├── .clang-format ├── .flake8 ├── .gitignore ├── .readthedocs.yaml ├── CITATION.cff ├── LICENSE ├── README.md ├── assets └── method.png ├── configs ├── common │ ├── coco_schedule.py │ ├── common_schedule.py │ ├── data │ │ ├── coco.py │ │ ├── coco_detr.py │ │ ├── constants.py │ │ └── custom.py │ ├── optim.py │ └── train.py └── hydra │ ├── slurm │ └── research.yaml │ └── train_args.yaml ├── convert_pth.py ├── demo ├── README.md ├── __init__.py ├── demo.py ├── mot_demo.py ├── mot_predictors.py └── predictors.py ├── detectron2 ├── .circleci │ ├── config.yml │ └── import-tests.sh ├── .clang-format ├── .flake8 ├── .github │ ├── CODE_OF_CONDUCT.md │ ├── CONTRIBUTING.md │ ├── Detectron2-Logo-Horz.svg │ ├── ISSUE_TEMPLATE.md │ ├── ISSUE_TEMPLATE │ │ ├── bugs.md │ │ ├── config.yml │ │ ├── documentation.md │ │ ├── feature-request.md │ │ └── unexpected-problems-bugs.md │ ├── pull_request_template.md │ └── workflows │ │ ├── check-template.yml │ │ ├── levenshtein.js │ │ ├── needs-reply.yml │ │ ├── remove-needs-reply.yml │ │ └── workflow.yml ├── .gitignore ├── GETTING_STARTED.md ├── INSTALL.md ├── LICENSE ├── MODEL_ZOO.md ├── README.md ├── configs │ ├── Base-RCNN-C4.yaml │ ├── Base-RCNN-DilatedC5.yaml │ ├── Base-RCNN-FPN.yaml │ ├── Base-RetinaNet.yaml │ ├── COCO-Detection │ │ ├── fast_rcnn_R_50_FPN_1x.yaml │ │ ├── faster_rcnn_R_101_C4_3x.yaml │ │ ├── faster_rcnn_R_101_DC5_3x.yaml │ │ ├── faster_rcnn_R_101_FPN_3x.yaml │ │ ├── faster_rcnn_R_50_C4_1x.yaml │ │ ├── faster_rcnn_R_50_C4_3x.yaml │ │ ├── faster_rcnn_R_50_DC5_1x.yaml │ │ ├── faster_rcnn_R_50_DC5_3x.yaml │ │ ├── faster_rcnn_R_50_FPN_1x.yaml │ │ ├── faster_rcnn_R_50_FPN_3x.yaml │ │ ├── faster_rcnn_X_101_32x8d_FPN_3x.yaml │ │ ├── fcos_R_50_FPN_1x.py │ │ ├── retinanet_R_101_FPN_3x.yaml │ │ ├── retinanet_R_50_FPN_1x.py │ │ ├── retinanet_R_50_FPN_1x.yaml │ │ ├── retinanet_R_50_FPN_3x.yaml │ │ ├── rpn_R_50_C4_1x.yaml │ │ └── rpn_R_50_FPN_1x.yaml │ ├── COCO-InstanceSegmentation │ │ ├── mask_rcnn_R_101_C4_3x.yaml │ │ ├── mask_rcnn_R_101_DC5_3x.yaml │ │ ├── mask_rcnn_R_101_FPN_3x.yaml │ │ ├── mask_rcnn_R_50_C4_1x.py │ │ ├── mask_rcnn_R_50_C4_1x.yaml │ │ ├── mask_rcnn_R_50_C4_3x.yaml │ │ ├── mask_rcnn_R_50_DC5_1x.yaml │ │ ├── mask_rcnn_R_50_DC5_3x.yaml │ │ ├── mask_rcnn_R_50_FPN_1x.py │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ ├── mask_rcnn_R_50_FPN_1x_giou.yaml │ │ ├── mask_rcnn_R_50_FPN_3x.yaml │ │ ├── mask_rcnn_X_101_32x8d_FPN_3x.yaml │ │ ├── mask_rcnn_regnetx_4gf_dds_fpn_1x.py │ │ └── mask_rcnn_regnety_4gf_dds_fpn_1x.py │ ├── COCO-Keypoints │ │ ├── Base-Keypoint-RCNN-FPN.yaml │ │ ├── keypoint_rcnn_R_101_FPN_3x.yaml │ │ ├── keypoint_rcnn_R_50_FPN_1x.py │ │ ├── keypoint_rcnn_R_50_FPN_1x.yaml │ │ ├── keypoint_rcnn_R_50_FPN_3x.yaml │ │ └── keypoint_rcnn_X_101_32x8d_FPN_3x.yaml │ ├── COCO-PanopticSegmentation │ │ ├── Base-Panoptic-FPN.yaml │ │ ├── panoptic_fpn_R_101_3x.yaml │ │ ├── panoptic_fpn_R_50_1x.py │ │ ├── panoptic_fpn_R_50_1x.yaml │ │ └── panoptic_fpn_R_50_3x.yaml │ ├── Cityscapes │ │ └── mask_rcnn_R_50_FPN.yaml │ ├── Detectron1-Comparisons │ │ ├── README.md │ │ ├── faster_rcnn_R_50_FPN_noaug_1x.yaml │ │ ├── keypoint_rcnn_R_50_FPN_1x.yaml │ │ └── mask_rcnn_R_50_FPN_noaug_1x.yaml │ ├── LVISv0.5-InstanceSegmentation │ │ ├── mask_rcnn_R_101_FPN_1x.yaml │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ └── mask_rcnn_X_101_32x8d_FPN_1x.yaml │ ├── LVISv1-InstanceSegmentation │ │ ├── mask_rcnn_R_101_FPN_1x.yaml │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ └── mask_rcnn_X_101_32x8d_FPN_1x.yaml │ ├── Misc │ │ ├── cascade_mask_rcnn_R_50_FPN_1x.yaml │ │ ├── cascade_mask_rcnn_R_50_FPN_3x.yaml │ │ ├── cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml │ │ ├── mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml │ │ ├── mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml │ │ ├── mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml │ │ ├── mask_rcnn_R_50_FPN_3x_gn.yaml │ │ ├── mask_rcnn_R_50_FPN_3x_syncbn.yaml │ │ ├── mmdet_mask_rcnn_R_50_FPN_1x.py │ │ ├── panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml │ │ ├── scratch_mask_rcnn_R_50_FPN_3x_gn.yaml │ │ ├── scratch_mask_rcnn_R_50_FPN_9x_gn.yaml │ │ ├── scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml │ │ ├── semantic_R_50_FPN_1x.yaml │ │ └── torchvision_imagenet_R_50.py │ ├── PascalVOC-Detection │ │ ├── faster_rcnn_R_50_C4.yaml │ │ └── faster_rcnn_R_50_FPN.yaml │ ├── common │ │ ├── README.md │ │ ├── coco_schedule.py │ │ ├── data │ │ │ ├── coco.py │ │ │ ├── coco_keypoint.py │ │ │ ├── coco_panoptic_separated.py │ │ │ └── constants.py │ │ ├── models │ │ │ ├── cascade_rcnn.py │ │ │ ├── fcos.py │ │ │ ├── keypoint_rcnn_fpn.py │ │ │ ├── mask_rcnn_c4.py │ │ │ ├── mask_rcnn_fpn.py │ │ │ ├── mask_rcnn_vitdet.py │ │ │ ├── panoptic_fpn.py │ │ │ └── retinanet.py │ │ ├── optim.py │ │ └── train.py │ ├── new_baselines │ │ ├── mask_rcnn_R_101_FPN_100ep_LSJ.py │ │ ├── mask_rcnn_R_101_FPN_200ep_LSJ.py │ │ ├── mask_rcnn_R_101_FPN_400ep_LSJ.py │ │ ├── mask_rcnn_R_50_FPN_100ep_LSJ.py │ │ ├── mask_rcnn_R_50_FPN_200ep_LSJ.py │ │ ├── mask_rcnn_R_50_FPN_400ep_LSJ.py │ │ ├── mask_rcnn_R_50_FPN_50ep_LSJ.py │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py │ │ ├── mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py │ │ ├── mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py │ │ └── mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py │ └── quick_schedules │ │ ├── README.md │ │ ├── cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml │ │ ├── cascade_mask_rcnn_R_50_FPN_instant_test.yaml │ │ ├── fast_rcnn_R_50_FPN_inference_acc_test.yaml │ │ ├── fast_rcnn_R_50_FPN_instant_test.yaml │ │ ├── keypoint_rcnn_R_50_FPN_inference_acc_test.yaml │ │ ├── keypoint_rcnn_R_50_FPN_instant_test.yaml │ │ ├── keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml │ │ ├── keypoint_rcnn_R_50_FPN_training_acc_test.yaml │ │ ├── mask_rcnn_R_50_C4_GCV_instant_test.yaml │ │ ├── mask_rcnn_R_50_C4_inference_acc_test.yaml │ │ ├── mask_rcnn_R_50_C4_instant_test.yaml │ │ ├── mask_rcnn_R_50_C4_training_acc_test.yaml │ │ ├── mask_rcnn_R_50_DC5_inference_acc_test.yaml │ │ ├── mask_rcnn_R_50_FPN_inference_acc_test.yaml │ │ ├── mask_rcnn_R_50_FPN_instant_test.yaml │ │ ├── mask_rcnn_R_50_FPN_pred_boxes_training_acc_test.yaml │ │ ├── mask_rcnn_R_50_FPN_training_acc_test.yaml │ │ ├── panoptic_fpn_R_50_inference_acc_test.yaml │ │ ├── panoptic_fpn_R_50_instant_test.yaml │ │ ├── panoptic_fpn_R_50_training_acc_test.yaml │ │ ├── retinanet_R_50_FPN_inference_acc_test.yaml │ │ ├── retinanet_R_50_FPN_instant_test.yaml │ │ ├── rpn_R_50_FPN_inference_acc_test.yaml │ │ ├── rpn_R_50_FPN_instant_test.yaml │ │ ├── semantic_R_50_FPN_inference_acc_test.yaml │ │ ├── semantic_R_50_FPN_instant_test.yaml │ │ └── semantic_R_50_FPN_training_acc_test.yaml ├── demo │ ├── README.md │ ├── demo.py │ └── predictor.py ├── detectron2 │ ├── .nfs00000002580b1e4a0000002d │ ├── GETTING_STARTED.md │ ├── INSTALL.md │ ├── LICENSE │ ├── MODEL_ZOO.md │ ├── README.md │ ├── __init__.py │ ├── checkpoint │ │ ├── __init__.py │ │ ├── c2_model_loading.py │ │ ├── catalog.py │ │ └── detection_checkpoint.py │ ├── config │ │ ├── __init__.py │ │ ├── compat.py │ │ ├── config.py │ │ ├── defaults.py │ │ ├── instantiate.py │ │ └── lazy.py │ ├── configs │ │ ├── Base-RCNN-C4.yaml │ │ ├── Base-RCNN-DilatedC5.yaml │ │ ├── Base-RCNN-FPN.yaml │ │ ├── Base-RetinaNet.yaml │ │ ├── COCO-Detection │ │ │ ├── fast_rcnn_R_50_FPN_1x.yaml │ │ │ ├── faster_rcnn_R_101_C4_3x.yaml │ │ │ ├── faster_rcnn_R_101_DC5_3x.yaml │ │ │ ├── faster_rcnn_R_101_FPN_3x.yaml │ │ │ ├── faster_rcnn_R_50_C4_1x.yaml │ │ │ ├── faster_rcnn_R_50_C4_3x.yaml │ │ │ ├── faster_rcnn_R_50_DC5_1x.yaml │ │ │ ├── faster_rcnn_R_50_DC5_3x.yaml │ │ │ ├── faster_rcnn_R_50_FPN_1x.yaml │ │ │ ├── faster_rcnn_R_50_FPN_3x.yaml │ │ │ ├── faster_rcnn_X_101_32x8d_FPN_3x.yaml │ │ │ ├── fcos_R_50_FPN_1x.py │ │ │ ├── retinanet_R_101_FPN_3x.yaml │ │ │ ├── retinanet_R_50_FPN_1x.py │ │ │ ├── retinanet_R_50_FPN_1x.yaml │ │ │ ├── retinanet_R_50_FPN_3x.yaml │ │ │ ├── rpn_R_50_C4_1x.yaml │ │ │ └── rpn_R_50_FPN_1x.yaml │ │ ├── COCO-InstanceSegmentation │ │ │ ├── mask_rcnn_R_101_C4_3x.yaml │ │ │ ├── mask_rcnn_R_101_DC5_3x.yaml │ │ │ ├── mask_rcnn_R_101_FPN_3x.yaml │ │ │ ├── mask_rcnn_R_50_C4_1x.py │ │ │ ├── mask_rcnn_R_50_C4_1x.yaml │ │ │ ├── mask_rcnn_R_50_C4_3x.yaml │ │ │ ├── mask_rcnn_R_50_DC5_1x.yaml │ │ │ ├── mask_rcnn_R_50_DC5_3x.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x.py │ │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x_giou.yaml │ │ │ ├── mask_rcnn_R_50_FPN_3x.yaml │ │ │ ├── mask_rcnn_X_101_32x8d_FPN_3x.yaml │ │ │ ├── mask_rcnn_regnetx_4gf_dds_fpn_1x.py │ │ │ └── mask_rcnn_regnety_4gf_dds_fpn_1x.py │ │ ├── COCO-Keypoints │ │ │ ├── Base-Keypoint-RCNN-FPN.yaml │ │ │ ├── keypoint_rcnn_R_101_FPN_3x.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_1x.py │ │ │ ├── keypoint_rcnn_R_50_FPN_1x.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_3x.yaml │ │ │ └── keypoint_rcnn_X_101_32x8d_FPN_3x.yaml │ │ ├── COCO-PanopticSegmentation │ │ │ ├── Base-Panoptic-FPN.yaml │ │ │ ├── panoptic_fpn_R_101_3x.yaml │ │ │ ├── panoptic_fpn_R_50_1x.py │ │ │ ├── panoptic_fpn_R_50_1x.yaml │ │ │ └── panoptic_fpn_R_50_3x.yaml │ │ ├── Cityscapes │ │ │ └── mask_rcnn_R_50_FPN.yaml │ │ ├── Detectron1-Comparisons │ │ │ ├── README.md │ │ │ ├── faster_rcnn_R_50_FPN_noaug_1x.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_1x.yaml │ │ │ └── mask_rcnn_R_50_FPN_noaug_1x.yaml │ │ ├── LVISv0.5-InstanceSegmentation │ │ │ ├── mask_rcnn_R_101_FPN_1x.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ │ └── mask_rcnn_X_101_32x8d_FPN_1x.yaml │ │ ├── LVISv1-InstanceSegmentation │ │ │ ├── mask_rcnn_R_101_FPN_1x.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x.yaml │ │ │ └── mask_rcnn_X_101_32x8d_FPN_1x.yaml │ │ ├── Misc │ │ │ ├── cascade_mask_rcnn_R_50_FPN_1x.yaml │ │ │ ├── cascade_mask_rcnn_R_50_FPN_3x.yaml │ │ │ ├── cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml │ │ │ ├── mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml │ │ │ ├── mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml │ │ │ ├── mask_rcnn_R_50_FPN_3x_gn.yaml │ │ │ ├── mask_rcnn_R_50_FPN_3x_syncbn.yaml │ │ │ ├── mmdet_mask_rcnn_R_50_FPN_1x.py │ │ │ ├── panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml │ │ │ ├── scratch_mask_rcnn_R_50_FPN_3x_gn.yaml │ │ │ ├── scratch_mask_rcnn_R_50_FPN_9x_gn.yaml │ │ │ ├── scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml │ │ │ ├── semantic_R_50_FPN_1x.yaml │ │ │ └── torchvision_imagenet_R_50.py │ │ ├── PascalVOC-Detection │ │ │ ├── faster_rcnn_R_50_C4.yaml │ │ │ └── faster_rcnn_R_50_FPN.yaml │ │ ├── common │ │ │ ├── README.md │ │ │ ├── coco_schedule.py │ │ │ ├── data │ │ │ │ ├── coco.py │ │ │ │ ├── coco_keypoint.py │ │ │ │ ├── coco_panoptic_separated.py │ │ │ │ └── constants.py │ │ │ ├── models │ │ │ │ ├── cascade_rcnn.py │ │ │ │ ├── fcos.py │ │ │ │ ├── keypoint_rcnn_fpn.py │ │ │ │ ├── mask_rcnn_c4.py │ │ │ │ ├── mask_rcnn_fpn.py │ │ │ │ ├── mask_rcnn_vitdet.py │ │ │ │ ├── panoptic_fpn.py │ │ │ │ └── retinanet.py │ │ │ ├── optim.py │ │ │ └── train.py │ │ ├── new_baselines │ │ │ ├── mask_rcnn_R_101_FPN_100ep_LSJ.py │ │ │ ├── mask_rcnn_R_101_FPN_200ep_LSJ.py │ │ │ ├── mask_rcnn_R_101_FPN_400ep_LSJ.py │ │ │ ├── mask_rcnn_R_50_FPN_100ep_LSJ.py │ │ │ ├── mask_rcnn_R_50_FPN_200ep_LSJ.py │ │ │ ├── mask_rcnn_R_50_FPN_400ep_LSJ.py │ │ │ ├── mask_rcnn_R_50_FPN_50ep_LSJ.py │ │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py │ │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py │ │ │ ├── mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py │ │ │ ├── mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py │ │ │ ├── mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py │ │ │ └── mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py │ │ └── quick_schedules │ │ │ ├── README.md │ │ │ ├── cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ ├── cascade_mask_rcnn_R_50_FPN_instant_test.yaml │ │ │ ├── fast_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ ├── fast_rcnn_R_50_FPN_instant_test.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_instant_test.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml │ │ │ ├── keypoint_rcnn_R_50_FPN_training_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_C4_GCV_instant_test.yaml │ │ │ ├── mask_rcnn_R_50_C4_inference_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_C4_instant_test.yaml │ │ │ ├── mask_rcnn_R_50_C4_training_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_DC5_inference_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_FPN_instant_test.yaml │ │ │ ├── mask_rcnn_R_50_FPN_pred_boxes_training_acc_test.yaml │ │ │ ├── mask_rcnn_R_50_FPN_training_acc_test.yaml │ │ │ ├── panoptic_fpn_R_50_inference_acc_test.yaml │ │ │ ├── panoptic_fpn_R_50_instant_test.yaml │ │ │ ├── panoptic_fpn_R_50_training_acc_test.yaml │ │ │ ├── retinanet_R_50_FPN_inference_acc_test.yaml │ │ │ ├── retinanet_R_50_FPN_instant_test.yaml │ │ │ ├── rpn_R_50_FPN_inference_acc_test.yaml │ │ │ ├── rpn_R_50_FPN_instant_test.yaml │ │ │ ├── semantic_R_50_FPN_inference_acc_test.yaml │ │ │ ├── semantic_R_50_FPN_instant_test.yaml │ │ │ └── semantic_R_50_FPN_training_acc_test.yaml │ ├── data │ │ ├── __init__.py │ │ ├── benchmark.py │ │ ├── build.py │ │ ├── catalog.py │ │ ├── common.py │ │ ├── dataset_mapper.py │ │ ├── detection_utils.py │ │ ├── samplers │ │ │ ├── __init__.py │ │ │ ├── distributed_sampler.py │ │ │ └── grouped_batch_sampler.py │ │ └── transforms │ │ │ ├── __init__.py │ │ │ ├── augmentation.py │ │ │ ├── augmentation_impl.py │ │ │ └── transform.py │ ├── demo │ │ ├── README.md │ │ ├── demo.py │ │ └── predictor.py │ ├── dev │ │ ├── README.md │ │ ├── linter.sh │ │ ├── packaging │ │ │ ├── README.md │ │ │ ├── build_all_wheels.sh │ │ │ ├── build_wheel.sh │ │ │ ├── gen_install_table.py │ │ │ ├── gen_wheel_index.sh │ │ │ └── pkg_helpers.bash │ │ ├── parse_results.sh │ │ ├── run_inference_tests.sh │ │ └── run_instant_tests.sh │ ├── docker │ │ ├── Dockerfile │ │ ├── README.md │ │ ├── deploy.Dockerfile │ │ └── docker-compose.yml │ ├── docs │ │ ├── .gitignore │ │ ├── Makefile │ │ ├── README.md │ │ ├── _static │ │ │ └── css │ │ │ │ └── custom.css │ │ ├── conf.py │ │ ├── index.rst │ │ ├── modules │ │ │ ├── checkpoint.rst │ │ │ ├── config.rst │ │ │ ├── data.rst │ │ │ ├── data_transforms.rst │ │ │ ├── engine.rst │ │ │ ├── evaluation.rst │ │ │ ├── export.rst │ │ │ ├── fvcore.rst │ │ │ ├── index.rst │ │ │ ├── layers.rst │ │ │ ├── model_zoo.rst │ │ │ ├── modeling.rst │ │ │ ├── solver.rst │ │ │ ├── structures.rst │ │ │ └── utils.rst │ │ ├── notes │ │ │ ├── benchmarks.md │ │ │ ├── changelog.md │ │ │ ├── compatibility.md │ │ │ └── index.rst │ │ ├── requirements.txt │ │ └── tutorials │ │ │ ├── README.md │ │ │ ├── augmentation.md │ │ │ ├── builtin_datasets.md │ │ │ ├── configs.md │ │ │ ├── data_loading.md │ │ │ ├── datasets.md │ │ │ ├── deployment.md │ │ │ ├── evaluation.md │ │ │ ├── extend.md │ │ │ ├── getting_started.md │ │ │ ├── index.rst │ │ │ ├── install.md │ │ │ ├── lazyconfigs.md │ │ │ ├── models.md │ │ │ ├── training.md │ │ │ └── write-models.md │ ├── engine │ │ ├── __init__.py │ │ ├── defaults.py │ │ ├── hooks.py │ │ ├── launch.py │ │ └── train_loop.py │ ├── evaluation │ │ ├── __init__.py │ │ ├── cityscapes_evaluation.py │ │ ├── coco_evaluation.py │ │ ├── coco_evaluation_custom.py │ │ ├── evaluator.py │ │ ├── fast_eval_api.py │ │ ├── lvis_evaluation.py │ │ ├── panoptic_evaluation.py │ │ ├── pascal_voc_evaluation.py │ │ ├── rotated_coco_evaluation.py │ │ ├── sem_seg_evaluation.py │ │ └── testing.py │ ├── export │ │ ├── README.md │ │ ├── __init__.py │ │ ├── api.py │ │ ├── c10.py │ │ ├── caffe2_export.py │ │ ├── caffe2_inference.py │ │ ├── caffe2_modeling.py │ │ ├── caffe2_patch.py │ │ ├── flatten.py │ │ ├── shared.py │ │ ├── torchscript.py │ │ └── torchscript_patch.py │ ├── layers │ │ ├── __init__.py │ │ ├── aspp.py │ │ ├── batch_norm.py │ │ ├── blocks.py │ │ ├── csrc │ │ │ ├── README.md │ │ │ ├── ROIAlignRotated │ │ │ │ ├── ROIAlignRotated.h │ │ │ │ ├── ROIAlignRotated_cpu.cpp │ │ │ │ └── ROIAlignRotated_cuda.cu │ │ │ ├── box_iou_rotated │ │ │ │ ├── box_iou_rotated.h │ │ │ │ ├── box_iou_rotated_cpu.cpp │ │ │ │ ├── box_iou_rotated_cuda.cu │ │ │ │ └── box_iou_rotated_utils.h │ │ │ ├── cocoeval │ │ │ │ ├── cocoeval.cpp │ │ │ │ └── cocoeval.h │ │ │ ├── cuda_version.cu │ │ │ ├── deformable │ │ │ │ ├── deform_conv.h │ │ │ │ ├── deform_conv_cuda.cu │ │ │ │ └── deform_conv_cuda_kernel.cu │ │ │ ├── nms_rotated │ │ │ │ ├── nms_rotated.h │ │ │ │ ├── nms_rotated_cpu.cpp │ │ │ │ └── nms_rotated_cuda.cu │ │ │ └── vision.cpp │ │ ├── deform_conv.py │ │ ├── losses.py │ │ ├── mask_ops.py │ │ ├── nms.py │ │ ├── roi_align.py │ │ ├── roi_align_rotated.py │ │ ├── rotated_boxes.py │ │ ├── shape_spec.py │ │ └── wrappers.py │ ├── model_zoo │ │ ├── __init__.py │ │ └── model_zoo.py │ ├── modeling │ │ ├── __init__.py │ │ ├── anchor_generator.py │ │ ├── backbone │ │ │ ├── __init__.py │ │ │ ├── backbone.py │ │ │ ├── build.py │ │ │ ├── fpn.py │ │ │ ├── mvit.py │ │ │ ├── regnet.py │ │ │ ├── resnet.py │ │ │ ├── swin.py │ │ │ ├── utils.py │ │ │ └── vit.py │ │ ├── box_regression.py │ │ ├── matcher.py │ │ ├── meta_arch │ │ │ ├── __init__.py │ │ │ ├── build.py │ │ │ ├── dense_detector.py │ │ │ ├── fcos.py │ │ │ ├── panoptic_fpn.py │ │ │ ├── rcnn.py │ │ │ ├── retinanet.py │ │ │ └── semantic_seg.py │ │ ├── mmdet_wrapper.py │ │ ├── poolers.py │ │ ├── postprocessing.py │ │ ├── proposal_generator │ │ │ ├── __init__.py │ │ │ ├── build.py │ │ │ ├── proposal_utils.py │ │ │ ├── rpn.py │ │ │ └── rrpn.py │ │ ├── roi_heads │ │ │ ├── __init__.py │ │ │ ├── box_head.py │ │ │ ├── cascade_rcnn.py │ │ │ ├── fast_rcnn.py │ │ │ ├── keypoint_head.py │ │ │ ├── mask_head.py │ │ │ ├── roi_heads.py │ │ │ └── rotated_fast_rcnn.py │ │ ├── sampling.py │ │ └── test_time_augmentation.py │ ├── projects │ │ ├── DeepLab │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ └── Cityscapes-SemanticSegmentation │ │ │ │ │ ├── Base-DeepLabV3-OS16-Semantic.yaml │ │ │ │ │ ├── deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml │ │ │ │ │ └── deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml │ │ │ ├── deeplab │ │ │ │ ├── __init__.py │ │ │ │ ├── build_solver.py │ │ │ │ ├── config.py │ │ │ │ ├── loss.py │ │ │ │ ├── lr_scheduler.py │ │ │ │ ├── resnet.py │ │ │ │ └── semantic_seg.py │ │ │ └── train_net.py │ │ ├── DensePose │ │ │ ├── README.md │ │ │ ├── apply_net.py │ │ │ ├── configs │ │ │ │ ├── Base-DensePose-RCNN-FPN.yaml │ │ │ │ ├── HRNet │ │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml │ │ │ │ │ └── densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml │ │ │ │ ├── cse │ │ │ │ │ ├── Base-DensePose-RCNN-FPN-Human.yaml │ │ │ │ │ ├── Base-DensePose-RCNN-FPN.yaml │ │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_101_FPN_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_101_FPN_soft_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_s1x.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml │ │ │ │ │ └── densepose_rcnn_R_50_FPN_soft_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_WC1M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_WC1_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_WC2M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_WC2_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_s1x_legacy.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC1M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC1_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC2M_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC2_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_s1x_legacy.yaml │ │ │ │ ├── evolution │ │ │ │ │ ├── Base-RCNN-FPN-Atop10P_CA.yaml │ │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA.yaml │ │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm.yaml │ │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm.yaml │ │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform.yaml │ │ │ │ │ └── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv.yaml │ │ │ │ └── quick_schedules │ │ │ │ │ ├── cse │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_instant_test.yaml │ │ │ │ │ └── densepose_rcnn_R_50_FPN_soft_animals_finetune_instant_test.yaml │ │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w32_instant_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_instant_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_TTA_inference_acc_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC1_instant_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC2_instant_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ │ │ ├── densepose_rcnn_R_50_FPN_instant_test.yaml │ │ │ │ │ └── densepose_rcnn_R_50_FPN_training_acc_test.yaml │ │ │ ├── densepose │ │ │ │ ├── __init__.py │ │ │ │ ├── config.py │ │ │ │ ├── converters │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── base.py │ │ │ │ │ ├── builtin.py │ │ │ │ │ ├── chart_output_hflip.py │ │ │ │ │ ├── chart_output_to_chart_result.py │ │ │ │ │ ├── hflip.py │ │ │ │ │ ├── segm_to_mask.py │ │ │ │ │ ├── to_chart_result.py │ │ │ │ │ └── to_mask.py │ │ │ │ ├── data │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── build.py │ │ │ │ │ ├── combined_loader.py │ │ │ │ │ ├── dataset_mapper.py │ │ │ │ │ ├── image_list_dataset.py │ │ │ │ │ ├── inference_based_loader.py │ │ │ │ │ ├── meshes │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── builtin.py │ │ │ │ │ │ └── catalog.py │ │ │ │ │ ├── samplers │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── densepose_base.py │ │ │ │ │ │ ├── densepose_confidence_based.py │ │ │ │ │ │ ├── densepose_cse_base.py │ │ │ │ │ │ ├── densepose_cse_confidence_based.py │ │ │ │ │ │ ├── densepose_cse_uniform.py │ │ │ │ │ │ ├── densepose_uniform.py │ │ │ │ │ │ ├── mask_from_densepose.py │ │ │ │ │ │ └── prediction_to_gt.py │ │ │ │ │ ├── transform │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ └── image.py │ │ │ │ │ ├── utils.py │ │ │ │ │ └── video │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── frame_selector.py │ │ │ │ │ │ └── video_keyframe_dataset.py │ │ │ │ ├── engine │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── trainer.py │ │ │ │ ├── evaluation │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── d2_evaluator_adapter.py │ │ │ │ │ ├── densepose_coco_evaluation.py │ │ │ │ │ ├── evaluator.py │ │ │ │ │ ├── mesh_alignment_evaluator.py │ │ │ │ │ └── tensor_storage.py │ │ │ │ ├── modeling │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── build.py │ │ │ │ │ ├── confidence.py │ │ │ │ │ ├── cse │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── embedder.py │ │ │ │ │ │ ├── utils.py │ │ │ │ │ │ ├── vertex_direct_embedder.py │ │ │ │ │ │ └── vertex_feature_embedder.py │ │ │ │ │ ├── densepose_checkpoint.py │ │ │ │ │ ├── filter.py │ │ │ │ │ ├── hrfpn.py │ │ │ │ │ ├── hrnet.py │ │ │ │ │ ├── inference.py │ │ │ │ │ ├── losses │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── chart.py │ │ │ │ │ │ ├── chart_with_confidences.py │ │ │ │ │ │ ├── cse.py │ │ │ │ │ │ ├── cycle_pix2shape.py │ │ │ │ │ │ ├── cycle_shape2shape.py │ │ │ │ │ │ ├── embed.py │ │ │ │ │ │ ├── embed_utils.py │ │ │ │ │ │ ├── mask.py │ │ │ │ │ │ ├── mask_or_segm.py │ │ │ │ │ │ ├── registry.py │ │ │ │ │ │ ├── segm.py │ │ │ │ │ │ ├── soft_embed.py │ │ │ │ │ │ └── utils.py │ │ │ │ │ ├── predictors │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── chart.py │ │ │ │ │ │ ├── chart_confidence.py │ │ │ │ │ │ ├── chart_with_confidence.py │ │ │ │ │ │ ├── cse.py │ │ │ │ │ │ ├── cse_confidence.py │ │ │ │ │ │ ├── cse_with_confidence.py │ │ │ │ │ │ └── registry.py │ │ │ │ │ ├── roi_heads │ │ │ │ │ │ ├── __init__.py │ │ │ │ │ │ ├── deeplab.py │ │ │ │ │ │ ├── registry.py │ │ │ │ │ │ ├── roi_head.py │ │ │ │ │ │ └── v1convx.py │ │ │ │ │ ├── test_time_augmentation.py │ │ │ │ │ └── utils.py │ │ │ │ ├── structures │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── chart.py │ │ │ │ │ ├── chart_confidence.py │ │ │ │ │ ├── chart_result.py │ │ │ │ │ ├── cse.py │ │ │ │ │ ├── cse_confidence.py │ │ │ │ │ ├── data_relative.py │ │ │ │ │ ├── list.py │ │ │ │ │ ├── mesh.py │ │ │ │ │ └── transform_data.py │ │ │ │ ├── utils │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── dbhelper.py │ │ │ │ │ ├── logger.py │ │ │ │ │ └── transform.py │ │ │ │ └── vis │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── base.py │ │ │ │ │ ├── bounding_box.py │ │ │ │ │ ├── densepose_data_points.py │ │ │ │ │ ├── densepose_outputs_iuv.py │ │ │ │ │ ├── densepose_outputs_vertex.py │ │ │ │ │ ├── densepose_results.py │ │ │ │ │ ├── densepose_results_textures.py │ │ │ │ │ └── extractor.py │ │ │ ├── dev │ │ │ │ ├── README.md │ │ │ │ ├── run_inference_tests.sh │ │ │ │ └── run_instant_tests.sh │ │ │ ├── doc │ │ │ │ ├── BOOTSTRAPPING_PIPELINE.md │ │ │ │ ├── DENSEPOSE_CSE.md │ │ │ │ ├── DENSEPOSE_DATASETS.md │ │ │ │ ├── DENSEPOSE_IUV.md │ │ │ │ ├── GETTING_STARTED.md │ │ │ │ ├── RELEASE_2020_04.md │ │ │ │ ├── RELEASE_2021_03.md │ │ │ │ ├── RELEASE_2021_06.md │ │ │ │ ├── TOOL_APPLY_NET.md │ │ │ │ └── TOOL_QUERY_DB.md │ │ │ ├── query_db.py │ │ │ ├── setup.py │ │ │ ├── tests │ │ │ │ ├── common.py │ │ │ │ ├── test_chart_based_annotations_accumulator.py │ │ │ │ ├── test_combine_data_loader.py │ │ │ │ ├── test_cse_annotations_accumulator.py │ │ │ │ ├── test_dataset_loaded_annotations.py │ │ │ │ ├── test_frame_selector.py │ │ │ │ ├── test_image_list_dataset.py │ │ │ │ ├── test_image_resize_transform.py │ │ │ │ ├── test_model_e2e.py │ │ │ │ ├── test_setup.py │ │ │ │ ├── test_structures.py │ │ │ │ ├── test_tensor_storage.py │ │ │ │ └── test_video_keyframe_dataset.py │ │ │ └── train_net.py │ │ ├── MViTv2 │ │ │ ├── README.md │ │ │ └── configs │ │ │ │ ├── cascade_mask_rcnn_mvitv2_b_3x.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_3x.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_lsj_3x.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_lsj_50ep.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_s_3x.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_t_3x.py │ │ │ │ ├── common │ │ │ │ ├── coco_loader.py │ │ │ │ └── coco_loader_lsj.py │ │ │ │ └── mask_rcnn_mvitv2_t_3x.py │ │ ├── Panoptic-DeepLab │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── COCO-PanopticSegmentation │ │ │ │ │ └── panoptic_deeplab_R_52_os16_mg124_poly_200k_bs64_crop_640_640_coco_dsconv.yaml │ │ │ │ └── Cityscapes-PanopticSegmentation │ │ │ │ │ ├── Base-PanopticDeepLab-OS16.yaml │ │ │ │ │ ├── panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024.yaml │ │ │ │ │ └── panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024_dsconv.yaml │ │ │ ├── panoptic_deeplab │ │ │ │ ├── __init__.py │ │ │ │ ├── config.py │ │ │ │ ├── dataset_mapper.py │ │ │ │ ├── panoptic_seg.py │ │ │ │ ├── post_processing.py │ │ │ │ └── target_generator.py │ │ │ └── train_net.py │ │ ├── PointRend │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── InstanceSegmentation │ │ │ │ │ ├── Base-Implicit-PointRend.yaml │ │ │ │ │ ├── Base-PointRend-RCNN-FPN.yaml │ │ │ │ │ ├── implicit_pointrend_R_50_FPN_1x_coco.yaml │ │ │ │ │ ├── implicit_pointrend_R_50_FPN_3x_coco.yaml │ │ │ │ │ ├── pointrend_rcnn_R_101_FPN_3x_coco.yaml │ │ │ │ │ ├── pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml │ │ │ │ │ ├── pointrend_rcnn_R_50_FPN_1x_coco.yaml │ │ │ │ │ ├── pointrend_rcnn_R_50_FPN_3x_coco.yaml │ │ │ │ │ └── pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml │ │ │ │ └── SemanticSegmentation │ │ │ │ │ ├── Base-PointRend-Semantic-FPN.yaml │ │ │ │ │ └── pointrend_semantic_R_101_FPN_1x_cityscapes.yaml │ │ │ ├── point_rend │ │ │ │ ├── __init__.py │ │ │ │ ├── color_augmentation.py │ │ │ │ ├── config.py │ │ │ │ ├── mask_head.py │ │ │ │ ├── point_features.py │ │ │ │ ├── point_head.py │ │ │ │ ├── roi_heads.py │ │ │ │ └── semantic_seg.py │ │ │ └── train_net.py │ │ ├── PointSup │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── implicit_pointrend_R_50_FPN_3x_point_sup_point_aug_coco.yaml │ │ │ │ ├── mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml │ │ │ │ └── mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml │ │ │ ├── point_sup │ │ │ │ ├── __init__.py │ │ │ │ ├── config.py │ │ │ │ ├── dataset_mapper.py │ │ │ │ ├── detection_utils.py │ │ │ │ ├── mask_head.py │ │ │ │ ├── point_utils.py │ │ │ │ └── register_point_annotations.py │ │ │ ├── tools │ │ │ │ └── prepare_coco_point_annotations_without_masks.py │ │ │ └── train_net.py │ │ ├── README.md │ │ ├── Rethinking-BatchNorm │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── mask_rcnn_BNhead.py │ │ │ │ ├── mask_rcnn_BNhead_batch_stats.py │ │ │ │ ├── mask_rcnn_BNhead_shuffle.py │ │ │ │ ├── mask_rcnn_SyncBNhead.py │ │ │ │ ├── retinanet_SyncBNhead.py │ │ │ │ └── retinanet_SyncBNhead_SharedTraining.py │ │ │ └── retinanet-eval-domain-specific.py │ │ ├── TensorMask │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── Base-TensorMask.yaml │ │ │ │ ├── tensormask_R_50_FPN_1x.yaml │ │ │ │ └── tensormask_R_50_FPN_6x.yaml │ │ │ ├── setup.py │ │ │ ├── tensormask │ │ │ │ ├── __init__.py │ │ │ │ ├── arch.py │ │ │ │ ├── config.py │ │ │ │ └── layers │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── csrc │ │ │ │ │ ├── SwapAlign2Nat │ │ │ │ │ │ ├── SwapAlign2Nat.h │ │ │ │ │ │ └── SwapAlign2Nat_cuda.cu │ │ │ │ │ └── vision.cpp │ │ │ │ │ └── swap_align2nat.py │ │ │ ├── tests │ │ │ │ ├── __init__.py │ │ │ │ └── test_swap_align2nat.py │ │ │ └── train_net.py │ │ ├── TridentNet │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── Base-TridentNet-Fast-C4.yaml │ │ │ │ ├── tridentnet_fast_R_101_C4_3x.yaml │ │ │ │ ├── tridentnet_fast_R_50_C4_1x.yaml │ │ │ │ └── tridentnet_fast_R_50_C4_3x.yaml │ │ │ ├── train_net.py │ │ │ └── tridentnet │ │ │ │ ├── __init__.py │ │ │ │ ├── config.py │ │ │ │ ├── trident_backbone.py │ │ │ │ ├── trident_conv.py │ │ │ │ ├── trident_rcnn.py │ │ │ │ └── trident_rpn.py │ │ ├── ViTDet │ │ │ ├── README.md │ │ │ └── configs │ │ │ │ ├── COCO │ │ │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_100ep.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_36ep.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_swin_b_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_swin_l_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_b_100ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_h_75ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_l_100ep.py │ │ │ │ ├── mask_rcnn_vitdet_b_100ep.py │ │ │ │ ├── mask_rcnn_vitdet_h_75ep.py │ │ │ │ └── mask_rcnn_vitdet_l_100ep.py │ │ │ │ ├── LVIS │ │ │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_100ep.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_swin_b_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_swin_l_in21k_50ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_b_100ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_h_100ep.py │ │ │ │ ├── cascade_mask_rcnn_vitdet_l_100ep.py │ │ │ │ ├── mask_rcnn_vitdet_b_100ep.py │ │ │ │ ├── mask_rcnn_vitdet_h_100ep.py │ │ │ │ └── mask_rcnn_vitdet_l_100ep.py │ │ │ │ └── common │ │ │ │ └── coco_loader_lsj.py │ │ └── __init__.py │ ├── setup.cfg │ ├── setup.py │ ├── solver │ │ ├── __init__.py │ │ ├── build.py │ │ └── lr_scheduler.py │ ├── structures │ │ ├── __init__.py │ │ ├── boxes.py │ │ ├── image_list.py │ │ ├── instances.py │ │ ├── keypoints.py │ │ ├── masks.py │ │ └── rotated_boxes.py │ ├── tests │ │ ├── README.md │ │ ├── __init__.py │ │ ├── config │ │ │ ├── dir1 │ │ │ │ ├── dir1_a.py │ │ │ │ └── dir1_b.py │ │ │ ├── root_cfg.py │ │ │ ├── test_instantiate_config.py │ │ │ ├── test_lazy_config.py │ │ │ └── test_yacs_config.py │ │ ├── data │ │ │ ├── __init__.py │ │ │ ├── test_coco.py │ │ │ ├── test_coco_evaluation.py │ │ │ ├── test_dataset.py │ │ │ ├── test_detection_utils.py │ │ │ ├── test_rotation_transform.py │ │ │ ├── test_sampler.py │ │ │ └── test_transforms.py │ │ ├── export │ │ │ └── test_c10.py │ │ ├── layers │ │ │ ├── __init__.py │ │ │ ├── test_blocks.py │ │ │ ├── test_deformable.py │ │ │ ├── test_losses.py │ │ │ ├── test_mask_ops.py │ │ │ ├── test_nms.py │ │ │ ├── test_nms_rotated.py │ │ │ ├── test_roi_align.py │ │ │ └── test_roi_align_rotated.py │ │ ├── modeling │ │ │ ├── __init__.py │ │ │ ├── test_anchor_generator.py │ │ │ ├── test_backbone.py │ │ │ ├── test_box2box_transform.py │ │ │ ├── test_fast_rcnn.py │ │ │ ├── test_matcher.py │ │ │ ├── test_mmdet.py │ │ │ ├── test_model_e2e.py │ │ │ ├── test_roi_heads.py │ │ │ ├── test_roi_pooler.py │ │ │ └── test_rpn.py │ │ ├── structures │ │ │ ├── __init__.py │ │ │ ├── test_boxes.py │ │ │ ├── test_imagelist.py │ │ │ ├── test_instances.py │ │ │ ├── test_keypoints.py │ │ │ ├── test_masks.py │ │ │ └── test_rotated_boxes.py │ │ ├── test_checkpoint.py │ │ ├── test_engine.py │ │ ├── test_events.py │ │ ├── test_export_caffe2.py │ │ ├── test_export_onnx.py │ │ ├── test_export_torchscript.py │ │ ├── test_model_analysis.py │ │ ├── test_model_zoo.py │ │ ├── test_packaging.py │ │ ├── test_registry.py │ │ ├── test_scheduler.py │ │ ├── test_solver.py │ │ ├── test_visualizer.py │ │ └── tracking │ │ │ ├── __init__.py │ │ │ ├── test_bbox_iou_tracker.py │ │ │ ├── test_hungarian_tracker.py │ │ │ ├── test_iou_weighted_hungarian_bbox_iou_tracker.py │ │ │ └── test_vanilla_hungarian_bbox_iou_tracker.py │ ├── tools │ │ ├── README.md │ │ ├── __init__.py │ │ ├── analyze_model.py │ │ ├── benchmark.py │ │ ├── convert-torchvision-to-d2.py │ │ ├── deploy │ │ │ ├── CMakeLists.txt │ │ │ ├── README.md │ │ │ ├── export_model.py │ │ │ └── torchscript_mask_rcnn.cpp │ │ ├── lazyconfig_train_net.py │ │ ├── lightning_train_net.py │ │ ├── plain_train_net.py │ │ ├── train_net.py │ │ ├── visualize_data.py │ │ └── visualize_json_results.py │ ├── tracking │ │ ├── __init__.py │ │ ├── base_tracker.py │ │ ├── bbox_iou_tracker.py │ │ ├── hungarian_tracker.py │ │ ├── iou_weighted_hungarian_bbox_iou_tracker.py │ │ ├── utils.py │ │ └── vanilla_hungarian_bbox_iou_tracker.py │ └── utils │ │ ├── README.md │ │ ├── __init__.py │ │ ├── analysis.py │ │ ├── collect_env.py │ │ ├── colormap.py │ │ ├── comm.py │ │ ├── develop.py │ │ ├── env.py │ │ ├── events.py │ │ ├── file_io.py │ │ ├── logger.py │ │ ├── memory.py │ │ ├── registry.py │ │ ├── serialize.py │ │ ├── testing.py │ │ ├── tracing.py │ │ ├── video_visualizer.py │ │ └── visualizer.py ├── dev │ ├── README.md │ ├── linter.sh │ ├── packaging │ │ ├── README.md │ │ ├── build_all_wheels.sh │ │ ├── build_wheel.sh │ │ ├── gen_install_table.py │ │ ├── gen_wheel_index.sh │ │ └── pkg_helpers.bash │ ├── parse_results.sh │ ├── run_inference_tests.sh │ └── run_instant_tests.sh ├── docker │ ├── Dockerfile │ ├── README.md │ ├── deploy.Dockerfile │ └── docker-compose.yml ├── docs │ ├── .gitignore │ ├── Makefile │ ├── README.md │ ├── _static │ │ └── css │ │ │ └── custom.css │ ├── conf.py │ ├── index.rst │ ├── modules │ │ ├── checkpoint.rst │ │ ├── config.rst │ │ ├── data.rst │ │ ├── data_transforms.rst │ │ ├── engine.rst │ │ ├── evaluation.rst │ │ ├── export.rst │ │ ├── fvcore.rst │ │ ├── index.rst │ │ ├── layers.rst │ │ ├── model_zoo.rst │ │ ├── modeling.rst │ │ ├── solver.rst │ │ ├── structures.rst │ │ └── utils.rst │ ├── notes │ │ ├── benchmarks.md │ │ ├── changelog.md │ │ ├── compatibility.md │ │ ├── contributing.md │ │ └── index.rst │ ├── requirements.txt │ └── tutorials │ │ ├── README.md │ │ ├── augmentation.md │ │ ├── configs.md │ │ ├── data_loading.md │ │ ├── datasets.md │ │ ├── deployment.md │ │ ├── evaluation.md │ │ ├── extend.md │ │ ├── getting_started.md │ │ ├── index.rst │ │ ├── install.md │ │ ├── lazyconfigs.md │ │ ├── models.md │ │ ├── training.md │ │ └── write-models.md ├── projects │ ├── DeepLab │ │ ├── README.md │ │ ├── configs │ │ │ └── Cityscapes-SemanticSegmentation │ │ │ │ ├── Base-DeepLabV3-OS16-Semantic.yaml │ │ │ │ ├── deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml │ │ │ │ └── deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml │ │ ├── deeplab │ │ │ ├── __init__.py │ │ │ ├── build_solver.py │ │ │ ├── config.py │ │ │ ├── loss.py │ │ │ ├── lr_scheduler.py │ │ │ ├── resnet.py │ │ │ └── semantic_seg.py │ │ └── train_net.py │ ├── DensePose │ │ ├── README.md │ │ ├── apply_net.py │ │ ├── configs │ │ │ ├── Base-DensePose-RCNN-FPN.yaml │ │ │ ├── HRNet │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml │ │ │ │ └── densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml │ │ │ ├── cse │ │ │ │ ├── Base-DensePose-RCNN-FPN-Human.yaml │ │ │ │ ├── Base-DensePose-RCNN-FPN.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_101_FPN_soft_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_s1x.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml │ │ │ │ └── densepose_rcnn_R_50_FPN_soft_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_DL_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_WC1M_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_WC1_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_WC2M_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_WC2_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_s1x.yaml │ │ │ ├── densepose_rcnn_R_101_FPN_s1x_legacy.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_DL_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_WC1M_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_WC1_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_WC2M_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_WC2_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_s1x.yaml │ │ │ ├── densepose_rcnn_R_50_FPN_s1x_legacy.yaml │ │ │ ├── evolution │ │ │ │ ├── Base-RCNN-FPN-Atop10P_CA.yaml │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA.yaml │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm.yaml │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm.yaml │ │ │ │ ├── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform.yaml │ │ │ │ └── densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv.yaml │ │ │ └── quick_schedules │ │ │ │ ├── cse │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_instant_test.yaml │ │ │ │ └── densepose_rcnn_R_50_FPN_soft_animals_finetune_instant_test.yaml │ │ │ │ ├── densepose_rcnn_HRFPN_HRNet_w32_instant_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_DL_instant_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_TTA_inference_acc_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC1_instant_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_WC2_instant_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_inference_acc_test.yaml │ │ │ │ ├── densepose_rcnn_R_50_FPN_instant_test.yaml │ │ │ │ └── densepose_rcnn_R_50_FPN_training_acc_test.yaml │ │ ├── densepose │ │ │ ├── __init__.py │ │ │ ├── config.py │ │ │ ├── converters │ │ │ │ ├── __init__.py │ │ │ │ ├── base.py │ │ │ │ ├── builtin.py │ │ │ │ ├── chart_output_hflip.py │ │ │ │ ├── chart_output_to_chart_result.py │ │ │ │ ├── hflip.py │ │ │ │ ├── segm_to_mask.py │ │ │ │ ├── to_chart_result.py │ │ │ │ └── to_mask.py │ │ │ ├── data │ │ │ │ ├── __init__.py │ │ │ │ ├── build.py │ │ │ │ ├── combined_loader.py │ │ │ │ ├── dataset_mapper.py │ │ │ │ ├── image_list_dataset.py │ │ │ │ ├── inference_based_loader.py │ │ │ │ ├── meshes │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── builtin.py │ │ │ │ │ └── catalog.py │ │ │ │ ├── samplers │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── densepose_base.py │ │ │ │ │ ├── densepose_confidence_based.py │ │ │ │ │ ├── densepose_cse_base.py │ │ │ │ │ ├── densepose_cse_confidence_based.py │ │ │ │ │ ├── densepose_cse_uniform.py │ │ │ │ │ ├── densepose_uniform.py │ │ │ │ │ ├── mask_from_densepose.py │ │ │ │ │ └── prediction_to_gt.py │ │ │ │ ├── transform │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── image.py │ │ │ │ ├── utils.py │ │ │ │ └── video │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── frame_selector.py │ │ │ │ │ └── video_keyframe_dataset.py │ │ │ ├── engine │ │ │ │ ├── __init__.py │ │ │ │ └── trainer.py │ │ │ ├── evaluation │ │ │ │ ├── __init__.py │ │ │ │ ├── d2_evaluator_adapter.py │ │ │ │ ├── densepose_coco_evaluation.py │ │ │ │ ├── evaluator.py │ │ │ │ ├── mesh_alignment_evaluator.py │ │ │ │ └── tensor_storage.py │ │ │ ├── modeling │ │ │ │ ├── __init__.py │ │ │ │ ├── build.py │ │ │ │ ├── confidence.py │ │ │ │ ├── cse │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── embedder.py │ │ │ │ │ ├── utils.py │ │ │ │ │ ├── vertex_direct_embedder.py │ │ │ │ │ └── vertex_feature_embedder.py │ │ │ │ ├── densepose_checkpoint.py │ │ │ │ ├── filter.py │ │ │ │ ├── hrfpn.py │ │ │ │ ├── hrnet.py │ │ │ │ ├── inference.py │ │ │ │ ├── losses │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── chart.py │ │ │ │ │ ├── chart_with_confidences.py │ │ │ │ │ ├── cse.py │ │ │ │ │ ├── cycle_pix2shape.py │ │ │ │ │ ├── cycle_shape2shape.py │ │ │ │ │ ├── embed.py │ │ │ │ │ ├── embed_utils.py │ │ │ │ │ ├── mask.py │ │ │ │ │ ├── mask_or_segm.py │ │ │ │ │ ├── registry.py │ │ │ │ │ ├── segm.py │ │ │ │ │ ├── soft_embed.py │ │ │ │ │ └── utils.py │ │ │ │ ├── predictors │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── chart.py │ │ │ │ │ ├── chart_confidence.py │ │ │ │ │ ├── chart_with_confidence.py │ │ │ │ │ ├── cse.py │ │ │ │ │ ├── cse_confidence.py │ │ │ │ │ ├── cse_with_confidence.py │ │ │ │ │ └── registry.py │ │ │ │ ├── roi_heads │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── deeplab.py │ │ │ │ │ ├── registry.py │ │ │ │ │ ├── roi_head.py │ │ │ │ │ └── v1convx.py │ │ │ │ ├── test_time_augmentation.py │ │ │ │ └── utils.py │ │ │ ├── structures │ │ │ │ ├── __init__.py │ │ │ │ ├── chart.py │ │ │ │ ├── chart_confidence.py │ │ │ │ ├── chart_result.py │ │ │ │ ├── cse.py │ │ │ │ ├── cse_confidence.py │ │ │ │ ├── data_relative.py │ │ │ │ ├── list.py │ │ │ │ ├── mesh.py │ │ │ │ └── transform_data.py │ │ │ ├── utils │ │ │ │ ├── __init__.py │ │ │ │ ├── dbhelper.py │ │ │ │ ├── logger.py │ │ │ │ └── transform.py │ │ │ └── vis │ │ │ │ ├── __init__.py │ │ │ │ ├── base.py │ │ │ │ ├── bounding_box.py │ │ │ │ ├── densepose_data_points.py │ │ │ │ ├── densepose_outputs_iuv.py │ │ │ │ ├── densepose_outputs_vertex.py │ │ │ │ ├── densepose_results.py │ │ │ │ ├── densepose_results_textures.py │ │ │ │ └── extractor.py │ │ ├── dev │ │ │ ├── README.md │ │ │ ├── run_inference_tests.sh │ │ │ └── run_instant_tests.sh │ │ ├── doc │ │ │ ├── BOOTSTRAPPING_PIPELINE.md │ │ │ ├── DENSEPOSE_CSE.md │ │ │ ├── DENSEPOSE_DATASETS.md │ │ │ ├── DENSEPOSE_IUV.md │ │ │ ├── GETTING_STARTED.md │ │ │ ├── RELEASE_2020_04.md │ │ │ ├── RELEASE_2021_03.md │ │ │ ├── RELEASE_2021_06.md │ │ │ ├── TOOL_APPLY_NET.md │ │ │ └── TOOL_QUERY_DB.md │ │ ├── query_db.py │ │ ├── setup.py │ │ ├── tests │ │ │ ├── common.py │ │ │ ├── test_chart_based_annotations_accumulator.py │ │ │ ├── test_combine_data_loader.py │ │ │ ├── test_cse_annotations_accumulator.py │ │ │ ├── test_dataset_loaded_annotations.py │ │ │ ├── test_frame_selector.py │ │ │ ├── test_image_list_dataset.py │ │ │ ├── test_image_resize_transform.py │ │ │ ├── test_model_e2e.py │ │ │ ├── test_setup.py │ │ │ ├── test_structures.py │ │ │ ├── test_tensor_storage.py │ │ │ └── test_video_keyframe_dataset.py │ │ └── train_net.py │ ├── MViTv2 │ │ ├── README.md │ │ └── configs │ │ │ ├── cascade_mask_rcnn_mvitv2_b_3x.py │ │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_3x.py │ │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_lsj_3x.py │ │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_lsj_50ep.py │ │ │ ├── cascade_mask_rcnn_mvitv2_s_3x.py │ │ │ ├── cascade_mask_rcnn_mvitv2_t_3x.py │ │ │ ├── common │ │ │ ├── coco_loader.py │ │ │ └── coco_loader_lsj.py │ │ │ └── mask_rcnn_mvitv2_t_3x.py │ ├── Panoptic-DeepLab │ │ ├── README.md │ │ ├── configs │ │ │ ├── COCO-PanopticSegmentation │ │ │ │ └── panoptic_deeplab_R_52_os16_mg124_poly_200k_bs64_crop_640_640_coco_dsconv.yaml │ │ │ └── Cityscapes-PanopticSegmentation │ │ │ │ ├── Base-PanopticDeepLab-OS16.yaml │ │ │ │ ├── panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024.yaml │ │ │ │ └── panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024_dsconv.yaml │ │ ├── panoptic_deeplab │ │ │ ├── __init__.py │ │ │ ├── config.py │ │ │ ├── dataset_mapper.py │ │ │ ├── panoptic_seg.py │ │ │ ├── post_processing.py │ │ │ └── target_generator.py │ │ └── train_net.py │ ├── PointRend │ │ ├── README.md │ │ ├── configs │ │ │ ├── InstanceSegmentation │ │ │ │ ├── Base-Implicit-PointRend.yaml │ │ │ │ ├── Base-PointRend-RCNN-FPN.yaml │ │ │ │ ├── implicit_pointrend_R_50_FPN_1x_coco.yaml │ │ │ │ ├── implicit_pointrend_R_50_FPN_3x_coco.yaml │ │ │ │ ├── pointrend_rcnn_R_101_FPN_3x_coco.yaml │ │ │ │ ├── pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml │ │ │ │ ├── pointrend_rcnn_R_50_FPN_1x_coco.yaml │ │ │ │ ├── pointrend_rcnn_R_50_FPN_3x_coco.yaml │ │ │ │ └── pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml │ │ │ └── SemanticSegmentation │ │ │ │ ├── Base-PointRend-Semantic-FPN.yaml │ │ │ │ └── pointrend_semantic_R_101_FPN_1x_cityscapes.yaml │ │ ├── point_rend │ │ │ ├── __init__.py │ │ │ ├── color_augmentation.py │ │ │ ├── config.py │ │ │ ├── mask_head.py │ │ │ ├── point_features.py │ │ │ ├── point_head.py │ │ │ ├── roi_heads.py │ │ │ └── semantic_seg.py │ │ └── train_net.py │ ├── PointSup │ │ ├── README.md │ │ ├── configs │ │ │ ├── implicit_pointrend_R_50_FPN_3x_point_sup_point_aug_coco.yaml │ │ │ ├── mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml │ │ │ └── mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml │ │ ├── point_sup │ │ │ ├── __init__.py │ │ │ ├── config.py │ │ │ ├── dataset_mapper.py │ │ │ ├── detection_utils.py │ │ │ ├── mask_head.py │ │ │ ├── point_utils.py │ │ │ └── register_point_annotations.py │ │ ├── tools │ │ │ └── prepare_coco_point_annotations_without_masks.py │ │ └── train_net.py │ ├── README.md │ ├── Rethinking-BatchNorm │ │ ├── README.md │ │ ├── configs │ │ │ ├── mask_rcnn_BNhead.py │ │ │ ├── mask_rcnn_BNhead_batch_stats.py │ │ │ ├── mask_rcnn_BNhead_shuffle.py │ │ │ ├── mask_rcnn_SyncBNhead.py │ │ │ ├── retinanet_SyncBNhead.py │ │ │ └── retinanet_SyncBNhead_SharedTraining.py │ │ └── retinanet-eval-domain-specific.py │ ├── TensorMask │ │ ├── README.md │ │ ├── configs │ │ │ ├── Base-TensorMask.yaml │ │ │ ├── tensormask_R_50_FPN_1x.yaml │ │ │ └── tensormask_R_50_FPN_6x.yaml │ │ ├── setup.py │ │ ├── tensormask │ │ │ ├── __init__.py │ │ │ ├── arch.py │ │ │ ├── config.py │ │ │ └── layers │ │ │ │ ├── __init__.py │ │ │ │ ├── csrc │ │ │ │ ├── SwapAlign2Nat │ │ │ │ │ ├── SwapAlign2Nat.h │ │ │ │ │ └── SwapAlign2Nat_cuda.cu │ │ │ │ └── vision.cpp │ │ │ │ └── swap_align2nat.py │ │ ├── tests │ │ │ ├── __init__.py │ │ │ └── test_swap_align2nat.py │ │ └── train_net.py │ ├── TridentNet │ │ ├── README.md │ │ ├── configs │ │ │ ├── Base-TridentNet-Fast-C4.yaml │ │ │ ├── tridentnet_fast_R_101_C4_3x.yaml │ │ │ ├── tridentnet_fast_R_50_C4_1x.yaml │ │ │ └── tridentnet_fast_R_50_C4_3x.yaml │ │ ├── train_net.py │ │ └── tridentnet │ │ │ ├── __init__.py │ │ │ ├── config.py │ │ │ ├── trident_backbone.py │ │ │ ├── trident_conv.py │ │ │ ├── trident_rcnn.py │ │ │ └── trident_rpn.py │ └── ViTDet │ │ ├── README.md │ │ └── configs │ │ ├── COCO │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_100ep.py │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_36ep.py │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_50ep.py │ │ ├── cascade_mask_rcnn_swin_b_in21k_50ep.py │ │ ├── cascade_mask_rcnn_swin_l_in21k_50ep.py │ │ ├── cascade_mask_rcnn_vitdet_b_100ep.py │ │ ├── cascade_mask_rcnn_vitdet_h_75ep.py │ │ ├── cascade_mask_rcnn_vitdet_l_100ep.py │ │ ├── mask_rcnn_vitdet_b_100ep.py │ │ ├── mask_rcnn_vitdet_h_75ep.py │ │ └── mask_rcnn_vitdet_l_100ep.py │ │ ├── LVIS │ │ ├── cascade_mask_rcnn_mvitv2_b_in21k_100ep.py │ │ ├── cascade_mask_rcnn_mvitv2_h_in21k_50ep.py │ │ ├── cascade_mask_rcnn_mvitv2_l_in21k_50ep.py │ │ ├── cascade_mask_rcnn_swin_b_in21k_50ep.py │ │ ├── cascade_mask_rcnn_swin_l_in21k_50ep.py │ │ ├── cascade_mask_rcnn_vitdet_b_100ep.py │ │ ├── cascade_mask_rcnn_vitdet_h_100ep.py │ │ ├── cascade_mask_rcnn_vitdet_l_100ep.py │ │ ├── mask_rcnn_vitdet_b_100ep.py │ │ ├── mask_rcnn_vitdet_h_100ep.py │ │ └── mask_rcnn_vitdet_l_100ep.py │ │ └── common │ │ └── coco_loader_lsj.py ├── setup.cfg ├── setup.py ├── tests │ ├── README.md │ ├── __init__.py │ ├── config │ │ ├── dir1 │ │ │ ├── dir1_a.py │ │ │ └── dir1_b.py │ │ ├── root_cfg.py │ │ ├── test_instantiate_config.py │ │ ├── test_lazy_config.py │ │ └── test_yacs_config.py │ ├── data │ │ ├── __init__.py │ │ ├── test_coco.py │ │ ├── test_coco_evaluation.py │ │ ├── test_dataset.py │ │ ├── test_detection_utils.py │ │ ├── test_rotation_transform.py │ │ ├── test_sampler.py │ │ └── test_transforms.py │ ├── export │ │ └── test_c10.py │ ├── layers │ │ ├── __init__.py │ │ ├── test_blocks.py │ │ ├── test_deformable.py │ │ ├── test_losses.py │ │ ├── test_mask_ops.py │ │ ├── test_nms.py │ │ ├── test_nms_rotated.py │ │ ├── test_roi_align.py │ │ └── test_roi_align_rotated.py │ ├── modeling │ │ ├── __init__.py │ │ ├── test_anchor_generator.py │ │ ├── test_backbone.py │ │ ├── test_box2box_transform.py │ │ ├── test_fast_rcnn.py │ │ ├── test_matcher.py │ │ ├── test_mmdet.py │ │ ├── test_model_e2e.py │ │ ├── test_roi_heads.py │ │ ├── test_roi_pooler.py │ │ └── test_rpn.py │ ├── structures │ │ ├── __init__.py │ │ ├── test_boxes.py │ │ ├── test_imagelist.py │ │ ├── test_instances.py │ │ ├── test_keypoints.py │ │ ├── test_masks.py │ │ └── test_rotated_boxes.py │ ├── test_checkpoint.py │ ├── test_engine.py │ ├── test_events.py │ ├── test_export_caffe2.py │ ├── test_export_onnx.py │ ├── test_export_torchscript.py │ ├── test_model_analysis.py │ ├── test_model_zoo.py │ ├── test_packaging.py │ ├── test_registry.py │ ├── test_scheduler.py │ ├── test_solver.py │ ├── test_visualizer.py │ └── tracking │ │ ├── __init__.py │ │ ├── test_bbox_iou_tracker.py │ │ ├── test_hungarian_tracker.py │ │ ├── test_iou_weighted_hungarian_bbox_iou_tracker.py │ │ └── test_vanilla_hungarian_bbox_iou_tracker.py └── tools │ ├── README.md │ ├── __init__.py │ ├── analyze_model.py │ ├── benchmark.py │ ├── convert-torchvision-to-d2.py │ ├── deploy │ ├── CMakeLists.txt │ ├── README.md │ ├── export_model.py │ └── torchscript_mask_rcnn.cpp │ ├── lazyconfig_train_net.py │ ├── lightning_train_net.py │ ├── plain_train_net.py │ ├── train_net.py │ ├── visualize_data.py │ └── visualize_json_results.py ├── detrex ├── __init__.py ├── checkpoint │ ├── __init__.py │ ├── c2_model_loading.py │ └── detection_checkpoint.py ├── config │ ├── __init__.py │ └── config.py ├── data │ ├── __init__.py │ ├── dataset_mappers │ │ ├── __init__.py │ │ ├── coco_instance_new_baseline_dataset_mapper.py │ │ ├── coco_panoptic_new_baseline_dataset_mapper.py │ │ ├── mask_former_instance_dataset_mapper.py │ │ ├── mask_former_panoptic_dataset_mapper.py │ │ └── mask_former_semantic_dataset_mapper.py │ ├── detr_dataset_mapper.py │ └── transforms │ │ ├── __init__.py │ │ └── color_augmentation.py ├── layers │ ├── __init__.py │ ├── attention.py │ ├── box_ops.py │ ├── conv.py │ ├── csrc │ │ ├── DCNv3 │ │ │ ├── dcnv3.h │ │ │ ├── dcnv3_cpu.cpp │ │ │ ├── dcnv3_cpu.h │ │ │ ├── dcnv3_cuda.cu │ │ │ ├── dcnv3_cuda.h │ │ │ └── dcnv3_im2col_cuda.cuh │ │ ├── MsDeformAttn │ │ │ ├── ms_deform_attn.h │ │ │ ├── ms_deform_attn_cpu.cpp │ │ │ ├── ms_deform_attn_cpu.h │ │ │ ├── ms_deform_attn_cuda.cu │ │ │ ├── ms_deform_attn_cuda.h │ │ │ └── ms_deform_im2col_cuda.cuh │ │ ├── cuda_version.cu │ │ └── vision.cpp │ ├── dcn_v3.py │ ├── denoising.py │ ├── layer_norm.py │ ├── mlp.py │ ├── multi_scale_deform_attn.py │ ├── position_embedding.py │ ├── shape_spec.py │ └── transformer.py ├── modeling │ ├── __init__.py │ ├── backbone │ │ ├── __init__.py │ │ ├── convnext.py │ │ ├── eva.py │ │ ├── eva_02.py │ │ ├── eva_02_utils.py │ │ ├── focalnet.py │ │ ├── internimage.py │ │ ├── resnet.py │ │ ├── timm_backbone.py │ │ ├── torchvision_backbone.py │ │ ├── torchvision_resnet.py │ │ └── utils.py │ ├── criterion │ │ ├── __init__.py │ │ ├── base_criterion.py │ │ └── criterion.py │ ├── ema.py │ ├── losses │ │ ├── __init__.py │ │ ├── cross_entropy_loss.py │ │ ├── dice_loss.py │ │ ├── focal_loss.py │ │ ├── giou_loss.py │ │ ├── smooth_l1_loss.py │ │ └── utils.py │ ├── matcher │ │ ├── __init__.py │ │ ├── match_cost.py │ │ ├── matcher.py │ │ └── modified_matcher.py │ └── neck │ │ ├── __init__.py │ │ └── channel_mapper.py └── utils │ ├── __init__.py │ ├── dist.py │ ├── events.py │ └── misc.py ├── dev ├── linter.sh └── run_unittest.sh ├── docs ├── Makefile ├── README.md ├── requirements.txt └── source │ ├── _static │ └── css │ │ └── line_space.css │ ├── _templates │ ├── .gitkeep │ └── line_space.html │ ├── changelog.md │ ├── conf.py │ ├── index.rst │ ├── modules │ ├── detrex.config.rst │ ├── detrex.data.rst │ ├── detrex.layers.rst │ ├── detrex.modeling.rst │ ├── detrex.utils.rst │ └── index.rst │ └── tutorials │ ├── Config_System.md │ ├── Converters.md │ ├── Customize_Training.md │ ├── Download_Pretrained_Weights.md │ ├── FAQs.md │ ├── Getting_Started.md │ ├── Installation.md │ ├── Model_Zoo.md │ ├── Tools.md │ ├── Using_Pretrained_Backbone.md │ ├── assets │ ├── annotation_demo.jpg │ ├── cosine_lr_scheduler.png │ ├── demo_output.jpg │ ├── dino_prediction_demo.jpg │ ├── exponential_lr_scheduler.png │ ├── linear_lr_scheduler.png │ ├── multi_step_example.png │ ├── multi_step_lr_scheduler.png │ ├── step_lr_scheduler.png │ └── step_lr_with_fixed_gamma.png │ └── index.rst ├── gen_depth.py ├── gen_depthmap.ipynb ├── projects └── vCLR_deformable_mask │ ├── configs │ ├── dino-resnet │ │ ├── deformable_train_coco_eval_lvis.py │ │ └── deformable_train_voc_eval_nonvoc.py │ ├── models │ │ └── dino_r50.py │ ├── timm_example.py │ └── torchvision_example.py │ ├── modeling │ ├── ConsisCriterion.py │ ├── DynamicKMatcher.py │ ├── __init__.py │ ├── dino.py │ ├── dino_transformer.py │ ├── dn_criterion.py │ ├── extractor.py │ ├── misc.py │ ├── ours_mapper.py │ └── two_stage_criterion.py │ └── train_net.py ├── requirements.txt ├── setup.cfg ├── setup.py ├── tests ├── test_cond_attn.py ├── test_ffn.py ├── test_losses.py ├── test_ms_deform_attn.py ├── test_position_embedding.py ├── test_torchvision_backbone.py ├── test_transformer.py └── utils │ ├── __init__.py │ ├── attention.py │ ├── losses.py │ ├── mlp.py │ ├── potision_embedding.py │ └── transformer.py └── tools ├── README.md ├── __init__.py ├── analyze_model.py ├── benchmark.py ├── hydra_train_net.py ├── train_net.py ├── visualize_data.py └── visualize_json_results.py /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: "If you use this software, please cite it as below." 3 | authors: 4 | - name: "detrex Contributors" 5 | title: "IDEA-CVR Detection-Transformer Toolbox and Benchmark" 6 | date-released: 2022-09-21 7 | url: "https://github.com/IDEA-Research/detrex" 8 | license: Apache-2.0 9 | -------------------------------------------------------------------------------- /assets/method.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/assets/method.png -------------------------------------------------------------------------------- /configs/common/data/constants.py: -------------------------------------------------------------------------------- 1 | constants = dict( 2 | imagenet_rgb256_mean=[123.675, 116.28, 103.53], 3 | imagenet_rgb256_std=[58.395, 57.12, 57.375], 4 | imagenet_bgr256_mean=[103.530, 116.280, 123.675], 5 | # When using pre-trained models in Detectron1 or any MSRA models, 6 | # std has been absorbed into its conv1 weights, so the std needs to be set 1. 7 | # Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) 8 | imagenet_bgr256_std=[1.0, 1.0, 1.0], 9 | ) -------------------------------------------------------------------------------- /demo/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## detrex demo 3 | 4 | We provide a command line tool to run a simple demo using pretrained weights. 5 | The usage is explained in [Getting Started with detrex](https://detrex.readthedocs.io/en/latest/tutorials/Getting_Started.html). 6 | 7 | -------------------------------------------------------------------------------- /demo/__init__.py: -------------------------------------------------------------------------------- 1 | from .predictors import VisualizationDemo 2 | -------------------------------------------------------------------------------- /detectron2/.flake8: -------------------------------------------------------------------------------- 1 | # This is an example .flake8 config, used when developing *Black* itself. 2 | # Keep in sync with setup.cfg which is used for source packages. 3 | 4 | [flake8] 5 | ignore = W503, E203, E221, C901, C408, E741, C407, B017, F811, C101, EXE001, EXE002 6 | max-line-length = 100 7 | max-complexity = 18 8 | select = B,C,E,F,W,T4,B9 9 | exclude = build 10 | per-file-ignores = 11 | **/__init__.py:F401,F403,E402 12 | **/configs/**.py:F401,E402 13 | configs/**.py:F401,E402 14 | **/tests/config/**.py:F401,E402 15 | tests/config/**.py:F401,E402 16 | -------------------------------------------------------------------------------- /detectron2/.github/CODE_OF_CONDUCT.md: -------------------------------------------------------------------------------- 1 | # Code of Conduct 2 | 3 | Facebook has adopted a Code of Conduct that we expect project participants to adhere to. 4 | Please read the [full text](https://code.fb.com/codeofconduct/) 5 | so that you can understand what actions will and will not be tolerated. 6 | -------------------------------------------------------------------------------- /detectron2/.github/ISSUE_TEMPLATE.md: -------------------------------------------------------------------------------- 1 | 2 | Please select an issue template from 3 | https://github.com/facebookresearch/detectron2/issues/new/choose . 4 | 5 | Otherwise your issue will be closed. 6 | -------------------------------------------------------------------------------- /detectron2/.github/ISSUE_TEMPLATE/documentation.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: "\U0001F4DA Documentation Issue" 3 | about: Report a problem about existing documentation, comments, website or tutorials. 4 | labels: documentation 5 | 6 | --- 7 | 8 | ## 📚 Documentation Issue 9 | 10 | This issue category is for problems about existing documentation, not for asking how-to questions. 11 | 12 | * Provide a link to an existing documentation/comment/tutorial: 13 | 14 | * How should the above documentation/comment/tutorial improve: 15 | -------------------------------------------------------------------------------- /detectron2/.github/pull_request_template.md: -------------------------------------------------------------------------------- 1 | Thanks for your contribution! 2 | 3 | If you're sending a large PR (e.g., >100 lines), 4 | please open an issue first about the feature / bug, and indicate how you want to contribute. 5 | 6 | We do not always accept features. 7 | See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests about how we handle PRs. 8 | 9 | Before submitting a PR, please run `dev/linter.sh` to lint the code. 10 | 11 | -------------------------------------------------------------------------------- /detectron2/configs/Base-RCNN-C4.yaml: -------------------------------------------------------------------------------- 1 | MODEL: 2 | META_ARCHITECTURE: "GeneralizedRCNN" 3 | RPN: 4 | PRE_NMS_TOPK_TEST: 6000 5 | POST_NMS_TOPK_TEST: 1000 6 | ROI_HEADS: 7 | NAME: "Res5ROIHeads" 8 | DATASETS: 9 | TRAIN: ("coco_2017_train",) 10 | TEST: ("coco_2017_val",) 11 | SOLVER: 12 | IMS_PER_BATCH: 16 13 | BASE_LR: 0.02 14 | STEPS: (60000, 80000) 15 | MAX_ITER: 90000 16 | INPUT: 17 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 18 | VERSION: 2 19 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | MASK_ON: False 4 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 5 | PIXEL_STD: [57.375, 57.120, 58.395] 6 | RESNETS: 7 | STRIDE_IN_1X1: False # this is a C2 model 8 | NUM_GROUPS: 32 9 | WIDTH_PER_GROUP: 8 10 | DEPTH: 101 11 | SOLVER: 12 | STEPS: (210000, 250000) 13 | MAX_ITER: 270000 14 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/fcos_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.fcos import model 5 | from ..common.train import train 6 | 7 | dataloader.train.mapper.use_instance_mask = False 8 | optimizer.lr = 0.01 9 | 10 | model.backbone.bottom_up.freeze_at = 2 11 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 12 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.retinanet import model 5 | from ..common.train import train 6 | 7 | dataloader.train.mapper.use_instance_mask = False 8 | model.backbone.bottom_up.freeze_at = 2 9 | optimizer.lr = 0.01 10 | 11 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 12 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "ProposalNetwork" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: False 6 | RESNETS: 7 | DEPTH: 50 8 | RPN: 9 | PRE_NMS_TOPK_TEST: 12000 10 | POST_NMS_TOPK_TEST: 2000 11 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "ProposalNetwork" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: False 6 | RESNETS: 7 | DEPTH: 50 8 | RPN: 9 | POST_NMS_TOPK_TEST: 2000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.train import train 2 | from ..common.optim import SGD as optimizer 3 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 4 | from ..common.data.coco import dataloader 5 | from ..common.models.mask_rcnn_c4 import model 6 | 7 | model.backbone.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.mask_rcnn_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | RPN: 8 | BBOX_REG_LOSS_TYPE: "giou" 9 | BBOX_REG_LOSS_WEIGHT: 2.0 10 | ROI_BOX_HEAD: 11 | BBOX_REG_LOSS_TYPE: "giou" 12 | BBOX_REG_LOSS_WEIGHT: 10.0 13 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | MASK_ON: True 4 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 5 | PIXEL_STD: [57.375, 57.120, 58.395] 6 | RESNETS: 7 | STRIDE_IN_1X1: False # this is a C2 model 8 | NUM_GROUPS: 32 9 | WIDTH_PER_GROUP: 8 10 | DEPTH: 101 11 | SOLVER: 12 | STEPS: (210000, 250000) 13 | MAX_ITER: 270000 14 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco_keypoint import dataloader 4 | from ..common.models.keypoint_rcnn_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 4 | PIXEL_STD: [57.375, 57.120, 58.395] 5 | RESNETS: 6 | STRIDE_IN_1X1: False # this is a C2 model 7 | NUM_GROUPS: 32 8 | WIDTH_PER_GROUP: 8 9 | DEPTH: 101 10 | SOLVER: 11 | STEPS: (210000, 250000) 12 | MAX_ITER: 270000 13 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "PanopticFPN" 4 | MASK_ON: True 5 | SEM_SEG_HEAD: 6 | LOSS_WEIGHT: 0.5 7 | DATASETS: 8 | TRAIN: ("coco_2017_train_panoptic_separated",) 9 | TEST: ("coco_2017_val_panoptic_separated",) 10 | DATALOADER: 11 | FILTER_EMPTY_ANNOTATIONS: False 12 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco_panoptic_separated import dataloader 4 | from ..common.models.panoptic_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | # Detectron1 uses smooth L1 loss with some magic beta values. 8 | # The defaults are changed to L1 loss in Detectron2. 9 | RPN: 10 | SMOOTH_L1_BETA: 0.1111 11 | ROI_BOX_HEAD: 12 | SMOOTH_L1_BETA: 1.0 13 | POOLER_SAMPLING_RATIO: 2 14 | POOLER_TYPE: "ROIAlign" 15 | INPUT: 16 | # no scale augmentation 17 | MIN_SIZE_TRAIN: (800, ) 18 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NAME: CascadeROIHeads 9 | ROI_BOX_HEAD: 10 | CLS_AGNOSTIC_BBOX_REG: True 11 | RPN: 12 | POST_NMS_TOPK_TRAIN: 2000 13 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NAME: CascadeROIHeads 9 | ROI_BOX_HEAD: 10 | CLS_AGNOSTIC_BBOX_REG: True 11 | RPN: 12 | POST_NMS_TOPK_TRAIN: 2000 13 | SOLVER: 14 | STEPS: (210000, 250000) 15 | MAX_ITER: 270000 16 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_BOX_HEAD: 8 | CLS_AGNOSTIC_BBOX_REG: True 9 | ROI_MASK_HEAD: 10 | CLS_AGNOSTIC_MASK: True 11 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5 8 | DEFORM_MODULATED: False 9 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5 8 | DEFORM_MODULATED: False 9 | SOLVER: 10 | STEPS: (210000, 250000) 11 | MAX_ITER: 270000 12 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | NORM: "GN" 8 | STRIDE_IN_1X1: False 9 | FPN: 10 | NORM: "GN" 11 | ROI_BOX_HEAD: 12 | NAME: "FastRCNNConvFCHead" 13 | NUM_CONV: 4 14 | NUM_FC: 1 15 | NORM: "GN" 16 | ROI_MASK_HEAD: 17 | NORM: "GN" 18 | SOLVER: 19 | # 3x schedule 20 | STEPS: (210000, 250000) 21 | MAX_ITER: 270000 22 | -------------------------------------------------------------------------------- /detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TRAIN: ("coco_2017_train_panoptic_stuffonly",) 9 | TEST: ("coco_2017_val_panoptic_stuffonly",) 10 | INPUT: 11 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 12 | -------------------------------------------------------------------------------- /detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NUM_CLASSES: 20 9 | INPUT: 10 | MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) 11 | MIN_SIZE_TEST: 800 12 | DATASETS: 13 | TRAIN: ('voc_2007_trainval', 'voc_2012_trainval') 14 | TEST: ('voc_2007_test',) 15 | SOLVER: 16 | STEPS: (12000, 16000) 17 | MAX_ITER: 18000 # 17.4 epochs 18 | WARMUP_ITERS: 100 19 | -------------------------------------------------------------------------------- /detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NUM_CLASSES: 20 9 | INPUT: 10 | MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) 11 | MIN_SIZE_TEST: 800 12 | DATASETS: 13 | TRAIN: ('voc_2007_trainval', 'voc_2012_trainval') 14 | TEST: ('voc_2007_test',) 15 | SOLVER: 16 | STEPS: (12000, 16000) 17 | MAX_ITER: 18000 # 17.4 epochs 18 | WARMUP_ITERS: 100 19 | -------------------------------------------------------------------------------- /detectron2/configs/common/README.md: -------------------------------------------------------------------------------- 1 | This directory provides definitions for a few common models, dataloaders, scheduler, 2 | and optimizers that are often used in training. 3 | The definition of these objects are provided in the form of lazy instantiation: 4 | their arguments can be edited by users before constructing the objects. 5 | 6 | They can be imported, or loaded by `model_zoo.get_config` API in users' own configs. 7 | -------------------------------------------------------------------------------- /detectron2/configs/common/data/coco_keypoint.py: -------------------------------------------------------------------------------- 1 | from detectron2.data.detection_utils import create_keypoint_hflip_indices 2 | 3 | from .coco import dataloader 4 | 5 | dataloader.train.dataset.min_keypoints = 1 6 | dataloader.train.dataset.names = "keypoints_coco_2017_train" 7 | dataloader.test.dataset.names = "keypoints_coco_2017_val" 8 | 9 | dataloader.train.mapper.update( 10 | use_instance_mask=False, 11 | use_keypoint=True, 12 | keypoint_hflip_indices=create_keypoint_hflip_indices(dataloader.train.dataset.names), 13 | ) 14 | -------------------------------------------------------------------------------- /detectron2/configs/common/data/constants.py: -------------------------------------------------------------------------------- 1 | constants = dict( 2 | imagenet_rgb256_mean=[123.675, 116.28, 103.53], 3 | imagenet_rgb256_std=[58.395, 57.12, 57.375], 4 | imagenet_bgr256_mean=[103.530, 116.280, 123.675], 5 | # When using pre-trained models in Detectron1 or any MSRA models, 6 | # std has been absorbed into its conv1 weights, so the std needs to be set 1. 7 | # Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) 8 | imagenet_bgr256_std=[1.0, 1.0, 1.0], 9 | ) 10 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | model.backbone.bottom_up.stages.depth = 101 10 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_101_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_101_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter //= 2 # 100ep -> 50ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone // 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml" 2 | DATASETS: 3 | TRAIN: ("coco_2017_val_100",) 4 | TEST: ("coco_2017_val_100",) 5 | SOLVER: 6 | BASE_LR: 0.005 7 | STEPS: (30,) 8 | MAX_ITER: 40 9 | IMS_PER_BATCH: 4 10 | DATALOADER: 11 | NUM_WORKERS: 2 12 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl" 4 | DATASETS: 5 | TEST: ("keypoints_coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | KEYPOINT_ON: True 5 | ROI_HEADS: 6 | NUM_CLASSES: 1 7 | DATASETS: 8 | TRAIN: ("keypoints_coco_2017_val_100",) 9 | TEST: ("keypoints_coco_2017_val_100",) 10 | SOLVER: 11 | BASE_LR: 0.005 12 | STEPS: (30,) 13 | MAX_ITER: 40 14 | IMS_PER_BATCH: 4 15 | DATALOADER: 16 | NUM_WORKERS: 2 17 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.001 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | CLIP_TYPE: "value" 16 | CLIP_VALUE: 1.0 17 | DATALOADER: 18 | NUM_WORKERS: 2 19 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.001 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | DATALOADER: 14 | NUM_WORKERS: 2 15 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.44, 0.02], ["segm", "AP", 42.94, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.34, 0.02], ["segm", "AP", 42.67, 0.02], ["bbox_TTA", "AP", 49.11, 0.02], ["segm_TTA", "AP", 45.04, 0.02]] 8 | AUG: 9 | ENABLED: True 10 | MIN_SIZES: (700, 800) # to save some time 11 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.005 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | DATALOADER: 14 | NUM_WORKERS: 2 15 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_pred_boxes_training_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "./mask_rcnn_R_50_FPN_training_acc_test.yaml" 2 | MODEL: 3 | ROI_BOX_HEAD: 4 | TRAIN_ON_PRED_BOXES: True 5 | TEST: 6 | EXPECTED_RESULTS: [["bbox", "AP", 42.6, 1.0], ["segm", "AP", 35.8, 0.8]] 7 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100_panoptic_separated",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 46.47, 0.02], ["segm", "AP", 43.39, 0.02], ["sem_seg", "mIoU", 42.55, 0.02], ["panoptic_seg", "PQ", 38.99, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "PanopticFPN" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: True 6 | RESNETS: 7 | DEPTH: 50 8 | SEM_SEG_HEAD: 9 | LOSS_WEIGHT: 0.5 10 | DATASETS: 11 | TRAIN: ("coco_2017_val_100_panoptic_separated",) 12 | TEST: ("coco_2017_val_100_panoptic_separated",) 13 | SOLVER: 14 | BASE_LR: 0.005 15 | STEPS: (30,) 16 | MAX_ITER: 40 17 | IMS_PER_BATCH: 4 18 | DATALOADER: 19 | NUM_WORKERS: 1 20 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/retinanet_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/190397829/model_final_5bd44e.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 44.45, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/retinanet_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("coco_2017_val_100",) 6 | TEST: ("coco_2017_val_100",) 7 | SOLVER: 8 | BASE_LR: 0.005 9 | STEPS: (30,) 10 | MAX_ITER: 40 11 | IMS_PER_BATCH: 4 12 | DATALOADER: 13 | NUM_WORKERS: 2 14 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["box_proposals", "AR@1000", 58.16, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("coco_2017_val_100",) 6 | TEST: ("coco_2017_val_100",) 7 | SOLVER: 8 | STEPS: (30,) 9 | MAX_ITER: 40 10 | BASE_LR: 0.005 11 | IMS_PER_BATCH: 4 12 | DATALOADER: 13 | NUM_WORKERS: 2 14 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://semantic_R_50_FPN_1x/111802073/model_final_c18079783c55a94968edc28b7101c5f0.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TEST: ("coco_2017_val_100_panoptic_stuffonly",) 9 | TEST: 10 | EXPECTED_RESULTS: [["sem_seg", "mIoU", 39.53, 0.02], ["sem_seg", "mACC", 51.50, 0.02]] 11 | -------------------------------------------------------------------------------- /detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TRAIN: ("coco_2017_val_100_panoptic_stuffonly",) 9 | TEST: ("coco_2017_val_100_panoptic_stuffonly",) 10 | INPUT: 11 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 12 | SOLVER: 13 | BASE_LR: 0.005 14 | STEPS: (30,) 15 | MAX_ITER: 40 16 | IMS_PER_BATCH: 4 17 | DATALOADER: 18 | NUM_WORKERS: 2 19 | -------------------------------------------------------------------------------- /detectron2/demo/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Detectron2 Demo 3 | 4 | We provide a command line tool to run a simple demo of builtin configs. 5 | The usage is explained in [GETTING_STARTED.md](../GETTING_STARTED.md). 6 | 7 | See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-) 8 | for a high-quality demo generated with this tool. 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/.nfs00000002580b1e4a0000002d: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/.nfs00000002580b1e4a0000002d -------------------------------------------------------------------------------- /detectron2/detectron2/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .utils.env import setup_environment 4 | 5 | setup_environment() 6 | 7 | 8 | # This line will be programatically read/write by setup.py. 9 | # Leave them at the bottom of this file and don't touch them. 10 | __version__ = "0.6" 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/checkpoint/__init__.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | # File: 4 | 5 | 6 | from . import catalog as _UNUSED # register the handler 7 | from .detection_checkpoint import DetectionCheckpointer 8 | from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer 9 | 10 | __all__ = ["Checkpointer", "PeriodicCheckpointer", "DetectionCheckpointer"] 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Base-RCNN-C4.yaml: -------------------------------------------------------------------------------- 1 | MODEL: 2 | META_ARCHITECTURE: "GeneralizedRCNN" 3 | RPN: 4 | PRE_NMS_TOPK_TEST: 6000 5 | POST_NMS_TOPK_TEST: 1000 6 | ROI_HEADS: 7 | NAME: "Res5ROIHeads" 8 | DATASETS: 9 | TRAIN: ("coco_2017_train",) 10 | TEST: ("coco_2017_val",) 11 | SOLVER: 12 | IMS_PER_BATCH: 16 13 | BASE_LR: 0.02 14 | STEPS: (60000, 80000) 15 | MAX_ITER: 90000 16 | INPUT: 17 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 18 | VERSION: 2 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | MASK_ON: False 4 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 5 | PIXEL_STD: [57.375, 57.120, 58.395] 6 | RESNETS: 7 | STRIDE_IN_1X1: False # this is a C2 model 8 | NUM_GROUPS: 32 9 | WIDTH_PER_GROUP: 8 10 | DEPTH: 101 11 | SOLVER: 12 | STEPS: (210000, 250000) 13 | MAX_ITER: 270000 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/fcos_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.fcos import model 5 | from ..common.train import train 6 | 7 | dataloader.train.mapper.use_instance_mask = False 8 | optimizer.lr = 0.01 9 | 10 | model.backbone.bottom_up.freeze_at = 2 11 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.retinanet import model 5 | from ..common.train import train 6 | 7 | dataloader.train.mapper.use_instance_mask = False 8 | model.backbone.bottom_up.freeze_at = 2 9 | optimizer.lr = 0.01 10 | 11 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RetinaNet.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "ProposalNetwork" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: False 6 | RESNETS: 7 | DEPTH: 50 8 | RPN: 9 | PRE_NMS_TOPK_TEST: 12000 10 | POST_NMS_TOPK_TEST: 2000 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "ProposalNetwork" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: False 6 | RESNETS: 7 | DEPTH: 50 8 | RPN: 9 | POST_NMS_TOPK_TEST: 2000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.train import train 2 | from ..common.optim import SGD as optimizer 3 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 4 | from ..common.data.coco import dataloader 5 | from ..common.models.mask_rcnn_c4 import model 6 | 7 | model.backbone.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-DilatedC5.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco import dataloader 4 | from ..common.models.mask_rcnn_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | RPN: 8 | BBOX_REG_LOSS_TYPE: "giou" 9 | BBOX_REG_LOSS_WEIGHT: 2.0 10 | ROI_BOX_HEAD: 11 | BBOX_REG_LOSS_TYPE: "giou" 12 | BBOX_REG_LOSS_WEIGHT: 10.0 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | MASK_ON: True 4 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 5 | PIXEL_STD: [57.375, 57.120, 58.395] 6 | RESNETS: 7 | STRIDE_IN_1X1: False # this is a C2 model 8 | NUM_GROUPS: 32 9 | WIDTH_PER_GROUP: 8 10 | DEPTH: 101 11 | SOLVER: 12 | STEPS: (210000, 250000) 13 | MAX_ITER: 270000 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco_keypoint import dataloader 4 | from ..common.models.keypoint_rcnn_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Keypoint-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" 4 | PIXEL_STD: [57.375, 57.120, 58.395] 5 | RESNETS: 6 | STRIDE_IN_1X1: False # this is a C2 model 7 | NUM_GROUPS: 32 8 | WIDTH_PER_GROUP: 8 9 | DEPTH: 101 10 | SOLVER: 11 | STEPS: (210000, 250000) 12 | MAX_ITER: 270000 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "PanopticFPN" 4 | MASK_ON: True 5 | SEM_SEG_HEAD: 6 | LOSS_WEIGHT: 0.5 7 | DATASETS: 8 | TRAIN: ("coco_2017_train_panoptic_separated",) 9 | TEST: ("coco_2017_val_panoptic_separated",) 10 | DATALOADER: 11 | FILTER_EMPTY_ANNOTATIONS: False 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py: -------------------------------------------------------------------------------- 1 | from ..common.optim import SGD as optimizer 2 | from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier 3 | from ..common.data.coco_panoptic_separated import dataloader 4 | from ..common.models.panoptic_fpn import model 5 | from ..common.train import train 6 | 7 | model.backbone.bottom_up.freeze_at = 2 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Panoptic-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | # Detectron1 uses smooth L1 loss with some magic beta values. 8 | # The defaults are changed to L1 loss in Detectron2. 9 | RPN: 10 | SMOOTH_L1_BETA: 0.1111 11 | ROI_BOX_HEAD: 12 | SMOOTH_L1_BETA: 1.0 13 | POOLER_SAMPLING_RATIO: 2 14 | POOLER_TYPE: "ROIAlign" 15 | INPUT: 16 | # no scale augmentation 17 | MIN_SIZE_TRAIN: (800, ) 18 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NAME: CascadeROIHeads 9 | ROI_BOX_HEAD: 10 | CLS_AGNOSTIC_BBOX_REG: True 11 | RPN: 12 | POST_NMS_TOPK_TRAIN: 2000 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NAME: CascadeROIHeads 9 | ROI_BOX_HEAD: 10 | CLS_AGNOSTIC_BBOX_REG: True 11 | RPN: 12 | POST_NMS_TOPK_TRAIN: 2000 13 | SOLVER: 14 | STEPS: (210000, 250000) 15 | MAX_ITER: 270000 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_BOX_HEAD: 8 | CLS_AGNOSTIC_BBOX_REG: True 9 | ROI_MASK_HEAD: 10 | CLS_AGNOSTIC_MASK: True 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5 8 | DEFORM_MODULATED: False 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5 8 | DEFORM_MODULATED: False 9 | SOLVER: 10 | STEPS: (210000, 250000) 11 | MAX_ITER: 270000 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | NORM: "GN" 8 | STRIDE_IN_1X1: False 9 | FPN: 10 | NORM: "GN" 11 | ROI_BOX_HEAD: 12 | NAME: "FastRCNNConvFCHead" 13 | NUM_CONV: 4 14 | NUM_FC: 1 15 | NORM: "GN" 16 | ROI_MASK_HEAD: 17 | NORM: "GN" 18 | SOLVER: 19 | # 3x schedule 20 | STEPS: (210000, 250000) 21 | MAX_ITER: 270000 22 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TRAIN: ("coco_2017_train_panoptic_stuffonly",) 9 | TEST: ("coco_2017_val_panoptic_stuffonly",) 10 | INPUT: 11 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NUM_CLASSES: 20 9 | INPUT: 10 | MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) 11 | MIN_SIZE_TEST: 800 12 | DATASETS: 13 | TRAIN: ('voc_2007_trainval', 'voc_2012_trainval') 14 | TEST: ('voc_2007_test',) 15 | SOLVER: 16 | STEPS: (12000, 16000) 17 | MAX_ITER: 18000 # 17.4 epochs 18 | WARMUP_ITERS: 100 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_HEADS: 8 | NUM_CLASSES: 20 9 | INPUT: 10 | MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) 11 | MIN_SIZE_TEST: 800 12 | DATASETS: 13 | TRAIN: ('voc_2007_trainval', 'voc_2012_trainval') 14 | TEST: ('voc_2007_test',) 15 | SOLVER: 16 | STEPS: (12000, 16000) 17 | MAX_ITER: 18000 # 17.4 epochs 18 | WARMUP_ITERS: 100 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/common/README.md: -------------------------------------------------------------------------------- 1 | This directory provides definitions for a few common models, dataloaders, scheduler, 2 | and optimizers that are often used in training. 3 | The definition of these objects are provided in the form of lazy instantiation: 4 | their arguments can be edited by users before constructing the objects. 5 | 6 | They can be imported, or loaded by `model_zoo.get_config` API in users' own configs. 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/common/data/coco_keypoint.py: -------------------------------------------------------------------------------- 1 | from detectron2.data.detection_utils import create_keypoint_hflip_indices 2 | 3 | from .coco import dataloader 4 | 5 | dataloader.train.dataset.min_keypoints = 1 6 | dataloader.train.dataset.names = "keypoints_coco_2017_train" 7 | dataloader.test.dataset.names = "keypoints_coco_2017_val" 8 | 9 | dataloader.train.mapper.update( 10 | use_instance_mask=False, 11 | use_keypoint=True, 12 | keypoint_hflip_indices=create_keypoint_hflip_indices(dataloader.train.dataset.names), 13 | ) 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/common/data/constants.py: -------------------------------------------------------------------------------- 1 | constants = dict( 2 | imagenet_rgb256_mean=[123.675, 116.28, 103.53], 3 | imagenet_rgb256_std=[58.395, 57.12, 57.375], 4 | imagenet_bgr256_mean=[103.530, 116.280, 123.675], 5 | # When using pre-trained models in Detectron1 or any MSRA models, 6 | # std has been absorbed into its conv1 weights, so the std needs to be set 1. 7 | # Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) 8 | imagenet_bgr256_std=[1.0, 1.0, 1.0], 9 | ) 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | model.backbone.bottom_up.stages.depth = 101 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_101_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_101_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_R_50_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter //= 2 # 100ep -> 50ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone // 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 2 # 100ep -> 200ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 2 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | optimizer, 6 | train, 7 | ) 8 | 9 | train.max_iter *= 4 # 100ep -> 400ep 10 | 11 | lr_multiplier.scheduler.milestones = [ 12 | milestone * 4 for milestone in lr_multiplier.scheduler.milestones 13 | ] 14 | lr_multiplier.scheduler.num_updates = train.max_iter 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml" 2 | DATASETS: 3 | TRAIN: ("coco_2017_val_100",) 4 | TEST: ("coco_2017_val_100",) 5 | SOLVER: 6 | BASE_LR: 0.005 7 | STEPS: (30,) 8 | MAX_ITER: 40 9 | IMS_PER_BATCH: 4 10 | DATALOADER: 11 | NUM_WORKERS: 2 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl" 4 | DATASETS: 5 | TEST: ("keypoints_coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | KEYPOINT_ON: True 5 | ROI_HEADS: 6 | NUM_CLASSES: 1 7 | DATASETS: 8 | TRAIN: ("keypoints_coco_2017_val_100",) 9 | TEST: ("keypoints_coco_2017_val_100",) 10 | SOLVER: 11 | BASE_LR: 0.005 12 | STEPS: (30,) 13 | MAX_ITER: 40 14 | IMS_PER_BATCH: 4 15 | DATALOADER: 16 | NUM_WORKERS: 2 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.001 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | CLIP_TYPE: "value" 16 | CLIP_VALUE: 1.0 17 | DATALOADER: 18 | NUM_WORKERS: 2 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.001 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | DATALOADER: 14 | NUM_WORKERS: 2 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.44, 0.02], ["segm", "AP", 42.94, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 47.34, 0.02], ["segm", "AP", 42.67, 0.02], ["bbox_TTA", "AP", 49.11, 0.02], ["segm_TTA", "AP", 45.04, 0.02]] 8 | AUG: 9 | ENABLED: True 10 | MIN_SIZES: (700, 800) # to save some time 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | DATASETS: 6 | TRAIN: ("coco_2017_val_100",) 7 | TEST: ("coco_2017_val_100",) 8 | SOLVER: 9 | BASE_LR: 0.005 10 | STEPS: (30,) 11 | MAX_ITER: 40 12 | IMS_PER_BATCH: 4 13 | DATALOADER: 14 | NUM_WORKERS: 2 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_pred_boxes_training_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "./mask_rcnn_R_50_FPN_training_acc_test.yaml" 2 | MODEL: 3 | ROI_BOX_HEAD: 4 | TRAIN_ON_PRED_BOXES: True 5 | TEST: 6 | EXPECTED_RESULTS: [["bbox", "AP", 42.6, 1.0], ["segm", "AP", 35.8, 0.8]] 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100_panoptic_separated",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 46.47, 0.02], ["segm", "AP", 43.39, 0.02], ["sem_seg", "mIoU", 42.55, 0.02], ["panoptic_seg", "PQ", 38.99, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "PanopticFPN" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | MASK_ON: True 6 | RESNETS: 7 | DEPTH: 50 8 | SEM_SEG_HEAD: 9 | LOSS_WEIGHT: 0.5 10 | DATASETS: 11 | TRAIN: ("coco_2017_val_100_panoptic_separated",) 12 | TEST: ("coco_2017_val_100_panoptic_separated",) 13 | SOLVER: 14 | BASE_LR: 0.005 15 | STEPS: (30,) 16 | MAX_ITER: 40 17 | IMS_PER_BATCH: 4 18 | DATALOADER: 19 | NUM_WORKERS: 1 20 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/retinanet_R_50_FPN_3x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/190397829/model_final_5bd44e.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["bbox", "AP", 44.45, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/retinanet_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("coco_2017_val_100",) 6 | TEST: ("coco_2017_val_100",) 7 | SOLVER: 8 | BASE_LR: 0.005 9 | STEPS: (30,) 10 | MAX_ITER: 40 11 | IMS_PER_BATCH: 4 12 | DATALOADER: 13 | NUM_WORKERS: 2 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl" 4 | DATASETS: 5 | TEST: ("coco_2017_val_100",) 6 | TEST: 7 | EXPECTED_RESULTS: [["box_proposals", "AR@1000", 58.16, 0.02]] 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("coco_2017_val_100",) 6 | TEST: ("coco_2017_val_100",) 7 | SOLVER: 8 | STEPS: (30,) 9 | MAX_ITER: 40 10 | BASE_LR: 0.005 11 | IMS_PER_BATCH: 4 12 | DATALOADER: 13 | NUM_WORKERS: 2 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://semantic_R_50_FPN_1x/111802073/model_final_c18079783c55a94968edc28b7101c5f0.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TEST: ("coco_2017_val_100_panoptic_stuffonly",) 9 | TEST: 10 | EXPECTED_RESULTS: [["sem_seg", "mIoU", 39.53, 0.02], ["sem_seg", "mACC", 51.50, 0.02]] 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-RCNN-FPN.yaml" 2 | MODEL: 3 | META_ARCHITECTURE: "SemanticSegmentor" 4 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 5 | RESNETS: 6 | DEPTH: 50 7 | DATASETS: 8 | TRAIN: ("coco_2017_val_100_panoptic_stuffonly",) 9 | TEST: ("coco_2017_val_100_panoptic_stuffonly",) 10 | INPUT: 11 | MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 12 | SOLVER: 13 | BASE_LR: 0.005 14 | STEPS: (30,) 15 | MAX_ITER: 40 16 | IMS_PER_BATCH: 4 17 | DATALOADER: 18 | NUM_WORKERS: 2 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/data/samplers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .distributed_sampler import ( 3 | InferenceSampler, 4 | RandomSubsetTrainingSampler, 5 | RepeatFactorTrainingSampler, 6 | TrainingSampler, 7 | ) 8 | 9 | from .grouped_batch_sampler import GroupedBatchSampler 10 | 11 | __all__ = [ 12 | "GroupedBatchSampler", 13 | "TrainingSampler", 14 | "RandomSubsetTrainingSampler", 15 | "InferenceSampler", 16 | "RepeatFactorTrainingSampler", 17 | ] 18 | -------------------------------------------------------------------------------- /detectron2/detectron2/data/transforms/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from fvcore.transforms.transform import Transform, TransformList # order them first 3 | from fvcore.transforms.transform import * 4 | from .transform import * 5 | from .augmentation import * 6 | from .augmentation_impl import * 7 | 8 | __all__ = [k for k in globals().keys() if not k.startswith("_")] 9 | 10 | 11 | from detectron2.utils.env import fixup_module_metadata 12 | 13 | fixup_module_metadata(__name__, globals(), __all__) 14 | del fixup_module_metadata 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/demo/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Detectron2 Demo 3 | 4 | We provide a command line tool to run a simple demo of builtin configs. 5 | The usage is explained in [GETTING_STARTED.md](../GETTING_STARTED.md). 6 | 7 | See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-) 8 | for a high-quality demo generated with this tool. 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/dev/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Some scripts for developers to use, include: 3 | 4 | - `linter.sh`: lint the codebase before commit. 5 | - `run_{inference,instant}_tests.sh`: run inference/training for a few iterations. 6 | Note that these tests require 2 GPUs. 7 | - `parse_results.sh`: parse results from a log file. 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/.gitignore: -------------------------------------------------------------------------------- 1 | _build 2 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/README.md: -------------------------------------------------------------------------------- 1 | # Read the docs: 2 | 3 | The latest documentation built from this directory is available at [detectron2.readthedocs.io](https://detectron2.readthedocs.io/). 4 | Documents in this directory are not meant to be read on github. 5 | 6 | # Build the docs: 7 | 8 | 1. Install detectron2 according to [INSTALL.md](../INSTALL.md). 9 | 2. Install additional libraries required to build docs: 10 | - docutils==0.16 11 | - Sphinx==3.2.0 12 | - recommonmark==0.6.0 13 | - sphinx_rtd_theme 14 | 15 | 3. Run `make html` from this directory. 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/index.rst: -------------------------------------------------------------------------------- 1 | .. detectron2 documentation master file, created by 2 | sphinx-quickstart on Sat Sep 21 13:46:45 2019. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | Welcome to detectron2's documentation! 7 | ====================================== 8 | 9 | .. toctree:: 10 | :maxdepth: 2 11 | 12 | tutorials/index 13 | notes/index 14 | modules/index 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/checkpoint.rst: -------------------------------------------------------------------------------- 1 | detectron2.checkpoint 2 | ============================= 3 | 4 | .. automodule:: detectron2.checkpoint 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/config.rst: -------------------------------------------------------------------------------- 1 | detectron2.config 2 | ========================= 3 | 4 | Related tutorials: :doc:`../tutorials/configs`, :doc:`../tutorials/extend`. 5 | 6 | .. automodule:: detectron2.config 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | 11 | 12 | Yaml Config References 13 | ----------------- 14 | 15 | .. literalinclude:: ../../detectron2/config/defaults.py 16 | :language: python 17 | :linenos: 18 | :lines: 7- 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/data_transforms.rst: -------------------------------------------------------------------------------- 1 | detectron2.data.transforms 2 | ==================================== 3 | 4 | Related tutorial: :doc:`../tutorials/augmentation`. 5 | 6 | .. automodule:: detectron2.data.transforms 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | :imported-members: 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/evaluation.rst: -------------------------------------------------------------------------------- 1 | detectron2.evaluation 2 | ============================= 3 | 4 | .. automodule:: detectron2.evaluation 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/export.rst: -------------------------------------------------------------------------------- 1 | detectron2.export 2 | ========================= 3 | 4 | Related tutorial: :doc:`../tutorials/deployment`. 5 | 6 | .. automodule:: detectron2.export 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/index.rst: -------------------------------------------------------------------------------- 1 | API Documentation 2 | ================== 3 | 4 | .. toctree:: 5 | 6 | checkpoint 7 | config 8 | data 9 | data_transforms 10 | engine 11 | evaluation 12 | layers 13 | model_zoo 14 | modeling 15 | solver 16 | structures 17 | utils 18 | export 19 | fvcore 20 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/layers.rst: -------------------------------------------------------------------------------- 1 | detectron2.layers 2 | ========================= 3 | 4 | .. automodule:: detectron2.layers 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/model_zoo.rst: -------------------------------------------------------------------------------- 1 | detectron2.model_zoo 2 | ============================ 3 | 4 | .. automodule:: detectron2.model_zoo 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/solver.rst: -------------------------------------------------------------------------------- 1 | detectron2.solver 2 | ========================= 3 | 4 | .. automodule:: detectron2.solver 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/modules/structures.rst: -------------------------------------------------------------------------------- 1 | detectron2.structures 2 | ============================= 3 | 4 | .. automodule:: detectron2.structures 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/notes/index.rst: -------------------------------------------------------------------------------- 1 | Notes 2 | ====================================== 3 | 4 | .. toctree:: 5 | :maxdepth: 2 6 | 7 | benchmarks 8 | compatibility 9 | contributing 10 | changelog 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/tutorials/README.md: -------------------------------------------------------------------------------- 1 | # Read the docs: 2 | 3 | The latest documentation built from this directory is available at [detectron2.readthedocs.io](https://detectron2.readthedocs.io/). 4 | Documents in this directory are not meant to be read on github. 5 | -------------------------------------------------------------------------------- /detectron2/detectron2/docs/tutorials/index.rst: -------------------------------------------------------------------------------- 1 | Tutorials 2 | ====================================== 3 | 4 | .. toctree:: 5 | :maxdepth: 2 6 | 7 | install 8 | getting_started 9 | builtin_datasets 10 | extend 11 | datasets 12 | data_loading 13 | augmentation 14 | models 15 | write-models 16 | training 17 | evaluation 18 | configs 19 | lazyconfigs 20 | deployment 21 | -------------------------------------------------------------------------------- /detectron2/detectron2/engine/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .launch import * 4 | from .train_loop import * 5 | 6 | __all__ = [k for k in globals().keys() if not k.startswith("_")] 7 | 8 | 9 | # prefer to let hooks and defaults live in separate namespaces (therefore not in __all__) 10 | # but still make them available here 11 | from .hooks import * 12 | from .defaults import * 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/layers/csrc/README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | To add a new Op: 4 | 5 | 1. Create a new directory 6 | 2. Implement new ops there 7 | 3. Delcare its Python interface in `vision.cpp`. 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/model_zoo/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | """ 3 | Model Zoo API for Detectron2: a collection of functions to create common model architectures 4 | listed in `MODEL_ZOO.md `_, 5 | and optionally load their pre-trained weights. 6 | """ 7 | 8 | from .model_zoo import get, get_config_file, get_checkpoint_url, get_config 9 | 10 | __all__ = ["get_checkpoint_url", "get", "get_config_file", "get_config"] 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/modeling/proposal_generator/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .build import PROPOSAL_GENERATOR_REGISTRY, build_proposal_generator 3 | from .rpn import RPN_HEAD_REGISTRY, build_rpn_head, RPN, StandardRPNHead 4 | 5 | __all__ = list(globals().keys()) 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DeepLab/deeplab/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .build_solver import build_lr_scheduler 3 | from .config import add_deeplab_config 4 | from .resnet import build_resnet_deeplab_backbone 5 | from .semantic_seg import DeepLabV3Head, DeepLabV3PlusHead 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w" 4 | BACKBONE: 5 | NAME: "build_hrfpn_backbone" 6 | RPN: 7 | IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5'] 8 | ROI_HEADS: 9 | IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5'] 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | CLIP_TYPE: "norm" 16 | BASE_LR: 0.03 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | SOLVER: 9 | MAX_ITER: 130000 10 | STEPS: (100000, 120000) 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | MAX_ITER: 130000 8 | STEPS: (100000, 120000) 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NUM_COARSE_SEGM_CHANNELS: 15 8 | POOLER_RESOLUTION: 14 9 | HEATMAP_SIZE: 56 10 | INDEX_WEIGHTS: 2.0 11 | PART_WEIGHTS: 0.3 12 | POINT_REGRESSION_WEIGHTS: 0.1 13 | DECODER_ON: False 14 | SOLVER: 15 | BASE_LR: 0.002 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | SOLVER: 9 | MAX_ITER: 130000 10 | STEPS: (100000, 120000) 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | MAX_ITER: 130000 8 | STEPS: (100000, 120000) 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NUM_COARSE_SEGM_CHANNELS: 15 8 | POOLER_RESOLUTION: 14 9 | HEATMAP_SIZE: 56 10 | INDEX_WEIGHTS: 2.0 11 | PART_WEIGHTS: 0.3 12 | POINT_REGRESSION_WEIGHTS: 0.1 13 | DECODER_ON: False 14 | SOLVER: 15 | BASE_LR: 0.002 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/quick_schedules/cse/densepose_rcnn_R_50_FPN_DL_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../cse/Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | ROI_DENSEPOSE_HEAD: 5 | NAME: "DensePoseDeepLabHead" 6 | DATASETS: 7 | TRAIN: ("densepose_coco_2014_minival_100_cse",) 8 | TEST: ("densepose_coco_2014_minival_100_cse",) 9 | SOLVER: 10 | MAX_ITER: 40 11 | STEPS: (30,) 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_HRFPN_HRNet_w32_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml" 2 | DATASETS: 3 | TRAIN: ("densepose_coco_2014_minival_100",) 4 | TEST: ("densepose_coco_2014_minival_100",) 5 | SOLVER: 6 | MAX_ITER: 40 7 | STEPS: (30,) 8 | IMS_PER_BATCH: 2 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_DL_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | ROI_DENSEPOSE_HEAD: 5 | NAME: "DensePoseDeepLabHead" 6 | DATASETS: 7 | TRAIN: ("densepose_coco_2014_minival_100",) 8 | TEST: ("densepose_coco_2014_minival_100",) 9 | SOLVER: 10 | MAX_ITER: 40 11 | STEPS: (30,) 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../densepose_rcnn_R_50_FPN_s1x.yaml" 2 | MODEL: 3 | WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl" 4 | DATASETS: 5 | TRAIN: () 6 | TEST: ("densepose_coco_2014_minival_100",) 7 | TEST: 8 | EXPECTED_RESULTS: [["bbox", "AP", 59.27, 0.025], ["densepose_gps", "AP", 60.11, 0.02], ["densepose_gpsm", "AP", 64.09, 0.02]] 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("densepose_coco_2014_minival_100",) 6 | TEST: ("densepose_coco_2014_minival_100",) 7 | SOLVER: 8 | MAX_ITER: 40 9 | STEPS: (30,) 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/data/meshes/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | 3 | from . import builtin 4 | 5 | __all__ = [k for k in globals().keys() if "builtin" not in k and not k.startswith("_")] 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/data/samplers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .densepose_uniform import DensePoseUniformSampler 4 | from .densepose_confidence_based import DensePoseConfidenceBasedSampler 5 | from .densepose_cse_uniform import DensePoseCSEUniformSampler 6 | from .densepose_cse_confidence_based import DensePoseCSEConfidenceBasedSampler 7 | from .mask_from_densepose import MaskFromDensePoseSampler 8 | from .prediction_to_gt import PredictionToGroundTruthSampler 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/data/samplers/densepose_cse_uniform.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .densepose_cse_base import DensePoseCSEBaseSampler 4 | from .densepose_uniform import DensePoseUniformSampler 5 | 6 | 7 | class DensePoseCSEUniformSampler(DensePoseCSEBaseSampler, DensePoseUniformSampler): 8 | """ 9 | Uniform Sampler for CSE 10 | """ 11 | 12 | pass 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/data/transform/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .image import ImageResizeTransform 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/data/video/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .frame_selector import ( 4 | FrameSelectionStrategy, 5 | RandomKFramesSelector, 6 | FirstKFramesSelector, 7 | LastKFramesSelector, 8 | FrameTsList, 9 | FrameSelector, 10 | ) 11 | 12 | from .video_keyframe_dataset import ( 13 | VideoKeyframeDataset, 14 | video_list_from_file, 15 | list_keyframes, 16 | read_keyframes, 17 | ) 18 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/engine/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .trainer import Trainer 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/evaluation/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .evaluator import DensePoseCOCOEvaluator 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .confidence import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType 4 | from .filter import DensePoseDataFilter 5 | from .inference import densepose_inference 6 | from .utils import initialize_module_params 7 | from .build import ( 8 | build_densepose_data_filter, 9 | build_densepose_embedder, 10 | build_densepose_head, 11 | build_densepose_losses, 12 | build_densepose_predictor, 13 | ) 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/cse/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | 3 | from .vertex_direct_embedder import VertexDirectEmbedder 4 | from .vertex_feature_embedder import VertexFeatureEmbedder 5 | from .embedder import Embedder 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/losses/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .chart import DensePoseChartLoss 4 | from .chart_with_confidences import DensePoseChartWithConfidenceLoss 5 | from .cse import DensePoseCseLoss 6 | from .registry import DENSEPOSE_LOSS_REGISTRY 7 | 8 | 9 | __all__ = [ 10 | "DensePoseChartLoss", 11 | "DensePoseChartWithConfidenceLoss", 12 | "DensePoseCseLoss", 13 | "DENSEPOSE_LOSS_REGISTRY", 14 | ] 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/losses/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | DENSEPOSE_LOSS_REGISTRY = Registry("DENSEPOSE_LOSS") 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/predictors/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .chart import DensePoseChartPredictor 4 | from .chart_confidence import DensePoseChartConfidencePredictorMixin 5 | from .chart_with_confidence import DensePoseChartWithConfidencePredictor 6 | from .cse import DensePoseEmbeddingPredictor 7 | from .cse_confidence import DensePoseEmbeddingConfidencePredictorMixin 8 | from .cse_with_confidence import DensePoseEmbeddingWithConfidencePredictor 9 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/predictors/chart_with_confidence.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from . import DensePoseChartConfidencePredictorMixin, DensePoseChartPredictor 4 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 5 | 6 | 7 | @DENSEPOSE_PREDICTOR_REGISTRY.register() 8 | class DensePoseChartWithConfidencePredictor( 9 | DensePoseChartConfidencePredictorMixin, DensePoseChartPredictor 10 | ): 11 | """ 12 | Predictor that combines chart and chart confidence estimation 13 | """ 14 | 15 | pass 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/predictors/cse_with_confidence.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from . import DensePoseEmbeddingConfidencePredictorMixin, DensePoseEmbeddingPredictor 4 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 5 | 6 | 7 | @DENSEPOSE_PREDICTOR_REGISTRY.register() 8 | class DensePoseEmbeddingWithConfidencePredictor( 9 | DensePoseEmbeddingConfidencePredictorMixin, DensePoseEmbeddingPredictor 10 | ): 11 | """ 12 | Predictor that combines CSE and CSE confidence estimation 13 | """ 14 | 15 | pass 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/predictors/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | DENSEPOSE_PREDICTOR_REGISTRY = Registry("DENSEPOSE_PREDICTOR") 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/roi_heads/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .v1convx import DensePoseV1ConvXHead 4 | from .deeplab import DensePoseDeepLabHead 5 | from .registry import ROI_DENSEPOSE_HEAD_REGISTRY 6 | from .roi_head import Decoder, DensePoseROIHeads 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/roi_heads/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | ROI_DENSEPOSE_HEAD_REGISTRY = Registry("ROI_DENSEPOSE_HEAD") 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/modeling/utils.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from torch import nn 4 | 5 | 6 | def initialize_module_params(module: nn.Module) -> None: 7 | for name, param in module.named_parameters(): 8 | if "bias" in name: 9 | nn.init.constant_(param, 0) 10 | elif "weight" in name: 11 | nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/utils/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/projects/DensePose/densepose/utils/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/utils/logger.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | import logging 3 | 4 | 5 | def verbosity_to_level(verbosity) -> int: 6 | if verbosity is not None: 7 | if verbosity == 0: 8 | return logging.WARNING 9 | elif verbosity == 1: 10 | return logging.INFO 11 | elif verbosity >= 2: 12 | return logging.DEBUG 13 | return logging.WARNING 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/densepose/vis/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/projects/DensePose/densepose/vis/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/dev/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Some scripts for developers to use, include: 3 | 4 | - `run_instant_tests.sh`: run training for a few iterations. 5 | - `run_inference_tests.sh`: run inference on a small dataset. 6 | - `../../dev/linter.sh`: lint the codebase before commit 7 | - `../../dev/parse_results.sh`: parse results from log file. 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/DensePose/doc/RELEASE_2020_04.md: -------------------------------------------------------------------------------- 1 | # DensePose Confidence Estimation and Model Zoo Improvements 2 | 3 | * [DensePose models with confidence estimation](doc/DENSEPOSE_IUV.md#ModelZooConfidence) 4 | * [Panoptic FPN and DeepLabV3 head implementation](doc/DENSEPOSE_IUV.md#ModelZooDeepLabV3) 5 | * Test time augmentations for DensePose 6 | * New evaluation metric (GPSm) that yields more reliable scores 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_b_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_t_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | 4 | model.backbone.bottom_up.depth = 24 5 | model.backbone.bottom_up.last_block_indexes = (1, 4, 20, 23) 6 | model.backbone.bottom_up.drop_path_rate = 0.4 7 | 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_B_in1k.pyth" 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_b_in21k_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_b_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_B_in21k.pyth" 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_s_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_t_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | 4 | model.backbone.bottom_up.depth = 16 5 | model.backbone.bottom_up.last_block_indexes = (0, 2, 13, 15) 6 | 7 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_S_in1k.pyth" 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/Panoptic-DeepLab/panoptic_deeplab/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_panoptic_deeplab_config 3 | from .dataset_mapper import PanopticDeeplabDatasetMapper 4 | from .panoptic_seg import ( 5 | PanopticDeepLab, 6 | INS_EMBED_BRANCHES_REGISTRY, 7 | build_ins_embed_branch, 8 | PanopticDeepLabSemSegHead, 9 | PanopticDeepLabInsEmbedHead, 10 | ) 11 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_1x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Implicit-PointRend.yaml" 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 7 | # DATASETS: 8 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Implicit-PointRend.yaml" 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 10 | # DATASETS: 11 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-101.pkl 4 | MASK_ON: true 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 11 | # DATASETS: 12 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 7 | # DATASETS: 8 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 9 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 10 | # DATASETS: 11 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 12 | 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointRend/point_rend/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_pointrend_config 3 | from .mask_head import PointRendMaskHead, ImplicitPointRendMaskHead 4 | from .semantic_seg import PointRendSemSegHead 5 | from .color_augmentation import ColorAugSSDTransform 6 | 7 | from . import roi_heads as _ # only registration 8 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointSup/configs/implicit_pointrend_R_50_FPN_3x_point_sup_point_aug_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_3x_coco.yaml" 2 | MODEL: 3 | ROI_MASK_HEAD: 4 | NAME: "ImplicitPointRendPointSupHead" 5 | INPUT: 6 | POINT_SUP: True 7 | SAMPLE_POINTS: 5 8 | DATASETS: 9 | TRAIN: ("coco_2017_train_points_n10_v1_without_masks",) 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointSup/configs/mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../../configs/Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_MASK_HEAD: 8 | NAME: "MaskRCNNConvUpsamplePointSupHead" 9 | INPUT: 10 | POINT_SUP: True 11 | DATASETS: 12 | TRAIN: ("coco_2017_train_points_n10_v1_without_masks",) 13 | SOLVER: 14 | STEPS: (210000, 250000) 15 | MAX_ITER: 270000 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointSup/configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml" 2 | INPUT: 3 | SAMPLE_POINTS: 5 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointSup/point_sup/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | from . import register_point_annotations 3 | from .config import add_point_sup_config 4 | from .dataset_mapper import PointSupDatasetMapper 5 | from .mask_head import MaskRCNNConvUpsamplePointSupHead 6 | from .point_utils import get_point_coords_from_point_annotation 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/PointSup/point_sup/config.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 3 | 4 | 5 | def add_point_sup_config(cfg): 6 | """ 7 | Add config for point supervision. 8 | """ 9 | # Use point annotation 10 | cfg.INPUT.POINT_SUP = False 11 | # Sample only part of points in each iteration. 12 | # Default: 0, use all available points. 13 | cfg.INPUT.SAMPLE_POINTS = 0 14 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/Rethinking-BatchNorm/configs/mask_rcnn_SyncBNhead.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_BNhead import model, dataloader, lr_multiplier, optimizer, train 2 | 3 | model.roi_heads.box_head.conv_norm = model.roi_heads.mask_head.conv_norm = "SyncBN" 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TensorMask.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_6x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TensorMask.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (480000, 520000) 8 | MAX_ITER: 540000 9 | INPUT: 10 | MIN_SIZE_TRAIN_SAMPLING: "range" 11 | MIN_SIZE_TRAIN: (640, 800) 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/tensormask/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_tensormask_config 3 | from .arch import TensorMask 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/tensormask/layers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .swap_align2nat import SwapAlign2Nat, swap_align2nat 3 | 4 | __all__ = [k for k in globals().keys() if not k.startswith("_")] 5 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/tensormask/layers/csrc/vision.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | #include 4 | #include "SwapAlign2Nat/SwapAlign2Nat.h" 5 | 6 | namespace tensormask { 7 | 8 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 9 | m.def( 10 | "swap_align2nat_forward", 11 | &SwapAlign2Nat_forward, 12 | "SwapAlign2Nat_forward"); 13 | m.def( 14 | "swap_align2nat_backward", 15 | &SwapAlign2Nat_backward, 16 | "SwapAlign2Nat_backward"); 17 | } 18 | 19 | } // namespace tensormask 20 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TensorMask/tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TridentNet/configs/tridentnet_fast_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/TridentNet/tridentnet/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_tridentnet_config 3 | from .trident_backbone import ( 4 | TridentBottleneckBlock, 5 | build_trident_resnet_backbone, 6 | make_trident_stage, 7 | ) 8 | from .trident_rpn import TridentRPN 9 | from .trident_rcnn import TridentRes5ROIHeads, TridentStandardROIHeads 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_swin_l_in21k_50ep.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_swin_b_in21k_50ep import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | train, 6 | optimizer, 7 | ) 8 | 9 | model.backbone.bottom_up.depths = [2, 2, 18, 2] 10 | model.backbone.bottom_up.drop_path_rate = 0.4 11 | model.backbone.bottom_up.embed_dim = 192 12 | model.backbone.bottom_up.num_heads = [6, 12, 24, 48] 13 | 14 | 15 | train.init_checkpoint = "detectron2://ImageNetPretrained/swin/swin_large_patch4_window7_224_22k.pth" 16 | -------------------------------------------------------------------------------- /detectron2/detectron2/projects/ViTDet/configs/LVIS/cascade_mask_rcnn_swin_l_in21k_50ep.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_swin_b_in21k_50ep import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | train, 6 | optimizer, 7 | ) 8 | 9 | model.backbone.bottom_up.embed_dim = 192 10 | model.backbone.bottom_up.num_heads = [6, 12, 24, 48] 11 | 12 | train.init_checkpoint = "detectron2://ImageNetPretrained/swin/swin_large_patch4_window7_224_22k.pth" 13 | -------------------------------------------------------------------------------- /detectron2/detectron2/solver/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .build import build_lr_scheduler, build_optimizer, get_default_optimizer_params 3 | from .lr_scheduler import WarmupCosineLR, WarmupMultiStepLR, LRMultiplier, WarmupParamScheduler 4 | 5 | __all__ = [k for k in globals().keys() if not k.startswith("_")] 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/README.md: -------------------------------------------------------------------------------- 1 | ## Unit Tests 2 | 3 | To run the unittests, do: 4 | ``` 5 | cd detectron2 6 | python -m unittest discover -v -s ./tests 7 | ``` 8 | 9 | There are also end-to-end inference & training tests, in [dev/run_*_tests.sh](../dev). 10 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/config/dir1/dir1_a.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | dir1a_str = "base_a_1" 3 | dir1a_dict = {"a": 1, "b": 2} 4 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/config/dir1/dir1_b.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from detectron2.config import LazyConfig 3 | 4 | # equivalent to relative import 5 | dir1a_str, dir1a_dict = LazyConfig.load_rel("dir1_a.py", ("dir1a_str", "dir1a_dict")) 6 | 7 | dir1b_str = dir1a_str + "_from_b" 8 | dir1b_dict = dir1a_dict 9 | 10 | # Every import is a reload: not modified by other config files 11 | assert dir1a_dict.a == 1 12 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/config/root_cfg.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from itertools import count 3 | 4 | from detectron2.config import LazyCall as L 5 | 6 | from .dir1.dir1_a import dir1a_dict, dir1a_str 7 | 8 | dir1a_dict.a = "modified" 9 | 10 | # modification above won't affect future imports 11 | from .dir1.dir1_b import dir1b_dict, dir1b_str 12 | 13 | 14 | lazyobj = L(count)(x=dir1a_str, y=dir1b_str) 15 | -------------------------------------------------------------------------------- /detectron2/detectron2/tests/data/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tests/data/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/tests/layers/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tests/layers/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/tests/modeling/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tests/modeling/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/tests/structures/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tests/structures/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/tests/tracking/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tests/tracking/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/tools/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/detectron2/tools/__init__.py -------------------------------------------------------------------------------- /detectron2/detectron2/utils/README.md: -------------------------------------------------------------------------------- 1 | # Utility functions 2 | 3 | This folder contain utility functions that are not used in the 4 | core library, but are useful for building models or training 5 | code using the config system. 6 | -------------------------------------------------------------------------------- /detectron2/detectron2/utils/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /detectron2/dev/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Some scripts for developers to use, include: 3 | 4 | - `linter.sh`: lint the codebase before commit. 5 | - `run_{inference,instant}_tests.sh`: run inference/training for a few iterations. 6 | Note that these tests require 2 GPUs. 7 | - `parse_results.sh`: parse results from a log file. 8 | -------------------------------------------------------------------------------- /detectron2/docs/.gitignore: -------------------------------------------------------------------------------- 1 | _build 2 | -------------------------------------------------------------------------------- /detectron2/docs/README.md: -------------------------------------------------------------------------------- 1 | # Read the docs: 2 | 3 | The latest documentation built from this directory is available at [detectron2.readthedocs.io](https://detectron2.readthedocs.io/). 4 | Documents in this directory are not meant to be read on github. 5 | 6 | # Build the docs: 7 | 8 | 1. Install detectron2 according to [INSTALL.md](../INSTALL.md). 9 | 2. Install additional libraries required to build docs: 10 | - docutils==0.16 11 | - Sphinx==3.2.0 12 | - recommonmark==0.6.0 13 | - sphinx_rtd_theme 14 | 15 | 3. Run `make html` from this directory. 16 | -------------------------------------------------------------------------------- /detectron2/docs/index.rst: -------------------------------------------------------------------------------- 1 | .. detectron2 documentation master file, created by 2 | sphinx-quickstart on Sat Sep 21 13:46:45 2019. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | Welcome to detectron2's documentation! 7 | ====================================== 8 | 9 | .. toctree:: 10 | :maxdepth: 2 11 | 12 | tutorials/index 13 | notes/index 14 | modules/index 15 | -------------------------------------------------------------------------------- /detectron2/docs/modules/checkpoint.rst: -------------------------------------------------------------------------------- 1 | detectron2.checkpoint 2 | ============================= 3 | 4 | .. automodule:: detectron2.checkpoint 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/modules/config.rst: -------------------------------------------------------------------------------- 1 | detectron2.config 2 | ========================= 3 | 4 | Related tutorials: :doc:`../tutorials/configs`, :doc:`../tutorials/extend`. 5 | 6 | .. automodule:: detectron2.config 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | 11 | 12 | Yaml Config References 13 | ----------------- 14 | 15 | .. literalinclude:: ../../detectron2/config/defaults.py 16 | :language: python 17 | :linenos: 18 | :lines: 7- 19 | -------------------------------------------------------------------------------- /detectron2/docs/modules/data_transforms.rst: -------------------------------------------------------------------------------- 1 | detectron2.data.transforms 2 | ==================================== 3 | 4 | Related tutorial: :doc:`../tutorials/augmentation`. 5 | 6 | .. automodule:: detectron2.data.transforms 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | :imported-members: 11 | -------------------------------------------------------------------------------- /detectron2/docs/modules/evaluation.rst: -------------------------------------------------------------------------------- 1 | detectron2.evaluation 2 | ============================= 3 | 4 | .. automodule:: detectron2.evaluation 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/modules/export.rst: -------------------------------------------------------------------------------- 1 | detectron2.export 2 | ========================= 3 | 4 | Related tutorial: :doc:`../tutorials/deployment`. 5 | 6 | .. automodule:: detectron2.export 7 | :members: 8 | :undoc-members: 9 | :show-inheritance: 10 | -------------------------------------------------------------------------------- /detectron2/docs/modules/index.rst: -------------------------------------------------------------------------------- 1 | API Documentation 2 | ================== 3 | 4 | .. toctree:: 5 | 6 | checkpoint 7 | config 8 | data 9 | data_transforms 10 | engine 11 | evaluation 12 | layers 13 | model_zoo 14 | modeling 15 | solver 16 | structures 17 | utils 18 | export 19 | fvcore 20 | -------------------------------------------------------------------------------- /detectron2/docs/modules/layers.rst: -------------------------------------------------------------------------------- 1 | detectron2.layers 2 | ========================= 3 | 4 | .. automodule:: detectron2.layers 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/modules/model_zoo.rst: -------------------------------------------------------------------------------- 1 | detectron2.model_zoo 2 | ============================ 3 | 4 | .. automodule:: detectron2.model_zoo 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/modules/solver.rst: -------------------------------------------------------------------------------- 1 | detectron2.solver 2 | ========================= 3 | 4 | .. automodule:: detectron2.solver 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/modules/structures.rst: -------------------------------------------------------------------------------- 1 | detectron2.structures 2 | ============================= 3 | 4 | .. automodule:: detectron2.structures 5 | :members: 6 | :undoc-members: 7 | :show-inheritance: 8 | -------------------------------------------------------------------------------- /detectron2/docs/notes/index.rst: -------------------------------------------------------------------------------- 1 | Notes 2 | ====================================== 3 | 4 | .. toctree:: 5 | :maxdepth: 2 6 | 7 | benchmarks 8 | compatibility 9 | contributing 10 | changelog 11 | -------------------------------------------------------------------------------- /detectron2/docs/tutorials/README.md: -------------------------------------------------------------------------------- 1 | # Read the docs: 2 | 3 | The latest documentation built from this directory is available at [detectron2.readthedocs.io](https://detectron2.readthedocs.io/). 4 | Documents in this directory are not meant to be read on github. 5 | -------------------------------------------------------------------------------- /detectron2/docs/tutorials/index.rst: -------------------------------------------------------------------------------- 1 | Tutorials 2 | ====================================== 3 | 4 | .. toctree:: 5 | :maxdepth: 2 6 | 7 | install 8 | getting_started 9 | builtin_datasets 10 | extend 11 | datasets 12 | data_loading 13 | augmentation 14 | models 15 | write-models 16 | training 17 | evaluation 18 | configs 19 | lazyconfigs 20 | deployment 21 | -------------------------------------------------------------------------------- /detectron2/projects/DeepLab/deeplab/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .build_solver import build_lr_scheduler 3 | from .config import add_deeplab_config 4 | from .resnet import build_resnet_deeplab_backbone 5 | from .semantic_seg import DeepLabV3Head, DeepLabV3PlusHead 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w" 4 | BACKBONE: 5 | NAME: "build_hrfpn_backbone" 6 | RPN: 7 | IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5'] 8 | ROI_HEADS: 9 | IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5'] 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | CLIP_TYPE: "norm" 16 | BASE_LR: 0.03 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "EmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseV1ConvXHead" 8 | CSE: 9 | EMBED_LOSS_NAME: "SoftEmbeddingLoss" 10 | SOLVER: 11 | MAX_ITER: 130000 12 | STEPS: (100000, 120000) 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | SOLVER: 9 | MAX_ITER: 130000 10 | STEPS: (100000, 120000) 11 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | SOLVER: 7 | MAX_ITER: 130000 8 | STEPS: (100000, 120000) 9 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | RESNETS: 5 | DEPTH: 101 6 | ROI_DENSEPOSE_HEAD: 7 | NUM_COARSE_SEGM_CHANNELS: 15 8 | POOLER_RESOLUTION: 14 9 | HEATMAP_SIZE: 56 10 | INDEX_WEIGHTS: 2.0 11 | PART_WEIGHTS: 0.3 12 | POINT_REGRESSION_WEIGHTS: 0.1 13 | DECODER_ON: False 14 | SOLVER: 15 | BASE_LR: 0.002 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "iid_iso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | SEGM_CONFIDENCE: 12 | ENABLED: True 13 | POINT_REGRESSION_WEIGHTS: 0.0005 14 | SOLVER: 15 | CLIP_GRADIENTS: 16 | ENABLED: True 17 | MAX_ITER: 130000 18 | STEPS: (100000, 120000) 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | UV_CONFIDENCE: 9 | ENABLED: True 10 | TYPE: "indep_aniso" 11 | POINT_REGRESSION_WEIGHTS: 0.0005 12 | SOLVER: 13 | CLIP_GRADIENTS: 14 | ENABLED: True 15 | MAX_ITER: 130000 16 | STEPS: (100000, 120000) 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NAME: "DensePoseDeepLabHead" 8 | SOLVER: 9 | MAX_ITER: 130000 10 | STEPS: (100000, 120000) 11 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC1M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | CLIP_TYPE: norm 17 | CLIP_VALUE: 100.0 18 | MAX_ITER: 130000 19 | STEPS: (100000, 120000) 20 | WARMUP_FACTOR: 0.025 21 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC1_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "iid_iso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC2M_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | SEGM_CONFIDENCE: 11 | ENABLED: True 12 | POINT_REGRESSION_WEIGHTS: 0.0005 13 | SOLVER: 14 | CLIP_GRADIENTS: 15 | ENABLED: True 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | WARMUP_FACTOR: 0.025 19 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC2_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | UV_CONFIDENCE: 8 | ENABLED: True 9 | TYPE: "indep_aniso" 10 | POINT_REGRESSION_WEIGHTS: 0.0005 11 | SOLVER: 12 | CLIP_GRADIENTS: 13 | ENABLED: True 14 | MAX_ITER: 130000 15 | STEPS: (100000, 120000) 16 | WARMUP_FACTOR: 0.025 17 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | MAX_ITER: 130000 8 | STEPS: (100000, 120000) 9 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | ROI_DENSEPOSE_HEAD: 7 | NUM_COARSE_SEGM_CHANNELS: 15 8 | POOLER_RESOLUTION: 14 9 | HEATMAP_SIZE: 56 10 | INDEX_WEIGHTS: 2.0 11 | PART_WEIGHTS: 0.3 12 | POINT_REGRESSION_WEIGHTS: 0.1 13 | DECODER_ON: False 14 | SOLVER: 15 | BASE_LR: 0.002 16 | MAX_ITER: 130000 17 | STEPS: (100000, 120000) 18 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/quick_schedules/cse/densepose_rcnn_R_50_FPN_DL_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../cse/Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | ROI_DENSEPOSE_HEAD: 5 | NAME: "DensePoseDeepLabHead" 6 | DATASETS: 7 | TRAIN: ("densepose_coco_2014_minival_100_cse",) 8 | TEST: ("densepose_coco_2014_minival_100_cse",) 9 | SOLVER: 10 | MAX_ITER: 40 11 | STEPS: (30,) 12 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_HRFPN_HRNet_w32_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml" 2 | DATASETS: 3 | TRAIN: ("densepose_coco_2014_minival_100",) 4 | TEST: ("densepose_coco_2014_minival_100",) 5 | SOLVER: 6 | MAX_ITER: 40 7 | STEPS: (30,) 8 | IMS_PER_BATCH: 2 9 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_DL_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | ROI_DENSEPOSE_HEAD: 5 | NAME: "DensePoseDeepLabHead" 6 | DATASETS: 7 | TRAIN: ("densepose_coco_2014_minival_100",) 8 | TEST: ("densepose_coco_2014_minival_100",) 9 | SOLVER: 10 | MAX_ITER: 40 11 | STEPS: (30,) 12 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_inference_acc_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../densepose_rcnn_R_50_FPN_s1x.yaml" 2 | MODEL: 3 | WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl" 4 | DATASETS: 5 | TRAIN: () 6 | TEST: ("densepose_coco_2014_minival_100",) 7 | TEST: 8 | EXPECTED_RESULTS: [["bbox", "AP", 59.27, 0.025], ["densepose_gps", "AP", 60.11, 0.02], ["densepose_gpsm", "AP", 64.09, 0.02]] 9 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_instant_test.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../Base-DensePose-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | DATASETS: 5 | TRAIN: ("densepose_coco_2014_minival_100",) 6 | TEST: ("densepose_coco_2014_minival_100",) 7 | SOLVER: 8 | MAX_ITER: 40 9 | STEPS: (30,) 10 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/data/meshes/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | 3 | from . import builtin 4 | 5 | __all__ = [k for k in globals().keys() if "builtin" not in k and not k.startswith("_")] 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/data/samplers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .densepose_uniform import DensePoseUniformSampler 4 | from .densepose_confidence_based import DensePoseConfidenceBasedSampler 5 | from .densepose_cse_uniform import DensePoseCSEUniformSampler 6 | from .densepose_cse_confidence_based import DensePoseCSEConfidenceBasedSampler 7 | from .mask_from_densepose import MaskFromDensePoseSampler 8 | from .prediction_to_gt import PredictionToGroundTruthSampler 9 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/data/samplers/densepose_cse_uniform.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .densepose_cse_base import DensePoseCSEBaseSampler 4 | from .densepose_uniform import DensePoseUniformSampler 5 | 6 | 7 | class DensePoseCSEUniformSampler(DensePoseCSEBaseSampler, DensePoseUniformSampler): 8 | """ 9 | Uniform Sampler for CSE 10 | """ 11 | 12 | pass 13 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/data/transform/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .image import ImageResizeTransform 4 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/data/video/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .frame_selector import ( 4 | FrameSelectionStrategy, 5 | RandomKFramesSelector, 6 | FirstKFramesSelector, 7 | LastKFramesSelector, 8 | FrameTsList, 9 | FrameSelector, 10 | ) 11 | 12 | from .video_keyframe_dataset import ( 13 | VideoKeyframeDataset, 14 | video_list_from_file, 15 | list_keyframes, 16 | read_keyframes, 17 | ) 18 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/engine/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .trainer import Trainer 4 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/evaluation/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .evaluator import DensePoseCOCOEvaluator 4 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .confidence import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType 4 | from .filter import DensePoseDataFilter 5 | from .inference import densepose_inference 6 | from .utils import initialize_module_params 7 | from .build import ( 8 | build_densepose_data_filter, 9 | build_densepose_embedder, 10 | build_densepose_head, 11 | build_densepose_losses, 12 | build_densepose_predictor, 13 | ) 14 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/cse/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | 3 | from .vertex_direct_embedder import VertexDirectEmbedder 4 | from .vertex_feature_embedder import VertexFeatureEmbedder 5 | from .embedder import Embedder 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/losses/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .chart import DensePoseChartLoss 4 | from .chart_with_confidences import DensePoseChartWithConfidenceLoss 5 | from .cse import DensePoseCseLoss 6 | from .registry import DENSEPOSE_LOSS_REGISTRY 7 | 8 | 9 | __all__ = [ 10 | "DensePoseChartLoss", 11 | "DensePoseChartWithConfidenceLoss", 12 | "DensePoseCseLoss", 13 | "DENSEPOSE_LOSS_REGISTRY", 14 | ] 15 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/losses/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | DENSEPOSE_LOSS_REGISTRY = Registry("DENSEPOSE_LOSS") 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/predictors/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .chart import DensePoseChartPredictor 4 | from .chart_confidence import DensePoseChartConfidencePredictorMixin 5 | from .chart_with_confidence import DensePoseChartWithConfidencePredictor 6 | from .cse import DensePoseEmbeddingPredictor 7 | from .cse_confidence import DensePoseEmbeddingConfidencePredictorMixin 8 | from .cse_with_confidence import DensePoseEmbeddingWithConfidencePredictor 9 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 10 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/predictors/chart_with_confidence.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from . import DensePoseChartConfidencePredictorMixin, DensePoseChartPredictor 4 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 5 | 6 | 7 | @DENSEPOSE_PREDICTOR_REGISTRY.register() 8 | class DensePoseChartWithConfidencePredictor( 9 | DensePoseChartConfidencePredictorMixin, DensePoseChartPredictor 10 | ): 11 | """ 12 | Predictor that combines chart and chart confidence estimation 13 | """ 14 | 15 | pass 16 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/predictors/cse_with_confidence.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from . import DensePoseEmbeddingConfidencePredictorMixin, DensePoseEmbeddingPredictor 4 | from .registry import DENSEPOSE_PREDICTOR_REGISTRY 5 | 6 | 7 | @DENSEPOSE_PREDICTOR_REGISTRY.register() 8 | class DensePoseEmbeddingWithConfidencePredictor( 9 | DensePoseEmbeddingConfidencePredictorMixin, DensePoseEmbeddingPredictor 10 | ): 11 | """ 12 | Predictor that combines CSE and CSE confidence estimation 13 | """ 14 | 15 | pass 16 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/predictors/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | DENSEPOSE_PREDICTOR_REGISTRY = Registry("DENSEPOSE_PREDICTOR") 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/roi_heads/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .v1convx import DensePoseV1ConvXHead 4 | from .deeplab import DensePoseDeepLabHead 5 | from .registry import ROI_DENSEPOSE_HEAD_REGISTRY 6 | from .roi_head import Decoder, DensePoseROIHeads 7 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/roi_heads/registry.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from detectron2.utils.registry import Registry 4 | 5 | ROI_DENSEPOSE_HEAD_REGISTRY = Registry("ROI_DENSEPOSE_HEAD") 6 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/modeling/utils.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from torch import nn 4 | 5 | 6 | def initialize_module_params(module: nn.Module) -> None: 7 | for name, param in module.named_parameters(): 8 | if "bias" in name: 9 | nn.init.constant_(param, 0) 10 | elif "weight" in name: 11 | nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") 12 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/utils/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/projects/DensePose/densepose/utils/__init__.py -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/utils/logger.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | import logging 3 | 4 | 5 | def verbosity_to_level(verbosity) -> int: 6 | if verbosity is not None: 7 | if verbosity == 0: 8 | return logging.WARNING 9 | elif verbosity == 1: 10 | return logging.INFO 11 | elif verbosity >= 2: 12 | return logging.DEBUG 13 | return logging.WARNING 14 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/densepose/vis/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/projects/DensePose/densepose/vis/__init__.py -------------------------------------------------------------------------------- /detectron2/projects/DensePose/dev/README.md: -------------------------------------------------------------------------------- 1 | 2 | ## Some scripts for developers to use, include: 3 | 4 | - `run_instant_tests.sh`: run training for a few iterations. 5 | - `run_inference_tests.sh`: run inference on a small dataset. 6 | - `../../dev/linter.sh`: lint the codebase before commit 7 | - `../../dev/parse_results.sh`: parse results from log file. 8 | -------------------------------------------------------------------------------- /detectron2/projects/DensePose/doc/RELEASE_2020_04.md: -------------------------------------------------------------------------------- 1 | # DensePose Confidence Estimation and Model Zoo Improvements 2 | 3 | * [DensePose models with confidence estimation](doc/DENSEPOSE_IUV.md#ModelZooConfidence) 4 | * [Panoptic FPN and DeepLabV3 head implementation](doc/DENSEPOSE_IUV.md#ModelZooDeepLabV3) 5 | * Test time augmentations for DensePose 6 | * New evaluation metric (GPSm) that yields more reliable scores 7 | -------------------------------------------------------------------------------- /detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_b_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_t_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | 4 | model.backbone.bottom_up.depth = 24 5 | model.backbone.bottom_up.last_block_indexes = (1, 4, 20, 23) 6 | model.backbone.bottom_up.drop_path_rate = 0.4 7 | 8 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_B_in1k.pyth" 9 | -------------------------------------------------------------------------------- /detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_b_in21k_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_b_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_B_in21k.pyth" 4 | -------------------------------------------------------------------------------- /detectron2/projects/MViTv2/configs/cascade_mask_rcnn_mvitv2_s_3x.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_mvitv2_t_3x import model, dataloader, optimizer, lr_multiplier, train 2 | 3 | 4 | model.backbone.bottom_up.depth = 16 5 | model.backbone.bottom_up.last_block_indexes = (0, 2, 13, 15) 6 | 7 | train.init_checkpoint = "detectron2://ImageNetPretrained/mvitv2/MViTv2_S_in1k.pyth" 8 | -------------------------------------------------------------------------------- /detectron2/projects/Panoptic-DeepLab/panoptic_deeplab/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_panoptic_deeplab_config 3 | from .dataset_mapper import PanopticDeeplabDatasetMapper 4 | from .panoptic_seg import ( 5 | PanopticDeepLab, 6 | INS_EMBED_BRANCHES_REGISTRY, 7 | build_ins_embed_branch, 8 | PanopticDeepLabSemSegHead, 9 | PanopticDeepLabInsEmbedHead, 10 | ) 11 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_1x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Implicit-PointRend.yaml" 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 7 | # DATASETS: 8 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 9 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-Implicit-PointRend.yaml" 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 10 | # DATASETS: 11 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 12 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-101.pkl 4 | MASK_ON: true 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 11 | # DATASETS: 12 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 13 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 7 | # DATASETS: 8 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 9 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: Base-PointRend-RCNN-FPN.yaml 2 | MODEL: 3 | WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (210000, 250000) 8 | MAX_ITER: 270000 9 | # To add COCO AP evaluation against the higher-quality LVIS annotations. 10 | # DATASETS: 11 | # TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied") 12 | 13 | -------------------------------------------------------------------------------- /detectron2/projects/PointRend/point_rend/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_pointrend_config 3 | from .mask_head import PointRendMaskHead, ImplicitPointRendMaskHead 4 | from .semantic_seg import PointRendSemSegHead 5 | from .color_augmentation import ColorAugSSDTransform 6 | 7 | from . import roi_heads as _ # only registration 8 | -------------------------------------------------------------------------------- /detectron2/projects/PointSup/configs/implicit_pointrend_R_50_FPN_3x_point_sup_point_aug_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../PointRend/configs/InstanceSegmentation/implicit_pointrend_R_50_FPN_3x_coco.yaml" 2 | MODEL: 3 | ROI_MASK_HEAD: 4 | NAME: "ImplicitPointRendPointSupHead" 5 | INPUT: 6 | POINT_SUP: True 7 | SAMPLE_POINTS: 5 8 | DATASETS: 9 | TRAIN: ("coco_2017_train_points_n10_v1_without_masks",) 10 | -------------------------------------------------------------------------------- /detectron2/projects/PointSup/configs/mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "../../../configs/Base-RCNN-FPN.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: True 5 | RESNETS: 6 | DEPTH: 50 7 | ROI_MASK_HEAD: 8 | NAME: "MaskRCNNConvUpsamplePointSupHead" 9 | INPUT: 10 | POINT_SUP: True 11 | DATASETS: 12 | TRAIN: ("coco_2017_train_points_n10_v1_without_masks",) 13 | SOLVER: 14 | STEPS: (210000, 250000) 15 | MAX_ITER: 270000 16 | -------------------------------------------------------------------------------- /detectron2/projects/PointSup/configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "mask_rcnn_R_50_FPN_3x_point_sup_coco.yaml" 2 | INPUT: 3 | SAMPLE_POINTS: 5 4 | -------------------------------------------------------------------------------- /detectron2/projects/PointSup/point_sup/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 2 | from . import register_point_annotations 3 | from .config import add_point_sup_config 4 | from .dataset_mapper import PointSupDatasetMapper 5 | from .mask_head import MaskRCNNConvUpsamplePointSupHead 6 | from .point_utils import get_point_coords_from_point_annotation 7 | -------------------------------------------------------------------------------- /detectron2/projects/PointSup/point_sup/config.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved 3 | 4 | 5 | def add_point_sup_config(cfg): 6 | """ 7 | Add config for point supervision. 8 | """ 9 | # Use point annotation 10 | cfg.INPUT.POINT_SUP = False 11 | # Sample only part of points in each iteration. 12 | # Default: 0, use all available points. 13 | cfg.INPUT.SAMPLE_POINTS = 0 14 | -------------------------------------------------------------------------------- /detectron2/projects/Rethinking-BatchNorm/configs/mask_rcnn_SyncBNhead.py: -------------------------------------------------------------------------------- 1 | from .mask_rcnn_BNhead import model, dataloader, lr_multiplier, optimizer, train 2 | 3 | model.roi_heads.box_head.conv_norm = model.roi_heads.mask_head.conv_norm = "SyncBN" 4 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TensorMask.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_6x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TensorMask.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | RESNETS: 5 | DEPTH: 50 6 | SOLVER: 7 | STEPS: (480000, 520000) 8 | MAX_ITER: 540000 9 | INPUT: 10 | MIN_SIZE_TRAIN_SAMPLING: "range" 11 | MIN_SIZE_TRAIN: (640, 800) 12 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/tensormask/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_tensormask_config 3 | from .arch import TensorMask 4 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/tensormask/layers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .swap_align2nat import SwapAlign2Nat, swap_align2nat 3 | 4 | __all__ = [k for k in globals().keys() if not k.startswith("_")] 5 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/tensormask/layers/csrc/vision.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | #include 4 | #include "SwapAlign2Nat/SwapAlign2Nat.h" 5 | 6 | namespace tensormask { 7 | 8 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 9 | m.def( 10 | "swap_align2nat_forward", 11 | &SwapAlign2Nat_forward, 12 | "SwapAlign2Nat_forward"); 13 | m.def( 14 | "swap_align2nat_backward", 15 | &SwapAlign2Nat_backward, 16 | "SwapAlign2Nat_backward"); 17 | } 18 | 19 | } // namespace tensormask 20 | -------------------------------------------------------------------------------- /detectron2/projects/TensorMask/tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /detectron2/projects/TridentNet/configs/tridentnet_fast_R_101_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 101 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_1x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | -------------------------------------------------------------------------------- /detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_3x.yaml: -------------------------------------------------------------------------------- 1 | _BASE_: "Base-TridentNet-Fast-C4.yaml" 2 | MODEL: 3 | WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" 4 | MASK_ON: False 5 | RESNETS: 6 | DEPTH: 50 7 | SOLVER: 8 | STEPS: (210000, 250000) 9 | MAX_ITER: 270000 10 | -------------------------------------------------------------------------------- /detectron2/projects/TridentNet/tridentnet/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .config import add_tridentnet_config 3 | from .trident_backbone import ( 4 | TridentBottleneckBlock, 5 | build_trident_resnet_backbone, 6 | make_trident_stage, 7 | ) 8 | from .trident_rpn import TridentRPN 9 | from .trident_rcnn import TridentRes5ROIHeads, TridentStandardROIHeads 10 | -------------------------------------------------------------------------------- /detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_swin_l_in21k_50ep.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_swin_b_in21k_50ep import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | train, 6 | optimizer, 7 | ) 8 | 9 | model.backbone.bottom_up.depths = [2, 2, 18, 2] 10 | model.backbone.bottom_up.drop_path_rate = 0.4 11 | model.backbone.bottom_up.embed_dim = 192 12 | model.backbone.bottom_up.num_heads = [6, 12, 24, 48] 13 | 14 | 15 | train.init_checkpoint = "detectron2://ImageNetPretrained/swin/swin_large_patch4_window7_224_22k.pth" 16 | -------------------------------------------------------------------------------- /detectron2/projects/ViTDet/configs/LVIS/cascade_mask_rcnn_swin_l_in21k_50ep.py: -------------------------------------------------------------------------------- 1 | from .cascade_mask_rcnn_swin_b_in21k_50ep import ( 2 | dataloader, 3 | lr_multiplier, 4 | model, 5 | train, 6 | optimizer, 7 | ) 8 | 9 | model.backbone.bottom_up.embed_dim = 192 10 | model.backbone.bottom_up.num_heads = [6, 12, 24, 48] 11 | 12 | train.init_checkpoint = "detectron2://ImageNetPretrained/swin/swin_large_patch4_window7_224_22k.pth" 13 | -------------------------------------------------------------------------------- /detectron2/tests/README.md: -------------------------------------------------------------------------------- 1 | ## Unit Tests 2 | 3 | To run the unittests, do: 4 | ``` 5 | cd detectron2 6 | python -m unittest discover -v -s ./tests 7 | ``` 8 | 9 | There are also end-to-end inference & training tests, in [dev/run_*_tests.sh](../dev). 10 | -------------------------------------------------------------------------------- /detectron2/tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /detectron2/tests/config/dir1/dir1_a.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | dir1a_str = "base_a_1" 3 | dir1a_dict = {"a": 1, "b": 2} 4 | -------------------------------------------------------------------------------- /detectron2/tests/config/dir1/dir1_b.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from detectron2.config import LazyConfig 3 | 4 | # equivalent to relative import 5 | dir1a_str, dir1a_dict = LazyConfig.load_rel("dir1_a.py", ("dir1a_str", "dir1a_dict")) 6 | 7 | dir1b_str = dir1a_str + "_from_b" 8 | dir1b_dict = dir1a_dict 9 | 10 | # Every import is a reload: not modified by other config files 11 | assert dir1a_dict.a == 1 12 | -------------------------------------------------------------------------------- /detectron2/tests/config/root_cfg.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from itertools import count 3 | 4 | from detectron2.config import LazyCall as L 5 | 6 | from .dir1.dir1_a import dir1a_dict, dir1a_str 7 | 8 | dir1a_dict.a = "modified" 9 | 10 | # modification above won't affect future imports 11 | from .dir1.dir1_b import dir1b_dict, dir1b_str 12 | 13 | 14 | lazyobj = L(count)(x=dir1a_str, y=dir1b_str) 15 | -------------------------------------------------------------------------------- /detectron2/tests/data/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tests/data/__init__.py -------------------------------------------------------------------------------- /detectron2/tests/layers/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tests/layers/__init__.py -------------------------------------------------------------------------------- /detectron2/tests/modeling/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tests/modeling/__init__.py -------------------------------------------------------------------------------- /detectron2/tests/structures/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tests/structures/__init__.py -------------------------------------------------------------------------------- /detectron2/tests/tracking/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tests/tracking/__init__.py -------------------------------------------------------------------------------- /detectron2/tools/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/detectron2/tools/__init__.py -------------------------------------------------------------------------------- /detrex/checkpoint/__init__.py: -------------------------------------------------------------------------------- 1 | from .detection_checkpoint import DetectionCheckpointer -------------------------------------------------------------------------------- /detrex/layers/csrc/cuda_version.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | namespace detrex { 4 | int get_cudart_version() { 5 | return CUDART_VERSION; 6 | } 7 | } // namespace detrex 8 | -------------------------------------------------------------------------------- /dev/run_unittest.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash -e 2 | 3 | # cd to detrex project root 4 | cd "$(dirname "${BASH_SOURCE[0]}")/.." 5 | 6 | pytest --disable-warnings ./tests -------------------------------------------------------------------------------- /docs/Makefile: -------------------------------------------------------------------------------- 1 | # Minimal makefile for Sphinx documentation 2 | # 3 | 4 | # You can set these variables from the command line. 5 | SPHINXOPTS = 6 | SPHINXBUILD = sphinx-build 7 | SOURCEDIR = source 8 | BUILDDIR = build 9 | 10 | # Put it first so that "make" without argument is like "make help". 11 | help: 12 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 13 | 14 | .PHONY: help Makefile 15 | 16 | html: Makefile 17 | @$(SPHINXBUILD) -M html "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 18 | 19 | clean: Makefile 20 | @rm -rf build 21 | -------------------------------------------------------------------------------- /docs/README.md: -------------------------------------------------------------------------------- 1 | ## Read detrex Documentation 2 | The latest documentation built from this directory is available at [detrex.readthedocs.io](https://detrex.readthedocs.io/en/latest/). 3 | 4 | 5 | ## Build detrex Documentation 6 | 1. Install detrex according to [Installation](https://detrex.readthedocs.io/en/latest/tutorials/Installation.html). 7 | 2. Install additional libraries and run `make html` for building the docs: 8 | ```bash 9 | cd ${detrex-path}/docs 10 | pip install -r requirements.txt --user 11 | make html 12 | ``` 13 | -------------------------------------------------------------------------------- /docs/source/_static/css/line_space.css: -------------------------------------------------------------------------------- 1 | .rst-content .section ol li>*, .rst-content .section ul li>* { 2 | margin-top: 0px; 3 | margin-bottom: 0px; 4 | } 5 | 6 | .rst-content .section ol li>*, .rst-content .section li ul>* { 7 | margin-top: 0px; 8 | margin-bottom: 0px; 9 | } 10 | 11 | .rst-content .section ol li>*, .rst-content .section ul li ul { 12 | margin-top: 0px; 13 | margin-bottom: 0px; 14 | } 15 | -------------------------------------------------------------------------------- /docs/source/_templates/.gitkeep: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/_templates/.gitkeep -------------------------------------------------------------------------------- /docs/source/_templates/line_space.html: -------------------------------------------------------------------------------- 1 | {% extends "!line_space.html" %} 2 | {% set css_files = css_files + [ "_static/css/line_space.css" ] %} 3 | -------------------------------------------------------------------------------- /docs/source/index.rst: -------------------------------------------------------------------------------- 1 | .. detrex documentation master file, created by 2 | sphinx-quickstart on Mon Nov 29 10:26:07 2021. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | Welcome to detrex's documentation! 7 | ====================================== 8 | 9 | .. toctree:: 10 | :maxdepth: 2 11 | 12 | tutorials/index 13 | modules/index 14 | changelog.md -------------------------------------------------------------------------------- /docs/source/modules/detrex.config.rst: -------------------------------------------------------------------------------- 1 | detrex.config 2 | ############################## 3 | 4 | .. currentmodule:: detrex.config 5 | .. automodule:: detrex.config 6 | :members: 7 | try_get_key, 8 | get_config, 9 | 10 | -------------------------------------------------------------------------------- /docs/source/modules/detrex.data.rst: -------------------------------------------------------------------------------- 1 | detrex.data 2 | ############################## 3 | 4 | .. currentmodule:: detrex.data 5 | .. automodule:: detrex.data 6 | :members: 7 | DetrDatasetMapper, 8 | 9 | -------------------------------------------------------------------------------- /docs/source/modules/detrex.utils.rst: -------------------------------------------------------------------------------- 1 | detrex.utils 2 | ############################## 3 | 4 | .. currentmodule:: detrex.utils 5 | .. automodule:: detrex.utils 6 | :members: 7 | is_dist_avail_and_initialized, 8 | get_world_size, 9 | interpolate, 10 | inverse_sigmoid, -------------------------------------------------------------------------------- /docs/source/modules/index.rst: -------------------------------------------------------------------------------- 1 | API Documentation 2 | ================= 3 | 4 | .. toctree:: 5 | :maxdepth: 2 6 | 7 | detrex.config 8 | detrex.data 9 | detrex.layers 10 | detrex.modeling 11 | detrex.utils -------------------------------------------------------------------------------- /docs/source/tutorials/assets/annotation_demo.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/annotation_demo.jpg -------------------------------------------------------------------------------- /docs/source/tutorials/assets/cosine_lr_scheduler.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/cosine_lr_scheduler.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/demo_output.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/demo_output.jpg -------------------------------------------------------------------------------- /docs/source/tutorials/assets/dino_prediction_demo.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/dino_prediction_demo.jpg -------------------------------------------------------------------------------- /docs/source/tutorials/assets/exponential_lr_scheduler.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/exponential_lr_scheduler.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/linear_lr_scheduler.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/linear_lr_scheduler.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/multi_step_example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/multi_step_example.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/multi_step_lr_scheduler.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/multi_step_lr_scheduler.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/step_lr_scheduler.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/step_lr_scheduler.png -------------------------------------------------------------------------------- /docs/source/tutorials/assets/step_lr_with_fixed_gamma.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/docs/source/tutorials/assets/step_lr_with_fixed_gamma.png -------------------------------------------------------------------------------- /docs/source/tutorials/index.rst: -------------------------------------------------------------------------------- 1 | Tutorials 2 | ========= 3 | 4 | .. toctree:: 5 | :glob: 6 | :maxdepth: 2 7 | 8 | Installation.md 9 | Getting_Started.md 10 | Config_System.md 11 | Converters.md 12 | Download_Pretrained_Weights.md 13 | Using_Pretrained_Backbone.md 14 | Tools.md 15 | Customize_Training.md 16 | Model_Zoo.md 17 | FAQs.md 18 | 19 | -------------------------------------------------------------------------------- /projects/vCLR_deformable_mask/modeling/extractor.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | class Extractor(torch.nn.Module): 4 | def __init__(self, net): 5 | super().__init__() 6 | self.net = net 7 | 8 | def forward(self, x): 9 | return self.net(x) -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | cloudpickle 2 | hydra-core 3 | omegaconf==2.1.0 4 | pybind11 5 | flake8==3.8.1 6 | isort==4.3.21 7 | black==22.3.0 8 | autoflake 9 | timm 10 | pytest 11 | scipy==1.7.3 12 | psutil 13 | opencv-python 14 | wandb 15 | submitit 16 | einops 17 | -------------------------------------------------------------------------------- /tools/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Visual-AI/v-CLR/c02cd16f37a95fefe0b1a2805bcde69567e8657e/tools/__init__.py --------------------------------------------------------------------------------