├── .gitignore
├── LICENSE
├── README.md
├── chord_recognition.py
├── finetune.py
├── main.py
├── midi2remi.ipynb
├── model.py
├── modules.py
├── result
├── continuation.midi
└── from_scratch.midi
└── utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | .vscode/
3 | .ipynb_checkpoints/
4 | .DS_Store
5 | miditoolkit.egg-info/
6 | @eaDir
7 | *.pyc
8 | *.pypirc
9 | Thumbs.db
10 | *.gz
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # REMI
2 | Authors: [Yu-Siang Huang](https://remyhuang.github.io/), [Yi-Hsuan Yang](http://mac.citi.sinica.edu.tw/~yang/)
3 |
4 | [**Paper (arXiv)**](https://arxiv.org/abs/2002.00212) | [**Blog**](https://ailabs.tw/human-interaction/pop-music-transformer/) | [**Audio demo (Google Drive)**](https://drive.google.com/open?id=1LzPBjHPip4S0CBOLquk5CNapvXSfys54) | [**Online interactive demo**](https://vibertthio.com/transformer/)
5 |
6 | REMI, which stands for `REvamped MIDI-derived events`, is a new event representation we propose for converting MIDI scores into text-like discrete tokens. Compared to the MIDI-like event representation adopted in exising Transformer-based music composition models, REMI provides sequence models a metrical context for modeling the rhythmic patterns of music. Using REMI as the event representation, we train a Transformer-XL model to generate minute-long Pop piano music with expressive, coherent and clear structure of rhythm and harmony, without needing any post-processing to refine the result. The model also provides controllability of local tempo changes and chord progression.
7 |
8 | ## Citation
9 | ```
10 | @inproceedings{10.1145/3394171.3413671,
11 | author = {Huang, Yu-Siang and Yang, Yi-Hsuan},
12 | title = {Pop Music Transformer: Beat-Based Modeling and Generation of Expressive Pop Piano Compositions},
13 | year = {2020},
14 | isbn = {9781450379885},
15 | publisher = {Association for Computing Machinery},
16 | address = {New York, NY, USA},
17 | url = {https://doi.org/10.1145/3394171.3413671},
18 | doi = {10.1145/3394171.3413671},
19 | pages = {1180–1188},
20 | numpages = {9},
21 | location = {Seattle, WA, USA},
22 | series = {MM '20}
23 | }
24 | ```
25 |
26 | ## Getting Started
27 | ### Install Dependencies
28 | * python 3.6 (recommend using [Anaconda](https://www.anaconda.com/distribution/))
29 | * tensorflow-gpu 1.14.0 (`pip install tensorflow-gpu==1.14.0`)
30 | * [miditoolkit](https://github.com/YatingMusic/miditoolkit) (`pip install miditoolkit`)
31 |
32 | ### Download Pre-trained Checkpoints
33 | We provide two pre-trained checkpoints for generating samples.
34 | * `REMI-tempo-checkpoint` [(428 MB)](https://drive.google.com/open?id=1gxuTSkF51NP04JZgTE46Pg4KQsbHQKGo)
35 | * `REMI-tempo-chord-checkpoint` [(429 MB)](https://drive.google.com/open?id=1nAKjaeahlzpVAX0F9wjQEG_hL4UosSbo)
36 |
37 | ### Obtain the MIDI Data
38 | We provide the MIDI files including local tempo changes and estimated chord. [(5 MB)](https://drive.google.com/open?id=1JUDHGrVYGyHtjkfI2vgR1xb2oU8unlI3)
39 | * `data/train`: 775 files used for training models
40 | * `data/evaluation`: 100 files (prompts) used for the continuation experiments
41 |
42 | ## Generate Samples
43 | See `main.py` as an example:
44 | ```python
45 | from model import PopMusicTransformer
46 | import os
47 | os.environ['CUDA_VISIBLE_DEVICES'] = '0'
48 |
49 | def main():
50 | # declare model
51 | model = PopMusicTransformer(
52 | checkpoint='REMI-tempo-checkpoint',
53 | is_training=False)
54 |
55 | # generate from scratch
56 | model.generate(
57 | n_target_bar=16,
58 | temperature=1.2,
59 | topk=5,
60 | output_path='./result/from_scratch.midi',
61 | prompt=None)
62 |
63 | # generate continuation
64 | model.generate(
65 | n_target_bar=16,
66 | temperature=1.2,
67 | topk=5,
68 | output_path='./result/continuation.midi',
69 | prompt='./data/evaluation/000.midi')
70 |
71 | # close model
72 | model.close()
73 |
74 | if __name__ == '__main__':
75 | main()
76 | ```
77 |
78 | ## Convert MIDI to REMI
79 | You can find out how to convert the MIDI messages into REMI events in the `midi2remi.ipynb`.
80 |
81 | ## FAQ
82 | #### 1. How to synthesize the audio files (e.g., mp3)?
83 | We strongly recommend using DAW (e.g., Logic Pro) to open/play the generated MIDI files. Or, you can use [FluidSynth](https://github.com/FluidSynth/fluidsynth) with a [SoundFont](https://sites.google.com/site/soundfonts4u/). However, it may not be able to correctly handle the tempo changes (see [fluidsynth/issues/141](https://github.com/FluidSynth/fluidsynth/issues/141)).
84 |
85 | #### 2. What is the function of the inputs "temperature" and "topk"?
86 | It is the temperature-controlled stochastic sampling methods are used for generating text from a trained language model. You can find out more details in the reference paper [CTRL: 4.1 Sampling](https://einstein.ai/presentations/ctrl.pdf).
87 | > It is worth noting that the sampling method used for generation is very critical to the quality of the output, which is a research topic worthy of further exploration.
88 |
89 | #### 3. How to finetune with my personal MIDI data?
90 | Please see [issue/Training on custom MIDI corpus](https://github.com/YatingMusic/remi/issues/2)
91 |
92 | ## Acknowledgement
93 | - The content of `modules.py` comes from the [kimiyoung/transformer-xl](https://github.com/kimiyoung/transformer-xl) repository.
94 | - Thanks [@vibertthio](https://github.com/vibertthio) for the awesome online interactive demo.
95 |
--------------------------------------------------------------------------------
/chord_recognition.py:
--------------------------------------------------------------------------------
1 | import miditoolkit
2 | import numpy as np
3 |
4 | class MIDIChord(object):
5 | def __init__(self):
6 | # define pitch classes
7 | self.PITCH_CLASSES = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
8 | # define chord maps (required)
9 | self.CHORD_MAPS = {'maj': [0, 4],
10 | 'min': [0, 3],
11 | 'dim': [0, 3, 6],
12 | 'aug': [0, 4, 8],
13 | 'dom': [0, 4, 7, 10]}
14 | # define chord insiders (+1)
15 | self.CHORD_INSIDERS = {'maj': [7],
16 | 'min': [7],
17 | 'dim': [9],
18 | 'aug': [],
19 | 'dom': []}
20 | # define chord outsiders (-1)
21 | self.CHORD_OUTSIDERS_1 = {'maj': [2, 5, 9],
22 | 'min': [2, 5, 8],
23 | 'dim': [2, 5, 10],
24 | 'aug': [2, 5, 9],
25 | 'dom': [2, 5, 9]}
26 | # define chord outsiders (-2)
27 | self.CHORD_OUTSIDERS_2 = {'maj': [1, 3, 6, 8, 10],
28 | 'min': [1, 4, 6, 9, 11],
29 | 'dim': [1, 4, 7, 8, 11],
30 | 'aug': [1, 3, 6, 7, 10],
31 | 'dom': [1, 3, 6, 8, 11]}
32 |
33 | def note2pianoroll(self, notes, max_tick, ticks_per_beat):
34 | return miditoolkit.pianoroll.parser.notes2pianoroll(
35 | note_stream_ori=notes,
36 | max_tick=max_tick,
37 | ticks_per_beat=ticks_per_beat)
38 |
39 | def sequencing(self, chroma):
40 | candidates = {}
41 | for index in range(len(chroma)):
42 | if chroma[index]:
43 | root_note = index
44 | _chroma = np.roll(chroma, -root_note)
45 | sequence = np.where(_chroma == 1)[0]
46 | candidates[root_note] = list(sequence)
47 | return candidates
48 |
49 | def scoring(self, candidates):
50 | scores = {}
51 | qualities = {}
52 | for root_note, sequence in candidates.items():
53 | if 3 not in sequence and 4 not in sequence:
54 | scores[root_note] = -100
55 | qualities[root_note] = 'None'
56 | elif 3 in sequence and 4 in sequence:
57 | scores[root_note] = -100
58 | qualities[root_note] = 'None'
59 | else:
60 | # decide quality
61 | if 3 in sequence:
62 | if 6 in sequence:
63 | quality = 'dim'
64 | else:
65 | quality = 'min'
66 | elif 4 in sequence:
67 | if 8 in sequence:
68 | quality = 'aug'
69 | else:
70 | if 7 in sequence and 10 in sequence:
71 | quality = 'dom'
72 | else:
73 | quality = 'maj'
74 | # decide score
75 | maps = self.CHORD_MAPS.get(quality)
76 | _notes = [n for n in sequence if n not in maps]
77 | score = 0
78 | for n in _notes:
79 | if n in self.CHORD_OUTSIDERS_1.get(quality):
80 | score -= 1
81 | elif n in self.CHORD_OUTSIDERS_2.get(quality):
82 | score -= 2
83 | elif n in self.CHORD_INSIDERS.get(quality):
84 | score += 1
85 | scores[root_note] = score
86 | qualities[root_note] = quality
87 | return scores, qualities
88 |
89 | def find_chord(self, pianoroll):
90 | chroma = miditoolkit.pianoroll.utils.tochroma(pianoroll=pianoroll)
91 | chroma = np.sum(chroma, axis=0)
92 | chroma = np.array([1 if c else 0 for c in chroma])
93 | if np.sum(chroma) == 0:
94 | return 'N', 'N', 'N', 0
95 | else:
96 | candidates = self.sequencing(chroma=chroma)
97 | scores, qualities = self.scoring(candidates=candidates)
98 | # bass note
99 | sorted_notes = []
100 | for i, v in enumerate(np.sum(pianoroll, axis=0)):
101 | if v > 0:
102 | sorted_notes.append(int(i%12))
103 | bass_note = sorted_notes[0]
104 | # root note
105 | __root_note = []
106 | _max = max(scores.values())
107 | for _root_note, score in scores.items():
108 | if score == _max:
109 | __root_note.append(_root_note)
110 | if len(__root_note) == 1:
111 | root_note = __root_note[0]
112 | else:
113 | #TODO: what should i do
114 | for n in sorted_notes:
115 | if n in __root_note:
116 | root_note = n
117 | break
118 | # quality
119 | quality = qualities.get(root_note)
120 | sequence = candidates.get(root_note)
121 | # score
122 | score = scores.get(root_note)
123 | return self.PITCH_CLASSES[root_note], quality, self.PITCH_CLASSES[bass_note], score
124 |
125 | def greedy(self, candidates, max_tick, min_length):
126 | chords = []
127 | # start from 0
128 | start_tick = 0
129 | while start_tick < max_tick:
130 | _candidates = candidates.get(start_tick)
131 | _candidates = sorted(_candidates.items(), key=lambda x: (x[1][-1], x[0]))
132 | # choose
133 | end_tick, (root_note, quality, bass_note, _) = _candidates[-1]
134 | if root_note == bass_note:
135 | chord = '{}:{}'.format(root_note, quality)
136 | else:
137 | chord = '{}:{}/{}'.format(root_note, quality, bass_note)
138 | chords.append([start_tick, end_tick, chord])
139 | start_tick = end_tick
140 | # remove :None
141 | temp = chords
142 | while ':None' in temp[0][-1]:
143 | try:
144 | temp[1][0] = temp[0][0]
145 | del temp[0]
146 | except:
147 | print('NO CHORD')
148 | return []
149 | temp2 = []
150 | for chord in temp:
151 | if ':None' not in chord[-1]:
152 | temp2.append(chord)
153 | else:
154 | temp2[-1][1] = chord[1]
155 | return temp2
156 |
157 | def extract(self, notes):
158 | # read
159 | max_tick = max([n.end for n in notes])
160 | ticks_per_beat = 480
161 | pianoroll = self.note2pianoroll(
162 | notes=notes,
163 | max_tick=max_tick,
164 | ticks_per_beat=ticks_per_beat)
165 | # get lots of candidates
166 | candidates = {}
167 | # the shortest: 2 beat, longest: 4 beat
168 | for interval in [4, 2]:
169 | for start_tick in range(0, max_tick, ticks_per_beat):
170 | # set target pianoroll
171 | end_tick = int(ticks_per_beat * interval + start_tick)
172 | if end_tick > max_tick:
173 | end_tick = max_tick
174 | _pianoroll = pianoroll[start_tick:end_tick, :]
175 | # find chord
176 | root_note, quality, bass_note, score = self.find_chord(pianoroll=_pianoroll)
177 | # save
178 | if start_tick not in candidates:
179 | candidates[start_tick] = {}
180 | candidates[start_tick][end_tick] = (root_note, quality, bass_note, score)
181 | else:
182 | if end_tick not in candidates[start_tick]:
183 | candidates[start_tick][end_tick] = (root_note, quality, bass_note, score)
184 | # greedy
185 | chords = self.greedy(candidates=candidates,
186 | max_tick=max_tick,
187 | min_length=ticks_per_beat)
188 | return chords
189 |
--------------------------------------------------------------------------------
/finetune.py:
--------------------------------------------------------------------------------
1 | from model import PopMusicTransformer
2 | from glob import glob
3 | import os
4 | os.environ['CUDA_VISIBLE_DEVICES'] = '0'
5 |
6 | def main():
7 | # declare model
8 | model = PopMusicTransformer(
9 | checkpoint='REMI-tempo-checkpoint',
10 | is_training=True)
11 | # prepare data
12 | midi_paths = glob('YOUR PERSOANL FOLDER/*.midi') # you need to revise it
13 | training_data = model.prepare_data(midi_paths=midi_paths)
14 |
15 | # check output checkpoint folder
16 | ####################################
17 | # if you use "REMI-tempo-chord-checkpoint" for the pre-trained checkpoint
18 | # please name your output folder as something with "chord"
19 | # for example: my-love-chord, cute-doggy-chord, ...
20 | # if use "REMI-tempo-checkpoint"
21 | # for example: my-love, cute-doggy, ...
22 | ####################################
23 | output_checkpoint_folder = 'REMI-finetune' # your decision
24 | if not os.path.exists(output_checkpoint_folder):
25 | os.mkdir(output_checkpoint_folder)
26 |
27 | # finetune
28 | model.finetune(
29 | training_data=training_data,
30 | output_checkpoint_folder=output_checkpoint_folder)
31 |
32 | ####################################
33 | # after finetuning, please choose which checkpoint you want to try
34 | # and change the checkpoint names you choose into "model"
35 | # and copy the "dictionary.pkl" into the your output_checkpoint_folder
36 | # ***** the same as the content format in "REMI-tempo-checkpoint" *****
37 | # and then, you can use "main.py" to generate your own music!
38 | # (do not forget to revise the checkpoint path to your own in "main.py")
39 | ####################################
40 |
41 | # close
42 | model.close()
43 |
44 | if __name__ == '__main__':
45 | main()
46 |
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | from model import PopMusicTransformer
2 | import os
3 | os.environ['CUDA_VISIBLE_DEVICES'] = '0'
4 |
5 | def main():
6 | # declare model
7 | model = PopMusicTransformer(
8 | checkpoint='REMI-tempo-checkpoint',
9 | is_training=False)
10 |
11 | # generate from scratch
12 | model.generate(
13 | n_target_bar=16,
14 | temperature=1.2,
15 | topk=5,
16 | output_path='./result/from_scratch.midi',
17 | prompt=None)
18 |
19 | # generate continuation
20 | model.generate(
21 | n_target_bar=16,
22 | temperature=1.2,
23 | topk=5
24 | output_path='./result/continuation.midi',
25 | prompt='./data/evaluation/000.midi')
26 |
27 | # close model
28 | model.close()
29 |
30 | if __name__ == '__main__':
31 | main()
32 |
--------------------------------------------------------------------------------
/midi2remi.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 3,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import miditoolkit\n",
10 | "import utils"
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {},
16 | "source": [
17 | "# Read MIDI (example)"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 4,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "midi_obj = miditoolkit.midi.parser.MidiFile('./data/evaluation/000.midi')"
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 6,
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "name": "stdout",
36 | "output_type": "stream",
37 | "text": [
38 | "Note(start=956, end=1530, pitch=59, velocity=55)\n",
39 | "Note(start=1420, end=1998, pitch=60, velocity=57)\n",
40 | "Note(start=1921, end=2519, pitch=43, velocity=58)\n",
41 | "Note(start=3372, end=3848, pitch=67, velocity=64)\n",
42 | "Note(start=1885, end=3960, pitch=62, velocity=71)\n",
43 | "Note(start=2410, end=4109, pitch=50, velocity=62)\n",
44 | "Note(start=2886, end=5285, pitch=59, velocity=69)\n",
45 | "Note(start=5285, end=5872, pitch=59, velocity=68)\n",
46 | "Note(start=3848, end=5910, pitch=67, velocity=71)\n",
47 | "Note(start=5761, end=6723, pitch=60, velocity=72)\n",
48 | "Note(start=6247, end=6795, pitch=52, velocity=57)\n",
49 | "Note(start=5761, end=6904, pitch=43, velocity=66)\n",
50 | "Note(start=7198, end=7673, pitch=69, velocity=68)\n",
51 | "Note(start=6723, end=8710, pitch=60, velocity=66)\n"
52 | ]
53 | }
54 | ],
55 | "source": [
56 | "print(*midi_obj.instruments[0].notes, sep='\\n')"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": 9,
62 | "metadata": {},
63 | "outputs": [
64 | {
65 | "name": "stdout",
66 | "output_type": "stream",
67 | "text": [
68 | "120.0 BPM at 0 ticks\n",
69 | "23.529411764705884 BPM at 480 ticks\n",
70 | "146.34146341463415 BPM at 960 ticks\n",
71 | "139.53488372093022 BPM at 1440 ticks\n",
72 | "146.34146341463415 BPM at 1920 ticks\n",
73 | "142.85714285714286 BPM at 2400 ticks\n",
74 | "146.34146341463415 BPM at 2880 ticks\n",
75 | "142.85714285714286 BPM at 3360 ticks\n",
76 | "146.34146341463415 BPM at 3840 ticks\n",
77 | "142.85714285714286 BPM at 4320 ticks\n"
78 | ]
79 | }
80 | ],
81 | "source": [
82 | "print(*midi_obj.tempo_changes[:10], sep='\\n')"
83 | ]
84 | },
85 | {
86 | "cell_type": "markdown",
87 | "metadata": {},
88 | "source": [
89 | "# Convert to REMI events"
90 | ]
91 | },
92 | {
93 | "cell_type": "markdown",
94 | "metadata": {},
95 | "source": [
96 | "## 1. Read midi into \"Item\""
97 | ]
98 | },
99 | {
100 | "cell_type": "code",
101 | "execution_count": 10,
102 | "metadata": {},
103 | "outputs": [],
104 | "source": [
105 | "note_items, tempo_items = utils.read_items('./data/evaluation/000.midi')"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": 11,
111 | "metadata": {},
112 | "outputs": [
113 | {
114 | "name": "stdout",
115 | "output_type": "stream",
116 | "text": [
117 | "Item(name=Note, start=956, end=1530, velocity=55, pitch=59)\n",
118 | "Item(name=Note, start=1420, end=1998, velocity=57, pitch=60)\n",
119 | "Item(name=Note, start=1885, end=3960, velocity=71, pitch=62)\n",
120 | "Item(name=Note, start=1921, end=2519, velocity=58, pitch=43)\n",
121 | "Item(name=Note, start=2410, end=4109, velocity=62, pitch=50)\n",
122 | "Item(name=Note, start=2886, end=5285, velocity=69, pitch=59)\n",
123 | "Item(name=Note, start=3372, end=3848, velocity=64, pitch=67)\n",
124 | "Item(name=Note, start=3848, end=5910, velocity=71, pitch=67)\n",
125 | "Item(name=Note, start=5285, end=5872, velocity=68, pitch=59)\n",
126 | "Item(name=Note, start=5761, end=6904, velocity=66, pitch=43)\n",
127 | "Item(name=Note, start=5761, end=6723, velocity=72, pitch=60)\n",
128 | "Item(name=Note, start=6247, end=6795, velocity=57, pitch=52)\n",
129 | "Item(name=Note, start=6723, end=8710, velocity=66, pitch=60)\n",
130 | "Item(name=Note, start=7198, end=7673, velocity=68, pitch=69)\n"
131 | ]
132 | }
133 | ],
134 | "source": [
135 | "print(*note_items, sep='\\n')"
136 | ]
137 | },
138 | {
139 | "cell_type": "code",
140 | "execution_count": 13,
141 | "metadata": {},
142 | "outputs": [
143 | {
144 | "name": "stdout",
145 | "output_type": "stream",
146 | "text": [
147 | "Item(name=Tempo, start=0, end=None, velocity=None, pitch=120)\n",
148 | "Item(name=Tempo, start=480, end=None, velocity=None, pitch=23)\n",
149 | "Item(name=Tempo, start=960, end=None, velocity=None, pitch=146)\n",
150 | "Item(name=Tempo, start=1440, end=None, velocity=None, pitch=139)\n",
151 | "Item(name=Tempo, start=1920, end=None, velocity=None, pitch=146)\n",
152 | "Item(name=Tempo, start=2400, end=None, velocity=None, pitch=142)\n",
153 | "Item(name=Tempo, start=2880, end=None, velocity=None, pitch=146)\n",
154 | "Item(name=Tempo, start=3360, end=None, velocity=None, pitch=142)\n",
155 | "Item(name=Tempo, start=3840, end=None, velocity=None, pitch=146)\n",
156 | "Item(name=Tempo, start=4320, end=None, velocity=None, pitch=142)\n"
157 | ]
158 | }
159 | ],
160 | "source": [
161 | "print(*tempo_items[:10], sep='\\n')"
162 | ]
163 | },
164 | {
165 | "cell_type": "markdown",
166 | "metadata": {},
167 | "source": [
168 | "## 2. Quantize note items"
169 | ]
170 | },
171 | {
172 | "cell_type": "code",
173 | "execution_count": 14,
174 | "metadata": {},
175 | "outputs": [],
176 | "source": [
177 | "note_items = utils.quantize_items(note_items)"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 15,
183 | "metadata": {},
184 | "outputs": [
185 | {
186 | "name": "stdout",
187 | "output_type": "stream",
188 | "text": [
189 | "Item(name=Note, start=960, end=1534, velocity=55, pitch=59)\n",
190 | "Item(name=Note, start=1440, end=2018, velocity=57, pitch=60)\n",
191 | "Item(name=Note, start=1920, end=3995, velocity=71, pitch=62)\n",
192 | "Item(name=Note, start=1920, end=2518, velocity=58, pitch=43)\n",
193 | "Item(name=Note, start=2400, end=4099, velocity=62, pitch=50)\n",
194 | "Item(name=Note, start=2880, end=5279, velocity=69, pitch=59)\n",
195 | "Item(name=Note, start=3360, end=3836, velocity=64, pitch=67)\n",
196 | "Item(name=Note, start=3840, end=5902, velocity=71, pitch=67)\n",
197 | "Item(name=Note, start=5280, end=5867, velocity=68, pitch=59)\n",
198 | "Item(name=Note, start=5760, end=6903, velocity=66, pitch=43)\n",
199 | "Item(name=Note, start=5760, end=6722, velocity=72, pitch=60)\n",
200 | "Item(name=Note, start=6240, end=6788, velocity=57, pitch=52)\n",
201 | "Item(name=Note, start=6720, end=8707, velocity=66, pitch=60)\n",
202 | "Item(name=Note, start=7080, end=7555, velocity=68, pitch=69)\n"
203 | ]
204 | }
205 | ],
206 | "source": [
207 | "print(*note_items, sep='\\n')"
208 | ]
209 | },
210 | {
211 | "cell_type": "markdown",
212 | "metadata": {},
213 | "source": [
214 | "## 3. extract chord (if needed)"
215 | ]
216 | },
217 | {
218 | "cell_type": "code",
219 | "execution_count": 16,
220 | "metadata": {},
221 | "outputs": [],
222 | "source": [
223 | "chord_items = utils.extract_chords(note_items)"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": 17,
229 | "metadata": {},
230 | "outputs": [
231 | {
232 | "name": "stdout",
233 | "output_type": "stream",
234 | "text": [
235 | "Item(name=Chord, start=0, end=960, velocity=None, pitch=N:N)\n",
236 | "Item(name=Chord, start=960, end=2880, velocity=None, pitch=G:maj)\n",
237 | "Item(name=Chord, start=2880, end=4800, velocity=None, pitch=G:maj)\n",
238 | "Item(name=Chord, start=4800, end=6720, velocity=None, pitch=C:maj)\n",
239 | "Item(name=Chord, start=6720, end=8707, velocity=None, pitch=A:min)\n"
240 | ]
241 | }
242 | ],
243 | "source": [
244 | "print(*chord_items, sep='\\n')"
245 | ]
246 | },
247 | {
248 | "cell_type": "markdown",
249 | "metadata": {},
250 | "source": [
251 | "## 4. group items"
252 | ]
253 | },
254 | {
255 | "cell_type": "code",
256 | "execution_count": 18,
257 | "metadata": {},
258 | "outputs": [],
259 | "source": [
260 | "items = chord_items + tempo_items + note_items\n",
261 | "max_time = note_items[-1].end\n",
262 | "groups = utils.group_items(items, max_time)"
263 | ]
264 | },
265 | {
266 | "cell_type": "code",
267 | "execution_count": 19,
268 | "metadata": {},
269 | "outputs": [
270 | {
271 | "name": "stdout",
272 | "output_type": "stream",
273 | "text": [
274 | "0\n",
275 | "Item(name=Chord, start=0, end=960, velocity=None, pitch=N:N)\n",
276 | "Item(name=Tempo, start=0, end=None, velocity=None, pitch=120)\n",
277 | "Item(name=Tempo, start=480, end=None, velocity=None, pitch=23)\n",
278 | "Item(name=Chord, start=960, end=2880, velocity=None, pitch=G:maj)\n",
279 | "Item(name=Tempo, start=960, end=None, velocity=None, pitch=146)\n",
280 | "Item(name=Note, start=960, end=1534, velocity=55, pitch=59)\n",
281 | "Item(name=Tempo, start=1440, end=None, velocity=None, pitch=139)\n",
282 | "Item(name=Note, start=1440, end=2018, velocity=57, pitch=60)\n",
283 | "1920\n",
284 | "\n",
285 | "1920\n",
286 | "Item(name=Tempo, start=1920, end=None, velocity=None, pitch=146)\n",
287 | "Item(name=Note, start=1920, end=3995, velocity=71, pitch=62)\n",
288 | "Item(name=Note, start=1920, end=2518, velocity=58, pitch=43)\n",
289 | "Item(name=Tempo, start=2400, end=None, velocity=None, pitch=142)\n",
290 | "Item(name=Note, start=2400, end=4099, velocity=62, pitch=50)\n",
291 | "Item(name=Chord, start=2880, end=4800, velocity=None, pitch=G:maj)\n",
292 | "Item(name=Tempo, start=2880, end=None, velocity=None, pitch=146)\n",
293 | "Item(name=Note, start=2880, end=5279, velocity=69, pitch=59)\n",
294 | "Item(name=Tempo, start=3360, end=None, velocity=None, pitch=142)\n",
295 | "Item(name=Note, start=3360, end=3836, velocity=64, pitch=67)\n",
296 | "3840\n",
297 | "\n",
298 | "3840\n",
299 | "Item(name=Tempo, start=3840, end=None, velocity=None, pitch=146)\n",
300 | "Item(name=Note, start=3840, end=5902, velocity=71, pitch=67)\n",
301 | "Item(name=Tempo, start=4320, end=None, velocity=None, pitch=142)\n",
302 | "Item(name=Chord, start=4800, end=6720, velocity=None, pitch=C:maj)\n",
303 | "Item(name=Tempo, start=4800, end=None, velocity=None, pitch=142)\n",
304 | "Item(name=Tempo, start=5280, end=None, velocity=None, pitch=142)\n",
305 | "Item(name=Note, start=5280, end=5867, velocity=68, pitch=59)\n",
306 | "5760\n",
307 | "\n",
308 | "5760\n",
309 | "Item(name=Tempo, start=5760, end=None, velocity=None, pitch=146)\n",
310 | "Item(name=Note, start=5760, end=6903, velocity=66, pitch=43)\n",
311 | "Item(name=Note, start=5760, end=6722, velocity=72, pitch=60)\n",
312 | "Item(name=Tempo, start=6240, end=None, velocity=None, pitch=142)\n",
313 | "Item(name=Note, start=6240, end=6788, velocity=57, pitch=52)\n",
314 | "Item(name=Chord, start=6720, end=8707, velocity=None, pitch=A:min)\n",
315 | "Item(name=Tempo, start=6720, end=None, velocity=None, pitch=142)\n",
316 | "Item(name=Note, start=6720, end=8707, velocity=66, pitch=60)\n",
317 | "Item(name=Note, start=7080, end=7555, velocity=68, pitch=69)\n",
318 | "Item(name=Tempo, start=7200, end=None, velocity=None, pitch=142)\n",
319 | "7680\n",
320 | "\n"
321 | ]
322 | }
323 | ],
324 | "source": [
325 | "for g in groups:\n",
326 | " print(*g, sep='\\n')\n",
327 | " print()"
328 | ]
329 | },
330 | {
331 | "cell_type": "markdown",
332 | "metadata": {},
333 | "source": [
334 | "## 5. \"Item\" to \"Event\""
335 | ]
336 | },
337 | {
338 | "cell_type": "code",
339 | "execution_count": 20,
340 | "metadata": {},
341 | "outputs": [],
342 | "source": [
343 | "events = utils.item2event(groups)"
344 | ]
345 | },
346 | {
347 | "cell_type": "code",
348 | "execution_count": 23,
349 | "metadata": {},
350 | "outputs": [
351 | {
352 | "name": "stdout",
353 | "output_type": "stream",
354 | "text": [
355 | "Event(name=Bar, time=None, value=None, text=1)\n",
356 | "Event(name=Position, time=0, value=1/16, text=0)\n",
357 | "Event(name=Chord, time=0, value=N:N, text=N:N)\n",
358 | "Event(name=Position, time=0, value=1/16, text=0)\n",
359 | "Event(name=Tempo Class, time=0, value=mid, text=None)\n",
360 | "Event(name=Tempo Value, time=0, value=30, text=None)\n",
361 | "Event(name=Position, time=480, value=5/16, text=480)\n",
362 | "Event(name=Tempo Class, time=480, value=slow, text=None)\n",
363 | "Event(name=Tempo Value, time=480, value=0, text=None)\n",
364 | "Event(name=Position, time=960, value=9/16, text=960)\n",
365 | "Event(name=Chord, time=960, value=G:maj, text=G:maj)\n",
366 | "Event(name=Position, time=960, value=9/16, text=960)\n",
367 | "Event(name=Tempo Class, time=960, value=mid, text=None)\n",
368 | "Event(name=Tempo Value, time=960, value=56, text=None)\n",
369 | "Event(name=Position, time=960, value=9/16, text=960)\n",
370 | "Event(name=Note Velocity, time=960, value=13, text=55/52)\n",
371 | "Event(name=Note On, time=960, value=59, text=59)\n",
372 | "Event(name=Note Duration, time=960, value=9, text=574/600)\n",
373 | "Event(name=Position, time=1440, value=13/16, text=1440)\n",
374 | "Event(name=Tempo Class, time=1440, value=mid, text=None)\n",
375 | "Event(name=Tempo Value, time=1440, value=49, text=None)\n",
376 | "Event(name=Position, time=1440, value=13/16, text=1440)\n",
377 | "Event(name=Note Velocity, time=1440, value=14, text=57/56)\n",
378 | "Event(name=Note On, time=1440, value=60, text=60)\n",
379 | "Event(name=Note Duration, time=1440, value=9, text=578/600)\n",
380 | "Event(name=Bar, time=None, value=None, text=2)\n",
381 | "Event(name=Position, time=1920, value=1/16, text=1920)\n",
382 | "Event(name=Tempo Class, time=1920, value=mid, text=None)\n",
383 | "Event(name=Tempo Value, time=1920, value=56, text=None)\n",
384 | "Event(name=Position, time=1920, value=1/16, text=1920)\n"
385 | ]
386 | }
387 | ],
388 | "source": [
389 | "print(*events[:30], sep='\\n')"
390 | ]
391 | }
392 | ],
393 | "metadata": {
394 | "kernelspec": {
395 | "display_name": "Python 3",
396 | "language": "python",
397 | "name": "python3"
398 | },
399 | "language_info": {
400 | "codemirror_mode": {
401 | "name": "ipython",
402 | "version": 3
403 | },
404 | "file_extension": ".py",
405 | "mimetype": "text/x-python",
406 | "name": "python",
407 | "nbconvert_exporter": "python",
408 | "pygments_lexer": "ipython3",
409 | "version": "3.7.6"
410 | }
411 | },
412 | "nbformat": 4,
413 | "nbformat_minor": 4
414 | }
415 |
--------------------------------------------------------------------------------
/model.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 | import miditoolkit
4 | import modules
5 | import pickle
6 | import utils
7 | import time
8 |
9 | class PopMusicTransformer(object):
10 | ########################################
11 | # initialize
12 | ########################################
13 | def __init__(self, checkpoint, is_training=False):
14 | # load dictionary
15 | self.dictionary_path = '{}/dictionary.pkl'.format(checkpoint)
16 | self.event2word, self.word2event = pickle.load(open(self.dictionary_path, 'rb'))
17 | # model settings
18 | self.x_len = 512
19 | self.mem_len = 512
20 | self.n_layer = 12
21 | self.d_embed = 512
22 | self.d_model = 512
23 | self.dropout = 0.1
24 | self.n_head = 8
25 | self.d_head = self.d_model // self.n_head
26 | self.d_ff = 2048
27 | self.n_token = len(self.event2word)
28 | self.learning_rate = 0.0002
29 | # load model
30 | self.is_training = is_training
31 | if self.is_training:
32 | self.batch_size = 4
33 | else:
34 | self.batch_size = 1
35 | self.checkpoint_path = '{}/model'.format(checkpoint)
36 | self.load_model()
37 |
38 | ########################################
39 | # load model
40 | ########################################
41 | def load_model(self):
42 | # placeholders
43 | self.x = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
44 | self.y = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
45 | self.mems_i = [tf.compat.v1.placeholder(tf.float32, [self.mem_len, self.batch_size, self.d_model]) for _ in range(self.n_layer)]
46 | # model
47 | self.global_step = tf.compat.v1.train.get_or_create_global_step()
48 | initializer = tf.compat.v1.initializers.random_normal(stddev=0.02, seed=None)
49 | proj_initializer = tf.compat.v1.initializers.random_normal(stddev=0.01, seed=None)
50 | with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()):
51 | xx = tf.transpose(self.x, [1, 0])
52 | yy = tf.transpose(self.y, [1, 0])
53 | loss, self.logits, self.new_mem = modules.transformer(
54 | dec_inp=xx,
55 | target=yy,
56 | mems=self.mems_i,
57 | n_token=self.n_token,
58 | n_layer=self.n_layer,
59 | d_model=self.d_model,
60 | d_embed=self.d_embed,
61 | n_head=self.n_head,
62 | d_head=self.d_head,
63 | d_inner=self.d_ff,
64 | dropout=self.dropout,
65 | dropatt=self.dropout,
66 | initializer=initializer,
67 | proj_initializer=proj_initializer,
68 | is_training=self.is_training,
69 | mem_len=self.mem_len,
70 | cutoffs=[],
71 | div_val=-1,
72 | tie_projs=[],
73 | same_length=False,
74 | clamp_len=-1,
75 | input_perms=None,
76 | target_perms=None,
77 | head_target=None,
78 | untie_r=False,
79 | proj_same_dim=True)
80 | self.avg_loss = tf.reduce_mean(loss)
81 | # vars
82 | all_vars = tf.compat.v1.trainable_variables()
83 | grads = tf.gradients(self.avg_loss, all_vars)
84 | grads_and_vars = list(zip(grads, all_vars))
85 | all_trainable_vars = tf.reduce_sum([tf.reduce_prod(v.shape) for v in tf.compat.v1.trainable_variables()])
86 | # optimizer
87 | decay_lr = tf.compat.v1.train.cosine_decay(
88 | self.learning_rate,
89 | global_step=self.global_step,
90 | decay_steps=400000,
91 | alpha=0.004)
92 | optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=decay_lr)
93 | self.train_op = optimizer.apply_gradients(grads_and_vars, self.global_step)
94 | # saver
95 | self.saver = tf.compat.v1.train.Saver()
96 | config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
97 | config.gpu_options.allow_growth = True
98 | self.sess = tf.compat.v1.Session(config=config)
99 | self.saver.restore(self.sess, self.checkpoint_path)
100 |
101 | ########################################
102 | # temperature sampling
103 | ########################################
104 | def temperature_sampling(self, logits, temperature, topk):
105 | probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature))
106 | if topk == 1:
107 | prediction = np.argmax(probs)
108 | else:
109 | sorted_index = np.argsort(probs)[::-1]
110 | candi_index = sorted_index[:topk]
111 | candi_probs = [probs[i] for i in candi_index]
112 | # normalize probs
113 | candi_probs /= sum(candi_probs)
114 | # choose by predicted probs
115 | prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0]
116 | return prediction
117 |
118 | ########################################
119 | # extract events for prompt continuation
120 | ########################################
121 | def extract_events(self, input_path):
122 | note_items, tempo_items = utils.read_items(input_path)
123 | note_items = utils.quantize_items(note_items)
124 | max_time = note_items[-1].end
125 | if 'chord' in self.checkpoint_path:
126 | chord_items = utils.extract_chords(note_items)
127 | items = chord_items + tempo_items + note_items
128 | else:
129 | items = tempo_items + note_items
130 | groups = utils.group_items(items, max_time)
131 | events = utils.item2event(groups)
132 | return events
133 |
134 | ########################################
135 | # generate
136 | ########################################
137 | def generate(self, n_target_bar, temperature, topk, output_path, prompt=None):
138 | # if prompt, load it. Or, random start
139 | if prompt:
140 | events = self.extract_events(prompt)
141 | words = [[self.event2word['{}_{}'.format(e.name, e.value)] for e in events]]
142 | words[0].append(self.event2word['Bar_None'])
143 | else:
144 | words = []
145 | for _ in range(self.batch_size):
146 | ws = [self.event2word['Bar_None']]
147 | if 'chord' in self.checkpoint_path:
148 | tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
149 | tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
150 | chords = [v for k, v in self.event2word.items() if 'Chord' in k]
151 | ws.append(self.event2word['Position_1/16'])
152 | ws.append(np.random.choice(chords))
153 | ws.append(self.event2word['Position_1/16'])
154 | ws.append(np.random.choice(tempo_classes))
155 | ws.append(np.random.choice(tempo_values))
156 | else:
157 | tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
158 | tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
159 | ws.append(self.event2word['Position_1/16'])
160 | ws.append(np.random.choice(tempo_classes))
161 | ws.append(np.random.choice(tempo_values))
162 | words.append(ws)
163 | # initialize mem
164 | batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
165 | # generate
166 | original_length = len(words[0])
167 | initial_flag = 1
168 | current_generated_bar = 0
169 | while current_generated_bar < n_target_bar:
170 | # input
171 | if initial_flag:
172 | temp_x = np.zeros((self.batch_size, original_length))
173 | for b in range(self.batch_size):
174 | for z, t in enumerate(words[b]):
175 | temp_x[b][z] = t
176 | initial_flag = 0
177 | else:
178 | temp_x = np.zeros((self.batch_size, 1))
179 | for b in range(self.batch_size):
180 | temp_x[b][0] = words[b][-1]
181 | # prepare feed dict
182 | feed_dict = {self.x: temp_x}
183 | for m, m_np in zip(self.mems_i, batch_m):
184 | feed_dict[m] = m_np
185 | # model (prediction)
186 | _logits, _new_mem = self.sess.run([self.logits, self.new_mem], feed_dict=feed_dict)
187 | # sampling
188 | _logit = _logits[-1, 0]
189 | word = self.temperature_sampling(
190 | logits=_logit,
191 | temperature=temperature,
192 | topk=topk)
193 | words[0].append(word)
194 | # if bar event (only work for batch_size=1)
195 | if word == self.event2word['Bar_None']:
196 | current_generated_bar += 1
197 | # re-new mem
198 | batch_m = _new_mem
199 | # write
200 | if prompt:
201 | utils.write_midi(
202 | words=words[0][original_length:],
203 | word2event=self.word2event,
204 | output_path=output_path,
205 | prompt_path=prompt)
206 | else:
207 | utils.write_midi(
208 | words=words[0],
209 | word2event=self.word2event,
210 | output_path=output_path,
211 | prompt_path=None)
212 |
213 | ########################################
214 | # prepare training data
215 | ########################################
216 | def prepare_data(self, midi_paths):
217 | # extract events
218 | all_events = []
219 | for path in midi_paths:
220 | events = self.extract_events(path)
221 | all_events.append(events)
222 | # event to word
223 | all_words = []
224 | for events in all_events:
225 | words = []
226 | for event in events:
227 | e = '{}_{}'.format(event.name, event.value)
228 | if e in self.event2word:
229 | words.append(self.event2word[e])
230 | else:
231 | # OOV
232 | if event.name == 'Note Velocity':
233 | # replace with max velocity based on our training data
234 | words.append(self.event2word['Note Velocity_21'])
235 | else:
236 | # something is wrong
237 | # you should handle it for your own purpose
238 | print('something is wrong! {}'.format(e))
239 | all_words.append(words)
240 | # to training data
241 | self.group_size = 5
242 | segments = []
243 | for words in all_words:
244 | pairs = []
245 | for i in range(0, len(words)-self.x_len-1, self.x_len):
246 | x = words[i:i+self.x_len]
247 | y = words[i+1:i+self.x_len+1]
248 | pairs.append([x, y])
249 | pairs = np.array(pairs)
250 | # abandon the last
251 | for i in np.arange(0, len(pairs)-self.group_size, self.group_size*2):
252 | data = pairs[i:i+self.group_size]
253 | if len(data) == self.group_size:
254 | segments.append(data)
255 | segments = np.array(segments)
256 | return segments
257 |
258 | ########################################
259 | # finetune
260 | ########################################
261 | def finetune(self, training_data, output_checkpoint_folder):
262 | # shuffle
263 | index = np.arange(len(training_data))
264 | np.random.shuffle(index)
265 | training_data = training_data[index]
266 | num_batches = len(training_data) // self.batch_size
267 | st = time.time()
268 | for e in range(200):
269 | total_loss = []
270 | for i in range(num_batches):
271 | segments = training_data[self.batch_size*i:self.batch_size*(i+1)]
272 | batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
273 | for j in range(self.group_size):
274 | batch_x = segments[:, j, 0, :]
275 | batch_y = segments[:, j, 1, :]
276 | # prepare feed dict
277 | feed_dict = {self.x: batch_x, self.y: batch_y}
278 | for m, m_np in zip(self.mems_i, batch_m):
279 | feed_dict[m] = m_np
280 | # run
281 | _, gs_, loss_, new_mem_ = self.sess.run([self.train_op, self.global_step, self.avg_loss, self.new_mem], feed_dict=feed_dict)
282 | batch_m = new_mem_
283 | total_loss.append(loss_)
284 | print('>>> Epoch: {}, Step: {}, Loss: {:.5f}, Time: {:.2f}'.format(e, gs_, loss_, time.time()-st))
285 | self.saver.save(self.sess, '{}/model-{:03d}-{:.3f}'.format(output_checkpoint_folder, e, np.mean(total_loss)))
286 | # stop
287 | if np.mean(total_loss) <= 0.1:
288 | break
289 |
290 | ########################################
291 | # close
292 | ########################################
293 | def close(self):
294 | self.sess.close()
295 |
--------------------------------------------------------------------------------
/modules.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 |
3 | def embedding_lookup(lookup_table, x):
4 | return tf.compat.v1.nn.embedding_lookup(lookup_table, x)
5 |
6 |
7 | def normal_embedding_lookup(x, n_token, d_embed, d_proj, initializer,
8 | proj_initializer, scope='normal_embed', **kwargs):
9 | emb_scale = d_proj ** 0.5
10 | with tf.compat.v1.variable_scope(scope):
11 | lookup_table = tf.compat.v1.get_variable('lookup_table', [n_token, d_embed], initializer=initializer)
12 | y = embedding_lookup(lookup_table, x)
13 | if d_proj != d_embed:
14 | proj_W = tf.compat.v1.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer)
15 | y = tf.einsum('ibe,ed->ibd', y, proj_W)
16 | else:
17 | proj_W = None
18 | ret_params = [lookup_table, proj_W]
19 | y *= emb_scale
20 | return y, ret_params
21 |
22 |
23 | def normal_softmax(hidden, target, n_token, params, scope='normal_softmax', **kwargs):
24 | def _logit(x, W, b, proj):
25 | y = x
26 | if proj is not None:
27 | y = tf.einsum('ibd,ed->ibe', y, proj)
28 | return tf.einsum('ibd,nd->ibn', y, W) + b
29 |
30 | params_W, params_projs = params[0], params[1]
31 |
32 | with tf.compat.v1.variable_scope(scope):
33 | softmax_b = tf.compat.v1.get_variable('bias', [n_token], initializer=tf.zeros_initializer())
34 | output = _logit(hidden, params_W, softmax_b, params_projs)
35 | nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
36 | return nll, output
37 |
38 |
39 | def positional_embedding(pos_seq, inv_freq, bsz=None):
40 | sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
41 | pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
42 | if bsz is not None:
43 | return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
44 | else:
45 | return pos_emb[:, None, :]
46 |
47 |
48 | def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer,
49 | scope='ff', is_training=True):
50 | output = inp
51 | with tf.compat.v1.variable_scope(scope):
52 | output = tf.keras.layers.Dense(d_inner, activation=tf.nn.relu,
53 | kernel_initializer=kernel_initializer, name='layer_1')(inp)
54 | output = tf.keras.layers.Dropout(dropout, name='drop_1')(output, training=is_training)
55 | output = tf.keras.layers.Dense(d_model, activation=tf.nn.relu,
56 | kernel_initializer=kernel_initializer, name='layer_2')(output)
57 | output = tf.keras.layers.Dropout(dropout, name='drop_2')(output, training=is_training)
58 | output = tf.keras.layers.LayerNormalization(axis=-1)(output + inp)
59 | return output
60 |
61 |
62 | def _create_mask(qlen, mlen, same_length=False):
63 | attn_mask = tf.ones([qlen, qlen])
64 | mask_u = tf.linalg.band_part(attn_mask, 0, -1)
65 | mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
66 | attn_mask_pad = tf.zeros([qlen, mlen])
67 | ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
68 | if same_length:
69 | mask_l = tf.matrix_band_part(attn_mask, -1, 0)
70 | ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
71 | return ret
72 |
73 |
74 | def _cache_mem(curr_out, prev_mem, mem_len=None):
75 | if mem_len is None or prev_mem is None:
76 | new_mem = curr_out
77 | elif mem_len == 0:
78 | return prev_mem
79 | else:
80 | new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]
81 | return tf.stop_gradient(new_mem)
82 |
83 |
84 | def rel_shift(x):
85 | x_size = tf.shape(x)
86 | x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
87 | x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
88 | x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
89 | x = tf.reshape(x, x_size)
90 | return x
91 |
92 |
93 | def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model,
94 | n_head, d_head, dropout, dropatt, is_training,
95 | kernel_initializer, scope='rel_attn'):
96 | scale = 1 / (d_head ** 0.5)
97 | with tf.compat.v1.variable_scope(scope):
98 | qlen = tf.shape(w)[0]
99 | rlen = tf.shape(r)[0]
100 | bsz = tf.shape(w)[1]
101 |
102 | cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w
103 |
104 | w_heads = tf.keras.layers.Dense(3 * n_head * d_head, use_bias=False,
105 | kernel_initializer=kernel_initializer, name='qkv')(cat)
106 | r_head_k = tf.keras.layers.Dense(n_head * d_head, use_bias=False,
107 | kernel_initializer=kernel_initializer, name='r')(r)
108 |
109 | w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1)
110 | w_head_q = w_head_q[-qlen:]
111 |
112 | klen = tf.shape(w_head_k)[0]
113 |
114 | w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head])
115 | w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head])
116 | w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head])
117 |
118 | r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head])
119 |
120 | rw_head_q = w_head_q + r_w_bias
121 | rr_head_q = w_head_q + r_r_bias
122 |
123 | AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k)
124 | BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k)
125 | BD = rel_shift(BD)
126 |
127 | attn_score = (AC + BD) * scale
128 | attn_mask_t = attn_mask[:, :, None, None]
129 | attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t
130 |
131 | attn_prob = tf.nn.softmax(attn_score, 1)
132 | attn_prob = tf.keras.layers.Dropout(dropatt)(attn_prob, training=is_training)
133 |
134 | attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v)
135 | size_t = tf.shape(attn_vec)
136 | attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head])
137 |
138 | attn_out = tf.keras.layers.Dense(d_model, use_bias=False,
139 | kernel_initializer=kernel_initializer, name='o')(attn_vec)
140 | attn_out = tf.keras.layers.Dropout(dropout)(attn_out, training=is_training)
141 | output = tf.keras.layers.LayerNormalization(axis=-1)(attn_out + w)
142 | return output
143 |
144 |
145 | def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed,
146 | n_head, d_head, d_inner, dropout, dropatt,
147 | initializer, is_training, proj_initializer=None,
148 | mem_len=None, cutoffs=[], div_val=1, tie_projs=[],
149 | same_length=False, clamp_len=-1,
150 | input_perms=None, target_perms=None, head_target=None,
151 | untie_r=False, proj_same_dim=True,
152 | scope='transformer'):
153 | """
154 | cutoffs: a list of python int. Cutoffs for adaptive softmax.
155 | tie_projs: a list of python bools. Whether to tie the projections.
156 | perms: a list of tensors. Each tensor should of size [len, bsz, bin_size].
157 | Only used in the adaptive setting.
158 | """
159 | new_mems = []
160 | with tf.compat.v1.variable_scope(scope):
161 | if untie_r:
162 | r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer)
163 | r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer)
164 | else:
165 | r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_head, d_head], initializer=initializer)
166 | r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_head, d_head], initializer=initializer)
167 |
168 | qlen = tf.shape(dec_inp)[0]
169 | mlen = tf.shape(mems[0])[0] if mems is not None else 0
170 | klen = qlen + mlen
171 |
172 | if proj_initializer is None:
173 | proj_initializer = initializer
174 |
175 | embeddings, shared_params = normal_embedding_lookup(
176 | x=dec_inp,
177 | n_token=n_token,
178 | d_embed=d_embed,
179 | d_proj=d_model,
180 | initializer=initializer,
181 | proj_initializer=proj_initializer)
182 |
183 | attn_mask = _create_mask(qlen, mlen, same_length)
184 |
185 | pos_seq = tf.range(klen - 1, -1, -1.0)
186 | if clamp_len > 0:
187 | pos_seq = tf.minimum(pos_seq, clamp_len)
188 | inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model))
189 | pos_emb = positional_embedding(pos_seq, inv_freq)
190 |
191 | output = tf.keras.layers.Dropout(rate=dropout)(embeddings, training=is_training)
192 | pos_emb = tf.keras.layers.Dropout(rate=dropout)(pos_emb, training=is_training)
193 |
194 | if mems is None:
195 | mems = [None] * n_layer
196 |
197 | for i in range(n_layer):
198 | # cache new mems
199 | new_mems.append(_cache_mem(output, mems[i], mem_len))
200 |
201 | with tf.compat.v1.variable_scope('layer_{}'.format(i)):
202 | output = rel_multihead_attn(
203 | w=output,
204 | r=pos_emb,
205 | r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
206 | r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
207 | attn_mask=attn_mask,
208 | mems=mems[i],
209 | d_model=d_model,
210 | n_head=n_head,
211 | d_head=d_head,
212 | dropout=dropout,
213 | dropatt=dropatt,
214 | is_training=is_training,
215 | kernel_initializer=initializer)
216 |
217 | output = positionwise_FF(
218 | inp=output,
219 | d_model=d_model,
220 | d_inner=d_inner,
221 | dropout=dropout,
222 | kernel_initializer=initializer,
223 | is_training=is_training)
224 |
225 | output = tf.keras.layers.Dropout(dropout)(output, training=is_training)
226 |
227 | loss, logits = normal_softmax(
228 | hidden=output,
229 | target=target,
230 | n_token=n_token,
231 | params=shared_params)
232 |
233 | return loss, logits, new_mems
--------------------------------------------------------------------------------
/result/continuation.midi:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YatingMusic/remi/6d407258fa5828600a5474354862353ef4e4e8ae/result/continuation.midi
--------------------------------------------------------------------------------
/result/from_scratch.midi:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YatingMusic/remi/6d407258fa5828600a5474354862353ef4e4e8ae/result/from_scratch.midi
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import chord_recognition
2 | import numpy as np
3 | import miditoolkit
4 | import copy
5 |
6 | # parameters for input
7 | DEFAULT_VELOCITY_BINS = np.linspace(0, 128, 32+1, dtype=np.int)
8 | DEFAULT_FRACTION = 16
9 | DEFAULT_DURATION_BINS = np.arange(60, 3841, 60, dtype=int)
10 | DEFAULT_TEMPO_INTERVALS = [range(30, 90), range(90, 150), range(150, 210)]
11 |
12 | # parameters for output
13 | DEFAULT_RESOLUTION = 480
14 |
15 | # define "Item" for general storage
16 | class Item(object):
17 | def __init__(self, name, start, end, velocity, pitch):
18 | self.name = name
19 | self.start = start
20 | self.end = end
21 | self.velocity = velocity
22 | self.pitch = pitch
23 |
24 | def __repr__(self):
25 | return 'Item(name={}, start={}, end={}, velocity={}, pitch={})'.format(
26 | self.name, self.start, self.end, self.velocity, self.pitch)
27 |
28 | # read notes and tempo changes from midi (assume there is only one track)
29 | def read_items(file_path):
30 | midi_obj = miditoolkit.midi.parser.MidiFile(file_path)
31 | # note
32 | note_items = []
33 | notes = midi_obj.instruments[0].notes
34 | notes.sort(key=lambda x: (x.start, x.pitch))
35 | for note in notes:
36 | note_items.append(Item(
37 | name='Note',
38 | start=note.start,
39 | end=note.end,
40 | velocity=note.velocity,
41 | pitch=note.pitch))
42 | note_items.sort(key=lambda x: x.start)
43 | # tempo
44 | tempo_items = []
45 | for tempo in midi_obj.tempo_changes:
46 | tempo_items.append(Item(
47 | name='Tempo',
48 | start=tempo.time,
49 | end=None,
50 | velocity=None,
51 | pitch=int(tempo.tempo)))
52 | tempo_items.sort(key=lambda x: x.start)
53 | # expand to all beat
54 | max_tick = tempo_items[-1].start
55 | existing_ticks = {item.start: item.pitch for item in tempo_items}
56 | wanted_ticks = np.arange(0, max_tick+1, DEFAULT_RESOLUTION)
57 | output = []
58 | for tick in wanted_ticks:
59 | if tick in existing_ticks:
60 | output.append(Item(
61 | name='Tempo',
62 | start=tick,
63 | end=None,
64 | velocity=None,
65 | pitch=existing_ticks[tick]))
66 | else:
67 | output.append(Item(
68 | name='Tempo',
69 | start=tick,
70 | end=None,
71 | velocity=None,
72 | pitch=output[-1].pitch))
73 | tempo_items = output
74 | return note_items, tempo_items
75 |
76 | # quantize items
77 | def quantize_items(items, ticks=120):
78 | # grid
79 | grids = np.arange(0, items[-1].start, ticks, dtype=int)
80 | # process
81 | for item in items:
82 | index = np.argmin(abs(grids - item.start))
83 | shift = grids[index] - item.start
84 | item.start += shift
85 | item.end += shift
86 | return items
87 |
88 | # extract chord
89 | def extract_chords(items):
90 | method = chord_recognition.MIDIChord()
91 | chords = method.extract(notes=items)
92 | output = []
93 | for chord in chords:
94 | output.append(Item(
95 | name='Chord',
96 | start=chord[0],
97 | end=chord[1],
98 | velocity=None,
99 | pitch=chord[2].split('/')[0]))
100 | return output
101 |
102 | # group items
103 | def group_items(items, max_time, ticks_per_bar=DEFAULT_RESOLUTION*4):
104 | items.sort(key=lambda x: x.start)
105 | downbeats = np.arange(0, max_time+ticks_per_bar, ticks_per_bar)
106 | groups = []
107 | for db1, db2 in zip(downbeats[:-1], downbeats[1:]):
108 | insiders = []
109 | for item in items:
110 | if (item.start >= db1) and (item.start < db2):
111 | insiders.append(item)
112 | overall = [db1] + insiders + [db2]
113 | groups.append(overall)
114 | return groups
115 |
116 | # define "Event" for event storage
117 | class Event(object):
118 | def __init__(self, name, time, value, text):
119 | self.name = name
120 | self.time = time
121 | self.value = value
122 | self.text = text
123 |
124 | def __repr__(self):
125 | return 'Event(name={}, time={}, value={}, text={})'.format(
126 | self.name, self.time, self.value, self.text)
127 |
128 | # item to event
129 | def item2event(groups):
130 | events = []
131 | n_downbeat = 0
132 | for i in range(len(groups)):
133 | if 'Note' not in [item.name for item in groups[i][1:-1]]:
134 | continue
135 | bar_st, bar_et = groups[i][0], groups[i][-1]
136 | n_downbeat += 1
137 | events.append(Event(
138 | name='Bar',
139 | time=None,
140 | value=None,
141 | text='{}'.format(n_downbeat)))
142 | for item in groups[i][1:-1]:
143 | # position
144 | flags = np.linspace(bar_st, bar_et, DEFAULT_FRACTION, endpoint=False)
145 | index = np.argmin(abs(flags-item.start))
146 | events.append(Event(
147 | name='Position',
148 | time=item.start,
149 | value='{}/{}'.format(index+1, DEFAULT_FRACTION),
150 | text='{}'.format(item.start)))
151 | if item.name == 'Note':
152 | # velocity
153 | velocity_index = np.searchsorted(
154 | DEFAULT_VELOCITY_BINS,
155 | item.velocity,
156 | side='right') - 1
157 | events.append(Event(
158 | name='Note Velocity',
159 | time=item.start,
160 | value=velocity_index,
161 | text='{}/{}'.format(item.velocity, DEFAULT_VELOCITY_BINS[velocity_index])))
162 | # pitch
163 | events.append(Event(
164 | name='Note On',
165 | time=item.start,
166 | value=item.pitch,
167 | text='{}'.format(item.pitch)))
168 | # duration
169 | duration = item.end - item.start
170 | index = np.argmin(abs(DEFAULT_DURATION_BINS-duration))
171 | events.append(Event(
172 | name='Note Duration',
173 | time=item.start,
174 | value=index,
175 | text='{}/{}'.format(duration, DEFAULT_DURATION_BINS[index])))
176 | elif item.name == 'Chord':
177 | events.append(Event(
178 | name='Chord',
179 | time=item.start,
180 | value=item.pitch,
181 | text='{}'.format(item.pitch)))
182 | elif item.name == 'Tempo':
183 | tempo = item.pitch
184 | if tempo in DEFAULT_TEMPO_INTERVALS[0]:
185 | tempo_style = Event('Tempo Class', item.start, 'slow', None)
186 | tempo_value = Event('Tempo Value', item.start,
187 | tempo-DEFAULT_TEMPO_INTERVALS[0].start, None)
188 | elif tempo in DEFAULT_TEMPO_INTERVALS[1]:
189 | tempo_style = Event('Tempo Class', item.start, 'mid', None)
190 | tempo_value = Event('Tempo Value', item.start,
191 | tempo-DEFAULT_TEMPO_INTERVALS[1].start, None)
192 | elif tempo in DEFAULT_TEMPO_INTERVALS[2]:
193 | tempo_style = Event('Tempo Class', item.start, 'fast', None)
194 | tempo_value = Event('Tempo Value', item.start,
195 | tempo-DEFAULT_TEMPO_INTERVALS[2].start, None)
196 | elif tempo < DEFAULT_TEMPO_INTERVALS[0].start:
197 | tempo_style = Event('Tempo Class', item.start, 'slow', None)
198 | tempo_value = Event('Tempo Value', item.start, 0, None)
199 | elif tempo > DEFAULT_TEMPO_INTERVALS[2].stop:
200 | tempo_style = Event('Tempo Class', item.start, 'fast', None)
201 | tempo_value = Event('Tempo Value', item.start, 59, None)
202 | events.append(tempo_style)
203 | events.append(tempo_value)
204 | return events
205 |
206 | #############################################################################################
207 | # WRITE MIDI
208 | #############################################################################################
209 | def word_to_event(words, word2event):
210 | events = []
211 | for word in words:
212 | event_name, event_value = word2event.get(word).split('_')
213 | events.append(Event(event_name, None, event_value, None))
214 | return events
215 |
216 | def write_midi(words, word2event, output_path, prompt_path=None):
217 | events = word_to_event(words, word2event)
218 | # get downbeat and note (no time)
219 | temp_notes = []
220 | temp_chords = []
221 | temp_tempos = []
222 | for i in range(len(events)-3):
223 | if events[i].name == 'Bar' and i > 0:
224 | temp_notes.append('Bar')
225 | temp_chords.append('Bar')
226 | temp_tempos.append('Bar')
227 | elif events[i].name == 'Position' and \
228 | events[i+1].name == 'Note Velocity' and \
229 | events[i+2].name == 'Note On' and \
230 | events[i+3].name == 'Note Duration':
231 | # start time and end time from position
232 | position = int(events[i].value.split('/')[0]) - 1
233 | # velocity
234 | index = int(events[i+1].value)
235 | velocity = int(DEFAULT_VELOCITY_BINS[index])
236 | # pitch
237 | pitch = int(events[i+2].value)
238 | # duration
239 | index = int(events[i+3].value)
240 | duration = DEFAULT_DURATION_BINS[index]
241 | # adding
242 | temp_notes.append([position, velocity, pitch, duration])
243 | elif events[i].name == 'Position' and events[i+1].name == 'Chord':
244 | position = int(events[i].value.split('/')[0]) - 1
245 | temp_chords.append([position, events[i+1].value])
246 | elif events[i].name == 'Position' and \
247 | events[i+1].name == 'Tempo Class' and \
248 | events[i+2].name == 'Tempo Value':
249 | position = int(events[i].value.split('/')[0]) - 1
250 | if events[i+1].value == 'slow':
251 | tempo = DEFAULT_TEMPO_INTERVALS[0].start + int(events[i+2].value)
252 | elif events[i+1].value == 'mid':
253 | tempo = DEFAULT_TEMPO_INTERVALS[1].start + int(events[i+2].value)
254 | elif events[i+1].value == 'fast':
255 | tempo = DEFAULT_TEMPO_INTERVALS[2].start + int(events[i+2].value)
256 | temp_tempos.append([position, tempo])
257 | # get specific time for notes
258 | ticks_per_beat = DEFAULT_RESOLUTION
259 | ticks_per_bar = DEFAULT_RESOLUTION * 4 # assume 4/4
260 | notes = []
261 | current_bar = 0
262 | for note in temp_notes:
263 | if note == 'Bar':
264 | current_bar += 1
265 | else:
266 | position, velocity, pitch, duration = note
267 | # position (start time)
268 | current_bar_st = current_bar * ticks_per_bar
269 | current_bar_et = (current_bar + 1) * ticks_per_bar
270 | flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
271 | st = flags[position]
272 | # duration (end time)
273 | et = st + duration
274 | notes.append(miditoolkit.Note(velocity, pitch, st, et))
275 | # get specific time for chords
276 | if len(temp_chords) > 0:
277 | chords = []
278 | current_bar = 0
279 | for chord in temp_chords:
280 | if chord == 'Bar':
281 | current_bar += 1
282 | else:
283 | position, value = chord
284 | # position (start time)
285 | current_bar_st = current_bar * ticks_per_bar
286 | current_bar_et = (current_bar + 1) * ticks_per_bar
287 | flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
288 | st = flags[position]
289 | chords.append([st, value])
290 | # get specific time for tempos
291 | tempos = []
292 | current_bar = 0
293 | for tempo in temp_tempos:
294 | if tempo == 'Bar':
295 | current_bar += 1
296 | else:
297 | position, value = tempo
298 | # position (start time)
299 | current_bar_st = current_bar * ticks_per_bar
300 | current_bar_et = (current_bar + 1) * ticks_per_bar
301 | flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
302 | st = flags[position]
303 | tempos.append([int(st), value])
304 | # write
305 | if prompt_path:
306 | midi = miditoolkit.midi.parser.MidiFile(prompt_path)
307 | #
308 | last_time = DEFAULT_RESOLUTION * 4 * 4
309 | # note shift
310 | for note in notes:
311 | note.start += last_time
312 | note.end += last_time
313 | midi.instruments[0].notes.extend(notes)
314 | # tempo changes
315 | temp_tempos = []
316 | for tempo in midi.tempo_changes:
317 | if tempo.time < DEFAULT_RESOLUTION*4*4:
318 | temp_tempos.append(tempo)
319 | else:
320 | break
321 | for st, bpm in tempos:
322 | st += last_time
323 | temp_tempos.append(miditoolkit.midi.containers.TempoChange(bpm, st))
324 | midi.tempo_changes = temp_tempos
325 | # write chord into marker
326 | if len(temp_chords) > 0:
327 | for c in chords:
328 | midi.markers.append(
329 | miditoolkit.midi.containers.Marker(text=c[1], time=c[0]+last_time))
330 | else:
331 | midi = miditoolkit.midi.parser.MidiFile()
332 | midi.ticks_per_beat = DEFAULT_RESOLUTION
333 | # write instrument
334 | inst = miditoolkit.midi.containers.Instrument(0, is_drum=False)
335 | inst.notes = notes
336 | midi.instruments.append(inst)
337 | # write tempo
338 | tempo_changes = []
339 | for st, bpm in tempos:
340 | tempo_changes.append(miditoolkit.midi.containers.TempoChange(bpm, st))
341 | midi.tempo_changes = tempo_changes
342 | # write chord into marker
343 | if len(temp_chords) > 0:
344 | for c in chords:
345 | midi.markers.append(
346 | miditoolkit.midi.containers.Marker(text=c[1], time=c[0]))
347 | # write
348 | midi.dump(output_path)
349 |
--------------------------------------------------------------------------------