-,-99.0,Marvel Comics,-,good,-99.0 529 | 527,Predator,Male,-,Yautja,-,213.0,Dark Horse Comics,-,bad,234.0 530 | 528,Professor X,Male,blue,Mutant,No Hair,183.0,Marvel Comics,-,good,86.0 531 | 529,Professor Zoom,Male,blue,Human,Strawberry Blond,180.0,DC Comics,-,bad,81.0 532 | 530,Proto-Goblin,Male,green,-,Blond,-99.0,Marvel Comics,-,bad,-99.0 533 | 531,Psylocke,Female,blue,Mutant,Purple,180.0,Marvel Comics,-,good,70.0 534 | 532,Punisher,Male,blue,Human,Black,183.0,Marvel Comics,-,good,90.0 535 | 533,Purple Man,Male,purple,Human,Purple,180.0,Marvel Comics,purple,bad,74.0 536 | 534,Pyro,Male,blue,-,Blond,178.0,Marvel Comics,-,bad,68.0 537 | 535,Q,Male,-,God / Eternal,-,-99.0,Star Trek,-,-,-99.0 538 | 536,Quantum,Male,-,-,-,-99.0,HarperCollins,-,good,-99.0 539 | 537,Question,Male,blue,Human,Blond,188.0,DC Comics,-,good,83.0 540 | 538,Quicksilver,Male,blue,Mutant,Silver,183.0,Marvel Comics,-,good,79.0 541 | 539,Quill,Male,brown,-,Brown,163.0,Marvel Comics,-,good,56.0 542 | 540,Ra's Al Ghul,Male,green,Human,Grey,193.0,DC Comics,-,bad,97.0 543 | 541,Rachel Pirzad,Female,-,Alpha,-,-99.0,SyFy,-,good,-99.0 544 | 542,Rambo,Male,brown,Human,Black,178.0,,-,good,83.0 545 | 543,Raphael,Male,-,Mutant,No Hair,-99.0,IDW Publishing,green,good,-99.0 546 | 544,Raven,Female,indigo,Human,Black,165.0,DC Comics,-,neutral,50.0 547 | 545,Ray,Male,green,Human,Red,178.0,DC Comics,-,good,70.0 548 | 546,Razor-Fist II,Male,blue,-,No Hair,191.0,Marvel Comics,-,bad,117.0 549 | 547,Red Arrow,Male,green,Human,Red,180.0,DC Comics,-,good,83.0 550 | 548,Red Hood,Male,blue,Human,Black,183.0,DC Comics,-,neutral,81.0 551 | 549,Red Hulk,Male,yellow,Human / Radiation,Black,213.0,Marvel Comics,red,neutral,630.0 552 | 550,Red Mist,Male,-,-,-,-99.0,Icon Comics,-,bad,-99.0 553 | 551,Red Robin,Male,blue,Human,Black,165.0,DC Comics,-,good,56.0 554 | 552,Red Skull,Male,blue,-,No Hair,188.0,Marvel Comics,-,bad,108.0 555 | 553,Red Tornado,Male,green,Android,No Hair,185.0,DC Comics,-,good,146.0 556 | 554,Redeemer II,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 557 | 555,Redeemer III,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 558 | 556,Renata Soliz,Female,-,-,-,-99.0,HarperCollins,-,good,-99.0 559 | 557,Rey,Female,hazel,Human,Brown,297.0,George Lucas,-,good,-99.0 560 | 558,Rhino,Male,brown,Human / Radiation,Brown,196.0,Marvel Comics,-,bad,320.0 561 | 559,Rick Flag,Male,blue,-,Brown,185.0,DC Comics,-,bad,85.0 562 | 560,Riddler,Male,-,-,-,-99.0,DC Comics,-,bad,-99.0 563 | 561,Rip Hunter,Male,blue,Human,Blond,-99.0,DC Comics,-,good,-99.0 564 | 562,Ripcord,Female,green,-,Black,180.0,Marvel Comics,-,good,72.0 565 | 563,Robin,Male,blue,Human,Black,178.0,DC Comics,-,good,79.0 566 | 564,Robin II,Male,blue,Human,Red,183.0,DC Comics,-,good,101.0 567 | 565,Robin III,Male,blue,Human,Black,165.0,DC Comics,-,good,56.0 568 | 566,Robin V,Male,blue,Human,Black,137.0,DC Comics,-,good,38.0 569 | 567,Robin VI,Female,green,Human,Red,-99.0,DC Comics,-,neutral,-99.0 570 | 568,Rocket Raccoon,Male,brown,Animal,Brown,122.0,Marvel Comics,-,good,25.0 571 | 569,Rogue,Female,green,-,Brown / White,173.0,Marvel Comics,-,good,54.0 572 | 570,Ronin,Male,blue,Human,Blond,191.0,Marvel Comics,-,good,104.0 573 | 571,Rorschach,Male,blue,Human,Red,168.0,DC Comics,-,good,63.0 574 | 572,Sabretooth,Male,amber,Mutant,Blond,198.0,Marvel Comics,-,bad,171.0 575 | 573,Sage,Female,blue,-,Black,170.0,Marvel Comics,-,good,61.0 576 | 574,Sandman,Male,brown,Human,Brown,185.0,Marvel Comics,-,neutral,203.0 577 | 575,Sasquatch,Male,red,-,Orange,305.0,Marvel Comics,-,good,900.0 578 | 576,Sauron,Male,-,Maiar,-,279.0,J. R. R. Tolkien,-,bad,-99.0 579 | 577,Savage Dragon,Male,-,-,-,-99.0,Image Comics,-,good,-99.0 580 | 578,Scarecrow,Male,blue,Human,Brown,183.0,DC Comics,-,bad,63.0 581 | 579,Scarlet Spider,Male,blue,Human,Blond,178.0,Marvel Comics,-,good,74.0 582 | 580,Scarlet Spider II,Male,brown,Clone,Brown,193.0,Marvel Comics,-,good,113.0 583 | 581,Scarlet Witch,Female,blue,Mutant,Brown,170.0,Marvel Comics,-,bad,59.0 584 | 582,Scorpia,Female,green,-,Red,-99.0,Marvel Comics,-,bad,-99.0 585 | 583,Scorpion,Male,brown,Human,Brown,211.0,Marvel Comics,-,bad,310.0 586 | 584,Sebastian Shaw,Male,-,Mutant,-,-99.0,Marvel Comics,-,bad,-99.0 587 | 585,Sentry,Male,blue,Mutant,Blond,188.0,Marvel Comics,-,neutral,87.0 588 | 586,Shadow King,-,red,-,-,185.0,Marvel Comics,-,good,149.0 589 | 587,Shadow Lass,Female,black,Talokite,Black,173.0,DC Comics,blue,good,54.0 590 | 588,Shadowcat,Female,hazel,Mutant,Brown,168.0,Marvel Comics,-,good,50.0 591 | 589,Shang-Chi,Male,brown,Human,Black,178.0,Marvel Comics,-,good,79.0 592 | 590,Shatterstar,Male,brown,-,Red,191.0,Marvel Comics,-,good,88.0 593 | 591,She-Hulk,Female,green,Human,Green,201.0,Marvel Comics,-,good,315.0 594 | 592,She-Thing,Female,blue,Human / Radiation,No Hair,183.0,Marvel Comics,-,good,153.0 595 | 593,Shocker,Male,brown,Human,Brown,175.0,Marvel Comics,-,bad,79.0 596 | 594,Shriek,Female,yellow / blue,-,Black,173.0,Marvel Comics,-,good,52.0 597 | 595,Shrinking Violet,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 598 | 596,Sif,Female,blue,Asgardian,Black,188.0,Marvel Comics,-,good,191.0 599 | 597,Silk,Female,brown,Human,Black,-99.0,Marvel Comics,-,good,-99.0 600 | 598,Silk Spectre,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 601 | 599,Silk Spectre II,Female,-,-,-,-99.0,DC Comics,-,good,-99.0 602 | 600,Silver Surfer,Male,white,Alien,No Hair,193.0,Marvel Comics,silver,good,101.0 603 | 601,Silverclaw,Female,brown,-,Black,157.0,Marvel Comics,-,good,50.0 604 | 602,Simon Baz,Male,bown,Human,Black,-99.0,DC Comics,-,good,-99.0 605 | 603,Sinestro,Male,black,Korugaran,Black,201.0,DC Comics,red,neutral,92.0 606 | 604,Siren,Female,blue,Atlantean,Purple,175.0,DC Comics,-,bad,72.0 607 | 605,Siren II,Female,black,-,-,-99.0,DC Comics,-,bad,-99.0 608 | 606,Siryn,Female,blue,-,Strawberry Blond,168.0,Marvel Comics,-,bad,52.0 609 | 607,Skaar,Male,green,-,Black,198.0,Marvel Comics,-,good,180.0 610 | 608,Snake-Eyes,Male,-,Animal,-,-99.0,Marvel Comics,-,bad,-99.0 611 | 609,Snowbird,Female,white,-,Blond,178.0,Marvel Comics,-,good,49.0 612 | 610,Sobek,Male,white,-,No Hair,-99.0,DC Comics,-,good,-99.0 613 | 611,Solomon Grundy,Male,black,Zombie,White,279.0,DC Comics,-,bad,437.0 614 | 612,Songbird,Female,green,-,Red / White,165.0,Marvel Comics,-,good,65.0 615 | 613,Space Ghost,Male,-,Human,-,188.0,DC Comics,-,good,113.0 616 | 614,Spawn,Male,brown,Demon,Black,211.0,Image Comics,-,good,405.0 617 | 615,Spectre,Male,white,God / Eternal,No Hair,-99.0,DC Comics,white,good,-99.0 618 | 616,Speedball,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 619 | 617,Speedy,Male,-,Human,-,-99.0,DC Comics,-,good,-99.0 620 | 618,Speedy,Female,green,Human,Brown,-99.0,DC Comics,-,good,-99.0 621 | 619,Spider-Carnage,Male,-,Symbiote,-,-99.0,Marvel Comics,-,bad,-99.0 622 | 620,Spider-Girl,Female,blue,Human,Brown,170.0,Marvel Comics,-,good,54.0 623 | 621,Spider-Gwen,Female,blue,Human,Blond,165.0,Marvel Comics,-,good,56.0 624 | 622,Spider-Man,Male,hazel,Human,Brown,178.0,Marvel Comics,-,good,74.0 625 | 623,Spider-Man,-,red,Human,Brown,178.0,Marvel Comics,-,good,77.0 626 | 624,Spider-Man,Male,brown,Human,Black,157.0,Marvel Comics,-,good,56.0 627 | 625,Spider-Woman,Female,green,Human,Black,178.0,Marvel Comics,-,good,59.0 628 | 626,Spider-Woman II,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 629 | 627,Spider-Woman III,Female,brown,-,Brown,173.0,Marvel Comics,-,good,55.0 630 | 628,Spider-Woman IV,Female,red,-,White,178.0,Marvel Comics,-,bad,58.0 631 | 629,Spock,Male,brown,Human-Vulcan,Black,185.0,Star Trek,-,good,81.0 632 | 630,Spyke,Male,brown,Mutant,Blond,183.0,Marvel Comics,-,good,83.0 633 | 631,Stacy X,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 634 | 632,Star-Lord,Male,blue,Human-Spartoi,Blond,188.0,Marvel Comics,-,good,79.0 635 | 633,Stardust,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 636 | 634,Starfire,Female,green,Tamaranean,Auburn,193.0,DC Comics,orange,good,71.0 637 | 635,Stargirl,Female,blue,Human,Blond,165.0,DC Comics,-,good,62.0 638 | 636,Static,Male,brown,Mutant,Black,170.0,DC Comics,-,good,63.0 639 | 637,Steel,Male,brown,-,No Hair,201.0,DC Comics,-,good,131.0 640 | 638,Stephanie Powell,Female,-,-,Blond,-99.0,ABC Studios,-,good,-99.0 641 | 639,Steppenwolf,Male,red,New God,Black,183.0,DC Comics,white,bad,91.0 642 | 640,Storm,Female,blue,Mutant,White,180.0,Marvel Comics,-,good,57.0 643 | 641,Stormtrooper,Male,-,Human,-,183.0,George Lucas,-,bad,-99.0 644 | 642,Sunspot,Male,brown,Mutant,black,173.0,Marvel Comics,-,good,77.0 645 | 643,Superboy,Male,blue,-,Black,170.0,DC Comics,-,good,68.0 646 | 644,Superboy-Prime,Male,blue,Kryptonian,Black / Blue,180.0,DC Comics,-,bad,77.0 647 | 645,Supergirl,Female,blue,Kryptonian,Blond,165.0,DC Comics,-,good,54.0 648 | 646,Superman,Male,blue,Kryptonian,Black,191.0,DC Comics,-,good,101.0 649 | 647,Swamp Thing,Male,red,God / Eternal,No Hair,-99.0,DC Comics,green,bad,-99.0 650 | 648,Swarm,Male,yellow,Mutant,No Hair,196.0,Marvel Comics,yellow,bad,47.0 651 | 649,Sylar,Male,-,-,-,-99.0,NBC - Heroes,-,bad,-99.0 652 | 650,Synch,Male,brown,-,Black,180.0,Marvel Comics,-,good,74.0 653 | 651,T-1000,Male,-,Android,-,183.0,Dark Horse Comics,silver,bad,146.0 654 | 652,T-800,Male,red,Cyborg,-,-99.0,Dark Horse Comics,-,bad,176.0 655 | 653,T-850,Male,red,Cyborg,-,-99.0,Dark Horse Comics,-,bad,198.0 656 | 654,T-X,Female,-,Cyborg,-,-99.0,Dark Horse Comics,silver,bad,149.0 657 | 655,Taskmaster,Male,brown,Human,Brown,188.0,Marvel Comics,-,bad,99.0 658 | 656,Tempest,Female,brown,-,Black,163.0,Marvel Comics,-,good,54.0 659 | 657,Thanos,Male,red,Eternal,No Hair,201.0,Marvel Comics,purple,bad,443.0 660 | 658,The Cape,Male,-,-,-,-99.0,,-,good,-99.0 661 | 659,The Comedian,Male,brown,Human,Black,188.0,DC Comics,-,neutral,101.0 662 | 660,Thing,Male,blue,Human / Radiation,No Hair,183.0,Marvel Comics,-,good,225.0 663 | 661,Thor,Male,blue,Asgardian,Blond,198.0,Marvel Comics,-,good,288.0 664 | 662,Thor Girl,Female,blue,Asgardian,Blond,175.0,Marvel Comics,-,good,143.0 665 | 663,Thunderbird,Male,brown,-,Black,185.0,Marvel Comics,-,good,101.0 666 | 664,Thunderbird II,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 667 | 665,Thunderbird III,Male,brown,-,Black,175.0,Marvel Comics,-,good,74.0 668 | 666,Thunderstrike,Male,blue,-,Blond,198.0,Marvel Comics,-,good,288.0 669 | 667,Thundra,Female,green,-,Red,218.0,Marvel Comics,-,good,158.0 670 | 668,Tiger Shark,Male,grey,Human,No Hair,185.0,Marvel Comics,grey,bad,203.0 671 | 669,Tigra,Female,green,-,Auburn,178.0,Marvel Comics,-,good,81.0 672 | 670,Tinkerer,Male,brown,-,White,163.0,Marvel Comics,-,bad,54.0 673 | 671,Titan,Male,-,-,-,-99.0,HarperCollins,-,good,-99.0 674 | 672,Toad,Male,black,Mutant,Brown,175.0,Marvel Comics,green,neutral,76.0 675 | 673,Toxin,Male,blue,Symbiote,Brown,188.0,Marvel Comics,-,good,97.0 676 | 674,Toxin,Male,black,Symbiote,Blond,191.0,Marvel Comics,-,good,117.0 677 | 675,Tracy Strauss,Female,-,-,-,-99.0,NBC - Heroes,-,good,-99.0 678 | 676,Trickster,Male,blue,Human,Blond,183.0,DC Comics,-,-,81.0 679 | 677,Trigon,Male,yellow,God / Eternal,Black,-99.0,DC Comics,red,bad,-99.0 680 | 678,Triplicate Girl,Female,purple,-,Brown,168.0,DC Comics,-,good,59.0 681 | 679,Triton,Male,green,Inhuman,No Hair,188.0,Marvel Comics,green,good,86.0 682 | 680,Two-Face,Male,-,-,-,183.0,DC Comics,-,bad,82.0 683 | 681,Ultragirl,Female,blue,-,Blond,168.0,Marvel Comics,-,good,105.0 684 | 682,Ultron,Male,red,Android,-,206.0,Marvel Comics,silver,bad,331.0 685 | 683,Utgard-Loki,Male,blue,Frost Giant,White,15.2,Marvel Comics,-,bad,58.0 686 | 684,Vagabond,Female,blue,-,Strawberry Blond,168.0,Marvel Comics,-,good,54.0 687 | 685,Valerie Hart,Female,hazel,-,Black,175.0,Team Epic TV,-,good,56.0 688 | 686,Valkyrie,Female,blue,-,Blond,191.0,Marvel Comics,-,good,214.0 689 | 687,Vanisher,Male,green,-,No Hair,165.0,Marvel Comics,-,bad,79.0 690 | 688,Vegeta,Male,-,Saiyan,Black,168.0,Shueisha,-,bad,73.0 691 | 689,Venom,Male,blue,Symbiote,Strawberry Blond,191.0,Marvel Comics,-,bad,117.0 692 | 690,Venom II,Male,brown,-,Black,175.0,Marvel Comics,-,bad,50.0 693 | 691,Venom III,Male,brown,Symbiote,Brown,229.0,Marvel Comics,-,bad,334.0 694 | 692,Venompool,Male,-,Symbiote,-,226.0,Marvel Comics,-,-,-99.0 695 | 693,Vertigo II,Female,blue,-,Silver,168.0,Marvel Comics,-,good,52.0 696 | 694,Vibe,Male,brown,Human,Black,178.0,DC Comics,-,good,71.0 697 | 695,Vindicator,Female,green,Human,Red,165.0,Marvel Comics,-,good,54.0 698 | 696,Vindicator,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 699 | 697,Violator,Male,-,-,-,-99.0,Image Comics,-,bad,-99.0 700 | 698,Violet Parr,Female,violet,Human,Black,137.0,Dark Horse Comics,-,good,41.0 701 | 699,Vision,Male,gold,Android,No Hair,191.0,Marvel Comics,red,good,135.0 702 | 700,Vision II,-,red,-,No Hair,191.0,Marvel Comics,-,good,135.0 703 | 701,Vixen,Female,amber,Human,Black,175.0,DC Comics,-,good,63.0 704 | 702,Vulcan,Male,black,-,Black,-99.0,Marvel Comics,-,good,-99.0 705 | 703,Vulture,Male,brown,Human,No Hair,180.0,Marvel Comics,-,bad,79.0 706 | 704,Walrus,Male,blue,Human,Black,183.0,Marvel Comics,-,bad,162.0 707 | 705,War Machine,Male,brown,Human,Brown,185.0,Marvel Comics,-,good,95.0 708 | 706,Warbird,Female,blue,-,Blond,180.0,Marvel Comics,-,good,54.0 709 | 707,Warlock,Male,red,-,Blond,188.0,Marvel Comics,-,good,108.0 710 | 708,Warp,Male,brown,-,Black,173.0,DC Comics,-,bad,67.0 711 | 709,Warpath,Male,brown,Mutant,Black,218.0,Marvel Comics,-,good,158.0 712 | 710,Wasp,Female,blue,Human,Auburn,163.0,Marvel Comics,-,good,50.0 713 | 711,Watcher,Male,-,-,-,-99.0,Marvel Comics,-,good,-99.0 714 | 712,Weapon XI,Male,-,-,-,-99.0,Marvel Comics,-,bad,-99.0 715 | 713,White Canary,Female,brown,Human,Black,-99.0,DC Comics,-,bad,-99.0 716 | 714,White Queen,Female,blue,-,Blond,178.0,Marvel Comics,-,good,65.0 717 | 715,Wildfire,Male,-,-,-,-99.0,DC Comics,-,good,-99.0 718 | 716,Winter Soldier,Male,brown,Human,Brown,175.0,Marvel Comics,-,good,117.0 719 | 717,Wiz Kid,-,brown,-,Black,140.0,Marvel Comics,-,good,39.0 720 | 718,Wolfsbane,Female,green,-,Auburn,366.0,Marvel Comics,-,good,473.0 721 | 719,Wolverine,Male,blue,Mutant,Black,160.0,Marvel Comics,-,good,135.0 722 | 720,Wonder Girl,Female,blue,Demi-God,Blond,165.0,DC Comics,-,good,51.0 723 | 721,Wonder Man,Male,red,-,Black,188.0,Marvel Comics,-,good,171.0 724 | 722,Wonder Woman,Female,blue,Amazon,Black,183.0,DC Comics,-,good,74.0 725 | 723,Wondra,Female,-,-,-,-99.0,Marvel Comics,-,good,-99.0 726 | 724,Wyatt Wingfoot,Male,brown,-,Black,196.0,Marvel Comics,-,good,117.0 727 | 725,X-23,Female,green,Mutant / Clone,Black,155.0,Marvel Comics,-,good,50.0 728 | 726,X-Man,Male,blue,-,Brown,175.0,Marvel Comics,-,good,61.0 729 | 727,Yellow Claw,Male,blue,-,No Hair,188.0,Marvel Comics,-,bad,95.0 730 | 728,Yellowjacket,Male,blue,Human,Blond,183.0,Marvel Comics,-,good,83.0 731 | 729,Yellowjacket II,Female,blue,Human,Strawberry Blond,165.0,Marvel Comics,-,good,52.0 732 | 730,Ymir,Male,white,Frost Giant,No Hair,304.8,Marvel Comics,white,good,-99.0 733 | 731,Yoda,Male,brown,Yoda's species,White,66.0,George Lucas,green,good,17.0 734 | 732,Zatanna,Female,blue,Human,Black,170.0,DC Comics,-,good,57.0 735 | 733,Zoom,Male,red,-,Brown,185.0,DC Comics,-,bad,81.0 736 | -------------------------------------------------------------------------------- /iris.csv: -------------------------------------------------------------------------------- 1 | SepalLength,SepalWidth,PetalLength,PetalWidth,Name 2 | 5.1,3.5,1.4,0.2,Iris-setosa 3 | 4.9,3.0,1.4,0.2,Iris-setosa 4 | 4.7,3.2,1.3,0.2,Iris-setosa 5 | 4.6,3.1,1.5,0.2,Iris-setosa 6 | 5.0,3.6,1.4,0.2,Iris-setosa 7 | 5.4,3.9,1.7,0.4,Iris-setosa 8 | 4.6,3.4,1.4,0.3,Iris-setosa 9 | 5.0,3.4,1.5,0.2,Iris-setosa 10 | 4.4,2.9,1.4,0.2,Iris-setosa 11 | 4.9,3.1,1.5,0.1,Iris-setosa 12 | 5.4,3.7,1.5,0.2,Iris-setosa 13 | 4.8,3.4,1.6,0.2,Iris-setosa 14 | 4.8,3.0,1.4,0.1,Iris-setosa 15 | 4.3,3.0,1.1,0.1,Iris-setosa 16 | 5.8,4.0,1.2,0.2,Iris-setosa 17 | 5.7,4.4,1.5,0.4,Iris-setosa 18 | 5.4,3.9,1.3,0.4,Iris-setosa 19 | 5.1,3.5,1.4,0.3,Iris-setosa 20 | 5.7,3.8,1.7,0.3,Iris-setosa 21 | 5.1,3.8,1.5,0.3,Iris-setosa 22 | 5.4,3.4,1.7,0.2,Iris-setosa 23 | 5.1,3.7,1.5,0.4,Iris-setosa 24 | 4.6,3.6,1.0,0.2,Iris-setosa 25 | 5.1,3.3,1.7,0.5,Iris-setosa 26 | 4.8,3.4,1.9,0.2,Iris-setosa 27 | 5.0,3.0,1.6,0.2,Iris-setosa 28 | 5.0,3.4,1.6,0.4,Iris-setosa 29 | 5.2,3.5,1.5,0.2,Iris-setosa 30 | 5.2,3.4,1.4,0.2,Iris-setosa 31 | 4.7,3.2,1.6,0.2,Iris-setosa 32 | 4.8,3.1,1.6,0.2,Iris-setosa 33 | 5.4,3.4,1.5,0.4,Iris-setosa 34 | 5.2,4.1,1.5,0.1,Iris-setosa 35 | 5.5,4.2,1.4,0.2,Iris-setosa 36 | 4.9,3.1,1.5,0.1,Iris-setosa 37 | 5.0,3.2,1.2,0.2,Iris-setosa 38 | 5.5,3.5,1.3,0.2,Iris-setosa 39 | 4.9,3.1,1.5,0.1,Iris-setosa 40 | 4.4,3.0,1.3,0.2,Iris-setosa 41 | 5.1,3.4,1.5,0.2,Iris-setosa 42 | 5.0,3.5,1.3,0.3,Iris-setosa 43 | 4.5,2.3,1.3,0.3,Iris-setosa 44 | 4.4,3.2,1.3,0.2,Iris-setosa 45 | 5.0,3.5,1.6,0.6,Iris-setosa 46 | 5.1,3.8,1.9,0.4,Iris-setosa 47 | 4.8,3.0,1.4,0.3,Iris-setosa 48 | 5.1,3.8,1.6,0.2,Iris-setosa 49 | 4.6,3.2,1.4,0.2,Iris-setosa 50 | 5.3,3.7,1.5,0.2,Iris-setosa 51 | 5.0,3.3,1.4,0.2,Iris-setosa 52 | 7.0,3.2,4.7,1.4,Iris-versicolor 53 | 6.4,3.2,4.5,1.5,Iris-versicolor 54 | 6.9,3.1,4.9,1.5,Iris-versicolor 55 | 5.5,2.3,4.0,1.3,Iris-versicolor 56 | 6.5,2.8,4.6,1.5,Iris-versicolor 57 | 5.7,2.8,4.5,1.3,Iris-versicolor 58 | 6.3,3.3,4.7,1.6,Iris-versicolor 59 | 4.9,2.4,3.3,1.0,Iris-versicolor 60 | 6.6,2.9,4.6,1.3,Iris-versicolor 61 | 5.2,2.7,3.9,1.4,Iris-versicolor 62 | 5.0,2.0,3.5,1.0,Iris-versicolor 63 | 5.9,3.0,4.2,1.5,Iris-versicolor 64 | 6.0,2.2,4.0,1.0,Iris-versicolor 65 | 6.1,2.9,4.7,1.4,Iris-versicolor 66 | 5.6,2.9,3.6,1.3,Iris-versicolor 67 | 6.7,3.1,4.4,1.4,Iris-versicolor 68 | 5.6,3.0,4.5,1.5,Iris-versicolor 69 | 5.8,2.7,4.1,1.0,Iris-versicolor 70 | 6.2,2.2,4.5,1.5,Iris-versicolor 71 | 5.6,2.5,3.9,1.1,Iris-versicolor 72 | 5.9,3.2,4.8,1.8,Iris-versicolor 73 | 6.1,2.8,4.0,1.3,Iris-versicolor 74 | 6.3,2.5,4.9,1.5,Iris-versicolor 75 | 6.1,2.8,4.7,1.2,Iris-versicolor 76 | 6.4,2.9,4.3,1.3,Iris-versicolor 77 | 6.6,3.0,4.4,1.4,Iris-versicolor 78 | 6.8,2.8,4.8,1.4,Iris-versicolor 79 | 6.7,3.0,5.0,1.7,Iris-versicolor 80 | 6.0,2.9,4.5,1.5,Iris-versicolor 81 | 5.7,2.6,3.5,1.0,Iris-versicolor 82 | 5.5,2.4,3.8,1.1,Iris-versicolor 83 | 5.5,2.4,3.7,1.0,Iris-versicolor 84 | 5.8,2.7,3.9,1.2,Iris-versicolor 85 | 6.0,2.7,5.1,1.6,Iris-versicolor 86 | 5.4,3.0,4.5,1.5,Iris-versicolor 87 | 6.0,3.4,4.5,1.6,Iris-versicolor 88 | 6.7,3.1,4.7,1.5,Iris-versicolor 89 | 6.3,2.3,4.4,1.3,Iris-versicolor 90 | 5.6,3.0,4.1,1.3,Iris-versicolor 91 | 5.5,2.5,4.0,1.3,Iris-versicolor 92 | 5.5,2.6,4.4,1.2,Iris-versicolor 93 | 6.1,3.0,4.6,1.4,Iris-versicolor 94 | 5.8,2.6,4.0,1.2,Iris-versicolor 95 | 5.0,2.3,3.3,1.0,Iris-versicolor 96 | 5.6,2.7,4.2,1.3,Iris-versicolor 97 | 5.7,3.0,4.2,1.2,Iris-versicolor 98 | 5.7,2.9,4.2,1.3,Iris-versicolor 99 | 6.2,2.9,4.3,1.3,Iris-versicolor 100 | 5.1,2.5,3.0,1.1,Iris-versicolor 101 | 5.7,2.8,4.1,1.3,Iris-versicolor 102 | 6.3,3.3,6.0,2.5,Iris-virginica 103 | 5.8,2.7,5.1,1.9,Iris-virginica 104 | 7.1,3.0,5.9,2.1,Iris-virginica 105 | 6.3,2.9,5.6,1.8,Iris-virginica 106 | 6.5,3.0,5.8,2.2,Iris-virginica 107 | 7.6,3.0,6.6,2.1,Iris-virginica 108 | 4.9,2.5,4.5,1.7,Iris-virginica 109 | 7.3,2.9,6.3,1.8,Iris-virginica 110 | 6.7,2.5,5.8,1.8,Iris-virginica 111 | 7.2,3.6,6.1,2.5,Iris-virginica 112 | 6.5,3.2,5.1,2.0,Iris-virginica 113 | 6.4,2.7,5.3,1.9,Iris-virginica 114 | 6.8,3.0,5.5,2.1,Iris-virginica 115 | 5.7,2.5,5.0,2.0,Iris-virginica 116 | 5.8,2.8,5.1,2.4,Iris-virginica 117 | 6.4,3.2,5.3,2.3,Iris-virginica 118 | 6.5,3.0,5.5,1.8,Iris-virginica 119 | 7.7,3.8,6.7,2.2,Iris-virginica 120 | 7.7,2.6,6.9,2.3,Iris-virginica 121 | 6.0,2.2,5.0,1.5,Iris-virginica 122 | 6.9,3.2,5.7,2.3,Iris-virginica 123 | 5.6,2.8,4.9,2.0,Iris-virginica 124 | 7.7,2.8,6.7,2.0,Iris-virginica 125 | 6.3,2.7,4.9,1.8,Iris-virginica 126 | 6.7,3.3,5.7,2.1,Iris-virginica 127 | 7.2,3.2,6.0,1.8,Iris-virginica 128 | 6.2,2.8,4.8,1.8,Iris-virginica 129 | 6.1,3.0,4.9,1.8,Iris-virginica 130 | 6.4,2.8,5.6,2.1,Iris-virginica 131 | 7.2,3.0,5.8,1.6,Iris-virginica 132 | 7.4,2.8,6.1,1.9,Iris-virginica 133 | 7.9,3.8,6.4,2.0,Iris-virginica 134 | 6.4,2.8,5.6,2.2,Iris-virginica 135 | 6.3,2.8,5.1,1.5,Iris-virginica 136 | 6.1,2.6,5.6,1.4,Iris-virginica 137 | 7.7,3.0,6.1,2.3,Iris-virginica 138 | 6.3,3.4,5.6,2.4,Iris-virginica 139 | 6.4,3.1,5.5,1.8,Iris-virginica 140 | 6.0,3.0,4.8,1.8,Iris-virginica 141 | 6.9,3.1,5.4,2.1,Iris-virginica 142 | 6.7,3.1,5.6,2.4,Iris-virginica 143 | 6.9,3.1,5.1,2.3,Iris-virginica 144 | 5.8,2.7,5.1,1.9,Iris-virginica 145 | 6.8,3.2,5.9,2.3,Iris-virginica 146 | 6.7,3.3,5.7,2.5,Iris-virginica 147 | 6.7,3.0,5.2,2.3,Iris-virginica 148 | 6.3,2.5,5.0,1.9,Iris-virginica 149 | 6.5,3.0,5.2,2.0,Iris-virginica 150 | 6.2,3.4,5.4,2.3,Iris-virginica 151 | 5.9,3.0,5.1,1.8,Iris-virginica --------------------------------------------------------------------------------