├── .gitattributes
├── LICENSE
├── README.md
├── building_seg_test.py
├── config
├── inriabuilding
│ └── buildformer.py
├── massbuilding
│ └── buildformer.py
└── whubuilding
│ └── buildformer.py
├── geoseg
├── __init__.py
├── datasets
│ ├── __init__.py
│ ├── inria_dataset.py
│ ├── mass_dataset.py
│ ├── transform.py
│ └── whubuilding_dataset.py
├── losses
│ ├── __init__.py
│ ├── balanced_bce.py
│ ├── bitempered_loss.py
│ ├── cel1.py
│ ├── dice.py
│ ├── focal.py
│ ├── focal_cosine.py
│ ├── functional.py
│ ├── jaccard.py
│ ├── joint_loss.py
│ ├── lovasz.py
│ ├── soft_bce.py
│ ├── soft_ce.py
│ ├── soft_f1.py
│ ├── useful_loss.py
│ └── wing_loss.py
└── models
│ ├── BuildFormer.py
│ └── __init__.py
├── inria_patch_split.py
├── mass_patch_split.py
├── requirements.txt
├── tools
├── __init__.py
├── cfg.py
└── metric.py
├── train_supervision.py
└── whubuilding_mask_convert.py
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## [Building extraction with vision transformer](https://ieeexplore.ieee.org/document/9808187)
2 |
3 | *IEEE Transactions on Geoscience and Remote Sensing*, 2022, [Libo Wang](https://WangLibo1995.github.io), Shenghui Fang, Xiaoliang Meng, [Rui Li](https://lironui.github.io/).
4 |
5 | [Research Gate link](https://www.researchgate.net/publication/361583918_Building_extraction_with_vision_transformer)
6 |
7 | ## Introduction
8 |
9 | This project (BuildFormer) is an extension of our [GeoSeg](https://github.com/WangLibo1995/GeoSeg), which mainly focuses on building extraction from remote sensing images.
10 |
11 |
12 | ## Folder Structure
13 |
14 | Prepare the following folders to organize this repo:
15 | ```none
16 | airs
17 | ├── BuildFormer (code)
18 | ├── pretrain_weights (save the pretrained weights like vit, swin, etc)
19 | ├── model_weights (save the model weights)
20 | ├── fig_results (save the masks predicted by models)
21 | ├── lightning_logs (CSV format training logs)
22 | ├── data
23 | │ ├── AerialImageDataset (i.e. INRIA)
24 | │ │ ├── train
25 | │ │ │ ├── val_images (splited original images, ID 1-5 of each city)
26 | │ │ │ ├── vak_masks (splited original masks, ID 1-5 of each city)
27 | │ │ │ ├── train_images (splited original images, the other IDs)
28 | │ │ │ ├── train_masks (splited original masks, the other IDs)
29 | │ │ │ ├── train
30 | │ │ │ │ ├── images (processed)
31 | │ │ │ │ ├── masks (processed)
32 | │ │ │ ├── val
33 | │ │ │ │ ├── images (processed)
34 | │ │ │ │ ├── masks (processed)
35 | │ │ │ │ ├── masks_gt (processed, for visualization)
36 | │ ├── mass_build
37 | │ │ ├── png
38 | │ │ │ ├── train (original images)
39 | │ │ │ ├── train_labels (original masks, RGB format)
40 | │ │ │ ├── train_images (processed images)
41 | │ │ │ ├── train_masks (processed masks, unit8 format)
42 | │ │ │ ├── val (original images)
43 | │ │ │ ├── val_labels (original masks, RGB format)
44 | │ │ │ ├── val_images (processed images)
45 | │ │ │ ├── val_masks (processed masks, unit8 format)
46 | │ │ │ ├── test (original images)
47 | │ │ │ ├── test_labels (original masks, RGB format)
48 | │ │ │ ├── test_images (processed images)
49 | │ │ │ ├── test_masks (processed masks, unit8 format)
50 | │ ├── whubuilding
51 | │ │ ├── train
52 | │ │ │ ├── images (original images)
53 | │ │ │ ├── masks_origin (original masks)
54 | │ │ │ ├── masks (converted masks)
55 | │ │ ├── val (the same with train)
56 | │ │ ├── test (the same with test)
57 | │ │ ├── train_val (Merge train and val)
58 | ```
59 |
60 | ## Install
61 |
62 | Open the folder **airs** using **Linux Terminal** and create python environment:
63 | ```
64 | conda create -n airs python=3.8
65 | conda activate airs
66 |
67 | conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
68 | pip install -r BuildFormer/requirements.txt
69 | ```
70 |
71 | ## Data Preprocessing
72 |
73 | Download the [WHU Aerial](https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html), [Massachusetts](https://www.cs.toronto.edu/~vmnih/data/), [INRIA](https://project.inria.fr/aerialimagelabeling/) building datasets and split them by **Folder Structure**.
74 |
75 | **WHU**
76 |
77 | ```
78 | python BuildFormer/whubuilding_mask_convert.py \
79 | --mask-dir "data/whubuilding/train/masks_origin" \
80 | --output-mask-dir "data/whubuilding/train/masks"
81 | ```
82 |
83 | ```
84 | python BuildFormer/whubuilding_mask_convert.py \
85 | --mask-dir "data/whubuilding/val/masks_origin" \
86 | --output-mask-dir "data/whubuilding/val/masks"
87 | ```
88 |
89 | ```
90 | python BuildFormer/whubuilding_mask_convert.py \
91 | --mask-dir "data/whubuilding/test/masks_origin" \
92 | --output-mask-dir "data/whubuilding/test/masks"
93 | ```
94 |
95 | **Massachusetts**
96 |
97 | ```
98 | python BuildFormer/mass_patch_split.py \
99 | --input-img-dir "data/mass_build/png/train" \
100 | --input-mask-dir "data/mass_build/png/train_labels" \
101 | --output-img-dir "data/mass_build/png/train_images" \
102 | --output-mask-dir "data/mass_build/png/train_masks" \
103 | --mode "train"
104 | ```
105 |
106 | ```
107 | python BuildFormer/mass_patch_split.py \
108 | --input-img-dir "data/mass_build/png/val" \
109 | --input-mask-dir "data/mass_build/png/val_labels" \
110 | --output-img-dir "data/mass_build/png/val_images" \
111 | --output-mask-dir "data/mass_build/png/val_masks" \
112 | --mode "val"
113 | ```
114 |
115 | ```
116 | python BuildFormer/mass_patch_split.py \
117 | --input-img-dir "data/mass_build/png/test" \
118 | --input-mask-dir "data/mass_build/png/test_labels" \
119 | --output-img-dir "data/mass_build/png/test_images" \
120 | --output-mask-dir "data/mass_build/png/test_masks" \
121 | --mode "val"
122 | ```
123 |
124 | **INRIA**
125 |
126 | ```
127 | python BuildFormer/inria_patch_split.py \
128 | --input-img-dir "data/AerialImageDataset/train/train_images" \
129 | --input-mask-dir "data/AerialImageDataset/train/train_masks" \
130 | --output-img-dir "data/AerialImageDataset/train/train/images" \
131 | --output-mask-dir "data/AerialImageDataset/train/train/masks" \
132 | --mode "train"
133 | ```
134 |
135 | ```
136 | python BuildFormer/inria_patch_split.py \
137 | --input-img-dir "data/AerialImageDataset/train/val_images" \
138 | --input-mask-dir "data/AerialImageDataset/train/val_masks" \
139 | --output-img-dir "data/AerialImageDataset/train/val/images" \
140 | --output-mask-dir "data/AerialImageDataset/train/val/masks" \
141 | --mode "val"
142 | ```
143 |
144 | ## Training
145 |
146 | ```
147 | python BuildFormer/train_supervision.py -c BuildFormer/config/whubuilding/buildformer.py
148 | ```
149 |
150 | ```
151 | python BuildFormer/train_supervision.py -c BuildFormer/config/massbuilding/buildformer.py
152 | ```
153 |
154 | ```
155 | python BuildFormer/train_supervision.py -c BuildFormer/config/inriabuilding/buildformer.py
156 | ```
157 |
158 |
159 |
160 | ## Testing
161 |
162 | ```
163 | python BuildFormer/building_seg_test.py -c BuildFormer/config/whubuilding/buildformer.py -o fig_results/whubuilding/buildformer --rgb -t 'lr'
164 | ```
165 |
166 | ```
167 | python BuildFormer/building_seg_test.py -c BuildFormer/config/massbuilding/buildformer.py -o fig_results/massbuilding/buildformer --rgb -t 'lr'
168 | ```
169 |
170 | ```
171 | python BuildFormer/building_seg_test.py -c BuildFormer/config/inriabuilding/buildformer.py -o fig_results/inriabuilding/buildformer --rgb -t 'lr'
172 | ```
173 |
174 | ## Citation
175 |
176 | If you find this project useful in your research, please consider citing our paper:
177 |
178 | [Building extraction with vision transformer](https://ieeexplore.ieee.org/document/9808187)
179 |
180 | ## Acknowledgement
181 |
182 | - [pytorch lightning](https://www.pytorchlightning.ai/)
183 | - [timm](https://github.com/rwightman/pytorch-image-models)
184 | - [pytorch-toolbelt](https://github.com/BloodAxe/pytorch-toolbelt)
185 | - [ttach](https://github.com/qubvel/ttach)
186 | - [catalyst](https://github.com/catalyst-team/catalyst)
187 | - [mmsegmentation](https://github.com/open-mmlab/mmsegmentation)
--------------------------------------------------------------------------------
/building_seg_test.py:
--------------------------------------------------------------------------------
1 | import ttach as tta
2 | import multiprocessing.pool as mpp
3 | import multiprocessing as mp
4 | import time
5 | from train_supervision import *
6 | import argparse
7 | from pathlib import Path
8 | import cv2
9 | import numpy as np
10 | import torch
11 |
12 | from torch import nn
13 | from torch.utils.data import DataLoader
14 | from tqdm import tqdm
15 |
16 |
17 | def label_to_rgb(mask):
18 | h, w = mask.shape[0], mask.shape[1]
19 | mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
20 | mask_convert = mask[np.newaxis, :, :]
21 | mask_rgb[np.all(mask_convert == 0, axis=0)] = [255, 255, 255]
22 | mask_rgb[np.all(mask_convert == 1, axis=0)] = [0, 0, 0]
23 | return mask_rgb
24 |
25 |
26 | def img_writer(inp):
27 | (mask, mask_id, rgb) = inp
28 | if rgb:
29 | mask_name_tif = mask_id + '.png'
30 | mask_tif = label_to_rgb(mask)
31 | cv2.imwrite(mask_name_tif, mask_tif)
32 | else:
33 | mask_png = mask.astype(np.uint8)
34 | mask_name_png = mask_id + '.png'
35 | cv2.imwrite(mask_name_png, mask_png)
36 |
37 |
38 | def get_args():
39 | parser = argparse.ArgumentParser()
40 | arg = parser.add_argument
41 | arg("-c", "--config_path", type=Path, required=True, help="Path to config")
42 | arg("-o", "--output_path", type=Path, help="Path where to save resulting masks.", required=True)
43 | arg("-t", "--tta", help="Test time augmentation.", default=None, choices=[None, "d4", "lr"])
44 | arg("--rgb", help="whether output rgb images", action='store_true')
45 | return parser.parse_args()
46 |
47 |
48 | def main():
49 | args = get_args()
50 | config = py2cfg(args.config_path)
51 | args.output_path.mkdir(exist_ok=True, parents=True)
52 |
53 | model = Supervision_Train.load_from_checkpoint(
54 | os.path.join(config.weights_path, config.test_weights_name + '.ckpt'), config=config)
55 | model.cuda()
56 | model.eval()
57 | evaluator = Evaluator(num_class=config.num_classes)
58 | evaluator.reset()
59 | if args.tta == "lr":
60 | transforms = tta.Compose(
61 | [
62 | tta.HorizontalFlip(),
63 | tta.VerticalFlip()
64 | ]
65 | )
66 | model = tta.SegmentationTTAWrapper(model, transforms)
67 | elif args.tta == "d4":
68 | transforms = tta.Compose(
69 | [
70 | tta.HorizontalFlip(),
71 | tta.VerticalFlip(),
72 | tta.Rotate90(angles=[0, 90, 180, 270])
73 | ]
74 | )
75 | model = tta.SegmentationTTAWrapper(model, transforms)
76 |
77 | test_dataset = config.test_dataset
78 |
79 | with torch.no_grad():
80 | test_loader = DataLoader(
81 | test_dataset,
82 | batch_size=2,
83 | num_workers=4,
84 | pin_memory=True,
85 | drop_last=False,
86 | )
87 | results = []
88 | for input in tqdm(test_loader):
89 | # raw_prediction NxCxHxW
90 | raw_predictions = model(input['img'].cuda())
91 | image_ids = input["img_id"]
92 | if 'gt_semantic_seg' in input.keys():
93 | masks_true = input['gt_semantic_seg']
94 |
95 | raw_predictions = nn.Softmax(dim=1)(raw_predictions)
96 | # input_images['features'] NxCxHxW C=3
97 | predictions = raw_predictions.argmax(dim=1)
98 | # print('preds shape', predictions[0,:,:])
99 |
100 | for i in range(raw_predictions.shape[0]):
101 | raw_mask = predictions[i].cpu().numpy()
102 | mask = raw_mask
103 |
104 | # print(mask.shape)
105 | if 'gt_semantic_seg' in input.keys():
106 | evaluator.add_batch(pre_image=mask, gt_image=masks_true[i].cpu().numpy())
107 | mask_name = image_ids[i]
108 | results.append((mask, str(args.output_path / mask_name), args.rgb))
109 | t0 = time.time()
110 | mpp.Pool(processes=mp.cpu_count()).map(img_writer, results)
111 | t1 = time.time()
112 | img_write_time = t1 - t0
113 | print('images writing spends: {} s'.format(img_write_time))
114 | iou_per_class = evaluator.Intersection_over_Union()
115 | f1_per_class = evaluator.F1()
116 | OA = evaluator.OA()
117 | precision = evaluator.Precision()
118 | recall = evaluator.Recall()
119 | for class_name, class_iou, class_f1 in zip(config.CLASSES, iou_per_class, f1_per_class):
120 | print('F1_{}:{}, IOU_{}:{}'.format(class_name, class_f1, class_name, class_iou))
121 | print('F1:{}, mIOU:{}, OA:{}, P:{}, R:{}'.format(np.nanmean(f1_per_class[:-1]), np.nanmean(iou_per_class[:-1]), OA,
122 | np.nanmean(precision[:-1]), np.nanmean(recall[:-1])))
123 |
124 |
125 | if __name__ == "__main__":
126 | main()
127 |
--------------------------------------------------------------------------------
/config/inriabuilding/buildformer.py:
--------------------------------------------------------------------------------
1 | from torch.utils.data import DataLoader
2 | from geoseg.losses import *
3 | from geoseg.datasets.inria_dataset import *
4 | from geoseg.models.BuildFormer import BuildFormerSegDP
5 | from catalyst.contrib.nn import Lookahead
6 | from catalyst import utils
7 |
8 | # training hparam
9 | max_epoch = 105
10 | ignore_index = 255
11 | train_batch_size = 12
12 | val_batch_size = 12
13 | lr = 5e-4
14 | weight_decay = 0.0025
15 | backbone_lr = 5e-4
16 | backbone_weight_decay = 0.0025
17 | accumulate_n = 1
18 | num_classes = len(CLASSES)
19 | classes = CLASSES
20 |
21 | weights_name = "buildformer"
22 | weights_path = "model_weights/inriabuilding/{}".format(weights_name)
23 | test_weights_name = "buildformer"
24 | log_name = 'inriabuilding/{}'.format(weights_name)
25 | monitor = 'val_mIoU'
26 | monitor_mode = 'max'
27 | save_top_k = 1
28 | save_last = True
29 | check_val_every_n_epoch = 1
30 | gpus = [1]
31 | strategy = None
32 | pretrained_ckpt_path = "model_weights/whubuilding/buildformer_large_edge_all/buildformer_large_edge_all.ckpt"
33 | resume_ckpt_path = None
34 | # define the network
35 | net = BuildFormerSegDP(num_classes=num_classes)
36 | # define the loss
37 | loss = EdgeLoss(ignore_index=255)
38 | use_aux_loss = False
39 |
40 | # define the dataloader
41 |
42 | train_dataset = InriaDataset(data_root='data/AerialImageDataset/train/train', mode='train', mosaic_ratio=0.25, transform=get_training_transform())
43 | val_dataset = InriaDataset(data_root='data/AerialImageDataset/train/val', mode='val', transform=get_validation_transform())
44 | test_dataset = InriaDataset(data_root='data/AerialImageDataset/train/val', mode='val', transform=get_validation_transform())
45 |
46 | train_loader = DataLoader(dataset=train_dataset,
47 | batch_size=train_batch_size,
48 | num_workers=4,
49 | pin_memory=True,
50 | shuffle=True,
51 | drop_last=True)
52 |
53 | val_loader = DataLoader(dataset=val_dataset,
54 | batch_size=val_batch_size,
55 | num_workers=4,
56 | shuffle=False,
57 | pin_memory=True,
58 | drop_last=False)
59 |
60 | # define the optimizer
61 | layerwise_params = {"backbone.*": dict(lr=backbone_lr, weight_decay=backbone_weight_decay)}
62 | net_params = utils.process_model_params(net, layerwise_params=layerwise_params)
63 | base_optimizer = torch.optim.AdamW(net_params, lr=lr, weight_decay=weight_decay)
64 | optimizer = Lookahead(base_optimizer)
65 | lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
--------------------------------------------------------------------------------
/config/massbuilding/buildformer.py:
--------------------------------------------------------------------------------
1 | from torch.utils.data import DataLoader
2 | from geoseg.losses import *
3 | from geoseg.datasets.mass_dataset import *
4 | from geoseg.models.BuildFormer import BuildFormerSegDP
5 | from catalyst.contrib.nn import Lookahead
6 | from catalyst import utils
7 |
8 | # training hparam
9 | max_epoch = 105
10 | ignore_index = 255
11 | train_batch_size = 2
12 | val_batch_size = 2
13 | lr = 5e-4
14 | weight_decay = 0.0025
15 | backbone_lr = 5e-4
16 | backbone_weight_decay = 0.0025
17 | accumulate_n = 1
18 | num_classes = len(CLASSES)
19 | classes = CLASSES
20 |
21 | weights_name = "buildformer"
22 | weights_path = "model_weights/massbuilding/{}".format(weights_name)
23 | test_weights_name = "buildformer"
24 | log_name = 'massbuilding/{}'.format(weights_name)
25 | monitor = 'val_mIoU'
26 | monitor_mode = 'max'
27 | save_top_k = 5
28 | save_last = True
29 | check_val_every_n_epoch = 1
30 | gpus = [1]
31 | strategy = None
32 | pretrained_ckpt_path = "model_weights/whubuilding/buildformer_large_edge_all/buildformer_large_edge_all.ckpt"
33 | resume_ckpt_path = None
34 | # define the network
35 | net = BuildFormerSegDP(num_classes=num_classes)
36 | # define the loss
37 | loss = EdgeLoss(ignore_index=255)
38 |
39 | use_aux_loss = False
40 |
41 | # define the dataloader
42 | train_dataset = MassBuildDataset(mosaic_ratio=0.25, transform=get_training_transform())
43 | val_dataset = MassBuildDataset(mode='val', img_dir='val_images', mask_dir='val_masks', transform=get_validation_transform())
44 | test_dataset = MassBuildDataset(mode='val', img_dir='test_images', mask_dir='test_masks', transform=get_test_transform())
45 |
46 |
47 | train_loader = DataLoader(dataset=train_dataset,
48 | batch_size=train_batch_size,
49 | num_workers=4,
50 | pin_memory=True,
51 | shuffle=True,
52 | drop_last=True)
53 |
54 | val_loader = DataLoader(dataset=val_dataset,
55 | batch_size=val_batch_size,
56 | num_workers=4,
57 | shuffle=False,
58 | pin_memory=True,
59 | drop_last=False)
60 |
61 | # define the optimizer
62 | layerwise_params = {"backbone.*": dict(lr=backbone_lr, weight_decay=backbone_weight_decay)}
63 | net_params = utils.process_model_params(net, layerwise_params=layerwise_params)
64 | base_optimizer = torch.optim.AdamW(net_params, lr=lr, weight_decay=weight_decay)
65 | optimizer = Lookahead(base_optimizer)
66 | lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
--------------------------------------------------------------------------------
/config/whubuilding/buildformer.py:
--------------------------------------------------------------------------------
1 | from torch.utils.data import DataLoader
2 | from geoseg.losses import *
3 | from geoseg.datasets.whubuilding_dataset import *
4 | from geoseg.models.BuildFormer import BuildFormerSegDP
5 | from catalyst.contrib.nn import Lookahead
6 | from catalyst import utils
7 |
8 | # training hparam
9 | max_epoch = 105
10 | ignore_index = 255
11 | train_batch_size = 8
12 | val_batch_size = 8
13 | lr = 1e-3
14 | weight_decay = 0.0025
15 | backbone_lr = 1e-3
16 | backbone_weight_decay = 0.0025
17 | accumulate_n = 1
18 | num_classes = len(CLASSES)
19 | classes = CLASSES
20 |
21 | weights_name = "buildformer_large_edge_all"
22 | weights_path = "model_weights/whubuilding/{}".format(weights_name)
23 | test_weights_name = "buildformer_large_edge_all"
24 | log_name = 'whubuilding/{}'.format(weights_name)
25 | monitor = 'val_mIoU'
26 | monitor_mode = 'max'
27 | save_top_k = 3
28 | save_last = True
29 | check_val_every_n_epoch = 1
30 | gpus = [1]
31 | strategy = None
32 | pretrained_ckpt_path = None
33 | resume_ckpt_path = None
34 | # define the network
35 | net = BuildFormerSegDP(num_classes=num_classes)
36 | # define the loss
37 | loss = EdgeLoss(ignore_index=255)
38 | use_aux_loss = False
39 |
40 | # define the dataloader
41 |
42 | train_dataset = WHUBuildingDataset(data_root='data/whubuilding/train_val', mode='train', mosaic_ratio=0.25, transform=train_aug)
43 | val_dataset = WHUBuildingDataset(data_root='data/whubuilding/val', mode='val', transform=val_aug)
44 | test_dataset = WHUBuildingDataset(data_root='data/whubuilding/test', mode='val', transform=val_aug)
45 |
46 | train_loader = DataLoader(dataset=train_dataset,
47 | batch_size=train_batch_size,
48 | num_workers=4,
49 | pin_memory=True,
50 | shuffle=True,
51 | drop_last=True)
52 |
53 | val_loader = DataLoader(dataset=val_dataset,
54 | batch_size=val_batch_size,
55 | num_workers=4,
56 | shuffle=False,
57 | pin_memory=True,
58 | drop_last=False)
59 |
60 | # define the optimizer
61 | layerwise_params = {"backbone.*": dict(lr=backbone_lr, weight_decay=backbone_weight_decay)}
62 | net_params = utils.process_model_params(net, layerwise_params=layerwise_params)
63 | base_optimizer = torch.optim.AdamW(net_params, lr=lr, weight_decay=weight_decay)
64 | optimizer = Lookahead(base_optimizer)
65 | lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
--------------------------------------------------------------------------------
/geoseg/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/WangLibo1995/BuildFormer/c20f15805694fa568b8ac531ba51bc5e9c5a29c6/geoseg/__init__.py
--------------------------------------------------------------------------------
/geoseg/datasets/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/WangLibo1995/BuildFormer/c20f15805694fa568b8ac531ba51bc5e9c5a29c6/geoseg/datasets/__init__.py
--------------------------------------------------------------------------------
/geoseg/datasets/inria_dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path as osp
3 | import numpy as np
4 | import torch
5 | from torch.utils.data import Dataset
6 | import cv2
7 | import matplotlib.pyplot as plt
8 | import albumentations as albu
9 |
10 | import matplotlib.patches as mpatches
11 | from PIL import Image
12 | import random
13 |
14 | CLASSES = ('Building', 'Background')
15 | PALETTE = [[255, 255, 255], [0, 0, 0]]
16 |
17 | ORIGIN_IMG_SIZE = (512, 512)
18 | INPUT_IMG_SIZE = (512, 512)
19 | TEST_IMG_SIZE = (512, 512)
20 |
21 |
22 | class InriaDataset(Dataset):
23 | def __init__(self, data_root='data/AerialImageDataset/train/train', mode='train', img_dir='images', mask_dir='masks',
24 | img_suffix='.png', mask_suffix='.png', transform=None, mosaic_ratio=0.25,
25 | img_size=ORIGIN_IMG_SIZE):
26 | self.data_root = data_root
27 | self.img_dir = img_dir
28 | self.mask_dir = mask_dir
29 | self.img_suffix = img_suffix
30 | self.mask_suffix = mask_suffix
31 | self.transform = transform
32 | self.mode = mode
33 | self.mosaic_ratio = mosaic_ratio
34 | self.img_size = img_size
35 | self.img_ids = self.get_img_ids(self.data_root, self.img_dir, self.mask_dir)
36 |
37 | def __getitem__(self, index):
38 | p_ratio = random.random()
39 | if p_ratio > self.mosaic_ratio or self.mode == 'val' or self.mode == 'test':
40 | img, mask = self.load_img_and_mask(index)
41 | if self.transform:
42 | augmented = self.transform(image=img, mask=mask)
43 | img = augmented['image']
44 | mask = augmented['mask']
45 | else:
46 | img, mask = self.load_mosaic_img_and_mask(index)
47 | if self.transform:
48 | augmented = self.transform(image=img, mask=mask)
49 | img = augmented['image']
50 | mask = augmented['mask']
51 |
52 | img = torch.from_numpy(img).permute(2, 0, 1).float()
53 | mask = torch.from_numpy(mask).long()
54 | img_id = self.img_ids[index]
55 | results = dict(img_id=img_id, img=img, gt_semantic_seg=mask)
56 | return results
57 |
58 | def __len__(self):
59 | return len(self.img_ids)
60 |
61 | def get_img_ids(self, data_root, img_dir, mask_dir):
62 | img_filename_list = os.listdir(osp.join(data_root, img_dir))
63 | mask_filename_list = os.listdir(osp.join(data_root, mask_dir))
64 | assert len(img_filename_list) == len(mask_filename_list)
65 | img_ids = [str(id.split('.')[0]) for id in mask_filename_list]
66 | return img_ids
67 |
68 | def load_img_and_mask(self, index):
69 | img_id = self.img_ids[index]
70 | img_name = osp.join(self.data_root, self.img_dir, img_id + self.img_suffix)
71 | mask_name = osp.join(self.data_root, self.mask_dir, img_id + self.mask_suffix)
72 | img = cv2.imread(img_name, cv2.IMREAD_COLOR)
73 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
74 | img = img.astype(np.uint8)
75 | mask = cv2.imread(mask_name, cv2.IMREAD_UNCHANGED)
76 | mask = mask.astype(np.float32)
77 | return img, mask
78 |
79 | def load_mosaic_img_and_mask(self, index):
80 | indexes = [index] + [random.randint(0, len(self.img_ids) - 1) for _ in range(3)]
81 | img_a, mask_a = self.load_img_and_mask(indexes[0])
82 | img_b, mask_b = self.load_img_and_mask(indexes[1])
83 | img_c, mask_c = self.load_img_and_mask(indexes[2])
84 | img_d, mask_d = self.load_img_and_mask(indexes[3])
85 |
86 | w = self.img_size[1]
87 | h = self.img_size[0]
88 |
89 | start_x = w // 4
90 | strat_y = h // 4
91 | # The coordinates of the splice center
92 | offset_x = random.randint(start_x, (w - start_x))
93 | offset_y = random.randint(strat_y, (h - strat_y))
94 |
95 | crop_size_a = (offset_x, offset_y)
96 | crop_size_b = (w - offset_x, offset_y)
97 | crop_size_c = (offset_x, h - offset_y)
98 | crop_size_d = (w - offset_x, h - offset_y)
99 |
100 | random_crop_a = albu.RandomCrop(width=crop_size_a[0], height=crop_size_a[1])
101 | random_crop_b = albu.RandomCrop(width=crop_size_b[0], height=crop_size_b[1])
102 | random_crop_c = albu.RandomCrop(width=crop_size_c[0], height=crop_size_c[1])
103 | random_crop_d = albu.RandomCrop(width=crop_size_d[0], height=crop_size_d[1])
104 |
105 | croped_a = random_crop_a(image=img_a.copy(), mask=mask_a.copy())
106 | croped_b = random_crop_b(image=img_b.copy(), mask=mask_b.copy())
107 | croped_c = random_crop_c(image=img_c.copy(), mask=mask_c.copy())
108 | croped_d = random_crop_d(image=img_d.copy(), mask=mask_d.copy())
109 |
110 | img_crop_a, mask_crop_a = croped_a['image'], croped_a['mask']
111 | img_crop_b, mask_crop_b = croped_b['image'], croped_b['mask']
112 | img_crop_c, mask_crop_c = croped_c['image'], croped_c['mask']
113 | img_crop_d, mask_crop_d = croped_d['image'], croped_d['mask']
114 |
115 | top = np.concatenate((img_crop_a, img_crop_b), axis=1)
116 | bottom = np.concatenate((img_crop_c, img_crop_d), axis=1)
117 | img = np.concatenate((top, bottom), axis=0)
118 |
119 | top_mask = np.concatenate((mask_crop_a, mask_crop_b), axis=1)
120 | bottom_mask = np.concatenate((mask_crop_c, mask_crop_d), axis=1)
121 | mask = np.concatenate((top_mask, bottom_mask), axis=0)
122 | mask = np.ascontiguousarray(mask)
123 | img = np.ascontiguousarray(img)
124 |
125 | return img, mask
126 |
127 |
128 | def get_training_transform():
129 | train_transform = [
130 | albu.HorizontalFlip(p=0.5),
131 | albu.VerticalFlip(p=0.5),
132 | albu.Normalize()
133 | ]
134 | return albu.Compose(train_transform)
135 |
136 |
137 | def get_validation_transform():
138 | val_transform = [
139 | albu.Normalize()
140 | ]
141 | return albu.Compose(val_transform)
142 |
143 |
144 | def get_test_transform():
145 | test_transform = [
146 | albu.Normalize()
147 | ]
148 | return albu.Compose(test_transform)
149 |
--------------------------------------------------------------------------------
/geoseg/datasets/mass_dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path as osp
3 | import numpy as np
4 | import torch
5 | from torch.utils.data import Dataset
6 | import cv2
7 | import matplotlib.pyplot as plt
8 | import albumentations as albu
9 |
10 | import matplotlib.patches as mpatches
11 | from PIL import Image
12 | import random
13 |
14 | CLASSES = ('Building', 'Background')
15 | PALETTE = [[255, 255, 255], [0, 0, 0]]
16 |
17 | ORIGIN_IMG_SIZE = (1500, 1500)
18 | INPUT_IMG_SIZE = (1536, 1536)
19 | TEST_IMG_SIZE = (1500, 1500)
20 |
21 |
22 | class MassBuildDataset(Dataset):
23 | def __init__(self, data_root='data/mass_build/png', mode='train', img_dir='train_images', mask_dir='train_masks',
24 | img_suffix='.png', mask_suffix='.png', transform=None, mosaic_ratio=0.25,
25 | img_size=ORIGIN_IMG_SIZE):
26 | self.data_root = data_root
27 | self.img_dir = img_dir
28 | self.mask_dir = mask_dir
29 | self.img_suffix = img_suffix
30 | self.mask_suffix = mask_suffix
31 | self.transform = transform
32 | self.mode = mode
33 | self.mosaic_ratio = mosaic_ratio
34 | self.img_size = img_size
35 | self.img_ids = self.get_img_ids(self.data_root, self.img_dir, self.mask_dir)
36 |
37 | def __getitem__(self, index):
38 | p_ratio = random.random()
39 | if p_ratio > self.mosaic_ratio or self.mode == 'val' or self.mode == 'test':
40 | img, mask = self.load_img_and_mask(index)
41 | if self.transform:
42 | augmented = self.transform(image=img, mask=mask)
43 | img = augmented['image']
44 | mask = augmented['mask']
45 | else:
46 | img, mask = self.load_mosaic_img_and_mask(index)
47 | if self.transform:
48 | augmented = self.transform(image=img, mask=mask)
49 | img = augmented['image']
50 | mask = augmented['mask']
51 |
52 | img = torch.from_numpy(img).permute(2, 0, 1).float()
53 | mask = torch.from_numpy(mask).long()
54 | img_id = self.img_ids[index]
55 | results = dict(img_id=img_id, img=img, gt_semantic_seg=mask)
56 | return results
57 |
58 | def __len__(self):
59 | return len(self.img_ids)
60 |
61 | def get_img_ids(self, data_root, img_dir, mask_dir):
62 | img_filename_list = os.listdir(osp.join(data_root, img_dir))
63 | mask_filename_list = os.listdir(osp.join(data_root, mask_dir))
64 | assert len(img_filename_list) == len(mask_filename_list)
65 | img_ids = [str(id.split('.')[0]) for id in mask_filename_list]
66 | return img_ids
67 |
68 | def load_img_and_mask(self, index):
69 | img_id = self.img_ids[index]
70 | img_name = osp.join(self.data_root, self.img_dir, img_id + self.img_suffix)
71 | mask_name = osp.join(self.data_root, self.mask_dir, img_id + self.mask_suffix)
72 | img = cv2.imread(img_name, cv2.IMREAD_COLOR)
73 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
74 | img = img.astype(np.uint8)
75 | mask = cv2.imread(mask_name, cv2.IMREAD_UNCHANGED)
76 | mask = mask.astype(np.float32)
77 | return img, mask
78 |
79 | def load_mosaic_img_and_mask(self, index):
80 | indexes = [index] + [random.randint(0, len(self.img_ids) - 1) for _ in range(3)]
81 | img_a, mask_a = self.load_img_and_mask(indexes[0])
82 | img_b, mask_b = self.load_img_and_mask(indexes[1])
83 | img_c, mask_c = self.load_img_and_mask(indexes[2])
84 | img_d, mask_d = self.load_img_and_mask(indexes[3])
85 |
86 | w = self.img_size[1]
87 | h = self.img_size[0]
88 |
89 | start_x = w // 4
90 | strat_y = h // 4
91 | # The coordinates of the splice center
92 | offset_x = random.randint(start_x, (w - start_x))
93 | offset_y = random.randint(strat_y, (h - strat_y))
94 |
95 | crop_size_a = (offset_x, offset_y)
96 | crop_size_b = (w - offset_x, offset_y)
97 | crop_size_c = (offset_x, h - offset_y)
98 | crop_size_d = (w - offset_x, h - offset_y)
99 |
100 | random_crop_a = albu.RandomCrop(width=crop_size_a[0], height=crop_size_a[1])
101 | random_crop_b = albu.RandomCrop(width=crop_size_b[0], height=crop_size_b[1])
102 | random_crop_c = albu.RandomCrop(width=crop_size_c[0], height=crop_size_c[1])
103 | random_crop_d = albu.RandomCrop(width=crop_size_d[0], height=crop_size_d[1])
104 |
105 | croped_a = random_crop_a(image=img_a.copy(), mask=mask_a.copy())
106 | croped_b = random_crop_b(image=img_b.copy(), mask=mask_b.copy())
107 | croped_c = random_crop_c(image=img_c.copy(), mask=mask_c.copy())
108 | croped_d = random_crop_d(image=img_d.copy(), mask=mask_d.copy())
109 |
110 | img_crop_a, mask_crop_a = croped_a['image'], croped_a['mask']
111 | img_crop_b, mask_crop_b = croped_b['image'], croped_b['mask']
112 | img_crop_c, mask_crop_c = croped_c['image'], croped_c['mask']
113 | img_crop_d, mask_crop_d = croped_d['image'], croped_d['mask']
114 |
115 | top = np.concatenate((img_crop_a, img_crop_b), axis=1)
116 | bottom = np.concatenate((img_crop_c, img_crop_d), axis=1)
117 | img = np.concatenate((top, bottom), axis=0)
118 |
119 | top_mask = np.concatenate((mask_crop_a, mask_crop_b), axis=1)
120 | bottom_mask = np.concatenate((mask_crop_c, mask_crop_d), axis=1)
121 | mask = np.concatenate((top_mask, bottom_mask), axis=0)
122 | mask = np.ascontiguousarray(mask)
123 | img = np.ascontiguousarray(img)
124 |
125 | return img, mask
126 |
127 |
128 | def get_training_transform():
129 | train_transform = [
130 | albu.RandomRotate90(p=0.5),
131 | albu.RandomCrop(height=1024, width=1024, p=1.0),
132 | albu.Normalize()
133 | ]
134 | return albu.Compose(train_transform)
135 |
136 |
137 | def get_validation_transform():
138 | val_transform = [
139 | albu.PadIfNeeded(min_height=1536, min_width=1536, position="top_left",
140 | border_mode=0, value=[0, 0, 0], mask_value=[255, 255, 255]),
141 | albu.Normalize()
142 | ]
143 | return albu.Compose(val_transform)
144 |
145 |
146 | def get_test_transform():
147 | test_transform = [
148 | albu.PadIfNeeded(min_height=1536, min_width=1536, position="top_left",
149 | border_mode=0, value=[0, 0, 0], mask_value=[255, 255, 255]),
150 | albu.Normalize()
151 | ]
152 | return albu.Compose(test_transform)
--------------------------------------------------------------------------------
/geoseg/datasets/transform.py:
--------------------------------------------------------------------------------
1 | import math
2 | import numbers
3 | from PIL import Image, ImageOps, ImageEnhance
4 | import numpy as np
5 | import random
6 | from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
7 | from scipy.ndimage import maximum_filter
8 |
9 |
10 | class Compose(object):
11 | def __init__(self, transforms):
12 | self.transforms = transforms
13 |
14 | def __call__(self, img, mask):
15 | assert img.size == mask.size
16 | for t in self.transforms:
17 | img, mask = t(img, mask)
18 | return img, mask
19 |
20 |
21 | class RandomCrop(object):
22 | """
23 | Take a random crop from the image.
24 | First the image or crop size may need to be adjusted if the incoming image
25 | is too small...
26 | If the image is smaller than the crop, then:
27 | the image is padded up to the size of the crop
28 | unless 'nopad', in which case the crop size is shrunk to fit the image
29 | A random crop is taken such that the crop fits within the image.
30 | If a centroid is passed in, the crop must intersect the centroid.
31 | """
32 | def __init__(self, size=512, ignore_index=12, nopad=True):
33 |
34 | if isinstance(size, numbers.Number):
35 | self.size = (int(size), int(size))
36 | else:
37 | self.size = size
38 | self.ignore_index = ignore_index
39 | self.nopad = nopad
40 | self.pad_color = (0, 0, 0)
41 |
42 | def __call__(self, img, mask, centroid=None):
43 | assert img.size == mask.size
44 | w, h = img.size
45 | # ASSUME H, W
46 | th, tw = self.size
47 | if w == tw and h == th:
48 | return img, mask
49 |
50 | if self.nopad:
51 | if th > h or tw > w:
52 | # Instead of padding, adjust crop size to the shorter edge of image.
53 | shorter_side = min(w, h)
54 | th, tw = shorter_side, shorter_side
55 | else:
56 | # Check if we need to pad img to fit for crop_size.
57 | if th > h:
58 | pad_h = (th - h) // 2 + 1
59 | else:
60 | pad_h = 0
61 | if tw > w:
62 | pad_w = (tw - w) // 2 + 1
63 | else:
64 | pad_w = 0
65 | border = (pad_w, pad_h, pad_w, pad_h)
66 | if pad_h or pad_w:
67 | img = ImageOps.expand(img, border=border, fill=self.pad_color)
68 | mask = ImageOps.expand(mask, border=border, fill=self.ignore_index)
69 | w, h = img.size
70 |
71 | if centroid is not None:
72 | # Need to insure that centroid is covered by crop and that crop
73 | # sits fully within the image
74 | c_x, c_y = centroid
75 | max_x = w - tw
76 | max_y = h - th
77 | x1 = random.randint(c_x - tw, c_x)
78 | x1 = min(max_x, max(0, x1))
79 | y1 = random.randint(c_y - th, c_y)
80 | y1 = min(max_y, max(0, y1))
81 | else:
82 | if w == tw:
83 | x1 = 0
84 | else:
85 | x1 = random.randint(0, w - tw)
86 | if h == th:
87 | y1 = 0
88 | else:
89 | y1 = random.randint(0, h - th)
90 | return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
91 |
92 |
93 | class PadImage(object):
94 | def __init__(self, size=(512, 512), ignore_index=0):
95 | self.size = size
96 | self.ignore_index = ignore_index
97 |
98 | def __call__(self, img, mask):
99 | assert img.size == mask.size
100 | th, tw = self.size, self.size
101 |
102 | w, h = img.size
103 |
104 | if w > tw or h > th:
105 | wpercent = (tw / float(w))
106 | target_h = int((float(img.size[1]) * float(wpercent)))
107 | img, mask = img.resize((tw, target_h), Image.BICUBIC), mask.resize((tw, target_h), Image.NEAREST)
108 |
109 | w, h = img.size
110 | img = ImageOps.expand(img, border=(0, 0, tw - w, th - h), fill=0)
111 | mask = ImageOps.expand(mask, border=(0, 0, tw - w, th - h), fill=self.ignore_index)
112 |
113 | return img, mask
114 |
115 |
116 | class RandomHorizontalFlip(object):
117 |
118 | def __init__(self, prob: float = 0.5):
119 | self.prob = prob
120 |
121 | def __call__(self, img, mask=None):
122 | if mask is not None:
123 | if random.random() < self.prob:
124 | return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(
125 | Image.FLIP_LEFT_RIGHT)
126 | else:
127 | return img, mask
128 | else:
129 | if random.random() < self.prob:
130 | return img.transpose(Image.FLIP_LEFT_RIGHT)
131 | else:
132 | return img
133 |
134 |
135 | class RandomVerticalFlip(object):
136 | def __init__(self, prob: float = 0.5):
137 | self.prob = prob
138 |
139 | def __call__(self, img, mask=None):
140 | if mask is not None:
141 | if random.random() < self.prob:
142 | return img.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(
143 | Image.FLIP_TOP_BOTTOM)
144 | else:
145 | return img, mask
146 | else:
147 | if random.random() < self.prob:
148 | return img.transpose(Image.FLIP_TOP_BOTTOM)
149 | else:
150 | return img
151 |
152 |
153 | class Resize(object):
154 | def __init__(self, size: tuple = (512, 512)):
155 | self.size = size # size: (h, w)
156 |
157 | def __call__(self, img, mask):
158 | assert img.size == mask.size
159 | return img.resize(self.size, Image.BICUBIC), mask.resize(self.size, Image.NEAREST)
160 |
161 |
162 | class RandomScale(object):
163 | def __init__(self, scale_list=[0.75, 1.0, 1.25], mode='value'):
164 | self.scale_list = scale_list
165 | self.mode = mode
166 |
167 | def __call__(self, img, mask):
168 | oh, ow = img.size
169 | scale_amt = 1.0
170 | if self.mode == 'value':
171 | scale_amt = np.random.choice(self.scale_list, 1)
172 | elif self.mode == 'range':
173 | scale_amt = random.uniform(self.scale_list[0], self.scale_list[-1])
174 | h = int(scale_amt * oh)
175 | w = int(scale_amt * ow)
176 | return img.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)
177 |
178 |
179 | class ColorJitter(object):
180 | def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5):
181 | if not brightness is None and brightness>0:
182 | self.brightness = [max(1-brightness, 0), 1+brightness]
183 | if not contrast is None and contrast>0:
184 | self.contrast = [max(1-contrast, 0), 1+contrast]
185 | if not saturation is None and saturation>0:
186 | self.saturation = [max(1-saturation, 0), 1+saturation]
187 |
188 | def __call__(self, img, mask=None):
189 | r_brightness = random.uniform(self.brightness[0], self.brightness[1])
190 | r_contrast = random.uniform(self.contrast[0], self.contrast[1])
191 | r_saturation = random.uniform(self.saturation[0], self.saturation[1])
192 | img = ImageEnhance.Brightness(img).enhance(r_brightness)
193 | img = ImageEnhance.Contrast(img).enhance(r_contrast)
194 | img = ImageEnhance.Color(img).enhance(r_saturation)
195 | if mask is None:
196 | return img
197 | else:
198 | return img, mask
199 |
200 |
201 | class SmartCropV1(object):
202 | def __init__(self, crop_size=512,
203 | max_ratio=0.75,
204 | ignore_index=12, nopad=False):
205 | self.crop_size = crop_size
206 | self.max_ratio = max_ratio
207 | self.ignore_index = ignore_index
208 | self.crop = RandomCrop(crop_size, ignore_index=ignore_index, nopad=nopad)
209 |
210 | def __call__(self, img, mask):
211 | assert img.size == mask.size
212 | count = 0
213 | while True:
214 | img_crop, mask_crop = self.crop(img.copy(), mask.copy())
215 | count += 1
216 | labels, cnt = np.unique(np.array(mask_crop), return_counts=True)
217 | cnt = cnt[labels != self.ignore_index]
218 | if len(cnt) > 1 and np.max(cnt) / np.sum(cnt) < self.max_ratio:
219 | break
220 | if count > 10:
221 | break
222 |
223 | return img_crop, mask_crop
224 |
225 |
226 | class SmartCropV2(object):
227 | def __init__(self, crop_size=512, num_classes=13,
228 | class_interest=[2, 3],
229 | class_ratio=[0.1, 0.25],
230 | max_ratio=0.75,
231 | ignore_index=12, nopad=True):
232 | self.crop_size = crop_size
233 | self.num_classes = num_classes
234 | self.class_interest = class_interest
235 | self.class_ratio = class_ratio
236 | self.max_ratio = max_ratio
237 | self.ignore_index = ignore_index
238 | self.crop = RandomCrop(crop_size, ignore_index=ignore_index, nopad=nopad)
239 |
240 | def __call__(self, img, mask):
241 | assert img.size == mask.size
242 | count = 0
243 | while True:
244 | img_crop, mask_crop = self.crop(img.copy(), mask.copy())
245 | count += 1
246 | bins = np.array(range(self.num_classes + 1))
247 | class_pixel_counts, _ = np.histogram(np.array(mask_crop), bins=bins)
248 | cf = class_pixel_counts / (self.crop_size * self.crop_size)
249 | cf = np.array(cf)
250 | for c, f in zip(self.class_interest, self.class_ratio):
251 | if cf[c] > f:
252 | break
253 | if np.max(cf) < 0.75 and np.argmax(cf) != self.ignore_index:
254 | break
255 | if count > 10:
256 | break
257 |
258 | return img_crop, mask_crop
--------------------------------------------------------------------------------
/geoseg/datasets/whubuilding_dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path as osp
3 | import numpy as np
4 | import torch
5 | from torch.utils.data import Dataset
6 | import cv2
7 | import matplotlib.pyplot as plt
8 | import albumentations as albu
9 | from .transform import *
10 | import matplotlib.patches as mpatches
11 | from PIL import Image
12 | import random
13 |
14 | CLASSES = ('Building', 'Background')
15 | PALETTE = [[255, 255, 255], [0, 0, 0]]
16 |
17 | ORIGIN_IMG_SIZE = (512, 512)
18 | INPUT_IMG_SIZE = (512, 512)
19 | TEST_IMG_SIZE = (512, 512)
20 |
21 |
22 | def get_training_transform():
23 | train_transform = [
24 | albu.HorizontalFlip(p=0.5),
25 | albu.VerticalFlip(p=0.5),
26 | albu.Normalize()
27 | ]
28 | return albu.Compose(train_transform)
29 |
30 |
31 | def train_aug(img, mask):
32 | # crop_aug = Compose([RandomScale(scale_list=[0.75, 1.0, 1.25, 1.5], mode='value'),
33 | # SmartCropV1(crop_size=384, max_ratio=0.5, ignore_index=len(CLASSES), nopad=False)])
34 | # img, mask = crop_aug(img, mask)
35 | img, mask = np.array(img), np.array(mask)
36 | aug = get_training_transform()(image=img.copy(), mask=mask.copy())
37 | img, mask = aug['image'], aug['mask']
38 | return img, mask
39 |
40 |
41 | def get_val_transform():
42 | val_transform = [
43 | albu.Normalize()
44 | ]
45 | return albu.Compose(val_transform)
46 |
47 |
48 | def val_aug(img, mask):
49 | img, mask = np.array(img), np.array(mask)
50 | aug = get_val_transform()(image=img.copy(), mask=mask.copy())
51 | img, mask = aug['image'], aug['mask']
52 | return img, mask
53 |
54 |
55 | class WHUBuildingDataset(Dataset):
56 | def __init__(self, data_root='data/whubuilding/train', mode='train', img_dir='images', mask_dir='masks',
57 | img_suffix='.tif', mask_suffix='.png', transform=None, mosaic_ratio=0.25,
58 | img_size=ORIGIN_IMG_SIZE):
59 | self.data_root = data_root
60 | self.img_dir = img_dir
61 | self.mask_dir = mask_dir
62 | self.img_suffix = img_suffix
63 | self.mask_suffix = mask_suffix
64 | self.transform = transform
65 | self.mode = mode
66 | self.mosaic_ratio = mosaic_ratio
67 | self.img_size = img_size
68 | self.img_ids = self.get_img_ids(self.data_root, self.img_dir, self.mask_dir)
69 |
70 | def __getitem__(self, index):
71 | p_ratio = random.random()
72 | if p_ratio > self.mosaic_ratio or self.mode == 'val' or self.mode == 'test':
73 | img, mask = self.load_img_and_mask(index)
74 | if self.transform:
75 | img, mask = self.transform(img, mask)
76 | else:
77 | img, mask = self.load_mosaic_img_and_mask(index)
78 | if self.transform:
79 | img, mask = self.transform(img, mask)
80 |
81 | img = torch.from_numpy(img).permute(2, 0, 1).float()
82 | mask = torch.from_numpy(mask).long()
83 | img_id = self.img_ids[index]
84 | results = dict(img_id=img_id, img=img, gt_semantic_seg=mask)
85 | return results
86 |
87 | def __len__(self):
88 | return len(self.img_ids)
89 |
90 | def get_img_ids(self, data_root, img_dir, mask_dir):
91 | img_filename_list = os.listdir(osp.join(data_root, img_dir))
92 | mask_filename_list = os.listdir(osp.join(data_root, mask_dir))
93 | assert len(img_filename_list) == len(mask_filename_list)
94 | img_ids = [str(id.split('.')[0]) for id in mask_filename_list]
95 | return img_ids
96 |
97 | def load_img_and_mask(self, index):
98 | img_id = self.img_ids[index]
99 | img_name = osp.join(self.data_root, self.img_dir, img_id + self.img_suffix)
100 | mask_name = osp.join(self.data_root, self.mask_dir, img_id + self.mask_suffix)
101 | img = Image.open(img_name).convert('RGB')
102 | mask = Image.open(mask_name).convert('L')
103 | return img, mask
104 |
105 | def load_mosaic_img_and_mask(self, index):
106 | indexes = [index] + [random.randint(0, len(self.img_ids) - 1) for _ in range(3)]
107 | img_a, mask_a = self.load_img_and_mask(indexes[0])
108 | img_b, mask_b = self.load_img_and_mask(indexes[1])
109 | img_c, mask_c = self.load_img_and_mask(indexes[2])
110 | img_d, mask_d = self.load_img_and_mask(indexes[3])
111 |
112 | img_a, mask_a = np.array(img_a), np.array(mask_a)
113 | img_b, mask_b = np.array(img_b), np.array(mask_b)
114 | img_c, mask_c = np.array(img_c), np.array(mask_c)
115 | img_d, mask_d = np.array(img_d), np.array(mask_d)
116 |
117 | w = self.img_size[1]
118 | h = self.img_size[0]
119 |
120 | start_x = w // 4
121 | strat_y = h // 4
122 | # The coordinates of the splice center
123 | offset_x = random.randint(start_x, (w - start_x))
124 | offset_y = random.randint(strat_y, (h - strat_y))
125 |
126 | crop_size_a = (offset_x, offset_y)
127 | crop_size_b = (w - offset_x, offset_y)
128 | crop_size_c = (offset_x, h - offset_y)
129 | crop_size_d = (w - offset_x, h - offset_y)
130 |
131 | random_crop_a = albu.RandomCrop(width=crop_size_a[0], height=crop_size_a[1])
132 | random_crop_b = albu.RandomCrop(width=crop_size_b[0], height=crop_size_b[1])
133 | random_crop_c = albu.RandomCrop(width=crop_size_c[0], height=crop_size_c[1])
134 | random_crop_d = albu.RandomCrop(width=crop_size_d[0], height=crop_size_d[1])
135 |
136 | croped_a = random_crop_a(image=img_a.copy(), mask=mask_a.copy())
137 | croped_b = random_crop_b(image=img_b.copy(), mask=mask_b.copy())
138 | croped_c = random_crop_c(image=img_c.copy(), mask=mask_c.copy())
139 | croped_d = random_crop_d(image=img_d.copy(), mask=mask_d.copy())
140 |
141 | img_crop_a, mask_crop_a = croped_a['image'], croped_a['mask']
142 | img_crop_b, mask_crop_b = croped_b['image'], croped_b['mask']
143 | img_crop_c, mask_crop_c = croped_c['image'], croped_c['mask']
144 | img_crop_d, mask_crop_d = croped_d['image'], croped_d['mask']
145 |
146 | top = np.concatenate((img_crop_a, img_crop_b), axis=1)
147 | bottom = np.concatenate((img_crop_c, img_crop_d), axis=1)
148 | img = np.concatenate((top, bottom), axis=0)
149 |
150 | top_mask = np.concatenate((mask_crop_a, mask_crop_b), axis=1)
151 | bottom_mask = np.concatenate((mask_crop_c, mask_crop_d), axis=1)
152 | mask = np.concatenate((top_mask, bottom_mask), axis=0)
153 | mask = np.ascontiguousarray(mask)
154 | img = np.ascontiguousarray(img)
155 |
156 | img = Image.fromarray(img)
157 | mask = Image.fromarray(mask)
158 |
159 | return img, mask
--------------------------------------------------------------------------------
/geoseg/losses/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 |
3 | from .balanced_bce import *
4 | from .bitempered_loss import *
5 | from .dice import *
6 | from .focal import *
7 | from .focal_cosine import *
8 | from .functional import *
9 | from .jaccard import *
10 | from .joint_loss import *
11 | from .lovasz import *
12 | from .soft_bce import *
13 | from .soft_ce import *
14 | from .soft_f1 import *
15 | from .wing_loss import *
16 | from .useful_loss import *
17 |
--------------------------------------------------------------------------------
/geoseg/losses/balanced_bce.py:
--------------------------------------------------------------------------------
1 | from typing import Optional
2 |
3 | import torch
4 | import torch.nn.functional as F
5 | from torch import nn, Tensor
6 |
7 | __all__ = ["BalancedBCEWithLogitsLoss", "balanced_binary_cross_entropy_with_logits"]
8 |
9 |
10 | def balanced_binary_cross_entropy_with_logits(
11 | logits: Tensor, targets: Tensor, gamma: float = 1.0, ignore_index: Optional[int] = None, reduction: str = "mean"
12 | ) -> Tensor:
13 | """
14 | Balanced binary cross entropy loss.
15 |
16 | Args:
17 | logits:
18 | targets: This loss function expects target values to be hard targets 0/1.
19 | gamma: Power factor for balancing weights
20 | ignore_index:
21 | reduction:
22 |
23 | Returns:
24 | Zero-sized tensor with reduced loss if `reduction` is `sum` or `mean`; Otherwise returns loss of the
25 | shape of `logits` tensor.
26 | """
27 | pos_targets: Tensor = targets.eq(1).sum()
28 | neg_targets: Tensor = targets.eq(0).sum()
29 |
30 | num_targets = pos_targets + neg_targets
31 | pos_weight = torch.pow(neg_targets / (num_targets + 1e-7), gamma)
32 | neg_weight = 1.0 - pos_weight
33 |
34 | pos_term = pos_weight.pow(gamma) * targets * torch.nn.functional.logsigmoid(logits)
35 | neg_term = neg_weight.pow(gamma) * (1 - targets) * torch.nn.functional.logsigmoid(-logits)
36 |
37 | loss = -(pos_term + neg_term)
38 |
39 | if ignore_index is not None:
40 | loss = torch.masked_fill(loss, targets.eq(ignore_index), 0)
41 |
42 | if reduction == "mean":
43 | loss = loss.mean()
44 |
45 | if reduction == "sum":
46 | loss = loss.sum()
47 |
48 | return loss
49 |
50 |
51 | class BalancedBCEWithLogitsLoss(nn.Module):
52 | """
53 | Balanced binary cross-entropy loss.
54 |
55 | https://arxiv.org/pdf/1504.06375.pdf (Formula 2)
56 | """
57 |
58 | __constants__ = ["gamma", "reduction", "ignore_index"]
59 |
60 | def __init__(self, gamma: float = 1.0, reduction="mean", ignore_index: Optional[int] = None):
61 | """
62 |
63 | Args:
64 | gamma:
65 | ignore_index:
66 | reduction:
67 | """
68 | super().__init__()
69 | self.gamma = gamma
70 | self.reduction = reduction
71 | self.ignore_index = ignore_index
72 |
73 | def forward(self, output: Tensor, target: Tensor) -> Tensor:
74 | return balanced_binary_cross_entropy_with_logits(
75 | output, target, gamma=self.gamma, ignore_index=self.ignore_index, reduction=self.reduction
76 | )
77 |
--------------------------------------------------------------------------------
/geoseg/losses/bitempered_loss.py:
--------------------------------------------------------------------------------
1 | from typing import Optional
2 |
3 | import torch
4 | from torch import nn, Tensor
5 |
6 | __all__ = ["BiTemperedLogisticLoss", "BinaryBiTemperedLogisticLoss"]
7 |
8 |
9 | def log_t(u, t):
10 | """Compute log_t for `u'."""
11 | if t == 1.0:
12 | return u.log()
13 | else:
14 | return (u.pow(1.0 - t) - 1.0) / (1.0 - t)
15 |
16 |
17 | def exp_t(u, t):
18 | """Compute exp_t for `u'."""
19 | if t == 1:
20 | return u.exp()
21 | else:
22 | return (1.0 + (1.0 - t) * u).relu().pow(1.0 / (1.0 - t))
23 |
24 |
25 | def compute_normalization_fixed_point(activations: Tensor, t: float, num_iters: int) -> Tensor:
26 | """Return the normalization value for each example (t > 1.0).
27 | Args:
28 | activations: A multi-dimensional tensor with last dimension `num_classes`.
29 | t: Temperature 2 (> 1.0 for tail heaviness).
30 | num_iters: Number of iterations to run the method.
31 | Return: A tensor of same shape as activation with the last dimension being 1.
32 | """
33 | mu, _ = torch.max(activations, -1, keepdim=True)
34 | normalized_activations_step_0 = activations - mu
35 |
36 | normalized_activations = normalized_activations_step_0
37 |
38 | for _ in range(num_iters):
39 | logt_partition = torch.sum(exp_t(normalized_activations, t), -1, keepdim=True)
40 | normalized_activations = normalized_activations_step_0 * logt_partition.pow(1.0 - t)
41 |
42 | logt_partition = torch.sum(exp_t(normalized_activations, t), -1, keepdim=True)
43 | normalization_constants = -log_t(1.0 / logt_partition, t) + mu
44 |
45 | return normalization_constants
46 |
47 |
48 | def compute_normalization_binary_search(activations: Tensor, t: float, num_iters: int) -> Tensor:
49 | """Compute normalization value for each example (t < 1.0).
50 | Args:
51 | activations: A multi-dimensional tensor with last dimension `num_classes`.
52 | t: Temperature 2 (< 1.0 for finite support).
53 | num_iters: Number of iterations to run the method.
54 | Return: A tensor of same rank as activation with the last dimension being 1.
55 | """
56 | mu, _ = torch.max(activations, -1, keepdim=True)
57 | normalized_activations = activations - mu
58 |
59 | effective_dim = torch.sum((normalized_activations > -1.0 / (1.0 - t)).to(torch.int32), dim=-1, keepdim=True).to(
60 | activations.dtype
61 | )
62 |
63 | shape_partition = activations.shape[:-1] + (1,)
64 | lower = torch.zeros(shape_partition, dtype=activations.dtype, device=activations.device)
65 | upper = -log_t(1.0 / effective_dim, t) * torch.ones_like(lower)
66 |
67 | for _ in range(num_iters):
68 | logt_partition = (upper + lower) / 2.0
69 | sum_probs = torch.sum(exp_t(normalized_activations - logt_partition, t), dim=-1, keepdim=True)
70 | update = (sum_probs < 1.0).to(activations.dtype)
71 | lower = torch.reshape(lower * update + (1.0 - update) * logt_partition, shape_partition)
72 | upper = torch.reshape(upper * (1.0 - update) + update * logt_partition, shape_partition)
73 |
74 | logt_partition = (upper + lower) / 2.0
75 | return logt_partition + mu
76 |
77 |
78 | class ComputeNormalization(torch.autograd.Function):
79 | """
80 | Class implementing custom backward pass for compute_normalization. See compute_normalization.
81 | """
82 |
83 | @staticmethod
84 | def forward(ctx, activations, t, num_iters):
85 | if t < 1.0:
86 | normalization_constants = compute_normalization_binary_search(activations, t, num_iters)
87 | else:
88 | normalization_constants = compute_normalization_fixed_point(activations, t, num_iters)
89 |
90 | ctx.save_for_backward(activations, normalization_constants)
91 | ctx.t = t
92 | return normalization_constants
93 |
94 | @staticmethod
95 | def backward(ctx, grad_output):
96 | activations, normalization_constants = ctx.saved_tensors
97 | t = ctx.t
98 | normalized_activations = activations - normalization_constants
99 | probabilities = exp_t(normalized_activations, t)
100 | escorts = probabilities.pow(t)
101 | escorts = escorts / escorts.sum(dim=-1, keepdim=True)
102 | grad_input = escorts * grad_output
103 |
104 | return grad_input, None, None
105 |
106 |
107 | def compute_normalization(activations, t, num_iters=5):
108 | """Compute normalization value for each example.
109 | Backward pass is implemented.
110 | Args:
111 | activations: A multi-dimensional tensor with last dimension `num_classes`.
112 | t: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
113 | num_iters: Number of iterations to run the method.
114 | Return: A tensor of same rank as activation with the last dimension being 1.
115 | """
116 | return ComputeNormalization.apply(activations, t, num_iters)
117 |
118 |
119 | def tempered_softmax(activations, t, num_iters=5):
120 | """Tempered softmax function.
121 | Args:
122 | activations: A multi-dimensional tensor with last dimension `num_classes`.
123 | t: Temperature > 1.0.
124 | num_iters: Number of iterations to run the method.
125 | Returns:
126 | A probabilities tensor.
127 | """
128 | if t == 1.0:
129 | return activations.softmax(dim=-1)
130 |
131 | normalization_constants = compute_normalization(activations, t, num_iters)
132 | return exp_t(activations - normalization_constants, t)
133 |
134 |
135 | def bi_tempered_logistic_loss(activations, labels, t1, t2, label_smoothing=0.0, num_iters=5, reduction="mean"):
136 | """Bi-Tempered Logistic Loss.
137 | Args:
138 | activations: A multi-dimensional tensor with last dimension `num_classes`.
139 | labels: A tensor with shape and dtype as activations (onehot),
140 | or a long tensor of one dimension less than activations (pytorch standard)
141 | t1: Temperature 1 (< 1.0 for boundedness).
142 | t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
143 | label_smoothing: Label smoothing parameter between [0, 1). Default 0.0.
144 | num_iters: Number of iterations to run the method. Default 5.
145 | reduction: ``'none'`` | ``'mean'`` | ``'sum'``. Default ``'mean'``.
146 | ``'none'``: No reduction is applied, return shape is shape of
147 | activations without the last dimension.
148 | ``'mean'``: Loss is averaged over minibatch. Return shape (1,)
149 | ``'sum'``: Loss is summed over minibatch. Return shape (1,)
150 | Returns:
151 | A loss tensor.
152 | """
153 | if len(labels.shape) < len(activations.shape): # not one-hot
154 | labels_onehot = torch.zeros_like(activations)
155 | labels_onehot.scatter_(1, labels[..., None], 1)
156 | else:
157 | labels_onehot = labels
158 |
159 | if label_smoothing > 0:
160 | num_classes = labels_onehot.shape[-1]
161 | labels_onehot = (1 - label_smoothing * num_classes / (num_classes - 1)) * labels_onehot + label_smoothing / (
162 | num_classes - 1
163 | )
164 |
165 | probabilities = tempered_softmax(activations, t2, num_iters)
166 |
167 | loss_values = (
168 | labels_onehot * log_t(labels_onehot + 1e-10, t1)
169 | - labels_onehot * log_t(probabilities, t1)
170 | - labels_onehot.pow(2.0 - t1) / (2.0 - t1)
171 | + probabilities.pow(2.0 - t1) / (2.0 - t1)
172 | )
173 | loss_values = loss_values.sum(dim=-1) # sum over classes
174 |
175 | if reduction == "none":
176 | return loss_values
177 | if reduction == "sum":
178 | return loss_values.sum()
179 | if reduction == "mean":
180 | return loss_values.mean()
181 |
182 |
183 | class BiTemperedLogisticLoss(nn.Module):
184 | """
185 |
186 | https://ai.googleblog.com/2019/08/bi-tempered-logistic-loss-for-training.html
187 | https://arxiv.org/abs/1906.03361
188 | """
189 |
190 | def __init__(self, t1: float, t2: float, smoothing=0.0, ignore_index=None, reduction: str = "mean"):
191 | """
192 |
193 | Args:
194 | t1:
195 | t2:
196 | smoothing:
197 | ignore_index:
198 | reduction:
199 | """
200 | super(BiTemperedLogisticLoss, self).__init__()
201 | self.t1 = t1
202 | self.t2 = t2
203 | self.smoothing = smoothing
204 | self.reduction = reduction
205 | self.ignore_index = ignore_index
206 |
207 | def forward(self, predictions: Tensor, targets: Tensor) -> Tensor:
208 | loss = bi_tempered_logistic_loss(
209 | predictions, targets, t1=self.t1, t2=self.t2, label_smoothing=self.smoothing, reduction="none"
210 | )
211 |
212 | if self.ignore_index is not None:
213 | mask = ~targets.eq(self.ignore_index)
214 | loss *= mask
215 |
216 | if self.reduction == "mean":
217 | loss = loss.mean()
218 | elif self.reduction == "sum":
219 | loss = loss.sum()
220 | return loss
221 |
222 |
223 | class BinaryBiTemperedLogisticLoss(nn.Module):
224 | """
225 | Modification of BiTemperedLogisticLoss for binary classification case.
226 | It's signature matches nn.BCEWithLogitsLoss: Predictions and target tensors must have shape [B,1,...]
227 |
228 | References:
229 | https://ai.googleblog.com/2019/08/bi-tempered-logistic-loss-for-training.html
230 | https://arxiv.org/abs/1906.03361
231 | """
232 |
233 | def __init__(
234 | self, t1: float, t2: float, smoothing: float = 0.0, ignore_index: Optional[int] = None, reduction: str = "mean"
235 | ):
236 | """
237 |
238 | Args:
239 | t1:
240 | t2:
241 | smoothing:
242 | ignore_index:
243 | reduction:
244 | """
245 | super().__init__()
246 | self.t1 = t1
247 | self.t2 = t2
248 | self.smoothing = smoothing
249 | self.reduction = reduction
250 | self.ignore_index = ignore_index
251 |
252 | def forward(self, predictions: Tensor, targets: Tensor) -> Tensor:
253 | """
254 | Forward method of the loss function
255 |
256 | Args:
257 | predictions: [B,1,...]
258 | targets: [B,1,...]
259 |
260 | Returns:
261 | Zero-sized tensor with reduced loss if self.reduction is `sum` or `mean`; Otherwise returns loss of the
262 | shape of `predictions` tensor.
263 | """
264 | if predictions.size(1) != 1 or targets.size(1) != 1:
265 | raise ValueError("Channel dimension for predictions and targets must be equal to 1")
266 |
267 | loss = bi_tempered_logistic_loss(
268 | torch.cat([-predictions, predictions], dim=1).moveaxis(1, -1),
269 | torch.cat([1 - targets, targets], dim=1).moveaxis(1, -1),
270 | t1=self.t1,
271 | t2=self.t2,
272 | label_smoothing=self.smoothing,
273 | reduction="none",
274 | ).unsqueeze(dim=1)
275 |
276 | if self.ignore_index is not None:
277 | mask = targets.eq(self.ignore_index)
278 | loss = torch.masked_fill(loss, mask, 0)
279 |
280 | if self.reduction == "mean":
281 | loss = loss.mean()
282 | elif self.reduction == "sum":
283 | loss = loss.sum()
284 | return loss
285 |
--------------------------------------------------------------------------------
/geoseg/losses/cel1.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import logging
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | from typing import Optional
6 |
7 | BINARY_MODE: str = "binary"
8 |
9 | MULTICLASS_MODE: str = "multiclass"
10 |
11 | MULTILABEL_MODE: str = "multilabel"
12 |
13 |
14 | EPS = 1e-10
15 |
16 |
17 | logger = logging.getLogger(__name__)
18 |
19 |
20 | def expand_onehot_labels(labels, target_shape, ignore_index):
21 | """Expand onehot labels to match the size of prediction."""
22 | bin_labels = labels.new_zeros(target_shape)
23 | valid_mask = (labels >= 0) & (labels != ignore_index)
24 | inds = torch.nonzero(valid_mask, as_tuple=True)
25 |
26 | if inds[0].numel() > 0:
27 | if labels.dim() == 3:
28 | bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1
29 | else:
30 | bin_labels[inds[0], labels[valid_mask]] = 1
31 |
32 | return bin_labels, valid_mask
33 |
34 |
35 | def get_region_proportion(x: torch.Tensor, valid_mask: torch.Tensor = None) -> torch.Tensor:
36 | """Get region proportion
37 | Args:
38 | x : one-hot label map/mask
39 | valid_mask : indicate the considered elements
40 | """
41 | if valid_mask is not None:
42 | if valid_mask.dim() == 4:
43 | x = torch.einsum("bcwh, bcwh->bcwh", x, valid_mask)
44 | cardinality = torch.einsum("bcwh->bc", valid_mask)
45 | else:
46 | x = torch.einsum("bcwh,bwh->bcwh", x, valid_mask)
47 | cardinality = torch.einsum("bwh->b", valid_mask).unsqueeze(dim=1).repeat(1, x.shape[1])
48 | else:
49 | cardinality = x.shape[2] * x.shape[3]
50 |
51 | region_proportion = (torch.einsum("bcwh->bc", x) + EPS) / (cardinality + EPS)
52 |
53 | return region_proportion
54 |
55 |
56 | class CompoundLoss(nn.Module):
57 | """
58 | The base class for implementing a compound loss:
59 | l = l_1 + alpha * l_2
60 | """
61 | def __init__(self, mode: str = MULTICLASS_MODE,
62 | alpha: float = 0.1,
63 | factor: float = 5.,
64 | step_size: int = 0,
65 | max_alpha: float = 100.,
66 | temp: float = 1.,
67 | ignore_index: int = 255,
68 | background_index: int = -1,
69 | weight: Optional[torch.Tensor] = None) -> None:
70 | assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
71 | super().__init__()
72 | self.mode = mode
73 | self.alpha = alpha
74 | self.max_alpha = max_alpha
75 | self.factor = factor
76 | self.step_size = step_size
77 | self.temp = temp
78 | self.ignore_index = ignore_index
79 | self.background_index = background_index
80 | self.weight = weight
81 |
82 | def cross_entropy(self, inputs: torch.Tensor, labels: torch.Tensor):
83 | if self.mode == MULTICLASS_MODE:
84 | loss = F.cross_entropy(
85 | inputs, labels, weight=self.weight, ignore_index=self.ignore_index)
86 | else:
87 | if labels.dim() == 3:
88 | labels = labels.unsqueeze(dim=1)
89 | loss = F.binary_cross_entropy_with_logits(inputs, labels.type(torch.float32))
90 | return loss
91 |
92 | def adjust_alpha(self, epoch: int) -> None:
93 | if self.step_size == 0:
94 | return
95 | if (epoch + 1) % self.step_size == 0:
96 | curr_alpha = self.alpha
97 | self.alpha = min(self.alpha * self.factor, self.max_alpha)
98 | logger.info(
99 | "CompoundLoss : Adjust the tradoff param alpha : {:.3g} -> {:.3g}".format(curr_alpha, self.alpha)
100 | )
101 |
102 | def get_gt_proportion(self, mode: str,
103 | labels: torch.Tensor,
104 | target_shape,
105 | ignore_index: int = 255):
106 | if mode == MULTICLASS_MODE:
107 | bin_labels, valid_mask = expand_onehot_labels(labels, target_shape, ignore_index)
108 | else:
109 | valid_mask = (labels >= 0) & (labels != ignore_index)
110 | if labels.dim() == 3:
111 | labels = labels.unsqueeze(dim=1)
112 | bin_labels = labels
113 | gt_proportion = get_region_proportion(bin_labels, valid_mask)
114 | return gt_proportion, valid_mask
115 |
116 | def get_pred_proportion(self, mode: str,
117 | logits: torch.Tensor,
118 | temp: float = 1.0,
119 | valid_mask=None):
120 | if mode == MULTICLASS_MODE:
121 | preds = F.log_softmax(temp * logits, dim=1).exp()
122 | else:
123 | preds = F.logsigmoid(temp * logits).exp()
124 | pred_proportion = get_region_proportion(preds, valid_mask)
125 | return pred_proportion
126 |
127 |
128 | class CrossEntropyWithL1(CompoundLoss):
129 | """
130 | Cross entropy loss with region size priors measured by l1.
131 | The loss can be described as:
132 | l = CE(X, Y) + alpha * |gt_region - prob_region|
133 | """
134 | def forward(self, inputs: torch.Tensor, labels: torch.Tensor):
135 | # ce term
136 | loss_ce = self.cross_entropy(inputs, labels)
137 | # regularization
138 | gt_proportion, valid_mask = self.get_gt_proportion(self.mode, labels, inputs.shape)
139 | pred_proportion = self.get_pred_proportion(self.mode, inputs, temp=self.temp, valid_mask=valid_mask)
140 | loss_reg = (pred_proportion - gt_proportion).abs().mean()
141 |
142 | loss = loss_ce + self.alpha * loss_reg
143 |
144 | return loss
145 |
146 |
147 | class CrossEntropyWithKL(CompoundLoss):
148 | """
149 | Cross entropy loss with region size priors measured by l1.
150 | The loss can be described as:
151 | l = CE(X, Y) + alpha * KL(gt_region || prob_region)
152 | """
153 | def kl_div(self, p : torch.Tensor, q : torch.Tensor) -> torch.Tensor:
154 | x = p * torch.log(p / q)
155 | x = torch.einsum("ij->i", x)
156 | return x
157 |
158 | def forward(self, inputs: torch.Tensor, labels: torch.Tensor):
159 | # ce term
160 | loss_ce = self.cross_entropy(inputs, labels)
161 | # regularization
162 | gt_proportion, valid_mask = self.get_gt_proportion(self.mode, labels, inputs.shape)
163 | pred_proportion = self.get_pred_proportion(self.mode, inputs, temp=self.temp, valid_mask=valid_mask)
164 |
165 | if self.mode == BINARY_MODE:
166 | regularizer = (
167 | self.kl_div(gt_proportion, pred_proportion)
168 | + self.kl_div(1 - gt_proportion, 1 - pred_proportion)
169 | ).mean()
170 | else:
171 | regularizer = self.kl_div(gt_proportion, pred_proportion).mean()
172 |
173 | loss = loss_ce + self.alpha * regularizer
174 |
175 | return loss
--------------------------------------------------------------------------------
/geoseg/losses/dice.py:
--------------------------------------------------------------------------------
1 | from typing import List
2 |
3 | import torch
4 | import torch.nn.functional as F
5 | from torch import Tensor
6 | from torch.nn.modules.loss import _Loss
7 | import numpy as np
8 |
9 | from .functional import soft_dice_score
10 |
11 | __all__ = ["DiceLoss"]
12 |
13 | BINARY_MODE = "binary"
14 | MULTICLASS_MODE = "multiclass"
15 | MULTILABEL_MODE = "multilabel"
16 |
17 |
18 | def to_tensor(x, dtype=None) -> torch.Tensor:
19 | if isinstance(x, torch.Tensor):
20 | if dtype is not None:
21 | x = x.type(dtype)
22 | return x
23 | if isinstance(x, np.ndarray) and x.dtype.kind not in {"O", "M", "U", "S"}:
24 | x = torch.from_numpy(x)
25 | if dtype is not None:
26 | x = x.type(dtype)
27 | return x
28 | if isinstance(x, (list, tuple)):
29 | x = np.ndarray(x)
30 | x = torch.from_numpy(x)
31 | if dtype is not None:
32 | x = x.type(dtype)
33 | return x
34 |
35 | raise ValueError("Unsupported input type" + str(type(x)))
36 |
37 |
38 | class DiceLoss(_Loss):
39 | """
40 | Implementation of Dice loss for image segmentation task.
41 | It supports binary, multiclass and multilabel cases
42 | """
43 |
44 | def __init__(
45 | self,
46 | mode: str = 'multiclass',
47 | classes: List[int] = None,
48 | log_loss=False,
49 | from_logits=True,
50 | smooth: float = 0.0,
51 | ignore_index=None,
52 | eps=1e-7,
53 | ):
54 | """
55 |
56 | :param mode: Metric mode {'binary', 'multiclass', 'multilabel'}
57 | :param classes: Optional list of classes that contribute in loss computation;
58 | By default, all channels are included.
59 | :param log_loss: If True, loss computed as `-log(jaccard)`; otherwise `1 - jaccard`
60 | :param from_logits: If True assumes input is raw logits
61 | :param smooth:
62 | :param ignore_index: Label that indicates ignored pixels (does not contribute to loss)
63 | :param eps: Small epsilon for numerical stability
64 | """
65 | assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
66 | super(DiceLoss, self).__init__()
67 | self.mode = mode
68 | if classes is not None:
69 | assert mode != BINARY_MODE, "Masking classes is not supported with mode=binary"
70 | classes = to_tensor(classes, dtype=torch.long)
71 |
72 | self.classes = classes
73 | self.from_logits = from_logits
74 | self.smooth = smooth
75 | self.eps = eps
76 | self.ignore_index = ignore_index
77 | self.log_loss = log_loss
78 |
79 | def forward(self, y_pred: Tensor, y_true: Tensor) -> Tensor:
80 | """
81 |
82 | :param y_pred: NxCxHxW
83 | :param y_true: NxHxW
84 | :return: scalar
85 | """
86 | assert y_true.size(0) == y_pred.size(0)
87 |
88 | if self.from_logits:
89 | # Apply activations to get [0..1] class probabilities
90 | # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on
91 | # extreme values 0 and 1
92 | if self.mode == MULTICLASS_MODE:
93 | y_pred = y_pred.log_softmax(dim=1).exp()
94 | else:
95 | y_pred = F.logsigmoid(y_pred).exp()
96 |
97 | bs = y_true.size(0)
98 | num_classes = y_pred.size(1)
99 | dims = (0, 2)
100 |
101 | if self.mode == BINARY_MODE:
102 | y_true = y_true.view(bs, 1, -1)
103 | y_pred = y_pred.view(bs, 1, -1)
104 |
105 | if self.ignore_index is not None:
106 | mask = y_true != self.ignore_index
107 | y_pred = y_pred * mask
108 | y_true = y_true * mask
109 |
110 | if self.mode == MULTICLASS_MODE:
111 | y_true = y_true.view(bs, -1)
112 | y_pred = y_pred.view(bs, num_classes, -1)
113 |
114 | if self.ignore_index is not None:
115 | mask = y_true != self.ignore_index
116 | y_pred = y_pred * mask.unsqueeze(1)
117 |
118 | y_true = F.one_hot((y_true * mask).to(torch.long), num_classes) # N,H*W -> N,H*W, C
119 | y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) # H, C, H*W
120 | else:
121 | y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C
122 | y_true = y_true.permute(0, 2, 1) # H, C, H*W
123 |
124 | if self.mode == MULTILABEL_MODE:
125 | y_true = y_true.view(bs, num_classes, -1)
126 | y_pred = y_pred.view(bs, num_classes, -1)
127 |
128 | if self.ignore_index is not None:
129 | mask = y_true != self.ignore_index
130 | y_pred = y_pred * mask
131 | y_true = y_true * mask
132 |
133 | scores = soft_dice_score(y_pred, y_true.type_as(y_pred), smooth=self.smooth, eps=self.eps, dims=dims)
134 |
135 | if self.log_loss:
136 | loss = -torch.log(scores.clamp_min(self.eps))
137 | else:
138 | loss = 1.0 - scores
139 |
140 | # Dice loss is undefined for non-empty classes
141 | # So we zero contribution of channel that does not have true pixels
142 | # NOTE: A better workaround would be to use loss term `mean(y_pred)`
143 | # for this case, however it will be a modified jaccard loss
144 |
145 | mask = y_true.sum(dims) > 0
146 | loss *= mask.to(loss.dtype)
147 |
148 | if self.classes is not None:
149 | loss = loss[self.classes]
150 |
151 | return loss.mean()
152 |
--------------------------------------------------------------------------------
/geoseg/losses/focal.py:
--------------------------------------------------------------------------------
1 | from functools import partial
2 |
3 | import torch
4 | from torch.nn.modules.loss import _Loss
5 |
6 | from .functional import focal_loss_with_logits
7 |
8 | __all__ = ["BinaryFocalLoss", "FocalLoss"]
9 |
10 |
11 | class BinaryFocalLoss(_Loss):
12 | def __init__(
13 | self,
14 | alpha=0.5,
15 | gamma: float = 2.0,
16 | ignore_index=None,
17 | reduction="mean",
18 | normalized=False,
19 | reduced_threshold=None,
20 | ):
21 | """
22 |
23 | :param alpha: Prior probability of having positive value in target.
24 | :param gamma: Power factor for dampening weight (focal strenght).
25 | :param ignore_index: If not None, targets may contain values to be ignored.
26 | Target values equal to ignore_index will be ignored from loss computation.
27 | :param reduced: Switch to reduced focal loss. Note, when using this mode you should use `reduction="sum"`.
28 | :param threshold:
29 | """
30 | super().__init__()
31 | self.ignore_index = ignore_index
32 | self.focal_loss_fn = partial(
33 | focal_loss_with_logits,
34 | alpha=alpha,
35 | gamma=gamma,
36 | reduced_threshold=reduced_threshold,
37 | reduction=reduction,
38 | normalized=normalized,
39 | ignore_index=ignore_index,
40 | )
41 |
42 | def forward(self, label_input, label_target):
43 | """Compute focal loss for binary classification problem."""
44 | loss = self.focal_loss_fn(label_input, label_target)
45 | return loss
46 |
47 |
48 | class FocalLoss(_Loss):
49 | def __init__(self, alpha=0.5, gamma=2, ignore_index=None, reduction="mean", normalized=False, reduced_threshold=None):
50 | """
51 | Focal loss for multi-class problem.
52 |
53 | :param alpha:
54 | :param gamma:
55 | :param ignore_index: If not None, targets with given index are ignored
56 | :param reduced_threshold: A threshold factor for computing reduced focal loss
57 | """
58 | super().__init__()
59 | self.ignore_index = ignore_index
60 | self.focal_loss_fn = partial(
61 | focal_loss_with_logits,
62 | alpha=alpha,
63 | gamma=gamma,
64 | reduced_threshold=reduced_threshold,
65 | reduction=reduction,
66 | normalized=normalized,
67 | )
68 |
69 | def forward(self, label_input, label_target):
70 | num_classes = label_input.size(1)
71 | loss = 0
72 |
73 | # Filter anchors with -1 label from loss computation
74 | if self.ignore_index is not None:
75 | not_ignored = label_target != self.ignore_index
76 |
77 | for cls in range(num_classes):
78 | cls_label_target = (label_target == cls).long()
79 | cls_label_input = label_input[:, cls, ...]
80 |
81 | if self.ignore_index is not None:
82 | cls_label_target = cls_label_target[not_ignored]
83 | cls_label_input = cls_label_input[not_ignored]
84 |
85 | loss += self.focal_loss_fn(cls_label_input, cls_label_target)
86 | return loss
87 |
--------------------------------------------------------------------------------
/geoseg/losses/focal_cosine.py:
--------------------------------------------------------------------------------
1 | from typing import Optional
2 | from torch import nn, Tensor
3 | import torch.nn.functional as F
4 | import torch
5 |
6 | __all__ = ["FocalCosineLoss"]
7 |
8 |
9 | class FocalCosineLoss(nn.Module):
10 | """
11 | Implementation Focal cosine loss from the "Data-Efficient Deep Learning Method for Image Classification
12 | Using Data Augmentation, Focal Cosine Loss, and Ensemble" (https://arxiv.org/abs/2007.07805).
13 |
14 | Credit: https://www.kaggle.com/c/cassava-leaf-disease-classification/discussion/203271
15 | """
16 |
17 | def __init__(self, alpha: float = 1, gamma: float = 2, xent: float = 0.1, reduction="mean"):
18 | super(FocalCosineLoss, self).__init__()
19 | self.alpha = alpha
20 | self.gamma = gamma
21 | self.xent = xent
22 | self.reduction = reduction
23 |
24 | def forward(self, input: Tensor, target: Tensor) -> Tensor:
25 | cosine_loss = F.cosine_embedding_loss(
26 | input,
27 | torch.nn.functional.one_hot(target, num_classes=input.size(-1)),
28 | torch.tensor([1], device=target.device),
29 | reduction=self.reduction,
30 | )
31 |
32 | cent_loss = F.cross_entropy(F.normalize(input), target, reduction="none")
33 | pt = torch.exp(-cent_loss)
34 | focal_loss = self.alpha * (1 - pt) ** self.gamma * cent_loss
35 |
36 | if self.reduction == "mean":
37 | focal_loss = torch.mean(focal_loss)
38 |
39 | return cosine_loss + self.xent * focal_loss
40 |
--------------------------------------------------------------------------------
/geoseg/losses/functional.py:
--------------------------------------------------------------------------------
1 | import math
2 | from typing import Optional
3 |
4 | import torch
5 | import torch.nn.functional as F
6 |
7 | __all__ = [
8 | "focal_loss_with_logits",
9 | "softmax_focal_loss_with_logits",
10 | "soft_jaccard_score",
11 | "soft_dice_score",
12 | "wing_loss",
13 | ]
14 |
15 |
16 | def focal_loss_with_logits(
17 | output: torch.Tensor,
18 | target: torch.Tensor,
19 | gamma: float = 2.0,
20 | alpha: Optional[float] = 0.25,
21 | reduction: str = "mean",
22 | normalized: bool = False,
23 | reduced_threshold: Optional[float] = None,
24 | eps: float = 1e-6,
25 | ignore_index=None,
26 | ) -> torch.Tensor:
27 | """Compute binary focal loss between target and output logits.
28 |
29 | See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
30 |
31 | Args:
32 | output: Tensor of arbitrary shape (predictions of the models)
33 | target: Tensor of the same shape as input
34 | gamma: Focal loss power factor
35 | alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range,
36 | high values will give more weight to positive class.
37 | reduction (string, optional): Specifies the reduction to apply to the output:
38 | 'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
39 | 'mean': the sum of the output will be divided by the number of
40 | elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
41 | and :attr:`reduce` are in the process of being deprecated, and in the meantime,
42 | specifying either of those two args will override :attr:`reduction`.
43 | 'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
44 | normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
45 | reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
46 |
47 | References:
48 | https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py
49 | """
50 | target = target.type_as(output)
51 |
52 | p = torch.sigmoid(output)
53 | ce_loss = F.binary_cross_entropy_with_logits(output, target, reduction="none")
54 | pt = p * target + (1 - p) * (1 - target)
55 |
56 | # compute the loss
57 | if reduced_threshold is None:
58 | focal_term = (1.0 - pt).pow(gamma)
59 | else:
60 | focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
61 | focal_term = torch.masked_fill(focal_term, pt < reduced_threshold, 1)
62 |
63 | loss = focal_term * ce_loss
64 |
65 | if alpha is not None:
66 | loss *= alpha * target + (1 - alpha) * (1 - target)
67 |
68 | if ignore_index is not None:
69 | ignore_mask = target.eq(ignore_index)
70 | loss = torch.masked_fill(loss, ignore_mask, 0)
71 | if normalized:
72 | focal_term = torch.masked_fill(focal_term, ignore_mask, 0)
73 |
74 | if normalized:
75 | norm_factor = focal_term.sum(dtype=torch.float32).clamp_min(eps)
76 | loss /= norm_factor
77 |
78 | if reduction == "mean":
79 | loss = loss.mean()
80 | if reduction == "sum":
81 | loss = loss.sum(dtype=torch.float32)
82 | if reduction == "batchwise_mean":
83 | loss = loss.sum(dim=0, dtype=torch.float32)
84 |
85 | return loss
86 |
87 |
88 | def softmax_focal_loss_with_logits(
89 | output: torch.Tensor,
90 | target: torch.Tensor,
91 | gamma: float = 2.0,
92 | reduction="mean",
93 | normalized=False,
94 | reduced_threshold: Optional[float] = None,
95 | eps: float = 1e-6,
96 | ) -> torch.Tensor:
97 | """
98 | Softmax version of focal loss between target and output logits.
99 | See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
100 |
101 | Args:
102 | output: Tensor of shape [B, C, *] (Similar to nn.CrossEntropyLoss)
103 | target: Tensor of shape [B, *] (Similar to nn.CrossEntropyLoss)
104 | reduction (string, optional): Specifies the reduction to apply to the output:
105 | 'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
106 | 'mean': the sum of the output will be divided by the number of
107 | elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
108 | and :attr:`reduce` are in the process of being deprecated, and in the meantime,
109 | specifying either of those two args will override :attr:`reduction`.
110 | 'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
111 | normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
112 | reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
113 | """
114 | log_softmax = F.log_softmax(output, dim=1)
115 |
116 | loss = F.nll_loss(log_softmax, target, reduction="none")
117 | pt = torch.exp(-loss)
118 |
119 | # compute the loss
120 | if reduced_threshold is None:
121 | focal_term = (1.0 - pt).pow(gamma)
122 | else:
123 | focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
124 | focal_term[pt < reduced_threshold] = 1
125 |
126 | loss = focal_term * loss
127 |
128 | if normalized:
129 | norm_factor = focal_term.sum().clamp_min(eps)
130 | loss = loss / norm_factor
131 |
132 | if reduction == "mean":
133 | loss = loss.mean()
134 | if reduction == "sum":
135 | loss = loss.sum()
136 | if reduction == "batchwise_mean":
137 | loss = loss.sum(0)
138 |
139 | return loss
140 |
141 |
142 | def soft_jaccard_score(
143 | output: torch.Tensor, target: torch.Tensor, smooth: float = 0.0, eps: float = 1e-7, dims=None
144 | ) -> torch.Tensor:
145 | """
146 |
147 | :param output:
148 | :param target:
149 | :param smooth:
150 | :param eps:
151 | :param dims:
152 | :return:
153 |
154 | Shape:
155 | - Input: :math:`(N, NC, *)` where :math:`*` means
156 | any number of additional dimensions
157 | - Target: :math:`(N, NC, *)`, same shape as the input
158 | - Output: scalar.
159 |
160 | """
161 | assert output.size() == target.size()
162 |
163 | if dims is not None:
164 | intersection = torch.sum(output * target, dim=dims)
165 | cardinality = torch.sum(output + target, dim=dims)
166 | else:
167 | intersection = torch.sum(output * target)
168 | cardinality = torch.sum(output + target)
169 |
170 | union = cardinality - intersection
171 | jaccard_score = (intersection + smooth) / (union + smooth).clamp_min(eps)
172 | return jaccard_score
173 |
174 |
175 | def soft_dice_score(
176 | output: torch.Tensor, target: torch.Tensor, smooth: float = 0.0, eps: float = 1e-7, dims=None
177 | ) -> torch.Tensor:
178 | """
179 |
180 | :param output:
181 | :param target:
182 | :param smooth:
183 | :param eps:
184 | :return:
185 |
186 | Shape:
187 | - Input: :math:`(N, NC, *)` where :math:`*` means any number
188 | of additional dimensions
189 | - Target: :math:`(N, NC, *)`, same shape as the input
190 | - Output: scalar.
191 |
192 | """
193 | assert output.size() == target.size()
194 | if dims is not None:
195 | intersection = torch.sum(output * target, dim=dims)
196 | cardinality = torch.sum(output + target, dim=dims)
197 | else:
198 | intersection = torch.sum(output * target)
199 | cardinality = torch.sum(output + target)
200 | dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps)
201 | return dice_score
202 |
203 |
204 | def wing_loss(output: torch.Tensor, target: torch.Tensor, width=5, curvature=0.5, reduction="mean"):
205 | """
206 | https://arxiv.org/pdf/1711.06753.pdf
207 | :param output:
208 | :param target:
209 | :param width:
210 | :param curvature:
211 | :param reduction:
212 | :return:
213 | """
214 | diff_abs = (target - output).abs()
215 | loss = diff_abs.clone()
216 |
217 | idx_smaller = diff_abs < width
218 | idx_bigger = diff_abs >= width
219 |
220 | loss[idx_smaller] = width * torch.log(1 + diff_abs[idx_smaller] / curvature)
221 |
222 | C = width - width * math.log(1 + width / curvature)
223 | loss[idx_bigger] = loss[idx_bigger] - C
224 |
225 | if reduction == "sum":
226 | loss = loss.sum()
227 |
228 | if reduction == "mean":
229 | loss = loss.mean()
230 |
231 | return loss
232 |
233 |
234 | def label_smoothed_nll_loss(
235 | lprobs: torch.Tensor, target: torch.Tensor, epsilon: float, ignore_index=None, reduction="mean", dim=-1
236 | ) -> torch.Tensor:
237 | """
238 |
239 | Source: https://github.com/pytorch/fairseq/blob/master/fairseq/criterions/label_smoothed_cross_entropy.py
240 |
241 | :param lprobs: Log-probabilities of predictions (e.g after log_softmax)
242 | :param target:
243 | :param epsilon:
244 | :param ignore_index:
245 | :param reduction:
246 | :return:
247 | """
248 | if target.dim() == lprobs.dim() - 1:
249 | target = target.unsqueeze(dim)
250 |
251 | if ignore_index is not None:
252 | pad_mask = target.eq(ignore_index)
253 | target = target.masked_fill(pad_mask, 0)
254 | nll_loss = -lprobs.gather(dim=dim, index=target)
255 | smooth_loss = -lprobs.sum(dim=dim, keepdim=True)
256 |
257 | # nll_loss.masked_fill_(pad_mask, 0.0)
258 | # smooth_loss.masked_fill_(pad_mask, 0.0)
259 | nll_loss = nll_loss.masked_fill(pad_mask, 0.0)
260 | smooth_loss = smooth_loss.masked_fill(pad_mask, 0.0)
261 | else:
262 | nll_loss = -lprobs.gather(dim=dim, index=target)
263 | smooth_loss = -lprobs.sum(dim=dim, keepdim=True)
264 |
265 | nll_loss = nll_loss.squeeze(dim)
266 | smooth_loss = smooth_loss.squeeze(dim)
267 |
268 | if reduction == "sum":
269 | nll_loss = nll_loss.sum()
270 | smooth_loss = smooth_loss.sum()
271 | if reduction == "mean":
272 | nll_loss = nll_loss.mean()
273 | smooth_loss = smooth_loss.mean()
274 |
275 | eps_i = epsilon / lprobs.size(dim)
276 | loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
277 | return loss
278 |
--------------------------------------------------------------------------------
/geoseg/losses/jaccard.py:
--------------------------------------------------------------------------------
1 | from typing import List
2 |
3 | import torch
4 | import torch.nn.functional as F
5 | from .dice import to_tensor
6 | from torch import Tensor
7 | from torch.nn.modules.loss import _Loss
8 |
9 | from .functional import soft_jaccard_score
10 |
11 | __all__ = ["JaccardLoss", "BINARY_MODE", "MULTICLASS_MODE", "MULTILABEL_MODE"]
12 |
13 | BINARY_MODE = "binary"
14 | MULTICLASS_MODE = "multiclass"
15 | MULTILABEL_MODE = "multilabel"
16 |
17 |
18 | class JaccardLoss(_Loss):
19 | """
20 | Implementation of Jaccard loss for image segmentation task.
21 | It supports binary, multi-class and multi-label cases.
22 | """
23 |
24 | def __init__(self, mode: str, classes: List[int] = None, log_loss=False, from_logits=True, smooth=0, eps=1e-7):
25 | """
26 |
27 | :param mode: Metric mode {'binary', 'multiclass', 'multilabel'}
28 | :param classes: Optional list of classes that contribute in loss computation;
29 | By default, all channels are included.
30 | :param log_loss: If True, loss computed as `-log(jaccard)`; otherwise `1 - jaccard`
31 | :param from_logits: If True assumes input is raw logits
32 | :param smooth:
33 | :param eps: Small epsilon for numerical stability
34 | """
35 | assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
36 | super(JaccardLoss, self).__init__()
37 | self.mode = mode
38 | if classes is not None:
39 | assert mode != BINARY_MODE, "Masking classes is not supported with mode=binary"
40 | classes = to_tensor(classes, dtype=torch.long)
41 |
42 | self.classes = classes
43 | self.from_logits = from_logits
44 | self.smooth = smooth
45 | self.eps = eps
46 | self.log_loss = log_loss
47 |
48 | def forward(self, y_pred: Tensor, y_true: Tensor) -> Tensor:
49 | """
50 |
51 | :param y_pred: NxCxHxW
52 | :param y_true: NxHxW
53 | :return: scalar
54 | """
55 | assert y_true.size(0) == y_pred.size(0)
56 |
57 | if self.from_logits:
58 | # Apply activations to get [0..1] class probabilities
59 | # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on
60 | # extreme values 0 and 1
61 | if self.mode == MULTICLASS_MODE:
62 | y_pred = y_pred.log_softmax(dim=1).exp()
63 | else:
64 | y_pred = F.logsigmoid(y_pred).exp()
65 |
66 | bs = y_true.size(0)
67 | num_classes = y_pred.size(1)
68 | dims = (0, 2)
69 |
70 | if self.mode == BINARY_MODE:
71 | y_true = y_true.view(bs, 1, -1)
72 | y_pred = y_pred.view(bs, 1, -1)
73 |
74 | if self.mode == MULTICLASS_MODE:
75 | y_true = y_true.view(bs, -1)
76 | y_pred = y_pred.view(bs, num_classes, -1)
77 |
78 | y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C
79 | y_true = y_true.permute(0, 2, 1) # H, C, H*W
80 |
81 | if self.mode == MULTILABEL_MODE:
82 | y_true = y_true.view(bs, num_classes, -1)
83 | y_pred = y_pred.view(bs, num_classes, -1)
84 |
85 | scores = soft_jaccard_score(y_pred, y_true.type(y_pred.dtype), smooth=self.smooth, eps=self.eps, dims=dims)
86 |
87 | if self.log_loss:
88 | loss = -torch.log(scores.clamp_min(self.eps))
89 | else:
90 | loss = 1.0 - scores
91 |
92 | # IoU loss is defined for non-empty classes
93 | # So we zero contribution of channel that does not have true pixels
94 | # NOTE: A better workaround would be to use loss term `mean(y_pred)`
95 | # for this case, however it will be a modified jaccard loss
96 |
97 | mask = y_true.sum(dims) > 0
98 | loss *= mask.float()
99 |
100 | if self.classes is not None:
101 | loss = loss[self.classes]
102 |
103 | return loss.mean()
104 |
--------------------------------------------------------------------------------
/geoseg/losses/joint_loss.py:
--------------------------------------------------------------------------------
1 | from torch import nn
2 | from torch.nn.modules.loss import _Loss
3 |
4 | __all__ = ["JointLoss", "WeightedLoss"]
5 |
6 |
7 | class WeightedLoss(_Loss):
8 | """Wrapper class around loss function that applies weighted with fixed factor.
9 | This class helps to balance multiple losses if they have different scales
10 | """
11 |
12 | def __init__(self, loss, weight=1.0):
13 | super().__init__()
14 | self.loss = loss
15 | self.weight = weight
16 |
17 | def forward(self, *input):
18 | return self.loss(*input) * self.weight
19 |
20 |
21 | class JointLoss(_Loss):
22 | """
23 | Wrap two loss functions into one. This class computes a weighted sum of two losses.
24 | """
25 |
26 | def __init__(self, first: nn.Module, second: nn.Module, first_weight=1.0, second_weight=1.0):
27 | super().__init__()
28 | self.first = WeightedLoss(first, first_weight)
29 | self.second = WeightedLoss(second, second_weight)
30 |
31 | def forward(self, *input):
32 | return self.first(*input) + self.second(*input)
33 |
--------------------------------------------------------------------------------
/geoseg/losses/lovasz.py:
--------------------------------------------------------------------------------
1 | """
2 | Lovasz-Softmax and Jaccard hinge loss in PyTorch
3 | Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License)
4 | """
5 |
6 | from __future__ import print_function, division
7 |
8 | from typing import Optional, Union
9 |
10 | import torch
11 | import torch.nn.functional as F
12 | from torch.autograd import Variable
13 | from torch.nn.modules.loss import _Loss
14 |
15 | try:
16 | from itertools import ifilterfalse
17 | except ImportError: # py3k
18 | from itertools import filterfalse as ifilterfalse
19 |
20 | __all__ = ["BinaryLovaszLoss", "LovaszLoss"]
21 |
22 |
23 | def _lovasz_grad(gt_sorted):
24 | """Compute gradient of the Lovasz extension w.r.t sorted errors
25 | See Alg. 1 in paper
26 | """
27 | p = len(gt_sorted)
28 | gts = gt_sorted.sum()
29 | intersection = gts - gt_sorted.float().cumsum(0)
30 | union = gts + (1 - gt_sorted).float().cumsum(0)
31 | jaccard = 1.0 - intersection / union
32 | if p > 1: # cover 1-pixel case
33 | jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
34 | return jaccard
35 |
36 |
37 | def _lovasz_hinge(logits, labels, per_image=True, ignore_index=None):
38 | """
39 | Binary Lovasz hinge loss
40 | logits: [B, H, W] Variable, logits at each pixel (between -infinity and +infinity)
41 | labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
42 | per_image: compute the loss per image instead of per batch
43 | ignore: void class id
44 | """
45 | if per_image:
46 | loss = mean(
47 | _lovasz_hinge_flat(*_flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore_index))
48 | for log, lab in zip(logits, labels)
49 | )
50 | else:
51 | loss = _lovasz_hinge_flat(*_flatten_binary_scores(logits, labels, ignore_index))
52 | return loss
53 |
54 |
55 | def _lovasz_hinge_flat(logits, labels):
56 | """Binary Lovasz hinge loss
57 | Args:
58 | logits: [P] Variable, logits at each prediction (between -iinfinity and +iinfinity)
59 | labels: [P] Tensor, binary ground truth labels (0 or 1)
60 | ignore: label to ignore
61 | """
62 | if len(labels) == 0:
63 | # only void pixels, the gradients should be 0
64 | return logits.sum() * 0.0
65 | signs = 2.0 * labels.float() - 1.0
66 | errors = 1.0 - logits * Variable(signs)
67 | errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
68 | perm = perm.data
69 | gt_sorted = labels[perm]
70 | grad = _lovasz_grad(gt_sorted)
71 | loss = torch.dot(F.relu(errors_sorted), Variable(grad))
72 | return loss
73 |
74 |
75 | def _flatten_binary_scores(scores, labels, ignore_index=None):
76 | """Flattens predictions in the batch (binary case)
77 | Remove labels equal to 'ignore'
78 | """
79 | scores = scores.view(-1)
80 | labels = labels.view(-1)
81 | if ignore_index is None:
82 | return scores, labels
83 | valid = labels != ignore_index
84 | vscores = scores[valid]
85 | vlabels = labels[valid]
86 | return vscores, vlabels
87 |
88 |
89 | # --------------------------- MULTICLASS LOSSES ---------------------------
90 |
91 |
92 | def _lovasz_softmax(probas, labels, classes="present", per_image=False, ignore_index=None):
93 | """Multi-class Lovasz-Softmax loss
94 | Args:
95 | @param probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
96 | Interpreted as binary (sigmoid) output with outputs of size [B, H, W].
97 | @param labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
98 | @param classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
99 | @param per_image: compute the loss per image instead of per batch
100 | @param ignore_index: void class labels
101 | """
102 | if per_image:
103 | loss = mean(
104 | _lovasz_softmax_flat(*_flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore_index), classes=classes)
105 | for prob, lab in zip(probas, labels)
106 | )
107 | else:
108 | loss = _lovasz_softmax_flat(*_flatten_probas(probas, labels, ignore_index), classes=classes)
109 | return loss
110 |
111 |
112 | def _lovasz_softmax_flat(probas, labels, classes="present"):
113 | """Multi-class Lovasz-Softmax loss
114 | Args:
115 | @param probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
116 | @param labels: [P] Tensor, ground truth labels (between 0 and C - 1)
117 | @param classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
118 | """
119 | if probas.numel() == 0:
120 | # only void pixels, the gradients should be 0
121 | return probas * 0.0
122 | C = probas.size(1)
123 | losses = []
124 | class_to_sum = list(range(C)) if classes in ["all", "present"] else classes
125 | for c in class_to_sum:
126 | fg = (labels == c).type_as(probas) # foreground for class c
127 | if classes == "present" and fg.sum() == 0:
128 | continue
129 | if C == 1:
130 | if len(classes) > 1:
131 | raise ValueError("Sigmoid output possible only with 1 class")
132 | class_pred = probas[:, 0]
133 | else:
134 | class_pred = probas[:, c]
135 | errors = (fg - class_pred).abs()
136 | errors_sorted, perm = torch.sort(errors, 0, descending=True)
137 | perm = perm.data
138 | fg_sorted = fg[perm]
139 | losses.append(torch.dot(errors_sorted, _lovasz_grad(fg_sorted)))
140 | return mean(losses)
141 |
142 |
143 | def _flatten_probas(probas, labels, ignore=None):
144 | """Flattens predictions in the batch"""
145 | if probas.dim() == 3:
146 | # assumes output of a sigmoid layer
147 | B, H, W = probas.size()
148 | probas = probas.view(B, 1, H, W)
149 |
150 | C = probas.size(1)
151 | probas = torch.movedim(probas, 1, -1) # [B, C, Di, Dj, ...] -> [B, Di, Dj, ..., C]
152 | probas = probas.contiguous().view(-1, C) # [P, C]
153 |
154 | labels = labels.view(-1)
155 | if ignore is None:
156 | return probas, labels
157 | valid = labels != ignore
158 | vprobas = probas[valid]
159 | vlabels = labels[valid]
160 | return vprobas, vlabels
161 |
162 |
163 | # --------------------------- HELPER FUNCTIONS ---------------------------
164 | def isnan(x):
165 | return x != x
166 |
167 |
168 | def mean(values, ignore_nan=False, empty=0):
169 | """Nanmean compatible with generators."""
170 | values = iter(values)
171 | if ignore_nan:
172 | values = ifilterfalse(isnan, values)
173 | try:
174 | n = 1
175 | acc = next(values)
176 | except StopIteration:
177 | if empty == "raise":
178 | raise ValueError("Empty mean")
179 | return empty
180 | for n, v in enumerate(values, 2):
181 | acc += v
182 | if n == 1:
183 | return acc
184 | return acc / n
185 |
186 |
187 | class BinaryLovaszLoss(_Loss):
188 | def __init__(self, per_image: bool = False, ignore_index: Optional[Union[int, float]] = None):
189 | super().__init__()
190 | self.ignore_index = ignore_index
191 | self.per_image = per_image
192 |
193 | def forward(self, logits, target):
194 | return _lovasz_hinge(logits, target, per_image=self.per_image, ignore_index=self.ignore_index)
195 |
196 |
197 | class LovaszLoss(_Loss):
198 | def __init__(self, per_image=False, ignore=None):
199 | super().__init__()
200 | self.ignore = ignore
201 | self.per_image = per_image
202 |
203 | def forward(self, logits, target):
204 | return _lovasz_softmax(logits, target, per_image=self.per_image, ignore_index=self.ignore)
205 |
--------------------------------------------------------------------------------
/geoseg/losses/soft_bce.py:
--------------------------------------------------------------------------------
1 | from typing import Optional
2 |
3 | import torch.nn.functional as F
4 | from torch import nn, Tensor
5 |
6 | __all__ = ["SoftBCEWithLogitsLoss"]
7 |
8 |
9 | class SoftBCEWithLogitsLoss(nn.Module):
10 | """
11 | Drop-in replacement for nn.BCEWithLogitsLoss with few additions:
12 | - Support of ignore_index value
13 | - Support of label smoothing
14 | """
15 |
16 | __constants__ = ["weight", "pos_weight", "reduction", "ignore_index", "smooth_factor"]
17 |
18 | def __init__(
19 | self, weight=None, ignore_index: Optional[int] = -100, reduction="mean", smooth_factor=None, pos_weight=None
20 | ):
21 | super().__init__()
22 | self.ignore_index = ignore_index
23 | self.reduction = reduction
24 | self.smooth_factor = smooth_factor
25 | self.register_buffer("weight", weight)
26 | self.register_buffer("pos_weight", pos_weight)
27 |
28 | def forward(self, input: Tensor, target: Tensor) -> Tensor:
29 | if self.smooth_factor is not None:
30 | soft_targets = ((1 - target) * self.smooth_factor + target * (1 - self.smooth_factor)).type_as(input)
31 | else:
32 | soft_targets = target.type_as(input)
33 |
34 | loss = F.binary_cross_entropy_with_logits(
35 | input, soft_targets, self.weight, pos_weight=self.pos_weight, reduction="none"
36 | )
37 |
38 | if self.ignore_index is not None:
39 | not_ignored_mask: Tensor = target != self.ignore_index
40 | loss *= not_ignored_mask.type_as(loss)
41 |
42 | if self.reduction == "mean":
43 | loss = loss.mean()
44 |
45 | if self.reduction == "sum":
46 | loss = loss.sum()
47 |
48 | return loss
49 |
--------------------------------------------------------------------------------
/geoseg/losses/soft_ce.py:
--------------------------------------------------------------------------------
1 | from typing import Optional
2 | from torch import nn, Tensor
3 | import torch.nn.functional as F
4 | from .functional import label_smoothed_nll_loss
5 |
6 | __all__ = ["SoftCrossEntropyLoss"]
7 |
8 |
9 | class SoftCrossEntropyLoss(nn.Module):
10 | """
11 | Drop-in replacement for nn.CrossEntropyLoss with few additions:
12 | - Support of label smoothing
13 | """
14 |
15 | __constants__ = ["reduction", "ignore_index", "smooth_factor"]
16 |
17 | def __init__(self, reduction: str = "mean", smooth_factor: float = 0.0, ignore_index: Optional[int] = -100, dim=1):
18 | super().__init__()
19 | self.smooth_factor = smooth_factor
20 | self.ignore_index = ignore_index
21 | self.reduction = reduction
22 | self.dim = dim
23 |
24 | def forward(self, input: Tensor, target: Tensor) -> Tensor:
25 | log_prob = F.log_softmax(input, dim=self.dim)
26 | return label_smoothed_nll_loss(
27 | log_prob,
28 | target,
29 | epsilon=self.smooth_factor,
30 | ignore_index=self.ignore_index,
31 | reduction=self.reduction,
32 | dim=self.dim,
33 | )
34 |
--------------------------------------------------------------------------------
/geoseg/losses/soft_f1.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn, Tensor
3 | from typing import Optional
4 |
5 | __all__ = ["soft_micro_f1", "BinarySoftF1Loss", "SoftF1Loss"]
6 |
7 |
8 | def soft_micro_f1(preds: Tensor, targets: Tensor, eps=1e-6) -> Tensor:
9 | """Compute the macro soft F1-score as a cost.
10 | Average (1 - soft-F1) across all labels.
11 | Use probability values instead of binary predictions.
12 |
13 | Args:
14 | targets (Tensor): targets array of shape (Num Samples, Num Classes)
15 | preds (Tensor): probability matrix of shape (Num Samples, Num Classes)
16 |
17 | Returns:
18 | cost (scalar Tensor): value of the cost function for the batch
19 |
20 | References:
21 | https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
22 | """
23 | tp = torch.sum(preds * targets, dim=0)
24 | fp = torch.sum(preds * (1 - targets), dim=0)
25 | fn = torch.sum((1 - preds) * targets, dim=0)
26 | soft_f1 = 2 * tp / (2 * tp + fn + fp + eps)
27 | loss = 1 - soft_f1 # reduce 1 - soft-f1 in order to increase soft-f1
28 | return loss.mean()
29 |
30 |
31 | # TODO: Test
32 | # def macro_double_soft_f1(y, y_hat):
33 | # """Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels).
34 | # Use probability values instead of binary predictions.
35 | # This version uses the computation of soft-F1 for both positive and negative class for each label.
36 | #
37 | # Args:
38 | # y (int32 Tensor): targets array of shape (BATCH_SIZE, N_LABELS)
39 | # y_hat (float32 Tensor): probability matrix from forward propagation of shape (BATCH_SIZE, N_LABELS)
40 | #
41 | # Returns:
42 | # cost (scalar Tensor): value of the cost function for the batch
43 | # """
44 | # tp = tf.reduce_sum(y_hat * y, axis=0)
45 | # fp = tf.reduce_sum(y_hat * (1 - y), axis=0)
46 | # fn = tf.reduce_sum((1 - y_hat) * y, axis=0)
47 | # tn = tf.reduce_sum((1 - y_hat) * (1 - y), axis=0)
48 | # soft_f1_class1 = 2 * tp / (2 * tp + fn + fp + 1e-16)
49 | # soft_f1_class0 = 2 * tn / (2 * tn + fn + fp + 1e-16)
50 | # cost_class1 = 1 - soft_f1_class1 # reduce 1 - soft-f1_class1 in order to increase soft-f1 on class 1
51 | # cost_class0 = 1 - soft_f1_class0 # reduce 1 - soft-f1_class0 in order to increase soft-f1 on class 0
52 | # cost = 0.5 * (cost_class1 + cost_class0) # take into account both class 1 and class 0
53 | # macro_cost = tf.reduce_mean(cost) # average on all labels
54 | # return macro_cost
55 |
56 |
57 | class BinarySoftF1Loss(nn.Module):
58 | def __init__(self, ignore_index: Optional[int] = None, eps=1e-6):
59 | super().__init__()
60 | self.ignore_index = ignore_index
61 | self.eps = eps
62 |
63 | def forward(self, preds: Tensor, targets: Tensor) -> Tensor:
64 | targets = targets.view(-1)
65 | preds = preds.view(-1)
66 |
67 | if self.ignore_index is not None:
68 | # Filter predictions with ignore label from loss computation
69 | not_ignored = targets != self.ignore_index
70 | preds = preds[not_ignored]
71 | targets = targets[not_ignored]
72 |
73 | if targets.numel() == 0:
74 | return torch.tensor(0, dtype=preds.dtype, device=preds.device)
75 |
76 | preds = preds.sigmoid().clamp(self.eps, 1 - self.eps)
77 | return soft_micro_f1(preds.view(-1, 1), targets.view(-1, 1))
78 |
79 |
80 | class SoftF1Loss(nn.Module):
81 | def __init__(self, ignore_index: Optional[int] = None, eps=1e-6):
82 | super().__init__()
83 | self.ignore_index = ignore_index
84 | self.eps = eps
85 |
86 | def forward(self, preds: Tensor, targets: Tensor) -> Tensor:
87 | preds = preds.softmax(dim=1).clamp(self.eps, 1 - self.eps)
88 | targets = torch.nn.functional.one_hot(targets, preds.size(1))
89 |
90 | if self.ignore_index is not None:
91 | # Filter predictions with ignore label from loss computation
92 | not_ignored = targets != self.ignore_index
93 | preds = preds[not_ignored]
94 | targets = targets[not_ignored]
95 |
96 | if targets.numel() == 0:
97 | return torch.tensor(0, dtype=preds.dtype, device=preds.device)
98 |
99 | return soft_micro_f1(preds, targets)
100 |
--------------------------------------------------------------------------------
/geoseg/losses/useful_loss.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn.functional as F
4 | import torch.nn as nn
5 | from torch import Tensor
6 | from .soft_ce import SoftCrossEntropyLoss
7 | from .joint_loss import JointLoss
8 | from .dice import DiceLoss
9 |
10 |
11 | class EdgeLoss(nn.Module):
12 | def __init__(self, ignore_index=255, edge_factor=10.0):
13 | super(EdgeLoss, self).__init__()
14 | self.main_loss = JointLoss(SoftCrossEntropyLoss(smooth_factor=0.05, ignore_index=ignore_index),
15 | DiceLoss(smooth=0.05, ignore_index=ignore_index), 1.0, 1.0)
16 | self.edge_factor = edge_factor
17 |
18 | def get_boundary(self, x):
19 | laplacian_kernel_target = torch.tensor(
20 | [-1, -1, -1, -1, 8, -1, -1, -1, -1],
21 | dtype=torch.float32).reshape(1, 1, 3, 3).requires_grad_(False).cuda(device=x.device)
22 | x = x.unsqueeze(1).float()
23 | x = F.conv2d(x, laplacian_kernel_target, padding=1)
24 | x = x.clamp(min=0, max=1.0)
25 | x[x >= 0.1] = 1
26 | x[x < 0.1] = 0
27 |
28 | return x
29 |
30 | def compute_edge_loss(self, logits, targets):
31 | bs = logits.size()[0]
32 | boundary_targets = self.get_boundary(targets)
33 | boundary_targets = boundary_targets.view(bs, 1, -1)
34 | # print(boundary_targets.shape)
35 | logits = F.softmax(logits, dim=1).argmax(dim=1).squeeze(dim=1)
36 | boundary_pre = self.get_boundary(logits)
37 | boundary_pre = boundary_pre / (boundary_pre + 0.01)
38 | # print(boundary_pre)
39 | boundary_pre = boundary_pre.view(bs, 1, -1)
40 | # print(boundary_pre)
41 | edge_loss = F.binary_cross_entropy_with_logits(boundary_pre, boundary_targets)
42 |
43 | return edge_loss
44 |
45 | def forward(self, logits, targets):
46 | loss = self.main_loss(logits, targets) + self.compute_edge_loss(logits, targets) * self.edge_factor
47 | return loss
48 |
49 |
50 | class OHEM_CELoss(nn.Module):
51 |
52 | def __init__(self, thresh=0.7, ignore_index=255):
53 | super(OHEM_CELoss, self).__init__()
54 | self.thresh = thresh
55 | self.ignore_index = ignore_index
56 | self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_index, reduction='none')
57 |
58 | def forward(self, logits, labels):
59 | thresh = -torch.log(torch.tensor(self.thresh, requires_grad=False, dtype=torch.float)).cuda(device=logits.device)
60 | n_min = labels[labels != self.ignore_index].numel() // 16
61 | loss = self.criteria(logits, labels).view(-1)
62 | loss_hard = loss[loss > thresh]
63 | if loss_hard.numel() < n_min:
64 | loss_hard, _ = loss.topk(n_min)
65 | return torch.mean(loss_hard)
66 |
67 |
68 | class ProbOhemCrossEntropy2d(nn.Module):
69 | def __init__(self, ignore_label=255, reduction='mean', thresh=0.7, min_kept=256,
70 | down_ratio=1, use_weight=False):
71 | super(ProbOhemCrossEntropy2d, self).__init__()
72 | self.ignore_label = ignore_label
73 | self.thresh = float(thresh)
74 | self.min_kept = int(min_kept)
75 | self.down_ratio = down_ratio
76 | if use_weight:
77 | weight = torch.FloatTensor(
78 | [0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489,
79 | 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955,
80 | 1.0865, 1.1529, 1.0507])
81 | self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction,
82 | weight=weight,
83 | ignore_index=ignore_label)
84 | else:
85 | self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction,
86 | ignore_index=ignore_label)
87 |
88 | def forward(self, pred, target):
89 | b, c, h, w = pred.size()
90 | target = target.view(-1)
91 | valid_mask = target.ne(self.ignore_label)
92 | target = target * valid_mask.long()
93 | num_valid = valid_mask.sum()
94 |
95 | prob = F.softmax(pred, dim=1)
96 | prob = (prob.transpose(0, 1)).reshape(c, -1)
97 |
98 | if self.min_kept > num_valid:
99 | print('Labels: {}'.format(num_valid))
100 | elif num_valid > 0:
101 | prob = prob.masked_fill_(~valid_mask, 1)
102 | mask_prob = prob[
103 | target, torch.arange(len(target), dtype=torch.long)]
104 | threshold = self.thresh
105 | if self.min_kept > 0:
106 | index = mask_prob.argsort()
107 | threshold_index = index[min(len(index), self.min_kept) - 1]
108 | if mask_prob[threshold_index] > self.thresh:
109 | threshold = mask_prob[threshold_index]
110 | kept_mask = mask_prob.le(threshold) # 概率小于阈值的挖出来
111 | target = target * kept_mask.long()
112 | valid_mask = valid_mask * kept_mask
113 | # logger.info('Valid Mask: {}'.format(valid_mask.sum()))
114 |
115 | target = target.masked_fill_(~valid_mask, self.ignore_label)
116 | target = target.view(b, h, w)
117 |
118 | return self.criterion(pred, target)
119 |
120 |
121 | if __name__ == '__main__':
122 | targets = torch.randint(low=0, high=2, size=(2, 16, 16))
123 | logits = torch.randn((2, 2, 16, 16))
124 | # print(targets)
125 | model = EdgeLoss()
126 | loss = model.compute_edge_loss(logits, targets)
127 |
128 | print(loss)
--------------------------------------------------------------------------------
/geoseg/losses/wing_loss.py:
--------------------------------------------------------------------------------
1 | from torch.nn.modules.loss import _Loss
2 |
3 | from . import functional as F
4 |
5 | __all__ = ["WingLoss"]
6 |
7 |
8 | class WingLoss(_Loss):
9 | def __init__(self, width=5, curvature=0.5, reduction="mean"):
10 | super(WingLoss, self).__init__(reduction=reduction)
11 | self.width = width
12 | self.curvature = curvature
13 |
14 | def forward(self, prediction, target):
15 | return F.wing_loss(prediction, target, self.width, self.curvature, self.reduction)
16 |
--------------------------------------------------------------------------------
/geoseg/models/BuildFormer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import numpy as np
5 | from einops import rearrange
6 | from timm.models.layers import DropPath, to_2tuple, trunc_normal_
7 | import timm
8 |
9 |
10 | class MaxPoolLayer(nn.Sequential):
11 | def __init__(self, kernel_size=3, dilation=1, stride=1):
12 | super(MaxPoolLayer, self).__init__(
13 | nn.MaxPool2d(kernel_size=kernel_size, dilation=dilation, stride=stride,
14 | padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
15 | )
16 |
17 |
18 | class AvgPoolLayer(nn.Sequential):
19 | def __init__(self, kernel_size=3, stride=1):
20 | super(AvgPoolLayer, self).__init__(
21 | nn.AvgPool2d(kernel_size=kernel_size, stride=stride,
22 | padding=(kernel_size-1)//2)
23 | )
24 |
25 |
26 | class ConvBNAct(nn.Sequential):
27 | def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1,
28 | norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6, bias=False, inplace=False):
29 | super(ConvBNAct, self).__init__(
30 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
31 | dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
32 | norm_layer(out_channels),
33 | act_layer(inplace=inplace)
34 | )
35 |
36 |
37 | class ConvGeluBN(nn.Sequential):
38 | def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False, inplace=False):
39 | super(ConvGeluBN, self).__init__(
40 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
41 | dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
42 | nn.GELU(),
43 | nn.BatchNorm2d(out_channels)
44 | )
45 |
46 |
47 | class ConvBN(nn.Sequential):
48 | def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
49 | super(ConvBN, self).__init__(
50 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
51 | dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
52 | norm_layer(out_channels)
53 | )
54 |
55 |
56 | class Conv(nn.Sequential):
57 | def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
58 | super(Conv, self).__init__(
59 | nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
60 | dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
61 | )
62 |
63 |
64 | class SeparableConvBNAct(nn.Sequential):
65 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
66 | norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6, inplace=False):
67 | super(SeparableConvBNAct, self).__init__(
68 | nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
69 | padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
70 | groups=in_channels, bias=False),
71 | nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
72 | norm_layer(out_channels),
73 | act_layer(inplace=inplace)
74 | )
75 |
76 |
77 | class SeparableConvBN(nn.Sequential):
78 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
79 | norm_layer=nn.BatchNorm2d):
80 | super(SeparableConvBN, self).__init__(
81 | nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
82 | padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
83 | groups=in_channels, bias=False),
84 | nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
85 | norm_layer(out_channels)
86 | )
87 |
88 |
89 | class SeparableConv(nn.Sequential):
90 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
91 | super(SeparableConv, self).__init__(
92 | nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
93 | padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
94 | groups=in_channels, bias=False),
95 | nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
96 | )
97 |
98 |
99 | class Mlp(nn.Module):
100 | def __init__(
101 | self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, drop=0.):
102 | super().__init__()
103 | out_features = out_features or in_features
104 | hidden_features = hidden_features or in_features
105 | self.fc1 = ConvBNAct(in_features, hidden_features, kernel_size=1)
106 | self.fc2 = nn.Sequential(nn.Conv2d(hidden_features, hidden_features, kernel_size=3, padding=1, groups=hidden_features),
107 | norm_layer(hidden_features),
108 | act_layer())
109 | self.fc3 = ConvBN(hidden_features, out_features, kernel_size=1)
110 | self.drop = nn.Dropout(drop)
111 |
112 | def forward(self, x):
113 | x = self.fc1(x)
114 | x = self.fc2(x)
115 | x = self.fc3(x)
116 | x = self.drop(x)
117 |
118 | return x
119 |
120 |
121 | class RPE(nn.Module):
122 | def __init__(self, dim):
123 | super().__init__()
124 | self.rpe_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim)
125 | self.rpe_norm = nn.BatchNorm2d(dim)
126 |
127 | def forward(self, x):
128 | return x + self.rpe_norm(self.rpe_conv(x))
129 |
130 |
131 | class Stem(nn.Module):
132 | def __init__(self, img_dim=3, out_dim=64, rpe=True):
133 | super(Stem, self).__init__()
134 | self.conv1 = ConvBNAct(img_dim, out_dim//2, kernel_size=3, stride=2, inplace=True)
135 | self.conv2 = ConvBNAct(out_dim//2, out_dim, kernel_size=3, stride=2, inplace=True)
136 | self.rpe = rpe
137 | if self.rpe:
138 | self.proj_rpe = RPE(out_dim)
139 |
140 | def forward(self, x):
141 | x = self.conv1(x)
142 | x = self.conv2(x)
143 |
144 | if self.rpe:
145 | x = self.proj_rpe(x)
146 | return x
147 |
148 |
149 | class LWMSA(nn.Module):
150 | def __init__(self,
151 | dim=16,
152 | num_heads=8,
153 | window_size=16,
154 | qkv_bias=False
155 | ):
156 | super().__init__()
157 | self.num_heads = num_heads
158 | self.eps = 1e-6
159 | self.ws = window_size
160 |
161 | self.qkv = Conv(dim, dim*3, kernel_size=1, bias=qkv_bias)
162 | self.proj = ConvBN(dim, dim, kernel_size=1)
163 |
164 | def pad(self, x, ps):
165 | _, _, H, W = x.size()
166 | if W % ps != 0:
167 | x = F.pad(x, (0, ps - W % ps))
168 | if H % ps != 0:
169 | x = F.pad(x, (0, 0, 0, ps - H % ps))
170 | return x
171 |
172 | def l2_norm(self, x):
173 | return torch.einsum("bhcn, bhn->bhcn", x, 1 / torch.norm(x, p=2, dim=-2))
174 |
175 | def forward(self, x):
176 | _, _, H, W = x.shape
177 | x = self.pad(x, self.ws)
178 |
179 | B, C, Hp, Wp = x.shape
180 | hh, ww = Hp//self.ws, Wp//self.ws
181 | # print(x.shape)
182 | qkv = self.qkv(x)
183 |
184 | q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h d (ws1 ws2)',
185 | b=B, h=self.num_heads, d=C//self.num_heads, qkv=3, ws1=self.ws, ws2=self.ws)
186 |
187 | q = self.l2_norm(q).permute(0, 1, 3, 2)
188 | k = self.l2_norm(k)
189 | # print(q.shape, v.shape, k.shape)
190 |
191 | tailor_sum = 1 / (self.ws * self.ws + torch.einsum("bhnc, bhc->bhn", q, torch.sum(k, dim=-1) + self.eps))
192 | # print(tailor_sum.shape)
193 | attn = torch.einsum('bhmn, bhcn->bhmc', k, v)
194 | # print(q.shape, attn.shape)
195 | attn = torch.einsum("bhnm, bhmc->bhcn", q, attn)
196 | # print(attn.shape)
197 | v = torch.einsum("bhcn->bhc", v).unsqueeze(-1)
198 | v = v.expand(B*hh*ww, self.num_heads, C//self.num_heads, self.ws * self.ws)
199 | attn = attn + v
200 | attn = torch.einsum("bhcn, bhn->bhcn", attn, tailor_sum)
201 | attn = rearrange(attn, '(b hh ww) h d (ws1 ws2) -> b (h d) (hh ws1) (ww ws2)',
202 | b=B, h=self.num_heads, d=C // self.num_heads, ws1=self.ws, ws2=self.ws,
203 | hh=Hp // self.ws, ww=Wp // self.ws)
204 | attn = attn[:, :, :H, :W]
205 |
206 | return attn
207 |
208 |
209 | class Block(nn.Module):
210 | def __init__(self, dim=16, num_heads=8, mlp_ratio=4., qkv_bias=False, drop=0.,
211 | drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=16):
212 | super().__init__()
213 | self.norm1 = norm_layer(dim)
214 | self.ws = window_size
215 | self.attn = LWMSA(dim, num_heads=num_heads, qkv_bias=qkv_bias,
216 | window_size=window_size)
217 |
218 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
219 | mlp_hidden_dim = int(dim * mlp_ratio)
220 | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
221 |
222 | def forward(self, x):
223 | x = x + self.drop_path(self.attn(self.norm1(x)))
224 | x = x + self.drop_path(self.mlp(x))
225 | return x
226 |
227 |
228 | class PatchMerging(nn.Module):
229 | def __init__(self, dim, out_dim, norm_layer=nn.BatchNorm2d, rpe=True):
230 | super().__init__()
231 | self.dim = dim
232 | self.out_dim = out_dim
233 | self.norm = norm_layer(dim)
234 | self.reduction = nn.Conv2d(dim, out_dim, 2, 2, 0, bias=False)
235 | self.rpe = rpe
236 | if self.rpe:
237 | self.proj_rpe = RPE(out_dim)
238 |
239 | def forward(self, x):
240 | x = self.norm(x)
241 | x = self.reduction(x)
242 | if self.rpe:
243 | x = self.proj_rpe(x)
244 | return x
245 |
246 |
247 | class PatchEmbed(nn.Module):
248 | """ Image to Patch Embedding
249 |
250 | Args:
251 | patch_size (int): Patch token size. Default: 4.
252 | in_chans (int): Number of input image channels. Default: 3.
253 | embed_dim (int): Number of linear projection output channels. Default: 96.
254 | norm_layer (nn.Module, optional): Normalization layer. Default: None
255 | """
256 |
257 | def __init__(self, img_size=(256, 256), img_dim=3, embed_dim=96, out_dim=96, patch_size=4, ape=False):
258 | super().__init__()
259 | self.embed_dim = embed_dim
260 |
261 | self.ps = patch_size
262 | self.proj_ps = nn.Conv2d(img_dim, embed_dim, kernel_size=self.ps, stride=self.ps)
263 | self.proj = nn.Sequential(ConvBN(embed_dim, embed_dim, kernel_size=3),
264 | nn.GELU(),
265 | ConvBN(embed_dim, out_dim, kernel_size=3),
266 | nn.GELU())
267 |
268 | # absolute position embedding
269 | self.ape = ape
270 | if self.ape:
271 | h, w = img_size[0] // patch_size, img_size[1] // patch_size
272 | self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, h, w))
273 | trunc_normal_(self.absolute_pos_embed, std=.02)
274 |
275 | def pad(self, x, ps):
276 | _, _, H, W = x.size()
277 | if W % ps != 0:
278 | x = F.pad(x, (0, ps - W % ps))
279 | if H % ps != 0:
280 | x = F.pad(x, (0, 0, 0, ps - H % ps))
281 | return x
282 |
283 | def forward(self, x):
284 | x = self.pad(x, self.ps)
285 | _, _, Hp, Wp = x.size()
286 | x = self.proj_ps(x)
287 | x = self.proj(x)
288 |
289 | if self.ape:
290 | absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
291 | size=(Hp // self.ps, Wp // self.ps),
292 | mode='bicubic', align_corners=False)
293 | x = x + absolute_pos_embed
294 |
295 | return x
296 |
297 |
298 | class StageModule(nn.Module):
299 | def __init__(self, num_layers=2, in_dim=96, out_dim=96, num_heads=8, mlp_ratio=4., qkv_bias=False, use_pm=False,
300 | drop=0., attn_drop=0., drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=-1, shuffle=False):
301 | super().__init__()
302 | self.use_pm = use_pm
303 | if self.use_pm:
304 | self.patch_partition = PatchMerging(in_dim, out_dim)
305 |
306 | self.layers = nn.ModuleList([])
307 | for idx in range(num_layers):
308 | self.layers.append(Block(dim=out_dim, num_heads=num_heads, mlp_ratio=mlp_ratio,
309 | qkv_bias=qkv_bias, drop=drop,
310 | drop_path=drop_path, act_layer=act_layer, window_size=window_size,
311 | norm_layer=norm_layer))
312 |
313 | def forward(self, x):
314 | if self.use_pm:
315 | x = self.patch_partition(x)
316 |
317 | for block in self.layers:
318 | x = block(x)
319 |
320 | return x
321 |
322 |
323 | class BuildFormer(nn.Module):
324 | def __init__(self, img_dim=3, mlp_ratio=4., window_sizes=[16, 16, 16, 16],
325 | layers=[2, 2, 2, 2], num_heads=[4, 8, 16, 32], dims=[64, 128, 256, 512],
326 | qkv_bias=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3):
327 | super().__init__()
328 |
329 | self.stem = Stem(img_dim=img_dim, out_dim=dims[0], rpe=True)
330 | # self.stem = PatchEmbed(img_size=img_size, img_dim=img_dim, embed_dim=dims[0], out_dim=dims[0], ape=True)
331 | self.encoder_channels = dims
332 |
333 | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, 4)] # stochastic depth decay rule
334 | self.stage1 = StageModule(layers[0], dims[0], dims[0], num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
335 | use_pm=False, drop=drop_rate, attn_drop=attn_drop_rate,
336 | drop_path=dpr[0], window_size=window_sizes[0])
337 | self.stage2 = StageModule(layers[1], dims[0], dims[1], num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
338 | use_pm=True, drop=drop_rate, attn_drop=attn_drop_rate,
339 | drop_path=dpr[1], window_size=window_sizes[1])
340 | self.stage3 = StageModule(layers[2], dims[1], dims[2], num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
341 | use_pm=True, drop=drop_rate, attn_drop=attn_drop_rate,
342 | drop_path=dpr[2], window_size=window_sizes[2])
343 | self.stage4 = StageModule(layers[3], dims[2], dims[3], num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
344 | use_pm=True, drop=drop_rate, attn_drop=attn_drop_rate,
345 | drop_path=dpr[3], window_size=window_sizes[3])
346 |
347 | def forward(self, x):
348 | features = []
349 | x = self.stem(x)
350 | x = self.stage1(x)
351 | features.append(x)
352 | x = self.stage2(x)
353 | features.append(x)
354 | x = self.stage3(x)
355 | features.append(x)
356 | x = self.stage4(x)
357 | features.append(x)
358 |
359 | return features
360 |
361 |
362 | class DetailPath(nn.Module):
363 | def __init__(self, embed_dim=64):
364 | super().__init__()
365 | dim1 = embed_dim // 4
366 | dim2 = embed_dim // 2
367 | self.dp1 = nn.Sequential(ConvBNAct(3, dim1, stride=2, inplace=False),
368 | ConvBNAct(dim1, dim1, stride=1, inplace=False))
369 | self.dp2 = nn.Sequential(ConvBNAct(dim1, dim2, stride=2, inplace=False),
370 | ConvBNAct(dim2, dim2, stride=1, inplace=False))
371 | self.dp3 = nn.Sequential(ConvBNAct(dim2, embed_dim, stride=1, inplace=False),
372 | ConvBNAct(embed_dim, embed_dim, stride=1, inplace=False))
373 |
374 | def forward(self, x):
375 | feats = self.dp1(x)
376 | feats = self.dp2(feats)
377 | feats = self.dp3(feats)
378 |
379 | return feats
380 |
381 |
382 | class FPN(nn.Module):
383 | def __init__(self, encoder_channels=(64, 128, 256, 512), decoder_channels=256):
384 | super().__init__()
385 | self.pre_conv0 = Conv(encoder_channels[0], decoder_channels, kernel_size=1)
386 | self.pre_conv1 = Conv(encoder_channels[1], decoder_channels, kernel_size=1)
387 | self.pre_conv2 = Conv(encoder_channels[2], decoder_channels, kernel_size=1)
388 | self.pre_conv3 = Conv(encoder_channels[3], decoder_channels, kernel_size=1)
389 |
390 | self.post_conv3 = nn.Sequential(ConvBNAct(decoder_channels, decoder_channels),
391 | nn.UpsamplingBilinear2d(scale_factor=2),
392 | ConvBNAct(decoder_channels, decoder_channels),
393 | nn.UpsamplingBilinear2d(scale_factor=2),
394 | ConvBNAct(decoder_channels, decoder_channels))
395 |
396 | self.post_conv2 = nn.Sequential(ConvBNAct(decoder_channels, decoder_channels),
397 | nn.UpsamplingBilinear2d(scale_factor=2),
398 | ConvBNAct(decoder_channels, decoder_channels))
399 |
400 | self.post_conv1 = ConvBNAct(decoder_channels, decoder_channels)
401 | self.post_conv0 = ConvBNAct(decoder_channels, decoder_channels)
402 |
403 | def upsample_add(self, up, x):
404 | up = F.interpolate(up, x.size()[-2:], mode='nearest')
405 | up = up + x
406 | return up
407 |
408 | def forward(self, x0, x1, x2, x3):
409 | x3 = self.pre_conv3(x3)
410 | x2 = self.pre_conv2(x2)
411 | x1 = self.pre_conv1(x1)
412 | x0 = self.pre_conv0(x0)
413 |
414 | x2 = self.upsample_add(x3, x2)
415 | x1 = self.upsample_add(x2, x1)
416 | x0 = self.upsample_add(x1, x0)
417 |
418 | x3 = self.post_conv3(x3)
419 | x3 = F.interpolate(x3, x0.size()[-2:], mode='bilinear', align_corners=False)
420 |
421 | x2 = self.post_conv2(x2)
422 | x2 = F.interpolate(x2, x0.size()[-2:], mode='bilinear', align_corners=False)
423 |
424 | x1 = self.post_conv1(x1)
425 | x1 = F.interpolate(x1, x0.size()[-2:], mode='bilinear', align_corners=False)
426 |
427 | x0 = self.post_conv0(x0)
428 |
429 | x0 = x3 + x2 + x1 + x0
430 |
431 | return x0
432 |
433 |
434 | class BuildFormerSegDP(nn.Module):
435 | def __init__(self,
436 | decoder_channels=384,
437 | dims=[96, 192, 384, 768],
438 | window_sizes=[16, 16, 16, 16],
439 | num_classes=2):
440 | super().__init__()
441 | self.backbone = BuildFormer(layers=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
442 | dims=dims, window_sizes=window_sizes)
443 |
444 | encoder_channels = self.backbone.encoder_channels
445 | self.dp = DetailPath(embed_dim=decoder_channels)
446 |
447 | self.fpn = FPN(encoder_channels, decoder_channels)
448 | self.head = nn.Sequential(ConvBNAct(decoder_channels, encoder_channels[0]),
449 | nn.Dropout(0.1),
450 | nn.UpsamplingBilinear2d(scale_factor=2),
451 | Conv(encoder_channels[0], num_classes, kernel_size=1))
452 |
453 | self.apply(self._init_weights)
454 |
455 | def _init_weights(self, m):
456 | if isinstance(m, nn.Conv2d):
457 | trunc_normal_(m.weight, std=0.02)
458 | elif isinstance(m, nn.Linear):
459 | trunc_normal_(m.weight, std=0.02)
460 | if m.bias is not None:
461 | nn.init.constant_(m.bias, 0)
462 | elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
463 | nn.init.constant_(m.weight, 1.0)
464 | nn.init.constant_(m.bias, 0)
465 |
466 | def forward(self, x):
467 | sz = x.size()[-2:]
468 | dp = self.dp(x)
469 | x, x2, x3, x4 = self.backbone(x)
470 | x = self.fpn(x, x2, x3, x4)
471 | x = x + dp
472 | x = self.head(x)
473 | x = F.interpolate(x, sz, mode='bilinear', align_corners=False)
474 | return x
--------------------------------------------------------------------------------
/geoseg/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/WangLibo1995/BuildFormer/c20f15805694fa568b8ac531ba51bc5e9c5a29c6/geoseg/models/__init__.py
--------------------------------------------------------------------------------
/inria_patch_split.py:
--------------------------------------------------------------------------------
1 | import glob
2 | import os
3 | import numpy as np
4 | import cv2
5 | import multiprocessing.pool as mpp
6 | import multiprocessing as mp
7 | import time
8 | import argparse
9 | import torch
10 | import albumentations as albu
11 |
12 | import random
13 |
14 | SEED = 42
15 |
16 |
17 | def seed_everything(seed):
18 | random.seed(seed)
19 | os.environ['PYTHONHASHSEED'] = str(seed)
20 | np.random.seed(seed)
21 | torch.manual_seed(seed)
22 | torch.cuda.manual_seed(seed)
23 | torch.backends.cudnn.deterministic = True
24 | torch.backends.cudnn.benchmark = True
25 |
26 |
27 | Building = np.array([255, 255, 255]) # label 0
28 | Clutter = np.array([0, 0, 0]) # label 1
29 | num_classes = 2
30 |
31 |
32 | # split huge RS image to small patches
33 | def parse_args():
34 | parser = argparse.ArgumentParser()
35 | parser.add_argument("--input-img-dir", default="data/AerialImageDataset/train/train_images")
36 | parser.add_argument("--input-mask-dir", default="data/AerialImageDataset/train/train_masks")
37 | parser.add_argument("--output-img-dir", default="data/AerialImageDataset/train/train/images")
38 | parser.add_argument("--output-mask-dir", default="data/AerialImageDataset/train/train/masks")
39 | parser.add_argument("--mode", type=str, default='train')
40 | parser.add_argument("--split-size-h", type=int, default=512)
41 | parser.add_argument("--split-size-w", type=int, default=512)
42 | parser.add_argument("--stride-h", type=int, default=512)
43 | parser.add_argument("--stride-w", type=int, default=512)
44 | return parser.parse_args()
45 |
46 |
47 | def label2rgb(mask):
48 | h, w = mask.shape[0], mask.shape[1]
49 | mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
50 | mask_convert = mask[np.newaxis, :, :]
51 | mask_rgb[np.all(mask_convert == 0, axis=0)] = Building
52 | mask_rgb[np.all(mask_convert == 1, axis=0)] = Clutter
53 |
54 | return mask_rgb
55 |
56 |
57 | def rgb2label(label):
58 | label_seg = np.zeros(label.shape[:2], dtype=np.uint8)
59 | label_seg[np.all(label == Building, axis=-1)] = 0
60 | label_seg[np.all(label == Clutter, axis=-1)] = 1
61 |
62 | return label_seg
63 |
64 |
65 | def image_augment(image, mask, mode='train'):
66 | image_list = []
67 | mask_list = []
68 | image_width, image_height = image.shape[1], image.shape[0]
69 | mask_width, mask_height = mask.shape[1], mask.shape[0]
70 | assert image_height == mask_height and image_width == mask_width
71 | if mode == 'train':
72 | # train_transform = [
73 | # # albu.HorizontalFlip(p=0.5),
74 | # # albu.VerticalFlip(p=0.5),
75 | # # albu.RandomRotate90(p=0.5),
76 | # # albu.RandomSizedCrop(min_max_height=(image_height//2, image_height),
77 | # # width=image_width, height=image_height, p=0.15),
78 | # # albu.RandomShadow(num_shadows_lower=2, num_shadows_upper=3,
79 | # # shadow_dimension=3, shadow_roi=(0, 0.5, 1, 1), p=0.1),
80 | # # albu.GaussianBlur(p=0.01),
81 | # albu.OneOf([
82 | # albu.RandomBrightnessContrast(brightness_limit=0.25, contrast_limit=0.25),
83 | # albu.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=35, val_shift_limit=25)
84 | # ], p=0.15)
85 | # ]
86 | # aug = albu.Compose(train_transform)(image=image.copy(), mask=mask.copy())
87 |
88 | image_list_train = [image]
89 | mask_list_train = [mask]
90 | for i in range(len(image_list_train)):
91 | mask_tmp = rgb2label(mask_list_train[i])
92 | image_list.append(image_list_train[i])
93 | mask_list.append(mask_tmp)
94 | else:
95 | mask = rgb2label(mask.copy())
96 | image_list.append(image)
97 | mask_list.append(mask)
98 | return image_list, mask_list
99 |
100 |
101 | def padifneeded(image, mask, patch_size, stride):
102 |
103 | oh, ow = image.shape[0], image.shape[1]
104 | padh, padw = 0, 0
105 | while (oh + padh -patch_size[0]) % stride[0] != 0:
106 | padh = padh + 1
107 | while (ow + padw -patch_size[1]) % stride[1] != 0:
108 | padw = padw + 1
109 |
110 | h, w = oh + padh, ow + padw
111 |
112 | pad = albu.PadIfNeeded(min_height=h, min_width=w)(image=image, mask=mask)
113 | img_pad, mask_pad = pad['image'], pad['mask']
114 |
115 | # print(img_pad.shape)
116 | return img_pad, mask_pad
117 |
118 |
119 | def patch_format(inp):
120 | (img_path, mask_path, imgs_output_dir, masks_output_dir, mode, split_size, stride) = inp
121 | if mode == 'val':
122 | gt_path = masks_output_dir + "_gt"
123 | if not os.path.exists(gt_path):
124 | os.makedirs(gt_path)
125 |
126 | img = cv2.imread(img_path, cv2.IMREAD_COLOR)
127 | mask = cv2.imread(mask_path, cv2.IMREAD_COLOR)
128 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
129 | mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB)
130 | id = os.path.splitext(os.path.basename(img_path))[0]
131 | assert img.shape == mask.shape
132 |
133 | img, mask = padifneeded(img.copy(), mask.copy(), split_size, stride)
134 |
135 | image_list, mask_list = image_augment(image=img.copy(), mask=mask.copy(), mode=mode)
136 | assert len(image_list) == len(mask_list)
137 | for m in range(len(image_list)):
138 | k = 0
139 | img = image_list[m]
140 | mask = mask_list[m]
141 | assert img.shape[0] == mask.shape[0] and img.shape[1] == mask.shape[1]
142 | for y in range(0, img.shape[0], stride[0]):
143 | for x in range(0, img.shape[1], stride[1]):
144 | img_tile_cut = img[y:y + split_size[0], x:x + split_size[1]]
145 | mask_tile_cut = mask[y:y + split_size[0], x:x + split_size[1]]
146 | img_tile, mask_tile = img_tile_cut, mask_tile_cut
147 |
148 | if img_tile.shape[0] == split_size[0] and img_tile.shape[1] == split_size[1] \
149 | and mask_tile.shape[0] == split_size[0] and mask_tile.shape[1] == split_size[1]:
150 | bins = np.array(range(num_classes + 1))
151 | class_pixel_counts, _ = np.histogram(mask_tile, bins=bins)
152 | cf = class_pixel_counts / (mask_tile.shape[0] * mask_tile.shape[1])
153 | if cf[0] > 0.05:
154 | if mode == 'train':
155 | img_tile = cv2.cvtColor(img_tile, cv2.COLOR_RGB2BGR)
156 | out_img_path = os.path.join(imgs_output_dir, "{}_{}_{}.png".format(id, m, k))
157 | cv2.imwrite(out_img_path, img_tile)
158 |
159 | out_mask_path = os.path.join(masks_output_dir, "{}_{}_{}.png".format(id, m, k))
160 | cv2.imwrite(out_mask_path, mask_tile)
161 | else:
162 | img_tile = cv2.cvtColor(img_tile, cv2.COLOR_RGB2BGR)
163 | out_img_path = os.path.join(imgs_output_dir, "{}_{}_{}.png".format(id, m, k))
164 | cv2.imwrite(out_img_path, img_tile)
165 |
166 | out_mask_path = os.path.join(masks_output_dir, "{}_{}_{}.png".format(id, m, k))
167 | cv2.imwrite(out_mask_path, mask_tile)
168 |
169 | out_mask_path_gt = os.path.join(gt_path, "{}_{}_{}.png".format(id, m, k))
170 | cv2.imwrite(out_mask_path_gt, label2rgb(mask_tile))
171 |
172 | k += 1
173 |
174 |
175 | if __name__ == "__main__":
176 | seed_everything(SEED)
177 | args = parse_args()
178 | input_img_dir = args.input_img_dir
179 | input_mask_dir = args.input_mask_dir
180 | img_paths = glob.glob(os.path.join(input_img_dir, "*.tif"))
181 | mask_paths = glob.glob(os.path.join(input_mask_dir, "*.tif"))
182 | img_paths.sort()
183 | mask_paths.sort()
184 |
185 | imgs_output_dir = args.output_img_dir
186 | masks_output_dir = args.output_mask_dir
187 |
188 | mode = args.mode
189 |
190 | split_size_h = args.split_size_h
191 | split_size_w = args.split_size_w
192 | split_size = (split_size_h, split_size_w)
193 | stride_h = args.stride_h
194 | stride_w = args.stride_w
195 | stride = (stride_h, stride_w)
196 |
197 | if not os.path.exists(imgs_output_dir):
198 | os.makedirs(imgs_output_dir)
199 | if not os.path.exists(masks_output_dir):
200 | os.makedirs(masks_output_dir)
201 |
202 | inp = [(img_path, mask_path, imgs_output_dir, masks_output_dir, mode, split_size, stride)
203 | for img_path, mask_path in zip(img_paths, mask_paths)]
204 |
205 | t0 = time.time()
206 | mpp.Pool(processes=mp.cpu_count()).map(patch_format, inp)
207 | t1 = time.time()
208 | split_time = t1 - t0
209 | print('images spliting spends: {} s'.format(split_time))
210 |
211 |
212 |
--------------------------------------------------------------------------------
/mass_patch_split.py:
--------------------------------------------------------------------------------
1 | import glob
2 | import os
3 | import numpy as np
4 | import cv2
5 | import multiprocessing.pool as mpp
6 | import multiprocessing as mp
7 | import time
8 | import argparse
9 | import torch
10 | import albumentations as albu
11 |
12 | import random
13 |
14 | SEED = 42
15 |
16 |
17 | def seed_everything(seed):
18 | random.seed(seed)
19 | os.environ['PYTHONHASHSEED'] = str(seed)
20 | np.random.seed(seed)
21 | torch.manual_seed(seed)
22 | torch.cuda.manual_seed(seed)
23 | torch.backends.cudnn.deterministic = True
24 | torch.backends.cudnn.benchmark = True
25 |
26 |
27 | Building = np.array([255, 255, 255]) # label 0
28 | Clutter = np.array([0, 0, 0]) # label 1
29 | num_classes = 2
30 |
31 |
32 | # split huge RS image to small patches
33 | def parse_args():
34 | parser = argparse.ArgumentParser()
35 | parser.add_argument("--input-img-dir", default="data/mass_build/png/train")
36 | parser.add_argument("--input-mask-dir", default="data/mass_build/png/train_labels")
37 | parser.add_argument("--output-img-dir", default="data/mass_build/png/train_images")
38 | parser.add_argument("--output-mask-dir", default="data/mass_build/png/train_masks")
39 | parser.add_argument("--mode", type=str, default='train')
40 |
41 | return parser.parse_args()
42 |
43 |
44 | def label2rgb(mask):
45 | h, w = mask.shape[0], mask.shape[1]
46 | mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
47 | mask_convert = mask[np.newaxis, :, :]
48 | mask_rgb[np.all(mask_convert == 0, axis=0)] = Building
49 | mask_rgb[np.all(mask_convert == 1, axis=0)] = Clutter
50 |
51 | return mask_rgb
52 |
53 |
54 | def rgb2label(label):
55 | label_seg = np.zeros(label.shape[:2], dtype=np.uint8)
56 | label_seg[np.all(label == Building, axis=-1)] = 0
57 | label_seg[np.all(label == Clutter, axis=-1)] = 1
58 |
59 | return label_seg
60 |
61 |
62 | def image_augment(image, mask, mode='train'):
63 | image_list = []
64 | mask_list = []
65 | image_width, image_height = image.shape[1], image.shape[0]
66 | mask_width, mask_height = mask.shape[1], mask.shape[0]
67 | assert image_height == mask_height and image_width == mask_width
68 | if mode == 'train':
69 | hflip = albu.HorizontalFlip(p=1)(image=image.copy(), mask=mask.copy())
70 | img_h, mask_h = hflip['image'], hflip['mask']
71 |
72 | vflip = albu.VerticalFlip(p=1)(image=image.copy(), mask=mask.copy())
73 | img_v, mask_v = vflip['image'], vflip['mask']
74 |
75 | image_list_train = [image, img_h, img_v]
76 | mask_list_train = [mask, mask_h, mask_v]
77 | for i in range(len(image_list_train)):
78 | mask_tmp = rgb2label(mask_list_train[i])
79 | image_list.append(image_list_train[i])
80 | mask_list.append(mask_tmp)
81 | else:
82 | mask = rgb2label(mask.copy())
83 | image_list.append(image)
84 | mask_list.append(mask)
85 | return image_list, mask_list
86 |
87 |
88 | def patch_format(inp):
89 | (img_path, mask_path, imgs_output_dir, masks_output_dir, mode) = inp
90 |
91 | img = cv2.imread(img_path, cv2.IMREAD_COLOR)
92 | mask = cv2.imread(mask_path, cv2.IMREAD_COLOR)
93 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
94 | mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB)
95 | id = os.path.splitext(os.path.basename(img_path))[0]
96 | assert img.shape == mask.shape
97 |
98 | if mode == 'train':
99 | mask_tmp = np.zeros(mask.shape[:2], dtype=np.uint8)
100 | mask_tmp[np.all(img == [255, 255, 255], axis=-1)] = 1
101 | mask_c = mask_tmp[np.newaxis, :, :]
102 | mask[np.all(mask_c == 1, axis=0)] = [0, 0, 0]
103 | img[np.all(img == [255, 255, 255], axis=-1)] = [0, 0, 0]
104 |
105 | image_list, mask_list = image_augment(image=img.copy(), mask=mask.copy(), mode=mode)
106 | assert len(image_list) == len(mask_list)
107 | for m in range(len(image_list)):
108 | img = image_list[m]
109 | mask = mask_list[m]
110 | img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
111 | out_img_path = os.path.join(imgs_output_dir, "{}_{}.png".format(id, m))
112 | cv2.imwrite(out_img_path, img)
113 |
114 | out_mask_path = os.path.join(masks_output_dir, "{}_{}.png".format(id, m))
115 | cv2.imwrite(out_mask_path, mask)
116 |
117 |
118 | if __name__ == "__main__":
119 | seed_everything(SEED)
120 | args = parse_args()
121 | input_img_dir = args.input_img_dir
122 | input_mask_dir = args.input_mask_dir
123 | img_paths = glob.glob(os.path.join(input_img_dir, "*.png"))
124 | mask_paths = glob.glob(os.path.join(input_mask_dir, "*.png"))
125 | img_paths.sort()
126 | mask_paths.sort()
127 |
128 | imgs_output_dir = args.output_img_dir
129 | masks_output_dir = args.output_mask_dir
130 |
131 | mode = args.mode
132 |
133 | if not os.path.exists(imgs_output_dir):
134 | os.makedirs(imgs_output_dir)
135 | if not os.path.exists(masks_output_dir):
136 | os.makedirs(masks_output_dir)
137 |
138 | inp = [(img_path, mask_path, imgs_output_dir, masks_output_dir, mode)
139 | for img_path, mask_path in zip(img_paths, mask_paths)]
140 |
141 | t0 = time.time()
142 | mpp.Pool(processes=mp.cpu_count()).map(patch_format, inp)
143 | t1 = time.time()
144 | split_time = t1 - t0
145 | print('images spliting spends: {} s'.format(split_time))
146 |
147 |
148 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | timm
2 | catalyst==20.09
3 | pytorch-lightning==1.5.9
4 | albumentations==1.1.0
5 | ttach
6 | numpy
7 | tqdm
8 | opencv-python
9 | scipy
10 | matplotlib
11 | einops
12 | addict
--------------------------------------------------------------------------------
/tools/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/WangLibo1995/BuildFormer/c20f15805694fa568b8ac531ba51bc5e9c5a29c6/tools/__init__.py
--------------------------------------------------------------------------------
/tools/cfg.py:
--------------------------------------------------------------------------------
1 | import pydoc
2 | import sys
3 | from importlib import import_module
4 | from pathlib import Path
5 | from typing import Union
6 |
7 | from addict import Dict
8 |
9 |
10 | class ConfigDict(Dict):
11 | def __missing__(self, name):
12 | raise KeyError(name)
13 |
14 | def __getattr__(self, name):
15 | try:
16 | value = super().__getattr__(name)
17 | except KeyError:
18 | ex = AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
19 | else:
20 | return value
21 | raise ex
22 |
23 |
24 | def py2dict(file_path: Union[str, Path]) -> dict:
25 | """Convert python file to dictionary.
26 | The main use - config parser.
27 | file:
28 | ```
29 | a = 1
30 | b = 3
31 | c = range(10)
32 | ```
33 | will be converted to
34 | {'a':1,
35 | 'b':3,
36 | 'c': range(10)
37 | }
38 | Args:
39 | file_path: path to the original python file.
40 | Returns: {key: value}, where key - all variables defined in the file and value is their value.
41 | """
42 | file_path = Path(file_path).absolute()
43 |
44 | if file_path.suffix != ".py":
45 | raise TypeError(f"Only Py file can be parsed, but got {file_path.name} instead.")
46 |
47 | if not file_path.exists():
48 | raise FileExistsError(f"There is no file at the path {file_path}")
49 |
50 | module_name = file_path.stem
51 |
52 | if "." in module_name:
53 | raise ValueError("Dots are not allowed in config file path.")
54 |
55 | config_dir = str(file_path.parent)
56 |
57 | sys.path.insert(0, config_dir)
58 |
59 | mod = import_module(module_name)
60 | sys.path.pop(0)
61 | cfg_dict = {name: value for name, value in mod.__dict__.items() if not name.startswith("__")}
62 |
63 | return cfg_dict
64 |
65 |
66 | def py2cfg(file_path: Union[str, Path]) -> ConfigDict:
67 | cfg_dict = py2dict(file_path)
68 |
69 | return ConfigDict(cfg_dict)
70 |
71 |
72 | def object_from_dict(d, parent=None, **default_kwargs):
73 | kwargs = d.copy()
74 | object_type = kwargs.pop("type")
75 | for name, value in default_kwargs.items():
76 | kwargs.setdefault(name, value)
77 |
78 | if parent is not None:
79 | return getattr(parent, object_type)(**kwargs) # skipcq PTC-W0034
80 |
81 | return pydoc.locate(object_type)(**kwargs)
--------------------------------------------------------------------------------
/tools/metric.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | class Evaluator(object):
5 | def __init__(self, num_class):
6 | self.num_class = num_class
7 | self.confusion_matrix = np.zeros((self.num_class,) * 2)
8 | self.eps = 1e-8
9 |
10 | def get_tp_fp_tn_fn(self):
11 | tp = np.diag(self.confusion_matrix)
12 | fp = self.confusion_matrix.sum(axis=0) - np.diag(self.confusion_matrix)
13 | fn = self.confusion_matrix.sum(axis=1) - np.diag(self.confusion_matrix)
14 | tn = np.diag(self.confusion_matrix).sum() - np.diag(self.confusion_matrix)
15 | return tp, fp, tn, fn
16 |
17 | def Precision(self):
18 | tp, fp, tn, fn = self.get_tp_fp_tn_fn()
19 | precision = tp / (tp + fp)
20 | return precision
21 |
22 | def Recall(self):
23 | tp, fp, tn, fn = self.get_tp_fp_tn_fn()
24 | recall = tp / (tp + fn)
25 | return recall
26 |
27 | def F1(self):
28 | tp, fp, tn, fn = self.get_tp_fp_tn_fn()
29 | Precision = tp / (tp + fp)
30 | Recall = tp / (tp + fn)
31 | F1 = (2.0 * Precision * Recall) / (Precision + Recall)
32 | return F1
33 |
34 | def OA(self):
35 | OA = np.diag(self.confusion_matrix).sum() / (self.confusion_matrix.sum() + self.eps)
36 | return OA
37 |
38 | def Intersection_over_Union(self):
39 | tp, fp, tn, fn = self.get_tp_fp_tn_fn()
40 | IoU = tp / (tp + fn + fp)
41 | return IoU
42 |
43 | def Dice(self):
44 | tp, fp, tn, fn = self.get_tp_fp_tn_fn()
45 | Dice = 2 * tp / ((tp + fp) + (tp + fn))
46 | return Dice
47 |
48 | def Pixel_Accuracy_Class(self):
49 | # TP TP+FP
50 | Acc = np.diag(self.confusion_matrix) / (self.confusion_matrix.sum(axis=0) + self.eps)
51 | return Acc
52 |
53 | def Frequency_Weighted_Intersection_over_Union(self):
54 | freq = np.sum(self.confusion_matrix, axis=1) / (np.sum(self.confusion_matrix) + self.eps)
55 | iou = self.Intersection_over_Union()
56 | FWIoU = (freq[freq > 0] * iou[freq > 0]).sum()
57 | return FWIoU
58 |
59 | def _generate_matrix(self, gt_image, pre_image):
60 | mask = (gt_image >= 0) & (gt_image < self.num_class)
61 | label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]
62 | count = np.bincount(label, minlength=self.num_class ** 2)
63 | confusion_matrix = count.reshape(self.num_class, self.num_class)
64 | return confusion_matrix
65 |
66 | def add_batch(self, gt_image, pre_image):
67 | assert gt_image.shape == pre_image.shape, 'pre_image shape {}, gt_image shape {}'.format(pre_image.shape,
68 | gt_image.shape)
69 | self.confusion_matrix += self._generate_matrix(gt_image, pre_image)
70 |
71 | def reset(self):
72 | self.confusion_matrix = np.zeros((self.num_class,) * 2)
73 |
74 |
75 | if __name__ == '__main__':
76 |
77 | gt = np.array([[0, 2, 1],
78 | [1, 2, 1],
79 | [1, 0, 1]])
80 |
81 | pre = np.array([[0, 1, 1],
82 | [2, 0, 1],
83 | [1, 1, 1]])
84 |
85 | eval = Evaluator(num_class=3)
86 | eval.add_batch(gt, pre)
87 | print(eval.confusion_matrix)
88 | print(eval.get_tp_fp_tn_fn())
89 | print(eval.Precision())
90 | print(eval.Recall())
91 | print(eval.Intersection_over_Union())
92 | print(eval.OA())
93 | print(eval.F1())
94 | print(eval.Frequency_Weighted_Intersection_over_Union())
95 |
--------------------------------------------------------------------------------
/train_supervision.py:
--------------------------------------------------------------------------------
1 | import pytorch_lightning as pl
2 | from pytorch_lightning.callbacks import ModelCheckpoint
3 | from tools.cfg import py2cfg
4 | import os
5 | import torch
6 | from torch import nn
7 | import cv2
8 | import numpy as np
9 | import argparse
10 | from pathlib import Path
11 | from tools.metric import Evaluator
12 | from pytorch_lightning.loggers import CSVLogger
13 | import random
14 |
15 |
16 | def seed_everything(seed):
17 | random.seed(seed)
18 | os.environ['PYTHONHASHSEED'] = str(seed)
19 | np.random.seed(seed)
20 | torch.manual_seed(seed)
21 | torch.cuda.manual_seed(seed)
22 | torch.backends.cudnn.deterministic = True
23 | torch.backends.cudnn.benchmark = True
24 |
25 |
26 | def get_args():
27 | parser = argparse.ArgumentParser()
28 | arg = parser.add_argument
29 | arg("-c", "--config_path", type=Path, help="Path to the config.", required=True)
30 | return parser.parse_args()
31 |
32 |
33 | class Supervision_Train(pl.LightningModule):
34 | def __init__(self, config):
35 | super().__init__()
36 | self.config = config
37 | self.net = config.net
38 | self.automatic_optimization = False
39 |
40 | self.loss = config.loss
41 |
42 | self.metrics_train = Evaluator(num_class=config.num_classes)
43 | self.metrics_val = Evaluator(num_class=config.num_classes)
44 |
45 | def forward(self, x):
46 | # only net is used in the prediction/inference
47 | seg_pre = self.net(x)
48 | return seg_pre
49 |
50 | def training_step(self, batch, batch_idx):
51 | img, mask = batch['img'], batch['gt_semantic_seg']
52 |
53 | prediction = self.net(img)
54 | loss = self.loss(prediction, mask)
55 |
56 | if self.config.use_aux_loss:
57 | pre_mask = nn.Softmax(dim=1)(prediction[0])
58 | else:
59 | pre_mask = nn.Softmax(dim=1)(prediction)
60 |
61 | pre_mask = pre_mask.argmax(dim=1)
62 | for i in range(mask.shape[0]):
63 | self.metrics_train.add_batch(mask[i].cpu().numpy(), pre_mask[i].cpu().numpy())
64 |
65 | # supervision stage
66 | opt = self.optimizers(use_pl_optimizer=False)
67 | self.manual_backward(loss)
68 | if (batch_idx + 1) % self.config.accumulate_n == 0:
69 | opt.step()
70 | opt.zero_grad()
71 |
72 | sch = self.lr_schedulers()
73 | if self.trainer.is_last_batch and (self.trainer.current_epoch + 1) % 1 == 0:
74 | sch.step()
75 |
76 | return {"loss": loss}
77 |
78 | def training_epoch_end(self, outputs):
79 | if 'vaihingen' in self.config.log_name:
80 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
81 | F1 = np.nanmean(self.metrics_train.F1()[:-1])
82 | elif 'potsdam' in self.config.log_name:
83 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
84 | F1 = np.nanmean(self.metrics_train.F1()[:-1])
85 | elif 'whubuilding' in self.config.log_name:
86 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
87 | F1 = np.nanmean(self.metrics_train.F1()[:-1])
88 | elif 'massbuilding' in self.config.log_name:
89 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
90 | F1 = np.nanmean(self.metrics_train.F1()[:-1])
91 | elif 'inriabuilding' in self.config.log_name:
92 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
93 | F1 = np.nanmean(self.metrics_train.F1()[:-1])
94 | else:
95 | mIoU = np.nanmean(self.metrics_train.Intersection_over_Union())
96 | F1 = np.nanmean(self.metrics_train.F1())
97 |
98 | OA = np.nanmean(self.metrics_train.OA())
99 | iou_per_class = self.metrics_train.Intersection_over_Union()
100 | eval_value = {'mIoU': mIoU,
101 | 'F1': F1,
102 | 'OA': OA}
103 | print('train:', eval_value)
104 |
105 | iou_value = {}
106 | for class_name, iou in zip(self.config.classes, iou_per_class):
107 | iou_value[class_name] = iou
108 | print(iou_value)
109 | self.metrics_train.reset()
110 | loss = torch.stack([x["loss"] for x in outputs]).mean()
111 | log_dict = {"train_loss": loss, 'train_mIoU': mIoU, 'train_F1': F1, 'train_OA': OA}
112 | self.log_dict(log_dict, prog_bar=True)
113 |
114 | def validation_step(self, batch, batch_idx):
115 | img, mask = batch['img'], batch['gt_semantic_seg']
116 | prediction = self.forward(img)
117 | pre_mask = nn.Softmax(dim=1)(prediction)
118 | pre_mask = pre_mask.argmax(dim=1)
119 | for i in range(mask.shape[0]):
120 | self.metrics_val.add_batch(mask[i].cpu().numpy(), pre_mask[i].cpu().numpy())
121 |
122 | loss_val = self.loss(prediction, mask)
123 | return {"loss_val": loss_val}
124 |
125 | def validation_epoch_end(self, outputs):
126 | if 'vaihingen' in self.config.log_name:
127 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
128 | F1 = np.nanmean(self.metrics_val.F1()[:-1])
129 | elif 'potsdam' in self.config.log_name:
130 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
131 | F1 = np.nanmean(self.metrics_val.F1()[:-1])
132 | elif 'whubuilding' in self.config.log_name:
133 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
134 | F1 = np.nanmean(self.metrics_val.F1()[:-1])
135 | elif 'massbuilding' in self.config.log_name:
136 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
137 | F1 = np.nanmean(self.metrics_val.F1()[:-1])
138 | elif 'inriabuilding' in self.config.log_name:
139 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
140 | F1 = np.nanmean(self.metrics_val.F1()[:-1])
141 | else:
142 | mIoU = np.nanmean(self.metrics_val.Intersection_over_Union())
143 | F1 = np.nanmean(self.metrics_val.F1())
144 |
145 | OA = np.nanmean(self.metrics_val.OA())
146 | iou_per_class = self.metrics_val.Intersection_over_Union()
147 |
148 | eval_value = {'mIoU': mIoU,
149 | 'F1': F1,
150 | 'OA': OA}
151 | print('val:', eval_value)
152 | iou_value = {}
153 | for class_name, iou in zip(self.config.classes, iou_per_class):
154 | iou_value[class_name] = iou
155 | print(iou_value)
156 |
157 | self.metrics_val.reset()
158 | loss = torch.stack([x["loss_val"] for x in outputs]).mean()
159 | log_dict = {"val_loss": loss, 'val_mIoU': mIoU, 'val_F1': F1, 'val_OA': OA}
160 | self.log_dict(log_dict, prog_bar=True)
161 |
162 | def configure_optimizers(self):
163 | optimizer = self.config.optimizer
164 | lr_scheduler = self.config.lr_scheduler
165 |
166 | return [optimizer], [lr_scheduler]
167 |
168 | def train_dataloader(self):
169 |
170 | return self.config.train_loader
171 |
172 | def val_dataloader(self):
173 |
174 | return self.config.val_loader
175 |
176 |
177 | # training
178 | def main():
179 | args = get_args()
180 | config = py2cfg(args.config_path)
181 | seed_everything(42)
182 |
183 | checkpoint_callback = ModelCheckpoint(save_top_k=config.save_top_k, monitor=config.monitor,
184 | save_last=config.save_last, mode=config.monitor_mode,
185 | dirpath=config.weights_path,
186 | filename=config.weights_name)
187 | logger = CSVLogger('lightning_logs', name=config.log_name)
188 |
189 | model = Supervision_Train(config)
190 | if config.pretrained_ckpt_path:
191 | model = Supervision_Train.load_from_checkpoint(config.pretrained_ckpt_path, config=config)
192 |
193 | trainer = pl.Trainer(devices=config.gpus, max_epochs=config.max_epoch, accelerator='gpu',
194 | check_val_every_n_epoch=config.check_val_every_n_epoch,
195 | callbacks=[checkpoint_callback], strategy=config.strategy,
196 | resume_from_checkpoint=config.resume_ckpt_path, logger=logger)
197 | trainer.fit(model=model)
198 |
199 |
200 | if __name__ == "__main__":
201 | main()
202 |
--------------------------------------------------------------------------------
/whubuilding_mask_convert.py:
--------------------------------------------------------------------------------
1 | import glob
2 | import os
3 | import numpy as np
4 | import cv2
5 | from PIL import Image
6 | import multiprocessing.pool as mpp
7 | import multiprocessing as mp
8 | import time
9 | import argparse
10 | import torch
11 | from torchvision.transforms import (Pad, ColorJitter, Resize, FiveCrop, RandomResizedCrop,
12 | RandomHorizontalFlip, RandomRotation, RandomVerticalFlip)
13 | import random
14 |
15 | SEED = 42
16 |
17 |
18 | def seed_everything(seed):
19 | random.seed(seed)
20 | os.environ['PYTHONHASHSEED'] = str(seed)
21 | np.random.seed(seed)
22 | torch.manual_seed(seed)
23 | torch.cuda.manual_seed(seed)
24 | torch.backends.cudnn.deterministic = True
25 | torch.backends.cudnn.benchmark = True
26 |
27 |
28 | def parse_args():
29 | parser = argparse.ArgumentParser()
30 | parser.add_argument("--mask-dir", default="data/whubuilding/train/masks_origin")
31 | parser.add_argument("--output-mask-dir", default="data/whubuilding/train/masks")
32 | return parser.parse_args()
33 |
34 |
35 | def rgb_to_label(mask):
36 | h, w = mask.shape[0], mask.shape[1]
37 | label = np.zeros(shape=(h, w), dtype=np.uint8)
38 | label[np.all(mask == [0, 0, 0], axis=-1)] = 1
39 | label[np.all(mask == [255, 255, 255], axis=-1)] = 0
40 | return label
41 |
42 |
43 | def patch_format(inp):
44 | (mask_path, masks_output_dir) = inp
45 | # print(mask_path, masks_output_dir)
46 | mask_filename = os.path.splitext(os.path.basename(mask_path))[0]
47 | mask = cv2.imread(mask_path)
48 | label = rgb_to_label(mask)
49 | out_mask_path = os.path.join(masks_output_dir, "{}.png".format(mask_filename))
50 | cv2.imwrite(out_mask_path, label)
51 |
52 |
53 | if __name__ == "__main__":
54 | seed_everything(SEED)
55 | args = parse_args()
56 | masks_dir = args.mask_dir
57 | masks_output_dir = args.output_mask_dir
58 | mask_paths = glob.glob(os.path.join(masks_dir, "*.png"))
59 | # print(mask_paths)
60 |
61 | if not os.path.exists(masks_output_dir):
62 | os.makedirs(masks_output_dir)
63 |
64 | inp = [(mask_path, masks_output_dir) for mask_path in mask_paths]
65 |
66 | t0 = time.time()
67 | mpp.Pool(processes=mp.cpu_count()).map(patch_format, inp)
68 | t1 = time.time()
69 | split_time = t1 - t0
70 | print('images spliting spends: {} s'.format(split_time))
71 |
72 |
73 |
--------------------------------------------------------------------------------