├── .gitignore ├── images ├── install_graphviz.png ├── DecisionTree │ └── DecisionTree.jpeg └── RandomForest │ ├── EnsembleTrees_No1.jpeg │ ├── EnsembleTrees_No2.jpeg │ └── EnsembleTrees_No3.jpeg ├── rule.py ├── README.md ├── rule_extraction.py ├── Demo1_Rule_Extraction_from_Trees.ipynb └── dataset └── titanic.csv /.gitignore: -------------------------------------------------------------------------------- 1 | rule_extraction 20181014.py 2 | __pycache__ 3 | .ipynb_checkpoints 4 | .gitignore.bak 5 | history -------------------------------------------------------------------------------- /images/install_graphviz.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Yimeng-Zhang/Rule_Extraction_from_Trees/HEAD/images/install_graphviz.png -------------------------------------------------------------------------------- /images/DecisionTree/DecisionTree.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Yimeng-Zhang/Rule_Extraction_from_Trees/HEAD/images/DecisionTree/DecisionTree.jpeg -------------------------------------------------------------------------------- /images/RandomForest/EnsembleTrees_No1.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Yimeng-Zhang/Rule_Extraction_from_Trees/HEAD/images/RandomForest/EnsembleTrees_No1.jpeg -------------------------------------------------------------------------------- /images/RandomForest/EnsembleTrees_No2.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Yimeng-Zhang/Rule_Extraction_from_Trees/HEAD/images/RandomForest/EnsembleTrees_No2.jpeg -------------------------------------------------------------------------------- /images/RandomForest/EnsembleTrees_No3.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Yimeng-Zhang/Rule_Extraction_from_Trees/HEAD/images/RandomForest/EnsembleTrees_No3.jpeg -------------------------------------------------------------------------------- /rule.py: -------------------------------------------------------------------------------- 1 | class Rule: 2 | """ An object modelizing a logical rule and add factorization methods. 3 | It is used to simplify rules and deduplicate them. 4 | 将一段决策树规则分解并简化,去除规则中冗余的部分 5 | eg: 6 | >>> r = 'feature1 > 3.0 and feature2 < 10.0 and feature3 == 3.5 and feature1 > 4.0' 7 | >>> result = Rule(r, args=None) 8 | >>> print(result) 9 | feature1 > 4.0 and feature2 < 10.0 and feature3 == 3.5 10 | 11 | Parameters 12 | ---------- 13 | 14 | rule : str 15 | The logical rule that is interpretable by a pandas query. 16 | 一段能被 pandas query 方法解析的规则字符串 17 | 18 | args : object, optional 19 | Arguments associated to the rule, it is not used for factorization 20 | but it takes part of the output when the rule is converted to an array. 21 | 额外的参数,不用于规则分解,但会与最后的结果一起输出 22 | """ 23 | 24 | def __init__(self, rule, args=None): 25 | self.rule = rule 26 | self.args = args 27 | self.terms = [t.split(' ') for t in self.rule.split(' and ')] 28 | self.agg_dict = {} 29 | self.factorize() 30 | self.rule = str(self) 31 | 32 | # 重新定义类中的'=='行为,但没看出哪里派用场了 33 | # def __eq__(self, other): 34 | # return self.agg_dict == other.agg_dict 35 | 36 | # 暂时不知道用途 37 | # def __hash__(self): 38 | # # FIXME : Easier method ? 39 | # return hash(tuple(sorted(((i, j) for i, j in self.agg_dict.items())))) 40 | 41 | def factorize(self): 42 | """ 43 | 将决策树的规则分解为 字段名 + 判断符号 + 阈值,并进行合并简化 44 | """ 45 | for feature, symbol, value in self.terms: 46 | if (feature, symbol) not in self.agg_dict: 47 | if symbol != '==': 48 | self.agg_dict[(feature, symbol)] = str(float(value)) 49 | else: 50 | self.agg_dict[(feature, symbol)] = value 51 | else: 52 | if symbol[0] == '<': 53 | self.agg_dict[(feature, symbol)] = str(min( 54 | float(self.agg_dict[(feature, symbol)]), 55 | float(value))) 56 | elif symbol[0] == '>': 57 | self.agg_dict[(feature, symbol)] = str(max( 58 | float(self.agg_dict[(feature, symbol)]), 59 | float(value))) 60 | else: # Handle the c0 == c0 case 61 | self.agg_dict[(feature, symbol)] = value 62 | #print(self.agg_dict) 63 | 64 | def __iter__(self): 65 | yield str(self) 66 | yield self.args 67 | 68 | def __repr__(self): 69 | return ' and '.join([' '.join( 70 | [feature, symbol, str(self.agg_dict[(feature, symbol)])]) 71 | for feature, symbol in sorted(self.agg_dict.keys()) 72 | ]) 73 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Rule_Extraction_From_Trees 2 | 3 | A toolkit for extracting comprehensible rules and selecting the best performing rule set from tree-based algorithms, based on [Skope-rules](https://github.com/scikit-learn-contrib/skope-rules). Currently only supports 2-classes classification task. 4 | 5 | **Major groups of functionalities:** 6 | 7 | 1. Visualize tree structures and output as images; 8 | 2. Rule extraction from trained tree models; 9 | 3. Filter rules based on recall/precision threshold on a given dataset; 10 | 4. Make predictions by rule voting. 11 | 12 | **Model supported:** 13 | 14 | 1. DecisionTreeClassifier/DecisionTreeRegressor 15 | 2. BaggingClassifier/BaggingRegressor 16 | 3. RandomForestClassifier/RandomForestRegressor 17 | 4. ExtraTreesClassifier/ ExtraTreeRegressor 18 | 19 | 20 | 21 | ## Installation 22 | 23 | This project requires: 24 | 25 | - Python (>= 2.7 or >= 3.3) 26 | - NumPy (>= 1.10.4) 27 | - SciPy (>= 0.17.0) 28 | - Pandas (>= 0.18.1) 29 | - Scikit-Learn (>= 0.17.1) 30 | - pydotplus (>=2.0.2) 31 | - graphviz (>=0.8.2) 32 | 33 | 34 | 35 | **Installing graphviz (for windows user):** 36 | 37 | 1. Download and install executable from https://graphviz.gitlab.io/_pages/Download/Download_windows.html 38 | 39 | 2. Set the PATH variable as follows 40 | 41 | ![install_graphviz](images/install_graphviz.png) 42 | 43 | 3. Restart your currently running application that requires the path 44 | 45 | 4. pip install pydotplus 46 | 47 | 48 | 49 | ## Quick Start 50 | 51 | See **Demo1** [here](https://github.com/Yimeng-Zhang/Rule_Extraction_from_Trees/blob/master/Demo1_Rule_Extraction_from_Trees.ipynb) for a detailed example. 52 | 53 | First download the code into your project folder. 54 | 55 | 1. Train or load a tree-based model. Having the dataset that is trained on is better. 56 | 57 | ``` 58 | import pandas as pd 59 | import numpy as np 60 | from sklearn.model_selection import train_test_split 61 | from sklearn import tree,ensemble,metrics 62 | 63 | from rule import Rule 64 | from rule_extraction import rule_extract,draw_tree 65 | 66 | # Train the model 67 | model = tree.DecisionTreeClassifier(criterion='gini',max_depth=3) 68 | model.fit(X_train,y_train) 69 | ``` 70 | 71 | 2. Extract all the rules from the tree (all paths from root node to leaves) 72 | 73 | ```python 74 | rules, _ = rule_extract(model=model,feature_names=X_train.columns) 75 | for i in rules: 76 | print(i) 77 | 78 | # output 79 | Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare > 26.125 80 | Sex_ordered <= 0.4722778648138046 and Age > 13.0 and Pclass_ordered <= 0.5564569681882858 81 | Sex_ordered <= 0.4722778648138046 and Age <= 13.0 and Pclass_ordered <= 0.3504907488822937 82 | Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare <= 20.800000190734863 83 | Sex_ordered <= 0.4722778648138046 and Age > 13.0 and Pclass_ordered > 0.5564569681882858 84 | Sex_ordered <= 0.4722778648138046 and Age <= 13.0 and Pclass_ordered > 0.3504907488822937 85 | Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare <= 26.125 86 | Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare > 20.800000190734863 87 | 88 | ``` 89 | 90 | 3. Draw the structure of the tree 91 | 92 | ```python 93 | # blue (class=1) denote the node make prediction of class 1 94 | # orange (class=0) denote the node make prediction of class 0 95 | # the darker the color, the more purity the node has 96 | draw_tree(model=model, 97 | outdir='./images/DecisionTree/', 98 | feature_names=X_train.columns, 99 | proportion=False, # show [proportion] or [number of samples] from a node 100 | class_names=['0','1']) 101 | ``` 102 | 103 | 104 | 105 | ![](./images/DecisionTree/DecisionTree.jpeg) 106 | 107 | 108 | 109 | 4. Filter rules base on recall/precision on dataset 110 | 111 | ```python 112 | rules, rule_dict = rule_extract(model=model_tree_clf, 113 | feature_names=X_train.columns, 114 | x_test=X_test, 115 | y_test=y_test, 116 | recall_min_c0=0.9, # recall threshold on class 1 117 | precision_min_c0=0.6) # precision threshold on class 1 118 | 119 | for i in rule_dict: 120 | print(i) 121 | # return:(rule, recall on 1-class, prec on 1-class, recall on 0-class, prec on 0-class, nb) 122 | ('Fare > 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046', (0.328125, 0.9130434782608695, 0.9746835443037974, 0.6416666666666667, 1)) 123 | ('Fare <= 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046', (0.21875, 0.875, 0.9746835443037974, 0.6062992125984252, 1)) 124 | 125 | ``` 126 | 127 | 128 | 129 | ## API Reference 130 | 131 | TODO 132 | -------------------------------------------------------------------------------- /rule_extraction.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sklearn 3 | from sklearn.tree import _tree 4 | from warnings import warn 5 | from sklearn import tree 6 | import pydotplus 7 | from sklearn.externals.six import StringIO 8 | import numpy as np 9 | import pandas as pd 10 | 11 | from rule import Rule 12 | 13 | # 2018.10.14 Created by Eamon.Zhang 14 | # 2018.10.15 Add rule filtering function, which allows future functions such as prediction based on selected sets of rules 15 | # 2018.10.15 Issue: DataFrame.Query has a max length limit of 32 to the query string, see https://github.com/PyTables/PyTables/issues/286. 16 | # will raise error if rules have >32 conditiions. Unsovlebale yet. 17 | # 2018.10.28 Add tree visualize function. Output the tree structure to images. 18 | # 2018.12.15 fix bug on calculating precision on class 0 19 | # 2018.12.15 add rule voting 20 | 21 | 22 | # 2018.10.28 Visualize a decision tree or trees from ensembles 23 | def draw_tree(model,outdir,feature_names=None,proportion=True,class_names=['0','1']): 24 | """ 25 | Visualize a decision tree or trees from ensembles 26 | and output a jpeg image 27 | 28 | Parameters 29 | ---------- 30 | model : 31 | pre-trained model 32 | outdir: 33 | output path of the image 34 | feature_names: 35 | Feature names. If None, returns X1,X2... 36 | proportion: 37 | the values of the output graph is absolute number of samples belongs to 38 | that node or the proportion. Default is proportion 39 | class_names: 40 | label of the prediction of each node. Default is ['0','1'] 41 | 42 | """ 43 | 44 | # if input model is a single decision tree/classifier 45 | if isinstance(model,(sklearn.tree.tree.DecisionTreeClassifier,sklearn.tree.tree.DecisionTreeRegressor)): 46 | dot_data = StringIO() 47 | tree.export_graphviz(decision_tree=model, 48 | out_file=dot_data, 49 | filled=True, 50 | rounded=True, 51 | special_characters=True, 52 | feature_names=feature_names, 53 | proportion=proportion, 54 | class_names=class_names) 55 | 56 | graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 57 | # print(graph) 58 | outfile = os.path.join(outdir,'DecisionTree.jpeg') 59 | graph.write_jpeg(outfile) 60 | 61 | # if input model is a tree ensemble 62 | elif isinstance(model,(sklearn.ensemble.bagging.BaggingClassifier, 63 | sklearn.ensemble.bagging.BaggingRegressor, 64 | sklearn.ensemble.forest.RandomForestClassifier, 65 | sklearn.ensemble.forest.RandomForestRegressor, 66 | sklearn.ensemble.forest.ExtraTreesClassifier, 67 | sklearn.ensemble.forest.ExtraTreeRegressor)): 68 | i = 0 69 | # visulaize each tree from the whole ensemble 70 | for estimator in model.estimators_: 71 | i += 1 72 | dot_data = StringIO() 73 | tree.export_graphviz(decision_tree=estimator, 74 | out_file=dot_data, 75 | filled=True, 76 | rounded=True, 77 | special_characters=True, 78 | feature_names=feature_names, 79 | proportion=proportion, 80 | class_names=class_names) 81 | 82 | graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 83 | #print(graph) 84 | outfile = os.path.join(outdir,'EnsembleTrees_No%s.jpeg' % str(i)) 85 | graph.write_jpeg(outfile) 86 | else: 87 | raise ValueError('Unsupported model type!') 88 | return 89 | 90 | 91 | # 2018.10.15 rule extraction from a tree model with filtering criterions based on recall/precision on a given dataset 92 | # 2018.10.30 allow extract all paths of a tree with no filtering 93 | def rule_extract(model, feature_names, x_test=None, y_test=None, sort_key=0, recall_min_c1=0., precision_min_c1=0., recall_min_c0=0., precision_min_c0=0.): 94 | """ 95 | Extract rules from Tree based Algorithm and filter rules based 96 | on recall/precision threshold on a given dataset. 97 | Return rules and rules with its performance. 98 | 99 | Parameters 100 | ---------- 101 | model : 102 | 用户训练好的模型 103 | 104 | feature_names: 105 | 特征名称 106 | 107 | x_test : pandas.DataFrame. 108 | 用来测试的样本的特征集 109 | 110 | y_test : pandas.DataFrame. 111 | 用来测试的样本的y标签 112 | 113 | sort_key: 按哪一个指标排序,default = 0 114 | 0: 按label=1样本的 recall 降序 115 | 1: 按label=1样本的 precision 降序 116 | 2: 按label=0样本的 recall 降序 117 | 3: 按label=0样本的 precision 降序 118 | 119 | recall_min_c1:对1类样本的召回率表现筛选 120 | 121 | precision_min_c1:对1类样本的准确率表现筛选 122 | 123 | recall_min_c0:对0类样本的召回率表现筛选 124 | 125 | precision_min_c0:对0类样本的准确率表现筛选 126 | 127 | Returns 128 | ------- 129 | rules: list of str. 130 | eg: ['Fare > 26 and Age > 10','Fare <= 20 and Age <= 18'] 131 | rules_dict: list of tuples (rule, recall on 1-class, prec on 1-class, recall on 0-class, prec on 0-class, nb). 132 | eg:[('Fare > 26 and Age > 10', (0.32, 0.91, 0.97, 0.6, 1)), 133 | ('Fare <= 20 and Age <= 18', (0.22, 0.71, 0.17, 0.5, 1))] 134 | 135 | """ 136 | 137 | rules_dict = {} 138 | rules_ = [] 139 | #feature_names = feature_names if feature_names is not None 140 | # else ['X' + x for x in np.arange(X.shape[1]).astype(str)] 141 | 142 | # if input model is a single decision tree/classifier 143 | if isinstance(model,(sklearn.tree.tree.DecisionTreeClassifier,sklearn.tree.tree.DecisionTreeRegressor)): 144 | rules_from_tree = _tree_to_rules(model,feature_names) 145 | 146 | # if no test data is given, return the rules 147 | if x_test is None: 148 | rules_ = [(r) for r in set(rules_from_tree)] 149 | return rules_, rules_dict 150 | # if test data is given, filter the rules based on precision/recall 151 | else: 152 | rules_from_tree = [(r, _eval_rule_perf(r, x_test, y_test)) for r in set(rules_from_tree)] 153 | rules_ = rules_from_tree 154 | 155 | # 根据评估指标进行规则筛选 156 | rules_dict = _rule_filter(rules_,rules_dict, recall_min_c1, precision_min_c1, recall_min_c0, precision_min_c0) 157 | 158 | # 按 recall_1 降序排列 159 | rules_dict = sorted(rules_dict.items(), 160 | key=lambda x: (x[1][sort_key]), reverse=True) 161 | rules_= [i[0] for i in rules_dict] 162 | return rules_, rules_dict 163 | 164 | elif isinstance(model,(sklearn.ensemble.bagging.BaggingClassifier, 165 | sklearn.ensemble.bagging.BaggingRegressor, 166 | sklearn.ensemble.forest.RandomForestClassifier, 167 | sklearn.ensemble.forest.RandomForestRegressor, 168 | sklearn.ensemble.forest.ExtraTreesClassifier, 169 | sklearn.ensemble.forest.ExtraTreeRegressor)): 170 | if x_test is None: 171 | for estimator in model.estimators_: 172 | rules_from_tree = _tree_to_rules(estimator,feature_names) 173 | rules_from_tree = [(r) for r in set(rules_from_tree)] 174 | rules_ += rules_from_tree 175 | return rules_, rules_dict 176 | else: 177 | for estimator in model.estimators_: 178 | rules_from_tree = _tree_to_rules(estimator,feature_names) 179 | rules_from_tree = [(r, _eval_rule_perf(r, x_test, y_test)) for r in set(rules_from_tree)] 180 | rules_ += rules_from_tree 181 | 182 | # 根据评估指标进行规则筛选 183 | rules_dict = _rule_filter(rules_, rules_dict, recall_min_c1, precision_min_c1, recall_min_c0, precision_min_c0) 184 | 185 | # 按 recall_1 降序排列 186 | rules_dict = sorted(rules_dict.items(), 187 | key=lambda x: (x[1][sort_key]), reverse=True) 188 | rules_= [i[0] for i in rules_dict] 189 | return rules_, rules_dict 190 | 191 | else: 192 | raise ValueError('Unsupported model type!') 193 | return 194 | 195 | 196 | # 2018.10.15 对规则筛选。目前由于测试集固定,实际上同一条规则的表现不会波动。 197 | def _rule_filter(rules_,rules_dict,recall_min_c1,precision_min_c1,recall_min_c0,precision_min_c0): 198 | # Factorize rules before semantic tree filtering 199 | rules_ = [ 200 | tuple(rule) 201 | for rule in 202 | [Rule(r, args=args) for r, args in rules_]] 203 | 204 | # 根据0/1类样本的recall/precision进行筛选。对于重复出现的规则,则更新其表现。 205 | for rule, score in rules_: 206 | if score[0] >= recall_min_c1 and score[1] >= precision_min_c1 and score[2]>=recall_min_c0 and score[3]>=precision_min_c0: 207 | 208 | if rule in rules_dict: 209 | # update the score to the new mean 210 | # Moving Average Calculation 211 | e = rules_dict[rule][4] + 1 # counter 212 | d = rules_dict[rule][3] + 1. / e * ( 213 | score[3] - rules_dict[rule][3]) 214 | c = rules_dict[rule][2] + 1. / e * ( 215 | score[2] - rules_dict[rule][2]) 216 | b = rules_dict[rule][1] + 1. / e * ( 217 | score[1] - rules_dict[rule][1]) 218 | a = rules_dict[rule][0] + 1. / e * ( 219 | score[0] - rules_dict[rule][0]) 220 | 221 | rules_dict[rule] = (a, b, c, d, e) 222 | else: 223 | rules_dict[rule] = (score[0], score[1], score[2], score[3], 1) 224 | 225 | return rules_dict 226 | 227 | 228 | # 2018.10.14 评估一条单独规则的指标 229 | def _eval_rule_perf(rule, X, y): 230 | """ 231 | 衡量每一条单独规则的评价指标,目前支持 0/1 两类样本的precision/recall 232 | 233 | Parameters 234 | ---------- 235 | 236 | rule : str 237 | 从决策树中提取出的单条规则 238 | 239 | X : pandas.DataFrame. 240 | 用来测试的样本的特征集 241 | 242 | y : pandas.DataFrame. 243 | 用来测试的样本的y标签 244 | 245 | """ 246 | 247 | detected_index = list(X.query(rule).index) 248 | # print(detected_index) 249 | if len(detected_index) <= 0: 250 | warn("rule %s reach no samples" % str(rule)) 251 | return (0.,0.,0.,0.) 252 | 253 | y_detected = y[detected_index] 254 | true_pos = y_detected[y_detected > 0].count() 255 | false_pos = y_detected[y_detected == 0].count() 256 | 257 | pos = y[y > 0].count() 258 | neg = y[y == 0].count() 259 | # recall_0 = str('recall for class 0 is: '+ str(1- (float(false_pos) /neg))) 260 | # prec_0 = str('prec for class 0 is: ' + str((neg-false_pos) / (len(y)-y_detected.sum()))) 261 | # recall_1 = str('recall for class 1 is: '+ str(float(true_pos) / pos)) 262 | # prec_1 = str('prec for class 1 is: ' + str(y_detected.mean())) 263 | recall_0 = (1- (float(false_pos) /neg)) 264 | prec_0 = ((neg-false_pos) / (len(y)-y_detected.sum()-false_pos)) 265 | recall_1 = (float(true_pos) / pos) 266 | prec_1 = (y_detected.mean()) 267 | #print(rule) 268 | #print(pos,neg,true_pos,false_pos,len(y),y_detected.sum()) 269 | return recall_1, prec_1, recall_0, prec_0 270 | 271 | 272 | # 2018.10.14 从sklearn 的 tree_ 对象中提取规则 273 | # direct copied from https://github.com/scikit-learn-contrib/skope-rules/tree/master/skrules 274 | def _tree_to_rules(tree, feature_names): 275 | """ 276 | Return a list of rules from a tree 277 | 278 | Parameters 279 | ---------- 280 | tree : Decision Tree Classifier/Regressor 281 | feature_names: list of variable names 282 | 283 | Returns 284 | ------- 285 | rules : list of rules. 286 | """ 287 | # XXX todo: check the case where tree is build on subset of features, 288 | # ie max_features != None 289 | 290 | tree_ = tree.tree_ 291 | feature_name = [ 292 | feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!" 293 | for i in tree_.feature] 294 | rules = [] 295 | 296 | def recurse(node, base_name): 297 | if tree_.feature[node] != _tree.TREE_UNDEFINED: 298 | name = feature_name[node] 299 | symbol = '<=' 300 | symbol2 = '>' 301 | threshold = tree_.threshold[node] 302 | text = base_name + ["{} {} {}".format(name, symbol, threshold)] 303 | recurse(tree_.children_left[node], text) 304 | 305 | text = base_name + ["{} {} {}".format(name, symbol2, 306 | threshold)] 307 | recurse(tree_.children_right[node], text) 308 | else: 309 | rule = str.join(' and ', base_name) 310 | rule = (rule if rule != '' 311 | else ' == '.join([feature_names[0]] * 2)) 312 | # a rule selecting all is set to "c0==c0" 313 | rules.append(rule) 314 | 315 | recurse(0, []) 316 | 317 | return rules if len(rules) > 0 else 'True' 318 | 319 | # 2018.12.14 added by Eamon.Zhang 320 | def rules_vote(X,rules): 321 | """ 322 | Score representing a vote of the base classifiers (rules) 323 | The score of an input sample is computed as the sum of the binary 324 | rules outputs: a score of k means than k rules have voted positively. 325 | 326 | Parameters 327 | ---------- 328 | X : array-like, shape (n_samples, n_features) 329 | The training input samples. 330 | 331 | Returns 332 | ------- 333 | scores : array, shape (n_samples,) 334 | 335 | """ 336 | scores = np.zeros(X.shape[0]) 337 | for r in rules: 338 | scores[list(X.query(r).index)] +=1 #w[0] 339 | scores=pd.DataFrame(scores) 340 | 341 | return scores -------------------------------------------------------------------------------- /Demo1_Rule_Extraction_from_Trees.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import pandas as pd\n", 12 | "import numpy as np\n", 13 | "from sklearn.model_selection import train_test_split\n", 14 | "from sklearn import tree,ensemble,metrics\n", 15 | "\n", 16 | "from rule import Rule\n", 17 | "from rule_extraction import rule_extract,draw_tree,rules_vote" 18 | ] 19 | }, 20 | { 21 | "cell_type": "markdown", 22 | "metadata": {}, 23 | "source": [ 24 | "## 1. Data Preparation" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 2, 30 | "metadata": {}, 31 | "outputs": [ 32 | { 33 | "name": "stdout", 34 | "output_type": "stream", 35 | "text": [ 36 | "(571, 5) (143, 5)\n", 37 | " Age Fare Sex Pclass Survived\n", 38 | "387 36.0 13.0000 female 2 1\n", 39 | "685 25.0 41.5792 male 2 0\n", 40 | "20 35.0 26.0000 male 2 0\n", 41 | "331 45.5 28.5000 male 1 0\n", 42 | "396 31.0 7.8542 female 3 0\n" 43 | ] 44 | } 45 | ], 46 | "source": [ 47 | "# fetch dataset\n", 48 | "data = pd.read_csv('./dataset/titanic.csv', usecols = ['Age', 'Fare','Sex','Pclass','Survived'])\n", 49 | "\n", 50 | "# drop NA records since most Tree algorithm cannot handle\n", 51 | "data.dropna(inplace=True)\n", 52 | "\n", 53 | "# split training/test sets\n", 54 | "X_train, X_test, y_train, y_test = train_test_split(data[['Age', 'Fare','Sex','Pclass','Survived']], \n", 55 | " data.Survived, test_size=0.2, random_state=0)\n", 56 | "\n", 57 | "# dataset shape\n", 58 | "print(X_train.shape, X_test.shape)\n", 59 | "print(X_train.head(5))" 60 | ] 61 | }, 62 | { 63 | "cell_type": "markdown", 64 | "metadata": {}, 65 | "source": [ 66 | "## 2. Categorical Variable encoding using Mean Encoding" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": 3, 72 | "metadata": { 73 | "collapsed": true 74 | }, 75 | "outputs": [], 76 | "source": [ 77 | "# Pclass\n", 78 | "X_train.groupby(['Pclass'])['Survived'].mean()\n", 79 | "ordered_labels = X_train.groupby(['Pclass'])['Survived'].mean().to_dict()\n", 80 | "ordered_labels\n", 81 | "\n", 82 | "# Mean Encoding\n", 83 | "X_train['Pclass_ordered'] = X_train.Pclass.map(ordered_labels)\n", 84 | "X_test['Pclass_ordered'] = X_test.Pclass.map(ordered_labels)\n", 85 | "\n", 86 | "# Sex\n", 87 | "X_train.groupby(['Sex'])['Survived'].mean()\n", 88 | "ordered_labels = X_train.groupby(['Sex'])['Survived'].mean().to_dict()\n", 89 | "ordered_labels\n", 90 | "\n", 91 | "# Mean Encoding\n", 92 | "X_train['Sex_ordered'] = X_train.Sex.map(ordered_labels)\n", 93 | "X_test['Sex_ordered'] = X_test.Sex.map(ordered_labels)\n" 94 | ] 95 | }, 96 | { 97 | "cell_type": "markdown", 98 | "metadata": {}, 99 | "source": [ 100 | "## 3. Final training data" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "execution_count": 4, 106 | "metadata": {}, 107 | "outputs": [ 108 | { 109 | "name": "stdout", 110 | "output_type": "stream", 111 | "text": [ 112 | " Age Fare Sex_ordered Pclass_ordered\n", 113 | "387 36.0 13.0000 0.740196 0.460432\n", 114 | "685 25.0 41.5792 0.204360 0.460432\n", 115 | "20 35.0 26.0000 0.204360 0.460432\n", 116 | "331 45.5 28.5000 0.204360 0.652482\n", 117 | "396 31.0 7.8542 0.740196 0.240550\n" 118 | ] 119 | } 120 | ], 121 | "source": [ 122 | "X_train_proceeded = X_train[['Age', 'Fare','Sex_ordered','Pclass_ordered']]\n", 123 | "X_test_proceeded = X_test[['Age', 'Fare','Sex_ordered','Pclass_ordered']]\n", 124 | "print(X_train_proceeded.head())" 125 | ] 126 | }, 127 | { 128 | "cell_type": "markdown", 129 | "metadata": {}, 130 | "source": [ 131 | "## 4. Training a Single Decision Tree" 132 | ] 133 | }, 134 | { 135 | "cell_type": "code", 136 | "execution_count": 5, 137 | "metadata": {}, 138 | "outputs": [ 139 | { 140 | "data": { 141 | "text/plain": [ 142 | "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n", 143 | " max_features=None, max_leaf_nodes=None,\n", 144 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 145 | " min_samples_leaf=1, min_samples_split=2,\n", 146 | " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", 147 | " splitter='best')" 148 | ] 149 | }, 150 | "execution_count": 5, 151 | "metadata": {}, 152 | "output_type": "execute_result" 153 | } 154 | ], 155 | "source": [ 156 | "# API refer to http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html\n", 157 | "\n", 158 | "model_tree_clf = tree.DecisionTreeClassifier(criterion='gini',max_depth=3)\n", 159 | "model_tree_clf.fit(X_train_proceeded,y_train)" 160 | ] 161 | }, 162 | { 163 | "cell_type": "code", 164 | "execution_count": 6, 165 | "metadata": {}, 166 | "outputs": [ 167 | { 168 | "name": "stdout", 169 | "output_type": "stream", 170 | "text": [ 171 | "[[311 34]\n", 172 | " [ 67 159]]\n" 173 | ] 174 | } 175 | ], 176 | "source": [ 177 | "# model performance on training set\n", 178 | "y_pred = model_tree_clf.predict(X_train_proceeded)\n", 179 | "print(metrics.confusion_matrix(y_train,y_pred))" 180 | ] 181 | }, 182 | { 183 | "cell_type": "markdown", 184 | "metadata": {}, 185 | "source": [ 186 | "## 4.1 Extract all rules without filtering\n", 187 | "8 rules in total, corresponding to 8 paths from root to leaf node" 188 | ] 189 | }, 190 | { 191 | "cell_type": "code", 192 | "execution_count": 7, 193 | "metadata": {}, 194 | "outputs": [ 195 | { 196 | "name": "stdout", 197 | "output_type": "stream", 198 | "text": [ 199 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare > 26.125\n", 200 | "Sex_ordered <= 0.4722778648138046 and Age > 13.0 and Pclass_ordered <= 0.5564569681882858\n", 201 | "Sex_ordered <= 0.4722778648138046 and Age <= 13.0 and Pclass_ordered <= 0.3504907488822937\n", 202 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare <= 20.800000190734863\n", 203 | "Sex_ordered <= 0.4722778648138046 and Age > 13.0 and Pclass_ordered > 0.5564569681882858\n", 204 | "Sex_ordered <= 0.4722778648138046 and Age <= 13.0 and Pclass_ordered > 0.3504907488822937\n", 205 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare <= 26.125\n", 206 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare > 20.800000190734863\n" 207 | ] 208 | } 209 | ], 210 | "source": [ 211 | "rule, _ = rule_extract(model=model_tree_clf,feature_names=X_train_proceeded.columns)\n", 212 | "for i in rule:\n", 213 | " print(i)" 214 | ] 215 | }, 216 | { 217 | "cell_type": "markdown", 218 | "metadata": {}, 219 | "source": [ 220 | "## 4.2 Output the tree sturcture\n", 221 | "compared with the confusion matrix on training data:\n", 222 | "\n", 223 | " | pred=0 | pred=1\n", 224 | "- | :-: | -: \n", 225 | "true=0 | 311 | 34\n", 226 | "true=1| 67 | 159\n", 227 | "\n", 228 | "the graph's result match perfectly" 229 | ] 230 | }, 231 | { 232 | "cell_type": "code", 233 | "execution_count": 8, 234 | "metadata": { 235 | "collapsed": true 236 | }, 237 | "outputs": [], 238 | "source": [ 239 | "# blue node (class=1) denote the node make prediction of class 1\n", 240 | "# orange node (class=0) denote the node make prediction of class 0\n", 241 | "# the darker the color, the more purity the node has \n", 242 | "# values refer to the absolute number of labeled samples in that node\n", 243 | "# eg, the 1st leaf node [12,7] means that 12 class 0 samples and 7 class 1 samples are in that node\n", 244 | "draw_tree(model=model_tree_clf,\n", 245 | " outdir='./images/DecisionTree/',\n", 246 | " feature_names=X_train_proceeded.columns,\n", 247 | " proportion=False,\n", 248 | " class_names=['0','1'])" 249 | ] 250 | }, 251 | { 252 | "cell_type": "markdown", 253 | "metadata": {}, 254 | "source": [ 255 | "![title](images/DecisionTree/DecisionTree.jpeg) " 256 | ] 257 | }, 258 | { 259 | "cell_type": "markdown", 260 | "metadata": {}, 261 | "source": [ 262 | "## 5. Extract rule with filtering\n", 263 | "rule_dict: rule, recall on 1-class, prec on 1-class, recall on 0-class, prec on 0-class, nb\n" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": 9, 269 | "metadata": {}, 270 | "outputs": [ 271 | { 272 | "name": "stdout", 273 | "output_type": "stream", 274 | "text": [ 275 | "('Fare > 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046', (0.328125, 0.9130434782608695, 0.9746835443037974, 0.6416666666666667, 1))\n", 276 | "('Fare <= 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046', (0.21875, 0.875, 0.9746835443037974, 0.6062992125984252, 1))\n" 277 | ] 278 | } 279 | ], 280 | "source": [ 281 | "# filter rule\n", 282 | "rules, rule_dict = rule_extract(model=model_tree_clf,\n", 283 | " feature_names=X_train_proceeded.columns,\n", 284 | " x_test=X_test_proceeded,\n", 285 | " y_test=y_test,\n", 286 | " sort_key=0,\n", 287 | " recall_min_c1=0.,\n", 288 | " precision_min_c1=0.,\n", 289 | " recall_min_c0=0.9,\n", 290 | " precision_min_c0=0.6)\n", 291 | "for i in rule_dict:\n", 292 | " print(i)" 293 | ] 294 | }, 295 | { 296 | "cell_type": "markdown", 297 | "metadata": {}, 298 | "source": [ 299 | "### 5.1 Random Forest" 300 | ] 301 | }, 302 | { 303 | "cell_type": "code", 304 | "execution_count": 10, 305 | "metadata": {}, 306 | "outputs": [ 307 | { 308 | "data": { 309 | "text/plain": [ 310 | "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", 311 | " max_depth=3, max_features='auto', max_leaf_nodes=None,\n", 312 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 313 | " min_samples_leaf=1, min_samples_split=2,\n", 314 | " min_weight_fraction_leaf=0.0, n_estimators=3, n_jobs=None,\n", 315 | " oob_score=False, random_state=9, verbose=0, warm_start=False)" 316 | ] 317 | }, 318 | "execution_count": 10, 319 | "metadata": {}, 320 | "output_type": "execute_result" 321 | } 322 | ], 323 | "source": [ 324 | "model_RF_clf = ensemble.RandomForestClassifier(max_depth=3,n_estimators=3,random_state=9)\n", 325 | "model_RF_clf.fit(X_train_proceeded,y_train)" 326 | ] 327 | }, 328 | { 329 | "cell_type": "code", 330 | "execution_count": 11, 331 | "metadata": {}, 332 | "outputs": [ 333 | { 334 | "name": "stdout", 335 | "output_type": "stream", 336 | "text": [ 337 | "[[72 7]\n", 338 | " [23 41]]\n" 339 | ] 340 | } 341 | ], 342 | "source": [ 343 | "# model performance on test set\n", 344 | "y_pred_test = model_RF_clf.predict(X_test_proceeded)\n", 345 | "print(metrics.confusion_matrix(y_test,y_pred_test))" 346 | ] 347 | }, 348 | { 349 | "cell_type": "code", 350 | "execution_count": 12, 351 | "metadata": {}, 352 | "outputs": [ 353 | { 354 | "name": "stdout", 355 | "output_type": "stream", 356 | "text": [ 357 | "Fare > 15.64585018157959 and Age > 53.5 and Fare > 133.36874771118164\n", 358 | "Fare <= 15.64585018157959 and Sex_ordered <= 0.4722778648138046 and Pclass_ordered > 0.3504907488822937\n", 359 | "Fare > 15.64585018157959 and Age > 53.5 and Fare <= 133.36874771118164\n", 360 | "Fare <= 15.64585018157959 and Sex_ordered > 0.4722778648138046 and Fare > 10.481249809265137\n", 361 | "Fare > 15.64585018157959 and Age <= 53.5 and Pclass_ordered <= 0.3504907488822937\n", 362 | "Fare <= 15.64585018157959 and Sex_ordered > 0.4722778648138046 and Fare <= 10.481249809265137\n", 363 | "Fare <= 15.64585018157959 and Sex_ordered <= 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937\n", 364 | "Fare > 15.64585018157959 and Age <= 53.5 and Pclass_ordered > 0.3504907488822937\n", 365 | "Pclass_ordered > 0.3504907488822937 and Age > 17.5 and Sex_ordered > 0.4722778648138046\n", 366 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered <= 0.4722778648138046 and Age <= 9.5\n", 367 | "Pclass_ordered > 0.3504907488822937 and Age <= 17.5\n", 368 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered > 0.4722778648138046 and Fare > 13.464600086212158\n", 369 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered > 0.4722778648138046 and Fare <= 13.464600086212158\n", 370 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered <= 0.4722778648138046 and Age > 9.5\n", 371 | "Pclass_ordered > 0.3504907488822937 and Age > 17.5 and Sex_ordered <= 0.4722778648138046\n", 372 | "Pclass_ordered > 0.3504907488822937 and Age <= 17.5 and Fare <= 12.5\n", 373 | "Pclass_ordered > 0.3504907488822937 and Age > 17.5 and Sex_ordered > 0.4722778648138046\n", 374 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered > 0.4722778648138046 and Fare > 13.466650009155273\n", 375 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered <= 0.4722778648138046 and Fare > 7.012500047683716\n", 376 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered <= 0.4722778648138046 and Fare <= 7.012500047683716\n", 377 | "Pclass_ordered <= 0.3504907488822937 and Sex_ordered > 0.4722778648138046 and Fare <= 13.466650009155273\n", 378 | "Pclass_ordered > 0.3504907488822937 and Age <= 17.5 and Fare > 12.5\n", 379 | "Pclass_ordered > 0.3504907488822937 and Age > 17.5 and Sex_ordered <= 0.4722778648138046\n" 380 | ] 381 | } 382 | ], 383 | "source": [ 384 | "rules,_ = rule_extract(model=model_RF_clf,feature_names=X_train_proceeded.columns)\n", 385 | "for i in rules:\n", 386 | " print(i)" 387 | ] 388 | }, 389 | { 390 | "cell_type": "markdown", 391 | "metadata": {}, 392 | "source": [ 393 | "### 5.2 Output the tree sturcture" 394 | ] 395 | }, 396 | { 397 | "cell_type": "code", 398 | "execution_count": 13, 399 | "metadata": { 400 | "collapsed": true 401 | }, 402 | "outputs": [], 403 | "source": [ 404 | "draw_tree(model=model_RF_clf,\n", 405 | " outdir='./images/RandomForest/',\n", 406 | " feature_names=X_train_proceeded.columns,\n", 407 | " proportion=False,\n", 408 | " class_names=['0','1'])" 409 | ] 410 | }, 411 | { 412 | "cell_type": "markdown", 413 | "metadata": {}, 414 | "source": [ 415 | "### Tree 1\n", 416 | "![title](images/RandomForest/EnsembleTrees_No1.jpeg) " 417 | ] 418 | }, 419 | { 420 | "cell_type": "markdown", 421 | "metadata": {}, 422 | "source": [ 423 | "### Tree2\n", 424 | "![title](images/RandomForest/EnsembleTrees_No2.jpeg) " 425 | ] 426 | }, 427 | { 428 | "cell_type": "markdown", 429 | "metadata": {}, 430 | "source": [ 431 | "### Tree3\n", 432 | "![title](images/RandomForest/EnsembleTrees_No3.jpeg) " 433 | ] 434 | }, 435 | { 436 | "cell_type": "markdown", 437 | "metadata": {}, 438 | "source": [ 439 | "### 5.3 BaggingClassifier" 440 | ] 441 | }, 442 | { 443 | "cell_type": "code", 444 | "execution_count": 14, 445 | "metadata": {}, 446 | "outputs": [ 447 | { 448 | "data": { 449 | "text/plain": [ 450 | "BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n", 451 | " max_features=None, max_leaf_nodes=None,\n", 452 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 453 | " min_samples_leaf=1, min_samples_split=2,\n", 454 | " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", 455 | " splitter='best'),\n", 456 | " bootstrap=True, bootstrap_features=False, max_features=1.0,\n", 457 | " max_samples=1.0, n_estimators=2, n_jobs=-1, oob_score=False,\n", 458 | " random_state=0, verbose=0, warm_start=False)" 459 | ] 460 | }, 461 | "execution_count": 14, 462 | "metadata": {}, 463 | "output_type": "execute_result" 464 | } 465 | ], 466 | "source": [ 467 | "model_bagging_clf = ensemble.BaggingClassifier(\n", 468 | " base_estimator=tree.DecisionTreeClassifier(max_depth=3),\n", 469 | " n_estimators=2,\n", 470 | " n_jobs=-1,\n", 471 | " random_state=0)\n", 472 | "model_bagging_clf.fit(X_train_proceeded,y_train)" 473 | ] 474 | }, 475 | { 476 | "cell_type": "code", 477 | "execution_count": 15, 478 | "metadata": {}, 479 | "outputs": [ 480 | { 481 | "name": "stdout", 482 | "output_type": "stream", 483 | "text": [ 484 | "[[75 4]\n", 485 | " [27 37]]\n" 486 | ] 487 | } 488 | ], 489 | "source": [ 490 | "# model performance on test set\n", 491 | "y_pred_test = model_bagging_clf.predict(X_test_proceeded)\n", 492 | "print(metrics.confusion_matrix(y_test,y_pred_test))" 493 | ] 494 | }, 495 | { 496 | "cell_type": "code", 497 | "execution_count": 16, 498 | "metadata": {}, 499 | "outputs": [ 500 | { 501 | "name": "stdout", 502 | "output_type": "stream", 503 | "text": [ 504 | "Sex_ordered <= 0.4722778648138046 and Fare <= 56.19790077209473 and Age <= 9.5\n", 505 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare > 22.0\n", 506 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Age > 35.0\n", 507 | "Sex_ordered <= 0.4722778648138046 and Fare > 56.19790077209473 and Fare > 59.08749961853027\n", 508 | "Sex_ordered <= 0.4722778648138046 and Fare > 56.19790077209473 and Fare <= 59.08749961853027\n", 509 | "Sex_ordered <= 0.4722778648138046 and Fare <= 56.19790077209473 and Age > 9.5\n", 510 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare <= 22.0\n", 511 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Age <= 35.0\n", 512 | "Sex_ordered <= 0.4722778648138046 and Age <= 5.5 and Pclass_ordered <= 0.3504907488822937\n", 513 | "Sex_ordered <= 0.4722778648138046 and Age > 5.5 and Pclass_ordered > 0.5564569681882858\n", 514 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare > 13.75\n", 515 | "Sex_ordered <= 0.4722778648138046 and Age > 5.5 and Pclass_ordered <= 0.5564569681882858\n", 516 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered > 0.3504907488822937 and Fare <= 13.75\n", 517 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare <= 20.800000190734863\n", 518 | "Sex_ordered > 0.4722778648138046 and Pclass_ordered <= 0.3504907488822937 and Fare > 20.800000190734863\n", 519 | "Sex_ordered <= 0.4722778648138046 and Age <= 5.5 and Pclass_ordered > 0.3504907488822937\n" 520 | ] 521 | } 522 | ], 523 | "source": [ 524 | "rules,_ = rule_extract(model=model_bagging_clf,feature_names=X_train_proceeded.columns)\n", 525 | "for i in rules:\n", 526 | " print(i)" 527 | ] 528 | }, 529 | { 530 | "cell_type": "markdown", 531 | "metadata": {}, 532 | "source": [ 533 | "### 5.4 ExtraTree " 534 | ] 535 | }, 536 | { 537 | "cell_type": "code", 538 | "execution_count": 17, 539 | "metadata": {}, 540 | "outputs": [ 541 | { 542 | "data": { 543 | "text/plain": [ 544 | "ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',\n", 545 | " max_depth=3, max_features='auto', max_leaf_nodes=None,\n", 546 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 547 | " min_samples_leaf=1, min_samples_split=2,\n", 548 | " min_weight_fraction_leaf=0.0, n_estimators=2, n_jobs=None,\n", 549 | " oob_score=False, random_state=0, verbose=0, warm_start=False)" 550 | ] 551 | }, 552 | "execution_count": 17, 553 | "metadata": {}, 554 | "output_type": "execute_result" 555 | } 556 | ], 557 | "source": [ 558 | "model_extratree_clf = ensemble.ExtraTreesClassifier(max_depth=3,n_estimators=2,random_state=0)\n", 559 | "model_extratree_clf.fit(X_train_proceeded,y_train)" 560 | ] 561 | }, 562 | { 563 | "cell_type": "code", 564 | "execution_count": 18, 565 | "metadata": {}, 566 | "outputs": [ 567 | { 568 | "name": "stdout", 569 | "output_type": "stream", 570 | "text": [ 571 | "[[68 11]\n", 572 | " [18 46]]\n" 573 | ] 574 | } 575 | ], 576 | "source": [ 577 | "# model performance on test set\n", 578 | "y_pred_test = model_extratree_clf.predict(X_test_proceeded)\n", 579 | "print(metrics.confusion_matrix(y_test,y_pred_test))" 580 | ] 581 | }, 582 | { 583 | "cell_type": "code", 584 | "execution_count": 19, 585 | "metadata": {}, 586 | "outputs": [ 587 | { 588 | "name": "stdout", 589 | "output_type": "stream", 590 | "text": [ 591 | "Sex_ordered > 0.5859209424696681 and Pclass_ordered > 0.506024637348139 and Age > 42.70739467800939\n", 592 | "Sex_ordered <= 0.5859209424696681 and Pclass_ordered > 0.6300343487048754 and Fare <= 487.86732759797127\n", 593 | "Sex_ordered > 0.5859209424696681 and Pclass_ordered > 0.506024637348139 and Age <= 42.70739467800939\n", 594 | "Sex_ordered <= 0.5859209424696681 and Pclass_ordered <= 0.6300343487048754 and Fare > 19.768909903834068\n", 595 | "Sex_ordered > 0.5859209424696681 and Pclass_ordered <= 0.506024637348139 and Age <= 27.126815941243812\n", 596 | "Sex_ordered <= 0.5859209424696681 and Pclass_ordered <= 0.6300343487048754 and Fare <= 19.768909903834068\n", 597 | "Sex_ordered <= 0.5859209424696681 and Pclass_ordered > 0.6300343487048754 and Fare > 487.86732759797127\n", 598 | "Sex_ordered > 0.5859209424696681 and Pclass_ordered <= 0.506024637348139 and Age > 27.126815941243812\n", 599 | "Pclass_ordered > 0.4895107363075585 and Sex_ordered > 0.3002771553876842 and Age <= 16.99989479733626\n", 600 | "Pclass_ordered > 0.4895107363075585 and Sex_ordered > 0.3002771553876842 and Age > 16.99989479733626\n", 601 | "Pclass_ordered <= 0.4895107363075585 and Sex_ordered > 0.3898439314490967 and Age > 61.69978473554355\n", 602 | "Pclass_ordered > 0.4895107363075585 and Sex_ordered <= 0.3002771553876842 and Fare <= 322.528637502558\n", 603 | "Pclass_ordered <= 0.4895107363075585 and Sex_ordered > 0.3898439314490967 and Age <= 61.69978473554355\n", 604 | "Pclass_ordered > 0.4895107363075585 and Sex_ordered <= 0.3002771553876842 and Fare > 322.528637502558\n", 605 | "Pclass_ordered <= 0.4895107363075585 and Sex_ordered <= 0.3898439314490967 and Age <= 28.78645799781408\n", 606 | "Pclass_ordered <= 0.4895107363075585 and Sex_ordered <= 0.3898439314490967 and Age > 28.78645799781408\n" 607 | ] 608 | } 609 | ], 610 | "source": [ 611 | "rules, _ = rule_extract(model=model_extratree_clf,feature_names=X_train_proceeded.columns)\n", 612 | "for i in rules:\n", 613 | " print(i)" 614 | ] 615 | }, 616 | { 617 | "cell_type": "markdown", 618 | "metadata": { 619 | "collapsed": true 620 | }, 621 | "source": [ 622 | "## 6.Rule Voting" 623 | ] 624 | }, 625 | { 626 | "cell_type": "markdown", 627 | "metadata": {}, 628 | "source": [ 629 | "### 6.1 Testing our filtering method" 630 | ] 631 | }, 632 | { 633 | "cell_type": "markdown", 634 | "metadata": {}, 635 | "source": [ 636 | "in section 5, we have a rule with performance on test set:\n", 637 | "\n", 638 | "('Fare > 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046', \n", 639 | "\n", 640 | "recall on 1-class, prec on 1-class, recall on 0-class, prec on 0-class, nb \n", 641 | "(0.328125, 0.9130434782608695, 0.9746835443037974, 0.6416666666666667, 1))\n", 642 | "\n", 643 | "let's check if the result is correct" 644 | ] 645 | }, 646 | { 647 | "cell_type": "code", 648 | "execution_count": 20, 649 | "metadata": {}, 650 | "outputs": [ 651 | { 652 | "name": "stdout", 653 | "output_type": "stream", 654 | "text": [ 655 | "0.0 120\n", 656 | "1.0 23\n", 657 | "Name: 0, dtype: int64\n" 658 | ] 659 | } 660 | ], 661 | "source": [ 662 | "one_rule = ['Fare > 26.125 and Pclass_ordered > 0.3504907488822937 and Sex_ordered > 0.4722778648138046']\n", 663 | "X_test_proceeded_reindex = X_test_proceeded.reset_index(drop=True)\n", 664 | "score = rules_vote(X=X_test_proceeded_reindex,rules=one_rule)\n", 665 | "score = pd.DataFrame(score)\n", 666 | "print(score[0].value_counts())\n", 667 | "score['predict'] = score[0]\n", 668 | "score['predict'][score[0]==1] = 1\n", 669 | "# this single rule has predicted 23 cases to be positive in test data" 670 | ] 671 | }, 672 | { 673 | "cell_type": "code", 674 | "execution_count": 21, 675 | "metadata": {}, 676 | "outputs": [ 677 | { 678 | "name": "stdout", 679 | "output_type": "stream", 680 | "text": [ 681 | "[[77 2]\n", 682 | " [43 21]]\n", 683 | "recall in 1-class: 0.328125\n", 684 | "prec in 1-class: 0.9130434782608695\n", 685 | "recall in 0-class: 0.9746835443037974\n", 686 | "prec in 0-class: 0.6416666666666667\n" 687 | ] 688 | } 689 | ], 690 | "source": [ 691 | "print(metrics.confusion_matrix(y_test,score.predict))\n", 692 | "print('recall in 1-class: ', 21/(21+43))\n", 693 | "print('prec in 1-class: ', 21/(21+2))\n", 694 | "print('recall in 0-class: ', 77/(77+2))\n", 695 | "print('prec in 0-class: ', 77/(77+43))" 696 | ] 697 | }, 698 | { 699 | "cell_type": "markdown", 700 | "metadata": {}, 701 | "source": [ 702 | "### 6.2 Random Forest" 703 | ] 704 | }, 705 | { 706 | "cell_type": "code", 707 | "execution_count": 22, 708 | "metadata": {}, 709 | "outputs": [ 710 | { 711 | "data": { 712 | "text/plain": [ 713 | "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", 714 | " max_depth=3, max_features='auto', max_leaf_nodes=None,\n", 715 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 716 | " min_samples_leaf=1, min_samples_split=2,\n", 717 | " min_weight_fraction_leaf=0.0, n_estimators=3, n_jobs=None,\n", 718 | " oob_score=False, random_state=9, verbose=0, warm_start=False)" 719 | ] 720 | }, 721 | "execution_count": 22, 722 | "metadata": {}, 723 | "output_type": "execute_result" 724 | } 725 | ], 726 | "source": [ 727 | "# we train a random forest\n", 728 | "model_RF_clf = ensemble.RandomForestClassifier(max_depth=3,n_estimators=3,random_state=9)\n", 729 | "model_RF_clf.fit(X_train_proceeded,y_train)" 730 | ] 731 | }, 732 | { 733 | "cell_type": "code", 734 | "execution_count": 23, 735 | "metadata": {}, 736 | "outputs": [ 737 | { 738 | "name": "stdout", 739 | "output_type": "stream", 740 | "text": [ 741 | "[[72 7]\n", 742 | " [23 41]]\n" 743 | ] 744 | } 745 | ], 746 | "source": [ 747 | "# model performance on test set\n", 748 | "y_pred_test = model_RF_clf.predict(X_test_proceeded)\n", 749 | "print(metrics.confusion_matrix(y_test,y_pred_test))" 750 | ] 751 | }, 752 | { 753 | "cell_type": "code", 754 | "execution_count": 24, 755 | "metadata": {}, 756 | "outputs": [ 757 | { 758 | "name": "stdout", 759 | "output_type": "stream", 760 | "text": [ 761 | "5\n" 762 | ] 763 | } 764 | ], 765 | "source": [ 766 | "# we extract rules from the ensemble with filtering\n", 767 | "rules,rule_dict = rule_extract(model=model_RF_clf,\n", 768 | " feature_names=X_train_proceeded.columns,\n", 769 | " x_test=X_train_proceeded,\n", 770 | " y_test=y_train,\n", 771 | " sort_key=0,\n", 772 | " recall_min_c1=0.1,\n", 773 | " precision_min_c1=0.6,\n", 774 | " recall_min_c0=0.1,\n", 775 | " precision_min_c0=0.5)\n", 776 | "print(len(rules))\n", 777 | "\n", 778 | "# we have 5 rule that have prec on class 1>0.6 and recall>0.1" 779 | ] 780 | }, 781 | { 782 | "cell_type": "code", 783 | "execution_count": 25, 784 | "metadata": {}, 785 | "outputs": [ 786 | { 787 | "name": "stdout", 788 | "output_type": "stream", 789 | "text": [ 790 | "0.0 72\n", 791 | "1.0 36\n", 792 | "2.0 29\n", 793 | "3.0 6\n", 794 | "Name: 0, dtype: int64\n" 795 | ] 796 | } 797 | ], 798 | "source": [ 799 | "# use the 5 above rules to make prediction again!\n", 800 | "X_test_proceeded_reindex = X_test_proceeded.reset_index(drop=True)\n", 801 | "#print(X_test_proceeded_reindex)\n", 802 | "score = rules_vote(X=X_test_proceeded_reindex,rules=rules)\n", 803 | "score = pd.DataFrame(score)\n", 804 | "print(score[0].value_counts())\n", 805 | "\n", 806 | "# 6 cases have been voted 3 times. they should be class 1 with greater confidence" 807 | ] 808 | }, 809 | { 810 | "cell_type": "code", 811 | "execution_count": 26, 812 | "metadata": {}, 813 | "outputs": [ 814 | { 815 | "data": { 816 | "text/html": [ 817 | "
\n", 818 | "\n", 831 | "\n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | "
0predict
01.01.0
12.01.0
23.01.0
30.00.0
41.01.0
\n", 867 | "
" 868 | ], 869 | "text/plain": [ 870 | " 0 predict\n", 871 | "0 1.0 1.0\n", 872 | "1 2.0 1.0\n", 873 | "2 3.0 1.0\n", 874 | "3 0.0 0.0\n", 875 | "4 1.0 1.0" 876 | ] 877 | }, 878 | "execution_count": 26, 879 | "metadata": {}, 880 | "output_type": "execute_result" 881 | } 882 | ], 883 | "source": [ 884 | "# we predict all cases that have been voted at least once to be class 1\n", 885 | "# if we are more preservative, we can predict class 1 only if they have been \n", 886 | "# voted more times\n", 887 | "\n", 888 | "score['predict'] = score[0]\n", 889 | "score['predict'][score[0]>0] = 1\n", 890 | "score.head()" 891 | ] 892 | }, 893 | { 894 | "cell_type": "code", 895 | "execution_count": 27, 896 | "metadata": {}, 897 | "outputs": [ 898 | { 899 | "name": "stdout", 900 | "output_type": "stream", 901 | "text": [ 902 | "confusion matrix of RF model\n", 903 | "[[72 7]\n", 904 | " [23 41]]\n", 905 | "confusion matrix of the 5 rules\n", 906 | "[[58 21]\n", 907 | " [14 50]]\n" 908 | ] 909 | } 910 | ], 911 | "source": [ 912 | "# compare this result with the confusion matrix made by the RF model itself\n", 913 | "# we can see that 5 rules have a better performace on predicting class 1 samples\n", 914 | "print('confusion matrix of RF model')\n", 915 | "print(metrics.confusion_matrix(y_test,y_pred_test))\n", 916 | "print('confusion matrix of the 5 rules')\n", 917 | "print(metrics.confusion_matrix(y_test,score.predict))" 918 | ] 919 | }, 920 | { 921 | "cell_type": "code", 922 | "execution_count": null, 923 | "metadata": { 924 | "collapsed": true 925 | }, 926 | "outputs": [], 927 | "source": [] 928 | } 929 | ], 930 | "metadata": { 931 | "kernelspec": { 932 | "display_name": "Python 3", 933 | "language": "python", 934 | "name": "python3" 935 | }, 936 | "language_info": { 937 | "codemirror_mode": { 938 | "name": "ipython", 939 | "version": 3 940 | }, 941 | "file_extension": ".py", 942 | "mimetype": "text/x-python", 943 | "name": "python", 944 | "nbconvert_exporter": "python", 945 | "pygments_lexer": "ipython3", 946 | "version": "3.6.1" 947 | } 948 | }, 949 | "nbformat": 4, 950 | "nbformat_minor": 2 951 | } 952 | -------------------------------------------------------------------------------- /dataset/titanic.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2 | 1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S 3 | 2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C 4 | 3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S 5 | 4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S 6 | 5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S 7 | 6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q 8 | 7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S 9 | 8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S 10 | 9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S 11 | 10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C 12 | 11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S 13 | 12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S 14 | 13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S 15 | 14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S 16 | 15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S 17 | 16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S 18 | 17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q 19 | 18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S 20 | 19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S 21 | 20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C 22 | 21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S 23 | 22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S 24 | 23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q 25 | 24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S 26 | 25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S 27 | 26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S 28 | 27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C 29 | 28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S 30 | 29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q 31 | 30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S 32 | 31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C 33 | 32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C 34 | 33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q 35 | 34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S 36 | 35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C 37 | 36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S 38 | 37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C 39 | 38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S 40 | 39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S 41 | 40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C 42 | 41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S 43 | 42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S 44 | 43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C 45 | 44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C 46 | 45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q 47 | 46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S 48 | 47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q 49 | 48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q 50 | 49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C 51 | 50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S 52 | 51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S 53 | 52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S 54 | 53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C 55 | 54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S 56 | 55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C 57 | 56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S 58 | 57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S 59 | 58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C 60 | 59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S 61 | 60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S 62 | 61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C 63 | 62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, 64 | 63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S 65 | 64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S 66 | 65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C 67 | 66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C 68 | 67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S 69 | 68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S 70 | 69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S 71 | 70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S 72 | 71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S 73 | 72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S 74 | 73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S 75 | 74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C 76 | 75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S 77 | 76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S 78 | 77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S 79 | 78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S 80 | 79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S 81 | 80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S 82 | 81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S 83 | 82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S 84 | 83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q 85 | 84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S 86 | 85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S 87 | 86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S 88 | 87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S 89 | 88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S 90 | 89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S 91 | 90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S 92 | 91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S 93 | 92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S 94 | 93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S 95 | 94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S 96 | 95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S 97 | 96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S 98 | 97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C 99 | 98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C 100 | 99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S 101 | 100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S 102 | 101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S 103 | 102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S 104 | 103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S 105 | 104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S 106 | 105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S 107 | 106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S 108 | 107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S 109 | 108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S 110 | 109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S 111 | 110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q 112 | 111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S 113 | 112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C 114 | 113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S 115 | 114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S 116 | 115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C 117 | 116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S 118 | 117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q 119 | 118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S 120 | 119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C 121 | 120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S 122 | 121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S 123 | 122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S 124 | 123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C 125 | 124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S 126 | 125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S 127 | 126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C 128 | 127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q 129 | 128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S 130 | 129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C 131 | 130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S 132 | 131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C 133 | 132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S 134 | 133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S 135 | 134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S 136 | 135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S 137 | 136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C 138 | 137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S 139 | 138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S 140 | 139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S 141 | 140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C 142 | 141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C 143 | 142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S 144 | 143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S 145 | 144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q 146 | 145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S 147 | 146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S 148 | 147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S 149 | 148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S 150 | 149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S 151 | 150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S 152 | 151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S 153 | 152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S 154 | 153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S 155 | 154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S 156 | 155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S 157 | 156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C 158 | 157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q 159 | 158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S 160 | 159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S 161 | 160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S 162 | 161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S 163 | 162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S 164 | 163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S 165 | 164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S 166 | 165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S 167 | 166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S 168 | 167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S 169 | 168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S 170 | 169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S 171 | 170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S 172 | 171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S 173 | 172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q 174 | 173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S 175 | 174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S 176 | 175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C 177 | 176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S 178 | 177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S 179 | 178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C 180 | 179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S 181 | 180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S 182 | 181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S 183 | 182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C 184 | 183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S 185 | 184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S 186 | 185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S 187 | 186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S 188 | 187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q 189 | 188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S 190 | 189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q 191 | 190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S 192 | 191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S 193 | 192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S 194 | 193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S 195 | 194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S 196 | 195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C 197 | 196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C 198 | 197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q 199 | 198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S 200 | 199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q 201 | 200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S 202 | 201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S 203 | 202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S 204 | 203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S 205 | 204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C 206 | 205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S 207 | 206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S 208 | 207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S 209 | 208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C 210 | 209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q 211 | 210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C 212 | 211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S 213 | 212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S 214 | 213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S 215 | 214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S 216 | 215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q 217 | 216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C 218 | 217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S 219 | 218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S 220 | 219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C 221 | 220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S 222 | 221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S 223 | 222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S 224 | 223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S 225 | 224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S 226 | 225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S 227 | 226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S 228 | 227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S 229 | 228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S 230 | 229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S 231 | 230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S 232 | 231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S 233 | 232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S 234 | 233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S 235 | 234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S 236 | 235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S 237 | 236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S 238 | 237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S 239 | 238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S 240 | 239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S 241 | 240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S 242 | 241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C 243 | 242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q 244 | 243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S 245 | 244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S 246 | 245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C 247 | 246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q 248 | 247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S 249 | 248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S 250 | 249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S 251 | 250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S 252 | 251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S 253 | 252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S 254 | 253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S 255 | 254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S 256 | 255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S 257 | 256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C 258 | 257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C 259 | 258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S 260 | 259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C 261 | 260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S 262 | 261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q 263 | 262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S 264 | 263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S 265 | 264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S 266 | 265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q 267 | 266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S 268 | 267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S 269 | 268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S 270 | 269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S 271 | 270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S 272 | 271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S 273 | 272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S 274 | 273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S 275 | 274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C 276 | 275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q 277 | 276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S 278 | 277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S 279 | 278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S 280 | 279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q 281 | 280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S 282 | 281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q 283 | 282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S 284 | 283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S 285 | 284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S 286 | 285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S 287 | 286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C 288 | 287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S 289 | 288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S 290 | 289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S 291 | 290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q 292 | 291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S 293 | 292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C 294 | 293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C 295 | 294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S 296 | 295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S 297 | 296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C 298 | 297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C 299 | 298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S 300 | 299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S 301 | 300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C 302 | 301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q 303 | 302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q 304 | 303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S 305 | 304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q 306 | 305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S 307 | 306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S 308 | 307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C 309 | 308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C 310 | 309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C 311 | 310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C 312 | 311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C 313 | 312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C 314 | 313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S 315 | 314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S 316 | 315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S 317 | 316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S 318 | 317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S 319 | 318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S 320 | 319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S 321 | 320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C 322 | 321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S 323 | 322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S 324 | 323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q 325 | 324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S 326 | 325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S 327 | 326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C 328 | 327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S 329 | 328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S 330 | 329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S 331 | 330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C 332 | 331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q 333 | 332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S 334 | 333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S 335 | 334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S 336 | 335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S 337 | 336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S 338 | 337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S 339 | 338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C 340 | 339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S 341 | 340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S 342 | 341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S 343 | 342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S 344 | 343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S 345 | 344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S 346 | 345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S 347 | 346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S 348 | 347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S 349 | 348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S 350 | 349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S 351 | 350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S 352 | 351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S 353 | 352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S 354 | 353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C 355 | 354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S 356 | 355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C 357 | 356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S 358 | 357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S 359 | 358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S 360 | 359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q 361 | 360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q 362 | 361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S 363 | 362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C 364 | 363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C 365 | 364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S 366 | 365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q 367 | 366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S 368 | 367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C 369 | 368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C 370 | 369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q 371 | 370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C 372 | 371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C 373 | 372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S 374 | 373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S 375 | 374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C 376 | 375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S 377 | 376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C 378 | 377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S 379 | 378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C 380 | 379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C 381 | 380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S 382 | 381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C 383 | 382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C 384 | 383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S 385 | 384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S 386 | 385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S 387 | 386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S 388 | 387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S 389 | 388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S 390 | 389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q 391 | 390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C 392 | 391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S 393 | 392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S 394 | 393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S 395 | 394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C 396 | 395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S 397 | 396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S 398 | 397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S 399 | 398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S 400 | 399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S 401 | 400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S 402 | 401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S 403 | 402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S 404 | 403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S 405 | 404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S 406 | 405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S 407 | 406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S 408 | 407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S 409 | 408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S 410 | 409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S 411 | 410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S 412 | 411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S 413 | 412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q 414 | 413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q 415 | 414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S 416 | 415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S 417 | 416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S 418 | 417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S 419 | 418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S 420 | 419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S 421 | 420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S 422 | 421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C 423 | 422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q 424 | 423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S 425 | 424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S 426 | 425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S 427 | 426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S 428 | 427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S 429 | 428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S 430 | 429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q 431 | 430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S 432 | 431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S 433 | 432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S 434 | 433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S 435 | 434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S 436 | 435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S 437 | 436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S 438 | 437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S 439 | 438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S 440 | 439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S 441 | 440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S 442 | 441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S 443 | 442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S 444 | 443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S 445 | 444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S 446 | 445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S 447 | 446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S 448 | 447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S 449 | 448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S 450 | 449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C 451 | 450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S 452 | 451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S 453 | 452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S 454 | 453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C 455 | 454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C 456 | 455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S 457 | 456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C 458 | 457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S 459 | 458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S 460 | 459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S 461 | 460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q 462 | 461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S 463 | 462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S 464 | 463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S 465 | 464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S 466 | 465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S 467 | 466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S 468 | 467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S 469 | 468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S 470 | 469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q 471 | 470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C 472 | 471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S 473 | 472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S 474 | 473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S 475 | 474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C 476 | 475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S 477 | 476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S 478 | 477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S 479 | 478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S 480 | 479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S 481 | 480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S 482 | 481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S 483 | 482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S 484 | 483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S 485 | 484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S 486 | 485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C 487 | 486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S 488 | 487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S 489 | 488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C 490 | 489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S 491 | 490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S 492 | 491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S 493 | 492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S 494 | 493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S 495 | 494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C 496 | 495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S 497 | 496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C 498 | 497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C 499 | 498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S 500 | 499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S 501 | 500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S 502 | 501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S 503 | 502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q 504 | 503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q 505 | 504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S 506 | 505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S 507 | 506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C 508 | 507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S 509 | 508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S 510 | 509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S 511 | 510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S 512 | 511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q 513 | 512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S 514 | 513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S 515 | 514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C 516 | 515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S 517 | 516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S 518 | 517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S 519 | 518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q 520 | 519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S 521 | 520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S 522 | 521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S 523 | 522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S 524 | 523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C 525 | 524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C 526 | 525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C 527 | 526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q 528 | 527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S 529 | 528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S 530 | 529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S 531 | 530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S 532 | 531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S 533 | 532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C 534 | 533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C 535 | 534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C 536 | 535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S 537 | 536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S 538 | 537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S 539 | 538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C 540 | 539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S 541 | 540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C 542 | 541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S 543 | 542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S 544 | 543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S 545 | 544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S 546 | 545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C 547 | 546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S 548 | 547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S 549 | 548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C 550 | 549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S 551 | 550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S 552 | 551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C 553 | 552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S 554 | 553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q 555 | 554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C 556 | 555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S 557 | 556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S 558 | 557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C 559 | 558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C 560 | 559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S 561 | 560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S 562 | 561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q 563 | 562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S 564 | 563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S 565 | 564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S 566 | 565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S 567 | 566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S 568 | 567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S 569 | 568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S 570 | 569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C 571 | 570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S 572 | 571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S 573 | 572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S 574 | 573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S 575 | 574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q 576 | 575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S 577 | 576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S 578 | 577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S 579 | 578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S 580 | 579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C 581 | 580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S 582 | 581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S 583 | 582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C 584 | 583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S 585 | 584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C 586 | 585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C 587 | 586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S 588 | 587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S 589 | 588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C 590 | 589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S 591 | 590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S 592 | 591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S 593 | 592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C 594 | 593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S 595 | 594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q 596 | 595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S 597 | 596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S 598 | 597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S 599 | 598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S 600 | 599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C 601 | 600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C 602 | 601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S 603 | 602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S 604 | 603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S 605 | 604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S 606 | 605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C 607 | 606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S 608 | 607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S 609 | 608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S 610 | 609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C 611 | 610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S 612 | 611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S 613 | 612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S 614 | 613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q 615 | 614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q 616 | 615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S 617 | 616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S 618 | 617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S 619 | 618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S 620 | 619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S 621 | 620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S 622 | 621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C 623 | 622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S 624 | 623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C 625 | 624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S 626 | 625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S 627 | 626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S 628 | 627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q 629 | 628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S 630 | 629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S 631 | 630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q 632 | 631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S 633 | 632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S 634 | 633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C 635 | 634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S 636 | 635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S 637 | 636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S 638 | 637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S 639 | 638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S 640 | 639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S 641 | 640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S 642 | 641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S 643 | 642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C 644 | 643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S 645 | 644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S 646 | 645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C 647 | 646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C 648 | 647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S 649 | 648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C 650 | 649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S 651 | 650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S 652 | 651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S 653 | 652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S 654 | 653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S 655 | 654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q 656 | 655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q 657 | 656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S 658 | 657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S 659 | 658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q 660 | 659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S 661 | 660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C 662 | 661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S 663 | 662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C 664 | 663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S 665 | 664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S 666 | 665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S 667 | 666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S 668 | 667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S 669 | 668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S 670 | 669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S 671 | 670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S 672 | 671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S 673 | 672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S 674 | 673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S 675 | 674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S 676 | 675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S 677 | 676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S 678 | 677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S 679 | 678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S 680 | 679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S 681 | 680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C 682 | 681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q 683 | 682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C 684 | 683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S 685 | 684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S 686 | 685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S 687 | 686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C 688 | 687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S 689 | 688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S 690 | 689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S 691 | 690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S 692 | 691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S 693 | 692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C 694 | 693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S 695 | 694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C 696 | 695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S 697 | 696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S 698 | 697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S 699 | 698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q 700 | 699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C 701 | 700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S 702 | 701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C 703 | 702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S 704 | 703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C 705 | 704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q 706 | 705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S 707 | 706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S 708 | 707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S 709 | 708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S 710 | 709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S 711 | 710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C 712 | 711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C 713 | 712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S 714 | 713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S 715 | 714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S 716 | 715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S 717 | 716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S 718 | 717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C 719 | 718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S 720 | 719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q 721 | 720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S 722 | 721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S 723 | 722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S 724 | 723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S 725 | 724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S 726 | 725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S 727 | 726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S 728 | 727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S 729 | 728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q 730 | 729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S 731 | 730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S 732 | 731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S 733 | 732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C 734 | 733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S 735 | 734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S 736 | 735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S 737 | 736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S 738 | 737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S 739 | 738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C 740 | 739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S 741 | 740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S 742 | 741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S 743 | 742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S 744 | 743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C 745 | 744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S 746 | 745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S 747 | 746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S 748 | 747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S 749 | 748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S 750 | 749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S 751 | 750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q 752 | 751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S 753 | 752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S 754 | 753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S 755 | 754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S 756 | 755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S 757 | 756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S 758 | 757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S 759 | 758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S 760 | 759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S 761 | 760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S 762 | 761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S 763 | 762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S 764 | 763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C 765 | 764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S 766 | 765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S 767 | 766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S 768 | 767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C 769 | 768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q 770 | 769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q 771 | 770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S 772 | 771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S 773 | 772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S 774 | 773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S 775 | 774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C 776 | 775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S 777 | 776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S 778 | 777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q 779 | 778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S 780 | 779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q 781 | 780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S 782 | 781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C 783 | 782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S 784 | 783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S 785 | 784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S 786 | 785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S 787 | 786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S 788 | 787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S 789 | 788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q 790 | 789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S 791 | 790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C 792 | 791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q 793 | 792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S 794 | 793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S 795 | 794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C 796 | 795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S 797 | 796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S 798 | 797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S 799 | 798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S 800 | 799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C 801 | 800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S 802 | 801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S 803 | 802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S 804 | 803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S 805 | 804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C 806 | 805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S 807 | 806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S 808 | 807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S 809 | 808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S 810 | 809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S 811 | 810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S 812 | 811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S 813 | 812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S 814 | 813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S 815 | 814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S 816 | 815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S 817 | 816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S 818 | 817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S 819 | 818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C 820 | 819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S 821 | 820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S 822 | 821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S 823 | 822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S 824 | 823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S 825 | 824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S 826 | 825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S 827 | 826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q 828 | 827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S 829 | 828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C 830 | 829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q 831 | 830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, 832 | 831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C 833 | 832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S 834 | 833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C 835 | 834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S 836 | 835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S 837 | 836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C 838 | 837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S 839 | 838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S 840 | 839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S 841 | 840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C 842 | 841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S 843 | 842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S 844 | 843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C 845 | 844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C 846 | 845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S 847 | 846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S 848 | 847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S 849 | 848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C 850 | 849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S 851 | 850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C 852 | 851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S 853 | 852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S 854 | 853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C 855 | 854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S 856 | 855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S 857 | 856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S 858 | 857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S 859 | 858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S 860 | 859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C 861 | 860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C 862 | 861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S 863 | 862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S 864 | 863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S 865 | 864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S 866 | 865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S 867 | 866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S 868 | 867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C 869 | 868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S 870 | 869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S 871 | 870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S 872 | 871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S 873 | 872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S 874 | 873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S 875 | 874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S 876 | 875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C 877 | 876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C 878 | 877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S 879 | 878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S 880 | 879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S 881 | 880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C 882 | 881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S 883 | 882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S 884 | 883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S 885 | 884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S 886 | 885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S 887 | 886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q 888 | 887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S 889 | 888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S 890 | 889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S 891 | 890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C 892 | 891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q 893 | --------------------------------------------------------------------------------