└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Deep models for Paraphrase and Summarization 2 | 3 | REFERENCE: 4 | 5 | Zhao et al., Adversarially Regularized Autoencoders for Generating Discrete Structures.https://arxiv.org/abs/1706.04223 Git Repo: https://github.com/jakezhaojb/ARAE (Pytorch) 6 | 7 | Kim et al., ADVERSARIALLY REGULARIZED AUTOENCODERS https://arxiv.org/pdf/1706.04223.pdf 8 | 9 | Gutpa et al, A Deep Generative Framework for Paraphrase Generation. https://arxiv.org/abs/1709.05074. Dataset: https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs 10 | 11 | Samuel et al, Generating Sentences from a Continuous Space. https://arxiv.org/abs/1511.06349# Git Repo:https://github.com/kefirski/pytorch_RVAE (Pytorch) Git Repo:https://github.com/Chung-I/Variational-Recurrent-Autoencoder-Tensorflow (TF) 12 | 13 | Neural Paraphrase Generation with Stacked Residual LSTM Networks. https://arxiv.org/abs/1610.03098 Git: https://github.com/iamaaditya/neural-paraphrase-generation 14 | 15 | Paraphrase Generation with Deep Reinforcement Learning. https://arxiv.org/abs/1711.00279 16 | 17 | Learning to Paraphrase for Question Answering. https://arxiv.org/abs/1708.06022 18 | 19 | Goodfellow et al, EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES. https://arxiv.org/abs/1412.6572. (Adversarial training for continous input) 20 | 21 | ## VAE 22 | 23 | Hierarchical/ Mixture VAE/ 24 | 25 | Semi VAE/ Conditional VAE git: https://github.com/wohlert/semi-supervised-pytorch 26 | 27 | Deep Recurrent Generative Decoder for Abstractive Text Summarization. https://arxiv.org/abs/1708.00625 Git: https://github.com/toru34/li_emnlp_2017 28 | 29 | VAE Tutorial https://arxiv.org/abs/1606.05908 30 | 31 | John Paisley http://www.columbia.edu/~jwp2128/Teaching/E6720/BayesianModelsMachineLearning2016.pdf. LECTURE 6 Variational Inference 32 | Carl Doersch, Tutorial on Variational Autoencoders, https://arxiv.org/abs/1606.05908 33 | 34 | ## Knowledge Graph 35 | 36 | Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks. https://arxiv.org/abs/1704.08384 37 | 38 | Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks. https://arxiv.org/abs/1607.01426 39 | 40 | Compositional Vector Space Models for Knowledge Base Inference. https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewFile/10254/10032 41 | 42 | Knowledge Graphs: https://people.mpi-inf.mpg.de/~weikum/weikum-adc2015-forwebsite.pdf 43 | 44 | ## Command Lines 45 | 46 | data preprocessing python make_datafiles_tokd.py ../data/tokened/ ../data/processed 47 | 48 | --------------------------------------------------------------------------------