├── README.md ├── WorldBank.xlsx └── pr (1).ipynb /README.md: -------------------------------------------------------------------------------- 1 | # 🌍 Exploring Global Economic Trends with World Bank Data 📊 2 | 3 | This project explores long-term trends in global economic indicators using data from the [World Bank](https://data.worldbank.org/). The main focus is on **GDP** and **GDP per capita**, analyzed across different **income groups** over time. 4 | 5 | ## 🧠 Objective 6 | 7 | To analyze how economic indicators like GDP and GDP per capita have evolved across different income groups (low, lower-middle, upper-middle, and high income), using real-world time series data. 8 | 9 | ## 🔧 What I Did 10 | 11 | - 🔹 **Data Cleaning & Preprocessing** 12 | - Handled inconsistencies and missing values 13 | - Standardized column names and data types 14 | 15 | - 🔹 **Missing Value Treatment** 16 | - Applied **forward fill** and **backward fill** techniques to address missing data 17 | 18 | - 🔹 **Data Visualization** 19 | - Created clear and informative plots using **Matplotlib** to visualize: 20 | - Long-term trends in GDP by income group 21 | - Comparative changes in GDP per capita 22 | - Economic disparities over time 23 | 24 | ## 📈 Key Insights 25 | 26 | Simple visualizations can be incredibly powerful for storytelling. Watching the economic gap between income groups widen or narrow over time was both insightful and eye-opening. 27 | 28 | ## 💡 Takeaways 29 | 30 | Projects like this remind me why I enjoy working with data. Every dataset holds a story — you just have to uncover it. 31 | 32 | --- 33 | 34 | ## 🛠️ Tech Stack 35 | 36 | - **Python** 37 | - **Pandas** 38 | - **Matplotlib** 39 | - **Jupyter Notebook** 40 | 41 | --- 42 | 43 | ## 📁 Project Structure 44 | 45 | world-bank-economic-trends/ ├── data/ │ └── world_bank_data.csv ├── notebooks/ │ └── global_trends_analysis.ipynb ├── visualizations/ │ └── gdp_per_capita_by_income_group.png ├── README.md 46 | 47 | 48 | --- 49 | 50 | ## 🙌 Let's Connect 51 | 52 | Have you worked with similar datasets or done global economic analysis? I’d love to learn from your experience or get your feedback on how to improve this project. 53 | 54 | --- 55 | 56 | ## 📌 Hashtags 57 | 58 | `#DataScience` `#Python` `#WorldBankData` `#DataVisualization` `#Pandas` `#Matplotlib` `#LearningJourney` 59 | -------------------------------------------------------------------------------- /WorldBank.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Vardhan1160/Python_project/99080e90cc40a7984622737ba56395c7441c67d5/WorldBank.xlsx --------------------------------------------------------------------------------