├── .gitignore
├── model
├── video_diffusion
│ ├── __init__.py
│ ├── models
│ │ ├── __init__.py
│ │ ├── unet_3d_blocks_control.py
│ │ ├── attention.py
│ │ ├── resnet.py
│ │ ├── unet_3d_blocks.py
│ │ ├── unet_3d_condition.py
│ │ └── controlnet3d.py
│ └── pipelines
│ │ ├── __init__.py
│ │ ├── pipeline_stable_diffusion_controlnet3d.py
│ │ └── pipeline_st_stable_diffusion.py
└── annotator
│ ├── canny
│ └── __init__.py
│ ├── util.py
│ └── hed
│ └── __init__.py
├── bear.mp4
├── videos
├── bear.mp4
├── canny_a_dog_comicbook.gif
├── depth_a_bear_walking_through_stars.gif
└── hed_a_person_riding_a_horse_jumping_over_an_obstacle_watercolor_style.gif
├── requirements.txt
├── README.md
├── inference.py
└── LICENSE
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
--------------------------------------------------------------------------------
/model/video_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/model/video_diffusion/models/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/model/video_diffusion/pipelines/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/bear.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Weifeng-Chen/control-a-video/HEAD/bear.mp4
--------------------------------------------------------------------------------
/videos/bear.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Weifeng-Chen/control-a-video/HEAD/videos/bear.mp4
--------------------------------------------------------------------------------
/videos/canny_a_dog_comicbook.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Weifeng-Chen/control-a-video/HEAD/videos/canny_a_dog_comicbook.gif
--------------------------------------------------------------------------------
/videos/depth_a_bear_walking_through_stars.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Weifeng-Chen/control-a-video/HEAD/videos/depth_a_bear_walking_through_stars.gif
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | diffusers==0.14.0
2 | transformers==4.27.3
3 | accelerate==0.18.0
4 | xformers==0.0.16
5 | imageio==2.27.0
6 | decord==0.6.0
7 | opencv-python==4.7.0.72
8 | einops==0.6.0
9 |
--------------------------------------------------------------------------------
/model/annotator/canny/__init__.py:
--------------------------------------------------------------------------------
1 | import cv2
2 |
3 |
4 | class CannyDetector:
5 | def __call__(self, img, low_threshold, high_threshold):
6 | return cv2.Canny(img, low_threshold, high_threshold)
7 |
--------------------------------------------------------------------------------
/videos/hed_a_person_riding_a_horse_jumping_over_an_obstacle_watercolor_style.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Weifeng-Chen/control-a-video/HEAD/videos/hed_a_person_riding_a_horse_jumping_over_an_obstacle_watercolor_style.gif
--------------------------------------------------------------------------------
/model/annotator/util.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 | import os
4 |
5 |
6 | annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
7 |
8 |
9 | def HWC3(x):
10 | assert x.dtype == np.uint8
11 | if x.ndim == 2:
12 | x = x[:, :, None]
13 | assert x.ndim == 3
14 | H, W, C = x.shape
15 | assert C == 1 or C == 3 or C == 4
16 | if C == 3:
17 | return x
18 | if C == 1:
19 | return np.concatenate([x, x, x], axis=2)
20 | if C == 4:
21 | color = x[:, :, 0:3].astype(np.float32)
22 | alpha = x[:, :, 3:4].astype(np.float32) / 255.0
23 | y = color * alpha + 255.0 * (1.0 - alpha)
24 | y = y.clip(0, 255).astype(np.uint8)
25 | return y
26 |
27 |
28 | def resize_image(input_image, resolution):
29 | H, W, C = input_image.shape
30 | H = float(H)
31 | W = float(W)
32 | k = float(resolution) / min(H, W)
33 | H *= k
34 | W *= k
35 | H = int(np.round(H / 64.0)) * 64
36 | W = int(np.round(W / 64.0)) * 64
37 | img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
38 | return img
39 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # control-a-video
2 |
3 | Official Implementation of ["Control-A-Video: Controllable Text-to-Video Generation with Diffusion Models"](https://arxiv.org/abs/2305.13840)
4 | - [Project Page](https://controlavideo.github.io)
5 | - [Online Demo](https://huggingface.co/spaces/wf-genius/Control-A-Video)
6 |
7 | Similar to Controlnet, We otain the condition maps from another video, and we support three kinds of control maps at this time.
8 |
9 | |depth control| canny control | hed control |
10 | |:-:|:-:|:-:|
11 | |
a bear walking through stars,artstation |
a dog, comicbook style |
person riding horse, watercolor|
12 |
13 |
14 | # Setup
15 |
16 | The model has been tesed in torch version: `1.13.1+cu117`, simply run
17 | ```
18 | pip3 install -r requirements.txt
19 | ```
20 |
21 | # Usage
22 |
23 | ## 1. Quick Use
24 | We provide a demo for quick testing in this repo, simply running:
25 |
26 | ```
27 | python3 inference.py --prompt "a bear walking through stars, artstation" --input_video bear.mp4 --control_mode depth
28 | ```
29 |
30 | Args:
31 | - `--input_video`: path of input video(mp4 format).
32 | - `--num_sample_frames`: nums of frames to generate. (recommend > 8).
33 | - `--each_sample_frame`: sampling frames for each time. (for auto-regressive generateion.)
34 | - `--sampling_rate`: skip sampling from the input video.
35 |
36 | - `--control_mode`: allows for different control, currently support **`canny`, `depth`, `hed`**. (you need to download the weight of **hed** annotator from [link](https://huggingface.co/wf-genius/controlavideo-hed/resolve/main/hed-network.pth) and put it in work space.)
37 | - `--video_scale`: guidance scale of video consistency, borrows from GEN-1. (don't be too large, 1~2 work well, set 0 to disable it.)
38 | - `--init_noise_thres`: the propoed threshold of residual-based noise init. (range from 0 to 1, larger value leads to more smooth but may introduce artifacts.)
39 |
40 | - `--inference_step, --guidance_scale, --height, --width, --prompt`: same as other T2I model.
41 |
42 | If the automatic downloading not work, the models weights can be downloaded from: [depth_control_model](https://huggingface.co/wf-genius/controlavideo-depth), [canny_control_model](https://huggingface.co/wf-genius/controlavideo-canny), [hed_control_model](https://huggingface.co/wf-genius/controlavideo-hed).
43 |
44 | ## 2. Auto-Regressive Generation
45 | Our model firstly generates the first frame. Once We get the first frame, we generate the subsquent frames conditioned on the first frame. Thus, it will allow our model to generate longer videos auto-regressive. (This operation is still under experiment and it may collaspe after 3 or 4 iterations.)
46 | ```
47 | python3 inference.py --prompt "a bear walking through stars, artstation" --input_video bear.mp4 --control_mode depth --num_sample_frames 16 --each_sample_frame 8
48 | ```
49 | Note that `num_sample_frames` should be multiple of `each_sample_frame`.
50 |
51 | ## Replace the 2d model (Experimentally)
52 | Since we freeze the 2d model, you can replace it with any other model based on `stable-diffusion-v1-5` to generate custom-style videos.
53 |
54 | ```
55 | state_dict_path = os.path.join(pipeline_model_path, "unet", "diffusion_pytorch_model.bin")
56 | state_dict = torch.load(state_dict_path, map_location="cpu")
57 | video_controlnet_pipe.unet.load_2d_state_dict(state_dict=state_dict) # reload 2d model.
58 | ```
59 |
60 | # Citation
61 | ```
62 | @misc{chen2023controlavideo,
63 | title={Control-A-Video: Controllable Text-to-Video Generation with Diffusion Models},
64 | author={Weifeng Chen and Jie Wu and Pan Xie and Hefeng Wu and Jiashi Li and Xin Xia and Xuefeng Xiao and Liang Lin},
65 | year={2023},
66 | eprint={2305.13840},
67 | archivePrefix={arXiv},
68 | primaryClass={cs.CV}
69 | }
70 | ```
71 |
72 | # Acknowledgement
73 | This repository borrows heavily from [Diffusers](https://github.com/huggingface/diffusers), [ControlNet](https://github.com/lllyasviel/ControlNet), [Tune-A-Video](https://github.com/showlab/Tune-A-Video), thanks for open-sourcing! This work was done in Bytedance, thanks for the cooperators!
74 |
75 |
76 | # Future Plan
77 | - support segmentation(mask) generation.
78 | - video lora/dreambooth.
79 | - optical flow enhancement.
80 | - Any other methods to improve the model. It's also welcomed to contribute any applications based on our models, feel free to contact me and propose a PR.
--------------------------------------------------------------------------------
/model/video_diffusion/models/unet_3d_blocks_control.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import torch
16 | from torch import nn
17 | from .attention import SpatioTemporalTransformerModel
18 | from .resnet import DownsamplePseudo3D, ResnetBlockPseudo3D, UpsamplePseudo3D
19 | import glob
20 | import json
21 | from dataclasses import dataclass
22 | from typing import List, Optional, Tuple, Union
23 | import torch
24 | import torch.nn as nn
25 | import torch.utils.checkpoint
26 | from diffusers.configuration_utils import ConfigMixin, register_to_config
27 | from diffusers.models.modeling_utils import ModelMixin
28 | from diffusers.utils import BaseOutput, logging
29 | from diffusers.models.embeddings import TimestepEmbedding, Timesteps
30 | from .unet_3d_blocks import (
31 | CrossAttnDownBlockPseudo3D,
32 | CrossAttnUpBlockPseudo3D,
33 | DownBlockPseudo3D,
34 | UNetMidBlockPseudo3DCrossAttn,
35 | UpBlockPseudo3D,
36 | get_down_block,
37 | get_up_block,
38 | )
39 | from .resnet import PseudoConv3d
40 | from diffusers.models.cross_attention import AttnProcessor
41 | from typing import Dict
42 |
43 |
44 |
45 | def set_zero_parameters(module):
46 | for p in module.parameters():
47 | p.detach().zero_()
48 | return module
49 |
50 | # ControlNet: Zero Convolution
51 | def zero_conv(channels):
52 | return set_zero_parameters(PseudoConv3d(channels, channels, 1, padding=0))
53 |
54 | class ControlNetInputHintBlock(nn.Module):
55 | def __init__(self, hint_channels: int = 3, channels: int = 320):
56 | super().__init__()
57 | # Layer configurations are from reference implementation.
58 | self.input_hint_block = nn.Sequential(
59 | PseudoConv3d(hint_channels, 16, 3, padding=1),
60 | nn.SiLU(),
61 | PseudoConv3d(16, 16, 3, padding=1),
62 | nn.SiLU(),
63 | PseudoConv3d(16, 32, 3, padding=1, stride=2),
64 | nn.SiLU(),
65 | PseudoConv3d(32, 32, 3, padding=1),
66 | nn.SiLU(),
67 | PseudoConv3d(32, 96, 3, padding=1, stride=2),
68 | nn.SiLU(),
69 | PseudoConv3d(96, 96, 3, padding=1),
70 | nn.SiLU(),
71 | PseudoConv3d(96, 256, 3, padding=1, stride=2),
72 | nn.SiLU(),
73 | set_zero_parameters(PseudoConv3d(256, channels, 3, padding=1)),
74 | )
75 | def forward(self, hint: torch.Tensor):
76 | return self.input_hint_block(hint)
77 |
78 |
79 | class ControlNetPseudoZeroConv3dBlock(nn.Module):
80 | def __init__(
81 | self,
82 | block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
83 | down_block_types: Tuple[str] = (
84 | "CrossAttnDownBlockPseudo3D",
85 | "CrossAttnDownBlockPseudo3D",
86 | "CrossAttnDownBlockPseudo3D",
87 | "DownBlockPseudo3D",
88 | ),
89 | layers_per_block: int = 2,
90 | ):
91 | super().__init__()
92 | self.input_zero_conv = zero_conv(block_out_channels[0])
93 | zero_convs = []
94 | for i, down_block_type in enumerate(down_block_types):
95 | output_channel = block_out_channels[i]
96 | is_final_block = i == len(block_out_channels) - 1
97 | for _ in range(layers_per_block):
98 | zero_convs.append(zero_conv(output_channel))
99 | if not is_final_block:
100 | zero_convs.append(zero_conv(output_channel))
101 | self.zero_convs = nn.ModuleList(zero_convs)
102 | self.mid_zero_conv = zero_conv(block_out_channels[-1])
103 |
104 | def forward(
105 | self,
106 | down_block_res_samples: List[torch.Tensor],
107 | mid_block_sample: torch.Tensor,
108 | ) -> List[torch.Tensor]:
109 | outputs = []
110 | outputs.append(self.input_zero_conv(down_block_res_samples[0]))
111 | for res_sample, zero_conv in zip(down_block_res_samples[1:], self.zero_convs):
112 | outputs.append(zero_conv(res_sample))
113 | outputs.append(self.mid_zero_conv(mid_block_sample))
114 | return outputs
115 |
116 |
117 |
--------------------------------------------------------------------------------
/model/annotator/hed/__init__.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 | import os
4 | import torch
5 | from einops import rearrange
6 |
7 |
8 | class HEDNetwork(torch.nn.Module):
9 | def __init__(self, model_path):
10 | super().__init__()
11 |
12 | self.netVggOne = torch.nn.Sequential(
13 | torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
14 | torch.nn.ReLU(inplace=False),
15 | torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
16 | torch.nn.ReLU(inplace=False)
17 | )
18 |
19 | self.netVggTwo = torch.nn.Sequential(
20 | torch.nn.MaxPool2d(kernel_size=2, stride=2),
21 | torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
22 | torch.nn.ReLU(inplace=False),
23 | torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
24 | torch.nn.ReLU(inplace=False)
25 | )
26 |
27 | self.netVggThr = torch.nn.Sequential(
28 | torch.nn.MaxPool2d(kernel_size=2, stride=2),
29 | torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
30 | torch.nn.ReLU(inplace=False),
31 | torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
32 | torch.nn.ReLU(inplace=False),
33 | torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
34 | torch.nn.ReLU(inplace=False)
35 | )
36 |
37 | self.netVggFou = torch.nn.Sequential(
38 | torch.nn.MaxPool2d(kernel_size=2, stride=2),
39 | torch.nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
40 | torch.nn.ReLU(inplace=False),
41 | torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
42 | torch.nn.ReLU(inplace=False),
43 | torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
44 | torch.nn.ReLU(inplace=False)
45 | )
46 |
47 | self.netVggFiv = torch.nn.Sequential(
48 | torch.nn.MaxPool2d(kernel_size=2, stride=2),
49 | torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
50 | torch.nn.ReLU(inplace=False),
51 | torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
52 | torch.nn.ReLU(inplace=False),
53 | torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
54 | torch.nn.ReLU(inplace=False)
55 | )
56 |
57 | self.netScoreOne = torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0)
58 | self.netScoreTwo = torch.nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0)
59 | self.netScoreThr = torch.nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0)
60 | self.netScoreFou = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
61 | self.netScoreFiv = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
62 |
63 | self.netCombine = torch.nn.Sequential(
64 | torch.nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0),
65 | torch.nn.Sigmoid()
66 | )
67 |
68 | self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(model_path).items()})
69 |
70 | def forward(self, tenInput):
71 | tenInput = tenInput * 255.0
72 | tenInput = tenInput - torch.tensor(data=[104.00698793, 116.66876762, 122.67891434], dtype=tenInput.dtype, device=tenInput.device).view(1, 3, 1, 1)
73 |
74 | tenVggOne = self.netVggOne(tenInput)
75 | tenVggTwo = self.netVggTwo(tenVggOne)
76 | tenVggThr = self.netVggThr(tenVggTwo)
77 | tenVggFou = self.netVggFou(tenVggThr)
78 | tenVggFiv = self.netVggFiv(tenVggFou)
79 |
80 | tenScoreOne = self.netScoreOne(tenVggOne)
81 | tenScoreTwo = self.netScoreTwo(tenVggTwo)
82 | tenScoreThr = self.netScoreThr(tenVggThr)
83 | tenScoreFou = self.netScoreFou(tenVggFou)
84 | tenScoreFiv = self.netScoreFiv(tenVggFiv)
85 |
86 | tenScoreOne = torch.nn.functional.interpolate(input=tenScoreOne, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
87 | tenScoreTwo = torch.nn.functional.interpolate(input=tenScoreTwo, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
88 | tenScoreThr = torch.nn.functional.interpolate(input=tenScoreThr, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
89 | tenScoreFou = torch.nn.functional.interpolate(input=tenScoreFou, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
90 | tenScoreFiv = torch.nn.functional.interpolate(input=tenScoreFiv, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
91 |
92 | return self.netCombine(torch.cat([ tenScoreOne, tenScoreTwo, tenScoreThr, tenScoreFou, tenScoreFiv ], 1))
93 |
94 |
95 | class HEDdetector:
96 | def __init__(self, network ):
97 | self.netNetwork = network
98 |
99 | def __call__(self, input_image):
100 | if isinstance(input_image, torch.Tensor):
101 | # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1
102 | input_image = (input_image + 1) / 2
103 | input_image = input_image.float().cuda()
104 | edge = self.netNetwork(input_image) # 范围也是0~1, 不用转了直接用
105 | return edge
106 | else:
107 | assert input_image.ndim == 3
108 | input_image = input_image[:, :, ::-1].copy()
109 | with torch.no_grad():
110 | image_hed = torch.from_numpy(input_image).float().cuda()
111 | image_hed = image_hed / 255.0
112 | image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
113 | edge = self.netNetwork(image_hed)[0]
114 | edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
115 | return edge[0]
116 |
117 |
118 | def nms(x, t, s):
119 | x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
120 |
121 | f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
122 | f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
123 | f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
124 | f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
125 |
126 | y = np.zeros_like(x)
127 |
128 | for f in [f1, f2, f3, f4]:
129 | np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
130 |
131 | z = np.zeros_like(y, dtype=np.uint8)
132 | z[y > t] = 255
133 | return z
134 |
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from model.video_diffusion.models.controlnet3d import ControlNet3DModel
16 | from model.video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
17 | from model.video_diffusion.pipelines.pipeline_stable_diffusion_controlnet3d import Controlnet3DStableDiffusionPipeline
18 | from transformers import DPTForDepthEstimation
19 | from model.annotator.hed import HEDNetwork
20 | import torch
21 | import os
22 | from einops import rearrange,repeat
23 | import imageio
24 | import numpy as np
25 | import cv2
26 | import torch.nn.functional as F
27 | from PIL import Image
28 | import argparse
29 |
30 |
31 | parser = argparse.ArgumentParser()
32 | parser.add_argument('--control_mode', type=str, default='depth', help='support: hed, canny, depth')
33 | parser.add_argument('--inference_step', type=int, default=20, help='denoising steps for inference')
34 | parser.add_argument('--guidance_scale', type=float, default=7.5, help='guidance scale')
35 | parser.add_argument('--seed', type=int, default=1, help='seed')
36 | parser.add_argument('--num_sample_frames', type=int, default=8, help='total frames to inference')
37 | parser.add_argument('--each_sample_frame', type=int, default=8, help='auto-regressive generation for each iteration')
38 | parser.add_argument('--sampling_rate', type=int, default=3, help='skip sampling from input video')
39 | parser.add_argument('--height', type=int, default=512, help='ouput height')
40 | parser.add_argument('--width', type=int, default=512, help='ouput width')
41 | parser.add_argument('--video_scale', type=float, default=1.5, help='video smoothness scale')
42 | parser.add_argument('--init_noise_thres', type=float, default=0.1, help='thres for res noise init')
43 | parser.add_argument('--input_video',type=str, default='bear.mp4')
44 | parser.add_argument('--prompt',type=str, default="a bear walking through stars, artstation")
45 |
46 | args = parser.parse_args()
47 |
48 | control_mode = args.control_mode
49 | num_inference_steps = args.inference_step
50 | guidance_scale = args.guidance_scale
51 | seed = args.seed
52 | num_sample_frames = args.num_sample_frames
53 | sampling_rate = args.sampling_rate
54 | h, w = args.height, args.width
55 | video_scale = args.video_scale
56 | init_noise_thres = args.init_noise_thres
57 | video_path = args.input_video
58 | testing_prompt = [args.prompt]
59 | each_sample_frame = args.each_sample_frame
60 |
61 |
62 | control_net_path = f"wf-genius/controlavideo-{control_mode}"
63 | unet = UNetPseudo3DConditionModel.from_pretrained(control_net_path,
64 | torch_dtype = torch.float16,
65 | subfolder='unet',
66 | ).to("cuda")
67 | controlnet = ControlNet3DModel.from_pretrained(control_net_path,
68 | torch_dtype = torch.float16,
69 | subfolder='controlnet',
70 | ).to("cuda")
71 |
72 | if control_mode == 'depth':
73 | annotator_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
74 | elif control_mode == 'canny':
75 | annotator_model = None
76 | elif control_mode == 'hed':
77 | # firstly download from https://huggingface.co/wf-genius/controlavideo-hed/resolve/main/hed-network.pth
78 | annotator_model = HEDNetwork('hed-network.pth').to("cuda")
79 |
80 | video_controlnet_pipe = Controlnet3DStableDiffusionPipeline.from_pretrained(control_net_path, unet=unet,
81 | controlnet=controlnet, annotator_model=annotator_model,
82 | torch_dtype = torch.float16,
83 | ).to("cuda")
84 |
85 | # get video
86 | np_frames, fps_vid = Controlnet3DStableDiffusionPipeline.get_frames_preprocess(video_path, num_frames=num_sample_frames, sampling_rate=sampling_rate, return_np=True)
87 | if control_mode == 'depth':
88 | frames = torch.from_numpy(np_frames).div(255) * 2 - 1
89 | frames = rearrange(frames, "f h w c -> c f h w").unsqueeze(0)
90 | frames = rearrange(frames, 'b c f h w -> (b f) c h w')
91 | control_maps = video_controlnet_pipe.get_depth_map(frames, h, w, return_standard_norm=False) # (b f) 1 h w
92 | elif control_mode == 'canny':
93 | control_maps = np.stack([cv2.Canny(inp, 100, 200) for inp in np_frames])
94 | control_maps = repeat(control_maps, 'f h w -> f c h w',c=1)
95 | control_maps = torch.from_numpy(control_maps).div(255) # 0~1
96 | elif control_mode == 'hed':
97 | control_maps = np.stack([video_controlnet_pipe.get_hed_map(inp) for inp in np_frames])
98 | control_maps = repeat(control_maps, 'f h w -> f c h w',c=1)
99 | control_maps = torch.from_numpy(control_maps).div(255) # 0~1
100 | control_maps = control_maps.to(dtype=controlnet.dtype, device=controlnet.device)
101 | control_maps = F.interpolate(control_maps, size=(h,w), mode='bilinear', align_corners=False)
102 | control_maps = rearrange(control_maps, "(b f) c h w -> b c f h w", f=num_sample_frames)
103 | if control_maps.shape[1] == 1:
104 | control_maps = repeat(control_maps, 'b c f h w -> b (n c) f h w', n=3)
105 |
106 | frames = torch.from_numpy(np_frames).div(255)
107 | frames = rearrange(frames, 'f h w c -> f c h w')
108 | v2v_input_frames = torch.nn.functional.interpolate(
109 | frames,
110 | size=(h, w),
111 | mode="bicubic",
112 | antialias=True,
113 | )
114 | v2v_input_frames = rearrange(v2v_input_frames, '(b f) c h w -> b c f h w ', f=num_sample_frames)
115 |
116 |
117 | out = []
118 | for i in range(num_sample_frames//each_sample_frame):
119 | out1 = video_controlnet_pipe(
120 | # controlnet_hint= control_maps[:,:,:each_sample_frame,:,:],
121 | # images= v2v_input_frames[:,:,:each_sample_frame,:,:],
122 | controlnet_hint=control_maps[:,:,i*each_sample_frame-1:(i+1)*each_sample_frame-1,:,:] if i>0 else control_maps[:,:,:each_sample_frame,:,:],
123 | images=v2v_input_frames[:,:,i*each_sample_frame-1:(i+1)*each_sample_frame-1,:,:] if i>0 else v2v_input_frames[:,:,:each_sample_frame,:,:],
124 | first_frame_output=out[-1] if i>0 else None,
125 | prompt=testing_prompt,
126 | num_inference_steps=num_inference_steps,
127 | width=w,
128 | height=h,
129 | guidance_scale=guidance_scale,
130 | generator=[torch.Generator(device="cuda").manual_seed(seed)],
131 | video_scale = video_scale, # per-frame as negative (>= 1 or set 0)
132 | init_noise_by_residual_thres = init_noise_thres, # residual-based init. larger thres ==> more smooth.
133 | controlnet_conditioning_scale=1.0,
134 | fix_first_frame=True,
135 | in_domain=True, # whether to use the video model to generate the first frame.
136 | )
137 | out1 = out1.images[0][1:] # drop the first frame
138 | out.extend(out1)
139 |
140 | imageio.mimsave('demo.gif', out, fps=8)
141 | # import IPython
142 | # from IPython.display import Image
143 | # Image(filename='demo.gif')
--------------------------------------------------------------------------------
/model/video_diffusion/models/attention.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from dataclasses import dataclass
16 | from typing import Optional
17 |
18 | import torch
19 | from torch import nn
20 |
21 | from diffusers.configuration_utils import ConfigMixin, register_to_config
22 | from diffusers.models.modeling_utils import ModelMixin
23 | from diffusers.models.attention import FeedForward, CrossAttention, AdaLayerNorm
24 | from diffusers.utils import BaseOutput
25 | from diffusers.utils.import_utils import is_xformers_available
26 | from diffusers.models.cross_attention import XFormersCrossAttnProcessor
27 | from einops import rearrange
28 |
29 |
30 | @dataclass
31 | class SpatioTemporalTransformerModelOutput(BaseOutput):
32 | """torch.FloatTensor of shape [batch x channel x frames x height x width]"""
33 |
34 | sample: torch.FloatTensor
35 |
36 |
37 | if is_xformers_available():
38 | import xformers
39 | import xformers.ops
40 | else:
41 | xformers = None
42 |
43 |
44 | class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin):
45 | @register_to_config
46 | def __init__(
47 | self,
48 | num_attention_heads: int = 16,
49 | attention_head_dim: int = 88,
50 | in_channels: Optional[int] = None,
51 | num_layers: int = 1,
52 | dropout: float = 0.0,
53 | norm_num_groups: int = 32,
54 | cross_attention_dim: Optional[int] = None,
55 | attention_bias: bool = False,
56 | activation_fn: str = "geglu",
57 | num_embeds_ada_norm: Optional[int] = None,
58 | use_linear_projection: bool = False,
59 | only_cross_attention: bool = False,
60 | upcast_attention: bool = False,
61 | **transformer_kwargs,
62 | ):
63 | super().__init__()
64 | self.use_linear_projection = use_linear_projection
65 | self.num_attention_heads = num_attention_heads
66 | self.attention_head_dim = attention_head_dim
67 | inner_dim = num_attention_heads * attention_head_dim
68 |
69 | # Define input layers
70 | self.in_channels = in_channels
71 |
72 | self.norm = torch.nn.GroupNorm(
73 | num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
74 | )
75 | if use_linear_projection:
76 | self.proj_in = nn.Linear(in_channels, inner_dim)
77 | else:
78 | self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
79 |
80 | # Define transformers blocks
81 | self.transformer_blocks = nn.ModuleList(
82 | [
83 | SpatioTemporalTransformerBlock(
84 | inner_dim,
85 | num_attention_heads,
86 | attention_head_dim,
87 | dropout=dropout,
88 | cross_attention_dim=cross_attention_dim,
89 | activation_fn=activation_fn,
90 | num_embeds_ada_norm=num_embeds_ada_norm,
91 | attention_bias=attention_bias,
92 | only_cross_attention=only_cross_attention,
93 | upcast_attention=upcast_attention,
94 | **transformer_kwargs,
95 | )
96 | for d in range(num_layers)
97 | ]
98 | )
99 |
100 | # Define output layers
101 | if use_linear_projection:
102 | self.proj_out = nn.Linear(in_channels, inner_dim)
103 | else:
104 | self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
105 |
106 | def forward(
107 | self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True
108 | ):
109 | # 1. Input
110 | clip_length = None
111 | is_video = hidden_states.ndim == 5
112 | if is_video:
113 | clip_length = hidden_states.shape[2]
114 | hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
115 | encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0)
116 |
117 | *_, h, w = hidden_states.shape
118 | residual = hidden_states
119 |
120 | hidden_states = self.norm(hidden_states)
121 | if not self.use_linear_projection:
122 | hidden_states = self.proj_in(hidden_states)
123 | hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
124 | else:
125 | hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
126 | hidden_states = self.proj_in(hidden_states)
127 |
128 | # 2. Blocks
129 | for block in self.transformer_blocks:
130 | hidden_states = block(
131 | hidden_states,
132 | encoder_hidden_states=encoder_hidden_states,
133 | timestep=timestep,
134 | clip_length=clip_length,
135 | )
136 |
137 | # 3. Output
138 | if not self.use_linear_projection:
139 | hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
140 | hidden_states = self.proj_out(hidden_states)
141 | else:
142 | hidden_states = self.proj_out(hidden_states)
143 | hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
144 |
145 | output = hidden_states + residual
146 | if is_video:
147 | output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length)
148 |
149 | if not return_dict:
150 | return (output,)
151 |
152 | return SpatioTemporalTransformerModelOutput(sample=output)
153 |
154 |
155 | class SpatioTemporalTransformerBlock(nn.Module):
156 | def __init__(
157 | self,
158 | dim: int,
159 | num_attention_heads: int,
160 | attention_head_dim: int,
161 | dropout=0.0,
162 | cross_attention_dim: Optional[int] = None,
163 | activation_fn: str = "geglu",
164 | num_embeds_ada_norm: Optional[int] = None,
165 | attention_bias: bool = False,
166 | only_cross_attention: bool = False,
167 | upcast_attention: bool = False,
168 | use_sparse_causal_attention: bool = False,
169 | use_full_sparse_causal_attention: bool = True,
170 | temporal_attention_position: str = "after_feedforward",
171 | use_gamma = False,
172 | ):
173 | super().__init__()
174 | self.only_cross_attention = only_cross_attention
175 | self.use_ada_layer_norm = num_embeds_ada_norm is not None
176 | self.use_sparse_causal_attention = use_sparse_causal_attention
177 | self.use_full_sparse_causal_attention = use_full_sparse_causal_attention
178 | self.use_gamma = use_gamma
179 |
180 | self.temporal_attention_position = temporal_attention_position
181 | temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"]
182 | if temporal_attention_position not in temporal_attention_positions:
183 | raise ValueError(
184 | f"`temporal_attention_position` must be one of {temporal_attention_positions}"
185 | )
186 |
187 | # 1. Spatial-Attn
188 | if use_sparse_causal_attention:
189 | spatial_attention = SparseCausalAttention
190 | elif use_full_sparse_causal_attention:
191 | spatial_attention = SparseCausalFullAttention
192 | else:
193 | spatial_attention = CrossAttention
194 |
195 | self.attn1 = spatial_attention(
196 | query_dim=dim,
197 | heads=num_attention_heads,
198 | dim_head=attention_head_dim,
199 | dropout=dropout,
200 | bias=attention_bias,
201 | cross_attention_dim=cross_attention_dim if only_cross_attention else None,
202 | upcast_attention=upcast_attention,
203 | processor=XFormersCrossAttnProcessor(),
204 | ) # is a self-attention
205 | self.norm1 = (
206 | AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
207 | )
208 | if use_gamma:
209 | self.attn1_gamma = nn.Parameter(torch.ones(dim))
210 |
211 | # 2. Cross-Attn
212 | if cross_attention_dim is not None:
213 | self.attn2 = CrossAttention(
214 | query_dim=dim,
215 | cross_attention_dim=cross_attention_dim,
216 | heads=num_attention_heads,
217 | dim_head=attention_head_dim,
218 | dropout=dropout,
219 | bias=attention_bias,
220 | upcast_attention=upcast_attention,
221 | processor=XFormersCrossAttnProcessor(),
222 | ) # is self-attn if encoder_hidden_states is none
223 | self.norm2 = (
224 | AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
225 | )
226 | if use_gamma:
227 | self.attn2_gamma = nn.Parameter(torch.ones(dim))
228 | else:
229 | self.attn2 = None
230 | self.norm2 = None
231 |
232 | # 3. Temporal-Attn
233 | self.attn_temporal = CrossAttention(
234 | query_dim=dim,
235 | heads=num_attention_heads,
236 | dim_head=attention_head_dim,
237 | dropout=dropout,
238 | bias=attention_bias,
239 | upcast_attention=upcast_attention,
240 | processor=XFormersCrossAttnProcessor()
241 | )
242 | zero_module(self.attn_temporal) # 默认参数置0
243 |
244 | self.norm_temporal = (
245 | AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
246 | )
247 |
248 | # 4. Feed-forward
249 | self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
250 | self.norm3 = nn.LayerNorm(dim)
251 | if use_gamma:
252 | self.ff_gamma = nn.Parameter(torch.ones(dim))
253 |
254 |
255 | def forward(
256 | self,
257 | hidden_states,
258 | encoder_hidden_states=None,
259 | timestep=None,
260 | attention_mask=None,
261 | clip_length=None,
262 | ):
263 | # 1. Self-Attention
264 | norm_hidden_states = (
265 | self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
266 | )
267 |
268 | kwargs = dict(
269 | hidden_states=norm_hidden_states,
270 | attention_mask=attention_mask,
271 | )
272 | if self.only_cross_attention:
273 | kwargs.update(encoder_hidden_states=encoder_hidden_states)
274 | if self.use_sparse_causal_attention or self.use_full_sparse_causal_attention:
275 | kwargs.update(clip_length=clip_length)
276 |
277 | if self.use_gamma:
278 | hidden_states = hidden_states + self.attn1(**kwargs) * self.attn1_gamma # NOTE gamma
279 | else:
280 | hidden_states = hidden_states + self.attn1(**kwargs)
281 |
282 |
283 | if clip_length is not None and self.temporal_attention_position == "after_spatial":
284 | hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
285 |
286 | if self.attn2 is not None:
287 | # 2. Cross-Attention
288 | norm_hidden_states = (
289 | self.norm2(hidden_states, timestep)
290 | if self.use_ada_layer_norm
291 | else self.norm2(hidden_states)
292 | )
293 | if self.use_gamma:
294 | hidden_states = (
295 | self.attn2(
296 | norm_hidden_states,
297 | encoder_hidden_states=encoder_hidden_states,
298 | attention_mask=attention_mask,
299 | ) * self.attn2_gamma
300 | + hidden_states
301 | )
302 | else:
303 | hidden_states = (
304 | self.attn2(
305 | norm_hidden_states,
306 | encoder_hidden_states=encoder_hidden_states,
307 | attention_mask=attention_mask,
308 | )
309 | + hidden_states
310 | )
311 |
312 | if clip_length is not None and self.temporal_attention_position == "after_cross":
313 | hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
314 |
315 | # 3. Feed-forward
316 | if self.use_gamma:
317 | hidden_states = self.ff(self.norm3(hidden_states)) * self.ff_gamma + hidden_states
318 | else:
319 | hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
320 |
321 | if clip_length is not None and self.temporal_attention_position == "after_feedforward":
322 | hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
323 |
324 | return hidden_states
325 |
326 | def apply_temporal_attention(self, hidden_states, timestep, clip_length):
327 | d = hidden_states.shape[1]
328 | hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length)
329 | norm_hidden_states = (
330 | self.norm_temporal(hidden_states, timestep)
331 | if self.use_ada_layer_norm
332 | else self.norm_temporal(hidden_states)
333 | )
334 | hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
335 | hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
336 | return hidden_states
337 |
338 |
339 | class SparseCausalAttention(CrossAttention):
340 | def forward(
341 | self,
342 | hidden_states,
343 | encoder_hidden_states=None,
344 | attention_mask=None,
345 | clip_length: int = None,
346 | ):
347 | if (
348 | self.added_kv_proj_dim is not None
349 | or encoder_hidden_states is not None
350 | or attention_mask is not None
351 | ):
352 | raise NotImplementedError
353 |
354 | if self.group_norm is not None:
355 | hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
356 |
357 | query = self.to_q(hidden_states)
358 | dim = query.shape[-1]
359 | query = self.head_to_batch_dim(query) # 64 4096 40
360 |
361 | key = self.to_k(hidden_states)
362 | value = self.to_v(hidden_states)
363 |
364 | if clip_length is not None and clip_length > 1:
365 | # spatial temporal
366 | prev_frame_index = torch.arange(clip_length) - 1
367 | prev_frame_index[0] = 0
368 | key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
369 | key = torch.cat([key[:, [0] * clip_length], key[:, prev_frame_index]], dim=2)
370 | key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
371 |
372 | value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)
373 | value = torch.cat([value[:, [0] * clip_length], value[:, prev_frame_index]], dim=2)
374 | value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
375 |
376 |
377 | key = self.head_to_batch_dim(key)
378 | value = self.head_to_batch_dim(value)
379 | # use xfromers by default~
380 | hidden_states = xformers.ops.memory_efficient_attention(
381 | query, key, value, attn_bias=attention_mask, op=None
382 | )
383 | hidden_states = hidden_states.to(query.dtype)
384 | hidden_states = self.batch_to_head_dim(hidden_states)
385 |
386 | # linear proj
387 | hidden_states = self.to_out[0](hidden_states)
388 |
389 | # dropout
390 | hidden_states = self.to_out[1](hidden_states)
391 | return hidden_states
392 |
393 | def zero_module(module):
394 | for p in module.parameters():
395 | nn.init.zeros_(p)
396 | return module
397 |
398 |
399 | class SparseCausalFullAttention(CrossAttention):
400 | def forward(
401 | self,
402 | hidden_states,
403 | encoder_hidden_states=None,
404 | attention_mask=None,
405 | clip_length: int = None,
406 | ):
407 | if (
408 | self.added_kv_proj_dim is not None
409 | or encoder_hidden_states is not None
410 | or attention_mask is not None
411 | ):
412 | raise NotImplementedError
413 |
414 | if self.group_norm is not None:
415 | hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
416 |
417 | query = self.to_q(hidden_states)
418 | dim = query.shape[-1]
419 | query = self.head_to_batch_dim(query) # 64 4096 40
420 |
421 | key = self.to_k(hidden_states)
422 | value = self.to_v(hidden_states)
423 |
424 | if clip_length is not None and clip_length > 1:
425 | # 和所有帧做 spatial temporal attention
426 | key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
427 | # cat full frames
428 | key = torch.cat([key[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。
429 | key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
430 |
431 | value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)
432 | value = torch.cat([value[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。
433 | value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
434 |
435 | key = self.head_to_batch_dim(key)
436 | value = self.head_to_batch_dim(value)
437 | # use xfromers by default~
438 | hidden_states = xformers.ops.memory_efficient_attention(
439 | query, key, value, attn_bias=attention_mask, op=None
440 | )
441 | hidden_states = hidden_states.to(query.dtype)
442 | hidden_states = self.batch_to_head_dim(hidden_states)
443 |
444 | # linear proj
445 | hidden_states = self.to_out[0](hidden_states)
446 |
447 | # dropout
448 | hidden_states = self.to_out[1](hidden_states)
449 | return hidden_states
450 |
451 | def zero_module(module):
452 | for p in module.parameters():
453 | nn.init.zeros_(p)
454 | return module
--------------------------------------------------------------------------------
/model/video_diffusion/models/resnet.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from functools import partial
16 |
17 | import torch
18 | import torch.nn as nn
19 | import torch.nn.functional as F
20 |
21 | from einops import rearrange
22 |
23 |
24 | class PseudoConv3d(nn.Conv2d):
25 | def __init__(self, in_channels, out_channels, kernel_size, temporal_kernel_size=None, **kwargs):
26 | super().__init__(
27 | in_channels=in_channels,
28 | out_channels=out_channels,
29 | kernel_size=kernel_size,
30 | **kwargs,
31 | )
32 | if temporal_kernel_size is None:
33 | temporal_kernel_size = kernel_size
34 |
35 | self.conv_temporal = (
36 | nn.Conv1d(
37 | out_channels,
38 | out_channels,
39 | kernel_size=temporal_kernel_size,
40 | padding=temporal_kernel_size // 2,
41 | )
42 | if kernel_size > 1
43 | else None
44 | )
45 |
46 | if self.conv_temporal is not None:
47 | nn.init.dirac_(self.conv_temporal.weight.data) # initialized to be identity
48 | nn.init.zeros_(self.conv_temporal.bias.data)
49 |
50 | def forward(self, x):
51 | b = x.shape[0]
52 |
53 | is_video = x.ndim == 5
54 | if is_video:
55 | x = rearrange(x, "b c f h w -> (b f) c h w")
56 |
57 | x = super().forward(x)
58 |
59 | if is_video:
60 | x = rearrange(x, "(b f) c h w -> b c f h w", b=b)
61 |
62 | if self.conv_temporal is None or not is_video:
63 | return x
64 |
65 | *_, h, w = x.shape
66 |
67 | x = rearrange(x, "b c f h w -> (b h w) c f")
68 |
69 | x = self.conv_temporal(x) # 加入空间1D的时序卷积。channel不变。(建模时序信息)
70 |
71 | x = rearrange(x, "(b h w) c f -> b c f h w", h=h, w=w)
72 |
73 | return x
74 |
75 |
76 | class UpsamplePseudo3D(nn.Module):
77 | """
78 | An upsampling layer with an optional convolution.
79 |
80 | Parameters:
81 | channels: channels in the inputs and outputs.
82 | use_conv: a bool determining if a convolution is applied.
83 | use_conv_transpose:
84 | out_channels:
85 | """
86 |
87 | def __init__(
88 | self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"
89 | ):
90 | super().__init__()
91 | self.channels = channels
92 | self.out_channels = out_channels or channels
93 | self.use_conv = use_conv
94 | self.use_conv_transpose = use_conv_transpose
95 | self.name = name
96 |
97 | conv = None
98 | if use_conv_transpose:
99 | raise NotImplementedError
100 | conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
101 | elif use_conv:
102 | conv = PseudoConv3d(self.channels, self.out_channels, 3, padding=1)
103 |
104 | # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
105 | if name == "conv":
106 | self.conv = conv
107 | else:
108 | self.Conv2d_0 = conv
109 |
110 | def forward(self, hidden_states, output_size=None):
111 | assert hidden_states.shape[1] == self.channels
112 |
113 | # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
114 | # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
115 | # https://github.com/pytorch/pytorch/issues/86679
116 | dtype = hidden_states.dtype
117 | if dtype == torch.bfloat16:
118 | hidden_states = hidden_states.to(torch.float32)
119 |
120 | # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
121 | if hidden_states.shape[0] >= 64:
122 | hidden_states = hidden_states.contiguous()
123 |
124 | b = hidden_states.shape[0]
125 | is_video = hidden_states.ndim == 5
126 | if is_video:
127 | hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
128 |
129 | # if `output_size` is passed we force the interpolation output
130 | # size and do not make use of `scale_factor=2`
131 | if output_size is None:
132 | # 先插值再用conv
133 | hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
134 | else:
135 | hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
136 |
137 | # If the input is bfloat16, we cast back to bfloat16
138 | if dtype == torch.bfloat16:
139 | hidden_states = hidden_states.to(dtype)
140 |
141 | if is_video:
142 | hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b)
143 |
144 | if self.use_conv:
145 | if self.name == "conv":
146 | hidden_states = self.conv(hidden_states)
147 | else:
148 | hidden_states = self.Conv2d_0(hidden_states)
149 |
150 | return hidden_states
151 |
152 |
153 | class DownsamplePseudo3D(nn.Module):
154 | """
155 | A downsampling layer with an optional convolution.
156 |
157 | Parameters:
158 | channels: channels in the inputs and outputs.
159 | use_conv: a bool determining if a convolution is applied.
160 | out_channels:
161 | padding:
162 | """
163 |
164 | def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
165 | super().__init__()
166 | self.channels = channels
167 | self.out_channels = out_channels or channels
168 | self.use_conv = use_conv
169 | self.padding = padding
170 | stride = 2
171 | self.name = name
172 |
173 | if use_conv:
174 | conv = PseudoConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
175 | else:
176 | assert self.channels == self.out_channels
177 | conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
178 |
179 | if name == "conv":
180 | self.Conv2d_0 = conv
181 | self.conv = conv
182 | elif name == "Conv2d_0":
183 | self.conv = conv
184 | else:
185 | self.conv = conv
186 |
187 | def forward(self, hidden_states):
188 | assert hidden_states.shape[1] == self.channels
189 | if self.use_conv and self.padding == 0:
190 | pad = (0, 1, 0, 1)
191 | hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
192 |
193 | assert hidden_states.shape[1] == self.channels
194 | if self.use_conv:
195 | hidden_states = self.conv(hidden_states)
196 | else:
197 | b = hidden_states.shape[0]
198 | is_video = hidden_states.ndim == 5
199 | if is_video:
200 | hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
201 | hidden_states = self.conv(hidden_states)
202 | if is_video:
203 | hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b)
204 |
205 | return hidden_states
206 |
207 |
208 | class ResnetBlockPseudo3D(nn.Module):
209 | def __init__(
210 | self,
211 | *,
212 | in_channels,
213 | out_channels=None,
214 | conv_shortcut=False,
215 | dropout=0.0,
216 | temb_channels=512,
217 | groups=32,
218 | groups_out=None,
219 | pre_norm=True,
220 | eps=1e-6,
221 | non_linearity="swish",
222 | time_embedding_norm="default",
223 | kernel=None,
224 | output_scale_factor=1.0,
225 | use_in_shortcut=None,
226 | up=False,
227 | down=False,
228 | ):
229 | super().__init__()
230 | self.pre_norm = pre_norm
231 | self.pre_norm = True
232 | self.in_channels = in_channels
233 | out_channels = in_channels if out_channels is None else out_channels
234 | self.out_channels = out_channels
235 | self.use_conv_shortcut = conv_shortcut
236 | self.time_embedding_norm = time_embedding_norm
237 | self.up = up
238 | self.down = down
239 | self.output_scale_factor = output_scale_factor
240 |
241 | if groups_out is None:
242 | groups_out = groups
243 |
244 | self.norm1 = torch.nn.GroupNorm(
245 | num_groups=groups, num_channels=in_channels, eps=eps, affine=True
246 | )
247 |
248 | self.conv1 = PseudoConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
249 |
250 | if temb_channels is not None:
251 | if self.time_embedding_norm == "default":
252 | time_emb_proj_out_channels = out_channels
253 | elif self.time_embedding_norm == "scale_shift":
254 | time_emb_proj_out_channels = out_channels * 2
255 | else:
256 | raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
257 |
258 | self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
259 | else:
260 | self.time_emb_proj = None
261 |
262 | self.norm2 = torch.nn.GroupNorm(
263 | num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
264 | )
265 | self.dropout = torch.nn.Dropout(dropout)
266 | self.conv2 = PseudoConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
267 |
268 | if non_linearity == "swish":
269 | self.nonlinearity = lambda x: F.silu(x)
270 | elif non_linearity == "mish":
271 | self.nonlinearity = Mish()
272 | elif non_linearity == "silu":
273 | self.nonlinearity = nn.SiLU()
274 |
275 | self.upsample = self.downsample = None
276 | if self.up:
277 | if kernel == "fir":
278 | fir_kernel = (1, 3, 3, 1)
279 | self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
280 | elif kernel == "sde_vp":
281 | self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
282 | else:
283 | self.upsample = UpsamplePseudo3D(in_channels, use_conv=False)
284 | elif self.down:
285 | if kernel == "fir":
286 | fir_kernel = (1, 3, 3, 1)
287 | self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
288 | elif kernel == "sde_vp":
289 | self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
290 | else:
291 | self.downsample = DownsamplePseudo3D(in_channels, use_conv=False, padding=1, name="op")
292 |
293 | self.use_in_shortcut = (
294 | self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
295 | )
296 |
297 | self.conv_shortcut = None
298 | if self.use_in_shortcut:
299 | self.conv_shortcut = PseudoConv3d(
300 | in_channels, out_channels, kernel_size=1, stride=1, padding=0
301 | )
302 |
303 | def forward(self, input_tensor, temb):
304 | hidden_states = input_tensor
305 |
306 | hidden_states = self.norm1(hidden_states)
307 | hidden_states = self.nonlinearity(hidden_states)
308 |
309 | if self.upsample is not None:
310 | # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
311 | if hidden_states.shape[0] >= 64:
312 | input_tensor = input_tensor.contiguous()
313 | hidden_states = hidden_states.contiguous()
314 | input_tensor = self.upsample(input_tensor)
315 | hidden_states = self.upsample(hidden_states)
316 | elif self.downsample is not None:
317 | input_tensor = self.downsample(input_tensor)
318 | hidden_states = self.downsample(hidden_states)
319 |
320 | hidden_states = self.conv1(hidden_states)
321 |
322 | if temb is not None:
323 | temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
324 |
325 | if temb is not None and self.time_embedding_norm == "default":
326 | is_video = hidden_states.ndim == 5
327 | if is_video:
328 | b, c, f, h, w = hidden_states.shape
329 | hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
330 | temb = temb.repeat_interleave(f, 0)
331 |
332 | hidden_states = hidden_states + temb
333 |
334 | if is_video:
335 | hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b)
336 |
337 | hidden_states = self.norm2(hidden_states)
338 |
339 | if temb is not None and self.time_embedding_norm == "scale_shift":
340 | is_video = hidden_states.ndim == 5
341 | if is_video:
342 | b, c, f, h, w = hidden_states.shape
343 | hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
344 | temb = temb.repeat_interleave(f, 0)
345 |
346 | scale, shift = torch.chunk(temb, 2, dim=1)
347 | hidden_states = hidden_states * (1 + scale) + shift
348 |
349 | if is_video:
350 | hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b)
351 |
352 | hidden_states = self.nonlinearity(hidden_states)
353 |
354 | hidden_states = self.dropout(hidden_states)
355 | hidden_states = self.conv2(hidden_states)
356 |
357 | if self.conv_shortcut is not None:
358 | input_tensor = self.conv_shortcut(input_tensor)
359 |
360 | output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
361 |
362 | return output_tensor
363 |
364 |
365 | class Mish(torch.nn.Module):
366 | def forward(self, hidden_states):
367 | return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
368 |
369 |
370 | def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
371 | r"""Upsample2D a batch of 2D images with the given filter.
372 | Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
373 | filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
374 | `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
375 | a: multiple of the upsampling factor.
376 |
377 | Args:
378 | hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
379 | kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
380 | (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
381 | factor: Integer upsampling factor (default: 2).
382 | gain: Scaling factor for signal magnitude (default: 1.0).
383 |
384 | Returns:
385 | output: Tensor of the shape `[N, C, H * factor, W * factor]`
386 | """
387 | assert isinstance(factor, int) and factor >= 1
388 | if kernel is None:
389 | kernel = [1] * factor
390 |
391 | kernel = torch.tensor(kernel, dtype=torch.float32)
392 | if kernel.ndim == 1:
393 | kernel = torch.outer(kernel, kernel)
394 | kernel /= torch.sum(kernel)
395 |
396 | kernel = kernel * (gain * (factor**2))
397 | pad_value = kernel.shape[0] - factor
398 | output = upfirdn2d_native(
399 | hidden_states,
400 | kernel.to(device=hidden_states.device),
401 | up=factor,
402 | pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
403 | )
404 | return output
405 |
406 |
407 | def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
408 | r"""Downsample2D a batch of 2D images with the given filter.
409 | Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
410 | given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
411 | specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
412 | shape is a multiple of the downsampling factor.
413 |
414 | Args:
415 | hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
416 | kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
417 | (separable). The default is `[1] * factor`, which corresponds to average pooling.
418 | factor: Integer downsampling factor (default: 2).
419 | gain: Scaling factor for signal magnitude (default: 1.0).
420 |
421 | Returns:
422 | output: Tensor of the shape `[N, C, H // factor, W // factor]`
423 | """
424 |
425 | assert isinstance(factor, int) and factor >= 1
426 | if kernel is None:
427 | kernel = [1] * factor
428 |
429 | kernel = torch.tensor(kernel, dtype=torch.float32)
430 | if kernel.ndim == 1:
431 | kernel = torch.outer(kernel, kernel)
432 | kernel /= torch.sum(kernel)
433 |
434 | kernel = kernel * gain
435 | pad_value = kernel.shape[0] - factor
436 | output = upfirdn2d_native(
437 | hidden_states,
438 | kernel.to(device=hidden_states.device),
439 | down=factor,
440 | pad=((pad_value + 1) // 2, pad_value // 2),
441 | )
442 | return output
443 |
444 |
445 | def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
446 | up_x = up_y = up
447 | down_x = down_y = down
448 | pad_x0 = pad_y0 = pad[0]
449 | pad_x1 = pad_y1 = pad[1]
450 |
451 | _, channel, in_h, in_w = tensor.shape
452 | tensor = tensor.reshape(-1, in_h, in_w, 1)
453 |
454 | _, in_h, in_w, minor = tensor.shape
455 | kernel_h, kernel_w = kernel.shape
456 |
457 | out = tensor.view(-1, in_h, 1, in_w, 1, minor)
458 | out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
459 | out = out.view(-1, in_h * up_y, in_w * up_x, minor)
460 |
461 | out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
462 | out = out.to(tensor.device) # Move back to mps if necessary
463 | out = out[
464 | :,
465 | max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
466 | max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
467 | :,
468 | ]
469 |
470 | out = out.permute(0, 3, 1, 2)
471 | out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
472 | w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
473 | out = F.conv2d(out, w)
474 | out = out.reshape(
475 | -1,
476 | minor,
477 | in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
478 | in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
479 | )
480 | out = out.permute(0, 2, 3, 1)
481 | out = out[:, ::down_y, ::down_x, :]
482 |
483 | out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
484 | out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
485 |
486 | return out.view(-1, channel, out_h, out_w)
487 |
--------------------------------------------------------------------------------
/model/video_diffusion/pipelines/pipeline_stable_diffusion_controlnet3d.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 |
16 | from .pipeline_st_stable_diffusion import SpatioTemporalStableDiffusionPipeline
17 | from typing import Callable, List, Optional, Union
18 | from diffusers.schedulers import (
19 | DDIMScheduler,
20 | DPMSolverMultistepScheduler,
21 | EulerAncestralDiscreteScheduler,
22 | EulerDiscreteScheduler,
23 | LMSDiscreteScheduler,
24 | PNDMScheduler,
25 | )
26 | from transformers import DPTForDepthEstimation
27 | from transformers import CLIPTextModel, CLIPTokenizer
28 | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
29 | from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler
30 | import torch
31 | from einops import rearrange, repeat
32 | import decord
33 | import cv2
34 | import random
35 | import numpy as np
36 | from ..models.unet_3d_condition import UNetPseudo3DConditionModel
37 | from ..models.controlnet3d import ControlNet3DModel
38 |
39 |
40 | class Controlnet3DStableDiffusionPipeline(SpatioTemporalStableDiffusionPipeline):
41 | def __init__(
42 | self,
43 | vae: AutoencoderKL,
44 | text_encoder: CLIPTextModel,
45 | tokenizer: CLIPTokenizer,
46 | unet: UNetPseudo3DConditionModel,
47 | controlnet: ControlNet3DModel,
48 | scheduler: Union[
49 | DDIMScheduler,
50 | PNDMScheduler,
51 | LMSDiscreteScheduler,
52 | EulerDiscreteScheduler,
53 | EulerAncestralDiscreteScheduler,
54 | DPMSolverMultistepScheduler,
55 | ],
56 | annotator_model=None,
57 |
58 | ):
59 | super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
60 |
61 | self.annotator_model = annotator_model
62 | self.controlnet = controlnet
63 | self.unet = unet
64 | self.vae = vae
65 | self.tokenizer = tokenizer
66 | self.text_encoder = text_encoder
67 | self.scheduler = scheduler
68 | self.register_modules(
69 | vae=vae,
70 | text_encoder=text_encoder,
71 | tokenizer=tokenizer,
72 | unet=unet,
73 | controlnet=controlnet,
74 | scheduler=scheduler,
75 | )
76 |
77 | @staticmethod
78 | def get_frames_preprocess(data_path, num_frames=24, sampling_rate=1, begin_indice=0, return_np=False):
79 | vr = decord.VideoReader(data_path,)
80 | n_images = len(vr)
81 | fps_vid = round(vr.get_avg_fps())
82 | frame_indices = [begin_indice + i*sampling_rate for i in range(num_frames)] # 随机取n帧
83 |
84 |
85 | while n_images <= frame_indices[-1]:
86 | # 超过视频长度,采样率减小直至不超过。
87 | sampling_rate -= 1
88 | if sampling_rate == 0:
89 | # NOTE 边界检查
90 | return None, None
91 | frame_indices = [i*sampling_rate for i in range(num_frames)]
92 | frames = vr.get_batch(frame_indices).asnumpy()
93 |
94 | if return_np:
95 | return frames, fps_vid
96 |
97 | frames = torch.from_numpy(frames).div(255) * 2 - 1
98 | frames = rearrange(frames, "f h w c -> c f h w").unsqueeze(0)
99 | return frames, fps_vid
100 |
101 | @torch.no_grad()
102 | def get_canny_edge_map(self, frames, ):
103 | # (b f) c h w"
104 | # from tensor to numpy
105 | inputs = frames.cpu().numpy()
106 | inputs = rearrange(inputs, 'f c h w -> f h w c')
107 | # inputs from [-1, 1] to [0, 255]
108 | inputs = (inputs + 1) * 127.5
109 | inputs = inputs.astype(np.uint8)
110 | lower_threshold = 100
111 | higher_threshold = 200
112 | edge_images = np.stack([cv2.Canny(inp, lower_threshold, higher_threshold) for inp in inputs])
113 | # from numpy to tensors
114 | edge_images = torch.from_numpy(edge_images).unsqueeze(1) # f, 1, h, w
115 | edge_images = edge_images.div(255)*2 - 1
116 | # print(torch.max(out_images), torch.min(out_images), out_images.dtype)
117 | return edge_images.to(dtype= self.controlnet.dtype, device=self.controlnet.device)
118 |
119 | @torch.no_grad()
120 | def get_depth_map(self, frames, height, width, return_standard_norm=False ):
121 | """
122 | frames should be like: (f c h w), you may turn b f c h w -> (b f) c h w first
123 | """
124 | h,w = height, width
125 | inputs = torch.nn.functional.interpolate(
126 | frames,
127 | size=(384, 384),
128 | mode="bicubic",
129 | antialias=True,
130 | )
131 | # 转类型和设备
132 | inputs = inputs.to(dtype= self.annotator_model.dtype, device=self.annotator_model.device)
133 |
134 | outputs = self.annotator_model(inputs)
135 | predicted_depths = outputs.predicted_depth
136 |
137 | # interpolate to original size
138 | predictions = torch.nn.functional.interpolate(
139 | predicted_depths.unsqueeze(1),
140 | size=(h, w),
141 | mode="bicubic",
142 | )
143 |
144 | # normalize output
145 | if return_standard_norm:
146 | depth_min = torch.amin(predictions, dim=[1, 2, 3], keepdim=True)
147 | depth_max = torch.amax(predictions, dim=[1, 2, 3], keepdim=True)
148 | predictions = 2.0 * (predictions - depth_min) / (depth_max - depth_min) - 1.0
149 | else:
150 | predictions -= torch.min(predictions)
151 | predictions /= torch.max(predictions)
152 |
153 | return predictions
154 |
155 |
156 | @torch.no_grad()
157 | def get_hed_map(self, frames,):
158 | if isinstance(frames, torch.Tensor):
159 | # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1
160 | frames = (frames + 1) / 2
161 | #rgb转bgr
162 | bgr_frames = frames.clone()
163 | bgr_frames[:, 0, :, :] = frames[:, 2, :, :]
164 | bgr_frames[:, 2, :, :] = frames[:, 0, :, :]
165 |
166 | edge = self.annotator_model(bgr_frames) # 范围也是0~1
167 | return edge
168 | else:
169 | assert frames.ndim == 3
170 | frames = frames[:, :, ::-1].copy()
171 | with torch.no_grad():
172 | image_hed = torch.from_numpy(frames).to(next(self.annotator_model.parameters()).device, dtype=next(self.annotator_model.parameters()).dtype )
173 | image_hed = image_hed / 255.0
174 | image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
175 | edge = self.annotator_model(image_hed)[0]
176 | edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
177 | return edge[0]
178 |
179 | @torch.no_grad()
180 | def get_pose_map(self, frames,):
181 | if isinstance(frames, torch.Tensor):
182 | # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1
183 | frames = (frames + 1) / 2
184 | np_frames = frames.cpu().numpy() * 255
185 | np_frames = np.array(np_frames, dtype=np.uint8)
186 | np_frames = rearrange(np_frames, 'f c h w-> f h w c')
187 | poses = np.stack([self.annotator_model(inp) for inp in np_frames])
188 | else:
189 | poses = self.annotator_model(frames)
190 | return poses
191 |
192 | def get_timesteps(self, num_inference_steps, strength,):
193 | # get the original timestep using init_timestep
194 | init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
195 |
196 | t_start = max(num_inference_steps - init_timestep, 0)
197 | timesteps = self.scheduler.timesteps[t_start:]
198 |
199 | return timesteps, num_inference_steps - t_start
200 |
201 | @torch.no_grad()
202 | def __call__(
203 | self,
204 | prompt: Union[str, List[str]],
205 | controlnet_hint = None,
206 | fps_labels = None,
207 | height: Optional[int] = None,
208 | width: Optional[int] = None,
209 | num_inference_steps: int = 50,
210 | clip_length: int = 8, # NOTE clip_length和images的帧数一致。
211 | guidance_scale: float = 7.5,
212 | negative_prompt: Optional[Union[str, List[str]]] = None,
213 | num_images_per_prompt: Optional[int] = 1,
214 | eta: float = 0.0,
215 | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
216 | latents: Optional[torch.FloatTensor] = None,
217 | output_type: Optional[str] = "pil",
218 | return_dict: bool = True,
219 | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
220 | callback_steps: Optional[int] = 1,
221 | cross_attention_kwargs = None,
222 | video_scale: float = 0.0,
223 | controlnet_conditioning_scale: float = 1.0,
224 | fix_first_frame=True,
225 | first_frame_output = None , # 也可以允许挑好图后传入。
226 | first_frame_output_latent = None,
227 | first_frame_control_hint = None, # 维持第一帧
228 | add_first_frame_by_concat = False,
229 | controlhint_in_uncond = False,
230 | init_same_noise_per_frame=False,
231 | init_noise_by_residual_thres=0.0,
232 | images=None,
233 | in_domain=False, # 是否调用视频模型生成图片
234 | residual_control_steps=1,
235 | first_frame_ddim_strength=1.0,
236 | return_last_latent = False,
237 | ):
238 | '''
239 | add origin video frames to get depth maps
240 | '''
241 |
242 | if fix_first_frame and first_frame_output is None and first_frame_output_latent is None:
243 | first_frame_output = self.__call__(
244 | prompt=prompt,
245 | controlnet_hint=controlnet_hint[:,:,0,:,:] if not in_domain else controlnet_hint[:,:,0:1,:,:],
246 | # b c f h w
247 | num_inference_steps=20,
248 | width=width,
249 | height=height,
250 | guidance_scale=guidance_scale,
251 | num_images_per_prompt=1,
252 | generator=generator,
253 | fix_first_frame=False,
254 | controlhint_in_uncond=controlhint_in_uncond,
255 | ).images[0]
256 |
257 |
258 | if first_frame_output is not None:
259 | if isinstance(first_frame_output, list):
260 | first_frame_output = first_frame_output[0]
261 | first_frame_output = torch.from_numpy(np.array(first_frame_output)).div(255) * 2 - 1
262 | first_frame_output = rearrange(first_frame_output, "h w c -> c h w").unsqueeze(0) # FIXME 目前不允许多个batch 先设置为1
263 | first_frame_output = first_frame_output.to(dtype= self.vae.dtype, device=self.vae.device)
264 |
265 | first_frame_output_latent = self.vae.encode(first_frame_output).latent_dist.sample()
266 | first_frame_output_latent = first_frame_output_latent * 0.18215
267 | # 0. Default height and width to unet
268 | height = height or self.unet.config.sample_size * self.vae_scale_factor
269 | width = width or self.unet.config.sample_size * self.vae_scale_factor
270 |
271 | # 1. Check inputs. Raise error if not correct
272 | self.check_inputs(prompt, height, width, callback_steps)
273 |
274 | # 2. Define call parameters
275 | batch_size = 1 if isinstance(prompt, str) else len(prompt)
276 | device = self._execution_device
277 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
278 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
279 | # corresponds to doing no classifier free guidance.
280 | do_classifier_free_guidance = guidance_scale > 5.0
281 |
282 | # 3. Encode input prompt
283 | text_embeddings = self._encode_prompt(
284 | prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
285 | )
286 |
287 | # 4. Prepare timesteps
288 | self.scheduler.set_timesteps(num_inference_steps, device=device)
289 | timesteps = self.scheduler.timesteps
290 |
291 | # 5. Prepare latent variables
292 | num_channels_latents = self.unet.in_channels
293 | if controlnet_hint is not None:
294 | if len(controlnet_hint.shape) == 5:
295 | clip_length = controlnet_hint.shape[2]
296 | else:
297 | clip_length = 0
298 |
299 | latents = self.prepare_latents(
300 | batch_size * num_images_per_prompt,
301 | num_channels_latents,
302 | clip_length,
303 | height,
304 | width,
305 | text_embeddings.dtype,
306 | device,
307 | generator,
308 | latents,
309 | )
310 | latents_dtype = latents.dtype
311 |
312 |
313 | if len(latents.shape) == 5 and init_same_noise_per_frame:
314 | latents[:,:,1:,:,:] = latents[:,:,0:1,:,:]
315 |
316 | if len(latents.shape) == 5 and init_noise_by_residual_thres > 0.0 and images is not None:
317 |
318 | images = images.to(device=device, dtype=latents_dtype) # b c f h w
319 | image_residual = torch.abs(images[:,:,1:,:,:] - images[:,:,:-1,:,:])
320 | images = rearrange(images, "b c f h w -> (b f) c h w")
321 |
322 | # norm residual
323 | image_residual = image_residual / torch.max(image_residual)
324 |
325 | image_residual = rearrange(image_residual, "b c f h w -> (b f) c h w")
326 | image_residual = torch.nn.functional.interpolate(
327 | image_residual,
328 | size=(latents.shape[-2], latents.shape[-1]),
329 | mode='bilinear')
330 | image_residual = torch.mean(image_residual, dim=1)
331 |
332 | image_residual_mask = (image_residual > init_noise_by_residual_thres).float()
333 | image_residual_mask = repeat(image_residual_mask, '(b f) h w -> b f h w', b=batch_size)
334 | image_residual_mask = repeat(image_residual_mask, 'b f h w -> b c f h w', c=latents.shape[1])
335 |
336 | # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
337 | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
338 |
339 | # 7. Denoising loop
340 | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
341 | with self.progress_bar(total=num_inference_steps) as progress_bar:
342 | if fix_first_frame:
343 | if add_first_frame_by_concat:
344 | if len(first_frame_output_latent.shape) == 4:
345 | latents = torch.cat([first_frame_output_latent.unsqueeze(2), latents], dim=2)
346 | else:
347 | latents = torch.cat([first_frame_output_latent, latents], dim=2)
348 | if first_frame_control_hint is not None:
349 | controlnet_hint = torch.cat([first_frame_control_hint, controlnet_hint], dim=2)
350 | else:
351 | controlnet_hint = torch.cat([controlnet_hint[:,:,0:1 ,:,:], controlnet_hint], dim=2)
352 |
353 | if controlhint_in_uncond:
354 | controlnet_hint = torch.cat([controlnet_hint] * 2) if do_classifier_free_guidance else controlnet_hint
355 | for i, t in enumerate(timesteps):
356 | # expand the latents if we are doing classifier free guidance
357 | if i 0.0 and images is not None :
358 | if first_frame_ddim_strength < 1.0 and i == 0 :
359 | # NOTE DDIM to get the first noise
360 | first_frame_output_latent_DDIM = first_frame_output_latent.clone()
361 | full_noise_timestep, _ = self.get_timesteps(num_inference_steps, strength=first_frame_ddim_strength)
362 | latent_timestep = full_noise_timestep[:1].repeat(batch_size * num_images_per_prompt)
363 | first_frame_output_latent_DDIM = self.scheduler.add_noise(first_frame_output_latent_DDIM, latents[:,:,0,:,:], latent_timestep)
364 | latents[:,:,0,:,:]=first_frame_output_latent_DDIM
365 | begin_frame = 1
366 | for n_frame in range(begin_frame, latents.shape[2]):
367 | latents[:,:, n_frame, :, :] = \
368 | (latents[:,:, n_frame, :, :] - latents[:,:, n_frame-1, :, :]) \
369 | * image_residual_mask[:,:, n_frame-1, :, :] + \
370 | latents[:,:, n_frame-1, :, :]
371 | if fix_first_frame:
372 | latents[:,:,0 ,:,:] = first_frame_output_latent
373 |
374 | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
375 | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
376 | if controlnet_hint is not None:
377 | down_block_res_samples, mid_block_res_sample = self.controlnet(
378 | latent_model_input,
379 | t,
380 | encoder_hidden_states=text_embeddings,
381 | controlnet_cond=controlnet_hint,
382 | return_dict=False,
383 | )
384 | down_block_res_samples = [
385 | down_block_res_sample * controlnet_conditioning_scale
386 | for down_block_res_sample in down_block_res_samples
387 | ]
388 | mid_block_res_sample *= controlnet_conditioning_scale
389 |
390 | noise_pred = self.unet(
391 | latent_model_input,
392 | t,
393 | encoder_hidden_states=text_embeddings,
394 | cross_attention_kwargs=cross_attention_kwargs,
395 | down_block_additional_residuals=down_block_res_samples,
396 | mid_block_additional_residual=mid_block_res_sample,
397 | ).sample.to(dtype=latents_dtype)
398 | else:
399 | # predict the noise residual
400 | noise_pred = self.unet(
401 | latent_model_input,
402 | t,
403 | encoder_hidden_states=text_embeddings,
404 | ).sample.to(dtype=latents_dtype)
405 |
406 | if video_scale > 0 and controlnet_hint is not None:
407 | bsz = latents.shape[0]
408 | f = latents.shape[2]
409 | # 逐帧预测
410 | latent_model_input_single_frame = rearrange(latent_model_input, 'b c f h w -> (b f) c h w')
411 | text_embeddings_single_frame = torch.cat([text_embeddings] * f, dim=0)
412 | control_maps_single_frame = rearrange(controlnet_hint, 'b c f h w -> (b f) c h w')
413 | latent_model_input_single_frame = latent_model_input_single_frame.chunk(2, dim=0)[0]
414 | text_embeddings_single_frame = text_embeddings_single_frame.chunk(2, dim=0)[0]
415 | if controlhint_in_uncond:
416 | control_maps_single_frame = control_maps_single_frame.chunk(2, dim=0)[0]
417 |
418 | down_block_res_samples_single_frame, mid_block_res_sample_single_frame = self.controlnet(
419 | latent_model_input_single_frame,
420 | t,
421 | encoder_hidden_states=text_embeddings_single_frame,
422 | controlnet_cond=control_maps_single_frame,
423 | return_dict=False,
424 | )
425 | down_block_res_samples_single_frame = [
426 | down_block_res_sample_single_frame * controlnet_conditioning_scale
427 | for down_block_res_sample_single_frame in down_block_res_samples_single_frame
428 | ]
429 | mid_block_res_sample_single_frame *= controlnet_conditioning_scale
430 |
431 | noise_pred_single_frame_uncond = self.unet(
432 | latent_model_input_single_frame,
433 | t,
434 | encoder_hidden_states = text_embeddings_single_frame,
435 | down_block_additional_residuals=down_block_res_samples_single_frame,
436 | mid_block_additional_residual=mid_block_res_sample_single_frame,
437 | ).sample
438 | noise_pred_single_frame_uncond = rearrange(noise_pred_single_frame_uncond, '(b f) c h w -> b c f h w', f=f)
439 | # perform guidance
440 | if do_classifier_free_guidance:
441 | if video_scale > 0 and controlnet_hint is not None:
442 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
443 | noise_pred = noise_pred_single_frame_uncond + video_scale * (
444 | noise_pred_uncond - noise_pred_single_frame_uncond
445 | ) + guidance_scale * (
446 | noise_pred_text - noise_pred_uncond
447 | )
448 | else:
449 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
450 | noise_pred = noise_pred_uncond + guidance_scale * (
451 | noise_pred_text - noise_pred_uncond
452 | )
453 |
454 | # compute the previous noisy sample x_t -> x_t-1
455 | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
456 |
457 | # call the callback, if provided
458 | if i == len(timesteps) - 1 or (
459 | (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
460 | ):
461 | progress_bar.update()
462 | if callback is not None and i % callback_steps == 0:
463 | callback(i, t, latents)
464 | # 8. Post-processing
465 | image = self.decode_latents(latents)
466 | if add_first_frame_by_concat:
467 | image = image[:,1:,:,:,:]
468 |
469 | # 9. Run safety checker
470 | has_nsfw_concept = None
471 | # 10. Convert to PIL
472 | if output_type == "pil":
473 | image = self.numpy_to_pil(image)
474 |
475 | if not return_dict:
476 | return (image, has_nsfw_concept)
477 |
478 | if return_last_latent:
479 | last_latent = latents[:,:,-1,:,:]
480 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept), last_latent
481 | else:
482 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
483 |
--------------------------------------------------------------------------------
/model/video_diffusion/models/unet_3d_blocks.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import torch
16 | from torch import nn
17 |
18 | from .attention import SpatioTemporalTransformerModel
19 | from .resnet import DownsamplePseudo3D, ResnetBlockPseudo3D, UpsamplePseudo3D
20 |
21 |
22 | def get_down_block(
23 | down_block_type,
24 | num_layers,
25 | in_channels,
26 | out_channels,
27 | temb_channels,
28 | add_downsample,
29 | resnet_eps,
30 | resnet_act_fn,
31 | attn_num_head_channels,
32 | resnet_groups=None,
33 | cross_attention_dim=None,
34 | downsample_padding=None,
35 | dual_cross_attention=False,
36 | use_linear_projection=False,
37 | only_cross_attention=False,
38 | upcast_attention=False,
39 | resnet_time_scale_shift="default",
40 | ):
41 | down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
42 | if down_block_type == "DownBlockPseudo3D":
43 | return DownBlockPseudo3D(
44 | num_layers=num_layers,
45 | in_channels=in_channels,
46 | out_channels=out_channels,
47 | temb_channels=temb_channels,
48 | add_downsample=add_downsample,
49 | resnet_eps=resnet_eps,
50 | resnet_act_fn=resnet_act_fn,
51 | resnet_groups=resnet_groups,
52 | downsample_padding=downsample_padding,
53 | resnet_time_scale_shift=resnet_time_scale_shift,
54 | )
55 | elif down_block_type == "CrossAttnDownBlockPseudo3D":
56 | if cross_attention_dim is None:
57 | raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockPseudo3D")
58 | return CrossAttnDownBlockPseudo3D(
59 | num_layers=num_layers,
60 | in_channels=in_channels,
61 | out_channels=out_channels,
62 | temb_channels=temb_channels,
63 | add_downsample=add_downsample,
64 | resnet_eps=resnet_eps,
65 | resnet_act_fn=resnet_act_fn,
66 | resnet_groups=resnet_groups,
67 | downsample_padding=downsample_padding,
68 | cross_attention_dim=cross_attention_dim,
69 | attn_num_head_channels=attn_num_head_channels,
70 | dual_cross_attention=dual_cross_attention,
71 | use_linear_projection=use_linear_projection,
72 | only_cross_attention=only_cross_attention,
73 | upcast_attention=upcast_attention,
74 | resnet_time_scale_shift=resnet_time_scale_shift,
75 | )
76 | raise ValueError(f"{down_block_type} does not exist.")
77 |
78 |
79 | def get_up_block(
80 | up_block_type,
81 | num_layers,
82 | in_channels,
83 | out_channels,
84 | prev_output_channel,
85 | temb_channels,
86 | add_upsample,
87 | resnet_eps,
88 | resnet_act_fn,
89 | attn_num_head_channels,
90 | resnet_groups=None,
91 | cross_attention_dim=None,
92 | dual_cross_attention=False,
93 | use_linear_projection=False,
94 | only_cross_attention=False,
95 | upcast_attention=False,
96 | resnet_time_scale_shift="default",
97 | ):
98 | up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
99 | if up_block_type == "UpBlockPseudo3D":
100 | return UpBlockPseudo3D(
101 | num_layers=num_layers,
102 | in_channels=in_channels,
103 | out_channels=out_channels,
104 | prev_output_channel=prev_output_channel,
105 | temb_channels=temb_channels,
106 | add_upsample=add_upsample,
107 | resnet_eps=resnet_eps,
108 | resnet_act_fn=resnet_act_fn,
109 | resnet_groups=resnet_groups,
110 | resnet_time_scale_shift=resnet_time_scale_shift,
111 | )
112 | elif up_block_type == "CrossAttnUpBlockPseudo3D":
113 | if cross_attention_dim is None:
114 | raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockPseudo3D")
115 | return CrossAttnUpBlockPseudo3D(
116 | num_layers=num_layers,
117 | in_channels=in_channels,
118 | out_channels=out_channels,
119 | prev_output_channel=prev_output_channel,
120 | temb_channels=temb_channels,
121 | add_upsample=add_upsample,
122 | resnet_eps=resnet_eps,
123 | resnet_act_fn=resnet_act_fn,
124 | resnet_groups=resnet_groups,
125 | cross_attention_dim=cross_attention_dim,
126 | attn_num_head_channels=attn_num_head_channels,
127 | dual_cross_attention=dual_cross_attention,
128 | use_linear_projection=use_linear_projection,
129 | only_cross_attention=only_cross_attention,
130 | upcast_attention=upcast_attention,
131 | resnet_time_scale_shift=resnet_time_scale_shift,
132 | )
133 | raise ValueError(f"{up_block_type} does not exist.")
134 |
135 |
136 | class UNetMidBlockPseudo3DCrossAttn(nn.Module):
137 | def __init__(
138 | self,
139 | in_channels: int,
140 | temb_channels: int,
141 | dropout: float = 0.0,
142 | num_layers: int = 1,
143 | resnet_eps: float = 1e-6,
144 | resnet_time_scale_shift: str = "default",
145 | resnet_act_fn: str = "swish",
146 | resnet_groups: int = 32,
147 | resnet_pre_norm: bool = True,
148 | attn_num_head_channels=1,
149 | output_scale_factor=1.0,
150 | cross_attention_dim=1280,
151 | dual_cross_attention=False,
152 | use_linear_projection=False,
153 | upcast_attention=False,
154 | ):
155 | super().__init__()
156 |
157 | self.has_cross_attention = True
158 | self.attn_num_head_channels = attn_num_head_channels
159 | resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
160 |
161 | # there is always at least one resnet
162 | resnets = [
163 | ResnetBlockPseudo3D(
164 | in_channels=in_channels,
165 | out_channels=in_channels,
166 | temb_channels=temb_channels,
167 | eps=resnet_eps,
168 | groups=resnet_groups,
169 | dropout=dropout,
170 | time_embedding_norm=resnet_time_scale_shift,
171 | non_linearity=resnet_act_fn,
172 | output_scale_factor=output_scale_factor,
173 | pre_norm=resnet_pre_norm,
174 | )
175 | ]
176 | attentions = []
177 |
178 | for _ in range(num_layers):
179 | if dual_cross_attention:
180 | raise NotImplementedError
181 | attentions.append(
182 | SpatioTemporalTransformerModel(
183 | attn_num_head_channels,
184 | in_channels // attn_num_head_channels,
185 | in_channels=in_channels,
186 | num_layers=1,
187 | cross_attention_dim=cross_attention_dim,
188 | norm_num_groups=resnet_groups,
189 | use_linear_projection=use_linear_projection,
190 | upcast_attention=upcast_attention,
191 | )
192 | )
193 | resnets.append(
194 | ResnetBlockPseudo3D(
195 | in_channels=in_channels,
196 | out_channels=in_channels,
197 | temb_channels=temb_channels,
198 | eps=resnet_eps,
199 | groups=resnet_groups,
200 | dropout=dropout,
201 | time_embedding_norm=resnet_time_scale_shift,
202 | non_linearity=resnet_act_fn,
203 | output_scale_factor=output_scale_factor,
204 | pre_norm=resnet_pre_norm,
205 | )
206 | )
207 |
208 | self.attentions = nn.ModuleList(attentions)
209 | self.resnets = nn.ModuleList(resnets)
210 |
211 | def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
212 | # TODO(Patrick, William) - attention_mask is currently not used. Implement once used
213 | hidden_states = self.resnets[0](hidden_states, temb)
214 | for attn, resnet in zip(self.attentions, self.resnets[1:]):
215 | hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
216 | hidden_states = resnet(hidden_states, temb)
217 |
218 | return hidden_states
219 |
220 |
221 | class CrossAttnDownBlockPseudo3D(nn.Module):
222 | def __init__(
223 | self,
224 | in_channels: int,
225 | out_channels: int,
226 | temb_channels: int,
227 | dropout: float = 0.0,
228 | num_layers: int = 1,
229 | resnet_eps: float = 1e-6,
230 | resnet_time_scale_shift: str = "default",
231 | resnet_act_fn: str = "swish",
232 | resnet_groups: int = 32,
233 | resnet_pre_norm: bool = True,
234 | attn_num_head_channels=1,
235 | cross_attention_dim=1280,
236 | output_scale_factor=1.0,
237 | downsample_padding=1,
238 | add_downsample=True,
239 | dual_cross_attention=False,
240 | use_linear_projection=False,
241 | only_cross_attention=False,
242 | upcast_attention=False,
243 | ):
244 | super().__init__()
245 | resnets = []
246 | attentions = []
247 |
248 | self.has_cross_attention = True
249 | self.attn_num_head_channels = attn_num_head_channels
250 |
251 | for i in range(num_layers):
252 | in_channels = in_channels if i == 0 else out_channels
253 | resnets.append(
254 | ResnetBlockPseudo3D(
255 | in_channels=in_channels,
256 | out_channels=out_channels,
257 | temb_channels=temb_channels,
258 | eps=resnet_eps,
259 | groups=resnet_groups,
260 | dropout=dropout,
261 | time_embedding_norm=resnet_time_scale_shift,
262 | non_linearity=resnet_act_fn,
263 | output_scale_factor=output_scale_factor,
264 | pre_norm=resnet_pre_norm,
265 | )
266 | )
267 | if dual_cross_attention:
268 | raise NotImplementedError
269 | attentions.append(
270 | SpatioTemporalTransformerModel(
271 | attn_num_head_channels,
272 | out_channels // attn_num_head_channels,
273 | in_channels=out_channels,
274 | num_layers=1,
275 | cross_attention_dim=cross_attention_dim,
276 | norm_num_groups=resnet_groups,
277 | use_linear_projection=use_linear_projection,
278 | only_cross_attention=only_cross_attention,
279 | upcast_attention=upcast_attention,
280 | )
281 | )
282 | self.attentions = nn.ModuleList(attentions)
283 | self.resnets = nn.ModuleList(resnets)
284 |
285 | if add_downsample:
286 | self.downsamplers = nn.ModuleList(
287 | [
288 | DownsamplePseudo3D(
289 | out_channels,
290 | use_conv=True,
291 | out_channels=out_channels,
292 | padding=downsample_padding,
293 | name="op",
294 | )
295 | ]
296 | )
297 | else:
298 | self.downsamplers = None
299 |
300 | self.gradient_checkpointing = False
301 |
302 | def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
303 | # TODO(Patrick, William) - attention mask is not used
304 | output_states = ()
305 |
306 | for resnet, attn in zip(self.resnets, self.attentions):
307 | if self.training and self.gradient_checkpointing:
308 |
309 | def create_custom_forward(module, return_dict=None):
310 | def custom_forward(*inputs):
311 | if return_dict is not None:
312 | return module(*inputs, return_dict=return_dict)
313 | else:
314 | return module(*inputs)
315 |
316 | return custom_forward
317 |
318 | hidden_states = torch.utils.checkpoint.checkpoint(
319 | create_custom_forward(resnet), hidden_states, temb
320 | )
321 | hidden_states = torch.utils.checkpoint.checkpoint(
322 | create_custom_forward(attn, return_dict=False),
323 | hidden_states,
324 | encoder_hidden_states,
325 | )[0]
326 | else:
327 | hidden_states = resnet(hidden_states, temb)
328 | hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
329 |
330 | output_states += (hidden_states,)
331 |
332 | if self.downsamplers is not None:
333 | for downsampler in self.downsamplers:
334 | hidden_states = downsampler(hidden_states)
335 |
336 | output_states += (hidden_states,)
337 |
338 | return hidden_states, output_states
339 |
340 |
341 | class DownBlockPseudo3D(nn.Module):
342 | def __init__(
343 | self,
344 | in_channels: int,
345 | out_channels: int,
346 | temb_channels: int,
347 | dropout: float = 0.0,
348 | num_layers: int = 1,
349 | resnet_eps: float = 1e-6,
350 | resnet_time_scale_shift: str = "default",
351 | resnet_act_fn: str = "swish",
352 | resnet_groups: int = 32,
353 | resnet_pre_norm: bool = True,
354 | output_scale_factor=1.0,
355 | add_downsample=True,
356 | downsample_padding=1,
357 | ):
358 | super().__init__()
359 | resnets = []
360 |
361 | for i in range(num_layers):
362 | in_channels = in_channels if i == 0 else out_channels
363 | resnets.append(
364 | ResnetBlockPseudo3D(
365 | in_channels=in_channels,
366 | out_channels=out_channels,
367 | temb_channels=temb_channels,
368 | eps=resnet_eps,
369 | groups=resnet_groups,
370 | dropout=dropout,
371 | time_embedding_norm=resnet_time_scale_shift,
372 | non_linearity=resnet_act_fn,
373 | output_scale_factor=output_scale_factor,
374 | pre_norm=resnet_pre_norm,
375 | )
376 | )
377 |
378 | self.resnets = nn.ModuleList(resnets)
379 |
380 | if add_downsample:
381 | self.downsamplers = nn.ModuleList(
382 | [
383 | DownsamplePseudo3D(
384 | out_channels,
385 | use_conv=True,
386 | out_channels=out_channels,
387 | padding=downsample_padding,
388 | name="op",
389 | )
390 | ]
391 | )
392 | else:
393 | self.downsamplers = None
394 |
395 | self.gradient_checkpointing = False
396 |
397 | def forward(self, hidden_states, temb=None):
398 | output_states = ()
399 |
400 | for resnet in self.resnets:
401 | if self.training and self.gradient_checkpointing:
402 |
403 | def create_custom_forward(module):
404 | def custom_forward(*inputs):
405 | return module(*inputs)
406 |
407 | return custom_forward
408 |
409 | hidden_states = torch.utils.checkpoint.checkpoint(
410 | create_custom_forward(resnet), hidden_states, temb
411 | )
412 | else:
413 | hidden_states = resnet(hidden_states, temb)
414 |
415 | output_states += (hidden_states,)
416 |
417 | if self.downsamplers is not None:
418 | for downsampler in self.downsamplers:
419 | hidden_states = downsampler(hidden_states)
420 |
421 | output_states += (hidden_states,)
422 |
423 | return hidden_states, output_states
424 |
425 |
426 | class CrossAttnUpBlockPseudo3D(nn.Module):
427 | def __init__(
428 | self,
429 | in_channels: int,
430 | out_channels: int,
431 | prev_output_channel: int,
432 | temb_channels: int,
433 | dropout: float = 0.0,
434 | num_layers: int = 1,
435 | resnet_eps: float = 1e-6,
436 | resnet_time_scale_shift: str = "default",
437 | resnet_act_fn: str = "swish",
438 | resnet_groups: int = 32,
439 | resnet_pre_norm: bool = True,
440 | attn_num_head_channels=1,
441 | cross_attention_dim=1280,
442 | output_scale_factor=1.0,
443 | add_upsample=True,
444 | dual_cross_attention=False,
445 | use_linear_projection=False,
446 | only_cross_attention=False,
447 | upcast_attention=False,
448 | ):
449 | super().__init__()
450 | resnets = []
451 | attentions = []
452 |
453 | self.has_cross_attention = True
454 | self.attn_num_head_channels = attn_num_head_channels
455 |
456 | for i in range(num_layers):
457 | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
458 | resnet_in_channels = prev_output_channel if i == 0 else out_channels
459 |
460 | resnets.append(
461 | ResnetBlockPseudo3D(
462 | in_channels=resnet_in_channels + res_skip_channels,
463 | out_channels=out_channels,
464 | temb_channels=temb_channels,
465 | eps=resnet_eps,
466 | groups=resnet_groups,
467 | dropout=dropout,
468 | time_embedding_norm=resnet_time_scale_shift,
469 | non_linearity=resnet_act_fn,
470 | output_scale_factor=output_scale_factor,
471 | pre_norm=resnet_pre_norm,
472 | )
473 | )
474 | if dual_cross_attention:
475 | raise NotImplementedError
476 | attentions.append(
477 | SpatioTemporalTransformerModel(
478 | attn_num_head_channels,
479 | out_channels // attn_num_head_channels,
480 | in_channels=out_channels,
481 | num_layers=1,
482 | cross_attention_dim=cross_attention_dim,
483 | norm_num_groups=resnet_groups,
484 | use_linear_projection=use_linear_projection,
485 | only_cross_attention=only_cross_attention,
486 | upcast_attention=upcast_attention,
487 | )
488 | )
489 | self.attentions = nn.ModuleList(attentions)
490 | self.resnets = nn.ModuleList(resnets)
491 |
492 | if add_upsample:
493 | self.upsamplers = nn.ModuleList(
494 | [UpsamplePseudo3D(out_channels, use_conv=True, out_channels=out_channels)]
495 | )
496 | else:
497 | self.upsamplers = None
498 |
499 | self.gradient_checkpointing = False
500 |
501 | def forward(
502 | self,
503 | hidden_states,
504 | res_hidden_states_tuple,
505 | temb=None,
506 | encoder_hidden_states=None,
507 | upsample_size=None,
508 | attention_mask=None,
509 | ):
510 | # TODO(Patrick, William) - attention mask is not used
511 | for resnet, attn in zip(self.resnets, self.attentions):
512 | # pop res hidden states
513 | res_hidden_states = res_hidden_states_tuple[-1]
514 | res_hidden_states_tuple = res_hidden_states_tuple[:-1]
515 | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
516 |
517 | if self.training and self.gradient_checkpointing:
518 |
519 | def create_custom_forward(module, return_dict=None):
520 | def custom_forward(*inputs):
521 | if return_dict is not None:
522 | return module(*inputs, return_dict=return_dict)
523 | else:
524 | return module(*inputs)
525 |
526 | return custom_forward
527 |
528 | hidden_states = torch.utils.checkpoint.checkpoint(
529 | create_custom_forward(resnet), hidden_states, temb
530 | )
531 | hidden_states = torch.utils.checkpoint.checkpoint(
532 | create_custom_forward(attn, return_dict=False),
533 | hidden_states,
534 | encoder_hidden_states,
535 | )[0]
536 | else:
537 | hidden_states = resnet(hidden_states, temb)
538 | hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
539 |
540 | if self.upsamplers is not None:
541 | for upsampler in self.upsamplers:
542 | hidden_states = upsampler(hidden_states, upsample_size)
543 |
544 | return hidden_states
545 |
546 |
547 | class UpBlockPseudo3D(nn.Module):
548 | def __init__(
549 | self,
550 | in_channels: int,
551 | prev_output_channel: int,
552 | out_channels: int,
553 | temb_channels: int,
554 | dropout: float = 0.0,
555 | num_layers: int = 1,
556 | resnet_eps: float = 1e-6,
557 | resnet_time_scale_shift: str = "default",
558 | resnet_act_fn: str = "swish",
559 | resnet_groups: int = 32,
560 | resnet_pre_norm: bool = True,
561 | output_scale_factor=1.0,
562 | add_upsample=True,
563 | ):
564 | super().__init__()
565 | resnets = []
566 |
567 | for i in range(num_layers):
568 | res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
569 | resnet_in_channels = prev_output_channel if i == 0 else out_channels
570 |
571 | resnets.append(
572 | ResnetBlockPseudo3D(
573 | in_channels=resnet_in_channels + res_skip_channels,
574 | out_channels=out_channels,
575 | temb_channels=temb_channels,
576 | eps=resnet_eps,
577 | groups=resnet_groups,
578 | dropout=dropout,
579 | time_embedding_norm=resnet_time_scale_shift,
580 | non_linearity=resnet_act_fn,
581 | output_scale_factor=output_scale_factor,
582 | pre_norm=resnet_pre_norm,
583 | )
584 | )
585 |
586 | self.resnets = nn.ModuleList(resnets)
587 |
588 | if add_upsample:
589 | self.upsamplers = nn.ModuleList(
590 | [UpsamplePseudo3D(out_channels, use_conv=True, out_channels=out_channels)]
591 | )
592 | else:
593 | self.upsamplers = None
594 |
595 | self.gradient_checkpointing = False
596 |
597 | def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
598 | for resnet in self.resnets:
599 | # pop res hidden states
600 | res_hidden_states = res_hidden_states_tuple[-1]
601 | res_hidden_states_tuple = res_hidden_states_tuple[:-1]
602 | hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
603 |
604 | if self.training and self.gradient_checkpointing:
605 |
606 | def create_custom_forward(module):
607 | def custom_forward(*inputs):
608 | return module(*inputs)
609 |
610 | return custom_forward
611 |
612 | hidden_states = torch.utils.checkpoint.checkpoint(
613 | create_custom_forward(resnet), hidden_states, temb
614 | )
615 | else:
616 | hidden_states = resnet(hidden_states, temb)
617 |
618 | if self.upsamplers is not None:
619 | for upsampler in self.upsamplers:
620 | hidden_states = upsampler(hidden_states, upsample_size)
621 |
622 | return hidden_states
623 |
--------------------------------------------------------------------------------
/model/video_diffusion/models/unet_3d_condition.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import os
16 | import glob
17 | import json
18 | from dataclasses import dataclass
19 | from typing import List, Optional, Tuple, Union
20 |
21 | import torch
22 | import torch.nn as nn
23 | import torch.utils.checkpoint
24 |
25 | from diffusers.configuration_utils import ConfigMixin, register_to_config
26 | from diffusers.models.modeling_utils import ModelMixin
27 | from diffusers.utils import BaseOutput, logging
28 | from diffusers.models.embeddings import TimestepEmbedding, Timesteps
29 | from .unet_3d_blocks import (
30 | CrossAttnDownBlockPseudo3D,
31 | CrossAttnUpBlockPseudo3D,
32 | DownBlockPseudo3D,
33 | UNetMidBlockPseudo3DCrossAttn,
34 | UpBlockPseudo3D,
35 | get_down_block,
36 | get_up_block,
37 | )
38 | from .resnet import PseudoConv3d
39 | from diffusers.models.cross_attention import AttnProcessor
40 | from typing import Dict
41 |
42 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43 |
44 |
45 | @dataclass
46 | class UNetPseudo3DConditionOutput(BaseOutput):
47 | sample: torch.FloatTensor
48 |
49 |
50 | class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin):
51 | """
52 | 这里把原来2D Unet的 2D卷积全换成新定义的PseudoConv3d。并且定义了从2D卷积继承的模型参数。
53 | """
54 | _supports_gradient_checkpointing = True
55 |
56 | @register_to_config
57 | def __init__(
58 | self,
59 | sample_size: Optional[int] = None,
60 | in_channels: int = 4,
61 | out_channels: int = 4,
62 | center_input_sample: bool = False,
63 | flip_sin_to_cos: bool = True,
64 | freq_shift: int = 0,
65 | down_block_types: Tuple[str] = (
66 | "CrossAttnDownBlockPseudo3D",
67 | "CrossAttnDownBlockPseudo3D",
68 | "CrossAttnDownBlockPseudo3D",
69 | "DownBlockPseudo3D",
70 | ),
71 | mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn",
72 | up_block_types: Tuple[str] = (
73 | "UpBlockPseudo3D",
74 | "CrossAttnUpBlockPseudo3D",
75 | "CrossAttnUpBlockPseudo3D",
76 | "CrossAttnUpBlockPseudo3D",
77 | ),
78 | only_cross_attention: Union[bool, Tuple[bool]] = False,
79 | block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
80 | layers_per_block: int = 2,
81 | downsample_padding: int = 1,
82 | mid_block_scale_factor: float = 1,
83 | act_fn: str = "silu",
84 | norm_num_groups: int = 32,
85 | norm_eps: float = 1e-5,
86 | cross_attention_dim: int = 1280,
87 | attention_head_dim: Union[int, Tuple[int]] = 8,
88 | dual_cross_attention: bool = False,
89 | use_linear_projection: bool = False,
90 | fps_embed_type: Optional[str] = None,
91 | num_fps_embeds: Optional[int] = None,
92 | upcast_attention: bool = False,
93 | resnet_time_scale_shift: str = "default",
94 | num_class_embeds=None,
95 |
96 | ):
97 | super().__init__()
98 |
99 |
100 | self.sample_size = sample_size
101 | time_embed_dim = block_out_channels[0] * 4
102 |
103 | # input
104 | self.conv_in = PseudoConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
105 |
106 | # time
107 | self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
108 | timestep_input_dim = block_out_channels[0]
109 |
110 | self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
111 |
112 | # class embedding
113 | if fps_embed_type is None and num_fps_embeds is not None:
114 | self.fps_embedding = nn.Embedding(num_fps_embeds, time_embed_dim)
115 | elif fps_embed_type == "timestep":
116 | self.fps_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
117 | elif fps_embed_type == "identity":
118 | self.fps_embedding = nn.Identity(time_embed_dim, time_embed_dim)
119 | else:
120 | self.fps_embedding = None
121 |
122 | self.down_blocks = nn.ModuleList([])
123 | self.mid_block = None
124 | self.up_blocks = nn.ModuleList([])
125 |
126 | if isinstance(only_cross_attention, bool):
127 | only_cross_attention = [only_cross_attention] * len(down_block_types)
128 |
129 | if isinstance(attention_head_dim, int):
130 | attention_head_dim = (attention_head_dim,) * len(down_block_types)
131 |
132 | # down
133 | output_channel = block_out_channels[0]
134 | for i, down_block_type in enumerate(down_block_types):
135 | input_channel = output_channel
136 | output_channel = block_out_channels[i]
137 | is_final_block = i == len(block_out_channels) - 1
138 |
139 | down_block = get_down_block(
140 | down_block_type,
141 | num_layers=layers_per_block,
142 | in_channels=input_channel,
143 | out_channels=output_channel,
144 | temb_channels=time_embed_dim,
145 | add_downsample=not is_final_block,
146 | resnet_eps=norm_eps,
147 | resnet_act_fn=act_fn,
148 | resnet_groups=norm_num_groups,
149 | cross_attention_dim=cross_attention_dim,
150 | attn_num_head_channels=attention_head_dim[i],
151 | downsample_padding=downsample_padding,
152 | dual_cross_attention=dual_cross_attention,
153 | use_linear_projection=use_linear_projection,
154 | only_cross_attention=only_cross_attention[i],
155 | upcast_attention=upcast_attention,
156 | resnet_time_scale_shift=resnet_time_scale_shift,
157 | )
158 | self.down_blocks.append(down_block)
159 |
160 | # mid
161 | if mid_block_type == "UNetMidBlockPseudo3DCrossAttn":
162 | self.mid_block = UNetMidBlockPseudo3DCrossAttn(
163 | in_channels=block_out_channels[-1],
164 | temb_channels=time_embed_dim,
165 | resnet_eps=norm_eps,
166 | resnet_act_fn=act_fn,
167 | output_scale_factor=mid_block_scale_factor,
168 | resnet_time_scale_shift=resnet_time_scale_shift,
169 | cross_attention_dim=cross_attention_dim,
170 | attn_num_head_channels=attention_head_dim[-1],
171 | resnet_groups=norm_num_groups,
172 | dual_cross_attention=dual_cross_attention,
173 | use_linear_projection=use_linear_projection,
174 | upcast_attention=upcast_attention,
175 | )
176 | else:
177 | raise ValueError(f"unknown mid_block_type : {mid_block_type}")
178 |
179 | # count how many layers upsample the images
180 | self.num_upsamplers = 0
181 |
182 | # up
183 | reversed_block_out_channels = list(reversed(block_out_channels))
184 | reversed_attention_head_dim = list(reversed(attention_head_dim))
185 | only_cross_attention = list(reversed(only_cross_attention))
186 | output_channel = reversed_block_out_channels[0]
187 | for i, up_block_type in enumerate(up_block_types):
188 | is_final_block = i == len(block_out_channels) - 1
189 |
190 | prev_output_channel = output_channel
191 | output_channel = reversed_block_out_channels[i]
192 | input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
193 |
194 | # add upsample block for all BUT final layer
195 | if not is_final_block:
196 | add_upsample = True
197 | self.num_upsamplers += 1
198 | else:
199 | add_upsample = False
200 |
201 | up_block = get_up_block(
202 | up_block_type,
203 | num_layers=layers_per_block + 1,
204 | in_channels=input_channel,
205 | out_channels=output_channel,
206 | prev_output_channel=prev_output_channel,
207 | temb_channels=time_embed_dim,
208 | add_upsample=add_upsample,
209 | resnet_eps=norm_eps,
210 | resnet_act_fn=act_fn,
211 | resnet_groups=norm_num_groups,
212 | cross_attention_dim=cross_attention_dim,
213 | attn_num_head_channels=reversed_attention_head_dim[i],
214 | dual_cross_attention=dual_cross_attention,
215 | use_linear_projection=use_linear_projection,
216 | only_cross_attention=only_cross_attention[i],
217 | upcast_attention=upcast_attention,
218 | resnet_time_scale_shift=resnet_time_scale_shift,
219 | )
220 | self.up_blocks.append(up_block)
221 | prev_output_channel = output_channel
222 |
223 | # out
224 | self.conv_norm_out = nn.GroupNorm(
225 | num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
226 | )
227 | self.conv_act = nn.SiLU()
228 | self.conv_out = PseudoConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
229 | @property
230 | def attn_processors(self) -> Dict[str, AttnProcessor]:
231 | r"""
232 | Returns:
233 | `dict` of attention processors: A dictionary containing all attention processors used in the model with
234 | indexed by its weight name.
235 | """
236 | # set recursively
237 | processors = {}
238 |
239 | def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]):
240 | if hasattr(module, "set_processor"):
241 | processors[f"{name}.processor"] = module.processor
242 |
243 | for sub_name, child in module.named_children():
244 | fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
245 |
246 | return processors
247 |
248 | for name, module in self.named_children():
249 | fn_recursive_add_processors(name, module, processors)
250 |
251 | return processors
252 |
253 | def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
254 | r"""
255 | Parameters:
256 | `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
257 | The instantiated processor class or a dictionary of processor classes that will be set as the processor
258 | of **all** `CrossAttention` layers.
259 | In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:
260 |
261 | """
262 | count = len(self.attn_processors.keys())
263 |
264 | if isinstance(processor, dict) and len(processor) != count:
265 | raise ValueError(
266 | f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
267 | f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
268 | )
269 |
270 | def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
271 | if hasattr(module, "set_processor"):
272 | if not isinstance(processor, dict):
273 | module.set_processor(processor)
274 | else:
275 | module.set_processor(processor.pop(f"{name}.processor"))
276 |
277 | for sub_name, child in module.named_children():
278 | fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
279 |
280 | for name, module in self.named_children():
281 | fn_recursive_attn_processor(name, module, processor)
282 |
283 |
284 | def set_attention_slice(self, slice_size):
285 | r"""
286 | Enable sliced attention computation.
287 |
288 | When this option is enabled, the attention module will split the input tensor in slices, to compute attention
289 | in several steps. This is useful to save some memory in exchange for a small speed decrease.
290 |
291 | Args:
292 | slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
293 | When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
294 | `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
295 | provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
296 | must be a multiple of `slice_size`.
297 | """
298 | sliceable_head_dims = []
299 |
300 | def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
301 | if hasattr(module, "set_attention_slice"):
302 | sliceable_head_dims.append(module.sliceable_head_dim)
303 |
304 | for child in module.children():
305 | fn_recursive_retrieve_slicable_dims(child)
306 |
307 | # retrieve number of attention layers
308 | for module in self.children():
309 | fn_recursive_retrieve_slicable_dims(module)
310 |
311 | num_slicable_layers = len(sliceable_head_dims)
312 |
313 | if slice_size == "auto":
314 | # half the attention head size is usually a good trade-off between
315 | # speed and memory
316 | slice_size = [dim // 2 for dim in sliceable_head_dims]
317 | elif slice_size == "max":
318 | # make smallest slice possible
319 | slice_size = num_slicable_layers * [1]
320 |
321 | slice_size = (
322 | num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
323 | )
324 |
325 | if len(slice_size) != len(sliceable_head_dims):
326 | raise ValueError(
327 | f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
328 | f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
329 | )
330 |
331 | for i in range(len(slice_size)):
332 | size = slice_size[i]
333 | dim = sliceable_head_dims[i]
334 | if size is not None and size > dim:
335 | raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
336 |
337 | # Recursively walk through all the children.
338 | # Any children which exposes the set_attention_slice method
339 | # gets the message
340 | def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
341 | if hasattr(module, "set_attention_slice"):
342 | module.set_attention_slice(slice_size.pop())
343 |
344 | for child in module.children():
345 | fn_recursive_set_attention_slice(child, slice_size)
346 |
347 | reversed_slice_size = list(reversed(slice_size))
348 | for module in self.children():
349 | fn_recursive_set_attention_slice(module, reversed_slice_size)
350 |
351 | def _set_gradient_checkpointing(self, module, value=False):
352 | if isinstance(
353 | module,
354 | (CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D),
355 | ):
356 | module.gradient_checkpointing = value
357 |
358 | def forward(
359 | self,
360 | sample: torch.FloatTensor,
361 | timestep: Union[torch.Tensor, float, int],
362 | encoder_hidden_states: torch.Tensor,
363 | fps_labels: Optional[torch.Tensor] = None,
364 | attention_mask: Optional[torch.Tensor] = None,
365 | cross_attention_kwargs=None,
366 | down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
367 | mid_block_additional_residual: Optional[torch.Tensor] = None,
368 | return_dict: bool = True,
369 | ) -> Union[UNetPseudo3DConditionOutput, Tuple]:
370 | # By default samples have to be AT least a multiple of the overall upsampling factor.
371 | # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
372 | # However, the upsampling interpolation output size can be forced to fit any upsampling size
373 | # on the fly if necessary.
374 | default_overall_up_factor = 2**self.num_upsamplers
375 |
376 | # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
377 | forward_upsample_size = False
378 | upsample_size = None
379 |
380 | if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
381 | logger.info("Forward upsample size to force interpolation output size.")
382 | forward_upsample_size = True
383 |
384 | # prepare attention_mask
385 | if attention_mask is not None:
386 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
387 | attention_mask = attention_mask.unsqueeze(1)
388 |
389 | # 0. center input if necessary
390 | if self.config.center_input_sample:
391 | sample = 2 * sample - 1.0
392 |
393 | # 1. time
394 | timesteps = timestep
395 | if not torch.is_tensor(timesteps):
396 | # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
397 | # This would be a good case for the `match` statement (Python 3.10+)
398 | is_mps = sample.device.type == "mps"
399 | if isinstance(timestep, float):
400 | dtype = torch.float32 if is_mps else torch.float64
401 | else:
402 | dtype = torch.int32 if is_mps else torch.int64
403 | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
404 | elif len(timesteps.shape) == 0:
405 | timesteps = timesteps[None].to(sample.device)
406 | # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
407 | timesteps = timesteps.expand(sample.shape[0])
408 |
409 | t_emb = self.time_proj(timesteps)
410 | # timesteps does not contain any weights and will always return f32 tensors
411 | # but time_embedding might actually be running in fp16. so we need to cast here.
412 | # there might be better ways to encapsulate this.
413 | t_emb = t_emb.to(dtype=self.dtype)
414 | emb = self.time_embedding(t_emb)
415 |
416 | if self.fps_embedding is not None:
417 | if fps_labels is None:
418 | raise ValueError("fps_labels should be provided when num_fps_embeds > 0")
419 |
420 | if self.config.fps_embed_type == "timestep":
421 | fps_labels = self.time_proj(fps_labels) # 和timesteps共用,都是sin embedding?这里的weight不更新的。
422 |
423 | # 这里和上面timesteps does not contain any weights and will always return f32 tensors的bug一样。需要先cast过去,不然多机多卡就有问题了。
424 | fps_labels = fps_labels.to(dtype=self.dtype)
425 | class_emb = self.fps_embedding(fps_labels)
426 |
427 | emb = emb + class_emb
428 |
429 | # 2. pre-process
430 | sample = self.conv_in(sample)
431 |
432 | # 3. down
433 | down_block_res_samples = (sample,)
434 | for downsample_block in self.down_blocks:
435 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
436 | sample, res_samples = downsample_block(
437 | hidden_states=sample,
438 | temb=emb,
439 | encoder_hidden_states=encoder_hidden_states,
440 | attention_mask=attention_mask,
441 | )
442 | else:
443 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
444 |
445 | down_block_res_samples += res_samples
446 |
447 | if down_block_additional_residuals is not None:
448 | new_down_block_res_samples = ()
449 |
450 | for down_block_res_sample, down_block_additional_residual in zip(
451 | down_block_res_samples, down_block_additional_residuals
452 | ):
453 | down_block_res_sample = down_block_res_sample + down_block_additional_residual
454 | new_down_block_res_samples += (down_block_res_sample,)
455 |
456 | down_block_res_samples = new_down_block_res_samples
457 |
458 | # 4. mid
459 | sample = self.mid_block(
460 | sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
461 | )
462 | if mid_block_additional_residual is not None:
463 | sample = sample + mid_block_additional_residual
464 |
465 | # 5. up
466 | for i, upsample_block in enumerate(self.up_blocks):
467 | is_final_block = i == len(self.up_blocks) - 1
468 |
469 | res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
470 | down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
471 |
472 | # if we have not reached the final block and need to forward the
473 | # upsample size, we do it here
474 | if not is_final_block and forward_upsample_size:
475 | upsample_size = down_block_res_samples[-1].shape[2:]
476 |
477 | if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
478 | sample = upsample_block(
479 | hidden_states=sample,
480 | temb=emb,
481 | res_hidden_states_tuple=res_samples,
482 | encoder_hidden_states=encoder_hidden_states,
483 | upsample_size=upsample_size,
484 | attention_mask=attention_mask,
485 | )
486 | else:
487 | sample = upsample_block(
488 | hidden_states=sample,
489 | temb=emb,
490 | res_hidden_states_tuple=res_samples,
491 | upsample_size=upsample_size,
492 | )
493 | # 6. post-process
494 | sample = self.conv_norm_out(sample)
495 | sample = self.conv_act(sample)
496 | sample = self.conv_out(sample)
497 |
498 | if not return_dict:
499 | return (sample,)
500 |
501 | return UNetPseudo3DConditionOutput(sample=sample)
502 |
503 | @classmethod
504 | def from_2d_model(cls, model_path, condition_on_fps=False):
505 | '''
506 | load a 2d model and convert it to a pseudo 3d model
507 | '''
508 | config_path = os.path.join(model_path, "config.json")
509 | if not os.path.isfile(config_path):
510 | raise RuntimeError(f"{config_path} does not exist")
511 | with open(config_path, "r") as f:
512 | config = json.load(f)
513 |
514 | config.pop("_class_name")
515 | config.pop("_diffusers_version")
516 |
517 | block_replacer = {
518 | "CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D",
519 | "DownBlock2D": "DownBlockPseudo3D",
520 | "UpBlock2D": "UpBlockPseudo3D",
521 | "CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D",
522 | }
523 |
524 | def convert_2d_to_3d_block(block):
525 | return block_replacer[block] if block in block_replacer else block
526 |
527 | config["down_block_types"] = [
528 | convert_2d_to_3d_block(block) for block in config["down_block_types"]
529 | ]
530 | config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]]
531 |
532 | if condition_on_fps:
533 | # config["num_fps_embeds"] = 60 # 这个在 trainable embeding时候才需要~
534 | config["fps_embed_type"] = "timestep" # 和timestep保持一致的type。
535 |
536 |
537 | model = cls(**config) # 调用自身(init), 传入config参数全换成3d的setting
538 |
539 | state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin"))
540 | if state_dict_path_condidates:
541 | state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu")
542 | model.load_2d_state_dict(state_dict=state_dict)
543 |
544 | return model
545 |
546 | def load_2d_state_dict(self, state_dict, **kwargs):
547 | '''
548 | 2D 部分的参数名完全不变。
549 | '''
550 | state_dict_3d = self.state_dict()
551 |
552 | for k, v in state_dict.items():
553 | if k not in state_dict_3d:
554 | raise KeyError(f"2d state_dict key {k} does not exist in 3d model")
555 | elif v.shape != state_dict_3d[k].shape:
556 | raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}")
557 |
558 | for k, v in state_dict_3d.items():
559 | if "_temporal" in k:
560 | continue
561 | if "gamma" in k:
562 | continue
563 |
564 | if k not in state_dict:
565 | if "fps_embedding" in k:
566 | # 忽略检查fps_embedding
567 | continue
568 | raise KeyError(f"3d state_dict key {k} does not exist in 2d model")
569 |
570 | state_dict_3d.update(state_dict)
571 | self.load_state_dict(state_dict_3d, **kwargs)
572 |
--------------------------------------------------------------------------------
/model/video_diffusion/models/controlnet3d.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 |
16 | from dataclasses import dataclass
17 | from typing import Any, Dict, List, Optional, Tuple, Union
18 |
19 | import torch
20 | from torch import nn
21 | from torch.nn import functional as F
22 |
23 | from diffusers.configuration_utils import ConfigMixin, register_to_config
24 | from diffusers.utils import BaseOutput, logging
25 | from diffusers.models.cross_attention import AttnProcessor
26 | from diffusers.models.embeddings import TimestepEmbedding, Timesteps
27 | from diffusers.models.modeling_utils import ModelMixin
28 |
29 | from .unet_3d_blocks import (
30 | CrossAttnDownBlockPseudo3D,
31 | DownBlockPseudo3D,
32 | UNetMidBlockPseudo3DCrossAttn,
33 | get_down_block,
34 | )
35 | from .resnet import PseudoConv3d
36 | from diffusers.models.cross_attention import AttnProcessor
37 | from typing import Dict
38 | from .unet_3d_blocks_control import ControlNetPseudoZeroConv3dBlock, ControlNetInputHintBlock
39 | import glob
40 | import os
41 | import json
42 |
43 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44 | @dataclass
45 | class ControlNetOutput(BaseOutput):
46 | down_block_res_samples: Tuple[torch.Tensor]
47 | mid_block_res_sample: torch.Tensor
48 |
49 |
50 | class ControlNetConditioningEmbedding(nn.Module):
51 | """
52 | Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
53 | [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
54 | training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
55 | convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
56 | (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
57 | model) to encode image-space conditions ... into feature maps ..."
58 | """
59 |
60 | def __init__(
61 | self,
62 | conditioning_embedding_channels: int,
63 | conditioning_channels: int = 3,
64 | block_out_channels: Tuple[int] = (16, 32, 96, 256),
65 | ):
66 | super().__init__()
67 |
68 | self.conv_in = PseudoConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
69 |
70 | self.blocks = nn.ModuleList([])
71 |
72 | for i in range(len(block_out_channels) - 1):
73 | channel_in = block_out_channels[i]
74 | channel_out = block_out_channels[i + 1]
75 | self.blocks.append(PseudoConv3d(channel_in, channel_in, kernel_size=3, padding=1))
76 | self.blocks.append(PseudoConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
77 |
78 | # self.conv_out = zero_module(
79 | # PseudoConv3d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
80 | # )
81 | self.conv_out = PseudoConv3d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
82 |
83 | def forward(self, conditioning):
84 | embedding = self.conv_in(conditioning)
85 | embedding = F.silu(embedding)
86 |
87 | for block in self.blocks:
88 | embedding = block(embedding)
89 | embedding = F.silu(embedding)
90 |
91 | embedding = self.conv_out(embedding)
92 |
93 | return embedding
94 |
95 |
96 | class ControlNet3DModel(ModelMixin, ConfigMixin):
97 | _supports_gradient_checkpointing = True
98 |
99 | @register_to_config
100 | def __init__(
101 | self,
102 | in_channels: int = 4,
103 | flip_sin_to_cos: bool = True,
104 | freq_shift: int = 0,
105 | down_block_types: Tuple[str] = (
106 | "CrossAttnDownBlockPseudo3D",
107 | "CrossAttnDownBlockPseudo3D",
108 | "CrossAttnDownBlockPseudo3D",
109 | "DownBlockPseudo3D",
110 | ),
111 | only_cross_attention: Union[bool, Tuple[bool]] = False,
112 | block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
113 | layers_per_block: int = 2,
114 | downsample_padding: int = 1,
115 | mid_block_scale_factor: float = 1,
116 | act_fn: str = "silu",
117 | norm_num_groups: Optional[int] = 32,
118 | norm_eps: float = 1e-5,
119 | cross_attention_dim: int = 1280,
120 | attention_head_dim: Union[int, Tuple[int]] = 8,
121 | use_linear_projection: bool = False,
122 | class_embed_type: Optional[str] = None,
123 | num_class_embeds: Optional[int] = None,
124 | upcast_attention: bool = False,
125 | resnet_time_scale_shift: str = "default",
126 | projection_class_embeddings_input_dim: Optional[int] = None,
127 | controlnet_conditioning_channel_order: str = "rgb",
128 | conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
129 | ):
130 | super().__init__()
131 |
132 | # Check inputs
133 | if len(block_out_channels) != len(down_block_types):
134 | raise ValueError(
135 | f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
136 | )
137 |
138 | if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
139 | raise ValueError(
140 | f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
141 | )
142 |
143 | if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
144 | raise ValueError(
145 | f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
146 | )
147 |
148 | # input
149 | conv_in_kernel = 3
150 | conv_in_padding = (conv_in_kernel - 1) // 2
151 | self.conv_in = PseudoConv3d(
152 | in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
153 | )
154 |
155 | # time
156 | time_embed_dim = block_out_channels[0] * 4
157 |
158 | self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
159 | timestep_input_dim = block_out_channels[0]
160 |
161 | self.time_embedding = TimestepEmbedding(
162 | timestep_input_dim,
163 | time_embed_dim,
164 | act_fn=act_fn,
165 | )
166 |
167 | # class embedding
168 | if class_embed_type is None and num_class_embeds is not None:
169 | self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
170 | elif class_embed_type == "timestep":
171 | self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
172 | elif class_embed_type == "identity":
173 | self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
174 | elif class_embed_type == "projection":
175 | if projection_class_embeddings_input_dim is None:
176 | raise ValueError(
177 | "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
178 | )
179 | # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
180 | # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
181 | # 2. it projects from an arbitrary input dimension.
182 | #
183 | # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
184 | # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
185 | # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
186 | self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
187 | else:
188 | self.class_embedding = None
189 |
190 | # control net conditioning embedding
191 | self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
192 | conditioning_embedding_channels=block_out_channels[0],
193 | block_out_channels=conditioning_embedding_out_channels,
194 | )
195 |
196 | self.down_blocks = nn.ModuleList([])
197 | self.controlnet_down_blocks = nn.ModuleList([])
198 |
199 | if isinstance(only_cross_attention, bool):
200 | only_cross_attention = [only_cross_attention] * len(down_block_types)
201 |
202 | if isinstance(attention_head_dim, int):
203 | attention_head_dim = (attention_head_dim,) * len(down_block_types)
204 |
205 | # down
206 | output_channel = block_out_channels[0]
207 |
208 | controlnet_block = PseudoConv3d(output_channel, output_channel, kernel_size=1)
209 | # controlnet_block = zero_module(controlnet_block)
210 | self.controlnet_down_blocks.append(controlnet_block)
211 |
212 | for i, down_block_type in enumerate(down_block_types):
213 | input_channel = output_channel
214 | output_channel = block_out_channels[i]
215 | is_final_block = i == len(block_out_channels) - 1
216 |
217 | down_block = get_down_block(
218 | down_block_type,
219 | num_layers=layers_per_block,
220 | in_channels=input_channel,
221 | out_channels=output_channel,
222 | temb_channels=time_embed_dim,
223 | add_downsample=not is_final_block,
224 | resnet_eps=norm_eps,
225 | resnet_act_fn=act_fn,
226 | resnet_groups=norm_num_groups,
227 | cross_attention_dim=cross_attention_dim,
228 | attn_num_head_channels=attention_head_dim[i],
229 | downsample_padding=downsample_padding,
230 | use_linear_projection=use_linear_projection,
231 | only_cross_attention=only_cross_attention[i],
232 | upcast_attention=upcast_attention,
233 | resnet_time_scale_shift=resnet_time_scale_shift,
234 | )
235 | self.down_blocks.append(down_block)
236 |
237 | for _ in range(layers_per_block):
238 | controlnet_block = PseudoConv3d(output_channel, output_channel, kernel_size=1)
239 | # controlnet_block = zero_module(controlnet_block)
240 | self.controlnet_down_blocks.append(controlnet_block)
241 |
242 | if not is_final_block:
243 | controlnet_block = PseudoConv3d(output_channel, output_channel, kernel_size=1)
244 | # controlnet_block = zero_module(controlnet_block)
245 | self.controlnet_down_blocks.append(controlnet_block)
246 |
247 | # mid
248 | mid_block_channel = block_out_channels[-1]
249 |
250 | controlnet_block = PseudoConv3d(mid_block_channel, mid_block_channel, kernel_size=1)
251 | # controlnet_block = zero_module(controlnet_block)
252 | self.controlnet_mid_block = controlnet_block
253 |
254 | self.mid_block = UNetMidBlockPseudo3DCrossAttn(
255 | in_channels=mid_block_channel,
256 | temb_channels=time_embed_dim,
257 | resnet_eps=norm_eps,
258 | resnet_act_fn=act_fn,
259 | output_scale_factor=mid_block_scale_factor,
260 | resnet_time_scale_shift=resnet_time_scale_shift,
261 | cross_attention_dim=cross_attention_dim,
262 | attn_num_head_channels=attention_head_dim[-1],
263 | resnet_groups=norm_num_groups,
264 | use_linear_projection=use_linear_projection,
265 | upcast_attention=upcast_attention,
266 | )
267 |
268 | @property
269 | # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
270 | def attn_processors(self) -> Dict[str, AttnProcessor]:
271 | r"""
272 | Returns:
273 | `dict` of attention processors: A dictionary containing all attention processors used in the model with
274 | indexed by its weight name.
275 | """
276 | # set recursively
277 | processors = {}
278 |
279 | def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]):
280 | if hasattr(module, "set_processor"):
281 | processors[f"{name}.processor"] = module.processor
282 |
283 | for sub_name, child in module.named_children():
284 | fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
285 |
286 | return processors
287 |
288 | for name, module in self.named_children():
289 | fn_recursive_add_processors(name, module, processors)
290 |
291 | return processors
292 |
293 | # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
294 | def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
295 | r"""
296 | Parameters:
297 | `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
298 | The instantiated processor class or a dictionary of processor classes that will be set as the processor
299 | of **all** `CrossAttention` layers.
300 | In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:
301 |
302 | """
303 | count = len(self.attn_processors.keys())
304 |
305 | if isinstance(processor, dict) and len(processor) != count:
306 | raise ValueError(
307 | f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
308 | f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
309 | )
310 |
311 | def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
312 | if hasattr(module, "set_processor"):
313 | if not isinstance(processor, dict):
314 | module.set_processor(processor)
315 | else:
316 | module.set_processor(processor.pop(f"{name}.processor"))
317 |
318 | for sub_name, child in module.named_children():
319 | fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
320 |
321 | for name, module in self.named_children():
322 | fn_recursive_attn_processor(name, module, processor)
323 |
324 | # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
325 | def set_attention_slice(self, slice_size):
326 | r"""
327 | Enable sliced attention computation.
328 |
329 | When this option is enabled, the attention module will split the input tensor in slices, to compute attention
330 | in several steps. This is useful to save some memory in exchange for a small speed decrease.
331 |
332 | Args:
333 | slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
334 | When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
335 | `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
336 | provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
337 | must be a multiple of `slice_size`.
338 | """
339 | sliceable_head_dims = []
340 |
341 | def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
342 | if hasattr(module, "set_attention_slice"):
343 | sliceable_head_dims.append(module.sliceable_head_dim)
344 |
345 | for child in module.children():
346 | fn_recursive_retrieve_slicable_dims(child)
347 |
348 | # retrieve number of attention layers
349 | for module in self.children():
350 | fn_recursive_retrieve_slicable_dims(module)
351 |
352 | num_slicable_layers = len(sliceable_head_dims)
353 |
354 | if slice_size == "auto":
355 | # half the attention head size is usually a good trade-off between
356 | # speed and memory
357 | slice_size = [dim // 2 for dim in sliceable_head_dims]
358 | elif slice_size == "max":
359 | # make smallest slice possible
360 | slice_size = num_slicable_layers * [1]
361 |
362 | slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
363 |
364 | if len(slice_size) != len(sliceable_head_dims):
365 | raise ValueError(
366 | f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
367 | f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
368 | )
369 |
370 | for i in range(len(slice_size)):
371 | size = slice_size[i]
372 | dim = sliceable_head_dims[i]
373 | if size is not None and size > dim:
374 | raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
375 |
376 | # Recursively walk through all the children.
377 | # Any children which exposes the set_attention_slice method
378 | # gets the message
379 | def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
380 | if hasattr(module, "set_attention_slice"):
381 | module.set_attention_slice(slice_size.pop())
382 |
383 | for child in module.children():
384 | fn_recursive_set_attention_slice(child, slice_size)
385 |
386 | reversed_slice_size = list(reversed(slice_size))
387 | for module in self.children():
388 | fn_recursive_set_attention_slice(module, reversed_slice_size)
389 |
390 | def _set_gradient_checkpointing(self, module, value=False):
391 | if isinstance(module, (CrossAttnDownBlockPseudo3D, DownBlockPseudo3D)):
392 | module.gradient_checkpointing = value
393 |
394 | def forward(
395 | self,
396 | sample: torch.FloatTensor,
397 | timestep: Union[torch.Tensor, float, int],
398 | encoder_hidden_states: torch.Tensor,
399 | controlnet_cond: torch.FloatTensor,
400 | class_labels: Optional[torch.Tensor] = None,
401 | timestep_cond: Optional[torch.Tensor] = None,
402 | attention_mask: Optional[torch.Tensor] = None,
403 | cross_attention_kwargs: Optional[Dict[str, Any]] = None,
404 | return_dict: bool = True,
405 | ) -> Union[ControlNetOutput, Tuple]:
406 | # check channel order
407 | channel_order = self.config.controlnet_conditioning_channel_order
408 |
409 | if channel_order == "rgb":
410 | # in rgb order by default
411 | ...
412 | elif channel_order == "bgr":
413 | controlnet_cond = torch.flip(controlnet_cond, dims=[1])
414 | else:
415 | raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
416 |
417 | # prepare attention_mask
418 | if attention_mask is not None:
419 | attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
420 | attention_mask = attention_mask.unsqueeze(1)
421 |
422 | # 1. time
423 | timesteps = timestep
424 | if not torch.is_tensor(timesteps):
425 | # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
426 | # This would be a good case for the `match` statement (Python 3.10+)
427 | is_mps = sample.device.type == "mps"
428 | if isinstance(timestep, float):
429 | dtype = torch.float32 if is_mps else torch.float64
430 | else:
431 | dtype = torch.int32 if is_mps else torch.int64
432 | timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
433 | elif len(timesteps.shape) == 0:
434 | timesteps = timesteps[None].to(sample.device)
435 |
436 | # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
437 | timesteps = timesteps.expand(sample.shape[0])
438 |
439 | t_emb = self.time_proj(timesteps)
440 |
441 | # timesteps does not contain any weights and will always return f32 tensors
442 | # but time_embedding might actually be running in fp16. so we need to cast here.
443 | # there might be better ways to encapsulate this.
444 | t_emb = t_emb.to(dtype=self.dtype)
445 |
446 | emb = self.time_embedding(t_emb, timestep_cond)
447 |
448 | if self.class_embedding is not None:
449 | if class_labels is None:
450 | raise ValueError("class_labels should be provided when num_class_embeds > 0")
451 |
452 | if self.config.class_embed_type == "timestep":
453 | class_labels = self.time_proj(class_labels)
454 |
455 | class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
456 | emb = emb + class_emb
457 |
458 | # 2. pre-process
459 | sample = self.conv_in(sample)
460 |
461 | controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
462 | # print(sample.shape, controlnet_cond.shape)
463 |
464 | sample += controlnet_cond
465 | # 3. down
466 |
467 | down_block_res_samples = (sample,)
468 | for downsample_block in self.down_blocks:
469 | if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
470 | sample, res_samples = downsample_block(
471 | hidden_states=sample,
472 | temb=emb,
473 | encoder_hidden_states=encoder_hidden_states,
474 | attention_mask=attention_mask,
475 | )
476 | else:
477 | sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
478 |
479 | down_block_res_samples += res_samples
480 |
481 | # 4. mid
482 | if self.mid_block is not None:
483 | sample = self.mid_block(
484 | sample,
485 | emb,
486 | encoder_hidden_states=encoder_hidden_states,
487 | attention_mask=attention_mask,
488 | )
489 |
490 | # 5. Control net blocks
491 |
492 | controlnet_down_block_res_samples = ()
493 |
494 | for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
495 | down_block_res_sample = controlnet_block(down_block_res_sample)
496 | controlnet_down_block_res_samples += (down_block_res_sample,)
497 |
498 | down_block_res_samples = controlnet_down_block_res_samples
499 |
500 | mid_block_res_sample = self.controlnet_mid_block(sample)
501 |
502 | if not return_dict:
503 | return (down_block_res_samples, mid_block_res_sample)
504 |
505 | return ControlNetOutput(
506 | down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
507 | )
508 |
509 | @classmethod
510 | def from_2d_model(cls, model_path, condition_on_fps=False, controlnet_hint_channels: Optional[int] = None,):
511 | '''
512 | load a 2d model and convert it to a pseudo 3d model
513 | '''
514 | config_path = os.path.join(model_path, "config.json")
515 | if not os.path.isfile(config_path):
516 | raise RuntimeError(f"{config_path} does not exist")
517 | with open(config_path, "r") as f:
518 | config = json.load(f)
519 |
520 | config.pop("_class_name")
521 | config.pop("_diffusers_version")
522 |
523 | block_replacer = {
524 | "CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D",
525 | "DownBlock2D": "DownBlockPseudo3D",
526 | "UNetMidBlock2DCrossAttn": "UNetMidBlockPseudo3DCrossAttn",
527 | }
528 |
529 | def convert_2d_to_3d_block(block):
530 | return block_replacer[block] if block in block_replacer else block
531 |
532 | config["down_block_types"] = [
533 | convert_2d_to_3d_block(block) for block in config["down_block_types"]
534 | ]
535 |
536 | if "mid_block_type" in config:
537 | config["mid_block_type"] = convert_2d_to_3d_block(config["mid_block_type"])
538 |
539 | if condition_on_fps:
540 | config["fps_embed_type"] = "timestep" # 和timestep保持一致的type。
541 |
542 | if controlnet_hint_channels:
543 | config["controlnet_hint_channels"] = controlnet_hint_channels
544 |
545 | print(config)
546 |
547 | model = cls(**config) # 调用自身(init), 传入config参数全换成3d的setting
548 | state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin"))
549 | if state_dict_path_condidates:
550 | state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu")
551 | model.load_2d_state_dict(state_dict=state_dict)
552 |
553 | return model
554 |
555 | def load_2d_state_dict(self, state_dict, **kwargs):
556 | '''
557 | 2D 部分的参数名完全不变。
558 | '''
559 | state_dict_3d = self.state_dict()
560 | # print("diff params list:", list(set(state_dict_3d.keys()) - set(state_dict.keys())))
561 |
562 | for k, v in state_dict.items():
563 | if k not in state_dict_3d:
564 | raise KeyError(f"2d state_dict key {k} does not exist in 3d model")
565 |
566 | for k, v in state_dict_3d.items():
567 | if "_temporal" in k:
568 | continue
569 | if "gamma" in k:
570 | continue
571 | if k not in state_dict:
572 | raise KeyError(f"3d state_dict key {k} does not exist in 2d model")
573 | state_dict_3d.update(state_dict)
574 | self.load_state_dict(state_dict_3d, strict=True, **kwargs)
575 |
576 |
577 | def zero_module(module):
578 | for p in module.parameters():
579 | nn.init.zeros_(p)
580 | return module
581 |
--------------------------------------------------------------------------------
/model/video_diffusion/pipelines/pipeline_st_stable_diffusion.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Bytedance Ltd. and/or its affiliates
2 |
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 |
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 |
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import inspect
16 | from typing import Callable, List, Optional, Union
17 |
18 | import torch
19 | from einops import rearrange
20 |
21 | from diffusers.utils import is_accelerate_available
22 | from packaging import version
23 | from transformers import CLIPTextModel, CLIPTokenizer
24 |
25 | from diffusers.configuration_utils import FrozenDict
26 | from diffusers.models import AutoencoderKL
27 | from diffusers.pipeline_utils import DiffusionPipeline
28 | from diffusers.schedulers import (
29 | DDIMScheduler,
30 | DPMSolverMultistepScheduler,
31 | EulerAncestralDiscreteScheduler,
32 | EulerDiscreteScheduler,
33 | LMSDiscreteScheduler,
34 | PNDMScheduler,
35 | )
36 | from diffusers.utils import deprecate, logging
37 | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
38 |
39 | from ..models.unet_3d_condition import UNetPseudo3DConditionModel
40 | import os, importlib
41 |
42 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43 |
44 |
45 | class SpatioTemporalStableDiffusionPipeline(DiffusionPipeline):
46 | r"""
47 | Pipeline for text-to-video generation using Spatio-Temporal Stable Diffusion.
48 | 改变了unet的输入, unet换成3d unet, 其他部分完全和原来2D的一致。
49 | latents的变为 b,c,f,h,w 原来是 b,c,h,w。
50 | 要用VAE的decoder的时候, 把输入reshape 成 (b f) c h w
51 | """
52 | _optional_components = []
53 |
54 | def __init__(
55 | self,
56 | vae: AutoencoderKL,
57 | text_encoder: CLIPTextModel,
58 | tokenizer: CLIPTokenizer,
59 | unet: UNetPseudo3DConditionModel,
60 | scheduler: Union[
61 | DDIMScheduler,
62 | PNDMScheduler,
63 | LMSDiscreteScheduler,
64 | EulerDiscreteScheduler,
65 | EulerAncestralDiscreteScheduler,
66 | DPMSolverMultistepScheduler,
67 | ],
68 | ):
69 | super().__init__()
70 |
71 | if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
72 | deprecation_message = (
73 | f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
74 | f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
75 | "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
76 | " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
77 | " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
78 | " file"
79 | )
80 | deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
81 | new_config = dict(scheduler.config)
82 | new_config["steps_offset"] = 1
83 | scheduler._internal_dict = FrozenDict(new_config)
84 |
85 | if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
86 | deprecation_message = (
87 | f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
88 | " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
89 | " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
90 | " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
91 | " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
92 | )
93 | deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
94 | new_config = dict(scheduler.config)
95 | new_config["clip_sample"] = False
96 | scheduler._internal_dict = FrozenDict(new_config)
97 |
98 | is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
99 | version.parse(unet.config._diffusers_version).base_version
100 | ) < version.parse("0.9.0.dev0")
101 | is_unet_sample_size_less_64 = (
102 | hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
103 | )
104 | if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
105 | deprecation_message = (
106 | "The configuration file of the unet has set the default `sample_size` to smaller than"
107 | " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
108 | " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
109 | " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
110 | " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
111 | " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
112 | " in the config might lead to incorrect results in future versions. If you have downloaded this"
113 | " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
114 | " the `unet/config.json` file"
115 | )
116 | deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
117 | new_config = dict(unet.config)
118 | new_config["sample_size"] = 64
119 | unet._internal_dict = FrozenDict(new_config)
120 |
121 | self.register_modules(
122 | vae=vae,
123 | text_encoder=text_encoder,
124 | tokenizer=tokenizer,
125 | unet=unet,
126 | scheduler=scheduler,
127 | )
128 | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
129 |
130 | def enable_vae_slicing(self):
131 | r"""
132 | Enable sliced VAE decoding.
133 |
134 | When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
135 | steps. This is useful to save some memory and allow larger batch sizes.
136 | """
137 | self.vae.enable_slicing()
138 |
139 | def disable_vae_slicing(self):
140 | r"""
141 | Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
142 | computing decoding in one step.
143 | """
144 | self.vae.disable_slicing()
145 |
146 | def enable_sequential_cpu_offload(self, gpu_id=0):
147 | r"""
148 | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
149 | text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
150 | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
151 | """
152 | if is_accelerate_available():
153 | from accelerate import cpu_offload
154 | else:
155 | raise ImportError("Please install accelerate via `pip install accelerate`")
156 |
157 | device = torch.device(f"cuda:{gpu_id}")
158 |
159 | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
160 | if cpu_offloaded_model is not None:
161 | cpu_offload(cpu_offloaded_model, device)
162 |
163 | @property
164 | def _execution_device(self):
165 | r"""
166 | Returns the device on which the pipeline's models will be executed. After calling
167 | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
168 | hooks.
169 | """
170 | if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
171 | return self.device
172 | for module in self.unet.modules():
173 | if (
174 | hasattr(module, "_hf_hook")
175 | and hasattr(module._hf_hook, "execution_device")
176 | and module._hf_hook.execution_device is not None
177 | ):
178 | return torch.device(module._hf_hook.execution_device)
179 | return self.device
180 |
181 | def _encode_prompt(
182 | self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
183 | ):
184 | r"""
185 | Encodes the prompt into text encoder hidden states.
186 |
187 | Args:
188 | prompt (`str` or `list(int)`):
189 | prompt to be encoded
190 | device: (`torch.device`):
191 | torch device
192 | num_images_per_prompt (`int`):
193 | number of images that should be generated per prompt
194 | do_classifier_free_guidance (`bool`):
195 | whether to use classifier free guidance or not
196 | negative_prompt (`str` or `List[str]`):
197 | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
198 | if `guidance_scale` is less than `1`).
199 | """
200 | batch_size = len(prompt) if isinstance(prompt, list) else 1
201 |
202 | text_inputs = self.tokenizer(
203 | prompt,
204 | padding="max_length",
205 | max_length=self.tokenizer.model_max_length,
206 | truncation=True,
207 | return_tensors="pt",
208 | )
209 | text_input_ids = text_inputs.input_ids
210 | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
211 |
212 | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
213 | text_input_ids, untruncated_ids
214 | ):
215 | removed_text = self.tokenizer.batch_decode(
216 | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
217 | )
218 | logger.warning(
219 | "The following part of your input was truncated because CLIP can only handle sequences up to"
220 | f" {self.tokenizer.model_max_length} tokens: {removed_text}"
221 | )
222 |
223 | if (
224 | hasattr(self.text_encoder.config, "use_attention_mask")
225 | and self.text_encoder.config.use_attention_mask
226 | ):
227 | attention_mask = text_inputs.attention_mask.to(device)
228 | else:
229 | attention_mask = None
230 |
231 | text_embeddings = self.text_encoder(
232 | text_input_ids.to(self.text_encoder.device), # FIXME 强制对齐device的位置
233 | attention_mask=attention_mask,
234 | )
235 | text_embeddings = text_embeddings[0]
236 |
237 | # duplicate text embeddings for each generation per prompt, using mps friendly method
238 | bs_embed, seq_len, _ = text_embeddings.shape
239 | text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
240 | text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
241 |
242 | # get unconditional embeddings for classifier free guidance
243 | if do_classifier_free_guidance:
244 | uncond_tokens: List[str]
245 | if negative_prompt is None:
246 | uncond_tokens = [""] * batch_size
247 | elif type(prompt) is not type(negative_prompt):
248 | raise TypeError(
249 | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
250 | f" {type(prompt)}."
251 | )
252 | elif isinstance(negative_prompt, str):
253 | uncond_tokens = [negative_prompt]
254 | elif batch_size != len(negative_prompt):
255 | raise ValueError(
256 | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
257 | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
258 | " the batch size of `prompt`."
259 | )
260 | else:
261 | uncond_tokens = negative_prompt
262 |
263 | max_length = text_input_ids.shape[-1]
264 | uncond_input = self.tokenizer(
265 | uncond_tokens,
266 | padding="max_length",
267 | max_length=max_length,
268 | truncation=True,
269 | return_tensors="pt",
270 | )
271 |
272 | if (
273 | hasattr(self.text_encoder.config, "use_attention_mask")
274 | and self.text_encoder.config.use_attention_mask
275 | ):
276 | attention_mask = uncond_input.attention_mask.to(device)
277 | else:
278 | attention_mask = None
279 |
280 | uncond_embeddings = self.text_encoder(
281 | uncond_input.input_ids.to(self.text_encoder.device), # 同上,强制位置对齐。
282 | attention_mask=attention_mask,
283 | )
284 | uncond_embeddings = uncond_embeddings[0]
285 |
286 | # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
287 | seq_len = uncond_embeddings.shape[1]
288 | uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
289 | uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
290 |
291 | # For classifier free guidance, we need to do two forward passes.
292 | # Here we concatenate the unconditional and text embeddings into a single batch
293 | # to avoid doing two forward passes
294 | text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
295 |
296 | return text_embeddings
297 |
298 | def decode_latents(self, latents):
299 | b = latents.shape[0]
300 | latents = 1 / 0.18215 * latents
301 |
302 | is_video = len(latents.shape) == 5
303 | if is_video:
304 | latents = rearrange(latents, "b c f h w -> (b f) c h w")
305 |
306 | image = self.vae.decode(latents).sample
307 | image = (image / 2 + 0.5).clamp(0, 1)
308 | # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
309 |
310 | image = image.cpu().float().numpy()
311 | if is_video:
312 | image = rearrange(image, "(b f) c h w -> b f h w c", b=b)
313 | else:
314 | image = rearrange(image, "b c h w -> b h w c")
315 | return image
316 |
317 | def prepare_extra_step_kwargs(self, generator, eta):
318 | # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
319 | # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
320 | # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
321 | # and should be between [0, 1]
322 |
323 | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
324 | extra_step_kwargs = {}
325 | if accepts_eta:
326 | extra_step_kwargs["eta"] = eta
327 |
328 | # check if the scheduler accepts generator
329 | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
330 | if accepts_generator:
331 | extra_step_kwargs["generator"] = generator
332 | return extra_step_kwargs
333 |
334 | def check_inputs(self, prompt, height, width, callback_steps):
335 | if not isinstance(prompt, str) and not isinstance(prompt, list):
336 | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
337 |
338 | if height % 8 != 0 or width % 8 != 0:
339 | raise ValueError(
340 | f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
341 | )
342 |
343 | if (callback_steps is None) or (
344 | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
345 | ):
346 | raise ValueError(
347 | f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
348 | f" {type(callback_steps)}."
349 | )
350 |
351 | def prepare_latents(
352 | self,
353 | batch_size,
354 | num_channels_latents,
355 | clip_length,
356 | height,
357 | width,
358 | dtype,
359 | device,
360 | generator,
361 | latents=None,
362 | ):
363 | if clip_length>0:
364 | shape = (
365 | batch_size,
366 | num_channels_latents,
367 | clip_length,
368 | height // self.vae_scale_factor,
369 | width // self.vae_scale_factor,
370 | )
371 | else:
372 | shape = (
373 | batch_size,
374 | num_channels_latents,
375 | height // self.vae_scale_factor,
376 | width // self.vae_scale_factor,
377 | )
378 |
379 | if isinstance(generator, list) and len(generator) != batch_size:
380 | raise ValueError(
381 | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
382 | f" size of {batch_size}. Make sure the batch size matches the length of the generators."
383 | )
384 |
385 | if latents is None:
386 | rand_device = "cpu" if device.type == "mps" else device
387 |
388 | if isinstance(generator, list):
389 | shape = (1,) + shape[1:]
390 | latents = [
391 | torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
392 | for i in range(batch_size)
393 | ]
394 | latents = torch.cat(latents, dim=0).to(device)
395 | else:
396 | latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(
397 | device
398 | )
399 | else:
400 | if latents.shape != shape:
401 | raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
402 | latents = latents.to(device)
403 |
404 | # scale the initial noise by the standard deviation required by the scheduler
405 | latents = latents * self.scheduler.init_noise_sigma
406 | return latents
407 |
408 | @torch.no_grad()
409 | def __call__(
410 | self,
411 | prompt: Union[str, List[str]],
412 | height: Optional[int] = None,
413 | width: Optional[int] = None,
414 | fps_labels = None,
415 | num_inference_steps: int = 50,
416 | clip_length: int = 8,
417 | guidance_scale: float = 7.5,
418 | negative_prompt: Optional[Union[str, List[str]]] = None,
419 | num_images_per_prompt: Optional[int] = 1,
420 | eta: float = 0.0,
421 | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
422 | latents: Optional[torch.FloatTensor] = None,
423 | output_type: Optional[str] = "pil",
424 | return_dict: bool = True,
425 | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
426 | callback_steps: Optional[int] = 1,
427 | ):
428 | r"""
429 | Function invoked when calling the pipeline for generation.
430 |
431 | Args:
432 | prompt (`str` or `List[str]`):
433 | The prompt or prompts to guide the image generation.
434 | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
435 | The height in pixels of the generated image.
436 | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
437 | The width in pixels of the generated image.
438 | num_inference_steps (`int`, *optional*, defaults to 50):
439 | The number of denoising steps. More denoising steps usually lead to a higher quality image at the
440 | expense of slower inference.
441 | guidance_scale (`float`, *optional*, defaults to 7.5):
442 | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
443 | `guidance_scale` is defined as `w` of equation 2. of [Imagen
444 | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
445 | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
446 | usually at the expense of lower image quality.
447 | negative_prompt (`str` or `List[str]`, *optional*):
448 | The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
449 | if `guidance_scale` is less than `1`).
450 | num_images_per_prompt (`int`, *optional*, defaults to 1):
451 | The number of images to generate per prompt.
452 | eta (`float`, *optional*, defaults to 0.0):
453 | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
454 | [`schedulers.DDIMScheduler`], will be ignored for others.
455 | generator (`torch.Generator`, *optional*):
456 | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
457 | to make generation deterministic.
458 | latents (`torch.FloatTensor`, *optional*):
459 | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
460 | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
461 | tensor will ge generated by sampling using the supplied random `generator`.
462 | output_type (`str`, *optional*, defaults to `"pil"`):
463 | The output format of the generate image. Choose between
464 | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
465 | return_dict (`bool`, *optional*, defaults to `True`):
466 | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
467 | plain tuple.
468 | callback (`Callable`, *optional*):
469 | A function that will be called every `callback_steps` steps during inference. The function will be
470 | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
471 | callback_steps (`int`, *optional*, defaults to 1):
472 | The frequency at which the `callback` function will be called. If not specified, the callback will be
473 | called at every step.
474 |
475 | Returns:
476 | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
477 | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
478 | When returning a tuple, the first element is a list with the generated images, and the second element is a
479 | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
480 | (nsfw) content, according to the `safety_checker`.
481 | """
482 | # 0. Default height and width to unet
483 | height = height or self.unet.config.sample_size * self.vae_scale_factor
484 | width = width or self.unet.config.sample_size * self.vae_scale_factor
485 |
486 | # 1. Check inputs. Raise error if not correct
487 | self.check_inputs(prompt, height, width, callback_steps)
488 |
489 | # 2. Define call parameters
490 | batch_size = 1 if isinstance(prompt, str) else len(prompt)
491 | device = self._execution_device
492 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
493 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
494 | # corresponds to doing no classifier free guidance.
495 | do_classifier_free_guidance = guidance_scale > 1.0
496 |
497 | # 3. Encode input prompt
498 | text_embeddings = self._encode_prompt(
499 | prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
500 | )
501 |
502 | # 4. Prepare timesteps
503 | self.scheduler.set_timesteps(num_inference_steps, device=device)
504 | timesteps = self.scheduler.timesteps
505 |
506 | # 5. Prepare latent variables
507 | num_channels_latents = self.unet.in_channels
508 |
509 | latents = self.prepare_latents(
510 | batch_size * num_images_per_prompt,
511 | num_channels_latents,
512 | clip_length,
513 | height,
514 | width,
515 | text_embeddings.dtype,
516 | device,
517 | generator,
518 | latents,
519 | )
520 | latents_dtype = latents.dtype
521 |
522 | # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
523 | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
524 |
525 | # 7. Denoising loop
526 | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
527 | with self.progress_bar(total=num_inference_steps) as progress_bar:
528 | for i, t in enumerate(timesteps):
529 | # expand the latents if we are doing classifier free guidance
530 | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
531 | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
532 | # print(latent_model_input.shape, )
533 | # predict the noise residual
534 | if fps_labels:
535 | if isinstance(fps_labels, list):
536 | fps_labels = torch.tensor(fps_labels).to(self.unet.device)
537 | # 控制帧率
538 | noise_pred = self.unet(
539 | latent_model_input, t, encoder_hidden_states=text_embeddings, fps_labels=fps_labels,
540 | ).sample.to(dtype=latents_dtype)
541 | else:
542 | noise_pred = self.unet(
543 | latent_model_input, t, encoder_hidden_states=text_embeddings
544 | ).sample.to(dtype=latents_dtype)
545 |
546 | # perform guidance
547 | if do_classifier_free_guidance:
548 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
549 | noise_pred = noise_pred_uncond + guidance_scale * (
550 | noise_pred_text - noise_pred_uncond
551 | )
552 |
553 | # compute the previous noisy sample x_t -> x_t-1
554 | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
555 |
556 | # call the callback, if provided
557 | if i == len(timesteps) - 1 or (
558 | (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
559 | ):
560 | progress_bar.update()
561 | if callback is not None and i % callback_steps == 0:
562 | callback(i, t, latents)
563 |
564 | # 8. Post-processing
565 | image = self.decode_latents(latents)
566 | # image[:, 1:, :, :, :] = image[:, 1:, :, :, :] + image[:, 0:1, :, :, :] # 叠加残差
567 |
568 | # 9. Run safety checker
569 | has_nsfw_concept = None
570 |
571 | # 10. Convert to PIL
572 | if output_type == "pil":
573 | image = self.numpy_to_pil(image)
574 |
575 | if not return_dict:
576 | return (image, has_nsfw_concept)
577 |
578 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
579 |
580 | @staticmethod
581 | def numpy_to_pil(images):
582 | if len(images.shape)==5:
583 | pil_images = []
584 | for sequence in images:
585 | pil_images.append(DiffusionPipeline.numpy_to_pil(sequence))
586 | return pil_images
587 | else:
588 | return DiffusionPipeline.numpy_to_pil(images)
589 |
590 |
591 | # 改写一下 model_index.json的保存内容, Unet是新定义的,直接保存会导致读取的时候出错~
592 | def to_json_string(self) -> str:
593 | from diffusers import __version__
594 | import json
595 | import numpy as np
596 |
597 | config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
598 | config_dict["_class_name"] = self.__class__.__name__
599 | config_dict["_diffusers_version"] = __version__
600 |
601 | def to_json_saveable(value):
602 | if isinstance(value, np.ndarray):
603 | value = value.tolist()
604 | return value
605 |
606 | config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
607 | if 'unet' in config_dict:
608 | config_dict["unet"] = [
609 | "diffusers",
610 | "UNet2DConditionModel"
611 | ]
612 | if 'controlnet' in config_dict:
613 | config_dict['controlnet'] = [
614 | "diffusers",
615 | "UNet2DConditionModel"
616 | ]
617 | # 覆盖
618 | return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
619 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------