├── API ├── Presentation_WHYR2019_Warsaw_Bourgeois.pdf ├── Presentation_WHYR2019_Warsaw_PageSpeed.pdf ├── README.md └── WhyR_2019_Automating_GoogleSlides.pdf ├── BIO ├── 20190928_R_at_the_Ministry.pdf ├── 20190928_whyr_2019_talk_tidysq_red_size.pdf ├── AmyloGram.html ├── BipolarDisorder_whyR_28_09.pdf ├── README.md └── hadex.pdf ├── Business ├── README.md ├── Reproducibility and collaboration in business analytics_RL.pdf ├── quantup.pdf └── quantup.pptx ├── EDA ├── MasteR-of-Tables.pdf ├── README.md ├── staniak_autoEDA.pdf └── why_r_kolakowska.pptx ├── GEO ├── README.md ├── Spatial matrix approach whyR Mikos.pptx └── WhyR2019_pres.pdf ├── Keynotes ├── 20190929_WhyR_ABD_Wit_Jakuczun.pdf ├── Are we experimenting on people.pptx ├── Marvin_Wright_RF.pdf ├── README.md └── WhyR2019_PBrito.pdf ├── Lightnings ├── 2019WhyR_RGPL_commercial.pptx ├── Crazy_Sequential_Representations__Anne_Bras.pdf ├── MateuszKobylka_RME.pdf ├── PepBay_WhyR2019.pdf ├── README.md ├── R_in_marketing.pptx ├── Using_R6_classes.pdf ├── amylogram_2.pdf ├── bdl.pptx ├── d3 dalex.pdf ├── dont walk run.pdf ├── hbaniecki_modelStudio_whyr2019.pdf ├── hbaniecki_modelStudio_whyr2019.pptx ├── vivo.pdf ├── what_we_dont_have.pdf ├── whyR_RUcausal_IoanGabrielBucur_fixed.pdf └── whyr2019.pdf ├── Modelling ├── Custom loss functions for binary classification problems with highly imbalanced dataset using Extreme Gradient Boosted Trees.pdf ├── GAMs_for_demand_forecasting.pdf ├── Investment Portfolio Optimization.pdf ├── Jancewicz_Multidimensional Scaling.pdf ├── README.md ├── Tamas_Burghard_why-r-2019-categorical-embeddings.pdf ├── WhyR 2019 presentation - Quanteda.pptx ├── WhyR_prezentacja_Bie_.pdf └── nlp_models_for_masses.md.pptx ├── Opening_and_Closing ├── closing.pdf └── opening.pdf ├── Philosophy ├── README.md └── Traits of a world class data scientist WhyR 2019.pdf ├── README.md ├── Scoring ├── README.md └── klimas.pdf ├── Shiny ├── AlgoTrad_WhyR2019.pdf └── README.md ├── Vision ├── README.md ├── Semantic segmentation WhyR2019.pdf ├── Semantic segmentation WhyR2019.pptx ├── WhyR - DeepSport.pdf ├── _stepanek_talk_presentation_29_09_2019_.pdf ├── met_kolektory_panele_ang.pdf └── use_case_transfer_learning.pptx ├── XAI ├── Compare predictive models created in different languages with.pdf ├── Compare predictive models created in different languages with.pptx ├── Interpretable survival models.pdf ├── Interpretable survival models.pptx ├── README.md ├── Szymon_Maksymiuk_WhyR2019.html └── WHYR_pres_BKochanski.pdf └── presentations.Rproj /API/Presentation_WHYR2019_Warsaw_Bourgeois.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/API/Presentation_WHYR2019_Warsaw_Bourgeois.pdf -------------------------------------------------------------------------------- /API/Presentation_WHYR2019_Warsaw_PageSpeed.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/API/Presentation_WHYR2019_Warsaw_PageSpeed.pdf -------------------------------------------------------------------------------- /API/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 API Session Presentations 2 | -------------------------------------------------------------------------------- /API/WhyR_2019_Automating_GoogleSlides.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/API/WhyR_2019_Automating_GoogleSlides.pdf -------------------------------------------------------------------------------- /BIO/20190928_R_at_the_Ministry.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/BIO/20190928_R_at_the_Ministry.pdf -------------------------------------------------------------------------------- /BIO/20190928_whyr_2019_talk_tidysq_red_size.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/BIO/20190928_whyr_2019_talk_tidysq_red_size.pdf -------------------------------------------------------------------------------- /BIO/BipolarDisorder_whyR_28_09.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/BIO/BipolarDisorder_whyR_28_09.pdf -------------------------------------------------------------------------------- /BIO/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 BIO Session Presentations 2 | -------------------------------------------------------------------------------- /BIO/hadex.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/BIO/hadex.pdf -------------------------------------------------------------------------------- /Business/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Business Session Presentations 2 | -------------------------------------------------------------------------------- /Business/Reproducibility and collaboration in business analytics_RL.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Business/Reproducibility and collaboration in business analytics_RL.pdf -------------------------------------------------------------------------------- /Business/quantup.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Business/quantup.pdf -------------------------------------------------------------------------------- /Business/quantup.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Business/quantup.pptx -------------------------------------------------------------------------------- /EDA/MasteR-of-Tables.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/EDA/MasteR-of-Tables.pdf -------------------------------------------------------------------------------- /EDA/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 EDA Session Presentations 2 | -------------------------------------------------------------------------------- /EDA/staniak_autoEDA.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/EDA/staniak_autoEDA.pdf -------------------------------------------------------------------------------- /EDA/why_r_kolakowska.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/EDA/why_r_kolakowska.pptx -------------------------------------------------------------------------------- /GEO/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 GEO Session Presentations 2 | -------------------------------------------------------------------------------- /GEO/Spatial matrix approach whyR Mikos.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/GEO/Spatial matrix approach whyR Mikos.pptx -------------------------------------------------------------------------------- /GEO/WhyR2019_pres.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/GEO/WhyR2019_pres.pdf -------------------------------------------------------------------------------- /Keynotes/20190929_WhyR_ABD_Wit_Jakuczun.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Keynotes/20190929_WhyR_ABD_Wit_Jakuczun.pdf -------------------------------------------------------------------------------- /Keynotes/Are we experimenting on people.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Keynotes/Are we experimenting on people.pptx -------------------------------------------------------------------------------- /Keynotes/Marvin_Wright_RF.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Keynotes/Marvin_Wright_RF.pdf -------------------------------------------------------------------------------- /Keynotes/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Keynotes Session Presentations 2 | 3 | Marvin Wright - [Random forests: The first-choice method for every data analysis?](https://github.com/WhyR2019/presentations/blob/master/Keynotes/Marvin_Wright_RF.pdf) 4 | 5 | Sigrid Keydana - [tfprobably correct - adding uncertainty to deep learning with TensorFlow Probability](http://rpubs.com/zkajdan/533047) 6 | 7 | Jakub Nowosad - [The landscape of spatial data analysis in R](https://nowosad.github.io/whyr_19/#1) 8 | 9 | Steph Locke - [Are we experimenting on people?](https://github.com/WhyR2019/presentations/blob/master/Keynotes/Are%20we%20experimenting%20on%20people.pptx) 10 | 11 | Wit Jakuczun - [Always Be Deploying. How to make R great for machine learning in (not only) Enterprise](https://github.com/WhyR2019/presentations/blob/master/Keynotes/20190929_WhyR_ABD_Wit_Jakuczun.pdf) 12 | 13 | Paula Brito - [Modelling and Analysing Interval Data in R](https://github.com/WhyR2019/presentations/blob/master/Keynotes/WhyR2019_PBrito.pdf) 14 | -------------------------------------------------------------------------------- /Keynotes/WhyR2019_PBrito.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Keynotes/WhyR2019_PBrito.pdf -------------------------------------------------------------------------------- /Lightnings/2019WhyR_RGPL_commercial.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/2019WhyR_RGPL_commercial.pptx -------------------------------------------------------------------------------- /Lightnings/Crazy_Sequential_Representations__Anne_Bras.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/Crazy_Sequential_Representations__Anne_Bras.pdf -------------------------------------------------------------------------------- /Lightnings/MateuszKobylka_RME.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/MateuszKobylka_RME.pdf -------------------------------------------------------------------------------- /Lightnings/PepBay_WhyR2019.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/PepBay_WhyR2019.pdf -------------------------------------------------------------------------------- /Lightnings/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Lightnings Session Presentations 2 | -------------------------------------------------------------------------------- /Lightnings/R_in_marketing.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/R_in_marketing.pptx -------------------------------------------------------------------------------- /Lightnings/Using_R6_classes.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/Using_R6_classes.pdf -------------------------------------------------------------------------------- /Lightnings/amylogram_2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/amylogram_2.pdf -------------------------------------------------------------------------------- /Lightnings/bdl.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/bdl.pptx -------------------------------------------------------------------------------- /Lightnings/d3 dalex.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/d3 dalex.pdf -------------------------------------------------------------------------------- /Lightnings/dont walk run.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/dont walk run.pdf -------------------------------------------------------------------------------- /Lightnings/hbaniecki_modelStudio_whyr2019.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/hbaniecki_modelStudio_whyr2019.pdf -------------------------------------------------------------------------------- /Lightnings/hbaniecki_modelStudio_whyr2019.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/hbaniecki_modelStudio_whyr2019.pptx -------------------------------------------------------------------------------- /Lightnings/vivo.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/vivo.pdf -------------------------------------------------------------------------------- /Lightnings/what_we_dont_have.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/what_we_dont_have.pdf -------------------------------------------------------------------------------- /Lightnings/whyR_RUcausal_IoanGabrielBucur_fixed.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/whyR_RUcausal_IoanGabrielBucur_fixed.pdf -------------------------------------------------------------------------------- /Lightnings/whyr2019.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Lightnings/whyr2019.pdf -------------------------------------------------------------------------------- /Modelling/Custom loss functions for binary classification problems with highly imbalanced dataset using Extreme Gradient Boosted Trees.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/Custom loss functions for binary classification problems with highly imbalanced dataset using Extreme Gradient Boosted Trees.pdf -------------------------------------------------------------------------------- /Modelling/GAMs_for_demand_forecasting.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/GAMs_for_demand_forecasting.pdf -------------------------------------------------------------------------------- /Modelling/Investment Portfolio Optimization.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/Investment Portfolio Optimization.pdf -------------------------------------------------------------------------------- /Modelling/Jancewicz_Multidimensional Scaling.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/Jancewicz_Multidimensional Scaling.pdf -------------------------------------------------------------------------------- /Modelling/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Modelling Session Presentations 2 | -------------------------------------------------------------------------------- /Modelling/Tamas_Burghard_why-r-2019-categorical-embeddings.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/Tamas_Burghard_why-r-2019-categorical-embeddings.pdf -------------------------------------------------------------------------------- /Modelling/WhyR 2019 presentation - Quanteda.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/WhyR 2019 presentation - Quanteda.pptx -------------------------------------------------------------------------------- /Modelling/WhyR_prezentacja_Bie_.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/WhyR_prezentacja_Bie_.pdf -------------------------------------------------------------------------------- /Modelling/nlp_models_for_masses.md.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Modelling/nlp_models_for_masses.md.pptx -------------------------------------------------------------------------------- /Opening_and_Closing/closing.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Opening_and_Closing/closing.pdf -------------------------------------------------------------------------------- /Opening_and_Closing/opening.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Opening_and_Closing/opening.pdf -------------------------------------------------------------------------------- /Philosophy/README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Philosophy Session Presentations 2 | 3 | + Colin Fay: [R & Microservices](https://speakerdeck.com/colinfay/r-and-microservices) 4 | -------------------------------------------------------------------------------- /Philosophy/Traits of a world class data scientist WhyR 2019.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/WhyR2019/presentations/1be8f2e7474e6f20fa9aafc018cb56813bdcbf59/Philosophy/Traits of a world class data scientist WhyR 2019.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Why R? 2019 Presentations 2 | 3 | This repository consist of presentations prepared by the authors. 4 | 5 |
Session | 8 |Author | 9 |Title | 10 |
---|---|---|
Opening | 14 |Marcin Kosiński, Michał Burdukiewicz, Piotr Wójcik | 15 |Why R? 2019 Opening Session | 16 |
Closing | 19 |Marcin Kosiński, Michał Burdukiewicz, Piotr Wójcik | 20 |Why R? 2019 Closing Session | 21 |
Keynotes | 24 |Jakub Nowosad | 25 |The landscape of spatial data analysis in R | 26 |
Keynotes | 29 |Marvin N. Wright | 30 |Random forests: The first-choice method for every data analysis? | 31 |
Keynotes | 34 |Paula Brito | 35 |Modelling and Analysing Interval Data in R | 36 |
Keynotes | 39 |Sigrid Keydana | 40 |tfprobably correct - adding uncertainty to deep learning with TensorFlow Probability | 41 |
Keynotes | 44 |Steph Locke | 45 |Is data science experimenting on people? | 46 |
Keynotes | 49 |Wit Jakuczun | 50 |Always Be Deploying. How to make R great for machine learning in (not only) Enterprise | 51 |
API | 55 |Piotrek Ciurus | 56 |Automating Google Slides creation | 57 |
API | 60 |Florent Bourgeois | 61 |Bringing interactivity into engineering courses with BERT-based Excel-R applications | 62 |
API | 65 |Leszek Sieminski | 66 |Google PageSpeed with R | 67 |
BIO | 71 |Jaroslaw Chilimoniuk | 72 |AmyloGram: the R package and a Shiny server for amyloid prediction | 73 |
BIO | 76 |Olga Kaminska | 77 |Machine Learning usage for prediction of state change in bipolar disorder | 78 |
BIO | 81 |Leon Eyrich Jessen | 82 |Tidysq for Working with Biological Sequence Data in ML Driven Epitope Prediction in Cancer Immunotherapy | 83 |
BIO | 86 |Jagoda Glowacka | 87 |Multicenter study, 33 TB of data and the goal: predicting epilepsy | 88 |
BIO | 91 |Weronika Puchala | 92 |R for experimentalists: HDX-MS example | 93 |
BIO | 96 |Piotr Nowosielski | 97 |R in Ministry of Health | 98 |
Business | 102 |Artur Suchwałko | 103 |How R helps us with delivering Machine Learning projects | 104 |
Business | 107 |Richard Louden | 108 |Integrating R and Python for reproducible business analytics | 109 |
Business | 112 |Francois Jacquet | 113 |R for Entrepreneurs : supply chain automation case | 114 |
EDA | 118 |Lidia Kolakowska | 119 |How to deal with nested lists in R? Using the purrr, furrr and future packages in practice | 120 |
EDA | 123 |Tomasz Żółtak | 124 |MasteR of Tables | 125 |
EDA | 128 |Mateusz Staniak | 129 |R Tools for Automated Exploratory Data Analysis | 130 |
GEO | 134 |Krystian Andruszek | 135 |Features of districts of Warsaw visible from space | 136 |
GEO | 139 |Çizmeli Servet Ahmet | 140 |Geospatial data analysis and visualization in R | 141 |
GEO | 144 |Maria Mikos | 145 |Spatial econometrics with self-made weighting matrixes - uncovering similarity of sample with machine learning results and categorical variables | 146 |
Lightnings | 150 |Anne Bras | 151 |Crazy Sequential Representations - The 10958 Problem | 152 |
Lightnings | 155 |Hubert Baniecki | 156 |D3 + DALEX = Interactive Studio with Explanations for ML Predictive Models in R | 157 |
Lightnings | 160 |Dawid Kaledkowski | 161 |Don't walk, run! runner package for rolling window functions | 162 |
Lightnings | 165 |Ioan Gabriel Bucur | 166 |RUcausal: An R package for Representing Uncertainty in causal discovery | 167 |
Lightnings | 170 |Mateusz Kobylka | 171 |RME: interpretable explainations for sequence models | 172 |
Lightnings | 175 |Kamil Sijko | 176 |Selling solutions based on R (which is GPL licensed). Is this possible? | 177 |
Lightnings | 180 |Patrik Drhlik | 181 |Using R6 classes to communicate with a REST API | 182 |
Lightnings | 185 |Dominik Rafacz | 186 |AmyloGram 2.0: MBO in the prediction of amyloid proteins | 187 |
Lightnings | 190 |Krzysztof Kania | 191 |bdl: interface and tools to Local Data Bank API | 192 |
Lightnings | 195 |Katarzyna Sidorczuk | 196 |PepBay: Implementation of Bayesian inference in the analysis of peptide arrays | 197 |
Lightnings | 200 |Agnieszka Otreba-Szklarczyk | 201 |R in marketing surveys - how to speed up the analysis of open ended questions | 202 |
Lightnings | 205 |Łukasz Wawrowski | 206 |Testing artificial intelligence algorithms in games with Shiny | 207 |
Lightnings | 210 |Anna Kozak | 211 |vivo: Is it Victoria In Variable impOrtance detection? | 212 |
Lightnings | 215 |Rafal Wozniak | 216 |What we don't have but need. Some missing R functions in teaching econometrics | 217 |
Modelling | 221 |Bartosz Kolasa, Patryk Wielopolski | 222 |Custom loss functions for binary classifications problem with highly imbalanced dataset using Extremely Gradient Boosted Trees | 223 |
Modelling | 226 |Michał Podsiadło | 227 |Investment Portfolio Optimization | 228 |
Modelling | 231 |Barbara Jancewicz | 232 |Multidimensional Scaling with the smacof package | 233 |
Modelling | 236 |Ken Benoit, Damian Rodziewicz | 237 |NLP models for the masses with the Quanteda package and a Shiny interface | 238 |
Modelling | 241 |Adam Bień | 242 |Detecting topics in civil service job offers using Latent Dirichlet Allocation model | 243 |
Modelling | 246 |Matteo Fasiolo | 247 |Generalized additive models for short-term electricity demand forecasting | 248 |
Modelling | 251 |Tamas Burghard | 252 |Using categorical embeddings (deep learning) in boosting models | 253 |
Philosophy | 257 |Colin Gillespie | 258 |Hacking R as a script kiddie | 259 |
Philosophy | 262 |Colin Fay | 263 |R & MicroService | 264 |
Philosophy | 267 |Olga Mierzwa-Sulima | 268 |Traits of a world-class data scientist | 269 |
Scoring | 273 |Michal Rudko | 274 |Experiment management using mlflow and R | 275 |
Scoring | 278 |Jacek Wolak, Mateusz Jałocha | 279 |Forecasting rental prices of flats in Krakow | 280 |
Scoring | 283 |Karol Klimas | 284 |Predict, vote and elect with R | 285 |
Shiny | 289 |Pawel Sakowski | 290 |A Shiny Real-time Application for Backtesting Investment Strategies on Regulated and Crypto Markets | 291 |
Shiny | 294 |Jakub Małecki, Jakub Stepniak | 295 |Challenges of Shiny application development at scale | 296 |
Shiny | 299 |Theo Roe | 300 |Improving the communication of environmental data using Shiny | 301 |
Shiny | 304 |Tomasz Koc, Piotr Wójcik | 305 |A Case Study for Image Classification using Transfer Learning | 312 |
Vision | 315 |Michel Voss | 316 |Detection of solar panels based on aerial images using deep learning | 317 |
Vision | 320 |Lubomir Stepanek | 321 |Facial landmarking made (possible and) easy with R! | 322 |
Vision | 325 |Pablo Maldonado | 326 |DeepSport: A Shiny app for sports video analysis | 327 |
Vision | 330 |Michal Maj | 331 |Semantic segmentation using U-Net with R | 332 |
XAI | 336 |Szymon Maksymiuk | 337 |Compare predictive models created in different languages with DALEX and friends | 338 |
XAI | 341 |Blazej Kochanski | 342 |Benefits of better credit scoring | 343 |
XAI | 346 |Aleksandra Grudziaz | 347 |survxai: how to explain predictions for survival models? | 348 |