├── .gitignore
├── AutonomousParking
├── DualMultWS.jl
├── ParkingConstraints.jl
├── ParkingDist.jl
├── ParkingSignedDist.jl
├── README.md
├── a_star.jl
├── collision_check.jl
├── hybrid_a_star.jl
├── main.jl
├── obstHrep.jl
├── plotTraj.jl
├── reeds_shepp.jl
├── setup.jl
└── veloSmooth.jl
├── LICENSE
├── QuadcopterNavigation
├── QuadcopterDist.jl
├── QuadcopterSignedDist.jl
├── README.md
├── a_star_3D.jl
├── constrSatisfaction.jl
├── mainQuadcopter.jl
├── plotTrajQuadcopter.jl
└── setupQuadcopter.jl
├── README.md
└── images
├── TrajBack_ParkingVideo.gif
├── TrajPar_ParkingVideo.gif
├── TrajQuad_3D_Video.gif
└── TrajTrailer_ParkingVideo.gif
/.gitignore:
--------------------------------------------------------------------------------
1 | *.jl.cov
2 | *.jl.*.cov
3 | *.jl.mem
4 | deps/deps.jl
5 | Icon?
6 |
--------------------------------------------------------------------------------
/AutonomousParking/DualMultWS.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # DualMultWS.jl: computes warm starting points for dual multipliers lambda and mu
26 | ###############
27 | #
28 | #
29 | function DualMultWS(N,nOb,vOb, A, b,rx,ry,ryaw)
30 |
31 | x = zeros(3,N+1)
32 | x[1,:] = rx
33 | x[2,:] = ry
34 | x[3,:] = ryaw
35 |
36 | m = Model(solver=IpoptSolver(hessian_approximation="exact",mumps_pivtol=1e-5,
37 | max_iter=100,tol=1e-5, print_level=0, suppress_all_output="yes"))
38 |
39 | W_ev = ego[2]+ego[4]
40 | L_ev = ego[1]+ego[3]
41 |
42 | g = [L_ev/2,W_ev/2,L_ev/2,W_ev/2]
43 |
44 | # ofset from X-Y to the center of the ego set
45 | offset = (ego[1]+ego[3])/2 - ego[3]
46 |
47 |
48 | @variable(m, l[1:sum(vOb),1:(N+1)]) # dual multiplier associated with obstacleShape
49 | @variable(m, n[1:nOb*4,1:(N+1)]) # dual multiplier associated with carShape
50 | @variable(m, d[1:nOb,1:(N+1)])
51 |
52 | @NLobjective(m, Max,sum(sum(d[i,k] for k=1:N+1) for i=1:nOb ))
53 |
54 | @constraint(m, l .>= 0 )
55 | @constraint(m, n .>= 0)
56 |
57 | for i in 1:N+1 # iterate over time steps
58 | for j = 1 : nOb # iterate over obstacles
59 | Aj = A[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract obstacle matrix associated with j-th obstacle
60 | lj = l[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract lambda dual variables associate j-th obstacle
61 | nj = n[(j-1)*4+1:j*4 ,:] # extract mu dual variables associated with j-th obstacle
62 | bj = b[sum(vOb[1:j-1])+1 : sum(vOb[1:j])] # extract obstacle matrix associated with j-th obstacle
63 |
64 | # norm(A'*lambda) <= 1
65 | @constraint(m, (sum(Aj[k,1]*lj[k,i] for k = 1 : vOb[j]))^2 + (sum(Aj[k,2]*lj[k,i] for k = 1 : vOb[j]))^2 <= 1 )
66 |
67 | # G'*mu + R'*A*lambda = 0
68 | @constraint(m, (nj[1,i] - nj[3,i]) + cos(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + sin(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
69 | @constraint(m, (nj[2,i] - nj[4,i]) - sin(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + cos(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
70 |
71 | # -g'*mu + (A*t - b)*lambda > 0
72 | @constraint(m, d[j,i] == -sum(g[k]*nj[k,i] for k = 1:4) + (x[1,i]+cos(x[3,i])*offset)*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j])
73 | + (x[2,i]+sin(x[3,i])*offset)*sum(Aj[k,2]*lj[k,i] for k=1:vOb[j]) - sum(bj[k]*lj[k,i] for k=1:vOb[j]))
74 | end
75 | end
76 | tic()
77 | solve(m)
78 | time = toq();
79 | # print("Auxillery Problem time = ",time,"\n")
80 |
81 | lp = getvalue(l)'
82 | np = getvalue(n)'
83 |
84 | return lp,np
85 |
86 | end
--------------------------------------------------------------------------------
/AutonomousParking/ParkingConstraints.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # Main file: computes Collision-Free and Minimum-Penetration trajectories for parking
26 | ###############
27 |
28 |
29 | function ParkingConstraints(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,x,u,l,n,timeScale,fixTime,sd)
30 |
31 |
32 | # desired safety distance
33 | dmin = 0.05 # anything bigger than 0, e.g. 0.05
34 |
35 | c0 = zeros(5,1)
36 | c1 = zeros(4,1)
37 | c2 = zeros(4,1)
38 | c3 = zeros(4,N)
39 | c4 = zeros(1,1)
40 | c5 = zeros(1,1)
41 | c6 = zeros(4,N+1)
42 |
43 | e = zeros(7,1)
44 |
45 | c0[1] = maximum(abs(u[1,:]))-0.6 # should be <= 0
46 | c0[2] = maximum(abs(u[2,:]))-0.4 # should be <= 0
47 | c0[3] = maximum(abs(timeScale-1))-0.2 # should be <= 0
48 | c0[4] = -minimum(l) # should be <= 0
49 | c0[5] = -minimum(n) # should be <= 0
50 |
51 | #starting point
52 | c1[1] = abs(x[1,1] - x0[1]) # should be <= 0
53 | c1[2] = abs(x[2,1] - x0[2]) # should be <= 0
54 | c1[3] = abs(x[3,1] - x0[3]) # should be <= 0
55 | c1[4] = abs(x[4,1] - x0[4]) # should be <= 0
56 |
57 | #end point
58 | c2[1] = abs(x[1,N+1] - xF[1]) # should be <= 0
59 | c2[2] = abs(x[2,N+1] - xF[2]) # should be <= 0
60 | c2[3] = abs(x[3,N+1] - xF[3]) # should be <= 0
61 | c2[4] = abs(x[4,N+1] - xF[4]) # should be <= 0
62 |
63 | ##############################
64 | # dynamics of the car
65 | ##############################
66 | # - unicycle dynamic with euler forward
67 | # - sampling time scaling, is identical over the horizon
68 |
69 | for i in 1:N
70 | if fixTime == 1
71 | c3[1,i] = x[1,i+1] - (x[1,i] + Ts*(x[4,i] + Ts/2*u[2,i])*cos((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
72 | c3[2,i] = x[2,i+1] - (x[2,i] + Ts*(x[4,i] + Ts/2*u[2,i])*sin((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
73 | c3[3,i] = x[3,i+1] - (x[3,i] + Ts*(x[4,i] + Ts/2*u[2,i])*tan(u[1,i])/L)
74 | c3[4,i] = x[4,i+1] - (x[4,i] + Ts*u[2,i])
75 | else
76 | c3[1,i] = x[1,i+1] - (x[1,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*cos((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
77 | c3[1,i] = x[2,i+1] - (x[2,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*sin((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
78 | c3[1,i] = x[3,i+1] - (x[3,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*tan(u[1,i])/L)
79 | c3[1,i] = x[4,i+1] - (x[4,i] + timeScale[i]*Ts*u[2,i])
80 | end
81 | end
82 |
83 | u0 = [0,0]
84 |
85 | if fixTime == 1
86 | c5 = maximum(abs(diff([0. u[1,:]']'))/Ts) - 0.6
87 | c4 = 0
88 | else
89 | c4 = maximum(abs(diff(timeScale)))
90 | c5 = maximum(abs(diff([0 u[1,:]']'))/(timeScale[1]*Ts)) - 0.6
91 | end
92 |
93 |
94 | ##############################
95 | # obstacle avoidance constraints
96 | ##############################
97 |
98 | # width and length of ego set
99 | W_ev = ego[2]+ego[4]
100 | L_ev = ego[1]+ego[3]
101 |
102 | g = [L_ev/2,W_ev/2,L_ev/2,W_ev/2]
103 |
104 | # ofset from X-Y to the center of the ego set
105 | offset = (ego[1]+ego[3])/2 - ego[3]
106 |
107 |
108 | for i in 1:N+1 # iterate over time steps
109 | for j = 1 : nOb # iterate over obstacles
110 | Aj = A[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract obstacle matrix associated with j-th obstacle
111 | lj = l[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract lambda dual variables associate j-th obstacle
112 | nj = n[(j-1)*4+1:j*4 ,:] # extract mu dual variables associated with j-th obstacle
113 | bj = b[sum(vOb[1:j-1])+1 : sum(vOb[1:j])] # extract obstacle matrix associated with j-th obstacle
114 |
115 | # norm(A'*lambda) <= 1
116 | if sd == 1
117 | c6[1,i] = abs((sum(Aj[k,1]*lj[k,i] for k = 1 : vOb[j]))^2 + (sum(Aj[k,2]*lj[k,i] for k = 1 : vOb[j]))^2) - 1
118 | else
119 | c6[1,i] = (sum(Aj[k,1]*lj[k,i] for k = 1 : vOb[j]))^2 + (sum(Aj[k,2]*lj[k,i] for k = 1 : vOb[j]))^2 - 1
120 | end
121 |
122 | # G'*mu + R'*A*lambda = 0
123 | c6[2,i] = abs((nj[1,i] - nj[3,i]) + cos(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + sin(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]))
124 | c6[3,i] = abs((nj[2,i] - nj[4,i]) - sin(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + cos(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]))
125 |
126 | # -g'*mu + (A*t - b)*lambda > 0
127 | c6[4,i] = -(-sum(g[k]*nj[k,i] for k = 1:4) + (x[1,i]+cos(x[3,i])*offset)*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j])
128 | + (x[2,i]+sin(x[3,i])*offset)*sum(Aj[k,2]*lj[k,i] for k=1:vOb[j]) - sum(bj[k]*lj[k,i] for k=1:vOb[j])) + dmin
129 | end
130 |
131 | end
132 |
133 | e[1] = maximum(c0)<= 5e-5
134 | e[2] = maximum(c1)<= 5e-5
135 | e[3] = maximum(c2)<= 5e-5
136 | e[4] = maximum(abs(c3))<= 5e-5
137 | e[5] = c4 <= 5e-5
138 | e[6] = c5 <= 5e-5
139 | e[7] = maximum(c6)<= 5e-5
140 |
141 | # print(e,"\n")
142 |
143 | if sum(e) == 7
144 | return 1
145 | else
146 | return 0
147 | end
148 |
149 | end
150 |
--------------------------------------------------------------------------------
/AutonomousParking/ParkingDist.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # computes collision-free trajectory by appropriately reformulating the distance function
26 | ###############
27 |
28 |
29 | function ParkingDist(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,rx,ry,ryaw,fixTime,xWS,uWS)
30 |
31 |
32 | # desired safety distance
33 | dmin = 0.05 # anything bigger than 0, e.g. 0.05
34 |
35 | ##############################
36 | # Define JuMP file
37 | ##############################
38 | # Define IPOPT as solver and well as solver settings
39 | ##############################
40 | # seems to work best
41 | m = Model(solver=IpoptSolver(hessian_approximation="exact",mumps_pivtol=1e-6,alpha_for_y="min",recalc_y="yes",
42 | mumps_mem_percent=6000,max_iter=200,tol=1e-5, print_level=0,
43 | min_hessian_perturbation=1e-12,jacobian_regularization_value=1e-7))#,nlp_scaling_method="none"
44 |
45 | # fixTime = 0
46 | ##############################
47 | # defining optimization variables
48 | ##############################
49 | #state
50 | @variable(m, x[1:4,1:(N+1)])
51 | #scaling on sampling time
52 | if fixTime == 0
53 | @variable(m, timeScale[1:N+1])
54 | end
55 | # timeScale = ones(1,N+1)
56 | #control
57 | @variable(m, u[1:2,1:(N)])
58 | # lagrange multipliers for dual dist function
59 | @variable(m, l[1:sum(vOb),1:(N+1)]) # dual multiplier associated with obstacleShape
60 | @variable(m, n[1:nOb*4,1:(N+1)]) # dual multiplier associated with carShape
61 |
62 |
63 | # regularization parameter to improve numerical stability
64 | reg = 1e-7;
65 | ##############################
66 | # cost function
67 | ##############################
68 | # (min control inputs)+
69 | # (min time)+
70 | # (regularization dual variables)
71 | ##############################
72 | # @NLobjective(m, Min,sum(0.1*u[1,i]^2 + 1*u[2,i]^2 for i = 1:N) +
73 | # sum(0.5*timeScale[i] + 1*timeScale[i]^2 for i = 1:N+1)+
74 | # 0*sum(sum(reg*n[j,i]^2 for i = 1:N+1) for j = 1:4) +
75 | # 0*sum(sum(reg*l[j,i]^2 for i = 1:N+1) for j = 1:sum(vOb)) )
76 | u0 = [0,0]
77 | #fix time objective
78 | if fixTime == 1
79 | @NLobjective(m, Min,sum(0.01*u[1,i]^2 + 0.5*u[2,i]^2 for i = 1:N) +
80 | sum(0.1*((u[1,i+1]-u[1,i])/Ts)^2 + 0.1*((u[2,i+1]-u[2,i])/Ts)^2 for i = 1:N-1)+
81 | (0.1*((u[1,1]-u0[1])/(Ts))^2 + 0.1*((u[2,1]-u0[2])/(Ts))^2) +
82 | sum(0.0001*x[4,i]^2 for i=1:N+1)+
83 | sum(0.001*(x[1,i]-rx[i])^2 + 0.001*(x[2,i]-ry[i])^2 + 0.01*(x[3,i]-ryaw[i])^2 for i=1:N+1))
84 | # sum(0.1*(x[1,i]-rx[i])^2 + 0.1*(x[2,i]-ry[i])^2 + 0.0001*(x[3,i]-ryaw[i])^2 for i=1:N+1) )
85 | else
86 | #varo time objective
87 | @NLobjective(m, Min,sum(0.01*u[1,i]^2 + 0.5*u[2,i]^2 for i = 1:N) +
88 | sum(0.1*((u[1,i+1]-u[1,i])/(timeScale[i]*Ts))^2 + 0.1*((u[2,i+1]-u[2,i])/(timeScale[i]*Ts))^2 for i = 1:N-1) +
89 | (0.1*((u[1,1]-u0[1]) /(timeScale[1]*Ts))^2 + 0.1*((u[2,1]-u0[2]) /(timeScale[1]*Ts))^2) +
90 | sum(0.5*timeScale[i] + 1*timeScale[i]^2 for i = 1:N+1)+
91 | sum(0.0001*x[4,i]^2 for i=1:N+1)+
92 | sum(0.001*(x[1,i]-rx[i])^2 + 0.001*(x[2,i]-ry[i])^2 + 0.0001*(x[3,i]-ryaw[i])^2 for i=1:N+1) )
93 | #
94 | end
95 |
96 | ##############################
97 | # bounds on states, inputs,
98 | # and dual multipliers.
99 | ##############################
100 | #input constraints
101 | @constraint(m, [i=1:N], -0.6 <= u[1,i] <= 0.6)
102 | @constraint(m, [i=1:N], -0.4 <= u[2,i] <= 0.4)
103 |
104 | #state constraints
105 | @constraint(m, [i=1:N+1], XYbounds[1] <= x[1,i] <= XYbounds[2])
106 | @constraint(m, [i=1:N+1], XYbounds[3] <= x[2,i] <= XYbounds[4])
107 | @constraint(m, [i=1:N+1], -1 <= x[4,i] <= 2)
108 |
109 | # bounds on time scaling
110 | if fixTime == 0
111 | @constraint(m, 0.8 .<= timeScale .<= 1.2)
112 | end
113 |
114 |
115 | # positivity constraints on dual multipliers
116 | @constraint(m, l .>= 0)
117 | @constraint(m, n .>= 0)
118 |
119 | ##############################
120 | # start and finish point
121 | ##############################
122 |
123 | #starting point
124 | @constraint(m, x[1,1] == x0[1])
125 | @constraint(m, x[2,1] == x0[2])
126 | @constraint(m, x[3,1] == x0[3])
127 | @constraint(m, x[4,1] == x0[4])
128 |
129 | #end point
130 | @constraint(m, x[1,N+1] == xF[1])
131 | @constraint(m, x[2,N+1] == xF[2])
132 | @constraint(m, x[3,N+1] == xF[3])
133 | @constraint(m, x[4,N+1] == xF[4])
134 |
135 | ##############################
136 | # dynamics of the car
137 | ##############################
138 | # - unicycle dynamic with euler forward
139 | # - sampling time scaling, is identical over the horizon
140 |
141 | for i in 1:N
142 | if fixTime == 1
143 | @NLconstraint(m, x[1,i+1] == x[1,i] + Ts*(x[4,i] + Ts/2*u[2,i])*cos((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
144 | @NLconstraint(m, x[2,i+1] == x[2,i] + Ts*(x[4,i] + Ts/2*u[2,i])*sin((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
145 | @NLconstraint(m, x[3,i+1] == x[3,i] + Ts*(x[4,i] + Ts/2*u[2,i])*tan(u[1,i])/L)
146 | @NLconstraint(m, x[4,i+1] == x[4,i] + Ts*u[2,i])
147 | else
148 | @NLconstraint(m, x[1,i+1] == x[1,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*cos((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
149 | @NLconstraint(m, x[2,i+1] == x[2,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*sin((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
150 | @NLconstraint(m, x[3,i+1] == x[3,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*tan(u[1,i])/L)
151 | @NLconstraint(m, x[4,i+1] == x[4,i] + timeScale[i]*Ts*u[2,i])
152 | end
153 |
154 | if fixTime == 0
155 | @constraint(m, timeScale[i] == timeScale[i+1])
156 | end
157 | end
158 |
159 | u0 = [0,0]
160 | if fixTime == 1
161 | for i in 1:N
162 | if i==1
163 | @constraint(m,-0.6<=(u0[1]-u[1,i])/Ts <= 0.6)
164 | else
165 | @constraint(m,-0.6<=(u[1,i-1]-u[1,i])/Ts <= 0.6)
166 | end
167 | end
168 | else
169 | for i in 1:N
170 | if i==1
171 | @NLconstraint(m,-0.6<=(u0[1]-u[1,i])/(timeScale[i]*Ts) <= 0.6)
172 | else
173 | @NLconstraint(m,-0.6<=(u[1,i-1]-u[1,i])/(timeScale[i]*Ts) <= 0.6)
174 | end
175 | end
176 | end
177 |
178 |
179 | ##############################
180 | # obstacle avoidance constraints
181 | ##############################
182 |
183 | # width and length of ego set
184 | W_ev = ego[2]+ego[4]
185 | L_ev = ego[1]+ego[3]
186 |
187 | g = [L_ev/2,W_ev/2,L_ev/2,W_ev/2]
188 |
189 | # ofset from X-Y to the center of the ego set
190 | offset = (ego[1]+ego[3])/2 - ego[3]
191 |
192 | for i in 1:N+1 # iterate over time steps
193 | for j = 1 : nOb # iterate over obstacles
194 | Aj = A[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract obstacle matrix associated with j-th obstacle
195 | lj = l[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract lambda dual variables associate j-th obstacle
196 | nj = n[(j-1)*4+1:j*4 ,:] # extract mu dual variables associated with j-th obstacle
197 | bj = b[sum(vOb[1:j-1])+1 : sum(vOb[1:j])] # extract obstacle matrix associated with j-th obstacle
198 |
199 | # norm(A'*lambda) <= 1
200 | @NLconstraint(m, (sum(Aj[k,1]*lj[k,i] for k = 1 : vOb[j]))^2 + (sum(Aj[k,2]*lj[k,i] for k = 1 : vOb[j]))^2 <= 1 )
201 |
202 | # G'*mu + R'*A*lambda = 0
203 | @NLconstraint(m, (nj[1,i] - nj[3,i]) + cos(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + sin(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
204 | @NLconstraint(m, (nj[2,i] - nj[4,i]) - sin(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + cos(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
205 |
206 | # -g'*mu + (A*t - b)*lambda > 0
207 | @NLconstraint(m, (-sum(g[k]*nj[k,i] for k = 1:4) + (x[1,i]+cos(x[3,i])*offset)*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j])
208 | + (x[2,i]+sin(x[3,i])*offset)*sum(Aj[k,2]*lj[k,i] for k=1:vOb[j]) - sum(bj[k]*lj[k,i] for k=1:vOb[j])) >= dmin )
209 | end
210 | end
211 |
212 | ##############################
213 | # set initial guesses
214 | ##############################
215 | if fixTime == 0
216 | setvalue(timeScale,1*ones(N+1,1))
217 | end
218 | setvalue(x,xWS')
219 | setvalue(u,uWS[1:N,:]')
220 |
221 | lWS,nWS = DualMultWS(N,nOb,vOb, A, b,rx,ry,ryaw)
222 |
223 | setvalue(l,lWS')
224 | setvalue(n,nWS')
225 |
226 | ##############################
227 | # solve problem
228 | ##############################
229 | # ipopt has sometimes problems in the restoration phase,
230 | # it turns out that restarting ipopt with the previous solution
231 | # as an initial guess works well to achieve a high success rate.
232 | ##############################
233 |
234 | # at most three attempts considered
235 | time1 = 0
236 | time2 = 0
237 |
238 | exitflag = 0
239 |
240 | tic()
241 | status = solve(m; suppress_warnings=true)
242 | time1 = toq();
243 |
244 | # we allow for two resolving attempts if restoration error
245 | if status == :Optimal
246 | exitflag = 1
247 | elseif status ==:Error || status ==:UserLimit || status ==:Infeasible # #|| status ==:Infeasible
248 |
249 | xp = getvalue(x)
250 | up = getvalue(u)
251 | if fixTime == 1
252 | timeScalep = ones(1,N+1)
253 | else
254 | timeScalep = getvalue(timeScale)
255 | end
256 | lp = getvalue(l)
257 | np = getvalue(n)
258 | Feasible = 0
259 | Feasible = ParkingConstraints(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,xp,up,lp,np,timeScalep,fixTime,0)
260 | if Feasible == 0
261 | tic()
262 | status = solve(m; suppress_warnings=true)
263 | time2 = toq();
264 | if status == :Optimal
265 | exitflag = 1
266 | elseif status ==:Error || status ==:UserLimit
267 | xp = getvalue(x)
268 | up = getvalue(u)
269 | if fixTime == 1
270 | timeScalep = ones(1,N+1)
271 | else
272 | timeScalep = getvalue(timeScale)
273 | end
274 | lp = getvalue(l)
275 | np = getvalue(n)
276 | Feasible = 0
277 | Feasible = ParkingConstraints(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,xp,up,lp,np,timeScalep,fixTime,0)
278 | if Feasible == 0
279 | exitflag = 1
280 | else
281 | exitflag = 0
282 | end
283 | end
284 | else
285 | exitflag = 1
286 | end
287 | else
288 | exitflag = 0
289 | end
290 |
291 | ##############################
292 | # return values
293 | ##############################
294 |
295 | # computation times is the sum of all trials
296 | time = time1+time2
297 | # print(" elapsed time: ")
298 | # print(time)
299 | # println(" seconds")
300 |
301 | xp = getvalue(x)
302 | up = getvalue(u)
303 | if fixTime == 1
304 | timeScalep = ones(1,N+1)
305 | else
306 | timeScalep = getvalue(timeScale)
307 | end
308 | #
309 |
310 | lp = getvalue(l)
311 | np = getvalue(n)
312 |
313 | return xp, up, timeScalep, exitflag, time, lp, np
314 |
315 | end
316 |
--------------------------------------------------------------------------------
/AutonomousParking/ParkingSignedDist.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # Main file: computes Collision-Free and Minimum-Penetration trajectories for parking
26 | ###############
27 |
28 |
29 | function ParkingSignedDist(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,rx,ry,ryaw,fixTime,xWS,uWS)
30 |
31 |
32 | # desired safety distance
33 | dmin = 0.05 # anything bigger than 0, e.g. 0.05
34 |
35 | ##############################
36 | # Define JuMP file
37 | ##############################
38 | # Define IPOPT as solver and well as solver settings
39 | ##############################
40 | # seems to work best
41 | m = Model(solver=IpoptSolver(hessian_approximation="exact",mumps_pivtol=1e-6,alpha_for_y="min",recalc_y="yes",
42 | mumps_mem_percent=6000,max_iter=200,tol=1e-5, print_level=0,
43 | min_hessian_perturbation=1e-12,jacobian_regularization_value=1e-7))#,nlp_scaling_method="none"
44 |
45 | ##############################
46 | # defining optimization variables
47 | ##############################
48 | #state
49 | @variable(m, x[1:4,1:(N+1)])
50 | #scaling on sampling time
51 | if fixTime == 0
52 | @variable(m, timeScale[1:N+1])
53 | end
54 | #control
55 | @variable(m, u[1:2,1:(N)])
56 | # lagrange multipliers for dual dist function
57 | @variable(m, l[1:sum(vOb),1:(N+1)]) # dual multiplier associated with obstacleShape
58 | @variable(m, n[1:nOb*4,1:(N+1)]) # dual multiplier associated with carShape
59 | @variable(m, sl[1:nOb,1:(N+1)]) # slack variable to avoid infeasibilities
60 |
61 |
62 | # regularization parameter to improve numerical stability
63 | reg = 1e-7;
64 | ##############################
65 | # cost function
66 | ##############################
67 | # (min control inputs)+
68 | # (min time)+
69 | # (regularization dual variables)
70 | ##############################
71 | # @NLobjective(m, Min,sum(0.1*u[1,i]^2 + 1*u[2,i]^2 for i = 1:N) +
72 | # sum(0.5*timeScale[i] + 1*timeScale[i]^2 for i = 1:N+1)+
73 | # 0*sum(sum(reg*n[j,i]^2 for i = 1:N+1) for j = 1:4) +
74 | # 0*sum(sum(reg*l[j,i]^2 for i = 1:N+1) for j = 1:sum(vOb)) )
75 | u0 = [0,0]
76 | # fix time objective
77 | if fixTime == 1
78 | @NLobjective(m, Min,sum(0.01*u[1,i]^2 + 0.5*u[2,i]^2 for i = 1:N) +
79 | sum(0.1*((u[1,i+1]-u[1,i])/Ts)^2 + 0.1*((u[2,i+1]-u[2,i])/Ts)^2 for i = 1:N-1)+
80 | (0.1*((u[1,1]-u0[1])/(Ts))^2 + 0.1*((u[2,1]-u0[2])/(Ts))^2) +
81 | sum(0.0001*x[4,i]^2 for i=1:N+1)+
82 | sum(0.001*(x[1,i]-rx[i])^2 + 0.001*(x[2,i]-ry[i])^2 + 0.01*(x[3,i]-ryaw[i])^2 for i=1:N+1) +
83 | sum(sum(1e2*sl[j,i] + 1e4*sl[j,i]^2 for i = 1:N+1) for j = 1 : nOb) )
84 | else
85 | # variable time objective
86 | @NLobjective(m, Min,sum(0.01*u[1,i]^2 + 0.1*u[2,i]^2 for i = 1:N) +
87 | sum(0.1*((u[1,i+1]-u[1,i])/(timeScale[i]*Ts))^2 + 0.1*((u[2,i+1]-u[2,i])/(timeScale[i]*Ts))^2 for i = 1:N-1) +
88 | (0.1*((u[1,1]-u0[1]) /(timeScale[1]*Ts))^2 + 0.1*((u[2,1]-u0[2]) /(timeScale[1]*Ts))^2) +
89 | sum(0.5*timeScale[i] + 1*timeScale[i]^2 for i = 1:N+1)+
90 | sum(0.0001*x[4,i]^2 for i=1:N+1)+
91 | sum(0.001*(x[1,i]-rx[i])^2 + 0.001*(x[2,i]-ry[i])^2 + 0.0001*(x[3,i]-ryaw[i])^2 for i=1:N+1) +
92 | sum(sum(1e2*sl[j,i] + 1e4*sl[j,i]^2 for i = 1:N+1) for j = 1 : nOb) ) #
93 | end
94 |
95 | ##############################
96 | # bounds on states, inputs,
97 | # and dual multipliers.
98 | ##############################
99 | #input constraints
100 | @constraint(m, [i=1:N], -0.6 <= u[1,i] <= 0.6)
101 | @constraint(m, [i=1:N], -0.4 <= u[2,i] <= 0.4)
102 |
103 | #state constraints
104 | @constraint(m, [i=1:N+1], XYbounds[1] <= x[1,i] <= XYbounds[2])
105 | @constraint(m, [i=1:N+1], XYbounds[3] <= x[2,i] <= XYbounds[4])
106 | @constraint(m, [i=1:N+1], -1 <= x[4,i] <= 2)
107 |
108 | # bounds on time scaling
109 | if fixTime == 0
110 | @constraint(m, 0.8 .<= timeScale .<= 1.2)
111 | end
112 |
113 | # positivity constraints on dual multipliers
114 | @constraint(m, l .>= 0)
115 | @constraint(m, n .>= 0)
116 |
117 | ##############################
118 | # start and finish point
119 | ##############################
120 |
121 | #starting point
122 | @constraint(m, x[1,1] == x0[1])
123 | @constraint(m, x[2,1] == x0[2])
124 | @constraint(m, x[3,1] == x0[3])
125 | @constraint(m, x[4,1] == x0[4])
126 |
127 | #end point
128 | @constraint(m, x[1,N+1] == xF[1])
129 | @constraint(m, x[2,N+1] == xF[2])
130 | @constraint(m, x[3,N+1] == xF[3])
131 | @constraint(m, x[4,N+1] == xF[4])
132 |
133 | ##############################
134 | # dynamics of the car
135 | ##############################
136 | # - unicycle dynamic with euler forward
137 | # - sampling time scaling, is identical over the horizon
138 |
139 | for i in 1:N
140 |
141 | if fixTime == 1
142 | @NLconstraint(m, x[1,i+1] == x[1,i] + Ts*(x[4,i] + Ts/2*u[2,i])*cos((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
143 | @NLconstraint(m, x[2,i+1] == x[2,i] + Ts*(x[4,i] + Ts/2*u[2,i])*sin((x[3,i] + Ts/2*x[4,i]*tan(u[1,i])/L)))
144 | @NLconstraint(m, x[3,i+1] == x[3,i] + Ts*(x[4,i] + Ts/2*u[2,i])*tan(u[1,i])/L)
145 | @NLconstraint(m, x[4,i+1] == x[4,i] + Ts*u[2,i])
146 | else
147 | @NLconstraint(m, x[1,i+1] == x[1,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*cos((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
148 | @NLconstraint(m, x[2,i+1] == x[2,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*sin((x[3,i] + timeScale[i]*Ts/2*x[4,i]*tan(u[1,i])/L)))
149 | @NLconstraint(m, x[3,i+1] == x[3,i] + timeScale[i]*Ts*(x[4,i] + timeScale[i]*Ts/2*u[2,i])*tan(u[1,i])/L)
150 | @NLconstraint(m, x[4,i+1] == x[4,i] + timeScale[i]*Ts*u[2,i])
151 | end
152 | if fixTime == 0
153 | @constraint(m, timeScale[i] == timeScale[i+1])
154 | end
155 | end
156 |
157 | u0 = [0,0]
158 | if fixTime == 1
159 | for i in 1:N
160 | if i==1
161 | @constraint(m,-0.6<=(u0[1]-u[1,i])/Ts <= 0.6)
162 | else
163 | @constraint(m,-0.6<=(u[1,i-1]-u[1,i])/Ts <= 0.6)
164 | end
165 | end
166 | else
167 | for i in 1:N
168 | if i==1
169 | @NLconstraint(m,-0.6<=(u0[1]-u[1,i])/(timeScale[i]*Ts) <= 0.6)
170 | else
171 | @NLconstraint(m,-0.6<=(u[1,i-1]-u[1,i])/(timeScale[i]*Ts) <= 0.6)
172 | end
173 | end
174 | end
175 |
176 |
177 | ##############################
178 | # obstacle avoidance constraints
179 | ##############################
180 |
181 | # width and length of ego set
182 | W_ev = ego[2]+ego[4]
183 | L_ev = ego[1]+ego[3]
184 |
185 | g = [L_ev/2,W_ev/2,L_ev/2,W_ev/2]
186 |
187 | # ofset from X-Y to the center of the ego set
188 | offset = (ego[1]+ego[3])/2 - ego[3]
189 |
190 | for i in 1:N+1 # iterate over time steps
191 | for j = 1 : nOb # iterate over obstacles
192 | Aj = A[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract obstacle matrix associated with j-th obstacle
193 | lj = l[sum(vOb[1:j-1])+1 : sum(vOb[1:j]) ,:] # extract lambda dual variables associate j-th obstacle
194 | nj = n[(j-1)*4+1:j*4 ,:] # extract mu dual variables associated with j-th obstacle
195 | bj = b[sum(vOb[1:j-1])+1 : sum(vOb[1:j])] # extract obstacle matrix associated with j-th obstacle
196 |
197 | # norm(A'*lambda) <= 1
198 | @NLconstraint(m, (sum(Aj[k,1]*lj[k,i] for k = 1 : vOb[j]))^2 + (sum(Aj[k,2]*lj[k,i] for k = 1 : vOb[j]))^2 == 1 )
199 |
200 | # G'*mu + R'*A*lambda = 0
201 | @NLconstraint(m, (nj[1,i] - nj[3,i]) + cos(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + sin(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
202 | @NLconstraint(m, (nj[2,i] - nj[4,i]) - sin(x[3,i])*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j]) + cos(x[3,i])*sum(Aj[k,2]lj[k,i] for k = 1:vOb[j]) == 0 )
203 |
204 | # -g'*mu + (A*t - b)*lambda > 0
205 | @NLconstraint(m, -sum(g[k]*nj[k,i] for k = 1:4) + (x[1,i]+cos(x[3,i])*offset)*sum(Aj[k,1]*lj[k,i] for k = 1:vOb[j])
206 | + (x[2,i]+sin(x[3,i])*offset)*sum(Aj[k,2]*lj[k,i] for k=1:vOb[j]) - sum(bj[k]*lj[k,i] for k=1:vOb[j]) + sl[j,i] >= 1*dmin )
207 | end
208 | end
209 |
210 | ##############################
211 | # set initial guesses
212 | ##############################
213 | if fixTime == 0
214 | setvalue(timeScale,1*ones(N+1,1))
215 | end
216 | setvalue(x,xWS')
217 | setvalue(u,uWS[1:N,:]')
218 |
219 | lWS,nWS = DualMultWS(N,nOb,vOb, A, b,rx,ry,ryaw)
220 |
221 | setvalue(l,lWS')
222 | setvalue(n,nWS')
223 |
224 |
225 | ##############################
226 | # solve problem
227 | ##############################
228 | # ipopt has sometimes problems in the restoration phase,
229 | # it turns out that restarting ipopt with the previous solution
230 | # as an initial guess works well to achieve a high success rate.
231 | ##############################
232 |
233 | # at most three attempts considered
234 | time1 = 0
235 | time2 = 0
236 |
237 | exitflag = 0
238 |
239 | tic()
240 | status = solve(m; suppress_warnings=true)
241 | time1 = toq();
242 |
243 | # tmp check
244 | xp = getvalue(x)
245 | up = getvalue(u)
246 | if fixTime == 1
247 | timeScalep = ones(1,N+1)
248 | else
249 | timeScalep = getvalue(timeScale)
250 | end
251 | lp = getvalue(l)
252 | np = getvalue(n)
253 | tmp_useless = ParkingConstraints(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,xp,up,lp,np,timeScalep,fixTime,1)
254 |
255 |
256 | if status == :Optimal
257 | exitflag = 1
258 | elseif status ==:Error || status ==:UserLimit# || status ==:Infeasible
259 | Feasible = 0
260 | if Feasible == 0
261 | tic()
262 | status = solve(m; suppress_warnings=true)
263 | time2 = toq();
264 |
265 | if status == :Optimal
266 | exitflag = 1
267 | elseif status ==:Error || status ==:UserLimit
268 | xp = getvalue(x)
269 | up = getvalue(u)
270 | if fixTime == 1
271 | timeScalep = ones(1,N+1)
272 | else
273 | timeScalep = getvalue(timeScale)
274 | end
275 | lp = getvalue(l)
276 | np = getvalue(n)
277 | Feasible = 0
278 | Feasible = ParkingConstraints(x0,xF,N,Ts,L,ego,XYbounds,nOb,vOb, A, b,xp,up,lp,np,timeScalep,fixTime,1)
279 | if Feasible == 1
280 | exitflag = 1
281 | else
282 | exitflag = 0
283 | end
284 | end
285 | else
286 | exitflag = 1
287 | end
288 | else
289 | exitflag = 0
290 | end
291 |
292 | ##############################
293 | # return values
294 | ##############################
295 |
296 | # computation times is the sum of all trials
297 | time = time1+time2
298 | # print(" elapsed time: ")
299 | # print(time)
300 | # println(" seconds")
301 |
302 | xp = getvalue(x)
303 | up = getvalue(u)
304 | if fixTime == 1
305 | timeScalep = ones(1,N+1)
306 | else
307 | timeScalep = getvalue(timeScale)
308 | end
309 |
310 | lp = getvalue(l)
311 | np = getvalue(n)
312 |
313 | return xp, up, timeScalep, exitflag, time, lp, np
314 | end
315 |
--------------------------------------------------------------------------------
/AutonomousParking/README.md:
--------------------------------------------------------------------------------
1 | # OBCA - Autonomous Parking
2 | Optimization-Based Collision Avoidance - an application towards autonomous parking
3 |
4 | Paper describing the theory can be found [here](http://arxiv.org/abs/1711.03449).
5 |
6 | ## How to run the Parking code:
7 |
8 | ### First steps
9 |
10 | 1. Change to the directory
11 |
12 | 2. Install Julia from https://julialang.org/downloads/ (code tested on version 0.5 and 0.6)
13 |
14 | 3. Open Julia in terminal
15 |
16 | 4. Install Julia package JuMP using Pkg.add("JuMP")
17 |
18 | 5. Install Julia package Ipopt using Pkg.add("Ipopt")
19 |
20 | 6. Install Julia package PyPlot using Pkg.add("PyPlot")
21 |
22 | 7. Install Julia package PyPlot using Pkg.add("NearestNeighbors")
23 |
24 |
25 | ### Running the parking example
26 |
27 | 1. Start Julia in terminal
28 |
29 | 2. Type in terminal: include("setup.jl")
30 |
31 | 3. Type in terminal: include("main.jl")
32 |
33 |
34 | ### modifying the code
35 |
36 | 1. To play with start points, change x0 in main.jl and run
37 | the code by include("main.jl")
38 |
39 | 2. If you change anything in one of the collision avoidance
40 | problems, you need to activate the changes by running
41 | include("setup.jl")
42 |
43 |
44 | ### Note
45 | 1. This code has been tested on Julia 0.5 and 0.6, and might not run on any other Julia versions.
46 |
47 | 2. For best results, run code in Julia terminal
48 |
--------------------------------------------------------------------------------
/AutonomousParking/a_star.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Atsushi SAKAI [atsushisakai@global.komatsu; Komatsu Ltd / MPC Lab]
5 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
6 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
7 | #
8 | # This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 | ###############
21 | # The paper describing the theory can be found here:
22 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017
23 | ###############
24 |
25 | ###############
26 | # Grid based A* shorest path planning
27 | ###############
28 |
29 | module a_star
30 |
31 | using PyPlot
32 | using NearestNeighbors
33 | using DataStructures
34 |
35 | const VEHICLE_RADIUS = 5.0 #[m]
36 | const GRID_RESOLUTION = 1.0 #[m]
37 |
38 |
39 | type Node
40 | x::Int64 #x index
41 | y::Int64 #y index
42 | cost::Float64 # cost
43 | pind::Int64 # parent index
44 | end
45 |
46 |
47 | function calc_dist_policy(gx::Float64, gy::Float64,
48 | ox::Array{Float64}, oy::Array{Float64},
49 | reso::Float64, vr::Float64)
50 | """
51 | gx: goal x position [m]
52 | gx: goal x position [m]
53 | ox: x position list of Obstacles [m]
54 | oy: y position list of Obstacles [m]
55 | reso: grid resolution [m]
56 | vr: vehicle radius[m]
57 | """
58 |
59 | ngoal = Node(round(Int64, gx/reso),round(Int64, gy/reso),0.0, -1)
60 |
61 | ox = [iox/reso for iox in ox]
62 | oy = [ioy/reso for ioy in oy]
63 |
64 | obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, vr)
65 |
66 | #open, closed set
67 | open, closed = Dict{Int64, Node}(), Dict{Int64, Node}()
68 | open[calc_index(ngoal, xw, minx, miny)] = ngoal
69 |
70 | motion = get_motion_model()
71 | nmotion = length(motion[:,1])
72 | pq = PriorityQueue()
73 | enqueue!(pq, calc_index(ngoal, xw, minx, miny), ngoal.cost)
74 |
75 | while true
76 | if length(open) == 0
77 | # println("Finish Search")
78 | break
79 | end
80 |
81 | c_id = dequeue!(pq)
82 | current = open[c_id]
83 |
84 | delete!(open, c_id)
85 | closed[c_id] = current
86 |
87 | for i in 1:nmotion # expand search grid based on motion model
88 | node = Node(current.x+motion[i,1], current.y+motion[i,2], current.cost+motion[i,3], c_id)
89 |
90 | if !verify_node(node, minx, miny, xw, yw, obmap)
91 | continue
92 | end
93 |
94 | node_ind = calc_index(node, xw, minx, miny)
95 |
96 | # If it is already in the closed set, skip it
97 | if haskey(closed,node_ind) continue end
98 |
99 | if haskey(open, node_ind)
100 | if open[node_ind].cost > node.cost
101 | # If so, update the node to have a new parent
102 | open[node_ind].cost = node.cost
103 | open[node_ind].pind = c_id
104 | end
105 | else # add to open set
106 | open[node_ind] = node
107 | enqueue!(pq, calc_index(node, xw, minx, miny), node.cost)
108 | end
109 | end
110 | end
111 |
112 | pmap = calc_policy_map(closed, xw, yw, minx, miny)
113 |
114 | return pmap
115 | end
116 |
117 |
118 | function calc_policy_map(closed, xw, yw, minx, miny)
119 |
120 | pmap = fill(Inf, (xw,yw))
121 |
122 | for n in values(closed)
123 | pmap[n.x-minx, n.y-miny] = n.cost
124 | end
125 | # println(pmap)
126 |
127 | return pmap
128 | end
129 |
130 |
131 | function calc_astar_path(sx::Float64, sy::Float64, gx::Float64, gy::Float64,
132 | ox::Array{Float64}, oy::Array{Float64}, reso::Float64, vr::Float64)
133 | """
134 | sx: start x position [m]
135 | sy: start y position [m]
136 | gx: goal x position [m]
137 | gx: goal x position [m]
138 | ox: x position list of Obstacles [m]
139 | oy: y position list of Obstacles [m]
140 | reso: grid resolution [m]
141 | """
142 |
143 | nstart = Node(round(Int64,sx/reso),round(Int64, sy/reso),0.0, -1)
144 | ngoal = Node(round(Int64, gx/reso),round(Int64, gy/reso),0.0, -1)
145 |
146 | ox = [iox/reso for iox in ox]
147 | oy = [ioy/reso for ioy in oy]
148 |
149 | obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, vr)
150 |
151 | #open, closed set
152 | open, closed = Dict{Int64, Node}(), Dict{Int64, Node}()
153 | open[calc_index(nstart, xw, minx, miny)] = nstart
154 |
155 | motion = get_motion_model()
156 | nmotion = length(motion[:,1])
157 | pq = PriorityQueue()
158 | enqueue!(pq, calc_index(nstart, xw, minx, miny), calc_cost(nstart, ngoal))
159 |
160 | while true
161 | if length(open) == 0
162 | println("Error: No open set")
163 | break
164 | end
165 |
166 | c_id = dequeue!(pq)
167 | current = open[c_id]
168 |
169 | if current.x == ngoal.x && current.y == ngoal.y # check goal
170 | # println("Goal!!")
171 | closed[c_id] = current
172 | break
173 | end
174 |
175 | delete!(open, c_id)
176 | closed[c_id] = current
177 |
178 | for i in 1:nmotion # expand search grid based on motion model
179 | node = Node(current.x+motion[i,1], current.y+motion[i,2], current.cost+motion[i,3], c_id)
180 |
181 | if !verify_node(node, minx, miny, xw, yw, obmap)
182 | continue
183 | end
184 |
185 | node_ind = calc_index(node, xw, minx, miny)
186 |
187 | # If it is already in the closed set, skip it
188 | if haskey(closed,node_ind) continue end
189 |
190 | if haskey(open, node_ind)
191 | if open[node_ind].cost > node.cost
192 | # If so, update the node to have a new parent
193 | open[node_ind].cost = node.cost
194 | open[node_ind].pind = c_id
195 | end
196 | else # add to open set
197 | open[node_ind] = node
198 | enqueue!(pq, calc_index(node, xw, minx, miny), calc_cost(node, ngoal))
199 | end
200 | end
201 | end
202 |
203 | rx, ry = get_final_path(closed, ngoal, nstart, xw, minx, miny, reso)
204 |
205 | return rx, ry
206 | end
207 |
208 |
209 | function verify_node(node::Node, minx::Int64, miny::Int64, xw::Int64, yw::Int64, obmap::Array{Bool,2})
210 |
211 | if (node.x - minx) >= xw
212 | return false
213 | elseif (node.x - minx) <= 0
214 | return false
215 | end
216 | if (node.y - miny) >= yw
217 | return false
218 | elseif (node.y - miny) <= 0
219 | return false
220 | end
221 |
222 | #collision check
223 | if obmap[node.x-minx, node.y-miny]
224 | return false
225 | end
226 |
227 | return true
228 | end
229 |
230 |
231 | function calc_cost(n::Node, ngoal::Node)
232 | return (n.cost + h(n.x - ngoal.x, n.y - ngoal.y))
233 | end
234 |
235 |
236 | function get_motion_model()
237 | # dx, dy, cost
238 | motion=[1 0 1;
239 | 0 1 1;
240 | -1 0 1;
241 | 0 -1 1;
242 | -1 -1 sqrt(2);
243 | -1 1 sqrt(2);
244 | 1 -1 sqrt(2);
245 | 1 1 sqrt(2);]
246 |
247 | return motion
248 | end
249 |
250 |
251 | function calc_index(node::Node, xwidth::Int64, xmin::Int64, ymin::Int64)
252 | return (node.y - ymin)*xwidth + (node.x - xmin)
253 | end
254 |
255 |
256 | function calc_obstacle_map(ox::Array{Float64}, oy::Array{Float64}, reso::Float64, vr::Float64)
257 |
258 | minx = round(Int64, minimum(ox))
259 | miny = round(Int64, minimum(oy))
260 | maxx = round(Int64, maximum(ox))
261 | maxy = round(Int64, maximum(oy))
262 |
263 | xwidth = round(Int64, maxx - minx)
264 | ywidth = round(Int64, maxy - miny)
265 |
266 | obmap = fill(false, (xwidth,ywidth))
267 |
268 | kdtree = KDTree(hcat(ox, oy)')
269 | for ix in 1:xwidth
270 | x = ix + minx
271 | for iy in 1:ywidth
272 | y = iy + miny
273 | idxs, onedist = knn(kdtree, [x, y] , 1)
274 | if onedist[1] <= vr/reso
275 | obmap[ix,iy] = true
276 | end
277 | end
278 | end
279 |
280 | return obmap, minx, miny, maxx, maxy, xwidth, ywidth
281 | end
282 |
283 |
284 | function get_final_path(closed::Dict{Int64, Node},
285 | ngoal::Node,
286 | nstart::Node,
287 | xw::Int64,
288 | minx::Int64,
289 | miny::Int64,
290 | reso::Float64)
291 |
292 | rx, ry = [ngoal.x],[ngoal.y]
293 | nid = calc_index(ngoal, xw, minx, miny)
294 | while true
295 | n = closed[nid]
296 | push!(rx, n.x)
297 | push!(ry, n.y)
298 | nid = n.pind
299 |
300 | if rx[end] == nstart.x && ry[end] == nstart.y
301 | # println("done")
302 | break
303 | end
304 | end
305 |
306 | rx = reverse(rx) .* reso
307 | ry = reverse(ry) .* reso
308 |
309 | return rx, ry
310 | end
311 |
312 |
313 | function search_min_cost_node(open::Dict{Int64, Node}, ngoal::Node)
314 | mnode = nothing
315 | mcost = Inf
316 | for n in values(open)
317 | # println(n)
318 | cost = n.cost + h(n.x - ngoal.x, n.y - ngoal.y)
319 | if mcost > cost
320 | mnode = n
321 | mcost = cost
322 | end
323 | end
324 | # println("minnode:", mnode)
325 |
326 | return mnode
327 | end
328 |
329 |
330 | function h(x::Int64, y::Int64)
331 | """
332 | Heuristic cost function
333 | """
334 | return sqrt(x^2+y^2);
335 | end
336 |
337 |
338 | function main()
339 | # println(PROGRAM_FILE," start!!")
340 |
341 | sx = 10.0 # [m]
342 | sy = 10.0 # [m]
343 | gx = 50.0 # [m]
344 | gy = 50.0 # [m]
345 |
346 | ox = Float64[]
347 | oy = Float64[]
348 |
349 | for i in 0:60
350 | push!(ox, Float64(i))
351 | push!(oy, 0.0)
352 | end
353 | for i in 0:60
354 | push!(ox, 60.0)
355 | push!(oy, Float64(i))
356 | end
357 | for i in 0:60
358 | push!(ox, Float64(i))
359 | push!(oy, 60.0)
360 | end
361 | for i in 0:60
362 | push!(ox, 0.0)
363 | push!(oy, Float64(i))
364 | end
365 | for i in 0:40
366 | push!(ox, 20.0)
367 | push!(oy, Float64(i))
368 | end
369 | for i in 0:40
370 | push!(ox, 40.0)
371 | push!(oy, 60.0-Float64(i))
372 | end
373 |
374 | @time rx, ry = calc_astar_path(sx, sy, gx, gy, ox, oy, GRID_RESOLUTION, VEHICLE_RADIUS)
375 |
376 | plot(ox, oy, ".k",label="obstacles")
377 | plot(sx, sy, "xr",label="start")
378 | plot(gx, gy, "xb",label="goal")
379 | plot(rx, ry, "-r",label="A* path")
380 | legend()
381 | grid(true)
382 | axis("equal")
383 | show()
384 |
385 | # println(PROGRAM_FILE," Done!!")
386 | end
387 |
388 |
389 | if length(PROGRAM_FILE)!=0 &&
390 | contains(@__FILE__, PROGRAM_FILE)
391 |
392 | main()
393 | end
394 |
395 |
396 | end #module
397 |
398 |
--------------------------------------------------------------------------------
/AutonomousParking/collision_check.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # H-OBCA: Hierarchical Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Atsushi SAKAI [atsushisakai@global.komatsu; Komatsu Ltd / MPC Lab]
5 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
6 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
7 | #
8 | # This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 | ###############
21 | # The paper describing the theory can be found here:
22 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
23 | # X. Zhang, A. Liniger, A. Sakai and F. Borrelli; "Autonomous Parking using Optimization-Based Collision Avoidance"; Technical Report, 2018 [add URL]
24 | ###############
25 |
26 | module collision_check
27 |
28 | using NearestNeighbors
29 | using PyPlot
30 |
31 | const B = 1.0 #[m] distance from rear to vehicle back end
32 | const C = 3.7 #[m] distance from rear to vehicle front end
33 | const I = 2.0 #[m] width of vehicle
34 | const WBUBBLE_DIST = (B+C)/2.0-B #[m] distance from rear and the center of whole bubble
35 | const WBUBBLE_R = (B+C)/2.0 #[m] whole bubble radius
36 |
37 | const vrx = [C, C, -B, -B, C ]
38 | const vry = [-I/2.0, I/2.0, I/2.0, -I/2.0, -I/2.0]
39 |
40 | function check_collision(x, y, yaw, kdtree, ox, oy)
41 |
42 | for (ix, iy, iyaw) in zip(x, y, yaw)
43 | cx = ix + WBUBBLE_DIST*cos(iyaw)
44 | cy = iy + WBUBBLE_DIST*sin(iyaw)
45 |
46 | # Whole bubble check
47 | ids = inrange(kdtree, [cx, cy], WBUBBLE_R, true)
48 | if length(ids) == 0 continue end
49 |
50 | if !rect_check(ix, iy, iyaw, ox[ids], oy[ids])
51 | return false #collision
52 | end
53 | end
54 |
55 | return true #OK
56 |
57 | end
58 |
59 |
60 | function rect_check(ix, iy, iyaw, ox, oy)
61 |
62 | c = cos(-iyaw)
63 | s = sin(-iyaw)
64 |
65 | for (iox, ioy) in zip(ox, oy)
66 | tx = iox - ix
67 | ty = ioy - iy
68 | lx = (c*tx - s*ty)
69 | ly = (s*tx + c*ty)
70 |
71 | sumangle = 0.0
72 | for i in 1:length(vrx)-1
73 | x1 = vrx[i] - lx
74 | y1 = vry[i] - ly
75 | x2 = vrx[i+1] - lx
76 | y2 = vry[i+1] - ly
77 | d1 = hypot(x1,y1)
78 | d2 = hypot(x2,y2)
79 | theta1 = atan2(y1,x1)
80 | tty = (-sin(theta1)*x2 + cos(theta1)*y2)
81 |
82 | tmp = (x1*x2+y1*y2)/(d1*d2)
83 | if tmp >= 1.0 tmp = 1.0 end
84 |
85 | if tty >= 0.0
86 | sumangle += acos(tmp)
87 | else
88 | sumangle -= acos(tmp)
89 | end
90 | end
91 |
92 | if sumangle >= pi
93 | return false
94 | end
95 | end
96 |
97 | return true #OK
98 | end
99 |
100 |
101 | function main()
102 |
103 | ox = rand(3)*30.0 - 30.0/2.0
104 | oy = rand(3)*30.0 - 30.0/2.0
105 |
106 | kdtree = KDTree(hcat(ox, oy)')
107 |
108 | x = [10.0, 5.0]
109 | y = [10.0, 5.0]
110 | yaw = [deg2rad(10.0), deg2rad(0.0)]
111 |
112 | flag = check_collision(x, y, yaw, kdtree, ox, oy)
113 | if flag
114 | # println("OK")
115 | else
116 | # println("Collision")
117 | end
118 |
119 | plot(ox, oy, ".r")
120 | grid(true)
121 | axis("equal")
122 | show()
123 |
124 | end
125 |
126 |
127 | if length(PROGRAM_FILE)!=0 &&
128 | contains(@__FILE__, PROGRAM_FILE)
129 |
130 | @time main()
131 | end
132 |
133 |
134 | end #module
135 |
136 |
137 |
--------------------------------------------------------------------------------
/AutonomousParking/hybrid_a_star.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Atsushi SAKAI [atsushisakai@global.komatsu; Komatsu Ltd / MPC Lab]
5 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
6 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
7 | #
8 | # This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 | ###############
21 | # The paper describing the theory can be found here:
22 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017
23 | # X. Zhang, A. Liniger, A. Sakai and F. Borrelli; "Autonomous Parking using Optimization-Based Collision Avoidance"; Technical Report, 2018 [add URL]
24 | ###############
25 |
26 | ###############
27 | # Hybrid A star: Julia implementation of Hybrid A* algorithm
28 | ###############
29 |
30 | module hybrid_a_star
31 |
32 | using PyPlot
33 | using DataFrames
34 | using NearestNeighbors
35 | using DataStructures
36 |
37 | include("./reeds_shepp.jl")
38 | include("./a_star.jl")
39 | include("./collision_check.jl")
40 |
41 |
42 | const VEHICLE_RADIUS = 1.0 #[m]; radius of rear ball; 7.0
43 | const BUBBLE_DIST = 1.7 #[m]; distance to "forward bubble"; 7.0
44 |
45 | ##### Fast Comp Time values from Alex Liniger ######
46 | const OB_MAP_RESOLUTION = 0.1 #[m]; obstacle resolution
47 | const YAW_GRID_RESOLUTION = deg2rad(5.0) #[m]; 10.0 /// 5.0
48 | const N_STEER = 5.0 # number of steer command; 10.0 seems OK /// 5
49 | ## For Backwards Parking
50 | # const XY_GRID_RESOLUTION = 1. #[m];
51 | # const MOTION_RESOLUTION = 0.3 #[m];
52 | ## For Parallel Parking
53 | const XY_GRID_RESOLUTION = 0.3 #[m];
54 | const MOTION_RESOLUTION = 0.1 #[m];
55 | ###################################################
56 |
57 | const USE_HOLONOMIC_WITH_OBSTACLE_HEURISTIC = true
58 | const USE_NONHOLONOMIC_WITHOUT_OBSTACLE_HEURISTIC = false
59 |
60 | const SB_COST = 10.0 # switch back penalty cost
61 | const BACK_COST = 0.0 # backward penalty cost
62 | const STEER_CHANGE_COST = 10.0 # steer angle change penalty cost
63 | const STEER_COST = 0.0 # steer angle penalty cost
64 | const H_COST = 1. # Heuristic cost; higher -> heuristic; 1.0
65 |
66 | const WB = 2.7 #[m]; 7.0
67 | const MAX_STEER = 0.6#deg2rad(35.0) #[rad]
68 |
69 | type Node
70 | xind::Int64 #x index
71 | yind::Int64 #y index
72 | yawind::Int64 #yaw index
73 | direction::Bool # moving direction forword:true, backword:false
74 | x::Array{Float64} # x position [m]
75 | y::Array{Float64} # y position [m]
76 | yaw::Array{Float64} # yaw angle [rad]
77 | steer::Float64 # steer input
78 | cost::Float64 # cost
79 | pind::Int64 # parent index
80 | end
81 |
82 | type Config
83 | minx::Int64
84 | miny::Int64
85 | minyaw::Int64
86 | maxx::Int64
87 | maxy::Int64
88 | maxyaw::Int64
89 | xw::Int64
90 | yw::Int64
91 | yaww::Int64
92 | xyreso::Float64
93 | yawreso::Float64
94 | obminx::Int64
95 | obminy::Int64
96 | obmaxx::Int64
97 | obmaxy::Int64
98 | obxw::Int64
99 | obyw::Int64
100 | obreso::Float64
101 | end
102 |
103 |
104 | function calc_hybrid_astar_path(sx::Float64, sy::Float64, syaw::Float64,
105 | gx::Float64, gy::Float64, gyaw::Float64,
106 | ox::Array{Float64}, oy::Array{Float64},
107 | xyreso::Float64, yawreso::Float64,
108 | obreso::Float64)
109 | """
110 | Calc hybrid astar path
111 | sx: start x position [m]
112 | sy: start y position [m]
113 | gx: goal x position [m]
114 | gx: goal x position [m]
115 | ox: x position list of Obstacles [m]
116 | oy: y position list of Obstacles [m]
117 | xyreso: grid resolution [m]
118 | yawreso: yaw angle resolution [rad]
119 | """
120 |
121 | syaw, gyaw = pi_2_pi(syaw), pi_2_pi(gyaw)
122 |
123 | const c = calc_config(ox, oy, xyreso, yawreso, obreso)
124 | kdtree = KDTree(hcat(ox, oy)')
125 | obmap, gkdtree = calc_obstacle_map(ox, oy, c)
126 | nstart = Node(round(Int64,sx/xyreso), round(Int64,sy/xyreso), round(Int64, syaw/yawreso),true,[sx],[sy],[syaw],0.0,0.0, -1)
127 | ngoal = Node(round(Int64,gx/xyreso), round(Int64,gy/xyreso), round(Int64,gyaw/yawreso),true,[gx],[gy],[gyaw],0.0,0.0, -1)
128 |
129 | if USE_HOLONOMIC_WITH_OBSTACLE_HEURISTIC
130 | h_dp = calc_holonomic_with_obstacle_heuristic(ngoal, ox, oy, xyreso)
131 | else
132 | h_dp = Array{Float64}()
133 | end
134 | if USE_NONHOLONOMIC_WITHOUT_OBSTACLE_HEURISTIC
135 | h_rs = calc_nonholonomic_without_obstacle_heuristic(ngoal, c)
136 | else
137 | h_rs = Array{Float64}()
138 | end
139 |
140 | open, closed = Dict{Int64, Node}(), Dict{Int64, Node}()
141 | open[calc_index(nstart, c)] = nstart
142 | pq = PriorityQueue()
143 | enqueue!(pq, calc_index(nstart, c), calc_cost(nstart, h_rs, h_dp, ngoal, c))
144 |
145 | u, d = calc_motion_inputs()
146 | nmotion = length(u)
147 |
148 | while true
149 | if length(open) == 0
150 | println("Error: Cannot find path, No open set")
151 | return nothing, nothing, nothing
152 | end
153 |
154 | c_id = dequeue!(pq)
155 | current = open[c_id]
156 |
157 | isupdated, current = update_node_with_analystic_expantion(current, ngoal, obmap, c, kdtree, ox, oy)
158 | if isupdated
159 | closed[calc_index(ngoal, c)] = current
160 | break #goal
161 | end
162 |
163 | #move current node from open to closed
164 | delete!(open, c_id)
165 | closed[c_id] = current
166 |
167 | for i in 1:nmotion
168 | node = calc_next_node(current, c_id, u[i], d[i], c, gkdtree)
169 |
170 | if !verify_index(node, obmap, c, kdtree, ox, oy) continue end
171 |
172 | node_ind = calc_index(node, c)
173 |
174 | # If it is already in the closed set, skip it
175 | if haskey(closed, node_ind) continue end
176 |
177 | if !haskey(open, node_ind)
178 | open[node_ind] = node
179 | enqueue!(pq, calc_index(node, c), calc_cost(node, h_rs, h_dp, ngoal, c))
180 | end
181 | end
182 |
183 | end
184 |
185 | # println("final expand node:", length(open) + length(closed))
186 |
187 | rx, ry, ryaw = get_final_path(closed, ngoal, nstart, c)
188 |
189 | return rx, ry, ryaw
190 | end
191 |
192 |
193 | function update_node_with_analystic_expantion(current::Node,
194 | ngoal::Node,
195 | obmap::Array{Bool,2},
196 | c::Config,
197 | kdtree::NearestNeighbors.KDTree,
198 | ox::Array{Float64},
199 | oy::Array{Float64}
200 | )
201 |
202 | apath = analystic_expantion(current, ngoal, obmap, c, kdtree, ox, oy)
203 | if apath != nothing
204 | # println("Find path! with analystic_expantion")
205 | current.x = vcat(current.x, apath.x[2:end-1])
206 | current.y = vcat(current.y, apath.y[2:end-1])
207 | current.yaw = vcat(current.yaw, apath.yaw[2:end-1])
208 | current.cost += calc_rs_path_cost(apath)
209 | return true, current
210 | end
211 |
212 | return false, current #no update
213 | end
214 |
215 |
216 | function calc_rs_path_cost(rspath::hybrid_a_star.reeds_shepp.Path)
217 |
218 | cost = 0.0
219 | for l in rspath.lengths
220 | if l >= 0 # forward
221 | cost += l
222 | else # back
223 | cost += abs(l) * BACK_COST
224 | end
225 | end
226 |
227 | # swich back penalty
228 | for i in 1:length(rspath.lengths) - 1
229 | if rspath.lengths[i] * rspath.lengths[i+1] < 0.0 # switch back
230 | cost += SB_COST
231 | end
232 | end
233 |
234 | # steer penalyty
235 | for ctype in rspath.ctypes
236 | if ctype != "S" # curve
237 | cost += STEER_COST*abs(MAX_STEER)
238 | end
239 | end
240 |
241 | # ==steer change penalty
242 | # calc steer profile
243 | nctypes = length(rspath.ctypes)
244 | ulist = fill(0.0, nctypes)
245 | for i in 1:nctypes
246 | if rspath.ctypes[i] == "R"
247 | ulist[i] = - MAX_STEER
248 | elseif rspath.ctypes[i] == "L"
249 | ulist[i] = MAX_STEER
250 | end
251 | end
252 |
253 | for i in 1:length(rspath.ctypes) - 1
254 | cost += STEER_CHANGE_COST*abs(ulist[i+1] - ulist[i])
255 | end
256 |
257 | # println("RS cost is ", cost)
258 | return cost
259 | end
260 |
261 |
262 | function analystic_expantion(n::Node, ngoal::Node, obmap::Array{Bool,2}, c::Config,
263 | kdtree::NearestNeighbors.KDTree,
264 | ox::Array{Float64},
265 | oy::Array{Float64}
266 | )
267 |
268 | sx = n.x[end]
269 | sy = n.y[end]
270 | syaw = n.yaw[end]
271 |
272 | max_curvature = tan(MAX_STEER)/WB
273 | path = reeds_shepp.calc_shortest_path(sx, sy, syaw,
274 | ngoal.x[end], ngoal.y[end], ngoal.yaw[end],
275 | max_curvature, step_size=MOTION_RESOLUTION)
276 |
277 | if path == nothing
278 | return nothing
279 | end
280 |
281 | if !collision_check.check_collision(path.x, path.y, path.yaw, kdtree, ox, oy)
282 | return nothing
283 | end
284 |
285 | # println(paths)
286 | return path # find good path
287 | end
288 |
289 |
290 | function calc_motion_inputs()
291 |
292 | up = [i for i in MAX_STEER/N_STEER:MAX_STEER/N_STEER:MAX_STEER]
293 | u = vcat([0.0], [i for i in up], [-i for i in up])
294 | d = vcat([1.0 for i in 1:length(u)], [-1.0 for i in 1:length(u)])
295 | u = vcat(u,u)
296 |
297 | return u, d
298 | end
299 |
300 |
301 | function verify_index(node::Node, obmap::Array{Bool,2}, c::Config,
302 | kdtree::NearestNeighbors.KDTree,
303 | ox::Array{Float64},
304 | oy::Array{Float64}
305 | )::Bool
306 |
307 | # overflow map
308 | if (node.xind - c.minx) >= c.xw
309 | return false
310 | elseif (node.xind - c.minx) <= 0
311 | return false
312 | end
313 | if (node.yind - c.miny) >= c.yw
314 | return false
315 | elseif (node.yind - c.miny) <= 0
316 | return false
317 | end
318 |
319 | # check collisiton
320 | # rectangle check
321 | if !collision_check.check_collision(node.x, node.y,node.yaw, kdtree, ox, oy)
322 | return false
323 | end
324 |
325 | return true #index is ok"
326 | end
327 |
328 |
329 | function pi_2_pi(iangle::Float64)
330 | while (iangle > pi)
331 | iangle -= 2.0 * pi
332 | end
333 | while (iangle < -pi)
334 | iangle += 2.0 * pi
335 | end
336 |
337 | return iangle
338 | end
339 |
340 |
341 | function calc_next_node(current::Node, c_id::Int64,
342 | u::Float64, d::Float64,
343 | c::Config,
344 | gkdtree::NearestNeighbors.KDTree)
345 |
346 |
347 | arc_l = XY_GRID_RESOLUTION
348 |
349 | nlist = round(Int64, arc_l/MOTION_RESOLUTION)+1
350 | xlist = fill(0.0, nlist)
351 | ylist = fill(0.0, nlist)
352 | yawlist = fill(0.0, nlist)
353 | xlist[1] = current.x[end] + d * MOTION_RESOLUTION*cos(current.yaw[end])
354 | ylist[1] = current.y[end] + d * MOTION_RESOLUTION*sin(current.yaw[end])
355 | yawlist[1] = pi_2_pi(current.yaw[end] + d*MOTION_RESOLUTION/WB * tan(u))
356 |
357 |
358 | for i in 1:(nlist - 1)
359 | xlist[i+1] = xlist[i] + d * MOTION_RESOLUTION*cos(yawlist[i])
360 | ylist[i+1] = ylist[i] + d * MOTION_RESOLUTION*sin(yawlist[i])
361 | yawlist[i+1] = pi_2_pi(yawlist[i] + d*MOTION_RESOLUTION/WB * tan(u))
362 | end
363 |
364 | xind = round(Int64, xlist[end]/c.xyreso)
365 | yind = round(Int64, ylist[end]/c.xyreso)
366 | yawind = round(Int64, yawlist[end]/c.yawreso)
367 |
368 | addedcost = 0.0
369 | if d > 0
370 | direction = true
371 | addedcost += abs(arc_l)
372 | else
373 | direction = false
374 | addedcost += abs(arc_l) * BACK_COST
375 | end
376 |
377 | # swich back penalty
378 | if direction != current.direction # switch back penalty
379 | addedcost += SB_COST
380 | end
381 |
382 | # steer penalyty
383 | addedcost += STEER_COST*abs(u)
384 |
385 | # steer change penalty
386 | addedcost += STEER_CHANGE_COST*abs(current.steer - u)
387 |
388 | cost = current.cost + addedcost
389 | node = Node(xind, yind, yawind, direction, xlist, ylist, yawlist, u, cost, c_id)
390 | # println(node)
391 |
392 | return node
393 | end
394 |
395 |
396 | function is_same_grid(node1::Node,node2::Node)
397 |
398 | if node1.xind != node2.xind
399 | return false
400 | end
401 | if node1.yind != node2.yind
402 | return false
403 | end
404 | if node1.yawind != node2.yawind
405 | return false
406 | end
407 |
408 | return true
409 |
410 | end
411 |
412 |
413 | function calc_index(node::Node, c::Config)
414 | ind = (node.yawind - c.minyaw)*c.xw*c.yw+(node.yind - c.miny)*c.xw + (node.xind - c.minx)
415 | if ind <= 0
416 | println("Error(calc_index):", ind)
417 | end
418 | return ind
419 | end
420 |
421 |
422 | function calc_holonomic_with_obstacle_heuristic(gnode::Node, ox::Array{Float64}, oy::Array{Float64}, xyreso::Float64)
423 | # println("Calc distance policy")
424 | h_dp = a_star.calc_dist_policy(gnode.x[end], gnode.y[end], ox, oy, xyreso, VEHICLE_RADIUS)
425 | return h_dp
426 | end
427 |
428 |
429 | function calc_nonholonomic_without_obstacle_heuristic(ngoal::Node,
430 | c::Config)
431 |
432 | h_rs = fill(0.0, (c.xw,c.yw,c.yaww))
433 | max_curvature = tan(MAX_STEER)/WB
434 |
435 | for ix in 1:c.xw
436 | for iy in 1:c.yw
437 | for iyaw in 1:c.yaww
438 | sx = (ix + c.minx)*c.xyreso
439 | sy = (iy + c.miny)*c.xyreso
440 | syaw = pi_2_pi((iyaw + c.minyaw)*c.yawreso)
441 | L = reeds_shepp.calc_shortest_path_length(sx, sy, syaw,
442 | ngoal.x[end], ngoal.y[end], ngoal.yaw[end],
443 | max_curvature, step_size=MOTION_RESOLUTION)
444 | h_rs[ix, iy, iyaw] = L
445 | end
446 | end
447 | end
448 |
449 | # println(h_rs[:,:,1])
450 |
451 | return h_rs
452 | end
453 |
454 |
455 | function calc_config(ox::Array{Float64}, oy::Array{Float64}, xyreso::Float64, yawreso::Float64, obreso::Float64)
456 | minx = round(Int64, minimum(ox)/xyreso)
457 | miny = round(Int64, minimum(oy)/xyreso)
458 | maxx = round(Int64, maximum(ox)/xyreso)
459 | maxy = round(Int64, maximum(oy)/xyreso)
460 | obminx = round(Int64, minimum(ox)/obreso)
461 | obminy = round(Int64, minimum(oy)/obreso)
462 | obmaxx = round(Int64, maximum(ox)/obreso)
463 | obmaxy = round(Int64, maximum(oy)/obreso)
464 |
465 | xw = round(Int64,(maxx - minx))
466 | yw = round(Int64,(maxy - miny))
467 | obxw = round(Int64,(obmaxx - obminx))
468 | obyw = round(Int64,(obmaxy - obminy))
469 |
470 | minyaw = round(Int64, - pi/yawreso) - 1
471 | maxyaw = round(Int64, pi/yawreso)
472 | yaww = round(Int64,(maxyaw - minyaw))
473 |
474 | config = Config(minx, miny, minyaw, maxx, maxy, maxyaw, xw, yw, yaww,
475 | xyreso, yawreso, obminx, obminy, obmaxx, obmaxy, obxw, obyw, obreso)
476 |
477 | return config
478 | end
479 |
480 |
481 | function calc_obstacle_map(ox::Array{Float64},
482 | oy::Array{Float64},
483 | c::Config)
484 |
485 | ox = [iox/c.obreso for iox in ox]
486 | oy = [ioy/c.obreso for ioy in oy]
487 |
488 | obmap = fill(false, (c.obxw, c.obyw))
489 |
490 | gkdtree = KDTree(hcat(ox, oy)')
491 | for ix in 1:c.obxw
492 | x = ix + c.obminx
493 | for iy in 1:c.obyw
494 | y = iy + c.obminy
495 | idxs, onedist = knn(gkdtree, [x, y] , 1)
496 | if onedist[1] <= VEHICLE_RADIUS/c.obreso
497 | obmap[ix,iy] = true
498 | end
499 | end
500 | end
501 |
502 | return obmap, gkdtree
503 | end
504 |
505 |
506 | function get_final_path(closed::Dict{Int64, Node},
507 | ngoal::Node,
508 | nstart::Node,
509 | c::Config)
510 |
511 | rx, ry, ryaw = Array{Float64}(ngoal.x),Array{Float64}(ngoal.y),Array{Float64}(ngoal.yaw)
512 | nid = calc_index(ngoal, c)
513 | # println("Fianl cost is ", closed[nid].cost)
514 | while true
515 | n = closed[nid]
516 | rx = vcat(rx, reverse(n.x))
517 | ry = vcat(ry, reverse(n.y))
518 | ryaw = vcat(ryaw, reverse(n.yaw))
519 | nid = n.pind
520 | if is_same_grid(n, nstart)
521 | # println("done")
522 | break
523 | end
524 | end
525 |
526 | rx = reverse(rx)
527 | ry = reverse(ry)
528 | ryaw = reverse(ryaw)
529 |
530 | dist = sum([sqrt(idx^2+idy^2) for (idx,idy) in zip(diff(rx), diff(ry))])
531 | # println("Fianl path distance is ", dist)
532 |
533 | return rx, ry, ryaw
534 | end
535 |
536 |
537 | function calc_cost(n::Node, h_rs::Array{Float64}, h_dp::Array{Float64}, ngoal::Node, c::Config)
538 |
539 | if length(h_rs) > 1 && length(h_dp) > 1 # Both heuristic cost are activated
540 | c_h_dp = h_dp[n.xind - c.minx, n.yind - c.miny]
541 | c_h_rs = h_rs[n.xind - c.minx, n.yind - c.miny, n.yawind - c.minyaw]
542 | return (n.cost + H_COST*max(c_h_dp, c_h_rs))
543 | elseif length(h_dp) > 1 # Distance policy heuristics is activated
544 | return (n.cost + H_COST*h_dp[n.xind - c.minx, n.yind - c.miny])
545 | elseif length(h_rs) > 1 # Reed Sheep path heuristics is activated
546 | return (n.cost + H_COST*h_rs[n.xind - c.minx, n.yind - c.miny, n.yawind - c.minyaw])
547 | end
548 |
549 | return (n.cost + H_COST*calc_euclid_dist(n.x[end] - ngoal.x[end],n.y[end] - ngoal.y[end], n.yaw[end] - ngoal.yaw[end]))
550 | end
551 |
552 |
553 | function calc_euclid_dist(x::Float64, y::Float64, yaw::Float64)
554 | """
555 | Heuristic cost function
556 | """
557 | if yaw >= pi
558 | yaw -= pi
559 | else yaw <= -pi
560 | yaw += pi
561 | end
562 | return sqrt(x^2+y^2+yaw^2)
563 | end
564 |
565 |
566 | function main()
567 | # println(PROGRAM_FILE," start!!")
568 |
569 | sx = 20.0 # [m]
570 | sy = 20.0 # [m]
571 | syaw = deg2rad(90.0)
572 | gx = 180.0 # [m]
573 | gy = 100.0 # [m]
574 | gyaw = deg2rad(-90.0)
575 |
576 | ox = Float64[]
577 | oy = Float64[]
578 |
579 | for i in 0:200
580 | push!(ox, Float64(i))
581 | push!(oy, 0.0)
582 | end
583 | for i in 0:120
584 | push!(ox, 200.0)
585 | push!(oy, Float64(i))
586 | end
587 | for i in 0:200
588 | push!(ox, Float64(i))
589 | push!(oy, 120.0)
590 | end
591 | for i in 0:120
592 | push!(ox, 0.0)
593 | push!(oy, Float64(i))
594 | end
595 | for i in 0:80
596 | push!(ox, 40.0)
597 | push!(oy, Float64(i))
598 | end
599 | for i in 0:80
600 | push!(ox, 80.0)
601 | push!(oy, 120.0-Float64(i))
602 | end
603 | for i in 0:40
604 | push!(ox, 120.0)
605 | push!(oy, 120.0-Float64(i))
606 | push!(ox, 120.0)
607 | push!(oy, Float64(i))
608 | end
609 | for i in 0:80
610 | push!(ox, 160.0)
611 | push!(oy, 120.0-Float64(i))
612 | end
613 |
614 | @time rx, ry, ryaw = calc_hybrid_astar_path(sx, sy, syaw, gx, gy, gyaw, ox, oy, XY_GRID_RESOLUTION, YAW_GRID_RESOLUTION, OB_MAP_RESOLUTION)
615 |
616 | plot(ox, oy, ".k",label="obstacles")
617 | if rx != nothing
618 | plot(rx, ry, "-r",label="Hybrid A* path")
619 | end
620 |
621 | legend()
622 | grid(true)
623 | axis("equal")
624 |
625 | show()
626 |
627 | # println(PROGRAM_FILE," Done!!")
628 | end
629 |
630 |
631 | if length(PROGRAM_FILE)!=0 &&
632 | contains(@__FILE__, PROGRAM_FILE)
633 |
634 | main()
635 | end
636 |
637 |
638 | end #module
639 |
640 |
--------------------------------------------------------------------------------
/AutonomousParking/main.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # Main file: computes Collision-Free and Minimum-Penetration trajectories for parking
26 | ###############
27 |
28 | # function defined in setup.jl
29 | clear()
30 | using PyCall
31 | close("all")
32 |
33 | ##################################################
34 |
35 | # choose one of two predefined scenarios
36 | scenario = "parallel"
37 | scenario = "backwards"
38 |
39 | # fixed or variable time 1/0
40 | fixTime = 0 # default: 0 (variable time steps)
41 |
42 | #### problem parameters ####
43 | TsPF = 0.05
44 | if scenario == "backwards"
45 | # nominal sampling time
46 | sampleN = 3
47 | if fixTime == 1
48 | Ts = 0.55/3*sampleN # 0.55/3 must be compatible with motion resolution of Hybrid A* algorithm
49 | else
50 | Ts = 0.6/3*sampleN # 0.6/3 must be compatible with motion resolution of Hybrid A* algorithm
51 | end
52 | else
53 | sampleN = 3
54 | if fixTime == 1
55 | Ts = 0.95/3*sampleN # 0.95/3 must be compatible with motion resolution of Hybrid A* algorithm
56 | else
57 | Ts = 0.9/3*sampleN # 0.9/3 must be compatible with motion resolution of Hybrid A* algorithm
58 | end
59 | end
60 |
61 |
62 | #wheelbase
63 | L = 2.7
64 |
65 | # step length of Hybrid A*",
66 | motionStep = 0.1
67 |
68 |
69 | # "nominal" shape of ego/controlled car, ego object is later rotated around the car center
70 | # center of rear wheel axis is reference point
71 | # size of car is: (x_upper + x_lower) + (y_upper + y_lower)
72 | # [x_upper, y_upper, -x_lower, -y_lower ]
73 | ego = [ 3.7 , 1 , 1 , 1 ]
74 |
75 |
76 | if scenario == "backwards"
77 | println("Backwards Parking")
78 | elseif scenario == "parallel"
79 | println("Parallel Parking")
80 | else
81 | println("ERROR: please specify parking scenario")
82 | end
83 |
84 |
85 | if scenario == "backwards"
86 | ##### define obstacles; for simplicity, only polyhedral obstacles are supported at this point
87 | # obstacles are defined by vertices, which are assumed to be enumerated in clock-wise direction
88 | # [ [[obst1_x1;obst1_y1],[obst1_x2;obst1_y2],[obst1_x3;obst1_y4],...,[obst1_x1;obst1_y1]] , [[obst2_x1;obst2_y1],[obst2_x2;obst2_y2],[obst2_x3;obst2_y4],...,[obst2_x1;obst2_y1]] , ... ]
89 |
90 | # obstacles for plotting
91 | nObPlot = 3 # number of obstacles
92 | vObPlot = [4 4 4] # number of vertices of each obstacle, vector of dimenion nOb
93 | # obstacles for plotting
94 | lObPlot = [ [ [-20;5], [-1.3;5], [-1.3;-5], [-20;-5], [-20;5] ] ,
95 | [ [1.3;5], [20;5], [20;-5], [1.3;-5], [1.3;5] ] ,
96 | [ [-20;15], [20;15], [20;11], [-20,11], [-20;15] ] ] #vetices given in CLOCK-WISE direction
97 |
98 | # obstacles for optimization problem
99 | nOb = 3 # number of obstacles
100 | vOb = [3 3 2] # number of vertices of each obstacle, vector of dimenion nOb
101 | vObMPC = vOb-1
102 | lOb = [ [ [-20;5], [-1.3;5], [-1.3;-5]] ,
103 | [ [1.3;-5] , [1.3;5] , [20;5] ] ,
104 | [ [20;11], [-20;11]] ] #vetices given in CLOCK-WISE direction
105 |
106 |
107 | # final state
108 | xF = [ 0 1.3 pi/2 0]
109 |
110 |
111 | # build obstacles for Hybrid A* algorithm
112 | ox = Float64[]
113 | oy = Float64[]
114 | # obstacle 1
115 | for i = -12:0.1:-1.3
116 | push!(ox, Float64(i))
117 | push!(oy, 5.0)
118 | end
119 | for i in -2:5
120 | push!(ox, -1.3)
121 | push!(oy, Float64(i))
122 | end
123 | # obstacle 2
124 | for i in -2:5
125 | push!(ox, 1.3)
126 | push!(oy, Float64(i))
127 | end
128 | for i = 1.3:0.1:12
129 | push!(ox, Float64(i))
130 | push!(oy, 5.0)
131 | end
132 | # obstacle 3
133 | for i = -12:12
134 | push!(ox, Float64(i))
135 | push!(oy, 11.0)
136 | end
137 |
138 | elseif scenario == "parallel"
139 | ##### define obstacles; for simplicity, only polyhedral obstacles are supported at this point
140 | # obstacles are defined by vertices, which are assumed to be enumerated in clock-wise direction
141 | # define obstacles for plotting
142 | nObPlot = 4 # number of obstacles
143 | vObPlot = [4 4 4 4] # number of vertices of each obstacle, vector of dimenion nOb
144 | # [ [[obst1_x1;obst1_y1],[obst1_x2;obst1_y2],[obst1_x3;obst1_y4],...,[obst1_x1;obst1_y1]] , [[obst2_x1;obst2_y1],[obst2_x2;obst2_y2],[obst2_x3;obst2_y4],...,[obst2_x1;obst2_y1]] , ... ]
145 | lObPlot = [ [ [-15;5], [-3;5], [-3;0], [-15;0], [-15;5] ] ,
146 | [ [3;5], [15;5], [15;0], [3;0], [3;5] ] ,
147 | [ [-3;0], [-3;2.5], [3;2.5], [3,0], [-3;0] ] ,
148 | [ [-15;15], [15;15], [15;11], [-15,11], [-15;15] ] ]
149 |
150 | # define obstacles for optimization problem
151 | nOb = 4 # number of obstacles
152 | vOb = [3 3 2 2] # number of vertices of each obstacle, vector of dimenion nOb
153 | vObMPC = vOb-1
154 | lOb = [ [ [-20;5], [-3.;5], [-3.;0]] ,
155 | [ [3.;0] , [3.;5] , [20;5] ] ,
156 | [ [-3;2.5], [ 3;2.5]] ,
157 | [ [ 20;11 ], [-20;11]] ] #vetices given in CLOCK-WISE direction
158 |
159 | # [ [ 3;11 ], [-3;11]]
160 |
161 | # final state
162 | xF = [-L/2 4 0 0]
163 |
164 | # range of initial points
165 | x0X_range = -9 : 1 : 9 # 19 points
166 | x0X_range = -10 : 1 : 10 # 21 points
167 | x0Y_range = 6.5 : 1.5 : 9.5 # 3
168 | x0Y_range = 6.5 : 1 : 9.5 # 3
169 |
170 |
171 |
172 | ox = Float64[]
173 | oy = Float64[]
174 |
175 | # obstacles for Hybrid A* algorithms
176 | # obstacle 1
177 | for i in -12:0.1: -3.
178 | push!(ox,Float64(i))
179 | push!(oy,5.0)
180 | end
181 |
182 | for i in -2 : 5
183 | push!(ox,-3.0)
184 | push!(oy,Float64(i))
185 | end
186 | # obstacle 2
187 | for i in -3 : 3
188 | push!(ox,Float64(i))
189 | push!(oy,2.5)
190 | end
191 | # obstacle 3
192 | for i in -2 : 5
193 | push!(ox,3.0)
194 | push!(oy,Float64(i))
195 | end
196 |
197 | for i in 3 :0.1: 12
198 | push!(ox,Float64(i))
199 | push!(oy,5.0)
200 | end
201 | # obstacle 4
202 | for i in -12 : 12
203 | push!(ox,Float64(i))
204 | push!(oy,11.5) # 11.0
205 | end
206 | end
207 |
208 |
209 | # [x_lower, x_upper, -y_lower, y_upper ]
210 | XYbounds = [ -15 , 15 , 1 , 10 ] # constraints are on (X,Y)
211 |
212 | # set initial state
213 | x0 = [-6 9.5 0.0 0.0]
214 |
215 | # call Hybrid A*
216 | tic()
217 | rx, ry, ryaw = hybrid_a_star.calc_hybrid_astar_path(x0[1], x0[2], x0[3], xF[1], xF[2], xF[3], ox, oy, hybrid_a_star.XY_GRID_RESOLUTION, hybrid_a_star.YAW_GRID_RESOLUTION, hybrid_a_star.OB_MAP_RESOLUTION)
218 | timeHybAstar = toq();
219 |
220 |
221 | ### extract (smooth) velocity profile from Hybrid A* solution ####
222 | rv = zeros(length(rx),1)
223 | for i=1:length(rx)
224 | if i < length(rx)
225 | rv[i] = (rx[i+1] - rx[i])/(Ts/sampleN)*cos(ryaw[i]) + (ry[i+1]-ry[i])/(Ts/sampleN)*sin(ryaw[i])
226 | else
227 | rv[i] = 0
228 | end
229 | end
230 | ### Smoothen velocity 0.3 m/s^2 max acceleration ###
231 | v,a = veloSmooth(rv,0.3,Ts/sampleN)
232 | ### compute steering angle ###
233 | delta = atan(diff(ryaw)*L/motionStep.*sign(v[1:end-1]));
234 |
235 |
236 | ### Down-sample for Warmstart ##########
237 | rx_sampled = rx[1:sampleN:end] # : 5
238 | ry_sampled = ry[1:sampleN:end]
239 | ryaw_sampled = ryaw[1:sampleN:end]
240 | rv_sampled = rv[1:sampleN:end]
241 | v_sampled = v[1:sampleN:end]
242 |
243 | a_sampled = a[1:sampleN:end]
244 | delta_sampled = delta[1:sampleN:end]
245 |
246 | ## initialize warm start solution
247 | xWS = [rx_sampled ry_sampled ryaw_sampled v_sampled]
248 | uWS = [delta_sampled a_sampled]
249 |
250 | ### prepare for OBCA ###
251 | N = length(rx_sampled)-1
252 | AOb, bOb = obstHrep(nOb, vOb, lOb)
253 |
254 |
255 | ###### park using Distance Approach ######
256 | println("Parking using Distance Approach (A* warm start)")
257 | # believe it's correct; in "ParkingDist1.jl"
258 | xp20, up20, scaleTime20, exitflag20, time20, lp20, np20 = ParkingDist(x0,xF,N,Ts,L,ego,XYbounds,nOb,vObMPC,AOb,bOb,rx_sampled,ry_sampled,ryaw_sampled,fixTime,xWS,uWS)
259 | if exitflag20==1
260 | println(" --> Distance: SUCCESSFUL.")
261 | plotTraj(xp20',up20',length(rx_sampled)-1,ego,L,nObPlot,vObPlot,lObPlot,"Distance Approach (Collision Avoidance )",2)
262 | else
263 | println(" --> WARNING: Problem could not be solved.")
264 | end
265 |
266 |
267 | ###### park using Signed Distance Approach ######
268 | println("Parking using Signed Distance Approach (A* warm start)")
269 | xp10, up10, scaleTime10, exitflag10, time10, lp10, np10 = ParkingSignedDist(x0,xF,N,Ts,L,ego,XYbounds,nOb,vObMPC,AOb,bOb,rx_sampled,ry_sampled,ryaw_sampled,fixTime,xWS,uWS)
270 | if exitflag10==1
271 | println(" --> Signed Distance: SUCCESSFUL.")
272 | plotTraj(xp10',up10',length(rx_sampled)-1,ego,L,nObPlot,vObPlot,lObPlot,"Signed Distance Approach (Min. Penetration)",1)
273 |
274 | else
275 | println(" --> WARNING: Problem could not be solved.")
276 | end
277 |
278 |
279 |
280 | println("********************* summary *********************")
281 | println(" Time Hybrid A*: ", timeHybAstar, " s")
282 | println(" Time Distance approach: ", time20, " s")
283 | println(" Time Signed Distance approach: ", time10, " s")
284 |
285 | println("********************* DONE *********************")
286 |
287 |
288 |
289 |
--------------------------------------------------------------------------------
/AutonomousParking/obstHrep.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # Function computes H-representation for obstacles given their vertices
26 | # it is assumed that the vertices are given in CLOCK-WISE, and that the first vertex is repeated at the end of the vertex list
27 | ###############
28 |
29 |
30 |
31 | function obstHrep(nOb, vOb, lOb)
32 |
33 | # do simple checks
34 | if nOb != length(lOb)
35 | println("ERROR in number of obstacles")
36 | end
37 |
38 | # these matrices contain the H-rep
39 | A_all = zeros(sum(vOb)-nOb,2)
40 | b_all = zeros(sum(vOb)-nOb,1)
41 |
42 | # counter for lazy people
43 | lazyCounter = 1;
44 |
45 | for i = 1 : nOb # building H-rep
46 | A_i = zeros(vOb[i]-1,2)
47 | b_i = zeros(vOb[i]-1,1)
48 |
49 | # take two subsequent vertices, and compute hyperplane
50 | for j = 1 : vOb[i]-1
51 |
52 | # extract two vertices
53 | v1 = lOb[i][j] # vertex 1
54 | v2 = lOb[i][j+1] # vertex 2
55 |
56 | # find hyperplane passing through v1 and v2
57 | if v1[1] == v2[1] # perpendicular hyperplane, not captured by general formula
58 | if v2[2] < v1[2] # line goes "down"
59 | A_tmp = [1 0]
60 | b_tmp = v1[1]
61 | else
62 | A_tmp = [-1 0]
63 | b_tmp = -v1[1]
64 | end
65 | elseif v1[2] == v2[2] # horizontal hyperplane, captured by general formula but included for numerical stability
66 | if v1[1] < v2[1]
67 | A_tmp = [0 1]
68 | b_tmp = v1[2]
69 | else
70 | A_tmp = [0 -1]
71 | b_tmp = -v1[2]
72 | end
73 | else # general formula for non-horizontal and non-vertical hyperplanes
74 | ab = [v1[1] 1 ; v2[1] 1] \ [v1[2] ; v2[2]]
75 | a = ab[1]
76 | b = ab[2]
77 |
78 | if v1[1] < v2[1] # v1 --> v2 (line moves right)
79 | A_tmp = [-a 1]
80 | b_tmp = b
81 | else # v2 <-- v1 (line moves left)
82 | A_tmp = [a -1]
83 | b_tmp = -b
84 |
85 | end
86 | end
87 | # store vertices
88 | A_i[j,:] = A_tmp
89 | b_i[j] = b_tmp
90 | end
91 |
92 | # store everything
93 | A_all[lazyCounter : lazyCounter+vOb[i]-2,:] = A_i
94 | b_all[lazyCounter : lazyCounter+vOb[i]-2] = b_i
95 |
96 | # update counter
97 | lazyCounter = lazyCounter + vOb[i]-1
98 | end
99 |
100 | return A_all, b_all
101 |
102 | end
103 |
--------------------------------------------------------------------------------
/AutonomousParking/plotTraj.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # function plots trajectory
26 | ###############
27 |
28 |
29 | function plotTraj(xp,up,N,ego,L,nOb,vOb,lOb,disp_title,plotNumb)
30 |
31 | W_ev = ego[2]+ego[4]
32 | L_ev = ego[1]+ego[3]
33 |
34 | up = [up ; zeros(1,2)] # final position no input
35 |
36 | w = W_ev/2;
37 | offset = L_ev/2 - ego[3]
38 |
39 | # initial state
40 | x0_s = xp[1,:]
41 | Rot0 = [cos(x0_s[3]) -sin(x0_s[3]); sin(x0_s[3]) cos(x0_s[3])]
42 | x0 = [x0_s[1]; x0_s[2]]
43 | centerCar0 = x0 + Rot0*[offset;0]
44 |
45 | # end state
46 | xF_s = xp[end,:]
47 | RotF = [cos(xF_s[3]) -sin(xF_s[3]); sin(xF_s[3]) cos(xF_s[3])]
48 | xF = [xF_s[1]; xF_s[2]]
49 | centerCarF = xF + RotF*[offset;0]
50 |
51 | for i = 1:1:N+1
52 |
53 | figure(plotNumb)
54 | plot(xp[1:i,1],xp[1:i,2],"b") # plot trajectory so far
55 | title(disp_title)
56 | hold(1)
57 |
58 | # plot trajectory
59 | for j = 1 : nOb
60 | for k = 1 : vOb[j]
61 | plot([lOb[j][k][1],lOb[j][k+1][1]] , [lOb[j][k][2],lOb[j][k+1][2]] ,"k")
62 | end
63 | end
64 |
65 | Rot = [cos(xp[i,3]) -sin(xp[i,3]);sin(xp[i,3]) cos(xp[i,3])]
66 |
67 | x_cur = [xp[i,1];
68 | xp[i,2]]
69 |
70 | centerCar = x_cur + Rot*[offset;0]
71 |
72 | carBox(centerCar,xp[i,3],W_ev/2,L_ev/2)
73 | carBox(x_cur + (Rot*[L;w-0.15]), xp[i,3] + up[i,1],0.15,0.3)
74 | carBox(x_cur + (Rot*[L;-w+0.15]),xp[i,3] + up[i,1],0.15,0.3)
75 | carBox(x_cur + (Rot*[0; w-0.15]) ,xp[i,3],0.15,0.3)
76 | carBox(x_cur + (Rot*[0;-w+0.15]) ,xp[i,3],0.15,0.3)
77 |
78 | # plot start position
79 | plot(x0[1],x0[2],"ob")
80 | carBox(centerCar0,x0_s[3],W_ev/2,L_ev/2)
81 | carBox(x0 + (Rot0*[L;w-0.15]) ,x0_s[3],0.15,0.3)
82 | carBox(x0 + (Rot0*[L;-w+0.15]) ,x0_s[3],0.15,0.3)
83 | carBox(x0 + (Rot0*[0; w-0.15]) ,x0_s[3], 0.15,0.3)
84 | carBox(x0 + (Rot0*[0;-w+0.15]) ,x0_s[3], 0.15,0.3)
85 |
86 | # plot end position
87 | carBox_dashed(centerCarF,xF_s[3],W_ev/2,L_ev/2)
88 | carBox_dashed(xF + (RotF*[L;w-0.15]) ,xF_s[3],0.15,0.3)
89 | carBox_dashed(xF + (RotF*[L;-w+0.15]) ,xF_s[3],0.15,0.3)
90 | carBox_dashed(xF + (RotF*[0; w-0.15]) ,xF_s[3], 0.15,0.3)
91 | carBox_dashed(xF + (RotF*[0;-w+0.15]) ,xF_s[3], 0.15,0.3)
92 | if i == N+1
93 | plot(xF[1],xF[2],"ob")
94 | end
95 |
96 | axis("equal")
97 |
98 | hold(0)
99 |
100 | sleep(0.05)
101 | end
102 | end
103 |
104 | # plot cars
105 | function carBox(x0,phi,w,l)
106 | car1 = x0[1:2] + [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
107 | car2 = x0[1:2] + [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
108 | car3 = x0[1:2] - [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
109 | car4 = x0[1:2] - [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
110 | plot([car1[1],car2[1],car4[1],car3[1],car1[1]],[car1[2],car2[2],car4[2],car3[2],car1[2]],"k")
111 | end
112 |
113 | # plot cars
114 | function carBox_dashed(x0,phi,w,l)
115 | car1 = x0[1:2] + [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
116 | car2 = x0[1:2] + [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
117 | car3 = x0[1:2] - [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
118 | car4 = x0[1:2] - [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
119 | plot([car1[1],car2[1],car4[1],car3[1],car1[1]],[car1[2],car2[2],car4[2],car3[2],car1[2]],":k")
120 | end
121 |
--------------------------------------------------------------------------------
/AutonomousParking/reeds_shepp.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Atsushi SAKAI [atsushisakai@global.komatsu; Komatsu Ltd / MPC Lab]
5 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
6 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
7 | #
8 | # This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 | ###############
21 | # The paper describing the theory can be found here:
22 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017
23 | # X. Zhang, A. Liniger, A. Sakai and F. Borrelli; "Autonomous Parking using Optimization-Based Collision Avoidance"; Technical Report, 2018 [add URL]
24 | ###############
25 |
26 | ###############
27 | # Reeds Shepp path planner
28 | ###############
29 |
30 |
31 | module reeds_shepp
32 |
33 | using PyPlot
34 |
35 | const STEP_SIZE = 0.1
36 |
37 | type Path
38 | lengths::Array{Float64} #lengths of each part of the path +: forward, -: backward
39 | ctypes::Array{String} # type of each part of the path
40 | L::Float64 # total path length
41 | x::Array{Float64} # final x positions [m]
42 | y::Array{Float64} # final y positions [m]
43 | yaw::Array{Float64} # final yaw angles [rad]
44 | directions::Array{Int8} # forward:1, backward:-1
45 | end
46 |
47 | function pi_2_pi(iangle::Float64)::Float64
48 | while (iangle > pi)
49 | iangle -= 2.0 * pi
50 | end
51 | while (iangle < -pi)
52 | iangle += 2.0 * pi
53 | end
54 |
55 | return iangle
56 | end
57 |
58 |
59 | function calc_shortest_path(sx::Float64, sy::Float64, syaw::Float64,
60 | gx::Float64, gy::Float64, gyaw::Float64,
61 | maxc::Float64;
62 | step_size::Float64 = STEP_SIZE)
63 | # println("Find Shortest Path")
64 | paths = calc_paths(sx,sy,syaw,gx,gy,gyaw,maxc,step_size=step_size)
65 |
66 | minL = Inf
67 | best_path_index = -1
68 | for i in 1:length(paths)
69 | if paths[i].L <= minL
70 | minL = paths[i].L
71 | best_path_index = i
72 | end
73 | end
74 |
75 | return paths[best_path_index]
76 | end
77 |
78 |
79 | function calc_shortest_path_length(sx::Float64, sy::Float64, syaw::Float64,
80 | gx::Float64, gy::Float64, gyaw::Float64,
81 | maxc::Float64;
82 | step_size::Float64 = STEP_SIZE)
83 | q0 = [sx, sy, syaw]
84 | q1 = [gx, gy, gyaw]
85 | paths = generate_path(q0, q1, maxc)
86 |
87 | minL = Inf
88 | for i in 1:length(paths)
89 | L = paths[i].L/maxc
90 | if L <= minL
91 | minL = L
92 | end
93 | end
94 |
95 | return minL
96 | end
97 |
98 |
99 | function calc_paths(sx::Float64, sy::Float64, syaw::Float64,
100 | gx::Float64, gy::Float64, gyaw::Float64,
101 | maxc::Float64; step_size::Float64 = STEP_SIZE)::Array{Path}
102 | q0 = [sx, sy, syaw]
103 | q1 = [gx, gy, gyaw]
104 |
105 | paths = generate_path(q0, q1, maxc)
106 | for path in paths
107 | x, y, yaw, directions = generate_local_course(path.L, path.lengths, path.ctypes, maxc, step_size*maxc)
108 |
109 | # convert global coordinate
110 | path.x = [cos(-q0[3]) * ix + sin(-q0[3]) * iy + q0[1] for (ix, iy) in zip(x, y)]
111 | path.y = [-sin(-q0[3]) * ix + cos(-q0[3]) * iy + q0[2] for (ix, iy) in zip(x, y)]
112 | path.yaw = pi_2_pi.([iyaw + q0[3] for iyaw in yaw])
113 | path.directions = directions
114 | path.lengths = [l/maxc for l in path.lengths]
115 | path.L = path.L/maxc
116 |
117 | end
118 |
119 | return paths
120 | end
121 |
122 |
123 | function get_label(path::Path)
124 | label =""
125 |
126 | for (m,l) in zip(path.ctypes, path.lengths)
127 | label = string(label, m)
128 | if l > 0.0
129 | label = string(label, "+")
130 | else
131 | label = string(label, "-")
132 | end
133 | end
134 |
135 | return label
136 | end
137 |
138 |
139 | function polar(x::Float64, y::Float64)
140 | r = sqrt(x^2+y^2)
141 | theta = atan2(y, x)
142 | return r, theta
143 | end
144 |
145 |
146 | function mod2pi(x::Float64)
147 | v = mod(x, 2.0*pi)
148 | if v < -pi
149 | v += 2.0*pi;
150 | else
151 | if v > pi
152 | v -= 2.0*pi
153 | end
154 | end
155 | return v
156 | end
157 |
158 |
159 | function LSL(x::Float64, y::Float64, phi::Float64)
160 | u, t = polar(x - sin(phi), y - 1.0 + cos(phi))
161 | if t >= 0.0
162 | v = mod2pi(phi - t)
163 | if (v >= 0.0)
164 | return true, t, u, v
165 | end
166 | end
167 |
168 | return false, 0.0, 0.0, 0.0
169 | end
170 |
171 |
172 | function LSR(x::Float64, y::Float64, phi::Float64)
173 | u1, t1 = polar(x + sin(phi), y - 1.0 - cos(phi))
174 | u1 = u1^2;
175 | if u1 >= 4.0
176 | u = sqrt(u1 - 4.0)
177 | theta = atan2(2.0, u)
178 | t = mod2pi(t1 + theta)
179 | v = mod2pi(t - phi)
180 |
181 | if t >= 0.0 && v >= 0.0
182 | return true, t, u, v
183 | end
184 | end
185 |
186 | return false, 0.0, 0.0, 0.0
187 | end
188 |
189 |
190 | function LRL(x::Float64, y::Float64, phi::Float64)
191 | u1, t1 = polar(x - sin(phi), y - 1.0 + cos(phi))
192 |
193 | if u1 <= 4.0
194 | u = -2.0*asin(0.25 * u1)
195 | t = mod2pi(t1 + 0.5 * u + pi);
196 | v = mod2pi(phi - t + u);
197 |
198 | if t >= 0.0 && u <= 0.0
199 | return true, t, u, v
200 | end
201 | end
202 |
203 | return false, 0.0, 0.0, 0.0
204 | end
205 |
206 |
207 | function set_path(paths::Array{Path}, lengths::Array{Float64}, ctypes::Array{String})
208 |
209 | path = Path([],[],0.0,[],[],[],[])
210 | path.ctypes = ctypes
211 | path.lengths = lengths
212 |
213 | # check same path exist
214 | for tpath in paths
215 | typeissame = (tpath.ctypes == path.ctypes)
216 | if typeissame
217 | if sum(tpath.lengths - path.lengths) <= 0.01
218 | return paths # not insert path
219 | end
220 | end
221 | end
222 |
223 | path.L = sum([abs(i) for i in lengths])
224 |
225 | Base.Test.@test path.L >= 0.01
226 |
227 | push!(paths, path)
228 |
229 | return paths
230 | end
231 |
232 |
233 | function SCS(x::Float64, y::Float64, phi::Float64, paths::Array{Path})::Array{Path}
234 | flag, t, u, v = SLS(x, y, phi)
235 | if flag
236 | # println("SCS1")
237 | paths = set_path(paths, [t, u, v], ["S","L","S"])
238 | end
239 | flag, t, u, v = SLS(x, -y, -phi)
240 | if flag
241 | # println("SCS2")
242 | paths = set_path(paths, [t, u, v], ["S","R","S"])
243 | end
244 |
245 | return paths
246 | end
247 |
248 |
249 | function SLS(x::Float64, y::Float64, phi::Float64)
250 | # println(x,",", y,",", phi, ",", mod2pi(phi))
251 | phi = mod2pi(phi)
252 | if y > 0.0 && phi > 0.0 && phi < pi*0.99
253 | xd = - y/tan(phi) + x
254 | t = xd - tan(phi/2.0)
255 | u = phi
256 | v = sqrt((x-xd)^2+y^2)-tan(phi/2.0)
257 | # println("1,",t,",",u,",",v)
258 | return true, t, u, v
259 | elseif y < 0.0 && phi > 0.0 && phi < pi*0.99
260 | xd = - y/tan(phi) + x
261 | t = xd - tan(phi/2.0)
262 | u = phi
263 | v = -sqrt((x-xd)^2+y^2)-tan(phi/2.0)
264 | # println("2,",t,",",u,",",v)
265 | return true, t, u, v
266 | end
267 |
268 | return false, 0.0, 0.0, 0.0
269 | end
270 |
271 |
272 | function CSC(x::Float64, y::Float64, phi::Float64, paths::Array{Path})
273 | flag, t, u, v = LSL(x, y, phi)
274 | if flag
275 | # println("CSC1")
276 | paths = set_path(paths, [t, u, v], ["L","S","L"])
277 | end
278 | flag, t, u, v = LSL(-x, y, -phi)
279 | if flag
280 | # println("CSC2")
281 | paths = set_path(paths, [-t, -u, -v], ["L","S","L"])
282 | end
283 | flag, t, u, v = LSL(x, -y, -phi)
284 | if flag
285 | # println("CSC3")
286 | paths = set_path(paths, [t, u, v], ["R","S","R"])
287 | end
288 | flag, t, u, v = LSL(-x, -y, phi)
289 | if flag
290 | # println("CSC4")
291 | paths = set_path(paths, [-t, -u, -v], ["R","S","R"])
292 | end
293 | flag, t, u, v = LSR(x, y, phi)
294 | if flag
295 | # println("CSC5")
296 | paths = set_path(paths, [t, u, v], ["L","S","R"])
297 | end
298 | flag, t, u, v = LSR(-x, y, -phi)
299 | if flag
300 | # println("CSC6")
301 | paths = set_path(paths, [-t, -u, -v], ["L","S","R"])
302 | end
303 | flag, t, u, v = LSR(x, -y, -phi)
304 | if flag
305 | # println("CSC7")
306 | paths = set_path(paths, [t, u, v], ["R","S","L"])
307 | end
308 | flag, t, u, v = LSR(-x, -y, phi)
309 | if flag
310 | # println("CSC8")
311 | paths = set_path(paths, [-t, -u, -v], ["R","S","L"])
312 | end
313 |
314 | return paths
315 | end
316 |
317 |
318 | function CCC(x::Float64, y::Float64, phi::Float64, paths::Array{Path})
319 |
320 | flag, t, u, v = LRL(x, y, phi)
321 | if flag
322 | # println("CCC1")
323 | paths = set_path(paths, [t, u, v], ["L","R","L"])
324 | end
325 | flag, t, u, v = LRL(-x, y, -phi)
326 | if flag
327 | # println("CCC2")
328 | paths = set_path(paths, [-t, -u, -v], ["L","R","L"])
329 | end
330 | flag, t, u, v = LRL(x, -y, -phi)
331 | if flag
332 | # println("CCC3")
333 | paths = set_path(paths, [t, u, v], ["R","L","R"])
334 | end
335 | flag, t, u, v = LRL(-x, -y, phi)
336 | if flag
337 | # println("CCC4")
338 | paths = set_path(paths, [-t, -u, -v], ["R","L","R"])
339 | end
340 |
341 | # backwards
342 | xb = x*cos(phi) + y*sin(phi)
343 | yb = x*sin(phi) - y*cos(phi)
344 | # println(xb, ",", yb,",",x,",",y)
345 |
346 | flag, t, u, v = LRL(xb, yb, phi)
347 | if flag
348 | # println("CCC5")
349 | paths = set_path(paths, [v, u, t], ["L","R","L"])
350 | end
351 | flag, t, u, v = LRL(-xb, yb, -phi)
352 | if flag
353 | # println("CCC6")
354 | paths = set_path(paths, [-v, -u, -t], ["L","R","L"])
355 | end
356 | flag, t, u, v = LRL(xb, -yb, -phi)
357 | if flag
358 | # println("CCC7")
359 | paths = set_path(paths, [v, u, t], ["R","L","R"])
360 | end
361 | flag, t, u, v = LRL(-xb, -yb, phi)
362 | if flag
363 | # println("CCC8")
364 | paths = set_path(paths, [-v, -u, -t], ["R","L","R"])
365 | end
366 |
367 | return paths
368 | end
369 |
370 |
371 | function calc_tauOmega(u::Float64, v::Float64, xi::Float64, eta::Float64, phi::Float64)
372 | delta = mod2pi(u-v)
373 | A = sin(u) - sin(delta)
374 | B = cos(u) - cos(delta) - 1.0
375 |
376 | t1 = atan2(eta*A - xi*B, xi*A + eta*B)
377 | t2 = 2.0 * (cos(delta) - cos(v) - cos(u)) + 3.0;
378 |
379 | if t2 < 0
380 | tau = mod2pi(t1+pi)
381 | else
382 | tau = mod2pi(t1)
383 | end
384 | omega = mod2pi(tau - u + v - phi)
385 |
386 | return tau, omega
387 | end
388 |
389 |
390 | function LRLRn(x::Float64, y::Float64, phi::Float64)
391 | xi = x + sin(phi)
392 | eta = y - 1.0 - cos(phi)
393 | rho = 0.25 * (2.0 + sqrt(xi*xi + eta*eta))
394 |
395 | if rho <= 1.0
396 | u = acos(rho)
397 | t, v = calc_tauOmega(u, -u, xi, eta, phi);
398 | if t >= 0.0 && v <= 0.0
399 | return true, t, u, v
400 | end
401 | end
402 |
403 | return false, 0.0, 0.0, 0.0
404 | end
405 |
406 |
407 | function LRLRp(x::Float64, y::Float64, phi::Float64)
408 | xi = x + sin(phi)
409 | eta = y - 1.0 - cos(phi)
410 | rho = (20.0 - xi*xi - eta*eta) / 16.0;
411 | # println(xi,",",eta,",",rho)
412 |
413 | if (rho>=0.0 && rho<=1.0)
414 | u = -acos(rho);
415 | if (u >= -0.5 * pi)
416 | t, v = calc_tauOmega(u, u, xi, eta, phi);
417 | if t >= 0.0 && v >= 0.0
418 | return true, t, u, v
419 | end
420 | end
421 | end
422 |
423 | return false, 0.0, 0.0, 0.0
424 | end
425 |
426 |
427 | function CCCC(x::Float64, y::Float64, phi::Float64, paths::Array{Path})
428 |
429 | flag, t, u, v = LRLRn(x, y, phi)
430 | if flag
431 | # println("CCCC1")
432 | paths = set_path(paths, [t, u, -u, v], ["L","R","L","R"])
433 | end
434 |
435 | flag, t, u, v = LRLRn(-x, y, -phi)
436 | if flag
437 | # println("CCCC2")
438 | paths = set_path(paths, [-t, -u, u, -v], ["L","R","L","R"])
439 | end
440 |
441 | flag, t, u, v = LRLRn(x, -y, -phi)
442 | if flag
443 | # println("CCCC3")
444 | paths = set_path(paths, [t, u, -u, v], ["R","L","R","L"])
445 | end
446 |
447 | flag, t, u, v = LRLRn(-x, -y, phi)
448 | if flag
449 | # println("CCCC4")
450 | paths = set_path(paths, [-t, -u, u, -v], ["R","L","R","L"])
451 | end
452 |
453 | flag, t, u, v = LRLRp(x, y, phi)
454 | if flag
455 | # println("CCCC5")
456 | paths = set_path(paths, [t, u, u, v], ["L","R","L","R"])
457 | end
458 |
459 | flag, t, u, v = LRLRp(-x, y, -phi)
460 | if flag
461 | # println("CCCC6")
462 | paths = set_path(paths, [-t, -u, -u, -v], ["L","R","L","R"])
463 | end
464 |
465 | flag, t, u, v = LRLRp(x, -y, -phi)
466 | if flag
467 | # println("CCCC7")
468 | paths = set_path(paths, [t, u, u, v], ["R","L","R","L"])
469 | end
470 |
471 | flag, t, u, v = LRLRp(-x, -y, phi)
472 | if flag
473 | # println("CCCC8")
474 | paths = set_path(paths, [-t, -u, -u, -v], ["R","L","R","L"])
475 | end
476 |
477 | return paths
478 | end
479 |
480 |
481 | function LRSR(x::Float64, y::Float64, phi::Float64)
482 |
483 | xi = x + sin(phi)
484 | eta = y - 1.0 - cos(phi)
485 | rho, theta = polar(-eta, xi)
486 |
487 | if rho >= 2.0
488 | t = theta
489 | u = 2.0 - rho
490 | v = mod2pi(t + 0.5*pi - phi)
491 | if t >= 0.0 && u <= 0.0 && v <=0.0
492 | return true, t, u, v
493 | end
494 | end
495 |
496 | return false, 0.0, 0.0, 0.0
497 | end
498 |
499 |
500 | function LRSL(x::Float64, y::Float64, phi::Float64)
501 | xi = x - sin(phi)
502 | eta = y - 1.0 + cos(phi)
503 | rho, theta = polar(xi, eta)
504 |
505 | if rho >= 2.0
506 | r = sqrt(rho*rho - 4.0);
507 | u = 2.0 - r;
508 | t = mod2pi(theta + atan2(r, -2.0));
509 | v = mod2pi(phi - 0.5*pi - t);
510 | if t >= 0.0 && u<=0.0 && v<=0.0
511 | return true, t, u, v
512 | end
513 | end
514 |
515 | return false, 0.0, 0.0, 0.0
516 | end
517 |
518 |
519 | function CCSC(x::Float64, y::Float64, phi::Float64, paths::Array{Path})
520 |
521 | flag, t, u, v = LRSL(x, y, phi)
522 | if flag
523 | # println("CCSC1")
524 | paths = set_path(paths, [t, -0.5*pi, u, v], ["L","R","S","L"])
525 | end
526 |
527 | flag, t, u, v = LRSL(-x, y, -phi)
528 | if flag
529 | # println("CCSC2")
530 | paths = set_path(paths, [-t, 0.5*pi, -u, -v], ["L","R","S","L"])
531 | end
532 |
533 | flag, t, u, v = LRSL(x, -y, -phi)
534 | if flag
535 | # println("CCSC3")
536 | paths = set_path(paths, [t, -0.5*pi, u, v], ["R","L","S","R"])
537 | end
538 |
539 | flag, t, u, v = LRSL(-x, -y, phi)
540 | if flag
541 | # println("CCSC4")
542 | paths = set_path(paths, [-t, 0.5*pi, -u, -v], ["R","L","S","R"])
543 | end
544 |
545 | flag, t, u, v = LRSR(x, y, phi)
546 | if flag
547 | # println("CCSC5")
548 | paths = set_path(paths, [t, -0.5*pi, u, v], ["L","R","S","R"])
549 | end
550 |
551 | flag, t, u, v = LRSR(-x, y, -phi)
552 | if flag
553 | # println("CCSC6")
554 | paths = set_path(paths, [-t, 0.5*pi, -u, -v], ["L","R","S","R"])
555 | end
556 |
557 | flag, t, u, v = LRSR(x, -y, -phi)
558 | if flag
559 | # println("CCSC7")
560 | paths = set_path(paths, [t, -0.5*pi, u, v], ["R","L","S","L"])
561 | end
562 |
563 | flag, t, u, v = LRSR(-x, -y, phi)
564 | if flag
565 | # println("CCSC8")
566 | paths = set_path(paths, [-t, 0.5*pi, -u, -v], ["R","L","S","L"])
567 | end
568 |
569 | # backwards
570 | xb = x*cos(phi) + y*sin(phi)
571 | yb = x*sin(phi) - y*cos(phi)
572 | flag, t, u, v = LRSL(xb, yb, phi)
573 | if flag
574 | # println("CCSC9")
575 | paths = set_path(paths, [v, u, -0.5*pi, t], ["L","S","R","L"])
576 | end
577 |
578 | flag, t, u, v = LRSL(-xb, yb, -phi)
579 | if flag
580 | # println("CCSC10")
581 | paths = set_path(paths, [-v, -u, 0.5*pi, -t], ["L","S","R","L"])
582 | end
583 |
584 | flag, t, u, v = LRSL(xb, -yb, -phi)
585 | if flag
586 | # println("CCSC11")
587 | paths = set_path(paths, [v, u, -0.5*pi, t], ["R","S","L","R"])
588 | end
589 |
590 | flag, t, u, v = LRSL(-xb, -yb, phi)
591 | if flag
592 | # println("CCSC12")
593 | paths = set_path(paths, [-v, -u, 0.5*pi, -t], ["R","S","L","R"])
594 | end
595 |
596 | flag, t, u, v = LRSR(xb, yb, phi)
597 | if flag
598 | # println("CCSC13")
599 | paths = set_path(paths, [v, u, -0.5*pi, t], ["R","S","R","L"])
600 | end
601 |
602 | flag, t, u, v = LRSR(-xb, yb, -phi)
603 | if flag
604 | # println("CCSC14")
605 | paths = set_path(paths, [-v, -u, 0.5*pi, -t], ["R","S","R","L"])
606 | end
607 |
608 | flag, t, u, v = LRSR(xb, -yb, -phi)
609 | if flag
610 | # println("CCSC15")
611 | paths = set_path(paths, [v, u, -0.5*pi, t], ["L","S","L","R"])
612 | end
613 |
614 | flag, t, u, v = LRSR(-xb, -yb, phi)
615 | if flag
616 | # println("CCSC16")
617 | paths = set_path(paths, [-v, -u, 0.5*pi, -t], ["L","S","L","R"])
618 | end
619 |
620 | return paths
621 | end
622 |
623 |
624 | function LRSLR(x::Float64, y::Float64, phi::Float64)
625 | # formula 8.11 *** TYPO IN PAPER ***
626 | xi = x + sin(phi)
627 | eta = y - 1.0 - cos(phi)
628 | rho, theta = polar(xi, eta)
629 | if rho >= 2.0
630 | u = 4.0 - sqrt(rho*rho - 4.0)
631 | if u <= 0.0
632 | t = mod2pi(atan2((4.0-u)*xi -2.0*eta, -2.0*xi + (u-4.0)*eta));
633 | v = mod2pi(t - phi);
634 |
635 | if t >= 0.0 && v >=0.0
636 | return true, t, u, v
637 | end
638 | end
639 | end
640 |
641 | return false, 0.0, 0.0, 0.0
642 | end
643 |
644 |
645 | function CCSCC(x::Float64, y::Float64, phi::Float64, paths::Array{Path})
646 | flag, t, u, v = LRSLR(x, y, phi)
647 | if flag
648 | # println("CCSCC1")
649 | paths = set_path(paths, [t, -0.5*pi, u, -0.5*pi, v], ["L","R","S","L","R"])
650 | end
651 | flag, t, u, v = LRSLR(-x, y, -phi)
652 | if flag
653 | # println("CCSCC2")
654 | paths = set_path(paths, [-t, 0.5*pi, -u, 0.5*pi, -v], ["L","R","S","L","R"])
655 | end
656 |
657 | flag, t, u, v = LRSLR(x, -y, -phi)
658 | if flag
659 | # println("CCSCC3")
660 | paths = set_path(paths, [t, -0.5*pi, u, -0.5*pi, v], ["R","L","S","R","L"])
661 | end
662 |
663 | flag, t, u, v = LRSLR(-x, -y, phi)
664 | if flag
665 | # println("CCSCC4")
666 | paths = set_path(paths, [-t, 0.5*pi, -u, 0.5*pi, -v], ["R","L","S","R","L"])
667 | end
668 |
669 | return paths
670 | end
671 |
672 |
673 | function generate_local_course(L::Float64,
674 | lengths::Array{Float64},
675 | mode::Array{String},
676 | maxc::Float64,
677 | step_size::Float64)
678 | npoint = trunc(Int64, L/step_size) + length(lengths)+3
679 | # println(npoint, ",", L, ",", step_size, ",", L/step_size)
680 |
681 | px = fill(0.0, npoint)
682 | py = fill(0.0, npoint)
683 | pyaw = fill(0.0, npoint)
684 | directions = fill(0, npoint)
685 | ind = 2
686 |
687 | if lengths[1] > 0.0
688 | directions[1] = 1
689 | else
690 | directions[1] = -1
691 | end
692 |
693 | if lengths[1] > 0.0
694 | d = step_size
695 | else
696 | d = -step_size
697 | end
698 |
699 | pd = d
700 | ll = 0.0
701 |
702 | for (m, l, i) in zip(mode, lengths, 1:length(mode))
703 |
704 | if l > 0.0
705 | d = step_size
706 | else
707 | d = -step_size
708 | end
709 |
710 | # set prigin state
711 | ox, oy, oyaw = px[ind], py[ind], pyaw[ind]
712 |
713 | ind -= 1
714 | if i >= 2 && (lengths[i-1]*lengths[i])>0
715 | pd = - d - ll
716 | else
717 | pd = d - ll
718 | end
719 |
720 | while abs(pd) <= abs(l)
721 | ind += 1
722 | px, py, pyaw, directions = interpolate(ind, pd, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
723 | pd += d
724 | end
725 |
726 | ll = l - pd - d # calc remain length
727 |
728 | ind += 1
729 | px, py, pyaw, directions = interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
730 | end
731 |
732 | #remove unused data
733 | while px[end] == 0.0
734 | pop!(px)
735 | pop!(py)
736 | pop!(pyaw)
737 | pop!(directions)
738 | end
739 |
740 | return px, py, pyaw, directions
741 | end
742 |
743 |
744 | function interpolate(ind::Int64, l::Float64, m::String, maxc::Float64,
745 | ox::Float64, oy::Float64, oyaw::Float64,
746 | px::Array{Float64}, py::Array{Float64}, pyaw::Array{Float64},
747 | directions::Array{Int64})
748 |
749 | if m == "S"
750 | px[ind] = ox + l / maxc * cos(oyaw)
751 | py[ind] = oy + l / maxc * sin(oyaw)
752 | pyaw[ind] = oyaw
753 | else # curve
754 | ldx = sin(l) / maxc
755 | if m == "L" # left turn
756 | ldy = (1.0 - cos(l)) / maxc
757 | elseif m == "R" # right turn
758 | ldy = (1.0 - cos(l)) / -maxc
759 | end
760 | gdx = cos(-oyaw) * ldx + sin(-oyaw) * ldy
761 | gdy = -sin(-oyaw) * ldx + cos(-oyaw) * ldy
762 | px[ind] = ox + gdx
763 | py[ind] = oy + gdy
764 | end
765 |
766 | if m == "L" # left turn
767 | pyaw[ind] = oyaw + l
768 | elseif m == "R" # right turn
769 | pyaw[ind] = oyaw - l
770 | end
771 |
772 | if l > 0.0
773 | directions[ind] = 1
774 | else
775 | directions[ind] = -1
776 | end
777 |
778 | return px, py, pyaw, directions
779 | end
780 |
781 |
782 | function generate_path(q0::Array{Float64}, q1::Array{Float64}, maxc::Float64)::Array{Path}
783 | dx = q1[1] - q0[1]
784 | dy = q1[2] - q0[2]
785 | dth = q1[3] - q0[3]
786 | c = cos(q0[3])
787 | s = sin(q0[3]);
788 | x = (c*dx + s*dy)*maxc
789 | y = (-s*dx + c*dy)*maxc
790 |
791 | paths = Path[]
792 | paths = SCS(x, y, dth, paths)
793 | paths = CSC(x, y, dth, paths)
794 | paths = CCC(x, y, dth, paths)
795 | paths = CCCC(x, y, dth, paths)
796 | paths = CCSC(x, y, dth, paths)
797 | paths = CCSCC(x, y, dth, paths)
798 |
799 | return paths
800 | end
801 |
802 |
803 | function calc_curvature(x,y,yaw, directions)
804 |
805 | c = Float64[]
806 | ds = Float64[]
807 |
808 | for i in 2:length(x)-1
809 | dxn = x[i]-x[i-1]
810 | dxp = x[i+1]-x[i]
811 | dyn = y[i]-y[i-1]
812 | dyp = y[i+1]-y[i]
813 | dn =sqrt(dxn^2.0+dyn^2.0)
814 | dp =sqrt(dxp^2.0+dyp^2.0)
815 | dx = 1.0/(dn+dp)*(dp/dn*dxn+dn/dp*dxp)
816 | ddx = 2.0/(dn+dp)*(dxp/dp-dxn/dn)
817 | dy = 1.0/(dn+dp)*(dp/dn*dyn+dn/dp*dyp)
818 | ddy = 2.0/(dn+dp)*(dyp/dp-dyn/dn)
819 | curvature = (ddy*dx-ddx*dy)/(dx^2+dy^2)
820 | d = (dn+dp)/2.0
821 |
822 | if isnan(curvature)
823 | curvature = 0.0
824 | end
825 |
826 | if directions[i] <= 0.0
827 | curvature = -curvature
828 | end
829 |
830 | if length(c) == 0
831 | push!(ds, d)
832 | push!(c, curvature)
833 | end
834 |
835 | push!(ds, d)
836 | push!(c, curvature)
837 | end
838 |
839 | push!(ds, ds[end])
840 | push!(c, c[end] )
841 |
842 | return c, ds
843 | end
844 |
845 |
846 | function check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
847 | # println("Test")
848 | # println(start_x,",", start_y, "," ,start_yaw, ",", max_curvature)
849 | paths = calc_paths(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
850 |
851 | Base.Test.@test length(paths) >= 1
852 |
853 | for path in paths
854 | Base.Test.@test abs(path.x[1] - start_x) <= 0.01
855 | Base.Test.@test abs(path.y[1] - start_y) <= 0.01
856 | Base.Test.@test abs(path.yaw[1] - start_yaw) <= 0.01
857 | Base.Test.@test abs(path.x[end] - end_x) <= 0.01
858 | Base.Test.@test abs(path.y[end] - end_y) <= 0.01
859 | Base.Test.@test abs(path.yaw[end] - end_yaw) <= 0.01
860 |
861 | #course distance check
862 | d = [sqrt(dx^2+dy^2) for (dx, dy) in zip(diff(path.x[1:end-1]), diff(path.y[1:end-1]))]
863 |
864 | for i in length(d)
865 | Base.Test.@test abs(d[i] - STEP_SIZE) <= 0.001
866 | end
867 | end
868 |
869 | end
870 |
871 | function test()
872 | println("Test1")
873 | start_x = 0.0 # [m]
874 | start_y = 0.0 # [m]
875 | start_yaw = deg2rad(10.0) # [rad]
876 | end_x = 7.0 # [m]
877 | end_y = -8.0 # [m]
878 | end_yaw = deg2rad(50.0) # [rad]
879 | max_curvature = 2.0
880 |
881 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
882 |
883 | start_x = 0.0 # [m]
884 | start_y = 0.0 # [m]
885 | start_yaw = deg2rad(10.0) # [rad]
886 | end_x = 7.0 # [m]
887 | end_y = -8.0 # [m]
888 | end_yaw = deg2rad(-50.0) # [rad]
889 | max_curvature = 2.0
890 |
891 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
892 |
893 | start_x = 0.0 # [m]
894 | start_y = 10.0 # [m]
895 | start_yaw = deg2rad(-10.0) # [rad]
896 | end_x = -7.0 # [m]
897 | end_y = -8.0 # [m]
898 | end_yaw = deg2rad(-50.0) # [rad]
899 | max_curvature = 2.0
900 |
901 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
902 |
903 | start_x = 0.0 # [m]
904 | start_y = 10.0 # [m]
905 | start_yaw = deg2rad(-10.0) # [rad]
906 | end_x = -7.0 # [m]
907 | end_y = -8.0 # [m]
908 | end_yaw = deg2rad(150.0) # [rad]
909 | max_curvature = 1.0
910 |
911 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
912 |
913 | start_x = 0.0 # [m]
914 | start_y = 10.0 # [m]
915 | start_yaw = deg2rad(-10.0) # [rad]
916 | end_x = 7.0 # [m]
917 | end_y = 8.0 # [m]
918 | end_yaw = deg2rad(150.0) # [rad]
919 | max_curvature = 2.0
920 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
921 |
922 | start_x = -40.0 # [m]
923 | start_y = 549.0 # [m]
924 | start_yaw = 2.44346 # [rad]
925 | end_x = 36.0 # [m]
926 | end_y = 446.0 # [m]
927 | end_yaw = -0.698132
928 | max_curvature = 0.05890904077226434
929 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
930 |
931 | # Random test
932 | for i in 1:100
933 | start_x = rand()*100.0 - 50.0
934 | start_y = rand()*100.0 - 50.0
935 | start_yaw = deg2rad(rand()*360.0 - 180.0)
936 | end_x = rand()*100.0 - 50.0
937 | end_y = rand()*100.0 - 50.0
938 | end_yaw = deg2rad(rand()*360.0 - 180.0)
939 | max_curvature = rand()/10.0
940 | # println(i, ",", start_x, ",", start_y,",", start_yaw,",",end_x,",",end_y,",", end_yaw)
941 | check_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
942 | end
943 | end
944 |
945 |
946 | function main()
947 | println(PROGRAM_FILE," start!!")
948 | test()
949 |
950 | start_x = 3.0 # [m]
951 | start_y = 10.0 # [m]
952 | start_yaw = deg2rad(40.0) # [rad]
953 | end_x = 0.0 # [m]
954 | end_y = 1.0 # [m]
955 | end_yaw = deg2rad(0.0) # [rad]
956 | max_curvature = 0.1
957 |
958 | @time bpath = calc_shortest_path(
959 | start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
960 |
961 | rc, rds = calc_curvature(bpath.x, bpath.y, bpath.yaw, bpath.directions)
962 |
963 | subplots(1)
964 | plot(bpath.x, bpath.y,"-r", label=get_label(bpath))
965 |
966 | plot(start_x, start_y)
967 | plot(end_x, end_y)
968 |
969 | legend()
970 | grid(true)
971 | axis("equal")
972 |
973 | subplots(1)
974 | plot(rc, ".r", label="reeds shepp")
975 | grid(true)
976 | title("Curvature")
977 |
978 | show()
979 |
980 | println(PROGRAM_FILE," Done!!")
981 | end
982 |
983 |
984 | if length(PROGRAM_FILE)!=0 &&
985 | contains(@__FILE__, PROGRAM_FILE)
986 |
987 | main()
988 | end
989 |
990 | end #module
991 |
992 |
--------------------------------------------------------------------------------
/AutonomousParking/setup.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # run this file before running main.jl
26 | ###############
27 |
28 | ##############################
29 | # include JuMP -> Optimization modeling tool
30 | # include IPOPT -> IP based NLP solver
31 | # include PyPlot -> Ploting library (matplotlib python)
32 | ##############################
33 | using JuMP, Ipopt, PyPlot, NearestNeighbors
34 | ##############################
35 | # register Distance and Signeddistance
36 | include("ParkingDist.jl") # should be the correct one
37 | include("ParkingSignedDist.jl") # good
38 | ##############################
39 | # register constraint satisfaction check
40 | include("ParkingConstraints.jl")
41 | ##############################
42 | # register polytope converter
43 | include("obstHrep.jl")
44 | ##############################
45 | # register ploting function
46 | include("plotTraj.jl")
47 | include("hybrid_a_star.jl")
48 | ##############################
49 | include("DualMultWS.jl")
50 | include("veloSmooth.jl")
51 | # function that clears terminal output
52 | clear() = run(@static is_unix() ? `clear` : `cmd /c cls`)
53 |
--------------------------------------------------------------------------------
/AutonomousParking/veloSmooth.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # veloSmooth: a velocity smoother
26 | ###############
27 |
28 |
29 | function veloSmooth(v,amax,Ts)
30 | v_ex = zeros(length(v)+40,1)
31 | v_bar = zeros(4,length(v)+40)
32 | v_bar2 = zeros(4,length(v)+40)
33 | v_barMM = zeros(1,length(v))
34 |
35 | for i = 1:length(v)
36 | for j = 1:4
37 | v_bar[j,i+19] = v[i];
38 | v_ex[i+19] = v[i];
39 | end
40 | end
41 |
42 | v_cut1 = 0.25*abs(v[1])
43 | v_cut2 = 0.25*abs(v[1])+abs(v[1])
44 |
45 | accPhase = Int(round(abs(v[1])/amax/Ts))
46 |
47 | index1 = find((diff(v_ex).>v_cut1) & (diff(v_ex).v_cut2)
49 |
50 | index3 = find((diff(v_ex).<-v_cut1) & (diff(v_ex).>-v_cut2))
51 | index4 = find(diff(v_ex).<-v_cut2)
52 |
53 | if length(index1) >=1 && index1[1]==19
54 | index1[1] = index1[1]+1
55 | end
56 | if length(index3) >=1 && index3[1]==19
57 | index3[1] = index3[1]+1
58 | end
59 |
60 |
61 | for j = 1:length(index1)
62 | if v_ex[index1[j]] > v_cut1 || v_ex[index1[j]+1] > v_cut1
63 | v_bar[1,index1[j]:index1[j]+accPhase] = linspace(0,abs(v[1]),accPhase+1)''
64 | elseif v_ex[index1[j]] < -v_cut1 || v_ex[index1[j]+1] < -v_cut1
65 | v_bar[1,index1[j]-accPhase+1:index1[j]+1] = linspace(-abs(v[1]),0,accPhase+1)''
66 | end
67 | end
68 |
69 | for j = 1:length(index3)
70 | if v_ex[index3[j]] > v_cut1 || v_ex[index3[j]+1] > v_cut1
71 | v_bar[2,index3[j]-accPhase+1:index3[j]+1] = linspace(abs(v[1]),0,accPhase+1)''
72 | elseif v_ex[index3[j]] < -v_cut1 || v_ex[index3[j]+1] < -v_cut1
73 | v_bar[2,index3[j]:index3[j]+accPhase] = linspace(0,-abs(v[1]),accPhase+1)''
74 | end
75 | end
76 |
77 | for j = 1:length(index2)
78 | v_bar[3,index2[j]-accPhase:index2[j]+accPhase] = linspace(-abs(v[1]),abs(v[1]),2*accPhase+1)''
79 | end
80 |
81 | for j = 1:length(index4)
82 | v_bar[4,index4[j]-accPhase:index4[j]+accPhase] = linspace(abs(v[1]),-abs(v[1]),2*accPhase+1)''
83 | end
84 |
85 | for i = 20:length(v)+19
86 | for j = 1:4
87 | if v_bar[j,i] == 0
88 | v_bar2[j,i] = v_bar[j,i]
89 | elseif sign(v_ex[i]) != sign(v_bar[j,i])
90 | v_bar2[j,i] = v_ex[i]
91 | else
92 | v_bar2[j,i] = v_bar[j,i]
93 | end
94 | end
95 | end
96 |
97 | for i = 20:length(v)+19
98 | if v_ex[i] > 0
99 | v_barMM[i-19] = minimum(v_bar2[:,i])
100 | else
101 | v_barMM[i-19] = maximum(v_bar2[:,i])
102 | end
103 | end
104 |
105 | a = diff(v_barMM')./Ts
106 |
107 | return v_barMM', a
108 |
109 | end
110 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/QuadcopterDist.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 |
25 | function QuadcopterDist(x0,xF,N,Ts,R,ob1,ob2,ob3,ob4,ob5,xWS,uWS,timeWS)
26 |
27 | m = Model(solver=IpoptSolver(hessian_approximation="exact",mumps_pivtol=5e-7,mumps_pivtolmax=0.1,mumps_mem_percent=10000,
28 | recalc_y="no",alpha_for_y="min",required_infeasibility_reduction=0.65,
29 | min_hessian_perturbation=1e-10,jacobian_regularization_value=1e-7,tol=1e-5,
30 | print_level=0))#state
31 |
32 |
33 | @variable(m, x[1:12,1:(N+1)])
34 | @variable(m, timeScale[1:N+1])
35 | #control
36 | @variable(m, u[1:4,1:(N)])
37 | # lagrange multipliers for dual dist function
38 | @variable(m, l1[1:6,1:(N+1)])
39 |
40 | @variable(m, l2[1:6,1:(N+1)])
41 |
42 | @variable(m, l3[1:6,1:(N+1)])
43 |
44 | @variable(m, l4[1:6,1:(N+1)])
45 |
46 | @variable(m, l5[1:6,1:(N+1)])
47 |
48 | mass = 0.5;
49 | g = 9.81;
50 | reg = 0;
51 | reg2 = 1e-4;
52 | reg3 = 0.0001;
53 |
54 | k_F = 0.0611;#6.11*1e-8 #[N/rpm^2]
55 | k_M = 0.0015;#1.5*1e-9 #[Nm/rpm^2]
56 | I = [3.9,4.4,4.9]*1e-3 #[kg/m2]
57 | L = 0.225 #[m]
58 |
59 | w_H = sqrt((mass*g)/(k_F*4))
60 |
61 | # cost function
62 | @NLobjective(m, Min,1e-3*sum( sum((w_H-u[j,i])^2 for j=1:4) for i = 1:N) +
63 | 1e-2*sum( sum((u[j,i]-u[j,i+1])^2 for j=1:4) for i = 1:N-1) +
64 | 1*sum(sum(reg3*x[j,i]^2 for i = 1:N+1) for j = [10,11,12]) +
65 | sum(0.25*timeScale[i] + 5*timeScale[i]^2 for i = 1:N+1) +
66 | 1*sum(sum(reg2*l1[j,i]^2 + reg2*l2[j,i]^2 + reg2*l3[j,i]^2 + reg2*l4[j,i]^2+ reg2*l5[j,i]^2 for i = 1:N+1) for j = 1:6));
67 |
68 | #input constraints
69 | @constraint(m, [i=1:N], 1.200 <= u[1,i] <= 7.800)
70 | @constraint(m, [i=1:N], 1.200 <= u[2,i] <= 7.800)
71 | @constraint(m, [i=1:N], 1.200 <= u[3,i] <= 7.800)
72 | @constraint(m, [i=1:N], 1.200 <= u[4,i] <= 7.800)
73 |
74 | #state constraints
75 | #X,Y,Z
76 | @constraint(m, [i=1:N+1], 0 <= x[1,i] <= 10)
77 | @constraint(m, [i=1:N+1], 0 <= x[2,i] <= 10) # -0.1 <= x[2,i] <= 20
78 | @constraint(m, [i=1:N+1], 0 <= x[3,i] <= 5)
79 | # pitch, roll
80 | @constraint(m, [i=1:N+1], -3 <= x[4,i] <= 3)
81 | @constraint(m, [i=1:N+1], -0.2 <= x[5,i] <= 0.2) #pm 0.2
82 | @constraint(m, [i=1:N+1], -0.2 <= x[6,i] <= 0.2)
83 | #v_x, v_y, v_z
84 | @constraint(m, [i=1:N+1],-1 <= x[7,i] <= 1)
85 | @constraint(m, [i=1:N+1],-1 <= x[8,i] <= 1)
86 | @constraint(m, [i=1:N+1],-1 <= x[9,i] <= 1)
87 | # pitch_rate, roll_rate
88 | @constraint(m, [i=1:N+1],-1.5 <= x[10,i] <= 3) #pm 1
89 | @constraint(m, [i=1:N+1],-1 <= x[11,i] <= 1)
90 | @constraint(m, [i=1:N+1],-1 <= x[12,i] <= 1)
91 |
92 | @constraint(m, 0.5 .<= timeScale .<= 2) # original: 0.5 <= .... <=2
93 | # positivity constraints on lambda
94 | @constraint(m, l1.>= 0)
95 | @constraint(m, l2.>= 0)
96 | @constraint(m, l3.>= 0)
97 | @constraint(m, l4.>= 0)
98 | @constraint(m, l5.>= 0)
99 |
100 |
101 | #starting point
102 | @constraint(m, x[1,1] == x0[1])
103 | @constraint(m, x[2,1] == x0[2])
104 | @constraint(m, x[3,1] == x0[3])
105 | @constraint(m, x[4,1] == x0[4])
106 | @constraint(m, x[5,1] == x0[5])
107 | @constraint(m, x[6,1] == x0[6])
108 | @constraint(m, x[7,1] == x0[7])
109 | @constraint(m, x[8,1] == x0[8])
110 | @constraint(m, x[9,1] == x0[9])
111 | @constraint(m, x[10,1] == x0[10])
112 | @constraint(m, x[11,1] == x0[11])
113 | @constraint(m, x[12,1] == x0[12])
114 |
115 |
116 | #end point
117 | @constraint(m, x[1,N+1] == xF[1])
118 | @constraint(m, x[2,N+1] == xF[2])
119 | @constraint(m, x[3,N+1] == xF[3])
120 | @constraint(m, x[4,N+1] == xF[4])
121 | @constraint(m, x[5,N+1] == xF[5])
122 | @constraint(m, x[6,N+1] == xF[6])
123 | @constraint(m, x[7,N+1] == xF[7])
124 | @constraint(m, x[8,N+1] == xF[8])
125 | @constraint(m, x[9,N+1] == xF[9])
126 | @constraint(m, x[10,N+1] == xF[10])
127 | @constraint(m, x[11,N+1] == xF[11])
128 | @constraint(m, x[12,N+1] == xF[12])
129 |
130 | for i in 1:N
131 | #X,Y,Z
132 | @NLconstraint(m, x[1,i+1] == x[1,i] + timeScale[i]*Ts*x[7,i])
133 | @NLconstraint(m, x[2,i+1] == x[2,i] + timeScale[i]*Ts*x[8,i])
134 | @NLconstraint(m, x[3,i+1] == x[3,i] + timeScale[i]*Ts*x[9,i])
135 |
136 | # pitch, roll, yaw
137 | @NLconstraint(m, x[4,i+1] == x[4,i] + timeScale[i]*Ts*( cos(x[5,i]) *x[10,i] +sin(x[5,i]) *x[12,i]))
138 | @NLconstraint(m, x[5,i+1] == x[5,i] + timeScale[i]*Ts*( sin(x[5,i])*tan(x[4,i])*x[10,i]+x[11,i]-cos(x[5,i])*tan(x[4,i])*x[12,i]))
139 | @NLconstraint(m, x[6,i+1] == x[6,i] + timeScale[i]*Ts*(-sin(x[5,i])*sec(x[4,i])*x[10,i] +cos(x[5,i])*sec(x[4,i])*x[12,i]))
140 |
141 | #v_x, v_y, v_z
142 | @NLconstraint(m, x[7,i+1] == x[7,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( sin(x[4,i])*cos(x[5,i])*sin(x[6,i]) + sin(x[5,i])*cos(x[6,i]) )))
143 | @NLconstraint(m, x[8,i+1] == x[8,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*(-sin(x[4,i])*cos(x[5,i])*cos(x[6,i]) + sin(x[5,i])*sin(x[6,i]) )))
144 | @NLconstraint(m, x[9,i+1] == x[9,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( cos(x[4,i])*cos(x[5,i])) - mass*g ))
145 |
146 | # pitch_rate, roll_rate
147 | @NLconstraint(m, x[10,i+1] == x[10,i] + timeScale[i]*Ts*1/I[1]*(L*k_F*(u[2,i]^2 - u[4,i]^2) - (I[3] - I[2])*x[11]*x[12]))
148 | @NLconstraint(m, x[11,i+1] == x[11,i] + timeScale[i]*Ts*1/I[2]*(L*k_F*(u[3,i]^2 - u[1,i]^2) - (I[1] - I[3])*x[10]*x[12]))
149 | @NLconstraint(m, x[12,i+1] == x[12,i] + timeScale[i]*Ts*1/I[3]*(k_M*(u[1,i]^2 - u[2,i]^2 + u[3,i]^2 - u[4,i]^2) - (I[2] - I[1])*x[10]*x[11]))
150 |
151 | @constraint(m, timeScale[i] == timeScale[i+1])
152 | end
153 |
154 |
155 |
156 | A = [eye(3);
157 | -eye(3)];
158 |
159 | for i in 1:N+1
160 | # rotation matrix
161 |
162 | b1 = ob1
163 | @NLconstraint(m, (l1[1,i]-l1[4,i])^2 + (l1[2,i]-l1[5,i])^2 + (l1[3,i]-l1[6,i])^2 == 1) # == (sd), <= (d)
164 | @NLconstraint(m,sum(-b1[j]*l1[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l1[j,i] for j=1:6) +
165 | x[2,i]*sum(A[j,2]*l1[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l1[j,i] for j=1:6) >=R)
166 |
167 | ######################
168 | b2 = ob2
169 | @NLconstraint(m, (l2[1,i]-l2[4,i])^2 + (l2[2,i]-l2[5,i])^2 + (l2[3,i]-l2[6,i])^2 == 1) # ==
170 | @NLconstraint(m,sum(-b2[j]*l2[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l2[j,i] for j=1:6) +
171 | x[2,i]*sum(A[j,2]*l2[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l2[j,i] for j=1:6) >=R)
172 |
173 | #########################
174 | b3 = ob3
175 | @NLconstraint(m, (l3[1,i]-l3[4,i])^2 + (l3[2,i]-l3[5,i])^2 + (l3[3,i]-l3[6,i])^2 == 1) # ==
176 | @NLconstraint(m,sum(-b3[j]*l3[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l3[j,i] for j=1:6) +
177 | x[2,i]*sum(A[j,2]*l3[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l3[j,i] for j=1:6) >=R)
178 |
179 | #########################
180 | b4 = ob4
181 | @NLconstraint(m, (l4[1,i]-l4[4,i])^2 + (l4[2,i]-l4[5,i])^2 + (l4[3,i]-l4[6,i])^2 == 1) # ==
182 | @NLconstraint(m,sum(-b4[j]*l4[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l4[j,i] for j=1:6) +
183 | x[2,i]*sum(A[j,2]*l4[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l4[j,i] for j=1:6) >=R)
184 |
185 | #########################
186 | b5 = ob5
187 | @NLconstraint(m, (l5[1,i]-l5[4,i])^2 + (l5[2,i]-l5[5,i])^2 + (l5[3,i]-l5[6,i])^2 == 1) # ==
188 | @NLconstraint(m,sum(-b5[j]*l5[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l5[j,i] for j=1:6) +
189 | x[2,i]*sum(A[j,2]*l5[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l5[j,i] for j=1:6) >=R)
190 |
191 | end
192 |
193 | setvalue(timeScale,timeWS*ones(N+1,1))
194 |
195 | setvalue(x,xWS)
196 | setvalue(u,w_H*ones(4,N)) # faster not to warm-start
197 |
198 | setvalue(l1,0.05*ones(6,N+1))
199 | setvalue(l2,0.05*ones(6,N+1))
200 | setvalue(l3,0.05*ones(6,N+1))
201 | setvalue(l4,0.05*ones(6,N+1))
202 | setvalue(l5,0.05*ones(6,N+1))
203 |
204 |
205 | time1 = 0
206 | time2 = 0
207 | time3 = 0
208 | time4 = 0
209 |
210 |
211 | tic()
212 | status = solve(m; suppress_warnings=true)
213 | time1 = toq()
214 |
215 | # println(time1)
216 |
217 | flag = 1;
218 |
219 | # println("solver status after 1 trial: ", status)
220 | if flag == 1
221 | if status == :Optimal
222 | exitflag = 1
223 | else
224 | exitflag = 0
225 | end
226 | elseif flag == 2
227 | # println("flag 1: ", flag)
228 | if status == :Optimal
229 | exitflag = 1
230 | elseif status ==:Error || status ==:UserLimit
231 | tic()
232 | status = solve(m; suppress_warnings=true)
233 | time2 = toq()
234 | # println("time2: ", time2)
235 |
236 | if status == :Optimal
237 | exitflag = 1
238 | elseif status ==:Error || status ==:UserLimit
239 | tic()
240 | status = solve(m; suppress_warnings=true)
241 | time3 = toq()
242 |
243 | if status == :Optimal
244 | exitflag = 1
245 | elseif status ==:Error || status ==:UserLimit
246 |
247 | tic()
248 | status = solve(m; suppress_warnings=true)
249 | time4 = toq()
250 |
251 | if status == :Optimal
252 | exitflag = 1
253 | else
254 | exitflag = 0
255 | end
256 | else
257 | exitflag = 0
258 | end
259 | else
260 | exitflag = 0
261 | end
262 | else
263 | exitflag = 0
264 | end
265 | end
266 |
267 | time = time1+time2+time3+time4
268 |
269 | xp = getvalue(x)
270 | up = getvalue(u)
271 | timeScalep = getvalue(timeScale)
272 | l1p = getvalue(l1)
273 | l2p = getvalue(l2)
274 | l3p = getvalue(l3)
275 | l4p = getvalue(l4)
276 | l5p = getvalue(l5)
277 | lp = [l1p ; l2p ; l3p ; l4p ; l5p]
278 |
279 |
280 | return xp, up, timeScalep, exitflag, time, lp, string(status)
281 |
282 | end
283 |
284 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/QuadcopterSignedDist.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 |
25 | function QuadcopterSignedDist(x0,xF,N,Ts,R,ob1,ob2,ob3,ob4,ob5,xWS,uWS,timeWS)
26 |
27 | # define solver
28 | m = Model(solver=IpoptSolver(hessian_approximation="exact",mumps_pivtol=5e-7,mumps_pivtolmax=0.1,mumps_mem_percent=10000,
29 | recalc_y="no",alpha_for_y="min",required_infeasibility_reduction=0.6,
30 | min_hessian_perturbation=1e-10,jacobian_regularization_value=1e-7,tol=1e-5,
31 | print_level=0))#state
32 |
33 |
34 | @variable(m, x[1:12,1:(N+1)])
35 | @variable(m, timeScale[1:N+1])
36 | #control
37 | @variable(m, u[1:4,1:(N)])
38 | # lagrange multipliers for dual dist function
39 | @variable(m, l1[1:6,1:(N+1)])
40 |
41 | @variable(m, l2[1:6,1:(N+1)])
42 |
43 | @variable(m, l3[1:6,1:(N+1)])
44 |
45 | @variable(m, l4[1:6,1:(N+1)])
46 |
47 | @variable(m, l5[1:6,1:(N+1)])
48 |
49 | @variable(m, slack[1:5,1:(N+1)])
50 |
51 | mass = 0.5;
52 | g = 9.81;
53 | reg = 0;
54 | reg2 = 1e-4;
55 | reg3 = 0.0001;
56 |
57 | k_F = 0.0611;#6.11*1e-8 #[N/rpm^2]
58 | k_M = 0.0015;#1.5*1e-9 #[Nm/rpm^2]
59 | I = [3.9,4.4,4.9]*1e-3 #[kg/m2]
60 | L = 0.225 #[m]
61 |
62 | w_H = sqrt((mass*g)/(k_F*4))
63 |
64 | # cost function
65 | @NLobjective(m, Min,1e-3*sum( sum((w_H-u[j,i])^2 for j=1:4) for i = 1:N) +
66 | 1e-2*sum( sum((u[j,i]-u[j,i+1])^2 for j=1:4) for i = 1:N-1) +
67 | 1*sum(sum(reg3*x[j,i]^2 for i = 1:N+1) for j = [10,11,12]) +
68 | sum(0.25*timeScale[i] + 5*timeScale[i]^2 for i = 1:N+1) +
69 | sum(sum(1e2*slack[j,i] + 1e3*slack[j,i]^2 for i = 1:N+1) for j = 1:5) +
70 | # sum(sum(8e0*slack[j,i] + 1e2*slack[j,i]^2 for i = 1:N+1) for j = 1:5) +
71 | 1*sum(sum(reg2*l1[j,i]^2 + reg2*l2[j,i]^2 + reg2*l3[j,i]^2 + reg2*l4[j,i]^2+ reg2*l5[j,i]^2 for i = 1:N+1) for j = 1:6));
72 |
73 | #input constraints
74 | @constraint(m, [i=1:N], 1.200 <= u[1,i] <= 7.800)
75 | @constraint(m, [i=1:N], 1.200 <= u[2,i] <= 7.800)
76 | @constraint(m, [i=1:N], 1.200 <= u[3,i] <= 7.800)
77 | @constraint(m, [i=1:N], 1.200 <= u[4,i] <= 7.800)
78 | #state constraints
79 | #X,Y,Z
80 | @constraint(m, [i=1:N+1], 0 <= x[1,i] <= 10)
81 | @constraint(m, [i=1:N+1], 0 <= x[2,i] <= 10) # -0.1 <= x[2,i] <= 20
82 | @constraint(m, [i=1:N+1], 0 <= x[3,i] <= 5)
83 | # pitch, roll
84 | @constraint(m, [i=1:N+1], -3 <= x[4,i] <= 3)
85 | @constraint(m, [i=1:N+1], -0.2 <= x[5,i] <= 0.2) #pm 0.2
86 | @constraint(m, [i=1:N+1], -0.2 <= x[6,i] <= 0.2)
87 | #v_x, v_y, v_z
88 | @constraint(m, [i=1:N+1],-1 <= x[7,i] <= 1)
89 | @constraint(m, [i=1:N+1],-1 <= x[8,i] <= 1)
90 | @constraint(m, [i=1:N+1],-1 <= x[9,i] <= 1)
91 | # pitch_rate, roll_rate
92 | @constraint(m, [i=1:N+1],-1 <= x[10,i] <= 1) #pm 1
93 | @constraint(m, [i=1:N+1],-1 <= x[11,i] <= 1)
94 | @constraint(m, [i=1:N+1],-1 <= x[12,i] <= 1)
95 |
96 | @constraint(m, 0.5 .<= timeScale .<= 2)
97 | # positivity constraints on lambda
98 | @constraint(m, l1.>= 0)
99 | @constraint(m, l2.>= 0)
100 | @constraint(m, l3.>= 0)
101 | @constraint(m, l4.>= 0)
102 | @constraint(m, l5.>= 0)
103 |
104 |
105 | @constraint(m, slack.>= 0)
106 |
107 | #starting point
108 | @constraint(m, x[1,1] == x0[1])
109 | @constraint(m, x[2,1] == x0[2])
110 | @constraint(m, x[3,1] == x0[3])
111 | @constraint(m, x[4,1] == x0[4])
112 | @constraint(m, x[5,1] == x0[5])
113 | @constraint(m, x[6,1] == x0[6])
114 | @constraint(m, x[7,1] == x0[7])
115 | @constraint(m, x[8,1] == x0[8])
116 | @constraint(m, x[9,1] == x0[9])
117 | @constraint(m, x[10,1] == x0[10])
118 | @constraint(m, x[11,1] == x0[11])
119 | @constraint(m, x[12,1] == x0[12])
120 |
121 |
122 | #end point
123 | @constraint(m, x[1,N+1] == xF[1])
124 | @constraint(m, x[2,N+1] == xF[2])
125 | @constraint(m, x[3,N+1] == xF[3])
126 | @constraint(m, x[4,N+1] == xF[4])
127 | @constraint(m, x[5,N+1] == xF[5])
128 | @constraint(m, x[6,N+1] == xF[6])
129 | @constraint(m, x[7,N+1] == xF[7])
130 | @constraint(m, x[8,N+1] == xF[8])
131 | @constraint(m, x[9,N+1] == xF[9])
132 | @constraint(m, x[10,N+1] == xF[10])
133 | @constraint(m, x[11,N+1] == xF[11])
134 | @constraint(m, x[12,N+1] == xF[12])
135 |
136 | for i in 1:N
137 | #X,Y,Z
138 | @NLconstraint(m, x[1,i+1] == x[1,i] + timeScale[i]*Ts*x[7,i])
139 | @NLconstraint(m, x[2,i+1] == x[2,i] + timeScale[i]*Ts*x[8,i])
140 | @NLconstraint(m, x[3,i+1] == x[3,i] + timeScale[i]*Ts*x[9,i])
141 |
142 | # pitch, roll
143 | @NLconstraint(m, x[4,i+1] == x[4,i] + timeScale[i]*Ts*( cos(x[5,i]) *x[10,i] +sin(x[5,i]) *x[12,i]))
144 | @NLconstraint(m, x[5,i+1] == x[5,i] + timeScale[i]*Ts*( sin(x[5,i])*tan(x[4,i])*x[10,i]+x[11,i]-cos(x[5,i])*tan(x[4,i])*x[12,i]))
145 | @NLconstraint(m, x[6,i+1] == x[6,i] + timeScale[i]*Ts*(-sin(x[5,i])*sec(x[4,i])*x[10,i] +cos(x[5,i])*sec(x[4,i])*x[12,i]))
146 |
147 | #v_x, v_y, v_z
148 | @NLconstraint(m, x[7,i+1] == x[7,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( sin(x[4,i])*cos(x[5,i])*sin(x[6,i]) + sin(x[5,i])*cos(x[6,i]) )))
149 | @NLconstraint(m, x[8,i+1] == x[8,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*(-sin(x[4,i])*cos(x[5,i])*cos(x[6,i]) + sin(x[5,i])*sin(x[6,i]) )))
150 | @NLconstraint(m, x[9,i+1] == x[9,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( cos(x[4,i])*cos(x[5,i])) - mass*g ))
151 |
152 | # pitch_rate, roll_rate
153 | @NLconstraint(m, x[10,i+1] == x[10,i] + timeScale[i]*Ts*1/I[1]*(L*k_F*(u[2,i]^2 - u[4,i]^2) - (I[3] - I[2])*x[11]*x[12]))
154 | @NLconstraint(m, x[11,i+1] == x[11,i] + timeScale[i]*Ts*1/I[2]*(L*k_F*(u[3,i]^2 - u[1,i]^2) - (I[1] - I[3])*x[10]*x[12]))
155 | @NLconstraint(m, x[12,i+1] == x[12,i] + timeScale[i]*Ts*1/I[3]*(k_M*(u[1,i]^2 - u[2,i]^2 + u[3,i]^2 - u[4,i]^2) - (I[2] - I[1])*x[10]*x[11]))
156 |
157 | @constraint(m, timeScale[i] == timeScale[i+1])
158 | end
159 |
160 |
161 |
162 | A = [eye(3);
163 | -eye(3)];
164 |
165 | for i in 1:N+1
166 | # rotation matrix
167 |
168 | b1 = ob1
169 | @NLconstraint(m, (l1[1,i]-l1[4,i])^2 + (l1[2,i]-l1[5,i])^2 + (l1[3,i]-l1[6,i])^2 == 1)
170 | @NLconstraint(m,sum(-b1[j]*l1[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l1[j,i] for j=1:6) +
171 | x[2,i]*sum(A[j,2]*l1[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l1[j,i] for j=1:6) + 0.01*slack[1,i]>=R)
172 |
173 | ######################
174 | b2 = ob2
175 | @NLconstraint(m, (l2[1,i]-l2[4,i])^2 + (l2[2,i]-l2[5,i])^2 + (l2[3,i]-l2[6,i])^2 == 1)
176 | @NLconstraint(m,sum(-b2[j]*l2[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l2[j,i] for j=1:6) +
177 | x[2,i]*sum(A[j,2]*l2[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l2[j,i] for j=1:6) + 0.01*slack[2,i]>=R)
178 |
179 | #########################
180 | b3 = ob3
181 | @NLconstraint(m, (l3[1,i]-l3[4,i])^2 + (l3[2,i]-l3[5,i])^2 + (l3[3,i]-l3[6,i])^2 == 1)
182 | @NLconstraint(m,sum(-b3[j]*l3[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l3[j,i] for j=1:6) +
183 | x[2,i]*sum(A[j,2]*l3[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l3[j,i] for j=1:6) + 0.01*slack[3,i]>=R)
184 |
185 | #########################
186 | b4 = ob4
187 | @NLconstraint(m, (l4[1,i]-l4[4,i])^2 + (l4[2,i]-l4[5,i])^2 + (l4[3,i]-l4[6,i])^2 == 1)
188 | @NLconstraint(m,sum(-b4[j]*l4[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l4[j,i] for j=1:6) +
189 | x[2,i]*sum(A[j,2]*l4[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l4[j,i] for j=1:6) + 0.01*slack[4,i]>=R)
190 |
191 | #########################
192 | b5 = ob5
193 | @NLconstraint(m, (l5[1,i]-l5[4,i])^2 + (l5[2,i]-l5[5,i])^2 + (l5[3,i]-l5[6,i])^2 == 1)
194 | @NLconstraint(m,sum(-b5[j]*l5[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l5[j,i] for j=1:6) +
195 | x[2,i]*sum(A[j,2]*l5[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l5[j,i] for j=1:6) + 0.01*slack[5,i]>=R)
196 |
197 | end
198 |
199 | setvalue(timeScale,timeWS*ones(N+1,1))
200 |
201 | setvalue(x,xWS)
202 | setvalue(u,w_H*ones(4,N)) # faster not to warm-start
203 |
204 | setvalue(l1,0.05*ones(6,N+1))
205 | setvalue(l2,0.05*ones(6,N+1))
206 | setvalue(l3,0.05*ones(6,N+1))
207 | setvalue(l4,0.05*ones(6,N+1))
208 | setvalue(l5,0.05*ones(6,N+1))
209 |
210 | setvalue(slack,1*ones(5,N+1)) # setvalue(slack,0.1*ones(5,N+1))
211 | # setvalue(slack,zeros(5,N+1)) # slows down solver very much
212 |
213 |
214 | time1 = 0
215 | time2 = 0
216 | time3 = 0
217 | time4 = 0
218 |
219 |
220 | tic()
221 | # status = solve(m; suppress_warnings=true)
222 | status = solve(m)
223 | time1 = toq()
224 |
225 | # println(time1)
226 |
227 | flag = 1;
228 |
229 | # println("solver status after 1 trial: ", status)
230 | if flag == 1
231 | if status == :Optimal
232 | exitflag = 1
233 | else
234 | exitflag = 0
235 | end
236 | elseif flag == 2
237 | if status == :Optimal
238 | exitflag = 1
239 | elseif status ==:Error || status ==:UserLimit
240 | tic()
241 | status = solve(m; suppress_warnings=true)
242 | time2 = toq()
243 |
244 | if status == :Optimal
245 | exitflag = 1
246 | elseif status ==:Error || status ==:UserLimit
247 | tic()
248 | status = solve(m; suppress_warnings=true)
249 | time3 = toq()
250 |
251 | if status == :Optimal
252 | exitflag = 1
253 | elseif status ==:Error || status ==:UserLimit
254 |
255 | tic()
256 | status = solve(m; suppress_warnings=true)
257 | time4 = toq()
258 |
259 | if status == :Optimal
260 | exitflag = 1
261 | else
262 | exitflag = 0
263 | end
264 | else
265 | exitflag = 0
266 | end
267 | else
268 | exitflag = 0
269 | end
270 | else
271 | exitflag = 0
272 | end
273 | end
274 |
275 | time = time1+time2+time3+time4
276 |
277 | xp = getvalue(x)
278 | up = getvalue(u)
279 | timeScalep = getvalue(timeScale)
280 |
281 | slackp = getvalue(slack)
282 |
283 | sumSlack = sum(slackp)
284 | # println(sumSlack)
285 | if exitflag == 1 && sumSlack > 1e-3
286 | println("sum-slack condition not satisfied")
287 | exitflag = 2
288 | end
289 |
290 | l1p = getvalue(l1)
291 | l2p = getvalue(l2)
292 | l3p = getvalue(l3)
293 | l4p = getvalue(l4)
294 | l5p = getvalue(l5)
295 | lp = [l1p ; l2p ; l3p ; l4p ; l5p]
296 |
297 |
298 | return xp, up, timeScalep, exitflag, time, lp, string(status)
299 |
300 | end
301 |
302 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/README.md:
--------------------------------------------------------------------------------
1 | # OBCA - Quadcopter Path Planning
2 | Optimization-Based Collision Avoidance - an application in quadcopter path planning
3 |
4 | Paper describing the theory can be found [here](http://arxiv.org/abs/1711.03449).
5 |
6 | ## How to run the code:
7 |
8 | ### First steps
9 |
10 | 1. Change to the directory
11 |
12 | 2. Install Julia from https://julialang.org/downloads/ (code tested on version 0.5 and 0.6)
13 |
14 | 3. Open Julia in terminal
15 |
16 | 4. Install Julia package JuMP using Pkg.add("JuMP")
17 |
18 | 5. Install Julia package Ipopt using Pkg.add("Ipopt")
19 |
20 | 6. Install Julia package PyPlot using Pkg.add("PyPlot")
21 |
22 | 7. Install Julia package PyPlot using Pkg.add("NearestNeighbors")
23 |
24 |
25 | ### Running the parking example
26 |
27 | 1. Start Julia in terminal
28 |
29 | 2. Type in terminal: include("setupQuadcopter.jl")
30 |
31 | 3. Type in terminal: include("mainQuadcopter.jl")
32 |
33 |
34 | ### modifying the code
35 |
36 | 1. To play with start points, change xF (or x0) in mainQuadcopter.jl and run
37 | the code by include("mainQuadcopter.jl")
38 |
39 | 2. If you change anything in one of the collision avoidance
40 | problems, you need to activate the changes by running
41 | include("setupQuadcopter.jl")
42 |
43 |
44 | ### Note
45 | 1. This code has been tested on Julia 0.5 and 0.6, and might not run on any other Julia versions.
46 |
47 | 2. For best results, run code in Julia terminal
48 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/a_star_3D.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Atsushi SAKAI [atsushisakai@global.komatsu; Komatsu Ltd / MPC Lab]
5 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
6 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
7 | #
8 | # This program is free software: you can redistribute it and/or modify
9 | # it under the terms of the GNU General Public License as published by
10 | # the Free Software Foundation, either version 3 of the License, or
11 | # (at your option) any later version.
12 | #
13 | # This program is distributed in the hope that it will be useful,
14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 | # GNU General Public License for more details.
17 | #
18 | # You should have received a copy of the GNU General Public License
19 | # along with this program. If not, see .
20 | ###############
21 | # The paper describing the theory can be found here:
22 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
23 | ###############
24 |
25 | module a_star # new scope, good for defining global variables
26 |
27 | using NearestNeighbors, JuMP, Ipopt
28 | using PyPlot
29 |
30 | const VEHICLE_RADIUS = 2.5# const GRID_RESOLUTION = 1.0 #[m], def 2.0
31 | const H_WEIGHT = 1.1 # weight for heuristic function
32 |
33 | type Node
34 | x::Int64 #x index
35 | y::Int64 #y index
36 | z::Int64 #z index (added)
37 | cost::Float64 # cost
38 | pind::Int64 # parent index
39 | end
40 |
41 | # Only thing you need to do is that using calc_astar_path() with inputs.
42 | # sx, sy, sz: start point
43 | # gx, gy, gz: goal point
44 | # ox, oy, oz: obstacle position list
45 | # reso: grid resolution of A*.
46 |
47 | # (sx, sy, sz, gx, gy, gz, ox, oy, oz, xmin, ymin, zmin, xmax, ymax, zmax, GRID_RESOLUTION)
48 |
49 | function calc_astar_path(sx::Float64, sy::Float64, sz::Float64, gx::Float64, gy::Float64, gz::Float64,
50 | ox::Array{Float64}, oy::Array{Float64}, oz::Array{Float64},
51 | xmin::Float64, ymin::Float64, zmin::Float64,
52 | xmax::Float64, ymax::Float64, zmax::Float64,
53 | reso::Float64)
54 | """
55 | sx: start x position [m]
56 | sy: start y position [m]
57 | sz: start z position [m]
58 | gx: goal x position [m]
59 | gy: goal y position [m]
60 | gz: goal z position [m]
61 | ox: x position list of Obstacles [m]
62 | oy: y position list of Obstacles [m]
63 | oz: z position list of Obstacles [m]
64 | reso: grid resolution [m]
65 | """
66 | tic()
67 |
68 | nstart = Node(Int(round(sx/reso)),Int(round(sy/reso)),Int(round(sz/reso)),0.0, -1)
69 | ngoal = Node(Int(round(gx/reso)),Int(round(gy/reso)),Int(round(gz/reso)),0.0, -1)
70 |
71 |
72 | ox = [iox/reso for iox in ox]
73 | oy = [ioy/reso for ioy in oy]
74 | oz = [ioz/reso for ioz in oz]
75 |
76 |
77 | obmap, minx, miny, minz, maxx, maxy, maxz, xw, yw, zw = calc_obstacle_map(ox, oy, oz, xmin, ymin, zmin, xmax, ymax, zmax, reso)
78 | miniTime = toq();
79 | # print("MiniTime ",miniTime,"\n")
80 | tic()
81 | #open, closed set
82 | open, closed = Dict{Int64, Node}(), Dict{Int64, Node}()
83 |
84 | pqOpen = Collections.PriorityQueue(Int64,Float64)
85 |
86 | open[calc_index(nstart, xw, zw, minx, miny, minz)] = nstart # ??????; weird if start is minx miny minz -> zero indexing!
87 | Collections.enqueue!(pqOpen,calc_index(nstart, xw, zw, minx, miny, minz),nstart.cost+H_WEIGHT*h(nstart.x - ngoal.x, nstart.y - ngoal.y, nstart.z-ngoal.z))
88 |
89 |
90 | motion = get_motion_model()
91 | nmotion = length(motion[:,1])
92 |
93 | tmpCounter = 1
94 | while true
95 | if length(open) == 0
96 | println("Error: No open set")
97 | break
98 | end
99 |
100 | c_id = Collections.dequeue!(pqOpen)
101 | current = open[c_id]
102 |
103 |
104 | if current.x == ngoal.x && current.y == ngoal.y && current.z == ngoal.z # check goal
105 | # println("Path found by A star!!")
106 | closed[c_id] = current
107 | break
108 | end
109 |
110 | delete!(open, c_id)
111 | closed[c_id] = current
112 |
113 | for i in 1:nmotion # expand search grid based on motion model
114 | node = Node(current.x+motion[i,1], current.y+motion[i,2], current.z+motion[i,3], current.cost+motion[i,4], c_id)
115 |
116 | # check boundary
117 | if (node.x - minx) >= xw continue end
118 | if (node.x - minx) <= 0 continue end
119 | if (node.y - miny) >= yw continue end
120 | if (node.y - miny) <= 0 continue end
121 | if (node.z - minz) >= zw continue end
122 | if (node.z - minz) <= 0 continue end
123 |
124 | #collision check
125 | if obmap[node.x-minx+1, node.y-miny+1, node.z-minz+1] continue end
126 |
127 | node_ind = calc_index(node, xw, zw, minx, miny, minz)
128 |
129 | # If it is already in the closed set, skip it
130 | if haskey(closed,node_ind) continue end
131 |
132 | if haskey(open, node_ind) # check if in open set
133 | if open[node_ind].cost > node.cost
134 | # If so, update the node to have a new parent
135 | open[node_ind].cost = node.cost
136 | open[node_ind].pind = c_id
137 | pqOpen[node_ind] = node.cost+H_WEIGHT*h(node.x - ngoal.x, node.y - ngoal.y, node.z-ngoal.z)
138 |
139 | end
140 | else # add to open set
141 | open[node_ind] = node
142 | Collections.enqueue!(pqOpen,node_ind,node.cost+H_WEIGHT*h(node.x - ngoal.x, node.y - ngoal.y, node.z-ngoal.z))
143 | end
144 | end # end nmotion
145 |
146 |
147 | tmpCounter = tmpCounter + 1
148 |
149 | end
150 | runTime = toq()
151 | rx, ry, rz = get_final_path(closed, ngoal, nstart, xw, zw, minx, miny, minz, reso)
152 |
153 | return rx, ry, rz, runTime
154 | end
155 |
156 |
157 | function get_motion_model()
158 | # dx, dy, dz, cost
159 | motion=[ -1 -1 -1 sqrt(3);
160 | -1 -1 0 sqrt(2);
161 | -1 -1 1 sqrt(3);
162 | -1 0 -1 sqrt(2);
163 | -1 0 0 1;
164 | -1 0 1 sqrt(2);
165 | -1 1 -1 sqrt(3);
166 | -1 1 0 sqrt(2);
167 | -1 1 1 sqrt(3);
168 | 0 -1 -1 sqrt(2);
169 | 0 -1 0 1;
170 | 0 -1 1 sqrt(2);
171 | 0 0 -1 1;
172 | 0 0 1 1;
173 | 0 1 -1 sqrt(2);
174 | 0 1 0 1;
175 | 0 1 1 sqrt(2);
176 | 1 -1 -1 sqrt(3);
177 | 1 -1 0 sqrt(2);
178 | 1 -1 1 sqrt(3);
179 | 1 0 -1 sqrt(2);
180 | 1 0 0 1;
181 | 1 0 1 sqrt(2);
182 | 1 1 -1 sqrt(3);
183 | 1 1 0 sqrt(2);
184 | 1 1 1 sqrt(3) ]
185 |
186 | return motion
187 | end
188 |
189 | function calc_index(node::Node, xwidth::Int, zwidth::Int, xmin::Int, ymin::Int64, zmin::Int64)
190 | return (node.y - ymin)*xwidth*zwidth + (node.x - xmin)*zwidth + (node.z-zmin)
191 | end
192 |
193 | function calc_obstacle_map( ox::Array{Float64}, oy::Array{Float64}, oz::Array{Float64},
194 | xmin::Float64, ymin::Float64, zmin::Float64,
195 | xmax::Float64, ymax::Float64, zmax::Float64, reso::Float64)
196 | # for easier handling
197 | push!(ox,xmin,xmax)
198 | push!(oy,ymin,ymax)
199 | push!(oz,zmin,zmax)
200 |
201 | minx = Int(round(minimum(ox)))
202 | miny = Int(round(minimum(oy)))
203 | minz = Int(round(minimum(oz)))
204 | maxx = Int(round(maximum(ox)))
205 | maxy = Int(round(maximum(oy)))
206 | maxz = Int(round(maximum(oz)))
207 |
208 | xwidth = Int(maxx - minx)
209 | ywidth = Int(maxy - miny)
210 | zwidth = Int(maxz - minz)
211 |
212 | obmap = fill(false, (xwidth,ywidth,zwidth))
213 |
214 | kdtree = KDTree(hcat(ox, oy, oz)')
215 | for ix in 1:xwidth
216 | x = (ix-1) + minx
217 | for iy in 1:ywidth
218 | y = (iy-1) + miny
219 | for iz in 1:zwidth
220 | z = (iz-1) + minz
221 |
222 | idxs, onedist = knn(kdtree, [x, y, z] , 1)
223 | if onedist[1] <= VEHICLE_RADIUS/reso
224 | obmap[ix,iy,iz] = true
225 | end
226 | end
227 | end
228 | end
229 |
230 | return obmap, minx, miny, minz, maxx, maxy, maxz, xwidth, ywidth, zwidth
231 | end
232 |
233 | function get_final_path(closed::Dict{Int64, Node},
234 | ngoal::Node,
235 | nstart::Node,
236 | xw::Int64,
237 | zw::Int64, # new
238 | minx::Int64,
239 | miny::Int64,
240 | minz::Int64, # new
241 | reso::Float64)
242 |
243 | rx, ry ,rz = [ngoal.x],[ngoal.y], [ngoal.z]
244 |
245 | nid = calc_index(ngoal, xw, zw, minx, miny, minz)
246 | while true
247 | n = closed[nid]
248 | push!(rx, n.x)
249 | push!(ry, n.y)
250 | push!(rz, n.z)
251 | nid = n.pind
252 |
253 | if rx[end] == nstart.x && ry[end] == nstart.y && rz[end] == nstart.z
254 | # println("done reconstructing path")
255 | break
256 | end
257 | end
258 |
259 | rx = reverse(rx) .* reso
260 | ry = reverse(ry) .* reso
261 | rz = reverse(rz) .* reso
262 |
263 | return rx, ry, rz
264 | end
265 |
266 |
267 | function search_min_cost_node(open::Dict{Int64, Node}, ngoal::Node,Hmat)
268 | mnode = nothing
269 | mcost = Inf
270 |
271 | # find best node in open set
272 | for n in values(open)
273 | # println("candidate node:", n)
274 | cost = n.cost + H_WEIGHT*Hmat[Int(n.x+1), Int(n.y+1), Int(n.z+1)] # compute gScore + hScore (cost from start to n + heuristics)
275 | if mcost > cost
276 | mnode = n
277 | mcost = cost
278 | end
279 | end
280 |
281 | return mnode
282 | end
283 |
284 |
285 | function h(x::Int, y::Int, z::Int)
286 | """
287 | Heuristic cost function
288 | """
289 | return sqrt(x^2 + y^2 + z^2);
290 | end
291 |
292 |
293 | # Only thing you need to do is that using calc_astar_path() with inputs.
294 | # sx, sy is start point
295 | # gx, gy is a goal point
296 | # ox, oy is obstacle position lists
297 | # and reso means grid resolution of A*.
298 |
299 | function main()
300 | close("all")
301 | println(PROGRAM_FILE," start A-star!!")
302 | i = 0
303 | horizonLengths = ones(100,1)
304 | for yy = 10 : 10 : 10 # 90
305 | for zz = 10 : 10 : 10 # 40
306 | i = i+1
307 |
308 | # all FLOAT for performance
309 | # everthing in [m] for convenience
310 | xmin = 0.0
311 | ymin = 0.0
312 | zmin = 0.0
313 | xmax = 105.0
314 | ymax = 105.0
315 | zmax = 55.0
316 |
317 | sx = 10.0 # [m]
318 | sy = 10.0 # [m]
319 | sz = 30.0 # [m]
320 |
321 | gx = 90.0 # [m]
322 | gy = 80.0 # [m]
323 | gy = Float64(yy)
324 | gz = 40.0 # [m]
325 | gz = Float64(zz)
326 | # build obstacles
327 |
328 | println("gy: ", gy)
329 | println("gz: ", gz)
330 |
331 | ox = Float64[]
332 | oy = Float64[]
333 | oz = Float64[]
334 |
335 | # first obstacle
336 | for xx in 20 : 25
337 | for yy in 0 : 105
338 | for zz in 6 : 55
339 | push!(ox,Float64(xx))
340 | push!(oy,Float64(yy))
341 | push!(oz,Float64(zz))
342 | end
343 | end
344 | end
345 |
346 | # second obstacle
347 | ox1 = Float64[]
348 | oy1 = Float64[]
349 | oz1 = Float64[]
350 |
351 | for xx = 70 : 75
352 | # left piece
353 | for yy = 0 : 40
354 | for zz = 0 : 55
355 | push!(ox, Float64(xx))
356 | push!(oy, Float64(yy))
357 | push!(oz, Float64(zz))
358 |
359 | push!(ox1, Float64(xx))
360 | push!(oy1, Float64(yy))
361 | push!(oz1, Float64(zz))
362 | end
363 | end
364 | # right piece
365 | for yy = 50 : 105
366 | for zz = 0 : 55
367 | push!(ox, Float64(xx))
368 | push!(oy,Float64(yy))
369 | push!(oz,Float64(zz))
370 |
371 | push!(ox1, Float64(xx))
372 | push!(oy1,Float64(yy))
373 | push!(oz1,Float64(zz))
374 | end
375 | end
376 | # top piece
377 | for yy = 40 : 50
378 | for zz = 30 : 55
379 | push!(ox, Float64(xx))
380 | push!(oy,Float64(yy))
381 | push!(oz,Float64(zz))
382 |
383 | push!(ox1, Float64(xx))
384 | push!(oy1,Float64(yy))
385 | push!(oz1,Float64(zz))
386 | end
387 | end
388 | # right piece
389 | for yy = 40 : 50
390 | for zz = 0 : 20
391 | push!(ox, Float64(xx))
392 | push!(oy,Float64(yy))
393 | push!(oz,Float64(zz))
394 |
395 | push!(ox1, Float64(xx))
396 | push!(oy1,Float64(yy))
397 | push!(oz1,Float64(zz))
398 | end
399 | end
400 | end
401 |
402 | rx, ry, rz = calc_astar_path( sx, sy, sz, # start
403 | gx, gy, gz, # goal
404 | ox, oy, oz, # list of obstacles
405 | xmin, ymin, zmin, # box constraint
406 | xmax, ymax, zmax, # box constraint
407 | 1.0 ) # other relevant arguments
408 |
409 | # plot problem setup
410 | fig = figure()
411 | hold(1)
412 | title("Test")
413 | ax = gca(projection="3d")
414 | plot3D(ox,oy,oz,".b")
415 | plot3D(ox1,oy1,oz1,".k")
416 | plot3D([sx],[sy],[sz],"xr")
417 | plot3D([gx],[gy],[gz],"xb")
418 | plot3D(rx,ry,rz,"--g")
419 | xlim([xmin, xmax])
420 | ylim([ymin, ymax])
421 | zlim([zmin, zmax])
422 | xlabel("X [m]")
423 | ylabel("Y [m]")
424 | zlabel("Z [m]")
425 |
426 | rx_smooth, ry_smooth, rz_smooth = smoothenPath(rx,ry,rz)
427 |
428 |
429 | end # end for-zz
430 | end # end for-xx
431 | # println("*** horizonLengths: ", horizonLengths)
432 | # println("*** min horizon: ", minimum(horizonLengths[1:i]))
433 | # println("*** max horizon: ", maximum(horizonLengths[1:i]))
434 |
435 | println(PROGRAM_FILE," Done!!")
436 | end
437 |
438 | if length(PROGRAM_FILE)!=0 &&
439 | contains(@__FILE__, PROGRAM_FILE)
440 |
441 | main()
442 | end
443 |
444 |
445 | # if contains(@__FILE__, PROGRAM_FILE)
446 | # main()
447 | # end
448 |
449 |
450 | end #module
451 |
452 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/constrSatisfaction.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 |
25 | function constrSatisfaction(x, u, timeScale,x0,xF,Ts,lambda,ob1,ob2,ob3,ob4,ob5,R)
26 |
27 | # xp: 12 x (N+1)
28 | # up: 4 x N
29 | # timeScalep : 1x(N+1)
30 |
31 | mass = 0.5;
32 | g = 9.81;
33 | reg = 0;
34 | reg2 = 1e-4;
35 | reg3 = 0.0001;
36 |
37 | k_F = 0.0611;#6.11*1e-8 #[N/rpm^2]
38 | k_M = 0.0015;#1.5*1e-9 #[Nm/rpm^2]
39 | I = [3.9,4.4,4.9]*1e-3 #[kg/m2]
40 | L = 0.225 #[m]
41 |
42 |
43 |
44 | # unwrap dual variables: lp = [l1p ; l2p ; l3p ; l4p ; l5p]
45 | l1 = lambda[1:6,:]
46 | l2 = lambda[7:12,:]
47 | l3 = lambda[13:18,:]
48 | l4 = lambda[19:24,:]
49 | l5 = lambda[25:30,:]
50 |
51 |
52 | w_H = sqrt((mass*g)/(k_F*4))
53 |
54 | N = size(x,2)-1
55 |
56 | tmp_slack = x[:,1] - x0'
57 | if norm(tmp_slack, Inf)>1e-3
58 | # println("initial state not satisfied")
59 | # println(tmp_slack)
60 | return false
61 | end
62 |
63 | tmp_slack = x[:,end] - xF'
64 | if norm(tmp_slack, Inf)>1e-3
65 | # println("final state not satisfied")
66 | # println(tmp_slack)
67 | return false
68 | end
69 |
70 | A = [eye(3);
71 | -eye(3)];
72 |
73 | b1 = ob1
74 | b2 = ob2
75 | b3 = ob3
76 | b4 = ob4
77 | b5 = ob5
78 |
79 |
80 | for i = 1 : N
81 | # check input constraints
82 | tmp_slack = [1.2 ; 1.2 ; 1.2 ; 1.2] - u[:,i] # must be <= 0
83 | if maximum(tmp_slack) > 0
84 | # println("input constraint 1 not satisfied at i = ", i)
85 | # println(tmp_slack)
86 | return false
87 | end
88 | # for j = 1 : 4
89 | # if tmp_slack[j] >0
90 | # println("input constraint 1 not satisfied at i = ", i)
91 | # println(tmp_slack)
92 | # end
93 | # end
94 | tmp_slack = u[:,i] - [7.8 ; 7.8 ; 7.8 ; 7.8] # must be <= 0
95 | if maximum(tmp_slack)>0
96 | # println("input constraint 2 not satisfied at i = ", i)
97 | # println(tmp_slack)
98 | return false
99 | end
100 | # for j = 1 : 4
101 | # if tmp_slack[j] >0
102 | # println("input constraint 2 not satisfied at i = ", i)
103 | # println(tmp_slack)
104 | # end
105 | # end
106 | # check state box constraints
107 | tmp_slack = [0;0;0;-3;-0.2;-0.2;-1;-1;-1;-1.5;-1;-1] - x[:,i]
108 | if maximum(tmp_slack)>0
109 | # println("state constraint 1 not satisfied at i = ", i)
110 | # println(tmp_slack)
111 | return false
112 | end
113 | # for j = 1 : 7
114 | # if tmp_slack[j] >0
115 | # println("state constraint 1 not satisfied at i = ", i)
116 | # println(tmp_slack)
117 | # end
118 | # end
119 | tmp_slack = x[:,i] - [10;10;5;3;0.2;0.2;1;1;1;3;1;1]
120 | if maximum(tmp_slack)>0
121 | # println("state constraint 2 not satisfied at i = ", i)
122 | # println(tmp_slack)
123 | return false
124 | end
125 | # for j = 1 : 7
126 | # if tmp_slack[j] >0
127 | # println("state constraint 2 not satisfied at i = ", i)
128 | # println(tmp_slack)
129 | # end
130 | # end
131 |
132 | # check state dynamic constraints
133 | #X,Y,Z
134 |
135 | tmp_slack = zeros(13,1)
136 | tmp_slack[1] = x[1,i+1] - ( x[1,i] + timeScale[i]*Ts*x[7,i] )
137 | tmp_slack[2] = x[2,i+1] - ( x[2,i] + timeScale[i]*Ts*x[8,i] )
138 | tmp_slack[3] = x[3,i+1] - ( x[3,i] + timeScale[i]*Ts*x[9,i] )
139 | # pitch, roll, yaw
140 | tmp_slack[4] = x[4,i+1] - ( x[4,i] + timeScale[i]*Ts*( cos(x[5,i]) *x[10,i] +sin(x[5,i]) *x[12,i]) )
141 | tmp_slack[5] = x[5,i+1] - ( x[5,i] + timeScale[i]*Ts*( sin(x[5,i])*tan(x[4,i])*x[10,i]+x[11,i]-cos(x[5,i])*tan(x[4,i])*x[12,i]) )
142 | tmp_slack[6] = x[6,i+1] - ( x[6,i] + timeScale[i]*Ts*(-sin(x[5,i])*sec(x[4,i])*x[10,i] +cos(x[5,i])*sec(x[4,i])*x[12,i]) )
143 | #v_x, v_y, v_z
144 | tmp_slack[7] = x[7,i+1] - ( x[7,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( sin(x[4,i])*cos(x[5,i])*sin(x[6,i]) + sin(x[5,i])*cos(x[6,i]) )) )
145 | tmp_slack[8] = x[8,i+1] - ( x[8,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*(-sin(x[4,i])*cos(x[5,i])*cos(x[6,i]) + sin(x[5,i])*sin(x[6,i]) )) )
146 | # tmp_slack[9] = x[9,i+1] - ( x[9,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( cos(x[4,i])*cos(x[5,i])) - mass*g ) )
147 | tmp_slack[9] = x[9,i+1] - ( x[9,i] + timeScale[i]*Ts*1/mass*(sum(k_F*u[j,i]^2 for j=1:4)*( cos(x[4,i])*cos(x[5,i])) - mass*g ) )
148 |
149 |
150 | # pitch_rate, roll_rate
151 | tmp_slack[10] = x[10,i+1] - ( x[10,i] + timeScale[i]*Ts*1/I[1]*(L*k_F*(u[2,i]^2 - u[4,i]^2) - (I[3] - I[2])*x[11]*x[12]) )
152 | tmp_slack[11] = x[11,i+1] - ( x[11,i] + timeScale[i]*Ts*1/I[2]*(L*k_F*(u[3,i]^2 - u[1,i]^2) - (I[1] - I[3])*x[10]*x[12]) )
153 | tmp_slack[12] = x[12,i+1] - ( x[12,i] + timeScale[i]*Ts*1/I[3]*(k_M*(u[1,i]^2 - u[2,i]^2 + u[3,i]^2 - u[4,i]^2) - (I[2] - I[1])*x[10]*x[11]) )
154 | tmp_slack[13] = timeScale[i] - timeScale[i+1]
155 |
156 | if norm(tmp_slack, Inf)>1e-3
157 | # println("state dynamics / timeScale inside verification not satisfied at i = ", i)
158 | # println(tmp_slack)
159 | return false
160 | end
161 |
162 | if minimum(minimum(lambda)) < -1e-3
163 | # println("dual variables constraints ", i)
164 | # println(lambda)
165 | return false
166 | end
167 |
168 |
169 | # checking of obstacle avoidance constraints
170 |
171 | tmp_slack = zeros(5,1)
172 | tmp_slack[1] = (l1[1,i]-l1[4,i])^2 + (l1[2,i]-l1[5,i])^2 + (l1[3,i]-l1[6,i])^2 - 1 # should be <= 0
173 | tmp_slack[2] = (l2[1,i]-l2[4,i])^2 + (l2[2,i]-l2[5,i])^2 + (l2[3,i]-l2[6,i])^2 - 1
174 | tmp_slack[3] = (l3[1,i]-l3[4,i])^2 + (l3[2,i]-l3[5,i])^2 + (l3[3,i]-l3[6,i])^2 - 1
175 | tmp_slack[4] = (l4[1,i]-l4[4,i])^2 + (l4[2,i]-l4[5,i])^2 + (l4[3,i]-l4[6,i])^2 - 1
176 | tmp_slack[5] = (l5[1,i]-l5[4,i])^2 + (l5[2,i]-l5[5,i])^2 + (l5[3,i]-l5[6,i])^2 - 1
177 |
178 | if maximum(tmp_slack) > 1e-3
179 | # println("obstacle avoidance constraints 1 violated")
180 | # println(tmp_slack)
181 | return false
182 | end
183 |
184 | tmp_slack = zeros(5,1)
185 | tmp_slack[1] = sum(-b1[j]*l1[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l1[j,i] for j=1:6) +
186 | x[2,i]*sum(A[j,2]*l1[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l1[j,i] for j=1:6) - R # should be >=0
187 | tmp_slack[2] = sum(-b2[j]*l2[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l2[j,i] for j=1:6) +
188 | x[2,i]*sum(A[j,2]*l2[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l2[j,i] for j=1:6) - R
189 | tmp_slack[3] = sum(-b3[j]*l3[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l3[j,i] for j=1:6) +
190 | x[2,i]*sum(A[j,2]*l3[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l3[j,i] for j=1:6) - R
191 | tmp_slack[4] = sum(-b4[j]*l4[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l4[j,i] for j=1:6) +
192 | x[2,i]*sum(A[j,2]*l4[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l4[j,i] for j=1:6) - R
193 | tmp_slack[5] = sum(-b5[j]*l5[j,i] for j = 1:6) + x[1,i]*sum(A[j,1]*l5[j,i] for j=1:6) +
194 | x[2,i]*sum(A[j,2]*l5[j,i] for j=1:6) + x[3,i]*sum(A[j,3]*l5[j,i] for j=1:6) - R
195 | if minimum(tmp_slack) < -1e-3
196 | # println("obstacle avoidance constraints 2 violated")
197 | # println(tmp_slack)
198 | return false
199 | end
200 | end
201 |
202 | # all constraints satisfied
203 | return true
204 | end
205 |
206 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/mainQuadcopter.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # Main file: computes Collision-Free and Minimum-Penetration trajectories for parking
26 | # run setup.jl before running this file
27 | ###############
28 |
29 |
30 |
31 |
32 | # function defined in setup.jl
33 | clear()
34 | close("all")
35 |
36 | egoR = 0.25
37 |
38 | ob12 = [2.5,12,7, -2,2,-0.6]
39 |
40 | ob22 = [7.5,12,7, -7,-5,2]
41 | ob32 = [7.5,4, 7, -7, 2,2]
42 |
43 | ob42 = [7.5,5, 2, -7,-4,2]
44 | ob52 = [7.5,5, 7, -7,-4,-3]
45 |
46 | ob6 = [10,10, 5, 0,0, 0]
47 |
48 | # x0 = [1,Y,Z,0,0,0] Y and Z can be modified
49 | x0 = [1 1 3 0 0 0 0 0 0 0 0 0]
50 | # xF = [9,Y,Z,0,0,0] Y and Z can be modified
51 | xF = [9 3 2 0 0 0 0 0 0 0 0 0]
52 |
53 | # reshape the state
54 | Ts = 0.25
55 | timeScalep = 0.5;
56 |
57 | ################## construct environment for hybrid A-star ##################
58 | ### note: environment scaled by 10x for convenience ###
59 | ox = Float64[]
60 | oy = Float64[]
61 | oz = Float64[]
62 | # first wall
63 | for xx in 20 : 25
64 | for yy in 0 : 105
65 | for zz in 6 : 55
66 | push!(ox,Float64(xx))
67 | push!(oy,Float64(yy))
68 | push!(oz,Float64(zz))
69 | end
70 | end
71 | end
72 | # second wall; only for plotting purposes
73 | for xx = 70 : 75
74 | # left piece
75 | for yy = 0 : 40
76 | for zz = 0 : 55
77 | push!(ox, Float64(xx))
78 | push!(oy, Float64(yy))
79 | push!(oz, Float64(zz))
80 | end
81 | end
82 | # right piece
83 | for yy = 50 : 105
84 | for zz = 0 : 55
85 | push!(ox, Float64(xx))
86 | push!(oy,Float64(yy))
87 | push!(oz,Float64(zz))
88 | end
89 | end
90 | # top piece
91 | for yy = 40 : 50
92 | for zz = 30 : 55
93 | push!(ox, Float64(xx))
94 | push!(oy,Float64(yy))
95 | push!(oz,Float64(zz))
96 | end
97 | end
98 | # right piece
99 | for yy = 40 : 50
100 | for zz = 0 : 20
101 | push!(ox, Float64(xx))
102 | push!(oy,Float64(yy))
103 | push!(oz,Float64(zz))
104 | end
105 | end
106 | end
107 | # room size
108 | xmin = 0.0
109 | ymin = 0.0
110 | zmin = 0.0
111 | xmax = 105.0
112 | ymax = 105.0
113 | zmax = 55.0
114 | # extract start and end position
115 | sx = x0[1]*10.0 # [m]
116 | sy = x0[2]*10.0 # [m]
117 | sz = x0[3]*10.0 # [m]
118 | gx = xF[1]*10.0 # [m]
119 | gy = xF[2]*10.0 # [m]
120 | gz = xF[3]*10.0 # [m]
121 | # call A* algorithm
122 | rx, ry, rz, rtime = a_star.calc_astar_path( sx, sy, sz, # start
123 | gx, gy, gz, # goal
124 | ox, oy, oz, # list of obstacles
125 | xmin, ymin, zmin, # box constraint
126 | xmax, ymax, zmax, # box constraint
127 | 1.0 ) # (scaled) grid resolution
128 |
129 | N_as = length(rx)-1 # length of Astar
130 | # nominal sampling time
131 | Ts_as = round((Ts*80/N_as)*100)/100 # scale sampling time for Astar
132 |
133 | ###### stitch together Astar solution for warm starting ######
134 | rxryrz=[rx'/10 ; ry'/10 ; rz'/10]
135 | vWS = zeros(3,N_as+1)
136 | xWS_as = [rx'/10 ; ry'/10 ; rz'/10 ; zeros(3,N_as+1) ; vWS ; zeros(3,N_as+1) ];
137 | uWS_as = 0.5*ones(4,N_as); # same length as horizon
138 | timeWS_as = 1
139 | # not plotting might get rid of IPOPT restoration failure messages...
140 | # plotTrajQuadcopter(xWS_as',uWS_as',N_as,egoR,ob12,ob22,ob32,ob42,ob52,ob6,egoR,"Warm Start (A*) ",0)
141 |
142 |
143 | ######### trajectory with Distance Approach
144 | println("Trajectory using Distance Approach (Collision Avoidance, A star)")
145 | xp1_as,up1_as,scaleTime1_as,exitflag1_as,time1_as,l1_as,exitstatus1_as = QuadcopterDist(x0,xF,N_as,Ts_as,egoR,ob12,ob22,ob32,ob42,ob52,xWS_as,uWS_as,timeWS_as)
146 | plotTrajQuadcopter(xp1_as',up1_as',N_as,egoR,ob12,ob22,ob32,ob42,ob52,ob6,egoR,"Collision Avoidance with distance approach ",10)
147 | trajFeas1_as = constrSatisfaction(xp1_as,up1_as,scaleTime1_as,x0,xF,Ts_as,l1_as,ob12,ob22,ob32,ob42,ob52,egoR)
148 |
149 |
150 | ######### trajectory with Signed Distance Approach
151 | println("Trajectory using Signed Distance Approach (Minimum Penetration, A star)")
152 | xp2_as,up2_as,scaleTime2_as,exitflag2_as,time2_as,l2_as,exitstatus2_as = QuadcopterSignedDist(x0,xF,N_as,Ts_as,egoR,ob12,ob22,ob32,ob42,ob52,xWS_as,uWS_as,timeWS_as)
153 | plotTrajQuadcopter(xp2_as',up2_as',N_as,egoR,ob12,ob22,ob32,ob42,ob52,ob6,egoR,"Minimum Penetration with signed-distance approach",20)
154 | trajFeas2_as = constrSatisfaction(xp2_as,up2_as,scaleTime2_as,x0,xF,Ts_as,l2_as,ob12,ob22,ob32,ob42,ob52,egoR)
155 |
156 | println("---- Done ----")
157 |
158 |
--------------------------------------------------------------------------------
/QuadcopterNavigation/plotTrajQuadcopter.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 |
25 | function plotTrajQuadcopter(xp,up,N,ego,ob1,ob2,ob3,ob4,ob5,ob6,R,disp_title,figNumOffset)
26 | ###########
27 | for i = 1:2
28 | if ob1[i] >= 10
29 | ob1[i] = 10
30 | end
31 | end
32 | if ob1[3] >= 5
33 | ob1[3] = 5
34 | end
35 | for i = 4:5
36 | if ob1[i] >= 0
37 | ob1[i] = 0
38 | end
39 | end
40 | if ob1[6] >= 0
41 | ob1[6] = 0
42 | end
43 | ###########
44 | for i = 1:2
45 | if ob2[i] >= 10
46 | ob2[i] = 10
47 | end
48 | end
49 | if ob2[3] >= 5
50 | ob2[3] = 5
51 | end
52 | for i = 4:5
53 | if ob2[i] >= 0
54 | ob2[i] = 0
55 | end
56 | end
57 | if ob2[6] >= 0
58 | ob2[6] = 0
59 | end
60 | ###########
61 | for i = 1:2
62 | if ob3[i] >= 10
63 | ob3[i] = 10
64 | end
65 | end
66 | if ob3[3] >= 5
67 | ob3[3] = 5
68 | end
69 | for i = 4:5
70 | if ob3[i] >= 0
71 | ob3[i] = 0
72 | end
73 | end
74 | if ob3[6] >= 0
75 | ob3[6] = 0
76 | end
77 | ###########
78 | for i = 1:2
79 | if ob4[i] >= 10
80 | ob4[i] = 10
81 | end
82 | end
83 | if ob4[3] >= 5
84 | ob4[3] = 5
85 | end
86 | for i = 4:5
87 | if ob4[i] >= 0
88 | ob4[i] = 0
89 | end
90 | end
91 | if ob4[6] >= 0
92 | ob4[6] = 0
93 | end
94 | ###########
95 | for i = 1:2
96 | if ob5[i] >= 10
97 | ob5[i] = 10
98 | end
99 | end
100 | if ob5[3] >= 5
101 | ob5[3] = 5
102 | end
103 | for i = 4:5
104 | if ob5[i] >= 0
105 | ob5[i] = 0
106 | end
107 | end
108 | if ob5[6] >= 0
109 | ob5[6] = 0
110 | end
111 |
112 | # println(ob1)
113 | # println(ob2)
114 | # println(ob3)
115 | # println(ob4)
116 | # println(ob5)
117 | # println(ob6)
118 |
119 | obcenter1 = [(ob1[1]+ob1[4])/2-ob1[4];
120 | (ob1[2]+ob1[5])/2-ob1[5];
121 | (ob1[3]+ob1[6])/2-ob1[6]]
122 |
123 | obcenter2 = [(ob2[1]+ob2[4])/2-ob2[4];
124 | (ob2[2]+ob2[5])/2-ob2[5];
125 | (ob2[3]+ob2[6])/2-ob2[6]]
126 |
127 | obcenter3 = [(ob3[1]+ob3[4])/2-ob3[4];
128 | (ob3[2]+ob3[5])/2-ob3[5];
129 | (ob3[3]+ob3[6])/2-ob3[6]]
130 |
131 | obcenter4 = [(ob4[1]+ob4[4])/2-ob4[4];
132 | (ob4[2]+ob4[5])/2-ob4[5];
133 | (ob4[3]+ob4[6])/2-ob4[6]]
134 |
135 | obcenter5 = [(ob5[1]+ob5[4])/2-ob5[4];
136 | (ob5[2]+ob5[5])/2-ob5[5];
137 | (ob5[3]+ob5[6])/2-ob5[6]]
138 |
139 | obcenter6 = [(ob6[1]+ob6[4])/2-ob6[4];
140 | (ob6[2]+ob6[5])/2-ob6[5];
141 | (ob6[3]+ob6[6])/2-ob6[6]]
142 |
143 |
144 |
145 | L_tv1 = ob1[1]+ob1[4]
146 | W_tv1 = ob1[2]+ob1[5]
147 | H_tv1 = ob1[3]+ob1[6]
148 |
149 | L_tv2 = ob2[1]+ob2[4]
150 | W_tv2 = ob2[2]+ob2[5]
151 | H_tv2 = ob2[3]+ob2[6]
152 |
153 | L_tv3 = ob3[1]+ob3[4]
154 | W_tv3 = ob3[2]+ob3[5]
155 | H_tv3 = ob3[3]+ob3[6]
156 |
157 | L_tv4 = ob4[1]+ob4[4]
158 | W_tv4 = ob4[2]+ob4[5]
159 | H_tv4 = ob4[3]+ob4[6]
160 |
161 | L_tv5 = ob5[1]+ob5[4]
162 | W_tv5 = ob5[2]+ob5[5]
163 | H_tv5 = ob5[3]+ob5[6]
164 |
165 | L_tv6 = ob6[1]+ob6[4]
166 | W_tv6 = ob6[2]+ob6[5]
167 | H_tv6 = ob6[3]+ob6[6]
168 |
169 | for i = 1:1:N
170 | ######### X-Y plot #############
171 | figure(1+figNumOffset)
172 | # subplot(3,1,1)
173 | carBox(obcenter1,0,W_tv1/2,L_tv1/2)
174 | title("X-Y plot")
175 | hold(1)
176 | carBox(obcenter2,0,W_tv2/2,L_tv2/2)
177 | carBox(obcenter3,0,W_tv3/2,L_tv3/2)
178 | carBox(obcenter4,0,W_tv4/2,L_tv4/2)
179 | carBox(obcenter5,0,W_tv5/2,L_tv5/2)
180 | carBox(obcenter6,0,W_tv6/2,L_tv6/2)
181 |
182 |
183 | x0 = [xp[i,1];
184 | xp[i,2]]
185 |
186 | plot(xp[1:i,1],xp[1:i,2],"b")
187 | hold(1)
188 | quadCircle(x0,R)
189 |
190 | axis("equal")
191 | axis([-2,12,-2,12])
192 | hold(0)
193 |
194 | ######### X-Z plot #############
195 | figure(2+figNumOffset)
196 | carBox(obcenter1[[1,3]],0,H_tv1/2,L_tv1/2)
197 | title("X-Z plot")
198 | hold(1)
199 | carBox(obcenter2[[1,3]],0,H_tv2/2,L_tv2/2)
200 | carBox(obcenter3[[1,3]],0,H_tv3/2,L_tv3/2)
201 | carBox(obcenter4[[1,3]],0,H_tv4/2,L_tv4/2)
202 | carBox(obcenter5[[1,3]],0,H_tv5/2,L_tv5/2)
203 | carBox(obcenter6[[1,3]],0,H_tv6/2,L_tv6/2)
204 |
205 |
206 | x0 = [xp[i,1];
207 | xp[i,3]]
208 |
209 | plot(xp[1:i,1],xp[1:i,3],"b")
210 | hold(1)
211 | quadCircle(x0,R)
212 |
213 | axis("equal")
214 | axis([-2,12,-1,6])
215 | hold(0)
216 |
217 | # 3D plots
218 | figure(3+figNumOffset)
219 |
220 | x0 = [xp[i,1];
221 | xp[i,2];
222 | xp[i,3]]
223 |
224 | plot3D(xp[1:i,1],xp[1:i,2],xp[1:i,3],"b")
225 | title(disp_title)
226 | hold(1)
227 | Box3D(obcenter1,L_tv1/2,W_tv1/2,H_tv1/2)
228 | Box3D(obcenter2,L_tv2/2,W_tv2/2,H_tv2/2)
229 | Box3D(obcenter3,L_tv3/2,W_tv3/2,H_tv3/2)
230 | Box3D(obcenter4,L_tv4/2,W_tv4/2,H_tv4/2)
231 | Box3D(obcenter5,L_tv5/2,W_tv5/2,H_tv5/2)
232 | Box3D(obcenter6,L_tv6/2,W_tv6/2,H_tv6/2)
233 | quadBall(x0,R)
234 |
235 | axis("equal")
236 | axis([0,10,0,10])
237 | zlim([0,5])
238 | hold(0)
239 |
240 | sleep(0.001)
241 | end
242 |
243 | # for i = 1:1:N
244 | # figure(3+figNumOffset)
245 | #
246 | # x0 = [xp[i,1];
247 | # xp[i,2];
248 | # xp[i,3]]
249 | #
250 | # plot3D(xp[1:i,1],xp[1:i,2],xp[1:i,3],"b")
251 | # title(disp_title)
252 | # hold(1)
253 | # Box3D(obcenter1,L_tv1/2,W_tv1/2,H_tv1/2)
254 | # Box3D(obcenter2,L_tv2/2,W_tv2/2,H_tv2/2)
255 | # Box3D(obcenter3,L_tv3/2,W_tv3/2,H_tv3/2)
256 | # Box3D(obcenter4,L_tv4/2,W_tv4/2,H_tv4/2)
257 | # Box3D(obcenter5,L_tv5/2,W_tv5/2,H_tv5/2)
258 | # Box3D(obcenter6,L_tv6/2,W_tv6/2,H_tv6/2)
259 | # quadBall(x0,R)
260 | #
261 | # axis("equal")
262 | # axis([0,10,0,10])
263 | # zlim([0,5])
264 | # hold(0)
265 | #
266 | # sleep(0.01)
267 | # end
268 |
269 |
270 | end
271 |
272 |
273 | function carBox(x0,phi,w,l)
274 |
275 | car1 = x0[1:2] + [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
276 | car2 = x0[1:2] + [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
277 | car3 = x0[1:2] - [cos(phi)*l;sin(phi)*l] + [sin(phi)*w;-cos(phi)*w];
278 | car4 = x0[1:2] - [cos(phi)*l;sin(phi)*l] - [sin(phi)*w;-cos(phi)*w];
279 |
280 | plot([car1[1],car2[1],car4[1],car3[1],car1[1]],[car1[2],car2[2],car4[2],car3[2],car1[2]],"k")
281 |
282 | end
283 |
284 | function Box3D(x0,l,w,h)
285 |
286 | X = x0[1] + [l,l,-l,-l,l]
287 | Y = x0[2] + [-w,w,w,-w,-w]
288 | Z = x0[3] + [-h,-h,-h,-h,-h]
289 |
290 | plot3D(X,Y,Z,"k")
291 |
292 | Z = x0[3] + [h,h,h,h,h]
293 | plot3D(X,Y,Z,"k")
294 |
295 | X = x0[1] + [l,l]
296 | Y = x0[2] + [-w,-w]
297 | Z = x0[3] + [-h, h]
298 | plot3D(X,Y,Z,"k")
299 |
300 | X = x0[1] + [l,l]
301 | Y = x0[2] + [w,w]
302 | Z = x0[3] + [-h, h]
303 | plot3D(X,Y,Z,"k")
304 |
305 | X = x0[1] + [-l,-l]
306 | Y = x0[2] + [-w,-w]
307 | Z = x0[3] + [-h, h]
308 | plot3D(X,Y,Z,"k")
309 |
310 | X = x0[1] + [-l,-l]
311 | Y = x0[2] + [w,w]
312 | Z = x0[3] + [-h, h]
313 | plot3D(X,Y,Z,"k")
314 |
315 | end
316 |
317 | function quadCircle(x0,R)
318 | phi = linspace(0,2*pi,30);
319 | X = x0[1] + R*cos(phi)
320 | Y = x0[2] + R*sin(phi)
321 | plot(X,Y,"k")
322 |
323 | end
324 |
325 | function quadBall(x0,R)
326 | phi = linspace(0,2*pi,30);
327 |
328 | X = x0[1] + R*cos(phi)
329 | Y = x0[2] + R*sin(phi)
330 | Z = x0[3]
331 | plot3D(X,Y,Z,"k")
332 |
333 | X = x0[1] + R*cos(phi)
334 | Y = x0[2] + zeros(30,1)
335 | Z = x0[3] + R*sin(phi)
336 | plot3D(X,Y,Z,"k")
337 |
338 | X = x0[1] + zeros(30,1)
339 | Y = x0[2] + R*cos(phi)
340 | Z = x0[3] + R*sin(phi)
341 | plot3D(X,Y,Z,"k")
342 |
343 | end
--------------------------------------------------------------------------------
/QuadcopterNavigation/setupQuadcopter.jl:
--------------------------------------------------------------------------------
1 | ###############
2 | # OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
3 | # Copyright (C) 2018
4 | # Alexander LINIGER [liniger@control.ee.ethz.ch; Automatic Control Lab, ETH Zurich]
5 | # Xiaojing ZHANG [xiaojing.zhang@berkeley.edu; MPC Lab, UC Berkeley]
6 | #
7 | # This program is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # This program is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with this program. If not, see .
19 | ###############
20 | # The paper describing the theory can be found here:
21 | # X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017, [https://arxiv.org/abs/1711.03449]
22 | ###############
23 |
24 | ###############
25 | # run this file before running main.jl
26 | ###############
27 |
28 | using JuMP, Ipopt, PyPlot
29 | include("QuadcopterDist.jl")
30 | include("QuadcopterSignedDist.jl")
31 | include("plotTrajQuadcopter.jl")
32 | include("a_star_3D.jl")
33 | include("constrSatisfaction.jl")
34 |
35 |
36 | clear() = run(@static is_unix() ? `clear` : `cmd /c cls`)
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # OBCA
2 | Optimization-Based Collision Avoidance - a path planner for autonomous navigation
3 |
4 | Paper describing the theory can be found [here](http://arxiv.org/abs/1711.03449).
5 |
6 | *Note*: An OBCA version specialized towards autonomous parking can be found at [H-OBCA](https://github.com/XiaojingGeorgeZhang/H-OBCA).
7 |
8 | ## Short Description
9 | OBCA is a novel method for formulating collision avoidance constraints. It provides a smooth reformulation of collision avoidance constraints, allowing the use of generic non-linear optimization solvers.
10 |
11 | OBCA can be used to in path planning algorithms to generate *high-quality paths* that satisfy the system dynamics as well as satefy constraints. We provide [Julia](https://julialang.org/)-based implementations for a quadcopter navigation problem and for autonomous parking problems.
12 |
13 | ## Examples
14 |
15 |
16 | ### OBCA for Quadcopter Navigation
17 |
18 |
19 | ### OBCA for Autonomous Parking
20 |
21 | #### Backwards Parking
22 |
23 |
24 | #### Parallel Parking
25 |
26 |
27 | #### Parking of Truck with Trailer
28 |
29 |
30 |
--------------------------------------------------------------------------------
/images/TrajBack_ParkingVideo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/XiaojingGeorgeZhang/OBCA/bc9d799e5c85a77ab0c5c3f87dec9a90d2e3e9a2/images/TrajBack_ParkingVideo.gif
--------------------------------------------------------------------------------
/images/TrajPar_ParkingVideo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/XiaojingGeorgeZhang/OBCA/bc9d799e5c85a77ab0c5c3f87dec9a90d2e3e9a2/images/TrajPar_ParkingVideo.gif
--------------------------------------------------------------------------------
/images/TrajQuad_3D_Video.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/XiaojingGeorgeZhang/OBCA/bc9d799e5c85a77ab0c5c3f87dec9a90d2e3e9a2/images/TrajQuad_3D_Video.gif
--------------------------------------------------------------------------------
/images/TrajTrailer_ParkingVideo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/XiaojingGeorgeZhang/OBCA/bc9d799e5c85a77ab0c5c3f87dec9a90d2e3e9a2/images/TrajTrailer_ParkingVideo.gif
--------------------------------------------------------------------------------