├── tools.pyd ├── test_data.xlsx ├── Instructions.txt ├── README.md ├── V5.py └── Mechanisms ├── Davis.cti ├── SK17.cti ├── DRM19.cti ├── DRM22.cti └── SK30.cti /tools.pyd: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WWIIWWIIWW/Cantera-ext/HEAD/tools.pyd -------------------------------------------------------------------------------- /test_data.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WWIIWWIIWW/Cantera-ext/HEAD/test_data.xlsx -------------------------------------------------------------------------------- /Instructions.txt: -------------------------------------------------------------------------------- 1 | 1. Install conda for windows at below address: 2 | https://docs.conda.io/projects/conda/en/latest/user-guide/install/windows.html 3 | 2. Open Anaconda terminal, update conda: 4 | conda update --force conda 5 | 3. Create conda environment plus py3.7 e.g. cantera: 6 | conda create -n cantera -c anaconda python=3.7 7 | 4. Activate cantera environment: 8 | conda activate cantera 9 | 5. Install cantera package: 10 | conda install --channel cantera/label/dev cantera 11 | 6. Install numpy package: 12 | conda install -c anaconda numpy 13 | 7. Install pandas package: 14 | conda install -c anaconda pandas 15 | 8. Install several extra package, I don't know why, but without these you will meet errors: 16 | conda install -c anaconda xlrd 17 | conda install -c anaconda openpyxl 18 | ############################# 19 | Switch yourself to directory where you have downloaded my code. 20 | In the folder where you have V3.py, just run in terminal with: 21 | 22 | ->python V3.py 23 | 24 | It should work now. If not, update your visual studio to a version compatable with py37. 25 | Otherwise, contact me: Kai.Zhang.1@city.ac.uk 26 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Cantera-ext 2 | ## New features in Version 5 (against V3): 3 | (a) 0_D extinction calculation speed is greatly increased. 4 | 5 | (b) A calculator is added to calculate species LHV. 6 | 7 | (c) NO and NO2 ppmvd at 15%O2 level is exported. 8 | 9 | (d) Parallel calculation of 1D flame enabled. Change nProcs to fit your PC. 10 | 11 | (e) A bug fix is done, 'idx_OH' must be used when retriving 1D flame ppmvd at flame front. 12 | ## Introduction 13 | 14 | Cantera extension program is developed for Phoenix Biopower, Stockholm, Sweden. 15 | 16 | Current version is for windows user only, if you need a version for Linux, 17 | 18 | Email: Kai.Zhang.1@city.ac.uk 19 | 20 | ## Planned Works: 21 | 22 | (a) Extra graphical grid towards calculation of single mixture chosen at interface. 23 | 24 | (b) Throw error when users enter incorrect input. 25 | 26 | (c) Report 1D solution at different residence time, rather than only at flame front. 27 | 28 | (d) Group all needed libraries into one single executable package. 29 | 30 | (e) CRN implementation 31 | 32 | (f) Add automatic plots for achieved datasets. 33 | 34 | 35 | ## Installation (assuming you have installed conda, refer to instruction) 36 | 37 | Use the package manager [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/windows.html) to install Cantera-ext. 38 | 39 | ```bash 40 | conda update --force conda 41 | conda create -n cantera -c anaconda python=3.7 42 | conda activate cantera 43 | conda install --channel cantera/label/dev cantera 44 | conda install -c anaconda numpy 45 | conda install -c anaconda pandas 46 | conda install -c anaconda xlrd 47 | conda install -c anaconda openpyxl 48 | ``` 49 | 50 | ## Usage 51 | 52 | ```bash 53 | python V3.py 54 | ``` 55 | 56 | ## Contributing 57 | Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. 58 | 59 | Please make sure to update tests as appropriate. 60 | 61 | ## License 62 | No License assigned yet. Any use of this program must obtained permission from Authors: 63 | Kai.Zhang.1@city.ac.uk or duwig@mech.kth.se 64 | -------------------------------------------------------------------------------- /V5.py: -------------------------------------------------------------------------------- 1 | ##Authors: Kai Zhang; Christophe Duwig. 2 | ##Contact: Kai.Zhang.1@city.ac.uk; duwig@mech.kth.se 3 | # Global storage for Cantera Solution objects 4 | 5 | def Equilibrium(data_name, specifier, mech, T_inlet, P_inlet,func_): 6 | 7 | fuel_list, ER, original_data, fuel_data = call_data_reader(specifier, data_name) 8 | gas = ct.Solution(mech) 9 | species_names = [i + '_b' for i in gas.species_names] 10 | x, tad, co, nox, no_no2, no, no2 = list_creator(func_) 11 | for i in range(len(fuel_list)): 12 | gas.TP = float(T_inlet), float(P_inlet) 13 | gas.set_equivalence_ratio(ER[i], fuel_list[i] , 'O2:0.21, N2:0.79') 14 | gas.equilibrate('HP') 15 | x.append(gas.X) 16 | tad.append(gas.T) 17 | CO_ppmvd,NOx_ppmvd,NO_NO2_ppmvd, NO_ppmvd, NO2_ppmvd = X_ppmvd(gas, gas) 18 | co.append(CO_ppmvd) 19 | nox.append(NOx_ppmvd) 20 | no_no2.append(NO_NO2_ppmvd) 21 | no.append(NO_ppmvd) 22 | no2.append(NO2_ppmvd) 23 | 24 | csv_file = "Equilibrium.csv" 25 | excel_file = "Equilibrium.xlsx" 26 | header = list(original_data.columns.values) + ["T_b (K)"] + ["CO_ppmvd"] + ["NO_ppmvd"] + ["NO2_ppmvd"] + ["NOx_ppmvd"] + ["NO/NO2_ppmvd"] + species_names 27 | solution = [list(original_data.values[i]) + [tad[i]] + [co[i]] + [no[i]] + [no2[i]] + [nox[i]] + [no_no2[i]] + list(x[i]) for i in range(len(original_data))] 28 | write(original_data, csv_file, excel_file, header, solution) 29 | 30 | def General(data_name, specifier, mech, T_inlet, P_inlet,func_): 31 | 32 | fuel_list, ER, original_data, fuel_data = call_data_reader(specifier, data_name) 33 | df_LHV_mixture = get_LHV_mixture(original_data, fuel_data) 34 | df_LHV_mixture.to_csv("General.csv", index = False) 35 | if input('csv output done! Convert to excel? [yes/no)] ') == 'yes': 36 | df_LHV_mixture.to_excel("General.xlsx", index = False) 37 | print ('xlsx output done!') 38 | else: 39 | print ('csv output done!') 40 | 41 | def get_flame_speed_parallel(data_name, specifier, mech, T_inlet, P_inlet, func_, nProcs): 42 | t1 = time() 43 | fuel_list, ER, original_data, fuel_data = call_data_reader(specifier, data_name) 44 | os.system('mkdir flame') 45 | 46 | gas = ct.Solution(mech) 47 | species_names = [i + '_b' for i in gas.species_names] 48 | data_parallel = parallel(mech, oneD_flame, nProcs, P_inlet, T_inlet, ER, fuel_list) 49 | 50 | csv_file = "1D_flame.csv" 51 | excel_file = "1D_flame.xlsx" 52 | header = list(original_data.columns.values) + ["T_b (K)"] + ["SL (m/s)"] + ["delta (m)"] + ["CO_ppmvd"] + ["NO_ppmvd"] + ["NO2_ppmvd"] + ["NOx_ppmvd"] + ["NO/NO2_ppmvd"] + species_names 53 | solution = [list(original_data.values[i]) + data_parallel[i] for i in range(len(original_data))] 54 | t2 = time() 55 | print('Parallel: {0:.3f} seconds'.format(t2-t1)) 56 | write(original_data, csv_file, excel_file, header, solution) 57 | 58 | def get_flame_speed(data_name, specifier, mech, T_inlet, P_inlet, func_): 59 | t1 = time() 60 | fuel_list, ER, original_data, fuel_data = call_data_reader(specifier, data_name) 61 | # setup parameters 62 | 63 | Lx=0.02 64 | tol_ss = [1.0e-6, 1.0e-14] # [rtol atol] for steady-state problem 65 | tol_ts = [1.0e-5, 1.0e-13] # [rtol atol] for time stepping 66 | loglevel = 0 # amount of diagnostic output (0 67 | refine_grid = True # True to enable refinement 68 | ############################### 69 | gas = ct.Solution(mech) 70 | species_names = [i + '_b' for i in gas.species_names] 71 | x, temp, delta, SL, co, nox, no_no2, no, no2 = list_creator(func_) 72 | os.system('mkdir flame') 73 | 74 | for i in range(len(fuel_list)): 75 | print ("Doing calculation for data {}.".format(i+1)) 76 | gas.TP = float(T_inlet), float(P_inlet) 77 | gas.set_equivalence_ratio(ER[i], fuel_list[i] , 'O2:0.21, N2:0.79') 78 | f = ct.FreeFlame(gas, width=Lx) 79 | f.transport_model = 'Multi' 80 | f.soret_enabled=True 81 | 82 | f.flame.set_steady_tolerances(default=tol_ss) 83 | f.flame.set_transient_tolerances(default=tol_ts) 84 | f.set_refine_criteria(ratio=3, slope=0.01, curve=0.01) 85 | 86 | f.solve(loglevel=loglevel, refine_grid=refine_grid, auto=True) 87 | idx_OH = get_flame_front_index(gas, f) 88 | print ("Flame front sits at position {}, evaluated with max OH".format(idx_OH)) 89 | 90 | x.append([f.X[gas.species_index(species)][idx_OH] for species in gas.species_names]) 91 | temp.append(f.T[-1]) 92 | delta.append(get_thermal_thickness(f)) 93 | SL.append(f.u[0]) 94 | CO_ppmvd,NOx_ppmvd,NO_NO2_ppmvd, NO_ppmvd, NO2_ppmvd = X_ppmvd(f, gas) 95 | co.append(CO_ppmvd[idx_OH]) 96 | nox.append(NOx_ppmvd[idx_OH]) 97 | no_no2.append(NO_NO2_ppmvd[idx_OH]) 98 | no.append(NO_ppmvd[idx_OH]) 99 | no2.append(NO2_ppmvd[idx_OH]) 100 | 101 | f.write_csv('./flame/flame{}.csv'.format(i+1), species='X') 102 | 103 | csv_file = "1D_flame.csv" 104 | excel_file = "1D_flame.xlsx" 105 | header = list(original_data.columns.values) + ["T_b (K)"] + ["SL (m/s)"] + ["delta (m)"] + ["CO_ppmvd"] + ["NO_ppmvd"] + ["NO2_ppmvd"] + ["NOx_ppmvd"] + ["NO/NO2_ppmvd"] + species_names 106 | solution = [list(original_data.values[i]) + [temp[i]]+ [SL[i]] + [delta[i]] + [co[i]] + [no[i]] + [no2[i]] + [nox[i]] + [no_no2[i]] + list(x[i]) for i in range(len(original_data))] 107 | t2 = time() 108 | print('Series: {0:.3f} seconds'.format(t2-t1)) 109 | write(original_data, csv_file, excel_file, header, solution) 110 | 111 | def zeroD_extinction(data_name, specifier, mech, T_inlet, P_inlet, func_): 112 | 113 | fuel_list, ER, original_data, fuel_data = call_data_reader(specifier, data_name) 114 | gas = ct.Solution(mech) 115 | species_names = [i + '_b' for i in gas.species_names] 116 | tau, x, temp, co, nox, no_no2, no, no2, cnt, hrr, data_values = list_creator(func_) 117 | os.system('mkdir 0D_extinction') 118 | ###############################complex save data 119 | print ("*************") 120 | for i in range(len(fuel_list)): 121 | print ("Doing calculation for data {}.".format(i+1)) 122 | gas.TP = float(T_inlet), float(P_inlet) 123 | gas.set_equivalence_ratio(ER[i], fuel_list[i] , 'O2:0.21, N2:0.79') 124 | 125 | t1 = ct.Reservoir(contents = gas, name = 'inlet') #tank1/inlet 126 | t2 = ct.Reservoir(contents = gas, name = 'exhaust') #tank2/exhaust 127 | 128 | residence_time_r1 = 0.001 129 | gas.equilibrate('HP') 130 | r1 = ct.IdealGasReactor(contents = gas, name = 'PSR', energy='on') 131 | 132 | def mdot_inlet(t): 133 | return r1.mass / residence_time_r1 134 | 135 | inlet_to_PSR = ct.MassFlowController(t1, r1, mdot=mdot_inlet) 136 | PSR_to_exhaust = ct.PressureController(r1, t2, master = inlet_to_PSR, K=0.01) 137 | 138 | sim = ct.ReactorNet([r1]) 139 | 140 | # Run a loop over decreasing residence times, until the reactor is extinguished, 141 | # saving the state after each iteration. 142 | states = ct.SolutionArray(gas, extra=['tres', 'HRR', 'CO_ppmvd', 'NOx_ppmvd', 'NO_ppmvd', 'NO2_ppmvd', 'NO_NO2_ppmvd']) 143 | sim.advance_to_steady_state() 144 | 145 | while abs(r1.T - float(T_inlet)) <= 100: 146 | print ("No combustion at tres = {}s, T = {}K,\nScaling...".format(residence_time_r1, r1.T)) 147 | #automatic update residence_time to increase speed by 10 times. 148 | residence_time_r1, r1, t1, t2 = update(residence_time_r1, gas, T_inlet, P_inlet, ER, fuel_list, i) 149 | inlet_to_PSR = ct.MassFlowController(t1, r1, mdot=mdot_inlet) 150 | PSR_to_exhaust = ct.PressureController(r1, t2, master = inlet_to_PSR, K=0.01) 151 | sim = ct.ReactorNet([r1]) 152 | sim.advance_to_steady_state() 153 | 154 | print ("Combustion activated at tres = {}s, T = {}K,\nLooking for extinction time...".format(residence_time_r1, r1.T)) 155 | 156 | while r1.T > float(T_inlet)+200: 157 | sim.set_initial_time(0.0) # reset the integrator 158 | sim.advance_to_steady_state() 159 | CO_ppmvd,NOx_ppmvd,NO_NO2_ppmvd, NO_ppmvd, NO2_ppmvd = X_ppmvd(r1, gas) 160 | states.append(r1.thermo.state, tres=residence_time_r1, HRR = get_heat_release(r1), CO_ppmvd = CO_ppmvd, NOx_ppmvd = NOx_ppmvd, NO_ppmvd = NO_ppmvd, NO2_ppmvd = NO2_ppmvd, NO_NO2_ppmvd = NO_NO2_ppmvd) 161 | residence_time_r1 *= 0.99 162 | 163 | # Heat release rate [W/m^3] 164 | #Q = - np.sum(states.net_production_rates * states.partial_molar_enthalpies, axis=1) 165 | print ('Extinction time for data {} = {}s'.format(i+1, states.tres[-2])) 166 | 167 | tau.append(states.tres[-2]) 168 | x.append(states.X[-2,:]) 169 | temp.append(states.T[-2]) 170 | co.append(states.CO_ppmvd[-2]) 171 | nox.append(states.NOx_ppmvd[-2]) 172 | no_no2.append(states.NO_NO2_ppmvd[-2]) 173 | no.append(states.NO_ppmvd[-2]) 174 | no2.append(states.NO2_ppmvd[-2]) 175 | hrr.append(states.HRR[-2]) 176 | 177 | #states.write_csv('somefile.csv', cols=('T','P','X','net_rates_of_progress')) 178 | 179 | print('Solution written for data {}\n*************'.format(i+1)) 180 | dir1 = './0D_extinction/reactor{}.csv'.format(i+1) 181 | 182 | states.write_csv(dir1, cols=('tres', 'HRR', 'T','P','X')) 183 | 184 | csv_file = "0D_extinction.csv" 185 | excel_file = "0D_extinction.xlsx" 186 | header = list(original_data.columns.values) + ["T_b (K)"] + ["tres (s)"] + ["HRR (W/m-3)"] + ["CO_ppmvd"] + ["NO_ppmvd"] + ["NO2_ppmvd"] + ["NOx_ppmvd"] + ["NO/NO2_ppmvd"] + species_names 187 | solution = [list(original_data.values[i]) + [temp[i]] + [tau[i]] + [hrr[i]] + [co[i]] + [no[i]] + [no2[i]] + [nox[i]] + [no_no2[i]] + list(x[i]) for i in range(len(original_data))] 188 | write(original_data, csv_file, excel_file, header, solution) 189 | 190 | ##############################simplified save data 191 | if input('Choose wheter to export a simplified datasets [yes/no)] ') == 'yes': 192 | base_tau = tau.copy() 193 | tau, x, temp, co, nox, no_no2, no, no2, cnt, hrr, data_values = list_creator(func_) 194 | 195 | for i in range(len(fuel_list)): 196 | gas.TP = float(T_inlet), float(P_inlet) 197 | gas.set_equivalence_ratio(ER[i], fuel_list[i] , 'O2:0.21, N2:0.79') 198 | 199 | t1 = ct.Reservoir(contents = gas, name = 'inlet') #tank1/inlet 200 | t2 = ct.Reservoir(contents = gas, name = 'exhaust') #tank2/exhaust 201 | 202 | residence_time_r1 = 128 * base_tau[i] 203 | final_residence_time = base_tau[i] / 2 204 | 205 | gas.equilibrate('HP') 206 | r1 = ct.IdealGasReactor(contents = gas, name = 'PSR', energy='on') 207 | 208 | def mdot_inlet2(t): 209 | return r1.mass / residence_time_r1 210 | 211 | inlet_to_PSR = ct.MassFlowController(t1, r1, mdot=mdot_inlet2) 212 | PSR_to_exhaust = ct.PressureController(r1, t2, master = inlet_to_PSR, K=0.01) 213 | 214 | sim = ct.ReactorNet([r1]) 215 | 216 | # Run a loop over increasing residence times, until the reactor reach final residence time, 217 | # saving the state after each iteration. 218 | 219 | count = 128 220 | while residence_time_r1 > final_residence_time: 221 | sim.set_initial_time(0.0) # reset the integrator 222 | sim.advance_to_steady_state() 223 | 224 | CO_ppmvd,NOx_ppmvd,NO_NO2_ppmvd, NO_ppmvd, NO2_ppmvd = X_ppmvd(r1, gas) 225 | 226 | tau.append(residence_time_r1) 227 | temp.append(r1.thermo.T) 228 | co.append(CO_ppmvd) 229 | nox.append(NOx_ppmvd) 230 | no_no2.append(NO_NO2_ppmvd) 231 | no.append(NO_ppmvd) 232 | no2.append(NO2_ppmvd) 233 | cnt.append(count) 234 | hrr.append(get_heat_release(r1)) 235 | data_values.append(original_data.values[i]) 236 | 237 | residence_time_r1 *= 0.5 238 | count *= 0.5 239 | 240 | csv_file = "0D_extinction_simplified.csv" 241 | excel_file = "0D_extinction_simplified.xlsx" 242 | header = list(original_data.columns.values) + ["T_b (K)"] + ["cnt"] + ["tres (s)"] + ["HRR (W/m-3)"] + ["CO_ppmvd"] + ["NO_ppmvd"] + ["NO2_ppmvd"] + ["NOx_ppmvd"] + ["NO/NO2_ppmvd"] 243 | solution = [list(data_values[i]) + [temp[i]] + [cnt[i]] + [tau[i]] + [hrr[i]] + [co[i]] + [no[i]] + [no2[i]] + [nox[i]] + [no_no2[i]] for i in range(len(data_values))] 244 | write(data_values, csv_file, excel_file, header, solution) 245 | else: 246 | exit () 247 | 248 | ########################################################################## 249 | #def zeroD_extinction(): 250 | #def zeroD_ignition(): 251 | 252 | ######################################################################## 253 | if __name__ == '__main__': 254 | 255 | import sys 256 | import os 257 | import cantera as ct 258 | #from tools import * 259 | from tools import * 260 | 261 | nProcs = 6 #better use half of your total cores 262 | 263 | try: 264 | func_, data_name, specifier, T_inlet, P_inlet, mech = variables 265 | except: 266 | print("Program Quit!") 267 | exit() 268 | 269 | mech = "./Mechanisms/" + mech 270 | if func_ == "Equilibrium": 271 | Equilibrium(data_name, specifier, mech, T_inlet, P_inlet, func_) 272 | elif func_ =="1D_flame": 273 | get_flame_speed_parallel(data_name, specifier, mech, T_inlet, P_inlet, func_, nProcs) 274 | elif func_ =="0D_extinction": 275 | zeroD_extinction(data_name, specifier, mech, T_inlet, P_inlet, func_) 276 | elif func_ =="General": 277 | General(data_name, specifier, mech, T_inlet, P_inlet, func_) 278 | else: 279 | print () 280 | print ("Non-existing .exe program!!") 281 | exit() 282 | 283 | -------------------------------------------------------------------------------- /Mechanisms/Davis.cti: -------------------------------------------------------------------------------- 1 | """ 2 | *************************************************************************** 3 | **************************************************************************** 4 | Revised H2/CO high temperature Combustion Mechanism 5 | 6 | Scott Davis, Ameya Joshi, and Hai Wang 7 | Department of Mechanical Engineering, University of Delaware, Neark, DE 19716 8 | 9 | January 2003 10 | 11 | **************************************************************************** 12 | 13 | Reference sources can be found at the end of the file. 14 | 15 | **************************************************************************** 16 | 17 | Please contact Scott Davis at daviss@exponent.com or 18 | Hai Wang at hwang@me.udel.edu for questions and comments 19 | 20 | ============================================================================ 21 | """ 22 | 23 | units(length='cm', time='s', quantity='mol', act_energy='cal/mol') 24 | 25 | ideal_gas(name='gas', 26 | elements="O H C N Ar He", 27 | species="""H2 H AR N2 HE O OH HCO HO2 28 | H2O CO O2 H2O2 CO2""", 29 | reactions='all', 30 | transport='Mix', 31 | initial_state=state(temperature=300.0, pressure=OneAtm)) 32 | 33 | #------------------------------------------------------------------------------- 34 | # Species data 35 | #------------------------------------------------------------------------------- 36 | 37 | species(name=u'H2', 38 | atoms='H:2', 39 | thermo=(NASA([200.00, 1000.00], 40 | [ 2.34433112E+00, 7.98052075E-03, -1.94781510E-05, 41 | 2.01572094E-08, -7.37611761E-12, -9.17935173E+02, 42 | 6.83010238E-01]), 43 | NASA([1000.00, 3500.00], 44 | [ 3.33727920E+00, -4.94024731E-05, 4.99456778E-07, 45 | -1.79566394E-10, 2.00255376E-14, -9.50158922E+02, 46 | -3.20502331E+00])), 47 | transport=gas_transport(geom='linear', 48 | diam=2.92, 49 | well_depth=38.0, 50 | polar=0.79, 51 | rot_relax=280.0), 52 | note=u'TPIS78') 53 | 54 | species(name=u'H', 55 | atoms='H:1', 56 | thermo=(NASA([200.00, 1000.00], 57 | [ 2.50000000E+00, 7.05332819E-13, -1.99591964E-15, 58 | 2.30081632E-18, -9.27732332E-22, 2.54736599E+04, 59 | -4.46682853E-01]), 60 | NASA([1000.00, 3500.00], 61 | [ 2.50000001E+00, -2.30842973E-11, 1.61561948E-14, 62 | -4.73515235E-18, 4.98197357E-22, 2.54736599E+04, 63 | -4.46682914E-01])), 64 | transport=gas_transport(geom='atom', 65 | diam=2.05, 66 | well_depth=145.0), 67 | note=u'L7/88') 68 | 69 | species(name=u'AR', 70 | atoms='Ar:1', 71 | thermo=(NASA([300.00, 1000.00], 72 | [ 2.50000000E+00, 0.00000000E+00, 0.00000000E+00, 73 | 0.00000000E+00, 0.00000000E+00, -7.45375000E+02, 74 | 4.36600000E+00]), 75 | NASA([1000.00, 5000.00], 76 | [ 2.50000000E+00, 0.00000000E+00, 0.00000000E+00, 77 | 0.00000000E+00, 0.00000000E+00, -7.45375000E+02, 78 | 4.36600000E+00])), 79 | transport=gas_transport(geom='atom', 80 | diam=3.33, 81 | well_depth=136.5), 82 | note=u'120186') 83 | 84 | species(name=u'N2', 85 | atoms='N:2', 86 | thermo=(NASA([300.00, 1000.00], 87 | [ 3.29867700E+00, 1.40824040E-03, -3.96322200E-06, 88 | 5.64151500E-09, -2.44485400E-12, -1.02089990E+03, 89 | 3.95037200E+00]), 90 | NASA([1000.00, 5000.00], 91 | [ 2.92664000E+00, 1.48797680E-03, -5.68476000E-07, 92 | 1.00970380E-10, -6.75335100E-15, -9.22797700E+02, 93 | 5.98052800E+00])), 94 | transport=gas_transport(geom='linear', 95 | diam=3.621, 96 | well_depth=97.53, 97 | polar=1.76, 98 | rot_relax=4.0), 99 | note=u'121286') 100 | 101 | species(name=u'HE', 102 | atoms='He:1', 103 | thermo=(NASA([200.00, 1000.00], 104 | [ 2.50000000E+00, 0.00000000E+00, 0.00000000E+00, 105 | 0.00000000E+00, 0.00000000E+00, -7.45375000E+02, 106 | 9.28723974E-01]), 107 | NASA([1000.00, 6000.00], 108 | [ 2.50000000E+00, 0.00000000E+00, 0.00000000E+00, 109 | 0.00000000E+00, 0.00000000E+00, -7.45375000E+02, 110 | 9.28723974E-01])), 111 | transport=gas_transport(geom='atom', 112 | diam=2.576, 113 | well_depth=10.2), 114 | note=u'L10/90') 115 | 116 | species(name=u'O', 117 | atoms='O:1', 118 | thermo=(NASA([200.00, 1000.00], 119 | [ 3.16826710E+00, -3.27931884E-03, 6.64306396E-06, 120 | -6.12806624E-09, 2.11265971E-12, 2.91222592E+04, 121 | 2.05193346E+00]), 122 | NASA([1000.00, 3500.00], 123 | [ 2.56942078E+00, -8.59741137E-05, 4.19484589E-08, 124 | -1.00177799E-11, 1.22833691E-15, 2.92175791E+04, 125 | 4.78433864E+00])), 126 | transport=gas_transport(geom='atom', 127 | diam=2.75, 128 | well_depth=80.0), 129 | note=u'L1/90') 130 | 131 | species(name=u'OH', 132 | atoms='H:1 O:1', 133 | thermo=(NASA([200.00, 1000.00], 134 | [ 4.12530561E+00, -3.22544939E-03, 6.52764691E-06, 135 | -5.79853643E-09, 2.06237379E-12, 3.38153812E+03, 136 | -6.90432960E-01]), 137 | NASA([1000.00, 6000.00], 138 | [ 2.86472886E+00, 1.05650448E-03, -2.59082758E-07, 139 | 3.05218674E-11, -1.33195876E-15, 3.71885774E+03, 140 | 5.70164073E+00])), 141 | transport=gas_transport(geom='linear', 142 | diam=2.75, 143 | well_depth=80.0), 144 | note=u'S9/01') 145 | 146 | species(name=u'HCO', 147 | atoms='C:1 H:1 O:1', 148 | thermo=(NASA([200.00, 1000.00], 149 | [ 4.22118584E+00, -3.24392532E-03, 1.37799446E-05, 150 | -1.33144093E-08, 4.33768865E-12, 3.83956496E+03, 151 | 3.39437243E+00]), 152 | NASA([1000.00, 3500.00], 153 | [ 2.77217438E+00, 4.95695526E-03, -2.48445613E-06, 154 | 5.89161778E-10, -5.33508711E-14, 4.01191815E+03, 155 | 9.79834492E+00])), 156 | transport=gas_transport(geom='nonlinear', 157 | diam=3.59, 158 | well_depth=498.0), 159 | note=u'L12/89') 160 | 161 | species(name=u'HO2', 162 | atoms='H:1 O:2', 163 | thermo=(NASA([200.00, 1000.00], 164 | [ 4.30179801E+00, -4.74912051E-03, 2.11582891E-05, 165 | -2.42763894E-08, 9.29225124E-12, 2.94808040E+02, 166 | 3.71666245E+00]), 167 | NASA([1000.00, 3500.00], 168 | [ 4.01721090E+00, 2.23982013E-03, -6.33658150E-07, 169 | 1.14246370E-10, -1.07908535E-14, 1.11856713E+02, 170 | 3.78510215E+00])), 171 | transport=gas_transport(geom='nonlinear', 172 | diam=3.458, 173 | well_depth=107.4, 174 | rot_relax=1.0), 175 | note=u'L5/89') 176 | 177 | species(name=u'H2O', 178 | atoms='H:2 O:1', 179 | thermo=(NASA([200.00, 1000.00], 180 | [ 4.19864056E+00, -2.03643410E-03, 6.52040211E-06, 181 | -5.48797062E-09, 1.77197817E-12, -3.02937267E+04, 182 | -8.49032208E-01]), 183 | NASA([1000.00, 3500.00], 184 | [ 3.03399249E+00, 2.17691804E-03, -1.64072518E-07, 185 | -9.70419870E-11, 1.68200992E-14, -3.00042971E+04, 186 | 4.96677010E+00])), 187 | transport=gas_transport(geom='nonlinear', 188 | diam=2.605, 189 | well_depth=572.4, 190 | dipole=1.844, 191 | rot_relax=4.0), 192 | note=u'L8/89') 193 | 194 | species(name=u'CO', 195 | atoms='C:1 O:1', 196 | thermo=(NASA([200.00, 1000.00], 197 | [ 3.57953347E+00, -6.10353680E-04, 1.01681433E-06, 198 | 9.07005884E-10, -9.04424499E-13, -1.43440860E+04, 199 | 3.50840928E+00]), 200 | NASA([1000.00, 3500.00], 201 | [ 2.71518561E+00, 2.06252743E-03, -9.98825771E-07, 202 | 2.30053008E-10, -2.03647716E-14, -1.41518724E+04, 203 | 7.81868772E+00])), 204 | transport=gas_transport(geom='linear', 205 | diam=3.65, 206 | well_depth=98.1, 207 | polar=1.95, 208 | rot_relax=1.8), 209 | note=u'TPIS79') 210 | 211 | species(name=u'O2', 212 | atoms='O:2', 213 | thermo=(NASA([200.00, 1000.00], 214 | [ 3.78245636E+00, -2.99673416E-03, 9.84730201E-06, 215 | -9.68129509E-09, 3.24372837E-12, -1.06394356E+03, 216 | 3.65767573E+00]), 217 | NASA([1000.00, 3500.00], 218 | [ 3.28253784E+00, 1.48308754E-03, -7.57966669E-07, 219 | 2.09470555E-10, -2.16717794E-14, -1.08845772E+03, 220 | 5.45323129E+00])), 221 | transport=gas_transport(geom='linear', 222 | diam=3.458, 223 | well_depth=107.4, 224 | polar=1.6, 225 | rot_relax=3.8), 226 | note=u'TPIS89') 227 | 228 | species(name=u'H2O2', 229 | atoms='H:2 O:2', 230 | thermo=(NASA([200.00, 1000.00], 231 | [ 4.27611269E+00, -5.42822417E-04, 1.67335701E-05, 232 | -2.15770813E-08, 8.62454363E-12, -1.77025821E+04, 233 | 3.43505074E+00]), 234 | NASA([1000.00, 3500.00], 235 | [ 4.16500285E+00, 4.90831694E-03, -1.90139225E-06, 236 | 3.71185986E-10, -2.87908305E-14, -1.78617877E+04, 237 | 2.91615662E+00])), 238 | transport=gas_transport(geom='nonlinear', 239 | diam=3.458, 240 | well_depth=107.4, 241 | rot_relax=3.8), 242 | note=u'L7/88') 243 | 244 | species(name=u'CO2', 245 | atoms='C:1 O:2', 246 | thermo=(NASA([200.00, 1000.00], 247 | [ 2.35677352E+00, 8.98459677E-03, -7.12356269E-06, 248 | 2.45919022E-09, -1.43699548E-13, -4.83719697E+04, 249 | 9.90105222E+00]), 250 | NASA([1000.00, 3500.00], 251 | [ 3.85746029E+00, 4.41437026E-03, -2.21481404E-06, 252 | 5.23490188E-10, -4.72084164E-14, -4.87591660E+04, 253 | 2.27163806E+00])), 254 | transport=gas_transport(geom='linear', 255 | diam=3.763, 256 | well_depth=244.0, 257 | polar=2.65, 258 | rot_relax=2.1), 259 | note=u'L7/88') 260 | 261 | #------------------------------------------------------------------------------- 262 | # Reaction data 263 | #------------------------------------------------------------------------------- 264 | # Reactions of H2/O2 265 | 266 | # Reaction 1 267 | reaction('H + O2 <=> O + OH', [2.644000e+16, -0.6707, 17041.0]) 268 | # GRI3.0 * 1.00 269 | 270 | # Reaction 2 271 | reaction('O + H2 <=> H + OH', [4.589000e+04, 2.7, 6260.0]) 272 | # GRI3.0 * 1.19 273 | 274 | # Reaction 3 275 | reaction('OH + H2 <=> H + H2O', [1.734000e+08, 1.51, 3430.0]) 276 | # GRI3.0 * 0.80 277 | 278 | # Reaction 4 279 | reaction('OH + OH <=> O + H2O', [3.973000e+04, 2.4, -2110.0]) 280 | # GRI3.0 * 1.11 281 | 282 | # Reaction 5 283 | three_body_reaction('H + H + M <=> H2 + M', [1.780000e+18, -1.0, 0.0], 284 | efficiencies='AR:0.63 CO2:0.0 H2:0.0 H2O:0.0 HE:0.63') 285 | # GRI3.0 * 1.78 286 | 287 | # Reaction 6 288 | reaction('H + H + H2 <=> H2 + H2', [9.000000e+16, -0.6, 0.0]) 289 | # GRI3.0 290 | 291 | # Reaction 7 292 | reaction('H + H + H2O <=> H2 + H2O', [5.624000e+19, -1.25, 0.0]) 293 | # GRI3.0 * 0.94 294 | 295 | # Reaction 8 296 | reaction('H + H + CO2 <=> H2 + CO2', [5.500000e+20, -2.0, 0.0]) 297 | # GRI3.0 298 | 299 | # Reaction 9 300 | three_body_reaction('H + OH + M <=> H2O + M', [4.400000e+22, -2.0, 0.0], 301 | efficiencies='AR:0.38 CO:1.75 CO2:3.6 H2:2.0 H2O:6.3 HE:0.38') 302 | # GRI3.0 * 2.00 303 | 304 | # Reaction 10 305 | three_body_reaction('O + H + M <=> OH + M', [9.428000e+18, -1.0, 0.0], 306 | efficiencies='AR:0.7 CO:1.75 CO2:3.6 H2:2.0 H2O:12.0 HE:0.7') 307 | # 86TSA/HAM * 2.00 308 | 309 | # Reaction 11 310 | three_body_reaction('O + O + M <=> O2 + M', [1.200000e+17, -1.0, 0.0], 311 | efficiencies='AR:0.83 CO:1.75 CO2:3.6 H2:2.4 H2O:15.4 HE:0.83') 312 | # GRI3.0 313 | 314 | # Reaction 12 315 | falloff_reaction('H + O2 (+ M) <=> HO2 (+ M)', 316 | kf=[5.116000e+12, 0.44, 0.0], 317 | kf0=[6.328000e+19, -1.4, 0.0], 318 | efficiencies='AR:0.4 CO:1.09 CO2:2.18 H2:0.75 H2O:11.89 HE:0.46 O2:0.85', 319 | falloff=Troe(A=0.5, T3=1e-30, T1=1e+30)) 320 | # 00TROE - Based on M=N2 * 1.10 321 | # O2/0.75/ H2O/12.0/ CO/1.2/ CO2/2.4/ AR/0.53/ HE/0.53/ 322 | # H+O2(+M) = HO2(+M) 4.651E+12 0.440 0.00 !00TROE - Based on M=AR 323 | # LOW/7.490E+18 -1.200 0.00/ 324 | # TROE/0.5 1E-30 1E+30/ 325 | # H+O2(+M) = HO2(+M) 4.651E+12 0.440 0.00 !00TROE - Based on M=H2O 326 | # LOW/5.753E+20 -1.400 0.00/ !10xN2 327 | # TROE/0.0 345.0 10 345.0 / !FSC 328 | 329 | # Reaction 13 330 | reaction('H2 + O2 <=> HO2 + H', [5.916000e+05, 2.433, 53502.0]) 331 | # 00MIC/SUT * 0.80 332 | 333 | # Reaction 14 334 | falloff_reaction('OH + OH (+ M) <=> H2O2 (+ M)', 335 | kf=[1.110000e+14, -0.37, 0.0], 336 | kf0=[2.010000e+17, -0.584, -2293.0], 337 | efficiencies='AR:0.7 CO:1.75 CO2:3.6 H2:2.0 H2O:6.0 HE:0.7', 338 | falloff=Troe(A=0.7346, T3=94.0, T1=1756.0, T2=5182.0)) 339 | # 88ZEL/EWI * 1.50 340 | # Fit 88ZEL/EWI and 92BAU/COB 341 | # H2O=6xN2 88ZEL/EWI 342 | # Reactions of HO2 343 | 344 | # Reaction 15 345 | reaction('HO2 + H <=> O + H2O', [3.970000e+12, 0.0, 671.0]) 346 | # GRI3.0 347 | 348 | # Reaction 16 349 | reaction('HO2 + H <=> OH + OH', [7.485000e+13, 0.0, 295.0]) 350 | # 99MUE/KIM * 1.06 351 | 352 | # Reaction 17 353 | reaction('HO2 + O <=> OH + O2', [4.000000e+13, 0.0, 0.0]) 354 | # GRI3.0 * 2.00 355 | 356 | # Reaction 18 357 | reaction('HO2 + OH <=> O2 + H2O', [2.375000e+13, 0.0, -500.0], 358 | options='duplicate') 359 | # 88KEY * 0.82 360 | 361 | # Reaction 19 362 | reaction('HO2 + OH <=> O2 + H2O', [1.000000e+16, 0.0, 17330.0], 363 | options='duplicate') 364 | # 95HIP/NEU 365 | 366 | # Reaction 20 367 | reaction('HO2 + HO2 <=> O2 + H2O2', [1.300000e+11, 0.0, -1630.0], 368 | options='duplicate') 369 | # 90HIP/TRO 370 | 371 | # Reaction 21 372 | reaction('HO2 + HO2 <=> O2 + H2O2', [3.658000e+14, 0.0, 12000.0], 373 | options='duplicate') 374 | # 90HIP/TRO * 0.87 375 | # Reactions of H2O2 376 | 377 | # Reaction 22 378 | reaction('H2O2 + H <=> HO2 + H2', [6.050000e+06, 2.0, 5200.0]) 379 | # GRI3.0 * 0.50 380 | 381 | # Reaction 23 382 | reaction('H2O2 + H <=> OH + H2O', [2.410000e+13, 0.0, 3970.0]) 383 | # 86TSA/HAM 384 | 385 | # Reaction 24 386 | reaction('H2O2 + O <=> OH + HO2', [9.630000e+06, 2.0, 3970.0]) 387 | # 86TSA/HAM 388 | 389 | # Reaction 25 390 | reaction('H2O2 + OH <=> HO2 + H2O', [2.000000e+12, 0.0, 427.0], 391 | options='duplicate') 392 | # 95HIP/NEU 393 | 394 | # Reaction 26 395 | reaction('H2O2 + OH <=> HO2 + H2O', [2.670000e+41, -7.0, 37600.0], 396 | options='duplicate') 397 | # Refit95HIP/NEU 398 | # 2.2E14 MAX K 399 | # Reactions of CO/CO2 400 | 401 | # Reaction 27 402 | falloff_reaction('CO + O (+ M) <=> CO2 (+ M)', 403 | kf=[1.362000e+10, 0.0, 2384.0], 404 | kf0=[1.173000e+24, -2.79, 4191.0], 405 | efficiencies='AR:0.7 CO:1.75 CO2:3.6 H2:2.0 H2O:12.0 HE:0.7') 406 | # 99MUE/KIM * 0.76 407 | # CO+OH = CO2+H 4.760E+07 1.228 70.00 !GRI3.0 408 | 409 | # Reaction 28 410 | reaction('CO + OH <=> CO2 + H', [8.000000e+11, 0.14, 7352.0], 411 | options='duplicate') 412 | # This Work * 0.83 413 | 414 | # Reaction 29 415 | reaction('CO + OH <=> CO2 + H', [8.784000e+10, 0.03, -16.0], 416 | options='duplicate') 417 | # * 1.20 418 | 419 | # Reaction 30 420 | reaction('CO + O2 <=> CO2 + O', [1.119000e+12, 0.0, 47700.0]) 421 | # 86TSA/HAM * 0.44 422 | 423 | # Reaction 31 424 | reaction('CO + HO2 <=> CO2 + OH', [3.010000e+13, 0.0, 23000.0]) 425 | # 99MUE/KIM 426 | # Reactions of HCO 427 | 428 | # Reaction 32 429 | reaction('HCO + H <=> CO + H2', [1.200000e+14, 0.0, 0.0]) 430 | # 02FRI/DAV * 1.00 431 | 432 | # Reaction 33 433 | reaction('HCO + O <=> CO + OH', [3.000000e+13, 0.0, 0.0]) 434 | # GRI3.0 435 | 436 | # Reaction 34 437 | reaction('HCO + O <=> CO2 + H', [3.000000e+13, 0.0, 0.0]) 438 | # GRI3.0 439 | 440 | # Reaction 35 441 | reaction('HCO + OH <=> CO + H2O', [3.020000e+13, 0.0, 0.0]) 442 | # 86TSA/HAM 443 | 444 | # Reaction 36 445 | three_body_reaction('HCO + M <=> CO + H + M', [1.870000e+17, -1.0, 17000.0], 446 | efficiencies='CO:1.75 CO2:3.6 H2:2.0 H2O:0.0') 447 | # 02FRI/DAV * 2.00 448 | 449 | # Reaction 37 450 | reaction('HCO + H2O <=> CO + H + H2O', [2.244000e+18, -1.0, 17000.0]) 451 | # 12xM * 2.00 452 | 453 | # Reaction 38 454 | reaction('HCO + O2 <=> CO + HO2', [1.204000e+10, 0.807, -727.0]) 455 | # 96HSU/MEB 456 | -------------------------------------------------------------------------------- /Mechanisms/SK17.cti: -------------------------------------------------------------------------------- 1 | """ 2 | 3 | A 17 species skeletal mechanism for lean atmospheric CH4/air 4 | 5 | Contact: 6 | Tianfeng Lu 7 | University of Connecticut 8 | Email: tlu@engr.uconn.edu 9 | 10 | Reference: 11 | R. Sankaran, E.R. Hawkes, J.H. Chen, T.F. Lu, C.K. Law, 12 | "Structure of a spatially developing turbulent lean methaneair Bunsen flame," 13 | Proceedings of the Combustion Institute 31 (2007) 12911298. 14 | 15 | 16 | GRI-MECH version 1.2 Thermodynamics released 11/16/94 17 | NASA Polynomial format for CHEMKIN-II 18 | CH2* symbol changed to CH2(S); only change from version 1.1 19 | see README file for disclaimer 20 | """ 21 | 22 | units(length='cm', time='s', quantity='mol', act_energy='cal/mol') 23 | 24 | ideal_gas(name='gas', 25 | elements="O H C N Ar", 26 | species="""H2 H O O2 OH H2O HO2 27 | CH2 CH2(S) CH3 CH4 CO CO2 HCO 28 | CH2O CH2OH N2""", 29 | reactions='all', 30 | transport='Mix', 31 | initial_state=state(temperature=300.0, pressure=OneAtm)) 32 | 33 | #------------------------------------------------------------------------------- 34 | # Species data 35 | #------------------------------------------------------------------------------- 36 | 37 | species(name=u'H2', 38 | atoms='H:2', 39 | thermo=(NASA([200.00, 1000.00], 40 | [ 2.34433112E+00, 7.98052075E-03, -1.94781510E-05, 41 | 2.01572094E-08, -7.37611761E-12, -9.17935173E+02, 42 | 6.83010238E-01]), 43 | NASA([1000.00, 3500.00], 44 | [ 3.33727920E+00, -4.94024731E-05, 4.99456778E-07, 45 | -1.79566394E-10, 2.00255376E-14, -9.50158922E+02, 46 | -3.20502331E+00])), 47 | transport=gas_transport(geom='linear', 48 | diam=2.92, 49 | well_depth=38.0, 50 | polar=0.79, 51 | rot_relax=280.0), 52 | note=u'TPIS78') 53 | 54 | species(name=u'H', 55 | atoms='H:1', 56 | thermo=(NASA([200.00, 1000.00], 57 | [ 2.50000000E+00, 7.05332819E-13, -1.99591964E-15, 58 | 2.30081632E-18, -9.27732332E-22, 2.54736599E+04, 59 | -4.46682853E-01]), 60 | NASA([1000.00, 3500.00], 61 | [ 2.50000001E+00, -2.30842973E-11, 1.61561948E-14, 62 | -4.73515235E-18, 4.98197357E-22, 2.54736599E+04, 63 | -4.46682914E-01])), 64 | transport=gas_transport(geom='atom', 65 | diam=2.05, 66 | well_depth=145.0), 67 | note=u'L7/88') 68 | 69 | species(name=u'O', 70 | atoms='O:1', 71 | thermo=(NASA([200.00, 1000.00], 72 | [ 3.16826710E+00, -3.27931884E-03, 6.64306396E-06, 73 | -6.12806624E-09, 2.11265971E-12, 2.91222592E+04, 74 | 2.05193346E+00]), 75 | NASA([1000.00, 3500.00], 76 | [ 2.56942078E+00, -8.59741137E-05, 4.19484589E-08, 77 | -1.00177799E-11, 1.22833691E-15, 2.92175791E+04, 78 | 4.78433864E+00])), 79 | transport=gas_transport(geom='atom', 80 | diam=2.75, 81 | well_depth=80.0), 82 | note=u'L1/90') 83 | 84 | species(name=u'O2', 85 | atoms='O:2', 86 | thermo=(NASA([200.00, 1000.00], 87 | [ 3.78245636E+00, -2.99673416E-03, 9.84730201E-06, 88 | -9.68129509E-09, 3.24372837E-12, -1.06394356E+03, 89 | 3.65767573E+00]), 90 | NASA([1000.00, 3500.00], 91 | [ 3.28253784E+00, 1.48308754E-03, -7.57966669E-07, 92 | 2.09470555E-10, -2.16717794E-14, -1.08845772E+03, 93 | 5.45323129E+00])), 94 | transport=gas_transport(geom='linear', 95 | diam=3.458, 96 | well_depth=107.4, 97 | polar=1.6, 98 | rot_relax=3.8), 99 | note=u'TPIS89') 100 | 101 | species(name=u'OH', 102 | atoms='H:1 O:1', 103 | thermo=(NASA([200.00, 1000.00], 104 | [ 3.99201543E+00, -2.40131752E-03, 4.61793841E-06, 105 | -3.88113333E-09, 1.36411470E-12, 3.61508056E+03, 106 | -1.03925458E-01]), 107 | NASA([1000.00, 3500.00], 108 | [ 3.09288767E+00, 5.48429716E-04, 1.26505228E-07, 109 | -8.79461556E-11, 1.17412376E-14, 3.85865700E+03, 110 | 4.47669610E+00])), 111 | transport=gas_transport(geom='linear', 112 | diam=2.75, 113 | well_depth=80.0), 114 | note=u'RUS78') 115 | 116 | species(name=u'H2O', 117 | atoms='H:2 O:1', 118 | thermo=(NASA([200.00, 1000.00], 119 | [ 4.19864056E+00, -2.03643410E-03, 6.52040211E-06, 120 | -5.48797062E-09, 1.77197817E-12, -3.02937267E+04, 121 | -8.49032208E-01]), 122 | NASA([1000.00, 3500.00], 123 | [ 3.03399249E+00, 2.17691804E-03, -1.64072518E-07, 124 | -9.70419870E-11, 1.68200992E-14, -3.00042971E+04, 125 | 4.96677010E+00])), 126 | transport=gas_transport(geom='nonlinear', 127 | diam=2.605, 128 | well_depth=572.4, 129 | dipole=1.844, 130 | rot_relax=4.0), 131 | note=u'L8/89') 132 | 133 | species(name=u'HO2', 134 | atoms='H:1 O:2', 135 | thermo=(NASA([200.00, 1000.00], 136 | [ 4.30179801E+00, -4.74912051E-03, 2.11582891E-05, 137 | -2.42763894E-08, 9.29225124E-12, 2.94808040E+02, 138 | 3.71666245E+00]), 139 | NASA([1000.00, 3500.00], 140 | [ 4.01721090E+00, 2.23982013E-03, -6.33658150E-07, 141 | 1.14246370E-10, -1.07908535E-14, 1.11856713E+02, 142 | 3.78510215E+00])), 143 | transport=gas_transport(geom='nonlinear', 144 | diam=3.458, 145 | well_depth=107.4, 146 | rot_relax=1.0), 147 | note=u'L5/89') 148 | 149 | species(name=u'CH2', 150 | atoms='C:1 H:2', 151 | thermo=(NASA([200.00, 1000.00], 152 | [ 3.76267867E+00, 9.68872143E-04, 2.79489841E-06, 153 | -3.85091153E-09, 1.68741719E-12, 4.60040401E+04, 154 | 1.56253185E+00]), 155 | NASA([1000.00, 3500.00], 156 | [ 2.87410113E+00, 3.65639292E-03, -1.40894597E-06, 157 | 2.60179549E-10, -1.87727567E-14, 4.62636040E+04, 158 | 6.17119324E+00])), 159 | transport=gas_transport(geom='linear', 160 | diam=3.8, 161 | well_depth=144.0), 162 | note=u'LS/93') 163 | 164 | species(name=u'CH2(S)', 165 | atoms='C:1 H:2', 166 | thermo=(NASA([200.00, 1000.00], 167 | [ 4.19860411E+00, -2.36661419E-03, 8.23296220E-06, 168 | -6.68815981E-09, 1.94314737E-12, 5.04968163E+04, 169 | -7.69118967E-01]), 170 | NASA([1000.00, 3500.00], 171 | [ 2.29203842E+00, 4.65588637E-03, -2.01191947E-06, 172 | 4.17906000E-10, -3.39716365E-14, 5.09259997E+04, 173 | 8.62650169E+00])), 174 | transport=gas_transport(geom='linear', 175 | diam=3.8, 176 | well_depth=144.0), 177 | note=u'LS/93') 178 | 179 | species(name=u'CH3', 180 | atoms='C:1 H:3', 181 | thermo=(NASA([200.00, 1000.00], 182 | [ 3.67359040E+00, 2.01095175E-03, 5.73021856E-06, 183 | -6.87117425E-09, 2.54385734E-12, 1.64449988E+04, 184 | 1.60456433E+00]), 185 | NASA([1000.00, 3500.00], 186 | [ 2.28571772E+00, 7.23990037E-03, -2.98714348E-06, 187 | 5.95684644E-10, -4.67154394E-14, 1.67755843E+04, 188 | 8.48007179E+00])), 189 | transport=gas_transport(geom='linear', 190 | diam=3.8, 191 | well_depth=144.0), 192 | note=u'L11/89') 193 | 194 | species(name=u'CH4', 195 | atoms='C:1 H:4', 196 | thermo=(NASA([200.00, 1000.00], 197 | [ 5.14987613E+00, -1.36709788E-02, 4.91800599E-05, 198 | -4.84743026E-08, 1.66693956E-11, -1.02466476E+04, 199 | -4.64130376E+00]), 200 | NASA([1000.00, 3500.00], 201 | [ 7.48514950E-02, 1.33909467E-02, -5.73285809E-06, 202 | 1.22292535E-09, -1.01815230E-13, -9.46834459E+03, 203 | 1.84373180E+01])), 204 | transport=gas_transport(geom='nonlinear', 205 | diam=3.746, 206 | well_depth=141.4, 207 | polar=2.6, 208 | rot_relax=13.0), 209 | note=u'L8/88') 210 | 211 | species(name=u'CO', 212 | atoms='C:1 O:1', 213 | thermo=(NASA([200.00, 1000.00], 214 | [ 3.57953347E+00, -6.10353680E-04, 1.01681433E-06, 215 | 9.07005884E-10, -9.04424499E-13, -1.43440860E+04, 216 | 3.50840928E+00]), 217 | NASA([1000.00, 3500.00], 218 | [ 2.71518561E+00, 2.06252743E-03, -9.98825771E-07, 219 | 2.30053008E-10, -2.03647716E-14, -1.41518724E+04, 220 | 7.81868772E+00])), 221 | transport=gas_transport(geom='linear', 222 | diam=3.65, 223 | well_depth=98.1, 224 | polar=1.95, 225 | rot_relax=1.8), 226 | note=u'TPIS79') 227 | 228 | species(name=u'CO2', 229 | atoms='C:1 O:2', 230 | thermo=(NASA([200.00, 1000.00], 231 | [ 2.35677352E+00, 8.98459677E-03, -7.12356269E-06, 232 | 2.45919022E-09, -1.43699548E-13, -4.83719697E+04, 233 | 9.90105222E+00]), 234 | NASA([1000.00, 3500.00], 235 | [ 3.85746029E+00, 4.41437026E-03, -2.21481404E-06, 236 | 5.23490188E-10, -4.72084164E-14, -4.87591660E+04, 237 | 2.27163806E+00])), 238 | transport=gas_transport(geom='linear', 239 | diam=3.763, 240 | well_depth=244.0, 241 | polar=2.65, 242 | rot_relax=2.1), 243 | note=u'L7/88') 244 | 245 | species(name=u'HCO', 246 | atoms='C:1 H:1 O:1', 247 | thermo=(NASA([200.00, 1000.00], 248 | [ 4.22118584E+00, -3.24392532E-03, 1.37799446E-05, 249 | -1.33144093E-08, 4.33768865E-12, 3.83956496E+03, 250 | 3.39437243E+00]), 251 | NASA([1000.00, 3500.00], 252 | [ 2.77217438E+00, 4.95695526E-03, -2.48445613E-06, 253 | 5.89161778E-10, -5.33508711E-14, 4.01191815E+03, 254 | 9.79834492E+00])), 255 | transport=gas_transport(geom='nonlinear', 256 | diam=3.59, 257 | well_depth=498.0), 258 | note=u'L12/89') 259 | 260 | species(name=u'CH2O', 261 | atoms='C:1 H:2 O:1', 262 | thermo=(NASA([200.00, 1000.00], 263 | [ 4.79372315E+00, -9.90833369E-03, 3.73220008E-05, 264 | -3.79285261E-08, 1.31772652E-11, -1.43089567E+04, 265 | 6.02812900E-01]), 266 | NASA([1000.00, 3500.00], 267 | [ 1.76069008E+00, 9.20000082E-03, -4.42258813E-06, 268 | 1.00641212E-09, -8.83855640E-14, -1.39958323E+04, 269 | 1.36563230E+01])), 270 | transport=gas_transport(geom='nonlinear', 271 | diam=3.59, 272 | well_depth=498.0, 273 | rot_relax=2.0), 274 | note=u'L8/88') 275 | 276 | species(name=u'CH2OH', 277 | atoms='C:1 H:3 O:1', 278 | thermo=(NASA([200.00, 1000.00], 279 | [ 3.86388918E+00, 5.59672304E-03, 5.93271791E-06, 280 | -1.04532012E-08, 4.36967278E-12, -3.19391367E+03, 281 | 5.47302243E+00]), 282 | NASA([1000.00, 3500.00], 283 | [ 3.69266569E+00, 8.64576797E-03, -3.75101120E-06, 284 | 7.87234636E-10, -6.48554201E-14, -3.24250627E+03, 285 | 5.81043215E+00])), 286 | transport=gas_transport(geom='nonlinear', 287 | diam=3.69, 288 | well_depth=417.0, 289 | dipole=1.7, 290 | rot_relax=2.0), 291 | note=u'GUNL93') 292 | 293 | species(name=u'N2', 294 | atoms='N:2', 295 | thermo=(NASA([300.00, 1000.00], 296 | [ 3.29867700E+00, 1.40824040E-03, -3.96322200E-06, 297 | 5.64151500E-09, -2.44485400E-12, -1.02089990E+03, 298 | 3.95037200E+00]), 299 | NASA([1000.00, 5000.00], 300 | [ 2.92664000E+00, 1.48797680E-03, -5.68476000E-07, 301 | 1.00970380E-10, -6.75335100E-15, -9.22797700E+02, 302 | 5.98052800E+00])), 303 | transport=gas_transport(geom='linear', 304 | diam=3.621, 305 | well_depth=97.53, 306 | polar=1.76, 307 | rot_relax=4.0), 308 | note=u'121286') 309 | 310 | #------------------------------------------------------------------------------- 311 | # Reaction data 312 | #------------------------------------------------------------------------------- 313 | # R1 314 | 315 | # Reaction 1 316 | three_body_reaction('2 O + M <=> O2 + M', [1.200000e+17, -1.0, 0.0], 317 | efficiencies='CH4:2.0 CO:1.75 CO2:3.6 H2:2.4 H2O:15.4') 318 | # R2 319 | 320 | # Reaction 2 321 | three_body_reaction('O + H + M <=> OH + M', [5.000000e+17, -1.0, 0.0], 322 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0') 323 | # R3 324 | 325 | # Reaction 3 326 | reaction('O + H2 <=> H + OH', [5.000000e+04, 2.67, 6290.0]) 327 | # R4 328 | 329 | # Reaction 4 330 | reaction('O + HO2 <=> OH + O2', [2.000000e+13, 0.0, 0.0]) 331 | # R5 332 | 333 | # Reaction 5 334 | reaction('O + CH2 <=> H + HCO', [8.000000e+13, 0.0, 0.0]) 335 | # R6 336 | 337 | # Reaction 6 338 | reaction('O + CH2(S) <=> H2 + CO', [1.500000e+13, 0.0, 0.0]) 339 | # R7 340 | 341 | # Reaction 7 342 | reaction('O + CH3 <=> H + CH2O', [8.430000e+13, 0.0, 0.0]) 343 | # R8 344 | 345 | # Reaction 8 346 | reaction('O + CH4 <=> OH + CH3', [1.020000e+09, 1.5, 8600.0]) 347 | # R9 348 | 349 | # Reaction 9 350 | three_body_reaction('O + CO + M <=> CO2 + M', [6.020000e+14, 0.0, 3000.0], 351 | efficiencies='CH4:2.0 CO:1.5 CO2:3.5 H2:2.0 H2O:6.0 O2:6.0') 352 | # R10 353 | 354 | # Reaction 10 355 | reaction('O + HCO <=> OH + CO', [3.000000e+13, 0.0, 0.0]) 356 | # R11 357 | 358 | # Reaction 11 359 | reaction('O + HCO <=> H + CO2', [3.000000e+13, 0.0, 0.0]) 360 | # R12 361 | 362 | # Reaction 12 363 | reaction('O + CH2O <=> OH + HCO', [3.900000e+13, 0.0, 3540.0]) 364 | # R13 365 | 366 | # Reaction 13 367 | reaction('O + CH2OH <=> OH + CH2O', [1.000000e+13, 0.0, 0.0]) 368 | # R14 369 | 370 | # Reaction 14 371 | reaction('O2 + CO <=> O + CO2', [2.500000e+12, 0.0, 47800.0]) 372 | # R15 373 | 374 | # Reaction 15 375 | reaction('O2 + CH2O <=> HO2 + HCO', [1.000000e+14, 0.0, 40000.0]) 376 | # R16 377 | 378 | # Reaction 16 379 | three_body_reaction('H + O2 + M <=> HO2 + M', [2.800000e+18, -0.86, 0.0], 380 | efficiencies='CO:0.75 CO2:1.5 H2O:0.0 N2:0.0 O2:0.0') 381 | # R17 382 | 383 | # Reaction 17 384 | reaction('H + 2 O2 <=> HO2 + O2', [3.000000e+20, -1.72, 0.0]) 385 | # R18 386 | 387 | # Reaction 18 388 | reaction('H + O2 + H2O <=> HO2 + H2O', [9.380000e+18, -0.76, 0.0]) 389 | # R19 390 | 391 | # Reaction 19 392 | reaction('H + O2 + N2 <=> HO2 + N2', [3.750000e+20, -1.72, 0.0]) 393 | # R20 394 | 395 | # Reaction 20 396 | reaction('H + O2 <=> O + OH', [8.300000e+13, 0.0, 14413.0]) 397 | # R21 398 | 399 | # Reaction 21 400 | three_body_reaction('2 H + M <=> H2 + M', [1.000000e+18, -1.0, 0.0], 401 | efficiencies='CH4:2.0 CO2:0.0 H2:0.0 H2O:0.0') 402 | # R22 403 | 404 | # Reaction 22 405 | reaction('2 H + H2 <=> 2 H2', [9.000000e+16, -0.6, 0.0]) 406 | # R23 407 | 408 | # Reaction 23 409 | reaction('2 H + H2O <=> H2 + H2O', [6.000000e+19, -1.25, 0.0]) 410 | # R24 411 | 412 | # Reaction 24 413 | reaction('2 H + CO2 <=> H2 + CO2', [5.500000e+20, -2.0, 0.0]) 414 | # R25 415 | 416 | # Reaction 25 417 | three_body_reaction('H + OH + M <=> H2O + M', [2.200000e+22, -2.0, 0.0], 418 | efficiencies='CH4:2.0 H2:0.73 H2O:3.65') 419 | # R26 420 | 421 | # Reaction 26 422 | reaction('H + HO2 <=> O + H2O', [3.970000e+12, 0.0, 671.0]) 423 | # R27 424 | 425 | # Reaction 27 426 | reaction('H + HO2 <=> O2 + H2', [2.800000e+13, 0.0, 1068.0]) 427 | # R28 428 | 429 | # Reaction 28 430 | reaction('H + HO2 <=> 2 OH', [1.340000e+14, 0.0, 635.0]) 431 | # R29 432 | 433 | # Reaction 29 434 | falloff_reaction('H + CH2 (+ M) <=> CH3 (+ M)', 435 | kf=[2.500000e+16, -0.8, 0.0], 436 | kf0=[3.200000e+27, -3.14, 1230.0], 437 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 438 | falloff=Troe(A=0.68, T3=78.0, T1=1995.0, T2=5590.0)) 439 | # R30 440 | 441 | # Reaction 30 442 | falloff_reaction('H + CH3 (+ M) <=> CH4 (+ M)', 443 | kf=[1.270000e+16, -0.63, 383.0], 444 | kf0=[2.477000e+33, -4.76, 2440.0], 445 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 446 | falloff=Troe(A=0.783, T3=74.0, T1=2941.0, T2=6964.0)) 447 | # R31 448 | 449 | # Reaction 31 450 | reaction('H + CH4 <=> CH3 + H2', [6.600000e+08, 1.62, 10840.0]) 451 | # R32 452 | 453 | # Reaction 32 454 | falloff_reaction('H + HCO (+ M) <=> CH2O (+ M)', 455 | kf=[1.090000e+12, 0.48, -260.0], 456 | kf0=[1.350000e+24, -2.57, 1425.0], 457 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 458 | falloff=Troe(A=0.7824, T3=271.0, T1=2755.0, T2=6570.0)) 459 | # R33 460 | 461 | # Reaction 33 462 | reaction('H + HCO <=> H2 + CO', [7.340000e+13, 0.0, 0.0]) 463 | # R34 464 | 465 | # Reaction 34 466 | falloff_reaction('H + CH2O (+ M) <=> CH2OH (+ M)', 467 | kf=[5.400000e+11, 0.454, 3600.0], 468 | kf0=[1.270000e+32, -4.82, 6530.0], 469 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 470 | falloff=Troe(A=0.7187, T3=103.0, T1=1291.0, T2=4160.0)) 471 | # R35 472 | 473 | # Reaction 35 474 | reaction('H + CH2O <=> HCO + H2', [2.300000e+10, 1.05, 3275.0]) 475 | # R36 476 | 477 | # Reaction 36 478 | reaction('H + CH2OH <=> H2 + CH2O', [2.000000e+13, 0.0, 0.0]) 479 | # R37 480 | 481 | # Reaction 37 482 | reaction('H + CH2OH <=> OH + CH3', [1.200000e+13, 0.0, 0.0]) 483 | # R38 484 | 485 | # Reaction 38 486 | reaction('H + CH2OH <=> CH2(S) + H2O', [6.000000e+12, 0.0, 0.0]) 487 | # R39 488 | 489 | # Reaction 39 490 | falloff_reaction('H2 + CO (+ M) <=> CH2O (+ M)', 491 | kf=[4.300000e+07, 1.5, 79600.0], 492 | kf0=[5.070000e+27, -3.42, 84350.0], 493 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 494 | falloff=Troe(A=0.932, T3=197.0, T1=1540.0, T2=10300.0)) 495 | # R40 496 | 497 | # Reaction 40 498 | reaction('OH + H2 <=> H + H2O', [2.160000e+08, 1.51, 3430.0]) 499 | # R41 500 | 501 | # Reaction 41 502 | reaction('2 OH <=> O + H2O', [3.570000e+04, 2.4, -2110.0]) 503 | # R42 504 | 505 | # Reaction 42 506 | reaction('OH + HO2 <=> O2 + H2O', [2.900000e+13, 0.0, -500.0]) 507 | # R43 508 | 509 | # Reaction 43 510 | reaction('OH + CH2 <=> H + CH2O', [2.000000e+13, 0.0, 0.0]) 511 | # R44 512 | 513 | # Reaction 44 514 | reaction('OH + CH2(S) <=> H + CH2O', [3.000000e+13, 0.0, 0.0]) 515 | # R45 516 | 517 | # Reaction 45 518 | reaction('OH + CH3 <=> CH2 + H2O', [5.600000e+07, 1.6, 5420.0]) 519 | # R46 520 | 521 | # Reaction 46 522 | reaction('OH + CH3 <=> CH2(S) + H2O', [2.501000e+13, 0.0, 0.0]) 523 | # R47 524 | 525 | # Reaction 47 526 | reaction('OH + CH4 <=> CH3 + H2O', [1.000000e+08, 1.6, 3120.0]) 527 | # R48 528 | 529 | # Reaction 48 530 | reaction('OH + CO <=> H + CO2', [4.760000e+07, 1.228, 70.0]) 531 | # R49 532 | 533 | # Reaction 49 534 | reaction('OH + HCO <=> H2O + CO', [5.000000e+13, 0.0, 0.0]) 535 | # R50 536 | 537 | # Reaction 50 538 | reaction('OH + CH2O <=> HCO + H2O', [3.430000e+09, 1.18, -447.0]) 539 | # R51 540 | 541 | # Reaction 51 542 | reaction('OH + CH2OH <=> H2O + CH2O', [5.000000e+12, 0.0, 0.0]) 543 | # R52 544 | 545 | # Reaction 52 546 | reaction('HO2 + CH2 <=> OH + CH2O', [2.000000e+13, 0.0, 0.0]) 547 | # R53 548 | 549 | # Reaction 53 550 | reaction('HO2 + CH3 <=> O2 + CH4', [1.000000e+12, 0.0, 0.0]) 551 | # R54 552 | 553 | # Reaction 54 554 | reaction('HO2 + CO <=> OH + CO2', [1.500000e+14, 0.0, 23600.0]) 555 | # R55 556 | 557 | # Reaction 55 558 | reaction('CH2 + O2 <=> OH + HCO', [1.320000e+13, 0.0, 1500.0]) 559 | # R56 560 | 561 | # Reaction 56 562 | reaction('CH2 + H2 <=> H + CH3', [5.000000e+05, 2.0, 7230.0]) 563 | # R57 564 | 565 | # Reaction 57 566 | reaction('CH2 + CH4 <=> 2 CH3', [2.460000e+06, 2.0, 8270.0]) 567 | # R58 568 | 569 | # Reaction 58 570 | reaction('CH2(S) + N2 <=> CH2 + N2', [1.500000e+13, 0.0, 600.0]) 571 | # R59 572 | 573 | # Reaction 59 574 | reaction('CH2(S) + O2 <=> H + OH + CO', [2.800000e+13, 0.0, 0.0]) 575 | # R60 576 | 577 | # Reaction 60 578 | reaction('CH2(S) + O2 <=> CO + H2O', [1.200000e+13, 0.0, 0.0]) 579 | # R61 580 | 581 | # Reaction 61 582 | reaction('CH2(S) + H2 <=> CH3 + H', [7.000000e+13, 0.0, 0.0]) 583 | # R62 584 | 585 | # Reaction 62 586 | reaction('CH2(S) + H2O <=> CH2 + H2O', [3.000000e+13, 0.0, 0.0]) 587 | # R63 588 | 589 | # Reaction 63 590 | reaction('CH2(S) + CH4 <=> 2 CH3', [1.600000e+13, 0.0, -570.0]) 591 | # R64 592 | 593 | # Reaction 64 594 | reaction('CH2(S) + CO <=> CH2 + CO', [9.000000e+12, 0.0, 0.0]) 595 | # R65 596 | 597 | # Reaction 65 598 | reaction('CH2(S) + CO2 <=> CH2 + CO2', [7.000000e+12, 0.0, 0.0]) 599 | # R66 600 | 601 | # Reaction 66 602 | reaction('CH2(S) + CO2 <=> CO + CH2O', [1.400000e+13, 0.0, 0.0]) 603 | # R67 604 | 605 | # Reaction 67 606 | reaction('CH3 + O2 <=> OH + CH2O', [3.600000e+10, 0.0, 8940.0]) 607 | # R68 608 | 609 | # Reaction 68 610 | reaction('CH3 + HCO <=> CH4 + CO', [2.648000e+13, 0.0, 0.0]) 611 | # R69 612 | 613 | # Reaction 69 614 | reaction('CH3 + CH2O <=> HCO + CH4', [3.320000e+03, 2.81, 5860.0]) 615 | # R70 616 | 617 | # Reaction 70 618 | reaction('HCO + H2O <=> H + CO + H2O', [2.244000e+18, -1.0, 17000.0]) 619 | # R71 620 | 621 | # Reaction 71 622 | three_body_reaction('HCO + M <=> H + CO + M', [1.870000e+17, -1.0, 17000.0], 623 | efficiencies='CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:0.0') 624 | # R72 625 | 626 | # Reaction 72 627 | reaction('HCO + O2 <=> HO2 + CO', [7.600000e+12, 0.0, 400.0]) 628 | # R73 629 | 630 | # Reaction 73 631 | reaction('CH2OH + O2 <=> HO2 + CH2O', [1.800000e+13, 0.0, 900.0]) 632 | -------------------------------------------------------------------------------- /Mechanisms/DRM19.cti: -------------------------------------------------------------------------------- 1 | """ 2 | <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> OH + M', [5.000000e+17, -1.0, 0.0], 369 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0') 370 | 371 | # Reaction 2 372 | reaction('O + H2 <=> H + OH', [5.000000e+04, 2.67, 6290.0]) 373 | 374 | # Reaction 3 375 | reaction('O + HO2 <=> OH + O2', [2.000000e+13, 0.0, 0.0]) 376 | 377 | # Reaction 4 378 | reaction('O + CH2 <=> H + HCO', [8.000000e+13, 0.0, 0.0]) 379 | 380 | # Reaction 5 381 | reaction('O + CH2(S) <=> H + HCO', [1.500000e+13, 0.0, 0.0]) 382 | 383 | # Reaction 6 384 | reaction('O + CH3 <=> H + CH2O', [8.430000e+13, 0.0, 0.0]) 385 | 386 | # Reaction 7 387 | reaction('O + CH4 <=> OH + CH3', [1.020000e+09, 1.5, 8600.0]) 388 | 389 | # Reaction 8 390 | three_body_reaction('O + CO + M <=> CO2 + M', [6.020000e+14, 0.0, 3000.0], 391 | efficiencies='AR:0.5 C2H6:3.0 CH4:2.0 CO:1.5 CO2:3.5 H2:2.0 H2O:6.0 O2:6.0') 392 | 393 | # Reaction 9 394 | reaction('O + HCO <=> OH + CO', [3.000000e+13, 0.0, 0.0]) 395 | 396 | # Reaction 10 397 | reaction('O + HCO <=> H + CO2', [3.000000e+13, 0.0, 0.0]) 398 | 399 | # Reaction 11 400 | reaction('O + CH2O <=> OH + HCO', [3.900000e+13, 0.0, 3540.0]) 401 | 402 | # Reaction 12 403 | reaction('O + C2H4 <=> CH3 + HCO', [1.920000e+07, 1.83, 220.0]) 404 | 405 | # Reaction 13 406 | reaction('O + C2H5 <=> CH3 + CH2O', [1.320000e+14, 0.0, 0.0]) 407 | 408 | # Reaction 14 409 | reaction('O + C2H6 <=> OH + C2H5', [8.980000e+07, 1.92, 5690.0]) 410 | 411 | # Reaction 15 412 | reaction('O2 + CO <=> O + CO2', [2.500000e+12, 0.0, 47800.0]) 413 | 414 | # Reaction 16 415 | reaction('O2 + CH2O <=> HO2 + HCO', [1.000000e+14, 0.0, 40000.0]) 416 | 417 | # Reaction 17 418 | three_body_reaction('H + O2 + M <=> HO2 + M', [2.800000e+18, -0.86, 0.0], 419 | efficiencies='AR:0.0 C2H6:1.5 CO:0.75 CO2:1.5 H2O:0.0 N2:0.0 O2:0.0') 420 | 421 | # Reaction 18 422 | reaction('H + 2 O2 <=> HO2 + O2', [3.000000e+20, -1.72, 0.0]) 423 | 424 | # Reaction 19 425 | reaction('H + O2 + H2O <=> HO2 + H2O', [9.380000e+18, -0.76, 0.0]) 426 | 427 | # Reaction 20 428 | reaction('H + O2 + N2 <=> HO2 + N2', [3.750000e+20, -1.72, 0.0]) 429 | 430 | # Reaction 21 431 | reaction('H + O2 + AR <=> HO2 + AR', [7.000000e+17, -0.8, 0.0]) 432 | 433 | # Reaction 22 434 | reaction('H + O2 <=> O + OH', [8.300000e+13, 0.0, 14413.0]) 435 | 436 | # Reaction 23 437 | three_body_reaction('2 H + M <=> H2 + M', [1.000000e+18, -1.0, 0.0], 438 | efficiencies='AR:0.63 C2H6:3.0 CH4:2.0 CO2:0.0 H2:0.0 H2O:0.0') 439 | 440 | # Reaction 24 441 | reaction('2 H + H2 <=> 2 H2', [9.000000e+16, -0.6, 0.0]) 442 | 443 | # Reaction 25 444 | reaction('2 H + H2O <=> H2 + H2O', [6.000000e+19, -1.25, 0.0]) 445 | 446 | # Reaction 26 447 | reaction('2 H + CO2 <=> H2 + CO2', [5.500000e+20, -2.0, 0.0]) 448 | 449 | # Reaction 27 450 | three_body_reaction('H + OH + M <=> H2O + M', [2.200000e+22, -2.0, 0.0], 451 | efficiencies='AR:0.38 C2H6:3.0 CH4:2.0 H2:0.73 H2O:3.65') 452 | 453 | # Reaction 28 454 | reaction('H + HO2 <=> O2 + H2', [2.800000e+13, 0.0, 1068.0]) 455 | 456 | # Reaction 29 457 | reaction('H + HO2 <=> 2 OH', [1.340000e+14, 0.0, 635.0]) 458 | 459 | # Reaction 30 460 | falloff_reaction('H + CH2 (+ M) <=> CH3 (+ M)', 461 | kf=[2.500000e+16, -0.8, 0.0], 462 | kf0=[3.200000e+27, -3.14, 1230.0], 463 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 464 | falloff=Troe(A=0.68, T3=78.0, T1=1995.0, T2=5590.0)) 465 | 466 | # Reaction 31 467 | falloff_reaction('H + CH3 (+ M) <=> CH4 (+ M)', 468 | kf=[1.270000e+16, -0.63, 383.0], 469 | kf0=[2.477000e+33, -4.76, 2440.0], 470 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 471 | falloff=Troe(A=0.783, T3=74.0, T1=2941.0, T2=6964.0)) 472 | 473 | # Reaction 32 474 | reaction('H + CH4 <=> CH3 + H2', [6.600000e+08, 1.62, 10840.0]) 475 | 476 | # Reaction 33 477 | falloff_reaction('H + HCO (+ M) <=> CH2O (+ M)', 478 | kf=[1.090000e+12, 0.48, -260.0], 479 | kf0=[1.350000e+24, -2.57, 1425.0], 480 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 481 | falloff=Troe(A=0.7824, T3=271.0, T1=2755.0, T2=6570.0)) 482 | 483 | # Reaction 34 484 | reaction('H + HCO <=> H2 + CO', [7.340000e+13, 0.0, 0.0]) 485 | 486 | # Reaction 35 487 | falloff_reaction('H + CH2O (+ M) <=> CH3O (+ M)', 488 | kf=[5.400000e+11, 0.454, 2600.0], 489 | kf0=[2.200000e+30, -4.8, 5560.0], 490 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 491 | falloff=Troe(A=0.758, T3=94.0, T1=1555.0, T2=4200.0)) 492 | 493 | # Reaction 36 494 | reaction('H + CH2O <=> HCO + H2', [2.300000e+10, 1.05, 3275.0]) 495 | 496 | # Reaction 37 497 | reaction('H + CH3O <=> OH + CH3', [3.200000e+13, 0.0, 0.0]) 498 | 499 | # Reaction 38 500 | falloff_reaction('H + C2H4 (+ M) <=> C2H5 (+ M)', 501 | kf=[1.080000e+12, 0.454, 1820.0], 502 | kf0=[1.200000e+42, -7.62, 6970.0], 503 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 504 | falloff=Troe(A=0.9753, T3=210.0, T1=984.0, T2=4374.0)) 505 | 506 | # Reaction 39 507 | falloff_reaction('H + C2H5 (+ M) <=> C2H6 (+ M)', 508 | kf=[5.210000e+17, -0.99, 1580.0], 509 | kf0=[1.990000e+41, -7.08, 6685.0], 510 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 511 | falloff=Troe(A=0.8422, T3=125.0, T1=2219.0, T2=6882.0)) 512 | 513 | # Reaction 40 514 | reaction('H + C2H6 <=> C2H5 + H2', [1.150000e+08, 1.9, 7530.0]) 515 | 516 | # Reaction 41 517 | falloff_reaction('H2 + CO (+ M) <=> CH2O (+ M)', 518 | kf=[4.300000e+07, 1.5, 79600.0], 519 | kf0=[5.070000e+27, -3.42, 84350.0], 520 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 521 | falloff=Troe(A=0.932, T3=197.0, T1=1540.0, T2=10300.0)) 522 | 523 | # Reaction 42 524 | reaction('OH + H2 <=> H + H2O', [2.160000e+08, 1.51, 3430.0]) 525 | 526 | # Reaction 43 527 | reaction('2 OH <=> O + H2O', [3.570000e+04, 2.4, -2110.0]) 528 | 529 | # Reaction 44 530 | reaction('OH + HO2 <=> O2 + H2O', [2.900000e+13, 0.0, -500.0]) 531 | 532 | # Reaction 45 533 | reaction('OH + CH2 <=> H + CH2O', [2.000000e+13, 0.0, 0.0]) 534 | 535 | # Reaction 46 536 | reaction('OH + CH2(S) <=> H + CH2O', [3.000000e+13, 0.0, 0.0]) 537 | 538 | # Reaction 47 539 | reaction('OH + CH3 <=> CH2 + H2O', [5.600000e+07, 1.6, 5420.0]) 540 | 541 | # Reaction 48 542 | reaction('OH + CH3 <=> CH2(S) + H2O', [2.501000e+13, 0.0, 0.0]) 543 | 544 | # Reaction 49 545 | reaction('OH + CH4 <=> CH3 + H2O', [1.000000e+08, 1.6, 3120.0]) 546 | 547 | # Reaction 50 548 | reaction('OH + CO <=> H + CO2', [4.760000e+07, 1.228, 70.0]) 549 | 550 | # Reaction 51 551 | reaction('OH + HCO <=> H2O + CO', [5.000000e+13, 0.0, 0.0]) 552 | 553 | # Reaction 52 554 | reaction('OH + CH2O <=> HCO + H2O', [3.430000e+09, 1.18, -447.0]) 555 | 556 | # Reaction 53 557 | reaction('OH + C2H6 <=> C2H5 + H2O', [3.540000e+06, 2.12, 870.0]) 558 | 559 | # Reaction 54 560 | reaction('HO2 + CH2 <=> OH + CH2O', [2.000000e+13, 0.0, 0.0]) 561 | 562 | # Reaction 55 563 | reaction('HO2 + CH3 <=> O2 + CH4', [1.000000e+12, 0.0, 0.0]) 564 | 565 | # Reaction 56 566 | reaction('HO2 + CH3 <=> OH + CH3O', [2.000000e+13, 0.0, 0.0]) 567 | 568 | # Reaction 57 569 | reaction('HO2 + CO <=> OH + CO2', [1.500000e+14, 0.0, 23600.0]) 570 | 571 | # Reaction 58 572 | reaction('CH2 + O2 <=> OH + HCO', [1.320000e+13, 0.0, 1500.0]) 573 | 574 | # Reaction 59 575 | reaction('CH2 + H2 <=> H + CH3', [5.000000e+05, 2.0, 7230.0]) 576 | 577 | # Reaction 60 578 | reaction('CH2 + CH3 <=> H + C2H4', [4.000000e+13, 0.0, 0.0]) 579 | 580 | # Reaction 61 581 | reaction('CH2 + CH4 <=> 2 CH3', [2.460000e+06, 2.0, 8270.0]) 582 | 583 | # Reaction 62 584 | reaction('CH2(S) + N2 <=> CH2 + N2', [1.500000e+13, 0.0, 600.0]) 585 | 586 | # Reaction 63 587 | reaction('CH2(S) + AR <=> CH2 + AR', [9.000000e+12, 0.0, 600.0]) 588 | 589 | # Reaction 64 590 | reaction('CH2(S) + O2 <=> H + OH + CO', [2.800000e+13, 0.0, 0.0]) 591 | 592 | # Reaction 65 593 | reaction('CH2(S) + O2 <=> CO + H2O', [1.200000e+13, 0.0, 0.0]) 594 | 595 | # Reaction 66 596 | reaction('CH2(S) + H2 <=> CH3 + H', [7.000000e+13, 0.0, 0.0]) 597 | 598 | # Reaction 67 599 | reaction('CH2(S) + H2O <=> CH2 + H2O', [3.000000e+13, 0.0, 0.0]) 600 | 601 | # Reaction 68 602 | reaction('CH2(S) + CH3 <=> H + C2H4', [1.200000e+13, 0.0, -570.0]) 603 | 604 | # Reaction 69 605 | reaction('CH2(S) + CH4 <=> 2 CH3', [1.600000e+13, 0.0, -570.0]) 606 | 607 | # Reaction 70 608 | reaction('CH2(S) + CO <=> CH2 + CO', [9.000000e+12, 0.0, 0.0]) 609 | 610 | # Reaction 71 611 | reaction('CH2(S) + CO2 <=> CH2 + CO2', [7.000000e+12, 0.0, 0.0]) 612 | 613 | # Reaction 72 614 | reaction('CH2(S) + CO2 <=> CO + CH2O', [1.400000e+13, 0.0, 0.0]) 615 | 616 | # Reaction 73 617 | reaction('CH3 + O2 <=> O + CH3O', [2.675000e+13, 0.0, 28800.0]) 618 | 619 | # Reaction 74 620 | reaction('CH3 + O2 <=> OH + CH2O', [3.600000e+10, 0.0, 8940.0]) 621 | 622 | # Reaction 75 623 | falloff_reaction('2 CH3 (+ M) <=> C2H6 (+ M)', 624 | kf=[2.120000e+16, -0.97, 620.0], 625 | kf0=[1.770000e+50, -9.67, 6220.0], 626 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 627 | falloff=Troe(A=0.5325, T3=151.0, T1=1038.0, T2=4970.0)) 628 | 629 | # Reaction 76 630 | reaction('2 CH3 <=> H + C2H5', [4.990000e+12, 0.1, 10600.0]) 631 | 632 | # Reaction 77 633 | reaction('CH3 + HCO <=> CH4 + CO', [2.648000e+13, 0.0, 0.0]) 634 | 635 | # Reaction 78 636 | reaction('CH3 + CH2O <=> HCO + CH4', [3.320000e+03, 2.81, 5860.0]) 637 | 638 | # Reaction 79 639 | reaction('CH3 + C2H6 <=> C2H5 + CH4', [6.140000e+06, 1.74, 10450.0]) 640 | 641 | # Reaction 80 642 | reaction('HCO + H2O <=> H + CO + H2O', [2.244000e+18, -1.0, 17000.0]) 643 | 644 | # Reaction 81 645 | three_body_reaction('HCO + M <=> H + CO + M', [1.870000e+17, -1.0, 17000.0], 646 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:0.0') 647 | 648 | # Reaction 82 649 | reaction('HCO + O2 <=> HO2 + CO', [7.600000e+12, 0.0, 400.0]) 650 | 651 | # Reaction 83 652 | reaction('CH3O + O2 <=> HO2 + CH2O', [4.280000e-13, 7.6, -3530.0]) 653 | 654 | # Reaction 84 655 | reaction('C2H5 + O2 <=> HO2 + C2H4', [8.400000e+11, 0.0, 3875.0]) 656 | -------------------------------------------------------------------------------- /Mechanisms/DRM22.cti: -------------------------------------------------------------------------------- 1 | """ 2 | <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> OH + M', [5.000000e+17, -1.0, 0.0], 418 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0') 419 | 420 | # Reaction 2 421 | reaction('O + H2 <=> H + OH', [5.000000e+04, 2.67, 6290.0]) 422 | 423 | # Reaction 3 424 | reaction('O + HO2 <=> OH + O2', [2.000000e+13, 0.0, 0.0]) 425 | 426 | # Reaction 4 427 | reaction('O + CH2 <=> H + HCO', [8.000000e+13, 0.0, 0.0]) 428 | 429 | # Reaction 5 430 | reaction('O + CH2(S) <=> H + HCO', [1.500000e+13, 0.0, 0.0]) 431 | 432 | # Reaction 6 433 | reaction('O + CH3 <=> H + CH2O', [8.430000e+13, 0.0, 0.0]) 434 | 435 | # Reaction 7 436 | reaction('O + CH4 <=> OH + CH3', [1.020000e+09, 1.5, 8600.0]) 437 | 438 | # Reaction 8 439 | three_body_reaction('O + CO + M <=> CO2 + M', [6.020000e+14, 0.0, 3000.0], 440 | efficiencies='AR:0.5 C2H6:3.0 CH4:2.0 CO:1.5 CO2:3.5 H2:2.0 H2O:6.0 O2:6.0') 441 | 442 | # Reaction 9 443 | reaction('O + HCO <=> OH + CO', [3.000000e+13, 0.0, 0.0]) 444 | 445 | # Reaction 10 446 | reaction('O + HCO <=> H + CO2', [3.000000e+13, 0.0, 0.0]) 447 | 448 | # Reaction 11 449 | reaction('O + CH2O <=> OH + HCO', [3.900000e+13, 0.0, 3540.0]) 450 | 451 | # Reaction 12 452 | reaction('O + C2H2 <=> CH2(S) + CO', [1.020000e+07, 2.0, 1900.0]) 453 | 454 | # Reaction 13 455 | reaction('O + C2H2 <=> CO + CH2', [1.020000e+07, 2.0, 1900.0]) 456 | 457 | # Reaction 14 458 | reaction('O + C2H4 <=> CH3 + HCO', [1.920000e+07, 1.83, 220.0]) 459 | 460 | # Reaction 15 461 | reaction('O + C2H5 <=> CH3 + CH2O', [1.320000e+14, 0.0, 0.0]) 462 | 463 | # Reaction 16 464 | reaction('O + C2H6 <=> OH + C2H5', [8.980000e+07, 1.92, 5690.0]) 465 | 466 | # Reaction 17 467 | reaction('O2 + CO <=> O + CO2', [2.500000e+12, 0.0, 47800.0]) 468 | 469 | # Reaction 18 470 | reaction('O2 + CH2O <=> HO2 + HCO', [1.000000e+14, 0.0, 40000.0]) 471 | 472 | # Reaction 19 473 | three_body_reaction('H + O2 + M <=> HO2 + M', [2.800000e+18, -0.86, 0.0], 474 | efficiencies='AR:0.0 C2H6:1.5 CO:0.75 CO2:1.5 H2O:0.0 N2:0.0 O2:0.0') 475 | 476 | # Reaction 20 477 | reaction('H + 2 O2 <=> HO2 + O2', [3.000000e+20, -1.72, 0.0]) 478 | 479 | # Reaction 21 480 | reaction('H + O2 + H2O <=> HO2 + H2O', [9.380000e+18, -0.76, 0.0]) 481 | 482 | # Reaction 22 483 | reaction('H + O2 + N2 <=> HO2 + N2', [3.750000e+20, -1.72, 0.0]) 484 | 485 | # Reaction 23 486 | reaction('H + O2 + AR <=> HO2 + AR', [7.000000e+17, -0.8, 0.0]) 487 | 488 | # Reaction 24 489 | reaction('H + O2 <=> O + OH', [8.300000e+13, 0.0, 14413.0]) 490 | 491 | # Reaction 25 492 | three_body_reaction('2 H + M <=> H2 + M', [1.000000e+18, -1.0, 0.0], 493 | efficiencies='AR:0.63 C2H6:3.0 CH4:2.0 CO2:0.0 H2:0.0 H2O:0.0') 494 | 495 | # Reaction 26 496 | reaction('2 H + H2 <=> 2 H2', [9.000000e+16, -0.6, 0.0]) 497 | 498 | # Reaction 27 499 | reaction('2 H + H2O <=> H2 + H2O', [6.000000e+19, -1.25, 0.0]) 500 | 501 | # Reaction 28 502 | reaction('2 H + CO2 <=> H2 + CO2', [5.500000e+20, -2.0, 0.0]) 503 | 504 | # Reaction 29 505 | three_body_reaction('H + OH + M <=> H2O + M', [2.200000e+22, -2.0, 0.0], 506 | efficiencies='AR:0.38 C2H6:3.0 CH4:2.0 H2:0.73 H2O:3.65') 507 | 508 | # Reaction 30 509 | reaction('H + HO2 <=> O2 + H2', [2.800000e+13, 0.0, 1068.0]) 510 | 511 | # Reaction 31 512 | reaction('H + HO2 <=> 2 OH', [1.340000e+14, 0.0, 635.0]) 513 | 514 | # Reaction 32 515 | reaction('H + H2O2 <=> HO2 + H2', [1.210000e+07, 2.0, 5200.0]) 516 | 517 | # Reaction 33 518 | falloff_reaction('H + CH2 (+ M) <=> CH3 (+ M)', 519 | kf=[2.500000e+16, -0.8, 0.0], 520 | kf0=[3.200000e+27, -3.14, 1230.0], 521 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 522 | falloff=Troe(A=0.68, T3=78.0, T1=1995.0, T2=5590.0)) 523 | 524 | # Reaction 34 525 | falloff_reaction('H + CH3 (+ M) <=> CH4 (+ M)', 526 | kf=[1.270000e+16, -0.63, 383.0], 527 | kf0=[2.477000e+33, -4.76, 2440.0], 528 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 529 | falloff=Troe(A=0.783, T3=74.0, T1=2941.0, T2=6964.0)) 530 | 531 | # Reaction 35 532 | reaction('H + CH4 <=> CH3 + H2', [6.600000e+08, 1.62, 10840.0]) 533 | 534 | # Reaction 36 535 | falloff_reaction('H + HCO (+ M) <=> CH2O (+ M)', 536 | kf=[1.090000e+12, 0.48, -260.0], 537 | kf0=[1.350000e+24, -2.57, 1425.0], 538 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 539 | falloff=Troe(A=0.7824, T3=271.0, T1=2755.0, T2=6570.0)) 540 | 541 | # Reaction 37 542 | reaction('H + HCO <=> H2 + CO', [7.340000e+13, 0.0, 0.0]) 543 | 544 | # Reaction 38 545 | falloff_reaction('H + CH2O (+ M) <=> CH3O (+ M)', 546 | kf=[5.400000e+11, 0.454, 2600.0], 547 | kf0=[2.200000e+30, -4.8, 5560.0], 548 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 549 | falloff=Troe(A=0.758, T3=94.0, T1=1555.0, T2=4200.0)) 550 | 551 | # Reaction 39 552 | reaction('H + CH2O <=> HCO + H2', [2.300000e+10, 1.05, 3275.0]) 553 | 554 | # Reaction 40 555 | reaction('H + CH3O <=> OH + CH3', [3.200000e+13, 0.0, 0.0]) 556 | 557 | # Reaction 41 558 | falloff_reaction('H + C2H2 (+ M) <=> C2H3 (+ M)', 559 | kf=[5.600000e+12, 0.0, 2400.0], 560 | kf0=[3.800000e+40, -7.27, 7220.0], 561 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 562 | falloff=Troe(A=0.7507, T3=98.5, T1=1302.0, T2=4167.0)) 563 | 564 | # Reaction 42 565 | falloff_reaction('H + C2H3 (+ M) <=> C2H4 (+ M)', 566 | kf=[6.080000e+12, 0.27, 280.0], 567 | kf0=[1.400000e+30, -3.86, 3320.0], 568 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 569 | falloff=Troe(A=0.782, T3=207.5, T1=2663.0, T2=6095.0)) 570 | 571 | # Reaction 43 572 | reaction('H + C2H3 <=> H2 + C2H2', [3.000000e+13, 0.0, 0.0]) 573 | 574 | # Reaction 44 575 | falloff_reaction('H + C2H4 (+ M) <=> C2H5 (+ M)', 576 | kf=[1.080000e+12, 0.454, 1820.0], 577 | kf0=[1.200000e+42, -7.62, 6970.0], 578 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 579 | falloff=Troe(A=0.9753, T3=210.0, T1=984.0, T2=4374.0)) 580 | 581 | # Reaction 45 582 | reaction('H + C2H4 <=> C2H3 + H2', [1.325000e+06, 2.53, 12240.0]) 583 | 584 | # Reaction 46 585 | falloff_reaction('H + C2H5 (+ M) <=> C2H6 (+ M)', 586 | kf=[5.210000e+17, -0.99, 1580.0], 587 | kf0=[1.990000e+41, -7.08, 6685.0], 588 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 589 | falloff=Troe(A=0.8422, T3=125.0, T1=2219.0, T2=6882.0)) 590 | 591 | # Reaction 47 592 | reaction('H + C2H6 <=> C2H5 + H2', [1.150000e+08, 1.9, 7530.0]) 593 | 594 | # Reaction 48 595 | falloff_reaction('H2 + CO (+ M) <=> CH2O (+ M)', 596 | kf=[4.300000e+07, 1.5, 79600.0], 597 | kf0=[5.070000e+27, -3.42, 84350.0], 598 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 599 | falloff=Troe(A=0.932, T3=197.0, T1=1540.0, T2=10300.0)) 600 | 601 | # Reaction 49 602 | reaction('OH + H2 <=> H + H2O', [2.160000e+08, 1.51, 3430.0]) 603 | 604 | # Reaction 50 605 | falloff_reaction('2 OH (+ M) <=> H2O2 (+ M)', 606 | kf=[7.400000e+13, -0.37, 0.0], 607 | kf0=[2.300000e+18, -0.9, -1700.0], 608 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 609 | falloff=Troe(A=0.7346, T3=94.0, T1=1756.0, T2=5182.0)) 610 | 611 | # Reaction 51 612 | reaction('2 OH <=> O + H2O', [3.570000e+04, 2.4, -2110.0]) 613 | 614 | # Reaction 52 615 | reaction('OH + HO2 <=> O2 + H2O', [2.900000e+13, 0.0, -500.0]) 616 | 617 | # Reaction 53 618 | reaction('OH + H2O2 <=> HO2 + H2O', [5.800000e+14, 0.0, 9560.0]) 619 | 620 | # Reaction 54 621 | reaction('OH + CH2 <=> H + CH2O', [2.000000e+13, 0.0, 0.0]) 622 | 623 | # Reaction 55 624 | reaction('OH + CH2(S) <=> H + CH2O', [3.000000e+13, 0.0, 0.0]) 625 | 626 | # Reaction 56 627 | reaction('OH + CH3 <=> CH2 + H2O', [5.600000e+07, 1.6, 5420.0]) 628 | 629 | # Reaction 57 630 | reaction('OH + CH3 <=> CH2(S) + H2O', [2.501000e+13, 0.0, 0.0]) 631 | 632 | # Reaction 58 633 | reaction('OH + CH4 <=> CH3 + H2O', [1.000000e+08, 1.6, 3120.0]) 634 | 635 | # Reaction 59 636 | reaction('OH + CO <=> H + CO2', [4.760000e+07, 1.228, 70.0]) 637 | 638 | # Reaction 60 639 | reaction('OH + HCO <=> H2O + CO', [5.000000e+13, 0.0, 0.0]) 640 | 641 | # Reaction 61 642 | reaction('OH + CH2O <=> HCO + H2O', [3.430000e+09, 1.18, -447.0]) 643 | 644 | # Reaction 62 645 | reaction('OH + C2H2 <=> CH3 + CO', [4.830000e-04, 4.0, -2000.0]) 646 | 647 | # Reaction 63 648 | reaction('OH + C2H3 <=> H2O + C2H2', [5.000000e+12, 0.0, 0.0]) 649 | 650 | # Reaction 64 651 | reaction('OH + C2H4 <=> C2H3 + H2O', [3.600000e+06, 2.0, 2500.0]) 652 | 653 | # Reaction 65 654 | reaction('OH + C2H6 <=> C2H5 + H2O', [3.540000e+06, 2.12, 870.0]) 655 | 656 | # Reaction 66 657 | reaction('2 HO2 <=> O2 + H2O2', [1.300000e+11, 0.0, -1630.0], 658 | options='duplicate') 659 | 660 | # Reaction 67 661 | reaction('2 HO2 <=> O2 + H2O2', [4.200000e+14, 0.0, 12000.0], 662 | options='duplicate') 663 | 664 | # Reaction 68 665 | reaction('HO2 + CH2 <=> OH + CH2O', [2.000000e+13, 0.0, 0.0]) 666 | 667 | # Reaction 69 668 | reaction('HO2 + CH3 <=> O2 + CH4', [1.000000e+12, 0.0, 0.0]) 669 | 670 | # Reaction 70 671 | reaction('HO2 + CH3 <=> OH + CH3O', [2.000000e+13, 0.0, 0.0]) 672 | 673 | # Reaction 71 674 | reaction('HO2 + CO <=> OH + CO2', [1.500000e+14, 0.0, 23600.0]) 675 | 676 | # Reaction 72 677 | reaction('HO2 + CH2O <=> HCO + H2O2', [1.000000e+12, 0.0, 8000.0]) 678 | 679 | # Reaction 73 680 | reaction('CH2 + O2 <=> OH + HCO', [1.320000e+13, 0.0, 1500.0]) 681 | 682 | # Reaction 74 683 | reaction('CH2 + H2 <=> H + CH3', [5.000000e+05, 2.0, 7230.0]) 684 | 685 | # Reaction 75 686 | reaction('2 CH2 <=> H2 + C2H2', [3.200000e+13, 0.0, 0.0]) 687 | 688 | # Reaction 76 689 | reaction('CH2 + CH3 <=> H + C2H4', [4.000000e+13, 0.0, 0.0]) 690 | 691 | # Reaction 77 692 | reaction('CH2 + CH4 <=> 2 CH3', [2.460000e+06, 2.0, 8270.0]) 693 | 694 | # Reaction 78 695 | reaction('CH2(S) + N2 <=> CH2 + N2', [1.500000e+13, 0.0, 600.0]) 696 | 697 | # Reaction 79 698 | reaction('CH2(S) + AR <=> CH2 + AR', [9.000000e+12, 0.0, 600.0]) 699 | 700 | # Reaction 80 701 | reaction('CH2(S) + O2 <=> H + OH + CO', [2.800000e+13, 0.0, 0.0]) 702 | 703 | # Reaction 81 704 | reaction('CH2(S) + O2 <=> CO + H2O', [1.200000e+13, 0.0, 0.0]) 705 | 706 | # Reaction 82 707 | reaction('CH2(S) + H2 <=> CH3 + H', [7.000000e+13, 0.0, 0.0]) 708 | 709 | # Reaction 83 710 | reaction('CH2(S) + H2O <=> CH2 + H2O', [3.000000e+13, 0.0, 0.0]) 711 | 712 | # Reaction 84 713 | reaction('CH2(S) + CH3 <=> H + C2H4', [1.200000e+13, 0.0, -570.0]) 714 | 715 | # Reaction 85 716 | reaction('CH2(S) + CH4 <=> 2 CH3', [1.600000e+13, 0.0, -570.0]) 717 | 718 | # Reaction 86 719 | reaction('CH2(S) + CO <=> CH2 + CO', [9.000000e+12, 0.0, 0.0]) 720 | 721 | # Reaction 87 722 | reaction('CH2(S) + CO2 <=> CH2 + CO2', [7.000000e+12, 0.0, 0.0]) 723 | 724 | # Reaction 88 725 | reaction('CH2(S) + CO2 <=> CO + CH2O', [1.400000e+13, 0.0, 0.0]) 726 | 727 | # Reaction 89 728 | reaction('CH3 + O2 <=> O + CH3O', [2.675000e+13, 0.0, 28800.0]) 729 | 730 | # Reaction 90 731 | reaction('CH3 + O2 <=> OH + CH2O', [3.600000e+10, 0.0, 8940.0]) 732 | 733 | # Reaction 91 734 | reaction('CH3 + H2O2 <=> HO2 + CH4', [2.450000e+04, 2.47, 5180.0]) 735 | 736 | # Reaction 92 737 | falloff_reaction('2 CH3 (+ M) <=> C2H6 (+ M)', 738 | kf=[2.120000e+16, -0.97, 620.0], 739 | kf0=[1.770000e+50, -9.67, 6220.0], 740 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 741 | falloff=Troe(A=0.5325, T3=151.0, T1=1038.0, T2=4970.0)) 742 | 743 | # Reaction 93 744 | reaction('2 CH3 <=> H + C2H5', [4.990000e+12, 0.1, 10600.0]) 745 | 746 | # Reaction 94 747 | reaction('CH3 + HCO <=> CH4 + CO', [2.648000e+13, 0.0, 0.0]) 748 | 749 | # Reaction 95 750 | reaction('CH3 + CH2O <=> HCO + CH4', [3.320000e+03, 2.81, 5860.0]) 751 | 752 | # Reaction 96 753 | reaction('CH3 + C2H4 <=> C2H3 + CH4', [2.270000e+05, 2.0, 9200.0]) 754 | 755 | # Reaction 97 756 | reaction('CH3 + C2H6 <=> C2H5 + CH4', [6.140000e+06, 1.74, 10450.0]) 757 | 758 | # Reaction 98 759 | reaction('HCO + H2O <=> H + CO + H2O', [2.244000e+18, -1.0, 17000.0]) 760 | 761 | # Reaction 99 762 | three_body_reaction('HCO + M <=> H + CO + M', [1.870000e+17, -1.0, 17000.0], 763 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:0.0') 764 | 765 | # Reaction 100 766 | reaction('HCO + O2 <=> HO2 + CO', [7.600000e+12, 0.0, 400.0]) 767 | 768 | # Reaction 101 769 | reaction('CH3O + O2 <=> HO2 + CH2O', [4.280000e-13, 7.6, -3530.0]) 770 | 771 | # Reaction 102 772 | reaction('C2H3 + O2 <=> HCO + CH2O', [3.980000e+12, 0.0, -240.0]) 773 | 774 | # Reaction 103 775 | falloff_reaction('C2H4 (+ M) <=> H2 + C2H2 (+ M)', 776 | kf=[8.000000e+12, 0.44, 88770.0], 777 | kf0=[7.000000e+50, -9.31, 99860.0], 778 | efficiencies='AR:0.7 C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 779 | falloff=Troe(A=0.7345, T3=180.0, T1=1035.0, T2=5417.0)) 780 | 781 | # Reaction 104 782 | reaction('C2H5 + O2 <=> HO2 + C2H4', [8.400000e+11, 0.0, 3875.0]) 783 | -------------------------------------------------------------------------------- /Mechanisms/SK30.cti: -------------------------------------------------------------------------------- 1 | """ 2 | A 30-species skeletal mechanism based on GRI3.0 3 | 4 | by Tianfeng Lu 5 | Email: tlu@engr.uconn.edu 6 | 7 | Reference: 8 | Tianfeng Lu and Chung K. Law, 9 | "A criterion based on computational singular perturbation 10 | for the identification of quasi steady state species: 11 | A reduced mechanism for methane oxidation with NO chemistry," 12 | Combustion and Flame, Vol.154 No.4 pp.761774, 2008. 13 | 14 | 15 | """ 16 | 17 | units(length='cm', time='s', quantity='mol', act_energy='cal/mol') 18 | 19 | ideal_gas(name='gas', 20 | elements="O H C N Ar", 21 | species="""H2 H O O2 OH H2O HO2 22 | H2O2 C CH CH2 CH2(S) CH3 CH4 23 | CO CO2 HCO CH2O CH2OH CH3O CH3OH 24 | C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO 25 | CH2CHO N2""", 26 | reactions='all', 27 | transport='Mix', 28 | initial_state=state(temperature=300.0, pressure=OneAtm)) 29 | 30 | #------------------------------------------------------------------------------- 31 | # Species data 32 | #------------------------------------------------------------------------------- 33 | 34 | species(name=u'H2', 35 | atoms='H:2', 36 | thermo=(NASA([200.00, 1000.00], 37 | [ 2.34433112E+00, 7.98052075E-03, -1.94781510E-05, 38 | 2.01572094E-08, -7.37611761E-12, -9.17935173E+02, 39 | 6.83010238E-01]), 40 | NASA([1000.00, 3500.00], 41 | [ 3.33727920E+00, -4.94024731E-05, 4.99456778E-07, 42 | -1.79566394E-10, 2.00255376E-14, -9.50158922E+02, 43 | -3.20502331E+00])), 44 | transport=gas_transport(geom='linear', 45 | diam=2.92, 46 | well_depth=38.0, 47 | polar=0.79, 48 | rot_relax=280.0), 49 | note=u'TPIS78') 50 | 51 | species(name=u'H', 52 | atoms='H:1', 53 | thermo=(NASA([200.00, 1000.00], 54 | [ 2.50000000E+00, 7.05332819E-13, -1.99591964E-15, 55 | 2.30081632E-18, -9.27732332E-22, 2.54736599E+04, 56 | -4.46682853E-01]), 57 | NASA([1000.00, 3500.00], 58 | [ 2.50000001E+00, -2.30842973E-11, 1.61561948E-14, 59 | -4.73515235E-18, 4.98197357E-22, 2.54736599E+04, 60 | -4.46682914E-01])), 61 | transport=gas_transport(geom='atom', 62 | diam=2.05, 63 | well_depth=145.0), 64 | note=u'L7/88') 65 | 66 | species(name=u'O', 67 | atoms='O:1', 68 | thermo=(NASA([200.00, 1000.00], 69 | [ 3.16826710E+00, -3.27931884E-03, 6.64306396E-06, 70 | -6.12806624E-09, 2.11265971E-12, 2.91222592E+04, 71 | 2.05193346E+00]), 72 | NASA([1000.00, 3500.00], 73 | [ 2.56942078E+00, -8.59741137E-05, 4.19484589E-08, 74 | -1.00177799E-11, 1.22833691E-15, 2.92175791E+04, 75 | 4.78433864E+00])), 76 | transport=gas_transport(geom='atom', 77 | diam=2.75, 78 | well_depth=80.0), 79 | note=u'L1/90') 80 | 81 | species(name=u'O2', 82 | atoms='O:2', 83 | thermo=(NASA([200.00, 1000.00], 84 | [ 3.78245636E+00, -2.99673416E-03, 9.84730201E-06, 85 | -9.68129509E-09, 3.24372837E-12, -1.06394356E+03, 86 | 3.65767573E+00]), 87 | NASA([1000.00, 3500.00], 88 | [ 3.28253784E+00, 1.48308754E-03, -7.57966669E-07, 89 | 2.09470555E-10, -2.16717794E-14, -1.08845772E+03, 90 | 5.45323129E+00])), 91 | transport=gas_transport(geom='linear', 92 | diam=3.458, 93 | well_depth=107.4, 94 | polar=1.6, 95 | rot_relax=3.8), 96 | note=u'TPIS89') 97 | 98 | species(name=u'OH', 99 | atoms='H:1 O:1', 100 | thermo=(NASA([200.00, 1000.00], 101 | [ 3.99201543E+00, -2.40131752E-03, 4.61793841E-06, 102 | -3.88113333E-09, 1.36411470E-12, 3.61508056E+03, 103 | -1.03925458E-01]), 104 | NASA([1000.00, 3500.00], 105 | [ 3.09288767E+00, 5.48429716E-04, 1.26505228E-07, 106 | -8.79461556E-11, 1.17412376E-14, 3.85865700E+03, 107 | 4.47669610E+00])), 108 | transport=gas_transport(geom='linear', 109 | diam=2.75, 110 | well_depth=80.0), 111 | note=u'RUS78') 112 | 113 | species(name=u'H2O', 114 | atoms='H:2 O:1', 115 | thermo=(NASA([200.00, 1000.00], 116 | [ 4.19864056E+00, -2.03643410E-03, 6.52040211E-06, 117 | -5.48797062E-09, 1.77197817E-12, -3.02937267E+04, 118 | -8.49032208E-01]), 119 | NASA([1000.00, 3500.00], 120 | [ 3.03399249E+00, 2.17691804E-03, -1.64072518E-07, 121 | -9.70419870E-11, 1.68200992E-14, -3.00042971E+04, 122 | 4.96677010E+00])), 123 | transport=gas_transport(geom='nonlinear', 124 | diam=2.605, 125 | well_depth=572.4, 126 | dipole=1.844, 127 | rot_relax=4.0), 128 | note=u'L8/89') 129 | 130 | species(name=u'HO2', 131 | atoms='H:1 O:2', 132 | thermo=(NASA([200.00, 1000.00], 133 | [ 4.30179801E+00, -4.74912051E-03, 2.11582891E-05, 134 | -2.42763894E-08, 9.29225124E-12, 2.94808040E+02, 135 | 3.71666245E+00]), 136 | NASA([1000.00, 3500.00], 137 | [ 4.01721090E+00, 2.23982013E-03, -6.33658150E-07, 138 | 1.14246370E-10, -1.07908535E-14, 1.11856713E+02, 139 | 3.78510215E+00])), 140 | transport=gas_transport(geom='nonlinear', 141 | diam=3.458, 142 | well_depth=107.4, 143 | rot_relax=1.0), 144 | note=u'L5/89') 145 | 146 | species(name=u'H2O2', 147 | atoms='H:2 O:2', 148 | thermo=(NASA([200.00, 1000.00], 149 | [ 4.27611269E+00, -5.42822417E-04, 1.67335701E-05, 150 | -2.15770813E-08, 8.62454363E-12, -1.77025821E+04, 151 | 3.43505074E+00]), 152 | NASA([1000.00, 3500.00], 153 | [ 4.16500285E+00, 4.90831694E-03, -1.90139225E-06, 154 | 3.71185986E-10, -2.87908305E-14, -1.78617877E+04, 155 | 2.91615662E+00])), 156 | transport=gas_transport(geom='nonlinear', 157 | diam=3.458, 158 | well_depth=107.4, 159 | rot_relax=3.8), 160 | note=u'L7/88') 161 | 162 | species(name=u'C', 163 | atoms='C:1', 164 | thermo=(NASA([200.00, 1000.00], 165 | [ 2.55423955E+00, -3.21537724E-04, 7.33792245E-07, 166 | -7.32234889E-10, 2.66521446E-13, 8.54438832E+04, 167 | 4.53130848E+00]), 168 | NASA([1000.00, 3500.00], 169 | [ 2.49266888E+00, 4.79889284E-05, -7.24335020E-08, 170 | 3.74291029E-11, -4.87277893E-15, 8.54512953E+04, 171 | 4.80150373E+00])), 172 | transport=gas_transport(geom='atom', 173 | diam=3.298, 174 | well_depth=71.4), 175 | note=u'L11/88') 176 | 177 | species(name=u'CH', 178 | atoms='C:1 H:1', 179 | thermo=(NASA([200.00, 1000.00], 180 | [ 3.48981665E+00, 3.23835541E-04, -1.68899065E-06, 181 | 3.16217327E-09, -1.40609067E-12, 7.07972934E+04, 182 | 2.08401108E+00]), 183 | NASA([1000.00, 3500.00], 184 | [ 2.87846473E+00, 9.70913681E-04, 1.44445655E-07, 185 | -1.30687849E-10, 1.76079383E-14, 7.10124364E+04, 186 | 5.48497999E+00])), 187 | transport=gas_transport(geom='linear', 188 | diam=2.75, 189 | well_depth=80.0), 190 | note=u'TPIS79') 191 | 192 | species(name=u'CH2', 193 | atoms='C:1 H:2', 194 | thermo=(NASA([200.00, 1000.00], 195 | [ 3.76267867E+00, 9.68872143E-04, 2.79489841E-06, 196 | -3.85091153E-09, 1.68741719E-12, 4.60040401E+04, 197 | 1.56253185E+00]), 198 | NASA([1000.00, 3500.00], 199 | [ 2.87410113E+00, 3.65639292E-03, -1.40894597E-06, 200 | 2.60179549E-10, -1.87727567E-14, 4.62636040E+04, 201 | 6.17119324E+00])), 202 | transport=gas_transport(geom='linear', 203 | diam=3.8, 204 | well_depth=144.0), 205 | note=u'LS/93') 206 | 207 | species(name=u'CH2(S)', 208 | atoms='C:1 H:2', 209 | thermo=(NASA([200.00, 1000.00], 210 | [ 4.19860411E+00, -2.36661419E-03, 8.23296220E-06, 211 | -6.68815981E-09, 1.94314737E-12, 5.04968163E+04, 212 | -7.69118967E-01]), 213 | NASA([1000.00, 3500.00], 214 | [ 2.29203842E+00, 4.65588637E-03, -2.01191947E-06, 215 | 4.17906000E-10, -3.39716365E-14, 5.09259997E+04, 216 | 8.62650169E+00])), 217 | transport=gas_transport(geom='linear', 218 | diam=3.8, 219 | well_depth=144.0), 220 | note=u'LS/93') 221 | 222 | species(name=u'CH3', 223 | atoms='C:1 H:3', 224 | thermo=(NASA([200.00, 1000.00], 225 | [ 3.67359040E+00, 2.01095175E-03, 5.73021856E-06, 226 | -6.87117425E-09, 2.54385734E-12, 1.64449988E+04, 227 | 1.60456433E+00]), 228 | NASA([1000.00, 3500.00], 229 | [ 2.28571772E+00, 7.23990037E-03, -2.98714348E-06, 230 | 5.95684644E-10, -4.67154394E-14, 1.67755843E+04, 231 | 8.48007179E+00])), 232 | transport=gas_transport(geom='linear', 233 | diam=3.8, 234 | well_depth=144.0), 235 | note=u'L11/89') 236 | 237 | species(name=u'CH4', 238 | atoms='C:1 H:4', 239 | thermo=(NASA([200.00, 1000.00], 240 | [ 5.14987613E+00, -1.36709788E-02, 4.91800599E-05, 241 | -4.84743026E-08, 1.66693956E-11, -1.02466476E+04, 242 | -4.64130376E+00]), 243 | NASA([1000.00, 3500.00], 244 | [ 7.48514950E-02, 1.33909467E-02, -5.73285809E-06, 245 | 1.22292535E-09, -1.01815230E-13, -9.46834459E+03, 246 | 1.84373180E+01])), 247 | transport=gas_transport(geom='nonlinear', 248 | diam=3.746, 249 | well_depth=141.4, 250 | polar=2.6, 251 | rot_relax=13.0), 252 | note=u'L8/88') 253 | 254 | species(name=u'CO', 255 | atoms='C:1 O:1', 256 | thermo=(NASA([200.00, 1000.00], 257 | [ 3.57953347E+00, -6.10353680E-04, 1.01681433E-06, 258 | 9.07005884E-10, -9.04424499E-13, -1.43440860E+04, 259 | 3.50840928E+00]), 260 | NASA([1000.00, 3500.00], 261 | [ 2.71518561E+00, 2.06252743E-03, -9.98825771E-07, 262 | 2.30053008E-10, -2.03647716E-14, -1.41518724E+04, 263 | 7.81868772E+00])), 264 | transport=gas_transport(geom='linear', 265 | diam=3.65, 266 | well_depth=98.1, 267 | polar=1.95, 268 | rot_relax=1.8), 269 | note=u'TPIS79') 270 | 271 | species(name=u'CO2', 272 | atoms='C:1 O:2', 273 | thermo=(NASA([200.00, 1000.00], 274 | [ 2.35677352E+00, 8.98459677E-03, -7.12356269E-06, 275 | 2.45919022E-09, -1.43699548E-13, -4.83719697E+04, 276 | 9.90105222E+00]), 277 | NASA([1000.00, 3500.00], 278 | [ 3.85746029E+00, 4.41437026E-03, -2.21481404E-06, 279 | 5.23490188E-10, -4.72084164E-14, -4.87591660E+04, 280 | 2.27163806E+00])), 281 | transport=gas_transport(geom='linear', 282 | diam=3.763, 283 | well_depth=244.0, 284 | polar=2.65, 285 | rot_relax=2.1), 286 | note=u'L7/88') 287 | 288 | species(name=u'HCO', 289 | atoms='C:1 H:1 O:1', 290 | thermo=(NASA([200.00, 1000.00], 291 | [ 4.22118584E+00, -3.24392532E-03, 1.37799446E-05, 292 | -1.33144093E-08, 4.33768865E-12, 3.83956496E+03, 293 | 3.39437243E+00]), 294 | NASA([1000.00, 3500.00], 295 | [ 2.77217438E+00, 4.95695526E-03, -2.48445613E-06, 296 | 5.89161778E-10, -5.33508711E-14, 4.01191815E+03, 297 | 9.79834492E+00])), 298 | transport=gas_transport(geom='nonlinear', 299 | diam=3.59, 300 | well_depth=498.0), 301 | note=u'L12/89') 302 | 303 | species(name=u'CH2O', 304 | atoms='C:1 H:2 O:1', 305 | thermo=(NASA([200.00, 1000.00], 306 | [ 4.79372315E+00, -9.90833369E-03, 3.73220008E-05, 307 | -3.79285261E-08, 1.31772652E-11, -1.43089567E+04, 308 | 6.02812900E-01]), 309 | NASA([1000.00, 3500.00], 310 | [ 1.76069008E+00, 9.20000082E-03, -4.42258813E-06, 311 | 1.00641212E-09, -8.83855640E-14, -1.39958323E+04, 312 | 1.36563230E+01])), 313 | transport=gas_transport(geom='nonlinear', 314 | diam=3.59, 315 | well_depth=498.0, 316 | rot_relax=2.0), 317 | note=u'L8/88') 318 | 319 | species(name=u'CH2OH', 320 | atoms='C:1 H:3 O:1', 321 | thermo=(NASA([200.00, 1000.00], 322 | [ 3.86388918E+00, 5.59672304E-03, 5.93271791E-06, 323 | -1.04532012E-08, 4.36967278E-12, -3.19391367E+03, 324 | 5.47302243E+00]), 325 | NASA([1000.00, 3500.00], 326 | [ 3.69266569E+00, 8.64576797E-03, -3.75101120E-06, 327 | 7.87234636E-10, -6.48554201E-14, -3.24250627E+03, 328 | 5.81043215E+00])), 329 | transport=gas_transport(geom='nonlinear', 330 | diam=3.69, 331 | well_depth=417.0, 332 | dipole=1.7, 333 | rot_relax=2.0), 334 | note=u'GUNL93') 335 | 336 | species(name=u'CH3O', 337 | atoms='C:1 H:3 O:1', 338 | thermo=(NASA([300.00, 1000.00], 339 | [ 2.10620400E+00, 7.21659500E-03, 5.33847200E-06, 340 | -7.37763600E-09, 2.07561000E-12, 9.78601100E+02, 341 | 1.31521770E+01]), 342 | NASA([1000.00, 3000.00], 343 | [ 3.77079900E+00, 7.87149700E-03, -2.65638400E-06, 344 | 3.94443100E-10, -2.11261600E-14, 1.27832520E+02, 345 | 2.92957500E+00])), 346 | transport=gas_transport(geom='nonlinear', 347 | diam=3.69, 348 | well_depth=417.0, 349 | dipole=1.7, 350 | rot_relax=2.0), 351 | note=u'121686') 352 | 353 | species(name=u'CH3OH', 354 | atoms='C:1 H:4 O:1', 355 | thermo=(NASA([200.00, 1000.00], 356 | [ 5.71539582E+00, -1.52309129E-02, 6.52441155E-05, 357 | -7.10806889E-08, 2.61352698E-11, -2.56427656E+04, 358 | -1.50409823E+00]), 359 | NASA([1000.00, 3500.00], 360 | [ 1.78970791E+00, 1.40938292E-02, -6.36500835E-06, 361 | 1.38171085E-09, -1.17060220E-13, -2.53748747E+04, 362 | 1.45023623E+01])), 363 | transport=gas_transport(geom='nonlinear', 364 | diam=3.626, 365 | well_depth=481.8, 366 | rot_relax=1.0), 367 | note=u'L8/88') 368 | 369 | species(name=u'C2H2', 370 | atoms='C:2 H:2', 371 | thermo=(NASA([200.00, 1000.00], 372 | [ 8.08681094E-01, 2.33615629E-02, -3.55171815E-05, 373 | 2.80152437E-08, -8.50072974E-12, 2.64289807E+04, 374 | 1.39397051E+01]), 375 | NASA([1000.00, 3500.00], 376 | [ 4.14756964E+00, 5.96166664E-03, -2.37294852E-06, 377 | 4.67412171E-10, -3.61235213E-14, 2.59359992E+04, 378 | -1.23028121E+00])), 379 | transport=gas_transport(geom='linear', 380 | diam=4.1, 381 | well_depth=209.0, 382 | rot_relax=2.5), 383 | note=u'L1/91') 384 | 385 | species(name=u'C2H3', 386 | atoms='C:2 H:3', 387 | thermo=(NASA([200.00, 1000.00], 388 | [ 3.21246645E+00, 1.51479162E-03, 2.59209412E-05, 389 | -3.57657847E-08, 1.47150873E-11, 3.48598468E+04, 390 | 8.51054025E+00]), 391 | NASA([1000.00, 3500.00], 392 | [ 3.01672400E+00, 1.03302292E-02, -4.68082349E-06, 393 | 1.01763288E-09, -8.62607041E-14, 3.46128739E+04, 394 | 7.78732378E+00])), 395 | transport=gas_transport(geom='nonlinear', 396 | diam=4.1, 397 | well_depth=209.0, 398 | rot_relax=1.0), 399 | note=u'L2/92') 400 | 401 | species(name=u'C2H4', 402 | atoms='C:2 H:4', 403 | thermo=(NASA([200.00, 1000.00], 404 | [ 3.95920148E+00, -7.57052247E-03, 5.70990292E-05, 405 | -6.91588753E-08, 2.69884373E-11, 5.08977593E+03, 406 | 4.09733096E+00]), 407 | NASA([1000.00, 3500.00], 408 | [ 2.03611116E+00, 1.46454151E-02, -6.71077915E-06, 409 | 1.47222923E-09, -1.25706061E-13, 4.93988614E+03, 410 | 1.03053693E+01])), 411 | transport=gas_transport(geom='nonlinear', 412 | diam=3.971, 413 | well_depth=280.8, 414 | rot_relax=1.5), 415 | note=u'L1/91') 416 | 417 | species(name=u'C2H5', 418 | atoms='C:2 H:5', 419 | thermo=(NASA([200.00, 1000.00], 420 | [ 4.30646568E+00, -4.18658892E-03, 4.97142807E-05, 421 | -5.99126606E-08, 2.30509004E-11, 1.28416265E+04, 422 | 4.70720924E+00]), 423 | NASA([1000.00, 3500.00], 424 | [ 1.95465642E+00, 1.73972722E-02, -7.98206668E-06, 425 | 1.75217689E-09, -1.49641576E-13, 1.28575200E+04, 426 | 1.34624343E+01])), 427 | transport=gas_transport(geom='nonlinear', 428 | diam=4.302, 429 | well_depth=252.3, 430 | rot_relax=1.5), 431 | note=u'L12/92') 432 | 433 | species(name=u'C2H6', 434 | atoms='C:2 H:6', 435 | thermo=(NASA([200.00, 1000.00], 436 | [ 4.29142492E+00, -5.50154270E-03, 5.99438288E-05, 437 | -7.08466285E-08, 2.68685771E-11, -1.15222055E+04, 438 | 2.66682316E+00]), 439 | NASA([1000.00, 3500.00], 440 | [ 1.07188150E+00, 2.16852677E-02, -1.00256067E-05, 441 | 2.21412001E-09, -1.90002890E-13, -1.14263932E+04, 442 | 1.51156107E+01])), 443 | transport=gas_transport(geom='nonlinear', 444 | diam=4.302, 445 | well_depth=252.3, 446 | rot_relax=1.5), 447 | note=u'L8/88') 448 | 449 | species(name=u'HCCO', 450 | atoms='C:2 H:1 O:1', 451 | thermo=(NASA([300.00, 1000.00], 452 | [ 2.25172140E+00, 1.76550210E-02, -2.37291010E-05, 453 | 1.72757590E-08, -5.06648110E-12, 2.00594490E+04, 454 | 1.24904170E+01]), 455 | NASA([1000.00, 4000.00], 456 | [ 5.62820580E+00, 4.08534010E-03, -1.59345470E-06, 457 | 2.86260520E-10, -1.94078320E-14, 1.93272150E+04, 458 | -3.93025950E+00])), 459 | transport=gas_transport(geom='nonlinear', 460 | diam=2.5, 461 | well_depth=150.0, 462 | rot_relax=1.0), 463 | note=u'SRIC91') 464 | 465 | species(name=u'CH2CO', 466 | atoms='C:2 H:2 O:1', 467 | thermo=(NASA([200.00, 1000.00], 468 | [ 2.13583630E+00, 1.81188721E-02, -1.73947474E-05, 469 | 9.34397568E-09, -2.01457615E-12, -7.04291804E+03, 470 | 1.22156480E+01]), 471 | NASA([1000.00, 3500.00], 472 | [ 4.51129732E+00, 9.00359745E-03, -4.16939635E-06, 473 | 9.23345882E-10, -7.94838201E-14, -7.55105311E+03, 474 | 6.32247205E-01])), 475 | transport=gas_transport(geom='nonlinear', 476 | diam=3.97, 477 | well_depth=436.0, 478 | rot_relax=2.0), 479 | note=u'L5/90') 480 | 481 | species(name=u'CH2CHO', 482 | atoms='C:2 H:3 O:1', 483 | thermo=(NASA([300.00, 1000.00], 484 | [ 3.40906200E+00, 1.07385740E-02, 1.89149200E-06, 485 | -7.15858300E-09, 2.86738500E-12, 1.52147660E+03, 486 | 9.55829000E+00]), 487 | NASA([1000.00, 5000.00], 488 | [ 5.97567000E+00, 8.13059100E-03, -2.74362400E-06, 489 | 4.07030400E-10, -2.17601700E-14, 4.90321800E+02, 490 | -5.04525100E+00])), 491 | transport=gas_transport(geom='nonlinear', 492 | diam=3.97, 493 | well_depth=436.0, 494 | rot_relax=2.0), 495 | note=u'SAND86') 496 | 497 | species(name=u'N2', 498 | atoms='N:2', 499 | thermo=(NASA([300.00, 1000.00], 500 | [ 3.29867700E+00, 1.40824040E-03, -3.96322200E-06, 501 | 5.64151500E-09, -2.44485400E-12, -1.02089990E+03, 502 | 3.95037200E+00]), 503 | NASA([1000.00, 5000.00], 504 | [ 2.92664000E+00, 1.48797680E-03, -5.68476000E-07, 505 | 1.00970380E-10, -6.75335100E-15, -9.22797700E+02, 506 | 5.98052800E+00])), 507 | transport=gas_transport(geom='linear', 508 | diam=3.621, 509 | well_depth=97.53, 510 | polar=1.76, 511 | rot_relax=4.0), 512 | note=u'121286') 513 | 514 | #------------------------------------------------------------------------------- 515 | # Reaction data 516 | #------------------------------------------------------------------------------- 517 | # R1 518 | 519 | # Reaction 1 520 | three_body_reaction('2 O + M <=> O2 + M', [1.200000e+17, -1.0, 0.0], 521 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.75 CO2:3.6 H2:2.4 H2O:15.4') 522 | # R2 523 | 524 | # Reaction 2 525 | three_body_reaction('O + H + M <=> OH + M', [5.000000e+17, -1.0, 0.0], 526 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0') 527 | # R3 528 | 529 | # Reaction 3 530 | reaction('O + H2 <=> H + OH', [3.870000e+04, 2.7, 6260.0]) 531 | # R4 532 | 533 | # Reaction 4 534 | reaction('O + HO2 <=> OH + O2', [2.000000e+13, 0.0, 0.0]) 535 | # R5 536 | 537 | # Reaction 5 538 | reaction('O + H2O2 <=> OH + HO2', [9.630000e+06, 2.0, 4000.0]) 539 | # R6 540 | 541 | # Reaction 6 542 | reaction('O + CH <=> H + CO', [5.700000e+13, 0.0, 0.0]) 543 | # R7 544 | 545 | # Reaction 7 546 | reaction('O + CH2 <=> H + HCO', [8.000000e+13, 0.0, 0.0]) 547 | # R8 548 | 549 | # Reaction 8 550 | reaction('O + CH2(S) <=> H2 + CO', [1.500000e+13, 0.0, 0.0]) 551 | # R9 552 | 553 | # Reaction 9 554 | reaction('O + CH2(S) <=> H + HCO', [1.500000e+13, 0.0, 0.0]) 555 | # R10 556 | 557 | # Reaction 10 558 | reaction('O + CH3 <=> H + CH2O', [5.060000e+13, 0.0, 0.0]) 559 | # R11 560 | 561 | # Reaction 11 562 | reaction('O + CH4 <=> OH + CH3', [1.020000e+09, 1.5, 8600.0]) 563 | # R12 564 | 565 | # Reaction 12 566 | falloff_reaction('O + CO (+ M) <=> CO2 (+ M)', 567 | kf=[1.800000e+10, 0.0, 2385.0], 568 | kf0=[6.020000e+14, 0.0, 3000.0], 569 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:3.5 H2:2.0 H2O:6.0 O2:6.0') 570 | # R13 571 | 572 | # Reaction 13 573 | reaction('O + HCO <=> OH + CO', [3.000000e+13, 0.0, 0.0]) 574 | # R14 575 | 576 | # Reaction 14 577 | reaction('O + HCO <=> H + CO2', [3.000000e+13, 0.0, 0.0]) 578 | # R15 579 | 580 | # Reaction 15 581 | reaction('O + CH2O <=> OH + HCO', [3.900000e+13, 0.0, 3540.0]) 582 | # R16 583 | 584 | # Reaction 16 585 | reaction('O + CH2OH <=> OH + CH2O', [1.000000e+13, 0.0, 0.0]) 586 | # R17 587 | 588 | # Reaction 17 589 | reaction('O + CH3O <=> OH + CH2O', [1.000000e+13, 0.0, 0.0]) 590 | # R18 591 | 592 | # Reaction 18 593 | reaction('O + CH3OH <=> OH + CH2OH', [3.880000e+05, 2.5, 3100.0]) 594 | # R19 595 | 596 | # Reaction 19 597 | reaction('O + CH3OH <=> OH + CH3O', [1.300000e+05, 2.5, 5000.0]) 598 | # R20 599 | 600 | # Reaction 20 601 | reaction('O + C2H2 <=> H + HCCO', [1.350000e+07, 2.0, 1900.0]) 602 | # R21 603 | 604 | # Reaction 21 605 | reaction('O + C2H2 <=> CO + CH2', [6.940000e+06, 2.0, 1900.0]) 606 | # R22 607 | 608 | # Reaction 22 609 | reaction('O + C2H3 <=> H + CH2CO', [3.000000e+13, 0.0, 0.0]) 610 | # R23 611 | 612 | # Reaction 23 613 | reaction('O + C2H4 <=> CH3 + HCO', [1.250000e+07, 1.83, 220.0]) 614 | # R24 615 | 616 | # Reaction 24 617 | reaction('O + C2H5 <=> CH3 + CH2O', [2.240000e+13, 0.0, 0.0]) 618 | # R25 619 | 620 | # Reaction 25 621 | reaction('O + C2H6 <=> OH + C2H5', [8.980000e+07, 1.92, 5690.0]) 622 | # R26 623 | 624 | # Reaction 26 625 | reaction('O + HCCO <=> H + 2 CO', [1.000000e+14, 0.0, 0.0]) 626 | # R27 627 | 628 | # Reaction 27 629 | reaction('O + CH2CO <=> OH + HCCO', [1.000000e+13, 0.0, 8000.0]) 630 | # R28 631 | 632 | # Reaction 28 633 | reaction('O + CH2CO <=> CH2 + CO2', [1.750000e+12, 0.0, 1350.0]) 634 | # R29 635 | 636 | # Reaction 29 637 | reaction('O2 + CO <=> O + CO2', [2.500000e+12, 0.0, 47800.0]) 638 | # R30 639 | 640 | # Reaction 30 641 | reaction('O2 + CH2O <=> HO2 + HCO', [1.000000e+14, 0.0, 40000.0]) 642 | # R31 643 | 644 | # Reaction 31 645 | three_body_reaction('H + O2 + M <=> HO2 + M', [2.800000e+18, -0.86, 0.0], 646 | efficiencies='C2H6:1.5 CO:0.75 CO2:1.5 H2O:0.0 N2:0.0 O2:0.0') 647 | # R32 648 | 649 | # Reaction 32 650 | reaction('H + 2 O2 <=> HO2 + O2', [2.080000e+19, -1.24, 0.0]) 651 | # R33 652 | 653 | # Reaction 33 654 | reaction('H + O2 + H2O <=> HO2 + H2O', [1.126000e+19, -0.76, 0.0]) 655 | # R34 656 | 657 | # Reaction 34 658 | reaction('H + O2 + N2 <=> HO2 + N2', [2.600000e+19, -1.24, 0.0]) 659 | # R35 660 | 661 | # Reaction 35 662 | reaction('H + O2 <=> O + OH', [2.650000e+16, -0.6707, 17041.0]) 663 | # R36 664 | 665 | # Reaction 36 666 | three_body_reaction('2 H + M <=> H2 + M', [1.000000e+18, -1.0, 0.0], 667 | efficiencies='C2H6:3.0 CH4:2.0 CO2:0.0 H2:0.0 H2O:0.0') 668 | # R37 669 | 670 | # Reaction 37 671 | reaction('2 H + H2 <=> 2 H2', [9.000000e+16, -0.6, 0.0]) 672 | # R38 673 | 674 | # Reaction 38 675 | reaction('2 H + H2O <=> H2 + H2O', [6.000000e+19, -1.25, 0.0]) 676 | # R39 677 | 678 | # Reaction 39 679 | reaction('2 H + CO2 <=> H2 + CO2', [5.500000e+20, -2.0, 0.0]) 680 | # R40 681 | 682 | # Reaction 40 683 | three_body_reaction('H + OH + M <=> H2O + M', [2.200000e+22, -2.0, 0.0], 684 | efficiencies='C2H6:3.0 CH4:2.0 H2:0.73 H2O:3.65') 685 | # R41 686 | 687 | # Reaction 41 688 | reaction('H + HO2 <=> O + H2O', [3.970000e+12, 0.0, 671.0]) 689 | # R42 690 | 691 | # Reaction 42 692 | reaction('H + HO2 <=> O2 + H2', [4.480000e+13, 0.0, 1068.0]) 693 | # R43 694 | 695 | # Reaction 43 696 | reaction('H + HO2 <=> 2 OH', [8.400000e+13, 0.0, 635.0]) 697 | # R44 698 | 699 | # Reaction 44 700 | reaction('H + H2O2 <=> HO2 + H2', [1.210000e+07, 2.0, 5200.0]) 701 | # R45 702 | 703 | # Reaction 45 704 | reaction('H + H2O2 <=> OH + H2O', [1.000000e+13, 0.0, 3600.0]) 705 | # R46 706 | 707 | # Reaction 46 708 | reaction('H + CH <=> C + H2', [1.650000e+14, 0.0, 0.0]) 709 | # R47 710 | 711 | # Reaction 47 712 | falloff_reaction('H + CH2 (+ M) <=> CH3 (+ M)', 713 | kf=[6.000000e+14, 0.0, 0.0], 714 | kf0=[1.040000e+26, -2.76, 1600.0], 715 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 716 | falloff=Troe(A=0.562, T3=91.0, T1=5836.0, T2=8552.0)) 717 | # R48 718 | 719 | # Reaction 48 720 | reaction('H + CH2(S) <=> CH + H2', [3.000000e+13, 0.0, 0.0]) 721 | # R49 722 | 723 | # Reaction 49 724 | falloff_reaction('H + CH3 (+ M) <=> CH4 (+ M)', 725 | kf=[1.390000e+16, -0.534, 536.0], 726 | kf0=[2.620000e+33, -4.76, 2440.0], 727 | efficiencies='C2H6:3.0 CH4:3.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 728 | falloff=Troe(A=0.783, T3=74.0, T1=2941.0, T2=6964.0)) 729 | # R50 730 | 731 | # Reaction 50 732 | reaction('H + CH4 <=> CH3 + H2', [6.600000e+08, 1.62, 10840.0]) 733 | # R51 734 | 735 | # Reaction 51 736 | falloff_reaction('H + HCO (+ M) <=> CH2O (+ M)', 737 | kf=[1.090000e+12, 0.48, -260.0], 738 | kf0=[2.470000e+24, -2.57, 425.0], 739 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 740 | falloff=Troe(A=0.7824, T3=271.0, T1=2755.0, T2=6570.0)) 741 | # R52 742 | 743 | # Reaction 52 744 | reaction('H + HCO <=> H2 + CO', [7.340000e+13, 0.0, 0.0]) 745 | # R53 746 | 747 | # Reaction 53 748 | falloff_reaction('H + CH2O (+ M) <=> CH2OH (+ M)', 749 | kf=[5.400000e+11, 0.454, 3600.0], 750 | kf0=[1.270000e+32, -4.82, 6530.0], 751 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 752 | falloff=Troe(A=0.7187, T3=103.0, T1=1291.0, T2=4160.0)) 753 | # R54 754 | 755 | # Reaction 54 756 | falloff_reaction('H + CH2O (+ M) <=> CH3O (+ M)', 757 | kf=[5.400000e+11, 0.454, 2600.0], 758 | kf0=[2.200000e+30, -4.8, 5560.0], 759 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 760 | falloff=Troe(A=0.758, T3=94.0, T1=1555.0, T2=4200.0)) 761 | # R55 762 | 763 | # Reaction 55 764 | reaction('H + CH2O <=> HCO + H2', [5.740000e+07, 1.9, 2742.0]) 765 | # R56 766 | 767 | # Reaction 56 768 | falloff_reaction('H + CH2OH (+ M) <=> CH3OH (+ M)', 769 | kf=[1.055000e+12, 0.5, 86.0], 770 | kf0=[4.360000e+31, -4.65, 5080.0], 771 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 772 | falloff=Troe(A=0.6, T3=100.0, T1=90000.0, T2=10000.0)) 773 | # R57 774 | 775 | # Reaction 57 776 | reaction('H + CH2OH <=> H2 + CH2O', [2.000000e+13, 0.0, 0.0]) 777 | # R58 778 | 779 | # Reaction 58 780 | reaction('H + CH2OH <=> OH + CH3', [1.650000e+11, 0.65, -284.0]) 781 | # R59 782 | 783 | # Reaction 59 784 | reaction('H + CH2OH <=> CH2(S) + H2O', [3.280000e+13, -0.09, 610.0]) 785 | # R60 786 | 787 | # Reaction 60 788 | falloff_reaction('H + CH3O (+ M) <=> CH3OH (+ M)', 789 | kf=[2.430000e+12, 0.515, 50.0], 790 | kf0=[4.660000e+41, -7.44, 14080.0], 791 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 792 | falloff=Troe(A=0.7, T3=100.0, T1=90000.0, T2=10000.0)) 793 | # R61 794 | 795 | # Reaction 61 796 | reaction('H + CH3O <=> H + CH2OH', [4.150000e+07, 1.63, 1924.0]) 797 | # R62 798 | 799 | # Reaction 62 800 | reaction('H + CH3O <=> H2 + CH2O', [2.000000e+13, 0.0, 0.0]) 801 | # R63 802 | 803 | # Reaction 63 804 | reaction('H + CH3O <=> OH + CH3', [1.500000e+12, 0.5, -110.0]) 805 | # R64 806 | 807 | # Reaction 64 808 | reaction('H + CH3O <=> CH2(S) + H2O', [2.620000e+14, -0.23, 1070.0]) 809 | # R65 810 | 811 | # Reaction 65 812 | reaction('H + CH3OH <=> CH2OH + H2', [1.700000e+07, 2.1, 4870.0]) 813 | # R66 814 | 815 | # Reaction 66 816 | reaction('H + CH3OH <=> CH3O + H2', [4.200000e+06, 2.1, 4870.0]) 817 | # R67 818 | 819 | # Reaction 67 820 | falloff_reaction('H + C2H2 (+ M) <=> C2H3 (+ M)', 821 | kf=[5.600000e+12, 0.0, 2400.0], 822 | kf0=[3.800000e+40, -7.27, 7220.0], 823 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 824 | falloff=Troe(A=0.7507, T3=98.5, T1=1302.0, T2=4167.0)) 825 | # R68 826 | 827 | # Reaction 68 828 | falloff_reaction('H + C2H3 (+ M) <=> C2H4 (+ M)', 829 | kf=[6.080000e+12, 0.27, 280.0], 830 | kf0=[1.400000e+30, -3.86, 3320.0], 831 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 832 | falloff=Troe(A=0.782, T3=207.5, T1=2663.0, T2=6095.0)) 833 | # R69 834 | 835 | # Reaction 69 836 | reaction('H + C2H3 <=> H2 + C2H2', [3.000000e+13, 0.0, 0.0]) 837 | # R70 838 | 839 | # Reaction 70 840 | falloff_reaction('H + C2H4 (+ M) <=> C2H5 (+ M)', 841 | kf=[5.400000e+11, 0.454, 1820.0], 842 | kf0=[6.000000e+41, -7.62, 6970.0], 843 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 844 | falloff=Troe(A=0.9753, T3=210.0, T1=984.0, T2=4374.0)) 845 | # R71 846 | 847 | # Reaction 71 848 | reaction('H + C2H4 <=> C2H3 + H2', [1.325000e+06, 2.53, 12240.0]) 849 | # R72 850 | 851 | # Reaction 72 852 | falloff_reaction('H + C2H5 (+ M) <=> C2H6 (+ M)', 853 | kf=[5.210000e+17, -0.99, 1580.0], 854 | kf0=[1.990000e+41, -7.08, 6685.0], 855 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 856 | falloff=Troe(A=0.8422, T3=125.0, T1=2219.0, T2=6882.0)) 857 | # R73 858 | 859 | # Reaction 73 860 | reaction('H + C2H5 <=> H2 + C2H4', [2.000000e+12, 0.0, 0.0]) 861 | # R74 862 | 863 | # Reaction 74 864 | reaction('H + C2H6 <=> C2H5 + H2', [1.150000e+08, 1.9, 7530.0]) 865 | # R75 866 | 867 | # Reaction 75 868 | reaction('H + HCCO <=> CH2(S) + CO', [1.000000e+14, 0.0, 0.0]) 869 | # R76 870 | 871 | # Reaction 76 872 | reaction('H + CH2CO <=> HCCO + H2', [5.000000e+13, 0.0, 8000.0]) 873 | # R77 874 | 875 | # Reaction 77 876 | reaction('H + CH2CO <=> CH3 + CO', [1.130000e+13, 0.0, 3428.0]) 877 | # R78 878 | 879 | # Reaction 78 880 | falloff_reaction('H2 + CO (+ M) <=> CH2O (+ M)', 881 | kf=[4.300000e+07, 1.5, 79600.0], 882 | kf0=[5.070000e+27, -3.42, 84350.0], 883 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 884 | falloff=Troe(A=0.932, T3=197.0, T1=1540.0, T2=10300.0)) 885 | # R79 886 | 887 | # Reaction 79 888 | reaction('OH + H2 <=> H + H2O', [2.160000e+08, 1.51, 3430.0]) 889 | # R80 890 | 891 | # Reaction 80 892 | falloff_reaction('2 OH (+ M) <=> H2O2 (+ M)', 893 | kf=[7.400000e+13, -0.37, 0.0], 894 | kf0=[2.300000e+18, -0.9, -1700.0], 895 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 896 | falloff=Troe(A=0.7346, T3=94.0, T1=1756.0, T2=5182.0)) 897 | # R81 898 | 899 | # Reaction 81 900 | reaction('2 OH <=> O + H2O', [3.570000e+04, 2.4, -2110.0]) 901 | # R82 902 | 903 | # Reaction 82 904 | reaction('OH + HO2 <=> O2 + H2O', [1.450000e+13, 0.0, -500.0], 905 | options='duplicate') 906 | # R83 907 | 908 | # Reaction 83 909 | reaction('OH + H2O2 <=> HO2 + H2O', [2.000000e+12, 0.0, 427.0], 910 | options='duplicate') 911 | # R84 912 | 913 | # Reaction 84 914 | reaction('OH + H2O2 <=> HO2 + H2O', [1.700000e+18, 0.0, 29410.0], 915 | options='duplicate') 916 | # R85 917 | 918 | # Reaction 85 919 | reaction('OH + C <=> H + CO', [5.000000e+13, 0.0, 0.0]) 920 | # R86 921 | 922 | # Reaction 86 923 | reaction('OH + CH <=> H + HCO', [3.000000e+13, 0.0, 0.0]) 924 | # R87 925 | 926 | # Reaction 87 927 | reaction('OH + CH2 <=> H + CH2O', [2.000000e+13, 0.0, 0.0]) 928 | # R88 929 | 930 | # Reaction 88 931 | reaction('OH + CH2 <=> CH + H2O', [1.130000e+07, 2.0, 3000.0]) 932 | # R89 933 | 934 | # Reaction 89 935 | reaction('OH + CH2(S) <=> H + CH2O', [3.000000e+13, 0.0, 0.0]) 936 | # R90 937 | 938 | # Reaction 90 939 | falloff_reaction('OH + CH3 (+ M) <=> CH3OH (+ M)', 940 | kf=[2.790000e+18, -1.43, 1330.0], 941 | kf0=[4.000000e+36, -5.92, 3140.0], 942 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 943 | falloff=Troe(A=0.412, T3=195.0, T1=5900.0, T2=6394.0)) 944 | # R91 945 | 946 | # Reaction 91 947 | reaction('OH + CH3 <=> CH2 + H2O', [5.600000e+07, 1.6, 5420.0]) 948 | # R92 949 | 950 | # Reaction 92 951 | reaction('OH + CH3 <=> CH2(S) + H2O', [6.440000e+17, -1.34, 1417.0]) 952 | # R93 953 | 954 | # Reaction 93 955 | reaction('OH + CH4 <=> CH3 + H2O', [1.000000e+08, 1.6, 3120.0]) 956 | # R94 957 | 958 | # Reaction 94 959 | reaction('OH + CO <=> H + CO2', [4.760000e+07, 1.228, 70.0]) 960 | # R95 961 | 962 | # Reaction 95 963 | reaction('OH + HCO <=> H2O + CO', [5.000000e+13, 0.0, 0.0]) 964 | # R96 965 | 966 | # Reaction 96 967 | reaction('OH + CH2O <=> HCO + H2O', [3.430000e+09, 1.18, -447.0]) 968 | # R97 969 | 970 | # Reaction 97 971 | reaction('OH + CH2OH <=> H2O + CH2O', [5.000000e+12, 0.0, 0.0]) 972 | # R98 973 | 974 | # Reaction 98 975 | reaction('OH + CH3O <=> H2O + CH2O', [5.000000e+12, 0.0, 0.0]) 976 | # R99 977 | 978 | # Reaction 99 979 | reaction('OH + CH3OH <=> CH2OH + H2O', [1.440000e+06, 2.0, -840.0]) 980 | # R100 981 | 982 | # Reaction 100 983 | reaction('OH + CH3OH <=> CH3O + H2O', [6.300000e+06, 2.0, 1500.0]) 984 | # R101 985 | 986 | # Reaction 101 987 | reaction('OH + C2H2 <=> H + CH2CO', [2.180000e-04, 4.5, -1000.0]) 988 | # R102 989 | 990 | # Reaction 102 991 | reaction('OH + C2H2 <=> CH3 + CO', [4.830000e-04, 4.0, -2000.0]) 992 | # R103 993 | 994 | # Reaction 103 995 | reaction('OH + C2H3 <=> H2O + C2H2', [5.000000e+12, 0.0, 0.0]) 996 | # R104 997 | 998 | # Reaction 104 999 | reaction('OH + C2H4 <=> C2H3 + H2O', [3.600000e+06, 2.0, 2500.0]) 1000 | # R105 1001 | 1002 | # Reaction 105 1003 | reaction('OH + C2H6 <=> C2H5 + H2O', [3.540000e+06, 2.12, 870.0]) 1004 | # R106 1005 | 1006 | # Reaction 106 1007 | reaction('OH + CH2CO <=> HCCO + H2O', [7.500000e+12, 0.0, 2000.0]) 1008 | # R107 1009 | 1010 | # Reaction 107 1011 | reaction('2 HO2 <=> O2 + H2O2', [1.300000e+11, 0.0, -1630.0], 1012 | options='duplicate') 1013 | # R108 1014 | 1015 | # Reaction 108 1016 | reaction('2 HO2 <=> O2 + H2O2', [4.200000e+14, 0.0, 12000.0], 1017 | options='duplicate') 1018 | # R109 1019 | 1020 | # Reaction 109 1021 | reaction('HO2 + CH2 <=> OH + CH2O', [2.000000e+13, 0.0, 0.0]) 1022 | # R110 1023 | 1024 | # Reaction 110 1025 | reaction('HO2 + CH3 <=> O2 + CH4', [1.000000e+12, 0.0, 0.0]) 1026 | # R111 1027 | 1028 | # Reaction 111 1029 | reaction('HO2 + CH3 <=> OH + CH3O', [3.780000e+13, 0.0, 0.0]) 1030 | # R112 1031 | 1032 | # Reaction 112 1033 | reaction('HO2 + CO <=> OH + CO2', [1.500000e+14, 0.0, 23600.0]) 1034 | # R113 1035 | 1036 | # Reaction 113 1037 | reaction('HO2 + CH2O <=> HCO + H2O2', [5.600000e+06, 2.0, 12000.0]) 1038 | # R114 1039 | 1040 | # Reaction 114 1041 | reaction('C + O2 <=> O + CO', [5.800000e+13, 0.0, 576.0]) 1042 | # R115 1043 | 1044 | # Reaction 115 1045 | reaction('C + CH3 <=> H + C2H2', [5.000000e+13, 0.0, 0.0]) 1046 | # R116 1047 | 1048 | # Reaction 116 1049 | reaction('CH + O2 <=> O + HCO', [6.710000e+13, 0.0, 0.0]) 1050 | # R117 1051 | 1052 | # Reaction 117 1053 | reaction('CH + H2 <=> H + CH2', [1.080000e+14, 0.0, 3110.0]) 1054 | # R118 1055 | 1056 | # Reaction 118 1057 | reaction('CH + H2O <=> H + CH2O', [5.710000e+12, 0.0, -755.0]) 1058 | # R119 1059 | 1060 | # Reaction 119 1061 | reaction('CH + CH2 <=> H + C2H2', [4.000000e+13, 0.0, 0.0]) 1062 | # R120 1063 | 1064 | # Reaction 120 1065 | reaction('CH + CH3 <=> H + C2H3', [3.000000e+13, 0.0, 0.0]) 1066 | # R121 1067 | 1068 | # Reaction 121 1069 | reaction('CH + CH4 <=> H + C2H4', [6.000000e+13, 0.0, 0.0]) 1070 | # R122 1071 | 1072 | # Reaction 122 1073 | falloff_reaction('CH + CO (+ M) <=> HCCO (+ M)', 1074 | kf=[5.000000e+13, 0.0, 0.0], 1075 | kf0=[2.690000e+28, -3.74, 1936.0], 1076 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1077 | falloff=Troe(A=0.5757, T3=237.0, T1=1652.0, T2=5069.0)) 1078 | # R123 1079 | 1080 | # Reaction 123 1081 | reaction('CH + CO2 <=> HCO + CO', [1.900000e+14, 0.0, 15792.0]) 1082 | # R124 1083 | 1084 | # Reaction 124 1085 | reaction('CH + CH2O <=> H + CH2CO', [9.460000e+13, 0.0, -515.0]) 1086 | # R125 1087 | 1088 | # Reaction 125 1089 | reaction('CH + HCCO <=> CO + C2H2', [5.000000e+13, 0.0, 0.0]) 1090 | # R126 1091 | 1092 | # Reaction 126 1093 | reaction('CH2 + O2 => OH + H + CO', [5.000000e+12, 0.0, 1500.0]) 1094 | # R127 1095 | 1096 | # Reaction 127 1097 | reaction('CH2 + H2 <=> H + CH3', [5.000000e+05, 2.0, 7230.0]) 1098 | # R128 1099 | 1100 | # Reaction 128 1101 | reaction('2 CH2 <=> H2 + C2H2', [1.600000e+15, 0.0, 11944.0]) 1102 | # R129 1103 | 1104 | # Reaction 129 1105 | reaction('CH2 + CH3 <=> H + C2H4', [4.000000e+13, 0.0, 0.0]) 1106 | # R130 1107 | 1108 | # Reaction 130 1109 | reaction('CH2 + CH4 <=> 2 CH3', [2.460000e+06, 2.0, 8270.0]) 1110 | # R131 1111 | 1112 | # Reaction 131 1113 | falloff_reaction('CH2 + CO (+ M) <=> CH2CO (+ M)', 1114 | kf=[8.100000e+11, 0.5, 4510.0], 1115 | kf0=[2.690000e+33, -5.11, 7095.0], 1116 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1117 | falloff=Troe(A=0.5907, T3=275.0, T1=1226.0, T2=5185.0)) 1118 | # R132 1119 | 1120 | # Reaction 132 1121 | reaction('CH2 + HCCO <=> C2H3 + CO', [3.000000e+13, 0.0, 0.0]) 1122 | # R133 1123 | 1124 | # Reaction 133 1125 | reaction('CH2(S) + N2 <=> CH2 + N2', [1.500000e+13, 0.0, 600.0]) 1126 | # R134 1127 | 1128 | # Reaction 134 1129 | reaction('CH2(S) + O2 <=> H + OH + CO', [2.800000e+13, 0.0, 0.0]) 1130 | # R135 1131 | 1132 | # Reaction 135 1133 | reaction('CH2(S) + O2 <=> CO + H2O', [1.200000e+13, 0.0, 0.0]) 1134 | # R136 1135 | 1136 | # Reaction 136 1137 | reaction('CH2(S) + H2 <=> CH3 + H', [7.000000e+13, 0.0, 0.0]) 1138 | # R137 1139 | 1140 | # Reaction 137 1141 | falloff_reaction('CH2(S) + H2O (+ M) <=> CH3OH (+ M)', 1142 | kf=[4.820000e+17, -1.16, 1145.0], 1143 | kf0=[1.880000e+38, -6.36, 5040.0], 1144 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1145 | falloff=Troe(A=0.6027, T3=208.0, T1=3922.0, T2=10180.0)) 1146 | # R138 1147 | 1148 | # Reaction 138 1149 | reaction('CH2(S) + H2O <=> CH2 + H2O', [3.000000e+13, 0.0, 0.0]) 1150 | # R139 1151 | 1152 | # Reaction 139 1153 | reaction('CH2(S) + CH3 <=> H + C2H4', [1.200000e+13, 0.0, -570.0]) 1154 | # R140 1155 | 1156 | # Reaction 140 1157 | reaction('CH2(S) + CH4 <=> 2 CH3', [1.600000e+13, 0.0, -570.0]) 1158 | # R141 1159 | 1160 | # Reaction 141 1161 | reaction('CH2(S) + CO <=> CH2 + CO', [9.000000e+12, 0.0, 0.0]) 1162 | # R142 1163 | 1164 | # Reaction 142 1165 | reaction('CH2(S) + CO2 <=> CH2 + CO2', [7.000000e+12, 0.0, 0.0]) 1166 | # R143 1167 | 1168 | # Reaction 143 1169 | reaction('CH2(S) + CO2 <=> CO + CH2O', [1.400000e+13, 0.0, 0.0]) 1170 | # R144 1171 | 1172 | # Reaction 144 1173 | reaction('CH2(S) + C2H6 <=> CH3 + C2H5', [4.000000e+13, 0.0, -550.0]) 1174 | # R145 1175 | 1176 | # Reaction 145 1177 | reaction('CH3 + O2 <=> O + CH3O', [3.560000e+13, 0.0, 30480.0]) 1178 | # R146 1179 | 1180 | # Reaction 146 1181 | reaction('CH3 + O2 <=> OH + CH2O', [2.310000e+12, 0.0, 20315.0]) 1182 | # R147 1183 | 1184 | # Reaction 147 1185 | reaction('CH3 + H2O2 <=> HO2 + CH4', [2.450000e+04, 2.47, 5180.0]) 1186 | # R148 1187 | 1188 | # Reaction 148 1189 | falloff_reaction('2 CH3 (+ M) <=> C2H6 (+ M)', 1190 | kf=[6.770000e+16, -1.18, 654.0], 1191 | kf0=[3.400000e+41, -7.03, 2762.0], 1192 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1193 | falloff=Troe(A=0.619, T3=73.2, T1=1180.0, T2=9999.0)) 1194 | # R149 1195 | 1196 | # Reaction 149 1197 | reaction('2 CH3 <=> H + C2H5', [6.840000e+12, 0.1, 10600.0]) 1198 | # R150 1199 | 1200 | # Reaction 150 1201 | reaction('CH3 + HCO <=> CH4 + CO', [2.648000e+13, 0.0, 0.0]) 1202 | # R151 1203 | 1204 | # Reaction 151 1205 | reaction('CH3 + CH2O <=> HCO + CH4', [3.320000e+03, 2.81, 5860.0]) 1206 | # R152 1207 | 1208 | # Reaction 152 1209 | reaction('CH3 + CH3OH <=> CH2OH + CH4', [3.000000e+07, 1.5, 9940.0]) 1210 | # R153 1211 | 1212 | # Reaction 153 1213 | reaction('CH3 + CH3OH <=> CH3O + CH4', [1.000000e+07, 1.5, 9940.0]) 1214 | # R154 1215 | 1216 | # Reaction 154 1217 | reaction('CH3 + C2H4 <=> C2H3 + CH4', [2.270000e+05, 2.0, 9200.0]) 1218 | # R155 1219 | 1220 | # Reaction 155 1221 | reaction('CH3 + C2H6 <=> C2H5 + CH4', [6.140000e+06, 1.74, 10450.0]) 1222 | # R156 1223 | 1224 | # Reaction 156 1225 | reaction('HCO + H2O <=> H + CO + H2O', [1.500000e+18, -1.0, 17000.0]) 1226 | # R157 1227 | 1228 | # Reaction 157 1229 | three_body_reaction('HCO + M <=> H + CO + M', [1.870000e+17, -1.0, 17000.0], 1230 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:0.0') 1231 | # R158 1232 | 1233 | # Reaction 158 1234 | reaction('HCO + O2 <=> HO2 + CO', [1.345000e+13, 0.0, 400.0]) 1235 | # R159 1236 | 1237 | # Reaction 159 1238 | reaction('CH2OH + O2 <=> HO2 + CH2O', [1.800000e+13, 0.0, 900.0]) 1239 | # R160 1240 | 1241 | # Reaction 160 1242 | reaction('CH3O + O2 <=> HO2 + CH2O', [4.280000e-13, 7.6, -3530.0]) 1243 | # R161 1244 | 1245 | # Reaction 161 1246 | reaction('C2H3 + O2 <=> HCO + CH2O', [4.580000e+16, -1.39, 1015.0]) 1247 | # R162 1248 | 1249 | # Reaction 162 1250 | falloff_reaction('C2H4 (+ M) <=> H2 + C2H2 (+ M)', 1251 | kf=[8.000000e+12, 0.44, 86770.0], 1252 | kf0=[1.580000e+51, -9.3, 97800.0], 1253 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1254 | falloff=Troe(A=0.7345, T3=180.0, T1=1035.0, T2=5417.0)) 1255 | # R163 1256 | 1257 | # Reaction 163 1258 | reaction('C2H5 + O2 <=> HO2 + C2H4', [8.400000e+11, 0.0, 3875.0]) 1259 | # R164 1260 | 1261 | # Reaction 164 1262 | reaction('HCCO + O2 <=> OH + 2 CO', [3.200000e+12, 0.0, 854.0]) 1263 | # R165 1264 | 1265 | # Reaction 165 1266 | reaction('2 HCCO <=> 2 CO + C2H2', [1.000000e+13, 0.0, 0.0]) 1267 | # R166 1268 | 1269 | # Reaction 166 1270 | reaction('O + CH3 => H + H2 + CO', [3.370000e+13, 0.0, 0.0]) 1271 | # R167 1272 | 1273 | # Reaction 167 1274 | reaction('O + C2H4 <=> H + CH2CHO', [6.700000e+06, 1.83, 220.0]) 1275 | # R168 1276 | 1277 | # Reaction 168 1278 | reaction('OH + HO2 <=> O2 + H2O', [5.000000e+15, 0.0, 17330.0], 1279 | options='duplicate') 1280 | # R169 1281 | 1282 | # Reaction 169 1283 | reaction('OH + CH3 => H2 + CH2O', [8.000000e+09, 0.5, -1755.0]) 1284 | # R170 1285 | 1286 | # Reaction 170 1287 | falloff_reaction('CH + H2 (+ M) <=> CH3 (+ M)', 1288 | kf=[1.970000e+12, 0.43, -370.0], 1289 | kf0=[4.820000e+25, -2.8, 590.0], 1290 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1291 | falloff=Troe(A=0.578, T3=122.0, T1=2535.0, T2=9365.0)) 1292 | # R171 1293 | 1294 | # Reaction 171 1295 | reaction('CH2 + O2 => 2 H + CO2', [5.800000e+12, 0.0, 1500.0]) 1296 | # R172 1297 | 1298 | # Reaction 172 1299 | reaction('CH2 + O2 <=> O + CH2O', [2.400000e+12, 0.0, 1500.0]) 1300 | # R173 1301 | 1302 | # Reaction 173 1303 | reaction('CH2 + CH2 => 2 H + C2H2', [2.000000e+14, 0.0, 10989.0]) 1304 | # R174 1305 | 1306 | # Reaction 174 1307 | reaction('CH2(S) + H2O => H2 + CH2O', [6.820000e+10, 0.25, -935.0]) 1308 | # R175 1309 | 1310 | # Reaction 175 1311 | reaction('C2H3 + O2 <=> O + CH2CHO', [3.030000e+11, 0.29, 11.0]) 1312 | # R176 1313 | 1314 | # Reaction 176 1315 | reaction('C2H3 + O2 <=> HO2 + C2H2', [1.337000e+06, 1.61, -384.0]) 1316 | # R177 1317 | 1318 | # Reaction 177 1319 | falloff_reaction('H + CH2CO (+ M) <=> CH2CHO (+ M)', 1320 | kf=[4.865000e+11, 0.422, -1755.0], 1321 | kf0=[1.012000e+42, -7.63, 3854.0], 1322 | efficiencies='C2H6:3.0 CH4:2.0 CO:1.5 CO2:2.0 H2:2.0 H2O:6.0', 1323 | falloff=Troe(A=0.465, T3=201.0, T1=1773.0, T2=5333.0)) 1324 | # R178 1325 | 1326 | # Reaction 178 1327 | reaction('O + CH2CHO => H + CH2 + CO2', [1.500000e+14, 0.0, 0.0]) 1328 | # R179 1329 | 1330 | # Reaction 179 1331 | reaction('O2 + CH2CHO => OH + CO + CH2O', [1.810000e+10, 0.0, 0.0]) 1332 | # R180 1333 | 1334 | # Reaction 180 1335 | reaction('O2 + CH2CHO => OH + 2 HCO', [2.350000e+10, 0.0, 0.0]) 1336 | # R181 1337 | 1338 | # Reaction 181 1339 | reaction('H + CH2CHO <=> CH3 + HCO', [2.200000e+13, 0.0, 0.0]) 1340 | # R182 1341 | 1342 | # Reaction 182 1343 | reaction('H + CH2CHO <=> CH2CO + H2', [1.100000e+13, 0.0, 0.0]) 1344 | # R183 1345 | 1346 | # Reaction 183 1347 | reaction('OH + CH2CHO <=> H2O + CH2CO', [1.200000e+13, 0.0, 0.0]) 1348 | # R184 1349 | 1350 | # Reaction 184 1351 | reaction('OH + CH2CHO <=> HCO + CH2OH', [3.010000e+13, 0.0, 0.0]) 1352 | --------------------------------------------------------------------------------