├── README.md
└── IPL_2024_Match.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # KMeans
--------------------------------------------------------------------------------
/IPL_2024_Match.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": []
7 | },
8 | "kernelspec": {
9 | "name": "python3",
10 | "display_name": "Python 3"
11 | },
12 | "language_info": {
13 | "name": "python"
14 | }
15 | },
16 | "cells": [
17 | {
18 | "cell_type": "code",
19 | "execution_count": 7,
20 | "metadata": {
21 | "id": "DZRMQ4fQbkOv"
22 | },
23 | "outputs": [],
24 | "source": [
25 | "import pandas as pd\n",
26 | "import matplotlib.pyplot as plt\n",
27 | "import numpy as np\n",
28 | "import scipy.cluster.hierarchy as shc\n",
29 | "from sklearn.preprocessing import StandardScaler"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "source": [
35 | "data = pd.read_excel(\"/content/IPL MATCH.xlsx\")\n",
36 | "data"
37 | ],
38 | "metadata": {
39 | "colab": {
40 | "base_uri": "https://localhost:8080/",
41 | "height": 363
42 | },
43 | "id": "YraOWLZMcx1s",
44 | "outputId": "a62b0cbb-896a-4263-8822-606c127d3ab5"
45 | },
46 | "execution_count": 2,
47 | "outputs": [
48 | {
49 | "output_type": "execute_result",
50 | "data": {
51 | "text/plain": [
52 | " Rank Teams Match W L Points NRR\n",
53 | "0 1 Kolkata Knight Riders 3 3 0 6 2.518\n",
54 | "1 2 Rajasthan Royals 3 3 0 6 1.249\n",
55 | "2 3 Chennai Super Kings 4 2 2 4 0.517\n",
56 | "3 4 Lucknow Super Giants 3 2 1 4 0.483\n",
57 | "4 5 Sunrisers Hyderabad 4 2 2 4 0.409\n",
58 | "5 6 Punjab Kings 4 2 2 4 -0.220\n",
59 | "6 7 Gujarat Titans 4 2 2 4 -0.580\n",
60 | "7 8 Royal Challengers Bengaluru 4 1 3 2 -0.876\n",
61 | "8 9 Delhi Capitals 4 1 3 2 -1.347\n",
62 | "9 10 Mumbai Indians 3 0 3 0 -1.423"
63 | ],
64 | "text/html": [
65 | "\n",
66 | "
\n",
67 | "
\n",
68 | "\n",
81 | "
\n",
82 | " \n",
83 | " \n",
84 | " | \n",
85 | " Rank | \n",
86 | " Teams | \n",
87 | " Match | \n",
88 | " W | \n",
89 | " L | \n",
90 | " Points | \n",
91 | " NRR | \n",
92 | "
\n",
93 | " \n",
94 | " \n",
95 | " \n",
96 | " | 0 | \n",
97 | " 1 | \n",
98 | " Kolkata Knight Riders | \n",
99 | " 3 | \n",
100 | " 3 | \n",
101 | " 0 | \n",
102 | " 6 | \n",
103 | " 2.518 | \n",
104 | "
\n",
105 | " \n",
106 | " | 1 | \n",
107 | " 2 | \n",
108 | " Rajasthan Royals | \n",
109 | " 3 | \n",
110 | " 3 | \n",
111 | " 0 | \n",
112 | " 6 | \n",
113 | " 1.249 | \n",
114 | "
\n",
115 | " \n",
116 | " | 2 | \n",
117 | " 3 | \n",
118 | " Chennai Super Kings | \n",
119 | " 4 | \n",
120 | " 2 | \n",
121 | " 2 | \n",
122 | " 4 | \n",
123 | " 0.517 | \n",
124 | "
\n",
125 | " \n",
126 | " | 3 | \n",
127 | " 4 | \n",
128 | " Lucknow Super Giants | \n",
129 | " 3 | \n",
130 | " 2 | \n",
131 | " 1 | \n",
132 | " 4 | \n",
133 | " 0.483 | \n",
134 | "
\n",
135 | " \n",
136 | " | 4 | \n",
137 | " 5 | \n",
138 | " Sunrisers Hyderabad | \n",
139 | " 4 | \n",
140 | " 2 | \n",
141 | " 2 | \n",
142 | " 4 | \n",
143 | " 0.409 | \n",
144 | "
\n",
145 | " \n",
146 | " | 5 | \n",
147 | " 6 | \n",
148 | " Punjab Kings | \n",
149 | " 4 | \n",
150 | " 2 | \n",
151 | " 2 | \n",
152 | " 4 | \n",
153 | " -0.220 | \n",
154 | "
\n",
155 | " \n",
156 | " | 6 | \n",
157 | " 7 | \n",
158 | " Gujarat Titans | \n",
159 | " 4 | \n",
160 | " 2 | \n",
161 | " 2 | \n",
162 | " 4 | \n",
163 | " -0.580 | \n",
164 | "
\n",
165 | " \n",
166 | " | 7 | \n",
167 | " 8 | \n",
168 | " Royal Challengers Bengaluru | \n",
169 | " 4 | \n",
170 | " 1 | \n",
171 | " 3 | \n",
172 | " 2 | \n",
173 | " -0.876 | \n",
174 | "
\n",
175 | " \n",
176 | " | 8 | \n",
177 | " 9 | \n",
178 | " Delhi Capitals | \n",
179 | " 4 | \n",
180 | " 1 | \n",
181 | " 3 | \n",
182 | " 2 | \n",
183 | " -1.347 | \n",
184 | "
\n",
185 | " \n",
186 | " | 9 | \n",
187 | " 10 | \n",
188 | " Mumbai Indians | \n",
189 | " 3 | \n",
190 | " 0 | \n",
191 | " 3 | \n",
192 | " 0 | \n",
193 | " -1.423 | \n",
194 | "
\n",
195 | " \n",
196 | "
\n",
197 | "
\n",
198 | "
\n",
461 | "
\n"
462 | ],
463 | "application/vnd.google.colaboratory.intrinsic+json": {
464 | "type": "dataframe",
465 | "variable_name": "data",
466 | "summary": "{\n \"name\": \"data\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Rank\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 10,\n \"num_unique_values\": 10,\n \"samples\": [\n 9,\n 2,\n 6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Teams\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Delhi Capitals\",\n \"Rajasthan Royals\",\n \"Punjab Kings\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Match\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 3,\n \"max\": 4,\n \"num_unique_values\": 2,\n \"samples\": [\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"W\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"L\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 6,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"NRR\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.225035509689413,\n \"min\": -1.423,\n \"max\": 2.518,\n \"num_unique_values\": 10,\n \"samples\": [\n -1.347,\n 1.249\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
467 | }
468 | },
469 | "metadata": {},
470 | "execution_count": 2
471 | }
472 | ]
473 | },
474 | {
475 | "cell_type": "code",
476 | "source": [
477 | "data.shape"
478 | ],
479 | "metadata": {
480 | "colab": {
481 | "base_uri": "https://localhost:8080/"
482 | },
483 | "id": "QxRT8KnBdcy5",
484 | "outputId": "6d2b9feb-89ab-4085-f639-31d825228516"
485 | },
486 | "execution_count": 4,
487 | "outputs": [
488 | {
489 | "output_type": "execute_result",
490 | "data": {
491 | "text/plain": [
492 | "(10, 7)"
493 | ]
494 | },
495 | "metadata": {},
496 | "execution_count": 4
497 | }
498 | ]
499 | },
500 | {
501 | "cell_type": "code",
502 | "source": [
503 | "data.head()"
504 | ],
505 | "metadata": {
506 | "colab": {
507 | "base_uri": "https://localhost:8080/",
508 | "height": 206
509 | },
510 | "id": "KIRBzPfOfic6",
511 | "outputId": "1638e30e-41ed-4d97-d2f4-af5116d1ce04"
512 | },
513 | "execution_count": 13,
514 | "outputs": [
515 | {
516 | "output_type": "execute_result",
517 | "data": {
518 | "text/plain": [
519 | " Rank Teams Match W L Points NRR\n",
520 | "0 1 Kolkata Knight Riders 3 3 0 6 2.518\n",
521 | "1 2 Rajasthan Royals 3 3 0 6 1.249\n",
522 | "2 3 Chennai Super Kings 4 2 2 4 0.517\n",
523 | "3 4 Lucknow Super Giants 3 2 1 4 0.483\n",
524 | "4 5 Sunrisers Hyderabad 4 2 2 4 0.409"
525 | ],
526 | "text/html": [
527 | "\n",
528 | " \n",
529 | "
\n",
530 | "\n",
543 | "
\n",
544 | " \n",
545 | " \n",
546 | " | \n",
547 | " Rank | \n",
548 | " Teams | \n",
549 | " Match | \n",
550 | " W | \n",
551 | " L | \n",
552 | " Points | \n",
553 | " NRR | \n",
554 | "
\n",
555 | " \n",
556 | " \n",
557 | " \n",
558 | " | 0 | \n",
559 | " 1 | \n",
560 | " Kolkata Knight Riders | \n",
561 | " 3 | \n",
562 | " 3 | \n",
563 | " 0 | \n",
564 | " 6 | \n",
565 | " 2.518 | \n",
566 | "
\n",
567 | " \n",
568 | " | 1 | \n",
569 | " 2 | \n",
570 | " Rajasthan Royals | \n",
571 | " 3 | \n",
572 | " 3 | \n",
573 | " 0 | \n",
574 | " 6 | \n",
575 | " 1.249 | \n",
576 | "
\n",
577 | " \n",
578 | " | 2 | \n",
579 | " 3 | \n",
580 | " Chennai Super Kings | \n",
581 | " 4 | \n",
582 | " 2 | \n",
583 | " 2 | \n",
584 | " 4 | \n",
585 | " 0.517 | \n",
586 | "
\n",
587 | " \n",
588 | " | 3 | \n",
589 | " 4 | \n",
590 | " Lucknow Super Giants | \n",
591 | " 3 | \n",
592 | " 2 | \n",
593 | " 1 | \n",
594 | " 4 | \n",
595 | " 0.483 | \n",
596 | "
\n",
597 | " \n",
598 | " | 4 | \n",
599 | " 5 | \n",
600 | " Sunrisers Hyderabad | \n",
601 | " 4 | \n",
602 | " 2 | \n",
603 | " 2 | \n",
604 | " 4 | \n",
605 | " 0.409 | \n",
606 | "
\n",
607 | " \n",
608 | "
\n",
609 | "
\n",
610 | "
\n",
818 | "
\n"
819 | ],
820 | "application/vnd.google.colaboratory.intrinsic+json": {
821 | "type": "dataframe",
822 | "variable_name": "data",
823 | "summary": "{\n \"name\": \"data\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Rank\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 10,\n \"num_unique_values\": 10,\n \"samples\": [\n 9,\n 2,\n 6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Teams\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Delhi Capitals\",\n \"Rajasthan Royals\",\n \"Punjab Kings\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Match\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 3,\n \"max\": 4,\n \"num_unique_values\": 2,\n \"samples\": [\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"W\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"L\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 6,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"NRR\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.225035509689413,\n \"min\": -1.423,\n \"max\": 2.518,\n \"num_unique_values\": 10,\n \"samples\": [\n -1.347,\n 1.249\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
824 | }
825 | },
826 | "metadata": {},
827 | "execution_count": 13
828 | }
829 | ]
830 | },
831 | {
832 | "cell_type": "code",
833 | "source": [
834 | "X=data.drop(['Teams'],axis=1)"
835 | ],
836 | "metadata": {
837 | "id": "JSVn7i9Fg8GM"
838 | },
839 | "execution_count": 18,
840 | "outputs": []
841 | },
842 | {
843 | "cell_type": "code",
844 | "source": [
845 | "X"
846 | ],
847 | "metadata": {
848 | "colab": {
849 | "base_uri": "https://localhost:8080/",
850 | "height": 363
851 | },
852 | "id": "SqVXiq5ViG-a",
853 | "outputId": "915e3e2b-b05d-47f3-b557-d2300a1e9e83"
854 | },
855 | "execution_count": 19,
856 | "outputs": [
857 | {
858 | "output_type": "execute_result",
859 | "data": {
860 | "text/plain": [
861 | " Rank Match W L Points NRR\n",
862 | "0 1 3 3 0 6 2.518\n",
863 | "1 2 3 3 0 6 1.249\n",
864 | "2 3 4 2 2 4 0.517\n",
865 | "3 4 3 2 1 4 0.483\n",
866 | "4 5 4 2 2 4 0.409\n",
867 | "5 6 4 2 2 4 -0.220\n",
868 | "6 7 4 2 2 4 -0.580\n",
869 | "7 8 4 1 3 2 -0.876\n",
870 | "8 9 4 1 3 2 -1.347\n",
871 | "9 10 3 0 3 0 -1.423"
872 | ],
873 | "text/html": [
874 | "\n",
875 | " \n",
876 | "
\n",
877 | "\n",
890 | "
\n",
891 | " \n",
892 | " \n",
893 | " | \n",
894 | " Rank | \n",
895 | " Match | \n",
896 | " W | \n",
897 | " L | \n",
898 | " Points | \n",
899 | " NRR | \n",
900 | "
\n",
901 | " \n",
902 | " \n",
903 | " \n",
904 | " | 0 | \n",
905 | " 1 | \n",
906 | " 3 | \n",
907 | " 3 | \n",
908 | " 0 | \n",
909 | " 6 | \n",
910 | " 2.518 | \n",
911 | "
\n",
912 | " \n",
913 | " | 1 | \n",
914 | " 2 | \n",
915 | " 3 | \n",
916 | " 3 | \n",
917 | " 0 | \n",
918 | " 6 | \n",
919 | " 1.249 | \n",
920 | "
\n",
921 | " \n",
922 | " | 2 | \n",
923 | " 3 | \n",
924 | " 4 | \n",
925 | " 2 | \n",
926 | " 2 | \n",
927 | " 4 | \n",
928 | " 0.517 | \n",
929 | "
\n",
930 | " \n",
931 | " | 3 | \n",
932 | " 4 | \n",
933 | " 3 | \n",
934 | " 2 | \n",
935 | " 1 | \n",
936 | " 4 | \n",
937 | " 0.483 | \n",
938 | "
\n",
939 | " \n",
940 | " | 4 | \n",
941 | " 5 | \n",
942 | " 4 | \n",
943 | " 2 | \n",
944 | " 2 | \n",
945 | " 4 | \n",
946 | " 0.409 | \n",
947 | "
\n",
948 | " \n",
949 | " | 5 | \n",
950 | " 6 | \n",
951 | " 4 | \n",
952 | " 2 | \n",
953 | " 2 | \n",
954 | " 4 | \n",
955 | " -0.220 | \n",
956 | "
\n",
957 | " \n",
958 | " | 6 | \n",
959 | " 7 | \n",
960 | " 4 | \n",
961 | " 2 | \n",
962 | " 2 | \n",
963 | " 4 | \n",
964 | " -0.580 | \n",
965 | "
\n",
966 | " \n",
967 | " | 7 | \n",
968 | " 8 | \n",
969 | " 4 | \n",
970 | " 1 | \n",
971 | " 3 | \n",
972 | " 2 | \n",
973 | " -0.876 | \n",
974 | "
\n",
975 | " \n",
976 | " | 8 | \n",
977 | " 9 | \n",
978 | " 4 | \n",
979 | " 1 | \n",
980 | " 3 | \n",
981 | " 2 | \n",
982 | " -1.347 | \n",
983 | "
\n",
984 | " \n",
985 | " | 9 | \n",
986 | " 10 | \n",
987 | " 3 | \n",
988 | " 0 | \n",
989 | " 3 | \n",
990 | " 0 | \n",
991 | " -1.423 | \n",
992 | "
\n",
993 | " \n",
994 | "
\n",
995 | "
\n",
996 | "
\n",
1259 | "
\n"
1260 | ],
1261 | "application/vnd.google.colaboratory.intrinsic+json": {
1262 | "type": "dataframe",
1263 | "variable_name": "X",
1264 | "summary": "{\n \"name\": \"X\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"Rank\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 10,\n \"num_unique_values\": 10,\n \"samples\": [\n 9,\n 2,\n 6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Match\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 3,\n \"max\": 4,\n \"num_unique_values\": 2,\n \"samples\": [\n 4,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"W\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"L\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 6,\n \"num_unique_values\": 4,\n \"samples\": [\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"NRR\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.225035509689413,\n \"min\": -1.423,\n \"max\": 2.518,\n \"num_unique_values\": 10,\n \"samples\": [\n -1.347,\n 1.249\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
1265 | }
1266 | },
1267 | "metadata": {},
1268 | "execution_count": 19
1269 | }
1270 | ]
1271 | },
1272 | {
1273 | "cell_type": "code",
1274 | "source": [
1275 | "plt.figure(figsize=(10, 9))\n",
1276 | "plt.title(\"IPL 2024 Dendograms\")\n",
1277 | "plt.xlabel(\"Teams\")\n",
1278 | "plt.ylabel('Distance')\n",
1279 | "dend=shc.dendrogram(shc.linkage(X,method='centroid'))"
1280 | ],
1281 | "metadata": {
1282 | "colab": {
1283 | "base_uri": "https://localhost:8080/",
1284 | "height": 799
1285 | },
1286 | "id": "fyk7TUpwdlno",
1287 | "outputId": "a9dcd5ee-1119-4b2a-bf2a-3bcb110b9056"
1288 | },
1289 | "execution_count": 25,
1290 | "outputs": [
1291 | {
1292 | "output_type": "display_data",
1293 | "data": {
1294 | "text/plain": [
1295 | ""
1296 | ],
1297 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAMOCAYAAADY8w1gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC50lEQVR4nO3deZTVdf348dewDTNsAoqAIIvgAohiKmoqaqSCSWpipX1FM1eU1CylxB3XLCsTt5RKVLI00RIVFTUVQkXT3HCBRtxR9mGAmc/vjw7zaxo0GQc+d+b9eJxzz5n7vp+593VHD/Ccz3KLsizLAgAAIBFN8h4AAABgQxJBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQCwDnr27BlHHXVU3mMA8AWIIID1aOLEiVFUVBRPP/109dp5550XRUVF1bfS0tLo169fnH322bF48eLP/N7PY/ny5fHrX/869t133+jSpUu0adMmBg0aFBMmTIjKyspa21dVVcXll18evXr1ipYtW8bAgQPjtttuq7XNxIkTY8SIEdG9e/do1apVDBgwIC666KJYsWLFZ87zt7/9rfq9fvTRR/9z/jXve82tZcuW0bVr19hvv/3il7/8ZSxZsmSdfh4A8N+a5T0AQKomTJgQrVu3jqVLl8YDDzwQ48ePj4cffjieeOKJKCoqqvPzvvnmm3HKKafEV77ylTj99NOjbdu2cf/998dJJ50UM2bMiN/+9rc1tv/JT34Sl156aRx77LGx0047xd133x2HH354FBUVxbe+9a2I+HdYHX300bHLLrvECSecEJ06dYqnnnoqzj333HjooYfi4YcfXuvMVVVVccopp0SrVq1i2bJl6/Q+LrjggujVq1esWrUq3nvvvZg+fXqceuqp8bOf/SymTJkSAwcOrPPPCIDEZQCsNzfffHMWEdmsWbOq184999wsIrIPP/ywxraHHHJIFhHZk08++anf+3l8+OGH2Ysvvlhr/eijj84iIpszZ0712ttvv501b948Gz16dPVaVVVVtscee2TdunXLVq9enWVZllVUVGRPPPFErec8//zzs4jIHnzwwbXOMmHChKxjx47Z97///bW+57X5rPf90EMPZSUlJVmPHj2y5cuX/8/nWh969OiRjRo1aoO/7rJlyzb4awI0Vg6HAygQ++yzT0REvPXWW1/oeTbeeOPo379/rfWDDz44IiJefvnl6rW77747Vq1aFSeddFL1WlFRUZx44onx9ttvx1NPPRURES1atIjddtvtcz3nGh9//HGcffbZccEFF8RGG230hd7TGvvss0+MGzcu5s2bF7fcckuNx1555ZU49NBDo0OHDtGyZcvYcccdY8qUKTW2WXOo3RNPPBGnn356bLLJJtGqVas4+OCD48MPP6yxbZZlcdFFF0W3bt2itLQ09t577/jnP/+51rnefPPNGDlyZHTo0CFKS0tjl112ib/85S+1tps3b16MGDEiWrVqFZ06dYrTTjst7r///igqKorp06dXb7fXXnvFgAED4plnnok999wzSktL48c//nFE/Pu/2QEHHBBdu3aN4uLi2GKLLeLCCy+sdajjmuf4xz/+EUOGDInS0tLo06dP/PGPf4yIiEcffTQGDx4cJSUlsdVWW8W0adNqfP+SJUvi1FNPjZ49e0ZxcXF06tQpvvrVr8azzz77Gf+FABoGEQRQIN54442IiOjYseN6ef733nsvIv4dSWvMnj07WrVqFdtss02NbXfeeefqx9f1OdcYN25cdO7cOY4//vgvNPd/+7//+7+IiHjggQeq1/75z3/GLrvsEi+//HKcddZZceWVV0arVq3ioIMOirvuuqvWc5xyyinx/PPPx7nnnhsnnnhi3HPPPXHyySfX2Oacc86JcePGxXbbbRdXXHFF9O7dO/bdd99ah/W9//77sdtuu1Ufcjh+/PhYsWJFjBgxosZrL1u2LPbZZ5+YNm1ajBkzJn7yk5/Ek08+GWeeeeZa3+eCBQti2LBhsf3228dVV10Ve++9d0T8O+Rat24dp59+evziF7+IL33pS3HOOefEWWedVes5Pvnkk/ja174WgwcPjssvvzyKi4vjW9/6VkyePDm+9a1vxfDhw+PSSy+NZcuWxaGHHlrjfKsTTjghJkyYEN/4xjfimmuuiTPOOCNKSkrWGrwADU7eu6IAGrPPOhzu1VdfzT788MPsrbfeyq677rqsuLg423TTTasPe6rr4XBrU1FRkfXr1y/r1atXtmrVqur1Aw44IOvdu3et7ZctW5ZFRHbWWWd95vMOHTo0a9u2bfbJJ5/UWH/++eezpk2bZvfff3+WZZ9+CODafJ733a5du2zQoEHV97/yla9k2267bbZixYrqtaqqqmy33XbL+vbtW+u5hw4dmlVVVVWvn3baaVnTpk2zhQsXZlmWZR988EHWokWL7IADDqix3Y9//OMsImocDnfqqadmEZE9/vjj1WtLlizJevXqlfXs2TOrrKzMsizLrrzyyiwisj//+c/V25WXl2dbb711FhHZI488Ur0+ZMiQLCKya6+9ttZ7X9thgMcff3xWWlpa4/2veY5bb721eu2VV17JIiJr0qRJNmPGjOr1+++/P4uI7Oabb65ea9euXY3DJAEaE3uCAHKy1VZbxSabbBK9evWK448/Pvr06RN/+ctforS0tN5f6+STT46XXnoprr766mjW7P9fE6e8vDyKi4trbd+yZcvqxz/NxRdfHNOmTYtLL7201uFuY8aMiWHDhsW+++5bP2/gv7Ru3bp6r8XHH38cDz/8cBx22GGxZMmS+Oijj+Kjjz6KBQsWxH777Rdz5syJ+fPn1/j+4447rsaFHPbYY4+orKyMefPmRUTEtGnTYuXKlXHKKafU2O7UU0+tNctf//rX2HnnnWP33XevMd9xxx0Xc+fOjZdeeikiIqZOnRqbbbZZjBgxonq7li1bxrHHHrvW91hcXBxHH310rfWSkpLqr9e83z322COWL18er7zySq2f05qLW0T8+/+5jTbaKLbZZpsYPHhw9fqar998883qtY022ihmzpwZ77zzzlrnA2jIXB0OICd/+tOfom3bttG8efPo1q1bbLHFFuvlda644oq44YYb4sILL4zhw4fXeKykpCQqKipqfc+ay17/5z+4/9PkyZPj7LPPjmOOOSZOPPHEWo89+eST8eKLL9bTO6ht6dKl0alTp4iIeP311yPLshg3blyMGzdurdt/8MEHsdlmm1Xf33zzzWs83r59+4j49+FjEVEdQ3379q2x3SabbFK97Rrz5s2rERRrrDnEcN68eTFgwICYN29ebLHFFrWuotenT5+1zrzZZptFixYtaq3/85//jLPPPjsefvjhGpdUj4hYtGhRjfvdunWr9Xrt2rWL7t2711qL+P/vPyLi8ssvj1GjRkX37t3jS1/6UgwfPjyOPPLI6N2791rnBWhIRBBATvbcc8+1nktTnyZOnBhnnnlmnHDCCXH22WfXerxLly7xyCOPRJZlNf6x/O6770ZERNeuXWt9z4MPPhhHHnlkHHDAAXHttdfWevyHP/xhjBw5Mlq0aBFz586NiIiFCxdGRERZWVmsXLlyrc/7eb399tuxaNGi6nioqqqKiIgzzjgj9ttvv7V+z3+HRtOmTde6XZZldZ6rvq0tQBcuXBhDhgyJtm3bxgUXXBBbbLFFtGzZMp599tk488wzq38Wa3za+/w87/+www6LPfbYI+6666544IEH4oorrojLLrss7rzzzhg2bNgXeGcA+RNBAI3U3XffHd/73vfikEMOiV//+tdr3Wb77bePG2+8MV5++eXo169f9frMmTOrH/9PM2fOjIMPPjh23HHH+MMf/lDj0Lo1ysrK4tZbb41bb7211mM77LBDbLfddvHcc8/V+X39/ve/j4ioDp41eyaaN28eQ4cOrfPz/qcePXpERMScOXNq7Pn48MMPa+wtWbPtq6++Wus51hyatua5evToES+99FKt4Hz99dc/91zTp0+PBQsWxJ133hl77rln9foXvaLgp+nSpUucdNJJcdJJJ8UHH3wQO+ywQ4wfP14EAQ2ec4IAGqHHHnssvvWtb8Wee+4ZkyZNiiZN1v7H/de//vVo3rx5XHPNNdVrWZbFtddeG5tttlmNy2K//PLLccABB0TPnj3j3nvv/dRD5e66665at29+85sREfG73/0ufv7zn9f5fT388MNx4YUXRq9eveKII46IiIhOnTrFXnvtFdddd131Hqz/9N+Xvv48hg4dGs2bN49f/epXNfaOXHXVVbW2HT58ePz973+vvpx4xL+vBHf99ddHz549q+Nyv/32i/nz59e4bPeKFSvihhtu+NxzrdmD858zrVy5ssZ/v/pQWVlZ69C6Tp06RdeuXdd6+CRAQ2NPEECBu+mmm2Lq1Km11r///e9HmzZtaq2v+SyaoqKiOPTQQ+OOO+6o8fjAgQNj4MCBEfHvc0ZOPfXUuOKKK2LVqlWx0047xZ///Od4/PHHY9KkSdX/6F6yZEnst99+8cknn8QPf/jDWp+Bs8UWW8Suu+4aEREHHXRQrZnW7PkZNmzY5z4E8L777otXXnklVq9eHe+//348/PDD8eCDD0aPHj1iypQp1RdviIj49a9/Hbvvvntsu+22ceyxx0bv3r3j/fffj6eeeirefvvteP755z/Xa66xySabxBlnnBGXXHJJfO1rX4vhw4fH7Nmz47777qs1/1lnnRW33XZbDBs2LMaMGRMdOnSI3/72t/HWW2/Fn/70p+oAPf744+Pqq6+Ob3/72/H9738/unTpEpMmTap+H/997s7a7LbbbtG+ffsYNWpUjBkzJoqKiuL3v/99vR/Gt2TJkujWrVsceuihsd1220Xr1q1j2rRpMWvWrLjyyivr9bUA8iCCAArchAkT1rp+1FFHrTWC3nrrrerf4o8ePbrW4+eee251BEVEXHrppdG+ffu47rrrYuLEidG3b9+45ZZb4vDDD6/eZsGCBVFWVhYRsdbPoxk1alR1BNWXc845JyL+/UGtHTp0iG233TauuuqqOProo2u97379+sXTTz8d559/fkycODEWLFgQnTp1ikGDBlU/z7q66KKLomXLlnHttdfGI488EoMHD44HHnggDjjggBrbbbrpptWf9/OrX/0qVqxYEQMHDox77rmnxratW7eOhx9+OE455ZT4xS9+Ea1bt44jjzwydtttt/jGN75RI+o+TceOHePee++NH/zgB3H22WdH+/bt4zvf+U585Stf+dTzoeqitLQ0TjrppHjggQfizjvvjKqqqujTp09cc801tS6EAdAQFWWFdBYoACTmqquuitNOOy3efvvtGlewA2D9EUEAsIGUl5fXOJdqxYoVMWjQoKisrIzXXnstx8kA0uJwOADYQA455JDYfPPNY/vtt49FixbFLbfcEq+88kpMmjQp79EAkiKCAGAD2W+//eLGG2+MSZMmRWVlZfTr1y9uv/326qvnAbBhOBwOAABIis8JAgAAkiKCAACApDToc4KqqqrinXfeiTZt2nyuD5kDAAAapyzLYsmSJdG1a9fqD6r+NA06gt55553o3r173mMAAAAFoqysLLp16/aZ2zToCFrzieFlZWXRtm3bnKcBAADysnjx4ujevXt1I3yWBh1Baw6Ba9u2rQgCAAA+12kyLowAAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJCUZnkPQMOWZVmUr6rMewyApJU0bxpFRUV5jwHQYIgg6izLsjj02qfimXmf5D0KQNJ27NE+7jhhVyEE8Dk5HI46K19VKYAACsDT8z6xVx5gHdgTRL14+uyhUdqiad5jACRl+crK2PGiaXmPAdDgiCDqRWmLplHawv9OAAAUPofDAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkJTcI2j+/Pnxne98Jzp27BglJSWx7bbbxtNPP533WAAAQCPVLM8X/+STT+LLX/5y7L333nHffffFJptsEnPmzIn27dvnORYAANCI5RpBl112WXTv3j1uvvnm6rVevXrlOBEAANDY5Xo43JQpU2LHHXeMkSNHRqdOnWLQoEFxww03fOr2FRUVsXjx4ho3AACAdZFrBL355psxYcKE6Nu3b9x///1x4oknxpgxY+K3v/3tWre/5JJLol27dtW37t27b+CJAQCAhi7XCKqqqooddtghLr744hg0aFAcd9xxceyxx8a111671u3Hjh0bixYtqr6VlZVt4IkBAICGLtcI6tKlS/Tr16/G2jbbbBP/+te/1rp9cXFxtG3btsYNAABgXeQaQV/+8pfj1VdfrbH22muvRY8ePXKaCAAAaOxyjaDTTjstZsyYERdffHG8/vrrceutt8b1118fo0ePznMsAACgEcs1gnbaaae466674rbbbosBAwbEhRdeGFdddVUcccQReY4FAAA0Yrl+TlBExNe+9rX42te+lvcYAABAInLdEwQAALChiSAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJKSawSdd955UVRUVOO29dZb5zkSAADQyDXLe4D+/fvHtGnTqu83a5b7SAAAQCOWe3E0a9YsOnfunPcYAABAInI/J2jOnDnRtWvX6N27dxxxxBHxr3/961O3raioiMWLF9e4AQAArItcI2jw4MExceLEmDp1akyYMCHeeuut2GOPPWLJkiVr3f6SSy6Jdu3aVd+6d+++gScGAAAaulwjaNiwYTFy5MgYOHBg7LfffvHXv/41Fi5cGH/4wx/Wuv3YsWNj0aJF1beysrINPDEAANDQ5X5O0H/aaKONYsstt4zXX399rY8XFxdHcXHxBp4KAABoTHI/J+g/LV26NN54443o0qVL3qMAAACNVK4RdMYZZ8Sjjz4ac+fOjSeffDIOPvjgaNq0aXz729/OcywAAKARy/VwuLfffju+/e1vx4IFC2KTTTaJ3XffPWbMmBGbbLJJnmMB5CbLsihfVZn3GDQQy1euXuvX8FlKmjeNoqKivMeAXOUaQbfffnueLw9QULIsi0OvfSqemfdJ3qPQAO140UN5j0ADsWOP9nHHCbsKIZJWUOcEAaSsfFWlAALWu6fnfWKPM8krqKvDAfBvT589NEpbNM17DKARWb6yMna8aFreY0BBEEEABai0RdMobeGPaABYHxwOBwAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJKVgIujSSy+NoqKiOPXUU/MeBQAAaMQKIoJmzZoV1113XQwcODDvUQAAgEYu9whaunRpHHHEEXHDDTdE+/bt8x4HAABo5HKPoNGjR8cBBxwQQ4cO/Z/bVlRUxOLFi2vcAAAA1kWzPF/89ttvj2effTZmzZr1uba/5JJL4vzzz1/PUwEAAI1ZbnuCysrK4vvf/35MmjQpWrZs+bm+Z+zYsbFo0aLqW1lZ2XqeEgAAaGxy2xP0zDPPxAcffBA77LBD9VplZWU89thjcfXVV0dFRUU0bdq0xvcUFxdHcXHxhh4VAABoRHKLoK985Svxwgsv1Fg7+uijY+utt44zzzyzVgABAADUh9wiqE2bNjFgwIAaa61atYqOHTvWWgcAAKgvuV8dDgAAYEPK9epw/2369Ol5jwAAADRy9gQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJCULxxBK1asqI85AAAANog6RVBVVVVceOGFsdlmm0Xr1q3jzTffjIiIcePGxW9+85t6HRAAAKA+1SmCLrroopg4cWJcfvnl0aJFi+r1AQMGxI033lhvwwEAANS3OkXQ7373u7j++uvjiCOOiKZNm1avb7fddvHKK6/U23AAAAD1rU4RNH/+/OjTp0+t9aqqqli1atUXHgoAAGB9qVME9evXLx5//PFa63/84x9j0KBBX3goAACA9aVZXb7pnHPOiVGjRsX8+fOjqqoq7rzzznj11Vfjd7/7Xdx77731PSMAAEC9qdOeoK9//etxzz33xLRp06JVq1ZxzjnnxMsvvxz33HNPfPWrX63vGQEAAOpNnfYERUTsscce8eCDD9bnLAAAAOtdnfYEzZo1K2bOnFlrfebMmfH0009/4aEAAADWlzpF0OjRo6OsrKzW+vz582P06NFfeCgAAID1pU4R9NJLL8UOO+xQa33QoEHx0ksvfeGhAAAA1pc6RVBxcXG8//77tdbffffdaNaszqcZAQAArHd1iqB99903xo4dG4sWLapeW7hwYfz4xz92dTgAAKCg1Wm3zU9/+tPYc889o0ePHtUfjvrcc8/FpptuGr///e/rdUAAAID6VKcI2myzzeIf//hHTJo0KZ5//vkoKSmJo48+Or797W9H8+bN63tGAACAelPnE3hatWoVxx13XH3OAgAAsN7VOYLmzJkTjzzySHzwwQdRVVVV47FzzjnnCw8GAACwPtQpgm644YY48cQTY+ONN47OnTtHUVFR9WNFRUUiCAAAKFh1iqCLLrooxo8fH2eeeWZ9zwMAALBe1ekS2Z988kmMHDmyvmcBAABY7+oUQSNHjowHHnigvmcBAABY7+p0OFyfPn1i3LhxMWPGjNh2221rXRZ7zJgx9TIcAABAfatTBF1//fXRunXrePTRR+PRRx+t8VhRUZEIAgAACladIuitt96q7zkAAAA2iDqdEwQAANBQ1fnDUt9+++2YMmVK/Otf/4qVK1fWeOxnP/vZFx4MAABgfahTBD300EMxYsSI6N27d7zyyisxYMCAmDt3bmRZFjvssEN9zwgAAFBv6nQ43NixY+OMM86IF154IVq2bBl/+tOfoqysLIYMGeLzgwAAgIJWpwh6+eWX48gjj4yIiGbNmkV5eXm0bt06LrjggrjsssvqdUAAAID6VKcIatWqVfV5QF26dIk33nij+rGPPvqofiYDAABYD+p0TtAuu+wSf/vb32KbbbaJ4cOHxw9+8IN44YUX4s4774xddtmlvmcEAACoN3WKoJ/97GexdOnSiIg4//zzY+nSpTF58uTo27evK8MBAAAFrU4R1Lt37+qvW7VqFddee229DQQAALA+1emcoN69e8eCBQtqrS9cuLBGIAEAABSaOkXQ3Llzo7KystZ6RUVFzJ8//wsPBQAAsL6s0+FwU6ZMqf76/vvvj3bt2lXfr6ysjIceeih69uxZb8MBAADUt3WKoIMOOigiIoqKimLUqFE1HmvevHn07NkzrrzyynobDgAAoL6tUwRVVVVFRESvXr1i1qxZsfHGG6+XoQAAANaXOl0d7q233qq1tnDhwthoo42+6DwAAADrVZ0ujHDZZZfF5MmTq++PHDkyOnToEJtttlk8//zz9TYcAABAfatTBF177bXRvXv3iIh48MEHY9q0aTF16tQYNmxY/PCHP6zXAQEAAOpTnQ6He++996oj6N57743DDjss9t133+jZs2cMHjy4XgcEAACoT3XaE9S+ffsoKyuLiIipU6fG0KFDIyIiy7K1fn4QAABAoajTnqBDDjkkDj/88Ojbt28sWLAghg0bFhERs2fPjj59+tTrgAAAAPWpThH085//PHr27BllZWVx+eWXR+vWrSMi4t13342TTjqpXgcEAACoT3WKoObNm8cZZ5xRa/200077wgMBAACsT587gqZMmRLDhg2L5s2bx5QpUz5z2xEjRnzhwQAAANaHzx1BBx10ULz33nvRqVOnOOiggz51u6KiIhdHAAAACtbnjqCqqqq1fg0AANCQrPM5QVVVVTFx4sS48847Y+7cuVFUVBS9e/eOb3zjG/F///d/UVRUtD7mBAAAqBfr9DlBWZbFiBEj4nvf+17Mnz8/tt122+jfv3/MnTs3jjrqqDj44IPX15wAAAD1Yp32BE2cODEee+yxeOihh2Lvvfeu8djDDz8cBx10UPzud7+LI488sl6HBAAAqC/rtCfotttuix//+Me1AigiYp999omzzjorJk2aVG/DAQAA1Ld1iqB//OMfsf/++3/q48OGDYvnn3/+Cw8FAACwvqxTBH388cex6aabfurjm266aXzyySdfeCgAAID1ZZ0iqLKyMpo1+/TTiJo2bRqrV6/+wkMBAACsL+t0YYQsy+Koo46K4uLitT5eUVFRL0MBAACsL+sUQaNGjfqf27gyHAAAUMjWKYJuvvnm9TUHAADABrFO5wQBAAA0dCIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKblG0IQJE2LgwIHRtm3baNu2bey6665x33335TkSAADQyOUaQd26dYtLL700nnnmmXj66adjn332ia9//evxz3/+M8+xAACARqxZni9+4IEH1rg/fvz4mDBhQsyYMSP69++f01QAAEBjlmsE/afKysq44447YtmyZbHrrruudZuKioqoqKiovr948eINNR4AANBI5H5hhBdeeCFat24dxcXFccIJJ8Rdd90V/fr1W+u2l1xySbRr16761r179w08LQAA0NDlHkFbbbVVPPfcczFz5sw48cQTY9SoUfHSSy+tdduxY8fGokWLqm9lZWUbeFoAAKChy/1wuBYtWkSfPn0iIuJLX/pSzJo1K37xi1/EddddV2vb4uLiKC4u3tAjAgAAjUjue4L+W1VVVY3zfgAAAOpTrnuCxo4dG8OGDYvNN988lixZErfeemtMnz497r///jzHAgAAGrFcI+iDDz6II488Mt59991o165dDBw4MO6///746le/mudYAABAI5ZrBP3mN7/J8+UBAIAEFdw5QQAAAOuTCAIAAJKS+yWyG60si1i1PO8p1q+Vlf/x9fKIaJrbKBtE89KIoqK8pwAA4AsSQetDlkXctF9E2cy8J1m/suKIuPnfX1/RJ6KokV/avPsuEd+dKoQAABo4EbQ+rFre+AMoIkqLKmJuy8PzHmPDKZvx7/+2LVrlPQkAAF+ACFrfzng9okVp3lPwRaxcHvHTPnlPAQBAPRFB61uLUnsOAACggLg6HAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUprlPQAA0PBlWRZZeXneY/AZqlZW/v+vl5dH1eqmOU7D51FUUhJFRUV5j9EoiSAA4AvJsizmHX5ElM+enfcofIYVTVtEHHhxRETM+fLu0bJyZc4T8b+U7LBD9Jh0ixBaD0QQAPCFZOXlAqgBaFm5Mu778xl5j8E6KH/22cjKy6OotDTvURodEQQA1Ju+T/wtmpSU5D0GNGhV5eUx58u75z1GoyaCAIB606SkJJr4rTVQ4FwdDgAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICm5RtAll1wSO+20U7Rp0yY6deoUBx10ULz66qt5jgQAADRyuUbQo48+GqNHj44ZM2bEgw8+GKtWrYp99903li1bludYAABAI9YszxefOnVqjfsTJ06MTp06xTPPPBN77rlnTlMBAACNWa4R9N8WLVoUEREdOnRY6+MVFRVRUVFRfX/x4sUbZC4AAKDxKJgLI1RVVcWpp54aX/7yl2PAgAFr3eaSSy6Jdu3aVd+6d+++gacEAAAauoKJoNGjR8eLL74Yt99++6duM3bs2Fi0aFH1raysbANOCAAANAYFcTjcySefHPfee2889thj0a1bt0/drri4OIqLizfgZAAAQGOTawRlWRannHJK3HXXXTF9+vTo1atXnuMAAAAJyDWCRo8eHbfeemvcfffd0aZNm3jvvfciIqJdu3ZRUlKS52gAAEAjles5QRMmTIhFixbFXnvtFV26dKm+TZ48Oc+xAACARiz3w+EAAAA2pIK5OhwAAMCGIIIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJLSLO8BAAAgD1mWRVZenvcYtVT9x0xVBThfUUlJFBUV5T3GFyKCAABITpZlMe/wI6J89uy8R/lMc768e94j1FKyww7RY9ItDTqEHA4HAEBysvLygg+gQlX+7LMFuQdtXdgTBADrSaEealPfCv3QnfrWGA4Foqa+T/wtmpSU5D1GwasqLy/IPVN1IYIAYD1oKIfa1LfG8g+kz9IYDgWipiYlJdGktDTvMdiAHA4HAOuBQ20ar8ZwKBCkzp4gAFjPHGrTODSmQ4EgdSIIANYzh9oAFBaHwwEAAEkRQQAAQFJEEAAAkBQRBAAAJMWFEYDkZFkW5asL7/K2y1dV/sfX5RFFTXOcZu1KmvmQSAAaPhEEJCXLsjjyviPjuQ+fy3uUWrKq5hFxYURE7PWHIVHUZFW+A63FoE6D4rf7/1YIAdCgiSAgKeWrywsygCIiipqsijbbnJX3GJ9p9gezo3x1eZQ2d7lnABouEQQka/ph06OkmQ+w/DzKV5fHXn/YK+8xAKBeiCAgWSXNSuzRAIAEuTocAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkJRmeQ8A1bIsYtXyvKeobeXytX9dSJqXRhQV5T0FAECDIIIoDFkWcdN+EWUz857ks/20T94TrF33XSK+O1UIAQB8Dg6HozCsWl74AVTIymYU5l40AIACZE8QheeM1yNalOY9RcOwcnnh7p0CAChQIojC06I0okWrvKcAICdZlkVWXp73GLVU/cdMVQU4X1FJSRQ5LBo+FxEEABSMLMti3uFHRPns2XmP8pnmfHn3vEeopWSHHaLHpFuEEHwOzgkCAApGVl5e8AFUqMqffbYg96BBIbInCAAoSH2f+Fs0KSnJe4yCV1VeXpB7pqCQiSAAoCA1KSmJJqUulAPUv1wPh3vsscfiwAMPjK5du0ZRUVH8+c9/znMcAAAgAblG0LJly2K77baLX//613mOAQAAJCTXw+GGDRsWw4YNy3MEAAAgMQ3qnKCKioqoqKiovr948eIcpwEAABqiBnWJ7EsuuSTatWtXfevevXveIwEAAA1Mg4qgsWPHxqJFi6pvZWVleY8EAAA0MA3qcLji4uIoLi7OewwAAKABa1B7ggAAAL6oXPcELV26NF5//fXq+2+99VY899xz0aFDh9h8881znAwAAGisco2gp59+Ovbee+/q+6effnpERIwaNSomTpyY01QAAEBjlmsE7bXXXpFlWZ4jAAAAiXFOEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUkQQAACQFBEEAAAkRQQBAABJEUEAAEBSRBAAAJAUEQQAACRFBAEAAEkRQQAAQFJEEAAAkBQRBAAAJEUEAQAASRFBAABAUgoign79619Hz549o2XLljF48OD4+9//nvdIAABAI5V7BE2ePDlOP/30OPfcc+PZZ5+N7bbbLvbbb7/44IMP8h4NAABohHKPoJ/97Gdx7LHHxtFHHx39+vWLa6+9NkpLS+Omm27KezQAAKARapbni69cuTKeeeaZGDt2bPVakyZNYujQofHUU0/V2r6ioiIqKiqq7y9atCgiIhYvXrz+h10XK5dFVGT//nrx4ogWlfnO0xD4mdWNn9s6W75qeVSW//vntHjx4ljdfHXOEzUMfm7rrmr58lha+f9/Zk1W+5l9Hn5u687PrG783NZdof/M1jRBlmX/c9ui7PNstZ688847sdlmm8WTTz4Zu+66a/X6j370o3j00Udj5syZNbY/77zz4vzzz9/QYwIAAA1EWVlZdOvW7TO3yXVP0LoaO3ZsnH766dX3q6qq4uOPP46OHTtGUVFRjpMBAAB5yrIslixZEl27dv2f2+YaQRtvvHE0bdo03n///Rrr77//fnTu3LnW9sXFxVFcXFxjbaONNlqfIwIAAA1Eu3btPtd2uV4YoUWLFvGlL30pHnrooeq1qqqqeOihh2ocHgcAAFBfcj8c7vTTT49Ro0bFjjvuGDvvvHNcddVVsWzZsjj66KPzHg0AAGiEco+gb37zm/Hhhx/GOeecE++9915sv/32MXXq1Nh0003zHg0AAGiEcr06HAAAwIaW+4elAgAAbEgiCAAASIoIAgAAkiKCAACApIigevbMM8/E/vvvH23bto02bdrEvvvuG88991zeYxW0o446KoqKij71Nn/+/LxHLEhz5syJb33rW9GtW7coLS2NrbfeOi644IJYvnx53qMVrIqKijjzzDOja9euUVJSEoMHD44HH3ww77EK2tKlS+Pcc8+N/fffPzp06BBFRUUxceLEvMdqcMaPHx9FRUUxYMCAvEcpWNOnT//UvwdmzJiR93gF7dlnn40RI0ZEhw4dorS0NAYMGBC//OUv8x6rYM2aNStOPvnk6N+/f7Rq1So233zzOOyww+K1117Le7SC9c9//jNGjhwZvXv3jtLS0th4441jzz33jHvuuSfv0eos90tkNybPPvts7L777tG9e/c499xzo6qqKq655poYMmRI/P3vf4+tttoq7xEL0vHHHx9Dhw6tsZZlWZxwwgnRs2fP2GyzzXKarHCVlZXFzjvvHO3atYuTTz45OnToEE899VSce+658cwzz8Tdd9+d94gF6aijjoo//vGPceqpp0bfvn1j4sSJMXz48HjkkUdi9913z3u8gvTRRx/FBRdcEJtvvnlst912MX369LxHanDefvvtuPjii6NVq1Z5j9IgjBkzJnbaaacaa3369MlpmsL3wAMPxIEHHhiDBg2KcePGRevWreONN96It99+O+/RCtZll10WTzzxRIwcOTIGDhwY7733Xlx99dWxww47xIwZM/yyYi3mzZsXS5YsiVGjRkXXrl1j+fLl8ac//SlGjBgR1113XRx33HF5j7juMurN8OHDs/bt22cfffRR9do777yTtW7dOjvkkENynKzhefzxx7OIyMaPH5/3KAVp/PjxWURkL774Yo31I488MouI7OOPP85pssI1c+bMLCKyK664onqtvLw822KLLbJdd901x8kK24oVK7J33303y7IsmzVrVhYR2c0335zvUA3MN7/5zWyfffbJhgwZkvXv3z/vcQrWI488kkVEdscdd+Q9SoOxaNGibNNNN80OPvjgrLKyMu9xGownnngiq6ioqLH22muvZcXFxdkRRxyR01QNz+rVq7Ptttsu22qrrfIepU4cDlePHn/88Rg6dGh07Nixeq1Lly4xZMiQuPfee2Pp0qU5Ttew3HrrrVFUVBSHH3543qMUpMWLF0dE1PpQ4S5dukSTJk2iRYsWeYxV0P74xz9G06ZNa/y2qmXLlnHMMcfEU089FWVlZTlOV7iKi4ujc+fOeY/RYD322GPxxz/+Ma666qq8R2lQlixZEqtXr857jIJ36623xvvvvx/jx4+PJk2axLJly6KqqirvsQrebrvtVuvvyb59+0b//v3j5Zdfzmmqhqdp06bRvXv3WLhwYd6j1IkIqkcVFRVRUlJSa720tDRWrlwZL774Yg5TNTyrVq2KP/zhD7HbbrtFz5498x6nIO21114REXHMMcfEc889F2VlZTF58uSYMGFCjBkzxmE3azF79uzYcssto23btjXWd95554gI5+5R7yorK+OUU06J733ve7HtttvmPU6DcfTRR0fbtm2jZcuWsffee8fTTz+d90gFa9q0adG2bduYP39+bLXVVtG6deto27ZtnHjiibFixYq8x2tQsiyL999/PzbeeOO8Ryloy5Yti48++ijeeOON+PnPfx733XdffOUrX8l7rDpxTlA92mqrrWLGjBlRWVkZTZs2jYiIlStXxsyZMyMinOD/Od1///2xYMGCOOKII/IepWDtv//+ceGFF8bFF18cU6ZMqV7/yU9+EhdddFGOkxWud999N7p06VJrfc3aO++8s6FHopG79tprY968eTFt2rS8R2kQWrRoEd/4xjdi+PDhsfHGG8dLL70UP/3pT2OPPfaIJ598MgYNGpT3iAVnzpw5sXr16vj6178exxxzTFxyySUxffr0+NWvfhULFy6M2267Le8RG4xJkybF/Pnz44ILLsh7lIL2gx/8IK677rqIiGjSpEkccsghcfXVV+c8Vd2IoHp00kknxYknnhjHHHNM/OhHP4qqqqq46KKL4t13342IiPLy8pwnbBhuvfXWaN68eRx22GF5j1LQevbsGXvuuWd84xvfiI4dO8Zf/vKXuPjii6Nz585x8skn5z1ewSkvL4/i4uJa6y1btqx+HOrLggUL4pxzzolx48bFJptskvc4DcJuu+0Wu+22W/X9ESNGxKGHHhoDBw6MsWPHxtSpU3OcrjAtXbo0li9fHieccEL11eAOOeSQWLlyZVx33XVxwQUXRN++fXOesvC98sorMXr06Nh1111j1KhReY9T0E499dQ49NBD45133ok//OEPUVlZGStXrsx7rDpxOFw9OuGEE+LHP/5x3HrrrdG/f//Ydttt44033ogf/ehHERHRunXrnCcsfEuXLo2777479ttvvxrnVlHT7bffHscdd1zceOONceyxx8YhhxwSv/nNb2LUqFFx5plnxoIFC/IeseCUlJRERUVFrfU1h4ys7VBWqKuzzz47OnToEKecckreozRoffr0ia9//evxyCOPRGVlZd7jFJw1f259+9vfrrG+5nzap556aoPP1NC89957ccABB0S7du2qzx3l02299dYxdOjQOPLII6vPdz/wwAMjy7K8R1tnIqiejR8/Pt5///14/PHH4x//+EfMmjWr+iTFLbfcMufpCt+f//znWL58uUPh/odrrrkmBg0aFN26dauxPmLEiFi+fHnMnj07p8kKV5cuXar3yv6nNWtdu3bd0CPRSM2ZMyeuv/76GDNmTLzzzjsxd+7cmDt3bqxYsSJWrVoVc+fOjY8//jjvMRuM7t27x8qVK2PZsmV5j1Jw1vy59d8XyenUqVNERHzyyScbfKaGZNGiRTFs2LBYuHBhTJ061d8DdXDooYfGrFmzGuRnLImg9aB9+/ax++67V58IO23atOjWrVtsvfXWOU9W+CZNmhStW7eOESNG5D1KQXv//ffX+lvRVatWRUS4qtJabL/99vHaa69VX1lvjTXn7G2//fY5TEVjNH/+/KiqqooxY8ZEr169qm8zZ86M1157LXr16uW8g3Xw5ptvRsuWLR1NsRZf+tKXIqL2OcdrznF0KOanW7FiRRx44IHx2muvxb333hv9+vXLe6QGac2h5IsWLcp5knUngtazyZMnx6xZs+LUU0+NJk38uD/Lhx9+GNOmTYuDDz44SktL8x6noG255ZYxe/bsWr95ue2226JJkyYxcODAnCYrXIceemhUVlbG9ddfX71WUVERN998cwwePDi6d++e43Q0JgMGDIi77rqr1q1///6x+eabx1133RXHHHNM3mMWnA8//LDW2vPPPx9TpkyJfffd19+ha7Hm3Nnf/OY3NdZvvPHGaNasWfWVRKmpsrIyvvnNb8ZTTz0Vd9xxR+y66655j1TwPvjgg1prq1atit/97ndRUlLSICPShRHq0WOPPRYXXHBB7LvvvtGxY8eYMWNG3HzzzbH//vvH97///bzHK3iTJ0+O1atXOxTuc/jhD38Y9913X+yxxx5x8sknR8eOHePee++N++67L773ve/Zpb8WgwcPjpEjR8bYsWPjgw8+iD59+sRvf/vbmDt3bq1/QFDT1VdfHQsXLqz+7fI999xT/Wn0p5xySrRr1y7P8QrOxhtvHAcddFCt9TWfFbS2x4j45je/GSUlJbHbbrtFp06d4qWXXorrr78+SktL49JLL817vII0aNCg+O53vxs33XRTrF69OoYMGRLTp0+PO+64I8aOHevvgk/xgx/8IKZMmRIHHnhgfPzxx3HLLbfUePw73/lOTpMVruOPPz4WL14ce+65Z2y22Wbx3nvvxaRJk+KVV16JK6+8smHuqc3701obk9dffz3bd999s4033jgrLi7Ott566+ySSy6p9anErN0uu+ySderUKVu9enXeozQIM2fOzIYNG5Z17tw5a968ebbllltm48ePz1atWpX3aAWrvLw8O+OMM7LOnTtnxcXF2U477ZRNnTo177EKXo8ePbKIWOvtrbfeynu8BmPIkCFZ//798x6jYP3iF7/Idt5556xDhw5Zs2bNsi5dumTf+c53sjlz5uQ9WkFbuXJldt5552U9evTImjdvnvXp0yf7+c9/nvdYBW3IkCGf+meafxqv3W233ZYNHTo023TTTbNmzZpl7du3z4YOHZrdfffdeY9WZ0VZ1gAv5wAAAFBHDrAFAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKSIIAAAICkiCAAASIoIAgAAkiKCAACApIggADaooqKiz7ydd955eY8IQCPXLO8BAEjLu+++W/315MmT45xzzolXX321eq1169Z5jAVAQuwJAmCD6ty5c/WtXbt2UVRUVGPt9ttvj2222SZatmwZW2+9dVxzzTU1vv/MM8+MLbfcMkpLS6N3794xbty4WLVqVfXj5513Xmy//fZx0003xeabbx6tW7eOk046KSorK+Pyyy+Pzp07R6dOnWL8+PHV35NlWZx33nmx+eabR3FxcXTt2jXGjBmzwX4mAGxY9gQBUDAmTZoU55xzTlx99dUxaNCgmD17dhx77LHRqlWrGDVqVEREtGnTJiZOnBhdu3aNF154IY499tho06ZN/OhHP6p+njfeeCPuu+++mDp1arzxxhtx6KGHxptvvhlbbrllPProo/Hkk0/Gd7/73Rg6dGgMHjw4/vSnP8XPf/7zuP3226N///7x3nvvxfPPP5/XjwGA9UwEAVAwzj333LjyyivjkEMOiYiIXr16xUsvvRTXXXdddQSdffbZ1dv37NkzzjjjjLj99ttrRFBVVVXcdNNN0aZNm+jXr1/svffe8eqrr8Zf//rXaNKkSWy11VZx2WWXxSOPPBKDBw+Of/3rX9G5c+cYOnRoNG/ePDbffPPYeeedN+ybB2CDEUEAFIRly5bFG2+8Ecccc0wce+yx1eurV6+Odu3aVd+fPHly/PKXv4w33ngjli5dGqtXr462bdvWeK6ePXtGmzZtqu9vuumm0bRp02jSpEmNtQ8++CAiIkaOHBlXXXVV9O7dO/bff/8YPnx4HHjggdGsmb8mARoj5wQBUBCWLl0aERE33HBDPPfcc9W3F198MWbMmBEREU899VQcccQRMXz48Lj33ntj9uzZ8ZOf/CRWrlxZ47maN29e435RUdFa16qqqiIionv37vHqq6/GNddcEyUlJXHSSSfFnnvuWeNcIwAaD7/iAqAgbLrpptG1a9d4880344gjjljrNk8++WT06NEjfvKTn1SvzZs3r15ev6SkJA488MA48MADY/To0bH11lvHCy+8EDvssEO9PD8AhUMEAVAwzj///BgzZky0a9cu9t9//6ioqIinn346Pvnkkzj99NOjb9++8a9//Stuv/322GmnneIvf/lL3HXXXV/4dSdOnBiVlZUxePDgKC0tjVtuuSVKSkqiR48e9fCuACg0DocDoGB873vfixtvvDFuvvnm2HbbbWPIkCExceLE6NWrV0REjBgxIk477bQ4+eSTY/vtt48nn3wyxo0b94Vfd6ONNoobbrghvvzlL8fAgQNj2rRpcc8990THjh2/8HMDUHiKsizL8h4CAABgQ7EnCAAASIoIAgAAkiKCAACApIggAAAgKSIIAABIiggCAACSIoIAAICkiCAAACApIggAAEiKCAIAAJIiggAAgKT8P1Y/NuLF2dmpAAAAAElFTkSuQmCC\n"
1298 | },
1299 | "metadata": {}
1300 | }
1301 | ]
1302 | },
1303 | {
1304 | "cell_type": "code",
1305 | "source": [
1306 | "from sklearn.cluster import AgglomerativeClustering\n",
1307 | "cluster = AgglomerativeClustering(n_clusters=6, linkage='average')\n",
1308 | "clt1=cluster.fit_predict(X)"
1309 | ],
1310 | "metadata": {
1311 | "id": "Jz7qSMaZlMc9"
1312 | },
1313 | "execution_count": 30,
1314 | "outputs": []
1315 | },
1316 | {
1317 | "cell_type": "code",
1318 | "source": [
1319 | "clt1"
1320 | ],
1321 | "metadata": {
1322 | "colab": {
1323 | "base_uri": "https://localhost:8080/"
1324 | },
1325 | "id": "P2Q0D3zCldNo",
1326 | "outputId": "4efdaed4-0645-4e1f-ed9e-2c880ab99041"
1327 | },
1328 | "execution_count": 31,
1329 | "outputs": [
1330 | {
1331 | "output_type": "execute_result",
1332 | "data": {
1333 | "text/plain": [
1334 | "array([2, 2, 5, 4, 0, 0, 0, 1, 1, 3])"
1335 | ]
1336 | },
1337 | "metadata": {},
1338 | "execution_count": 31
1339 | }
1340 | ]
1341 | },
1342 | {
1343 | "cell_type": "code",
1344 | "source": [
1345 | "plt.figure(figsize=(5, 4))\n",
1346 | "plt.scatter(X.iloc[:,0], X.iloc[:,3], c=cluster.labels_)"
1347 | ],
1348 | "metadata": {
1349 | "id": "8en_MPEPlz7z",
1350 | "outputId": "543dc0fd-96c9-404c-97a3-e0a3b32bad56",
1351 | "colab": {
1352 | "base_uri": "https://localhost:8080/",
1353 | "height": 385
1354 | }
1355 | },
1356 | "execution_count": 34,
1357 | "outputs": [
1358 | {
1359 | "output_type": "execute_result",
1360 | "data": {
1361 | "text/plain": [
1362 | ""
1363 | ]
1364 | },
1365 | "metadata": {},
1366 | "execution_count": 34
1367 | },
1368 | {
1369 | "output_type": "display_data",
1370 | "data": {
1371 | "text/plain": [
1372 | ""
1373 | ],
1374 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAFfCAYAAADNgIIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkDUlEQVR4nO3deXhUdYLu8fdUJakESIpFSFgSiILshEXUBBVsAhEZrrk9txfaHnDjPjrhtshcuo3jMiMtQbkuKAxoO5q2bURpBboVsGNAaCSKLHEAWxRFiEgF6YFUCFAJVef+gRamTUIqJDmVn9/P85w/6pzfqfOmgLyctSzbtm0BAGAQl9MBAABobpQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAODFOB2iMUCikL7/8UomJibIsy+k4AAAH2LatyspK9ejRQy5Xw/tmbaLcvvzyS6WmpjodAwAQBcrKytSrV68Gx7SJcktMTJR09gdKSkpyOA0AwAl+v1+pqanhTmhImyi3bw5FJiUlUW4A8D3XmNNTXFACADAO5QYAMA7lBgAwDuUGADAO5QYAMA7lBgAwTpu4FQAAnPbZ/iN6e+NHqqoKqGfPTpowfogSE+OdjiVJ8vmO663iD3XseJUu6pKo7OzB6nrR+e8Faw1HT1dp9YHd+qLquDrFJWhK78FKT+zS4tu1bNu2W3wrF8jv98vr9aqiooL73AC0qkCgRvPmv66/bN4rt9uSZVkKBkOKiXHrFzMnavL1GY5lC4Vs/cfSt/Tayu1yuSy5XJZCIVu2Lf38Z5m6afrVjj6y8D/3vqdHPlivoG3LbVmyZSto2/rHPsP00OjrFetyR/R+kXRBRIcllyxZomHDhoVvps7MzNTatWsbXGfFihUaMGCA4uPjNXToUK1ZsyaSTQKAox5e8Ibe2fKxJCkYtHXmTEi2LdXUBPXo42v1zpZPHMtW+MJf9NrK7ZLOFt2ZM6Gvy83W736/RX947X3Hsr22/780r/QtnbFDsmXrjB1S8Ot9qdc+/y/N3fHnFt1+ROXWq1cvzZ8/X9u3b9e2bdv0gx/8QDfccIP27NlT5/gtW7Zo6tSpuvXWW7Vz507l5uYqNzdXu3fvbpbwANCSDpb9TW9v/EihUN0HuCzL0m9f+EsrpzqrqiqgV1ZsbXDMi7/fourqM62U6JyQbeuJ3ZvqXW5LeumznTpyqrLFMkRUblOmTNH111+vfv366dJLL9VDDz2kDh066N13361z/MKFC3Xddddpzpw5GjhwoObOnauRI0dq0aJFDW4nEAjI7/fXmgCgtW3e/LFcrvoP69m2rX2fHpGvvKIVU521bfv+8xZXZeVp7d79RSslOuej4+U6dLLhz8S2bb116OMWy9DkqyWDwaCWL1+uqqoqZWZm1jmmpKRE2dnZtebl5OSopKSkwfcuKCiQ1+sNT3wjAAAnnDpVLVcjzlmdOlXdCmmats2TDmQ7eabmvGMsy1JVI8Y1VcTltmvXLnXo0EEej0e33367Vq5cqUGDBtU51ufzKTk5uda85ORk+Xy+BreRn5+vioqK8FRWVhZpTAC4YGlpXXQmGGpwTGysW8ndWv9Ct7TUxl1xmJbW8lcm/r3eHTrJpYb/UxCybfVNarlsEZdb//79VVpaqvfee0933HGHpk+frg8//LBZQ3k8nvBFK3wTAACnXHN1f7Vv76l3uctlaUL2YLVrV/+YljJwYA/17t2l3sOmLpeloUN6NboEm1PXhA4a37Of3PXs9bpkqVtCB12TckmLZYi43OLi4tS3b1+NGjVKBQUFysjI0MKFC+scm5KSovLy8lrzysvLlZKS0rS0ANCKPJ5Y/WrO5PBl9t/mclnq1jVJt9481pFslmXp7jn/oNhY93eyud2WEhLidNes6xzJJkn3j5ioTp523yk4t2XJZVl69Iob5D7Pt2lfiAt+51AopEAgUOeyzMxMFRcX15pXVFRU7zk6AIg2V425VI8umKqMYWnheR5PjKZMHqHFT01Tp07tHcvWv393/cdT0zUm69JwwbndLo0bO1BLF9+kPr0vcixbj/ZerZpwi/5nn2GK+/p+NkvS1SkXa8X46cpK7tOi24/oJu78/HxNmjRJaWlpqqys1LJly/Twww/rzTff1IQJEzRt2jT17NlTBQUFks7eCjB27FjNnz9fkydP1vLlyzVv3jzt2LFDQ4YMaXRIbuIGEA38/lM6eapanTu1V1xcdD3gqaoqoMrKU/J62ykhIc7pOLWcOlOjvwWqlBQbr6S4pj/VJZIuiOhP58iRI5o2bZoOHz4sr9erYcOGhYtNkg4ePCjXt3Yzs7KytGzZMt17772655571K9fP61atSqiYgOAaJGUlKCkpASnY9SpfXtPg+cHnZQQE6teMR1bdZs8fgsA0Ca02OO3AABoCyg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxKDcAgHEoNwCAcSg3AIBxIiq3goICjR49WomJierWrZtyc3O1d+/eBtcpLCyUZVm1pvj4+AsKDQBAQyIqt40bNyovL0/vvvuuioqKVFNTo4kTJ6qqqqrB9ZKSknT48OHwdODAgQsKDQBAQ2IiGbxu3bparwsLC9WtWzdt375d11xzTb3rWZallJSUpiUEACBCF3TOraKiQpLUuXPnBsedOHFCvXv3Vmpqqm644Qbt2bOnwfGBQEB+v7/WBABAYzW53EKhkGbNmqUxY8ZoyJAh9Y7r37+/nnvuOa1evVovvviiQqGQsrKy9MUXX9S7TkFBgbxeb3hKTU1takwAwPeQZdu23ZQV77jjDq1du1abN29Wr169Gr1eTU2NBg4cqKlTp2ru3Ll1jgkEAgoEAuHXfr9fqampqqioUFJSUlPiAgDaOL/fL6/X26guiOic2zdmzpyp119/XZs2bYqo2CQpNjZWI0aM0L59++od4/F45PF4mhINAIDIDkvatq2ZM2dq5cqVWr9+vdLT0yPeYDAY1K5du9S9e/eI1wUAoDEi2nPLy8vTsmXLtHr1aiUmJsrn80mSvF6vEhISJEnTpk1Tz549VVBQIEl68MEHdeWVV6pv3746fvy4FixYoAMHDui2225r5h8FAICzIiq3JUuWSJLGjRtXa/7zzz+vm266SZJ08OBBuVzndgiPHTumGTNmyOfzqVOnTho1apS2bNmiQYMGXVhyAADq0eQLSlpTJCcRAQBmiqQLeLYkAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4MU4HQHSzg4el4BeS1VGK6SvLspyO1CZUVVTp8z1fyB3j0iXD+yg2LtbpSGHVp6v16QcHZIdCSh+apoQOCU5HCgueCerTDz5X9ekapQ3oqaQuiU5HQhtFuaFOds0nsisfkqq3nJvp7isl/l9Z8T9wLliUq/Kf1LO/elFv/vZt1ZyukSQldu6gf7zrH/TTu3Pldrsdy3am5oxefPAPWvnUWp30n5Qkedp5NHlGtm6ZN1WeBI9j2Wzb1qqn1uql+St1zHdckuSOcWvcT7N0+6PT1bGr17FsaJsiOixZUFCg0aNHKzExUd26dVNubq727t173vVWrFihAQMGKD4+XkOHDtWaNWuaHBgtz675RPZ//0iqfq/2guCnso/fIfvU684Ei3KnTwY05wf/rjXPFoeLTZIq//uECu9frkdvWyLbth3JFgqF9OufPq5l814LF5skBU4GtOqpNcqf9JBqqmsaeIeW9ezdv9d/zHo+XGzS2b24DS+9ozvH3KvKYyccy4a2KaJy27hxo/Ly8vTuu++qqKhINTU1mjhxoqqqqupdZ8uWLZo6dapuvfVW7dy5U7m5ucrNzdXu3bsvODxahl1ZINkBScG/XyLJlu1/QLYdcCBZdFv7bLH27dyvUDD03YW2VPTbjdqz5fz/GWwJ768r1Tsrt9ZZrqGQrV2b/qr1yzY7kEwq23tIryxYXeeyUDAk3/4j+sOjf2rlVGjrIiq3devW6aabbtLgwYOVkZGhwsJCHTx4UNu3b693nYULF+q6667TnDlzNHDgQM2dO1cjR47UokWLLjg8mp8d9EnV7+i7xfbtQZXS6eJWy9RWvP70n2Wr/j0zd4xLa//Tmc9tzW/ekstd/z93y2XpjWfeasVE56z7z/Vyx9SfLRQM6Y1nihzb60XbdEFXS1ZUVEiSOnfuXO+YkpISZWdn15qXk5OjkpKSetcJBALy+/21JrSS4CGpgV/QZ7nPXmSCWsoPfNXgRxc8E9KX+3ytF+hbvvzUV/ce5dfskK3Dn5W3YqJzfAe+UijU8N+5iqOVqgk4d9gUbU+Tyy0UCmnWrFkaM2aMhgwZUu84n8+n5OTkWvOSk5Pl89X/j7ygoEBerzc8paamNjUmIuXq2IhBoUaO+37p0LF9g8tdbpe8XZNaKU1t3ouSZLkavtLVqSsTEzt1kOs82eLiYxXriZ4rThH9mlxueXl52r17t5YvX96ceSRJ+fn5qqioCE9lZWXNvg3Uw32xFHOppIZ+2bil+AmtlajNmDBtXIOH/kLBkMb/7OpWTHRO9s+vkd3A3pHlsjRh2thWTHTO+BuvVvBM/XuV7hiXxt94NbehICJNKreZM2fq9ddf14YNG9SrV68Gx6akpKi8vPbhjvLycqWkpNS7jsfjUVJSUq0JrcOyLFmJ//ebV3UPaj9DlqtTq2VqK3L/zyQldmpfZ8G53C5dOupiZd0w2oFk0rVTxyh1QE+56ji35Y5xqUuPzrp+xngHkklDrhqgUROG1fu5xcXH6ce/zG39YGjTIio327Y1c+ZMrVy5UuvXr1d6evp518nMzFRxce2T6EVFRcrMzIwsKVqN5Rkny/u4ZH3zn4pv7s2KldrfIavDnU5Fi2pdunfSY5vmKnVAT0mSy+UKHwocNTFDBW/eK3eMM/e5eRI8enTDv2noVQMknd1T++ZQ4MUZffT4pgeV1NmZw5KWZemB1+bo6n+8UrLOvv6m6JJ7d9WC9f+mXv26O5INbZdlR3AJ0j//8z9r2bJlWr16tfr37x+e7/V6lZBw9ikH06ZNU8+ePVVQUCDp7K0AY8eO1fz58zV58mQtX75c8+bN044dOxo8V/dtfr9fXq9XFRUV7MW1ItuulgLrv35CiVeKz2aPrRFs29aedz7SR1v3yR3j1qiJGUr7uvCiwWf/dUClG3bLDtkaPKa/Blzez+lIYYf3l2vrmp2qPl2jSzJ6a/gPhsjl4imBOCuSLoio3Oo75v3888/rpptukiSNGzdOffr0UWFhYXj5ihUrdO+99+rzzz9Xv3799Mgjj+j6669v7GYpNwBAy5WbUyg3AEAkXcD+PgDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDgRl9umTZs0ZcoU9ejRQ5ZladWqVQ2Of/vtt2VZ1ncmn8/X1MwAADQo4nKrqqpSRkaGFi9eHNF6e/fu1eHDh8NTt27dIt00AACNEhPpCpMmTdKkSZMi3lC3bt3UsWPHRo0NBAIKBALh136/P+LtAQC+v1rtnNvw4cPVvXt3TZgwQe+8806DYwsKCuT1esNTampqK6UEAJigxcute/fuWrp0qV599VW9+uqrSk1N1bhx47Rjx45618nPz1dFRUV4Kisra+mYAACDRHxYMlL9+/dX//79w6+zsrL06aef6vHHH9fvfve7OtfxeDzyeDwtHQ0AYChHbgW4/PLLtW/fPic2DQD4HnCk3EpLS9W9e3cnNg0A+B6I+LDkiRMnau117d+/X6WlpercubPS0tKUn5+vQ4cO6YUXXpAkPfHEE0pPT9fgwYN1+vRpPfvss1q/fr3+/Oc/N99PAQDAt0Rcbtu2bdO1114bfj179mxJ0vTp01VYWKjDhw/r4MGD4eXV1dX6l3/5Fx06dEjt2rXTsGHD9NZbb9V6DwAAmpNl27btdIjz8fv98nq9qqioUFJSktNxAAAOiKQLeLYkAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4lBsAwDiUGwDAOJQbAMA4MU4HACIVskP60P+e3ju6Vr7TBxXn8miIN0tXXjRJneK6OR0PQBSIeM9t06ZNmjJlinr06CHLsrRq1arzrvP2229r5MiR8ng86tu3rwoLC5sQFThbbH8oe1IvHVig/VUf6mTQr+M1X+mdo3/Skx/P0oGqj5yOCCAKRFxuVVVVysjI0OLFixs1fv/+/Zo8ebKuvfZalZaWatasWbrtttv05ptvRhwW2Pq3N/XB8U2SJFuh8HxbIdWEAnrx8wLVhKqdigcgSkR8WHLSpEmaNGlSo8cvXbpU6enpevTRRyVJAwcO1ObNm/X4448rJycn0s3je8y2bb1z9I/1L5etk8FK7a7YohGdxrVaLgDRp8UvKCkpKVF2dnateTk5OSopKal3nUAgIL/fX2sCTgVP6L+ryxsc45JbB6r+2kqJAESrFi83n8+n5OTkWvOSk5Pl9/t16tSpOtcpKCiQ1+sNT6mpqS0dE22AZTXur2tjxwEwV1T+FsjPz1dFRUV4KisrczoSokC8q51S4nvLklXvmJCC6tshoxVTAYhGLV5uKSkpKi+vfSipvLxcSUlJSkhIqHMdj8ejpKSkWhNgWZau7porW3bdy+VSx9iuGpA0upWTAYg2LV5umZmZKi4urjWvqKhImZmZLb1pGCij4zW6pusPJUmuWn99LbWPSdL09PvkttzOhAMQNSK+WvLEiRPat29f+PX+/ftVWlqqzp07Ky0tTfn5+Tp06JBeeOEFSdLtt9+uRYsW6Ze//KVuueUWrV+/Xq+88oreeOON5vsp8L1hWZZyuv9cg7xXaOvf3tThU/vlcSdoiDdTIzqNU7y7vdMRAUSBiMtt27Ztuvbaa8OvZ8+eLUmaPn26CgsLdfjwYR08eDC8PD09XW+88YbuuusuLVy4UL169dKzzz7LbQC4IKnt+im1XT+nYwCIUpZt23WfwIgifr9fXq9XFRUVnH8DgO+pSLogKq+WBADgQlBuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAONQbgAA41BuAADjUG4AAOM0qdwWL16sPn36KD4+XldccYW2bt1a79jCwkJZllVrio+Pb3JgAADOJ+Jye/nllzV79mw98MAD2rFjhzIyMpSTk6MjR47Uu05SUpIOHz4cng4cOHBBoQEAaEjE5fbYY49pxowZuvnmmzVo0CAtXbpU7dq103PPPVfvOpZlKSUlJTwlJydfUGgAABoSUblVV1dr+/btys7OPvcGLpeys7NVUlJS73onTpxQ7969lZqaqhtuuEF79uxpcDuBQEB+v7/WBABAY0VUbkePHlUwGPzOnldycrJ8Pl+d6/Tv31/PPfecVq9erRdffFGhUEhZWVn64osv6t1OQUGBvF5veEpNTY0kJgDge67Fr5bMzMzUtGnTNHz4cI0dO1avvfaaunbtqqeffrredfLz81VRURGeysrKWjomAMAgMZEMvuiii+R2u1VeXl5rfnl5uVJSUhr1HrGxsRoxYoT27dtX7xiPxyOPxxNJNAAAwiLac4uLi9OoUaNUXFwcnhcKhVRcXKzMzMxGvUcwGNSuXbvUvXv3yJICANBIEe25SdLs2bM1ffp0XXbZZbr88sv1xBNPqKqqSjfffLMkadq0aerZs6cKCgokSQ8++KCuvPJK9e3bV8ePH9eCBQt04MAB3Xbbbc37kwAA8LWIy+0nP/mJvvrqK91///3y+XwaPny41q1bF77I5ODBg3K5zu0QHjt2TDNmzJDP51OnTp00atQobdmyRYMGDWq+nwIAgG+xbNu2nQ5xPn6/X16vVxUVFUpKSnI6DgDAAZF0Ac+WBAAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYh3IDABiHcgMAGIdyAwAYJ8bpAK3hE99Rrdv1sSpPBZTWpaP+YcRAdWwX73QsSdKXx/x6vfQjHa2sUtek9poyYqBSvIlOxwKANs2ybdt2OsT5+P1+eb1eVVRUKCkpqdHrna45o3tWrNObuz6R22XJkqVgKKRYt1v5/2Ocfnz5sBZM3bBQyNb/W7tJL7yzQ5YsuSxLoa//KG4bN1q/mJAly7IcywcA0SaSLmjSYcnFixerT58+io+P1xVXXKGtW7c2OH7FihUaMGCA4uPjNXToUK1Zs6Ypm43Yfa/+WUW790mSgiFbZ0Ih2ZKqg0H9+8pivbVnX6vkqMuS9e/qt5t3yLalkH02W8i2FbJtPbNhqwr/st2xbADQ1kVcbi+//LJmz56tBx54QDt27FBGRoZycnJ05MiROsdv2bJFU6dO1a233qqdO3cqNzdXubm52r179wWHb8iBo8e05oO94b2hv2dZ0qKiLXJix7UqUK3nNm1rcMwzG7YqUHOmlRIBgFkiLrfHHntMM2bM0M0336xBgwZp6dKlateunZ577rk6xy9cuFDXXXed5syZo4EDB2ru3LkaOXKkFi1aVO82AoGA/H5/rSlSb+3ZJ1cDh/VsW/qk/G/64lhFxO99obZ8ckCnz1Nc/tMBbdt/qJUSAYBZIiq36upqbd++XdnZ2efewOVSdna2SkpK6lynpKSk1nhJysnJqXe8JBUUFMjr9Yan1NTUSGJKkk5W1zRYbuFxgZqI3/tCnaxu3DZPVle3cBIAMFNE5Xb06FEFg0ElJyfXmp+cnCyfz1fnOj6fL6LxkpSfn6+KiorwVFZWFklMSVJ61846Ewo1OCbW7VKPTo2/QKW5pHft3KzjAAC1ReV9bh6PR0lJSbWmSE0Y3FdJ8R7Vt+/mdlmaPHyAEuM9Fxa2CYb2Sla/5Ivq3bN0W5aGp3VX3+QurZwMAMwQUblddNFFcrvdKi8vrzW/vLxcKSkpda6TkpIS0fjm4omN0bwf58iyrO+UiNtlKTmpg2blXNWiGepjWZYe+tFEeWLccru+my3BE6t//2F2PWsDAM4nonKLi4vTqFGjVFxcHJ4XCoVUXFyszMzMOtfJzMysNV6SioqK6h3fnK4deIkK//ePdPnF587ZxcfG6H+NHqrleT9T18T2LZ6hPoN7Jmt53s80flDfcPm6XZZyhl6qV/J+pr7JFzmWDQDauohv4n755Zc1ffp0Pf3007r88sv1xBNP6JVXXtFHH32k5ORkTZs2TT179lRBQYGks7cCjB07VvPnz9fkyZO1fPlyzZs3Tzt27NCQIUMatc2m3sT9bcdPntbJQLU6d2in+NjoejBLVaBax0+eUsd2CWrviXM6DgBEpUi6IOLf8j/5yU/01Vdf6f7775fP59Pw4cO1bt268EUjBw8elMt1bocwKytLy5Yt07333qt77rlH/fr106pVqxpdbM2lY7v4qHnk1t9r74mj1ACgGRn9+C0AgDla/PFbAABEM8oNAGAcyg0AYBzKDQBgHMoNAGCc6Lrhqx7fXNDZlG8HAACY4ZsOaMxF/m2i3CorKyWpSd8OAAAwS2Vlpbxeb4Nj2sR9bqFQSF9++aUSExNlNeJrbNoav9+v1NRUlZWVcR9fhPjsmobPrWn43JquOT4727ZVWVmpHj161HpYSF3axJ6by+VSr169nI7R4pr6DQjgs2sqPrem4XNrugv97M63x/YNLigBABiHcgMAGIdyiwIej0cPPPCAPJ7W/+LUto7Prmn43JqGz63pWvuzaxMXlAAAEAn23AAAxqHcAADGodwAAMah3AAAxqHcAADGodwcVFBQoNGjRysxMVHdunVTbm6u9u7d63SsNmf+/PmyLEuzZs1yOkqbcOjQIf385z9Xly5dlJCQoKFDh2rbtm1Ox4pqwWBQ9913n9LT05WQkKBLLrlEc+fObdQDfL9PNm3apClTpqhHjx6yLEurVq2qtdy2bd1///3q3r27EhISlJ2drU8++aRFslBuDtq4caPy8vL07rvvqqioSDU1NZo4caKqqqqcjtZmvP/++3r66ac1bNgwp6O0CceOHdOYMWMUGxurtWvX6sMPP9Sjjz6qTp06OR0tqj388MNasmSJFi1apL/+9a96+OGH9cgjj+ipp55yOlpUqaqqUkZGhhYvXlzn8kceeURPPvmkli5dqvfee0/t27dXTk6OTp8+3fxhbESNI0eO2JLsjRs3Oh2lTaisrLT79etnFxUV2WPHjrXvvPNOpyNFvV/96lf2VVdd5XSMNmfy5Mn2LbfcUmveD3/4Q/vGG290KFH0k2SvXLky/DoUCtkpKSn2ggULwvOOHz9uezwe+6WXXmr27bPnFkUqKiokSZ07d3Y4SduQl5enyZMnKzs72+kobcYf//hHXXbZZfrRj36kbt26acSIEfrNb37jdKyol5WVpeLiYn388ceSpA8++ECbN2/WpEmTHE7Wduzfv18+n6/Wv1ev16srrrhCJSUlzb69NvGtAN8HoVBIs2bN0pgxYzRkyBCn40S95cuXa8eOHXr//fedjtKmfPbZZ1qyZIlmz56te+65R++//75+8YtfKC4uTtOnT3c6XtS6++675ff7NWDAALndbgWDQT300EO68cYbnY7WZvh8PklScnJyrfnJycnhZc2JcosSeXl52r17tzZv3ux0lKhXVlamO++8U0VFRYqPj3c6TpsSCoV02WWXad68eZKkESNGaPfu3Vq6dCnl1oBXXnlFv//977Vs2TINHjxYpaWlmjVrlnr06MHnFqU4LBkFZs6cqddff10bNmz4Xnxv3YXavn27jhw5opEjRyomJkYxMTHauHGjnnzyScXExCgYDDodMWp1795dgwYNqjVv4MCBOnjwoEOJ2oY5c+bo7rvv1k9/+lMNHTpU//RP/6S77rpLBQUFTkdrM1JSUiRJ5eXlteaXl5eHlzUnys1Btm1r5syZWrlypdavX6/09HSnI7UJ48eP165du1RaWhqeLrvsMt14440qLS2V2+12OmLUGjNmzHduN/n444/Vu3dvhxK1DSdPnvzONz+73W6FQiGHErU96enpSklJUXFxcXie3+/Xe++9p8zMzGbfHoclHZSXl6dly5Zp9erVSkxMDB939nq9SkhIcDhd9EpMTPzOecn27durS5cunK88j7vuuktZWVmaN2+efvzjH2vr1q165pln9MwzzzgdLapNmTJFDz30kNLS0jR48GDt3LlTjz32mG655Rano0WVEydOaN++feHX+/fvV2lpqTp37qy0tDTNmjVLv/71r9WvXz+lp6frvvvuU48ePZSbm9v8YZr9+ks0mqQ6p+eff97paG0OtwI03p/+9Cd7yJAhtsfjsQcMGGA/88wzTkeKen6/377zzjvttLQ0Oz4+3r744ovtf/3Xf7UDgYDT0aLKhg0b6vydNn36dNu2z94OcN9999nJycm2x+Oxx48fb+/du7dFsvB9bgAA43DODQBgHMoNAGAcyg0AYBzKDQBgHMoNAGAcyg0AYBzKDQBgHMoNAGAcyg0AYBzKDQBgHMoNAGCc/w9LidPjdxVhpQAAAABJRU5ErkJggg==\n"
1375 | },
1376 | "metadata": {}
1377 | }
1378 | ]
1379 | }
1380 | ]
1381 | }
--------------------------------------------------------------------------------