├── LICENSE
├── README.md
├── assets
├── -twitter-blue.svg
├── Paper-Arxiv-orange.svg
├── case.png
├── data.png
└── main.png
├── cog.yaml
├── docs
├── Customize_Component.md
├── Data.md
├── Evaluation.md
├── Finetune_Custom_Data.md
├── Intel.md
├── LLaVA_Bench.md
├── LLaVA_from_LLaMA2.md
├── LoRA.md
├── MODEL_ZOO.md
├── ScienceQA.md
├── Windows.md
└── macOS.md
├── images
├── demo_cli.gif
├── llava_example_cmp.png
├── llava_logo.png
└── llava_v1_5_radar.jpg
├── llava
├── __init__.py
├── constants.py
├── conversation.py
├── eval
│ ├── eval_gpt_review.py
│ ├── eval_gpt_review_bench.py
│ ├── eval_gpt_review_visual.py
│ ├── eval_pope.py
│ ├── eval_science_qa.py
│ ├── eval_science_qa_gpt4.py
│ ├── eval_science_qa_gpt4_requery.py
│ ├── eval_textvqa.py
│ ├── generate_webpage_data_from_table.py
│ ├── m4c_evaluator.py
│ ├── model_qa.py
│ ├── model_vqa.py
│ ├── model_vqa_loader.py
│ ├── model_vqa_mmbench.py
│ ├── model_vqa_science.py
│ ├── qa_baseline_gpt35.py
│ ├── run_llava.py
│ ├── summarize_gpt_review.py
│ ├── table
│ │ ├── answer
│ │ │ ├── answer_alpaca-13b.jsonl
│ │ │ ├── answer_bard.jsonl
│ │ │ ├── answer_gpt35.jsonl
│ │ │ ├── answer_llama-13b.jsonl
│ │ │ └── answer_vicuna-13b.jsonl
│ │ ├── caps_boxes_coco2014_val_80.jsonl
│ │ ├── model.jsonl
│ │ ├── prompt.jsonl
│ │ ├── question.jsonl
│ │ ├── results
│ │ │ ├── test_sqa_llava_13b_v0.json
│ │ │ └── test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json
│ │ ├── review
│ │ │ ├── review_alpaca-13b_vicuna-13b.jsonl
│ │ │ ├── review_bard_vicuna-13b.jsonl
│ │ │ ├── review_gpt35_vicuna-13b.jsonl
│ │ │ └── review_llama-13b_vicuna-13b.jsonl
│ │ ├── reviewer.jsonl
│ │ └── rule.json
│ └── webpage
│ │ ├── figures
│ │ ├── alpaca.png
│ │ ├── bard.jpg
│ │ ├── chatgpt.svg
│ │ ├── llama.jpg
│ │ ├── swords_FILL0_wght300_GRAD0_opsz48.svg
│ │ └── vicuna.jpeg
│ │ ├── index.html
│ │ ├── script.js
│ │ └── styles.css
├── mm_utils.py
├── model
│ ├── __init__.py
│ ├── apply_delta.py
│ ├── builder.py
│ ├── consolidate.py
│ ├── language_model
│ │ ├── llava_llama.py
│ │ ├── llava_mistral.py
│ │ └── llava_mpt.py
│ ├── llava_arch.py
│ ├── make_delta.py
│ ├── multimodal_encoder
│ │ ├── builder.py
│ │ └── clip_encoder.py
│ ├── multimodal_projector
│ │ └── builder.py
│ └── utils.py
├── serve
│ ├── __init__.py
│ ├── cli.py
│ ├── controller.py
│ ├── examples
│ │ ├── extreme_ironing.jpg
│ │ └── waterview.jpg
│ ├── gradio_web_server.py
│ ├── model_worker.py
│ ├── register_worker.py
│ ├── sglang_worker.py
│ └── test_message.py
├── train
│ ├── llama_flash_attn_monkey_patch.py
│ ├── llama_xformers_attn_monkey_patch.py
│ ├── llava_trainer.py
│ ├── train.py
│ ├── train_dpo.py
│ ├── train_dpo_inherent.py
│ ├── train_mem.py
│ └── train_xformers.py
└── utils.py
├── playground
└── data
│ ├── coco2014_val_gpt4_qa_30x3.jsonl
│ ├── coco2014_val_qa_eval
│ ├── qa90_gpt4_answer.jsonl
│ └── qa90_questions.jsonl
│ └── prompts
│ ├── complex_reasoning
│ ├── 000_caps.txt
│ ├── 000_conv.txt
│ ├── 001_caps.txt
│ ├── 001_conv.txt
│ ├── 002_caps.txt
│ ├── 002_conv.txt
│ └── system_message.txt
│ ├── conversation
│ ├── 000_caps.txt
│ ├── 000_conv.txt
│ ├── 001_caps.txt
│ ├── 001_conv.txt
│ └── system_message.txt
│ └── detail_description
│ ├── 000_caps.txt
│ ├── 000_conv.txt
│ ├── 001_caps.txt
│ ├── 001_conv.txt
│ ├── 002_caps.txt
│ ├── 002_conv.txt
│ └── system_message.txt
├── povid_infer.py
├── predict.py
├── pyproject.toml
├── scripts
├── convert_gqa_for_eval.py
├── convert_mmbench_for_submission.py
├── convert_mmvet_for_eval.py
├── convert_seed_for_submission.py
├── convert_sqa_to_llava.py
├── convert_sqa_to_llava_base_prompt.py
├── convert_vizwiz_for_submission.py
├── convert_vqav2_for_submission.py
├── extract_mm_projector.py
├── finetune.sh
├── finetune_full_schedule.sh
├── finetune_lora.sh
├── finetune_qlora.sh
├── finetune_sqa.sh
├── merge_lora_weights.py
├── pretrain.sh
├── pretrain_xformers.sh
├── run_dpo.sh
├── run_povid.sh
├── sqa_eval_batch.sh
├── sqa_eval_gather.sh
├── upload_pypi.sh
├── v1_5
│ ├── eval
│ │ ├── gqa.sh
│ │ ├── llavabench.sh
│ │ ├── mmbench.sh
│ │ ├── mmbench_cn.sh
│ │ ├── mme.sh
│ │ ├── mmvet.sh
│ │ ├── pope.sh
│ │ ├── qbench.sh
│ │ ├── qbench_zh.sh
│ │ ├── seed.sh
│ │ ├── sqa.sh
│ │ ├── textvqa.sh
│ │ ├── vizwiz.sh
│ │ └── vqav2.sh
│ ├── finetune.sh
│ ├── finetune_lora.sh
│ ├── finetune_task.sh
│ ├── finetune_task_lora.sh
│ └── pretrain.sh
├── zero2.json
├── zero3.json
└── zero3_offload.json
└── tool
├── dpo_trainer.py
└── dpo_trainer_inherent.py
/assets/-twitter-blue.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/assets/Paper-Arxiv-orange.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/assets/case.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/assets/case.png
--------------------------------------------------------------------------------
/assets/data.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/assets/data.png
--------------------------------------------------------------------------------
/assets/main.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/assets/main.png
--------------------------------------------------------------------------------
/cog.yaml:
--------------------------------------------------------------------------------
1 | # Configuration for Cog ⚙️
2 | # Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
3 |
4 | build:
5 | gpu: true
6 |
7 | python_version: "3.11"
8 |
9 | python_packages:
10 | - "torch==2.0.1"
11 | - "accelerate==0.21.0"
12 | - "bitsandbytes==0.41.0"
13 | - "deepspeed==0.9.5"
14 | - "einops-exts==0.0.4"
15 | - "einops==0.6.1"
16 | - "gradio==3.35.2"
17 | - "gradio_client==0.2.9"
18 | - "httpx==0.24.0"
19 | - "markdown2==2.4.10"
20 | - "numpy==1.26.0"
21 | - "peft==0.4.0"
22 | - "scikit-learn==1.2.2"
23 | - "sentencepiece==0.1.99"
24 | - "shortuuid==1.0.11"
25 | - "timm==0.6.13"
26 | - "tokenizers==0.13.3"
27 | - "torch==2.0.1"
28 | - "torchvision==0.15.2"
29 | - "transformers==4.31.0"
30 | - "wandb==0.15.12"
31 | - "wavedrom==2.0.3.post3"
32 | - "Pygments==2.16.1"
33 | run:
34 | - curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.0.3/pget" && chmod +x /usr/local/bin/pget
35 |
36 | # predict.py defines how predictions are run on your model
37 | predict: "predict.py:Predictor"
38 |
--------------------------------------------------------------------------------
/docs/Customize_Component.md:
--------------------------------------------------------------------------------
1 | # Customize Components in LLaVA
2 |
3 | This is an initial guide on how to replace the LLMs, visual encoders, etc. with your choice of components.
4 |
5 | ## LLM
6 |
7 | It is quite simple to swap out LLaMA to any other LLMs. You can refer to our implementation of [`llava_llama.py`](https://raw.githubusercontent.com/haotian-liu/LLaVA/main/llava/model/language_model/llava_llama.py) for an example of how to replace the LLM.
8 |
9 | Although it may seem that it still needs ~100 lines of code, most of them are copied from the original `llama.py` from HF. The only part that is different is to insert some lines for processing the multimodal inputs.
10 |
11 | In `forward` function, you can see that we call `self.prepare_inputs_labels_for_multimodal` to process the multimodal inputs. This function is defined in `LlavaMetaForCausalLM` and you just need to insert it into the `forward` function of your LLM.
12 |
13 | In `prepare_inputs_for_generation` function, you can see that we add `images` to the `model_inputs`. This is because we need to pass the images to the LLM during generation.
14 |
15 | These are basically all the changes you need to make to replace the LLM.
16 |
17 | ## Visual Encoder
18 |
19 | You can check out [`clip_encoder.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/clip_encoder.py) on how we implement the CLIP visual encoder.
20 |
21 |
--------------------------------------------------------------------------------
/docs/Data.md:
--------------------------------------------------------------------------------
1 | ## Data
2 |
3 | | Data file name | Size |
4 | | --- | ---: |
5 | | [llava_instruct_150k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_150k.json) | 229 MB |
6 | | [llava_instruct_80k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_80k.json) | 229 MB |
7 | | [conversation_58k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/conversation_58k.json) | 126 MB |
8 | | [detail_23k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/detail_23k.json) | 20.5 MB |
9 | | [complex_reasoning_77k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/complex_reasoning_77k.json) | 79.6 MB |
10 |
11 | ### Pretraining Dataset
12 | The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see [here](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K) for a detailed description of the dataset structure and how to download the images.
13 |
14 | If you already have CC-3M dataset on your disk, the image names follow this format: `GCC_train_000000000.jpg`. You may edit the `image` field correspondingly if necessary.
15 |
16 | | Data | Chat File | Meta Data | Size |
17 | | --- | --- | --- | ---: |
18 | | CC-3M Concept-balanced 595K | [chat.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) | [metadata.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/metadata.json) | 211 MB
19 | | LAION/CC/SBU BLIP-Caption Concept-balanced 558K | [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/blip_laion_cc_sbu_558k.json) | [metadata.json](#) | 181 MB
20 |
21 | **Important notice**: Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload [`images.zip`](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/images.zip) for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.
22 |
23 | ### GPT-4 Prompts
24 |
25 | We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the [`prompts`](https://github.com/haotian-liu/LLaVA/tree/main/playground/data/prompts) folder for three kinds of questions: conversation, detail description, and complex reasoning.
26 |
27 | They are organized in a format of `system_message.txt` for system message, pairs of `abc_caps.txt` for few-shot sample user input, and `abc_conv.txt` for few-shot sample reference output.
28 |
29 | Note that you may find them in different format. For example, `conversation` is in `jsonl`, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: `jsonl`, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!
30 |
--------------------------------------------------------------------------------
/docs/Finetune_Custom_Data.md:
--------------------------------------------------------------------------------
1 | # Finetune LLaVA on Custom Datasets
2 |
3 | ## Dataset Format
4 |
5 | Convert your data to a JSON file of a List of all samples. Sample metadata should contain `id` (a unique identifier), `image` (the path to the image), and `conversations` (the conversation data between human and AI).
6 |
7 | A sample JSON for finetuning LLaVA for generating tag-style captions for Stable Diffusion:
8 |
9 | ```json
10 | [
11 | {
12 | "id": "997bb945-628d-4724-b370-b84de974a19f",
13 | "image": "part-000001/997bb945-628d-4724-b370-b84de974a19f.jpg",
14 | "conversations": [
15 | {
16 | "from": "human",
17 | "value": "\nWrite a prompt for Stable Diffusion to generate this image."
18 | },
19 | {
20 | "from": "gpt",
21 | "value": "a beautiful painting of chernobyl by nekro, pascal blanche, john harris, greg rutkowski, sin jong hun, moebius, simon stalenhag. in style of cg art. ray tracing. cel shading. hyper detailed. realistic. ue 5. maya. octane render. "
22 | },
23 | ]
24 | },
25 | ...
26 | ]
27 | ```
28 |
29 | ## Command
30 |
31 | If you have a limited task-specific data, we recommend finetuning from LLaVA checkpoints with LoRA following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task_lora.sh).
32 |
33 | If the amount of the task-specific data is sufficient, you can also finetune from LLaVA checkpoints with full-model finetuning following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task.sh).
34 |
35 | You may need to adjust the hyperparameters to fit each specific dataset and your hardware constraint.
36 |
37 |
38 |
--------------------------------------------------------------------------------
/docs/Intel.md:
--------------------------------------------------------------------------------
1 | # Intel Platforms
2 |
3 | * Support [Intel GPU Max Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html)
4 | * Support [Intel CPU Sapphire Rapides](https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html)
5 | * Based on [Intel Extension for Pytorch](https://intel.github.io/intel-extension-for-pytorch)
6 |
7 | More details in [**intel branch**](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
8 |
--------------------------------------------------------------------------------
/docs/LLaVA_Bench.md:
--------------------------------------------------------------------------------
1 | # LLaVA-Bench [[Download](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild)]
2 |
3 | **-Introduction-** Large commercial multimodal chatbots have been released in this week, including
4 | - [Multimodal Bing-Chat by Microsoft](https://blogs.bing.com/search/july-2023/Bing-Chat-Enterprise-announced,-multimodal-Visual-Search-rolling-out-to-Bing-Chat) (July 18, 2023)
5 | - [Multimodal Bard by Google](https://bard.google.com/).
6 |
7 | These chatbots are presumably supported by proprietary large multimodal models (LMM). Compared with the open-source LMM such as LLaVA, proprietary LMM represent the scaling success upperbound of the current SoTA techniques. They share the goal of developing multimodal chatbots that follow human intents to complete various daily-life visual tasks in the wild. While it remains less explored how to evaluate multimodal chat ability, it provides useful feedback to study open-source LMMs against the commercial multimodal chatbots. In addition to the *LLaVA-Bench (COCO)* dataset we used to develop the early versions of LLaVA, we are releasing [*LLaVA-Bench (In-the-Wild)*](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to the community for the public use.
8 |
9 | ## LLaVA-Bench (In-the-Wild *[Ongoing work]*)
10 |
11 | To evaluate the model's capability in more challenging tasks and generalizability to novel domains, we collect a diverse set of 24 images with 60 questions in total, including indoor and outdoor scenes, memes, paintings, sketches, etc, and associate each image with a highly-detailed and manually-curated description and a proper selection of questions. Such design also assesses the model's robustness to different prompts. In this release, we also categorize questions into three categories: conversation (simple QA), detailed description, and complex reasoning. We continue to expand and improve the diversity of the LLaVA-Bench (In-the-Wild). We manually query Bing-Chat and Bard to get the responses.
12 |
13 | ### Results
14 |
15 | The score is measured by comparing against a reference answer generated by text-only GPT-4. It is generated by feeding the question, along with the ground truth image annotations as the context. A text-only GPT-4 evaluator rates both answers. We query GPT-4 by putting the reference answer first, and then the answer generated by the candidate model. We upload images at their original resolution to Bard and Bing-Chat to obtain the results.
16 |
17 | | Approach | Conversation | Detail | Reasoning | Overall |
18 | |----------------|--------------|--------|-----------|---------|
19 | | Bard-0718 | 83.7 | 69.7 | 78.7 | 77.8 |
20 | | Bing-Chat-0629 | 59.6 | 52.2 | 90.1 | 71.5 |
21 | | LLaVA-13B-v1-336px-0719 (beam=1) | 64.3 | 55.9 | 81.7 | 70.1 |
22 | | LLaVA-13B-v1-336px-0719 (beam=5) | 68.4 | 59.9 | 84.3 | 73.5 |
23 |
24 | Note that Bard sometimes refuses to answer questions about images containing humans, and Bing-Chat blurs the human faces in the images. We also provide the benchmark score for the subset without humans.
25 |
26 | | Approach | Conversation | Detail | Reasoning | Overall |
27 | |----------------|--------------|--------|-----------|---------|
28 | | Bard-0718 | 94.9 | 74.3 | 84.3 | 84.6 |
29 | | Bing-Chat-0629 | 55.8 | 53.6 | 93.5 | 72.6 |
30 | | LLaVA-13B-v1-336px-0719 (beam=1) | 62.2 | 56.4 | 82.2 | 70.0 |
31 | | LLaVA-13B-v1-336px-0719 (beam=5) | 65.6 | 61.7 | 85.0 | 73.6 |
32 |
--------------------------------------------------------------------------------
/docs/LLaVA_from_LLaMA2.md:
--------------------------------------------------------------------------------
1 | # LLaVA (based on Llama 2 LLM, Preview)
2 |
3 | *NOTE: This is a technical preview. We are still running hyperparameter search, and will release the final model soon. If you'd like to contribute to this, please contact us.*
4 |
5 | :llama: **-Introduction-** [Llama 2 is an open-source LLM released by Meta AI](https://about.fb.com/news/2023/07/llama-2/) today (July 18, 2023). Compared with its early version [Llama 1](https://ai.meta.com/blog/large-language-model-llama-meta-ai/), Llama 2 is more favored in ***stronger language performance***, ***longer context window***, and importantly ***commercially usable***! While Llama 2 is changing the LLM market landscape in the language space, its multimodal ability remains unknown. We quickly develop the LLaVA variant based on the latest Llama 2 checkpoints, and release it to the community for the public use.
6 |
7 | You need to apply for and download the latest Llama 2 checkpoints to start your own training (apply [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/))
8 |
9 |
10 | ## Training
11 |
12 | Please checkout [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh), [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune.sh), [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh).
13 |
14 | ## LLaVA (based on Llama 2), What is different?
15 |
16 | :volcano: How is the new LLaVA based on Llama 2 different from Llama 1? The comparisons of the training process are described:
17 | - **Pre-training**. The pre-trained base LLM is changed from Llama 1 to Llama 2
18 | - **Language instruction-tuning**. The previous LLaVA model starts with Vicuna, which is instruct tuned on ShareGPT data from Llama 1; The new LLaVA model starts with Llama 2 Chat, which is an instruct tuned checkpoint on dialogue data from Llama 2.
19 | - **Multimodal instruction-tuning**. The same LLaVA-Lighting process is applied.
20 |
21 |
22 | ### Results
23 |
24 | - Llama 2 is better at following the instructions of role playing; Llama 2 fails in following the instructions of translation
25 | - The quantitative evaluation on [LLaVA-Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) demonstrates on-par performance between Llama 2 and Llama 1 in LLaVA's multimodal chat ability.
26 |
27 |
28 |
29 |
30 |
--------------------------------------------------------------------------------
/docs/LoRA.md:
--------------------------------------------------------------------------------
1 | # LLaVA (LoRA, Preview)
2 |
3 | NOTE: This is a technical preview, and is not yet ready for production use. We are still running hyperparameter search for the LoRA model, and will release the final model soon. If you'd like to contribute to this, please contact us.
4 |
5 | You need latest code base for LoRA support (instructions [here](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base))
6 |
7 | ## Demo (Web UI)
8 |
9 | Please execute each of the commands below one by one (after the previous one has finished). The commands are the same as launching other demos except for an additional `--model-base` flag to specify the base model to use. Please make sure the base model corresponds to the LoRA checkpoint that you are using. For this technical preview, you need Vicuna v1.1 (7B) checkpoint (if you do not have that already, follow the instructions [here](https://github.com/lm-sys/FastChat#vicuna-weights)).
10 |
11 | #### Launch a controller
12 | ```Shell
13 | python -m llava.serve.controller --host 0.0.0.0 --port 10000
14 | ```
15 |
16 | #### Launch a gradio web server.
17 | ```Shell
18 | python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
19 | ```
20 | You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
21 |
22 | #### Launch a model worker
23 | ```Shell
24 | python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-vicuna-7b-v1.1-lcs_558k-instruct_80k_3e-lora-preview-alpha --model-base /path/to/vicuna-v1.1
25 | ```
26 | Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
27 |
28 | You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
29 |
30 |
31 | ## Training
32 |
33 | Please see sample training scripts for [LoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh) and [QLoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_qlora.sh).
34 |
35 | We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same.
36 |
37 | If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning.
38 |
39 | ## Create Merged Checkpoints
40 |
41 | ```Shell
42 | python scripts/merge_lora_weights.py \
43 | --model-path /path/to/lora_model \
44 | --model-base /path/to/base_model \
45 | --save-model-path /path/to/merge_model
46 | ```
47 |
--------------------------------------------------------------------------------
/docs/ScienceQA.md:
--------------------------------------------------------------------------------
1 | ### ScienceQA
2 |
3 | #### Prepare Data
4 | 1. Please see ScienceQA [repo](https://github.com/lupantech/ScienceQA) for setting up the dataset.
5 | 2. Generate ScienceQA dataset for LLaVA conversation-style format.
6 |
7 | ```Shell
8 | python scripts/convert_sqa_to_llava.py \
9 | convert_to_llava \
10 | --base-dir /path/to/ScienceQA/data/scienceqa \
11 | --prompt-format "QCM-LEA" \
12 | --split {train,val,minival,test,minitest}
13 | ```
14 |
15 | #### Training
16 |
17 | 1. Pretraining
18 |
19 | You can download our pretrained projector weights from our [Model Zoo](), or train your own projector weights using [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh).
20 |
21 | 2. Finetuning
22 |
23 | See [`finetune_sqa.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_sqa.sh).
24 |
25 | #### Evaluation
26 |
27 | 1. Multiple-GPU inference
28 | You may evaluate this with multiple GPUs, and concatenate the generated jsonl files. Please refer to our script for [batch evaluation](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_batch.sh) and [results gathering](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_gather.sh).
29 |
30 | 2. Single-GPU inference
31 |
32 | (a) Generate LLaVA responses on ScienceQA dataset
33 |
34 | ```Shell
35 | python -m llava.eval.model_vqa_science \
36 | --model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \
37 | --question-file /path/to/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \
38 | --image-folder /path/to/ScienceQA/data/scienceqa/images/test \
39 | --answers-file vqa/results/ScienceQA/test_llava-13b.jsonl \
40 | --conv-mode llava_v1
41 | ```
42 |
43 | (b) Evaluate the generated responses
44 |
45 | ```Shell
46 | python eval_science_qa.py \
47 | --base-dir /path/to/ScienceQA/data/scienceqa \
48 | --result-file vqa/results/ScienceQA/test_llava-13b.jsonl \
49 | --output-file vqa/results/ScienceQA/test_llava-13b_output.json \
50 | --output-result vqa/results/ScienceQA/test_llava-13b_result.json \
51 | ```
52 |
53 | For reference, we attach our prediction file [`test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json) and [`test_sqa_llava_13b_v0.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_13b_v0.json) for comparison when reproducing our results, as well as for further analysis in detail.
54 |
--------------------------------------------------------------------------------
/docs/Windows.md:
--------------------------------------------------------------------------------
1 | # Run LLaVA on Windows
2 |
3 | *NOTE: LLaVA on Windows is not fully supported. Currently we only support 16-bit inference. For a more complete support, please use [WSL2](https://learn.microsoft.com/en-us/windows/wsl/install) for now. More functionalities on Windows is to be added soon, stay tuned.*
4 |
5 | ## Installation
6 |
7 | 1. Clone this repository and navigate to LLaVA folder
8 | ```bash
9 | git clone https://github.com/haotian-liu/LLaVA.git
10 | cd LLaVA
11 | ```
12 |
13 | 2. Install Package
14 | ```Shell
15 | conda create -n llava python=3.10 -y
16 | conda activate llava
17 | python -mpip install --upgrade pip # enable PEP 660 support
18 | pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
19 | pip install -e .
20 | pip uninstall bitsandbytes
21 | ```
22 |
23 | ## Run demo
24 |
25 | See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
26 |
27 | Note that quantization (4-bit, 8-bit) is *NOT* supported on Windows. Stay tuned for the 4-bit support on Windows!
28 |
--------------------------------------------------------------------------------
/docs/macOS.md:
--------------------------------------------------------------------------------
1 | # Run LLaVA on macOS
2 |
3 | *NOTE: LLaVA on macOS is not fully supported. Currently we only support 16-bit inference. More functionalities on macOS is to be added soon, stay tuned.*
4 |
5 | ## Installation
6 |
7 | 1. Clone this repository and navigate to LLaVA folder
8 | ```bash
9 | git clone https://github.com/haotian-liu/LLaVA.git
10 | cd LLaVA
11 | ```
12 |
13 | 2. Install Package
14 | ```Shell
15 | conda create -n llava python=3.10 -y
16 | conda activate llava
17 | python -mpip install --upgrade pip # enable PEP 660 support
18 | pip install -e .
19 | pip install torch==2.1.0 torchvision==0.16.0
20 | pip uninstall bitsandbytes
21 | ```
22 |
23 | ## Run demo
24 |
25 | Specify `--device mps` when launching model worker or CLI.
26 |
27 | See instructions [here](https://github.com/haotian-liu/LLaVA#demo).
28 |
29 | Note that quantization (4-bit, 8-bit) is *NOT* supported on macOS. Stay tuned for the 4-bit support on macOS!
30 |
--------------------------------------------------------------------------------
/images/demo_cli.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/images/demo_cli.gif
--------------------------------------------------------------------------------
/images/llava_example_cmp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/images/llava_example_cmp.png
--------------------------------------------------------------------------------
/images/llava_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/images/llava_logo.png
--------------------------------------------------------------------------------
/images/llava_v1_5_radar.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/images/llava_v1_5_radar.jpg
--------------------------------------------------------------------------------
/llava/__init__.py:
--------------------------------------------------------------------------------
1 | from .model import LlavaLlamaForCausalLM
2 |
--------------------------------------------------------------------------------
/llava/constants.py:
--------------------------------------------------------------------------------
1 | CONTROLLER_HEART_BEAT_EXPIRATION = 30
2 | WORKER_HEART_BEAT_INTERVAL = 15
3 |
4 | LOGDIR = "."
5 |
6 | # Model Constants
7 | IGNORE_INDEX = -100
8 | IMAGE_TOKEN_INDEX = -200
9 | DEFAULT_IMAGE_TOKEN = ""
10 | DEFAULT_IMAGE_PATCH_TOKEN = ""
11 | DEFAULT_IM_START_TOKEN = ""
12 | DEFAULT_IM_END_TOKEN = ""
13 | IMAGE_PLACEHOLDER = ""
14 |
--------------------------------------------------------------------------------
/llava/eval/eval_gpt_review.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 |
5 | import openai
6 | import tqdm
7 | import ray
8 | import time
9 |
10 | NUM_SECONDS_TO_SLEEP = 3
11 |
12 | @ray.remote(num_cpus=4)
13 | def get_eval(content: str, max_tokens: int):
14 | while True:
15 | try:
16 | response = openai.ChatCompletion.create(
17 | model='gpt-4',
18 | messages=[{
19 | 'role': 'system',
20 | 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
21 | }, {
22 | 'role': 'user',
23 | 'content': content,
24 | }],
25 | temperature=0.2, # TODO: figure out which temperature is best for evaluation
26 | max_tokens=max_tokens,
27 | )
28 | break
29 | except openai.error.RateLimitError:
30 | pass
31 | except Exception as e:
32 | print(e)
33 | time.sleep(NUM_SECONDS_TO_SLEEP)
34 |
35 | print('success!')
36 | return response['choices'][0]['message']['content']
37 |
38 |
39 | def parse_score(review):
40 | try:
41 | score_pair = review.split('\n')[0]
42 | score_pair = score_pair.replace(',', ' ')
43 | sp = score_pair.split(' ')
44 | if len(sp) == 2:
45 | return [float(sp[0]), float(sp[1])]
46 | else:
47 | print('error', review)
48 | return [-1, -1]
49 | except Exception as e:
50 | print(e)
51 | print('error', review)
52 | return [-1, -1]
53 |
54 |
55 | if __name__ == '__main__':
56 | parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
57 | parser.add_argument('-q', '--question')
58 | # parser.add_argument('-a', '--answer')
59 | parser.add_argument('-a', '--answer-list', nargs='+', default=[])
60 | parser.add_argument('-r', '--rule')
61 | parser.add_argument('-o', '--output')
62 | parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
63 | args = parser.parse_args()
64 |
65 | ray.init()
66 |
67 | f_q = open(os.path.expanduser(args.question))
68 | f_ans1 = open(os.path.expanduser(args.answer_list[0]))
69 | f_ans2 = open(os.path.expanduser(args.answer_list[1]))
70 | rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
71 |
72 | review_file = open(f'{args.output}', 'w')
73 |
74 | js_list = []
75 | handles = []
76 | idx = 0
77 | for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
78 | # if idx == 1:
79 | # break
80 |
81 | ques = json.loads(ques_js)
82 | ans1 = json.loads(ans1_js)
83 | ans2 = json.loads(ans2_js)
84 |
85 | category = json.loads(ques_js)['category']
86 | if category in rule_dict:
87 | rule = rule_dict[category]
88 | else:
89 | rule = rule_dict['default']
90 | prompt = rule['prompt']
91 | role = rule['role']
92 | content = (f'[Question]\n{ques["text"]}\n\n'
93 | f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
94 | f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
95 | f'[System]\n{prompt}\n\n')
96 | js_list.append({
97 | 'id': idx+1,
98 | 'question_id': ques['question_id'],
99 | 'answer1_id': ans1['answer_id'],
100 | 'answer2_id': ans2['answer_id'],
101 | 'category': category})
102 | idx += 1
103 | handles.append(get_eval.remote(content, args.max_tokens))
104 | # To avoid the rate limit set by OpenAI
105 | time.sleep(NUM_SECONDS_TO_SLEEP)
106 |
107 | reviews = ray.get(handles)
108 | for idx, review in enumerate(reviews):
109 | scores = parse_score(review)
110 | js_list[idx]['content'] = review
111 | js_list[idx]['tuple'] = scores
112 | review_file.write(json.dumps(js_list[idx]) + '\n')
113 | review_file.close()
114 |
--------------------------------------------------------------------------------
/llava/eval/eval_gpt_review_bench.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 |
5 | import openai
6 | import time
7 |
8 | NUM_SECONDS_TO_SLEEP = 0.5
9 |
10 |
11 | def get_eval(content: str, max_tokens: int):
12 | while True:
13 | try:
14 | response = openai.ChatCompletion.create(
15 | model='gpt-4-0314',
16 | messages=[{
17 | 'role': 'system',
18 | 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19 | }, {
20 | 'role': 'user',
21 | 'content': content,
22 | }],
23 | temperature=0.2, # TODO: figure out which temperature is best for evaluation
24 | max_tokens=max_tokens,
25 | )
26 | break
27 | except openai.error.RateLimitError:
28 | pass
29 | except Exception as e:
30 | print(e)
31 | time.sleep(NUM_SECONDS_TO_SLEEP)
32 |
33 | return response['choices'][0]['message']['content']
34 |
35 |
36 | def parse_score(review):
37 | try:
38 | score_pair = review.split('\n')[0]
39 | score_pair = score_pair.replace(',', ' ')
40 | sp = score_pair.split(' ')
41 | if len(sp) == 2:
42 | return [float(sp[0]), float(sp[1])]
43 | else:
44 | print('error', review)
45 | return [-1, -1]
46 | except Exception as e:
47 | print(e)
48 | print('error', review)
49 | return [-1, -1]
50 |
51 |
52 | if __name__ == '__main__':
53 | parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54 | parser.add_argument('-q', '--question')
55 | parser.add_argument('-c', '--context')
56 | parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57 | parser.add_argument('-r', '--rule')
58 | parser.add_argument('-o', '--output')
59 | parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60 | args = parser.parse_args()
61 |
62 | f_q = open(os.path.expanduser(args.question))
63 | f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64 | f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65 | rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66 |
67 | if os.path.isfile(os.path.expanduser(args.output)):
68 | cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69 | else:
70 | cur_reviews = []
71 |
72 | review_file = open(f'{args.output}', 'a')
73 |
74 | context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75 | image_to_context = {context['image']: context for context in context_list}
76 |
77 | handles = []
78 | idx = 0
79 | for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80 | ques = json.loads(ques_js)
81 | ans1 = json.loads(ans1_js)
82 | ans2 = json.loads(ans2_js)
83 |
84 | inst = image_to_context[ques['image']]
85 |
86 | if isinstance(inst['caption'], list):
87 | cap_str = '\n'.join(inst['caption'])
88 | else:
89 | cap_str = inst['caption']
90 |
91 | category = 'llava_bench_' + json.loads(ques_js)['category']
92 | if category in rule_dict:
93 | rule = rule_dict[category]
94 | else:
95 | assert False, f"Visual QA category not found in rule file: {category}."
96 | prompt = rule['prompt']
97 | role = rule['role']
98 | content = (f'[Context]\n{cap_str}\n\n'
99 | f'[Question]\n{ques["text"]}\n\n'
100 | f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
101 | f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
102 | f'[System]\n{prompt}\n\n')
103 | cur_js = {
104 | 'id': idx+1,
105 | 'question_id': ques['question_id'],
106 | 'answer1_id': ans1.get('answer_id', ans1['question_id']),
107 | 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
108 | 'category': category
109 | }
110 | if idx >= len(cur_reviews):
111 | review = get_eval(content, args.max_tokens)
112 | scores = parse_score(review)
113 | cur_js['content'] = review
114 | cur_js['tuple'] = scores
115 | review_file.write(json.dumps(cur_js) + '\n')
116 | review_file.flush()
117 | else:
118 | print(f'Skipping {idx} as we already have it.')
119 | idx += 1
120 | print(idx)
121 | review_file.close()
122 |
--------------------------------------------------------------------------------
/llava/eval/eval_gpt_review_visual.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 |
5 | import openai
6 | import time
7 |
8 | NUM_SECONDS_TO_SLEEP = 0.5
9 |
10 |
11 | def get_eval(content: str, max_tokens: int):
12 | while True:
13 | try:
14 | response = openai.ChatCompletion.create(
15 | model='gpt-4-0314',
16 | messages=[{
17 | 'role': 'system',
18 | 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19 | }, {
20 | 'role': 'user',
21 | 'content': content,
22 | }],
23 | temperature=0.2, # TODO: figure out which temperature is best for evaluation
24 | max_tokens=max_tokens,
25 | )
26 | break
27 | except openai.error.RateLimitError:
28 | pass
29 | except Exception as e:
30 | print(e)
31 | time.sleep(NUM_SECONDS_TO_SLEEP)
32 |
33 | return response['choices'][0]['message']['content']
34 |
35 |
36 | def parse_score(review):
37 | try:
38 | score_pair = review.split('\n')[0]
39 | score_pair = score_pair.replace(',', ' ')
40 | sp = score_pair.split(' ')
41 | if len(sp) == 2:
42 | return [float(sp[0]), float(sp[1])]
43 | else:
44 | print('error', review)
45 | return [-1, -1]
46 | except Exception as e:
47 | print(e)
48 | print('error', review)
49 | return [-1, -1]
50 |
51 |
52 | if __name__ == '__main__':
53 | parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54 | parser.add_argument('-q', '--question')
55 | parser.add_argument('-c', '--context')
56 | parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57 | parser.add_argument('-r', '--rule')
58 | parser.add_argument('-o', '--output')
59 | parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60 | args = parser.parse_args()
61 |
62 | f_q = open(os.path.expanduser(args.question))
63 | f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64 | f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65 | rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66 |
67 | if os.path.isfile(os.path.expanduser(args.output)):
68 | cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69 | else:
70 | cur_reviews = []
71 |
72 | review_file = open(f'{args.output}', 'a')
73 |
74 | context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75 | image_to_context = {context['image']: context for context in context_list}
76 |
77 | handles = []
78 | idx = 0
79 | for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80 | ques = json.loads(ques_js)
81 | ans1 = json.loads(ans1_js)
82 | ans2 = json.loads(ans2_js)
83 |
84 | inst = image_to_context[ques['image']]
85 | cap_str = '\n'.join(inst['captions'])
86 | box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
87 |
88 | category = json.loads(ques_js)['category']
89 | if category in rule_dict:
90 | rule = rule_dict[category]
91 | else:
92 | assert False, f"Visual QA category not found in rule file: {category}."
93 | prompt = rule['prompt']
94 | role = rule['role']
95 | content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
96 | f'[Question]\n{ques["text"]}\n\n'
97 | f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
98 | f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
99 | f'[System]\n{prompt}\n\n')
100 | cur_js = {
101 | 'id': idx+1,
102 | 'question_id': ques['question_id'],
103 | 'answer1_id': ans1.get('answer_id', ans1['question_id']),
104 | 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
105 | 'category': category
106 | }
107 | if idx >= len(cur_reviews):
108 | review = get_eval(content, args.max_tokens)
109 | scores = parse_score(review)
110 | cur_js['content'] = review
111 | cur_js['tuple'] = scores
112 | review_file.write(json.dumps(cur_js) + '\n')
113 | review_file.flush()
114 | else:
115 | print(f'Skipping {idx} as we already have it.')
116 | idx += 1
117 | print(idx)
118 | review_file.close()
119 |
--------------------------------------------------------------------------------
/llava/eval/eval_pope.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 |
5 | def eval_pope(answers, label_file):
6 | label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
7 |
8 | for answer in answers:
9 | text = answer['text']
10 |
11 | # Only keep the first sentence
12 | if text.find('.') != -1:
13 | text = text.split('.')[0]
14 |
15 | text = text.replace(',', '')
16 | words = text.split(' ')
17 | if 'No' in words or 'not' in words or 'no' in words:
18 | answer['text'] = 'no'
19 | else:
20 | answer['text'] = 'yes'
21 |
22 | for i in range(len(label_list)):
23 | if label_list[i] == 'no':
24 | label_list[i] = 0
25 | else:
26 | label_list[i] = 1
27 |
28 | pred_list = []
29 | for answer in answers:
30 | if answer['text'] == 'no':
31 | pred_list.append(0)
32 | else:
33 | pred_list.append(1)
34 |
35 | pos = 1
36 | neg = 0
37 | yes_ratio = pred_list.count(1) / len(pred_list)
38 |
39 | TP, TN, FP, FN = 0, 0, 0, 0
40 | for pred, label in zip(pred_list, label_list):
41 | if pred == pos and label == pos:
42 | TP += 1
43 | elif pred == pos and label == neg:
44 | FP += 1
45 | elif pred == neg and label == neg:
46 | TN += 1
47 | elif pred == neg and label == pos:
48 | FN += 1
49 |
50 | print('TP\tFP\tTN\tFN\t')
51 | print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
52 |
53 | precision = float(TP) / float(TP + FP)
54 | recall = float(TP) / float(TP + FN)
55 | f1 = 2*precision*recall / (precision + recall)
56 | acc = (TP + TN) / (TP + TN + FP + FN)
57 | print('Accuracy: {}'.format(acc))
58 | print('Precision: {}'.format(precision))
59 | print('Recall: {}'.format(recall))
60 | print('F1 score: {}'.format(f1))
61 | print('Yes ratio: {}'.format(yes_ratio))
62 | print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
63 |
64 | if __name__ == "__main__":
65 | parser = argparse.ArgumentParser()
66 | parser.add_argument("--annotation-dir", type=str)
67 | parser.add_argument("--question-file", type=str)
68 | parser.add_argument("--result-file", type=str)
69 | args = parser.parse_args()
70 |
71 | questions = [json.loads(line) for line in open(args.question_file)]
72 | questions = {question['question_id']: question for question in questions}
73 | answers = [json.loads(q) for q in open(args.result_file)]
74 | for file in os.listdir(args.annotation_dir):
75 | assert file.startswith('coco_pope_')
76 | assert file.endswith('.json')
77 | category = file[10:-5]
78 | cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
79 | print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
80 | eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
81 | print("====================================")
82 |
--------------------------------------------------------------------------------
/llava/eval/eval_science_qa.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 | import re
5 | import random
6 |
7 |
8 | def get_args():
9 | parser = argparse.ArgumentParser()
10 | parser.add_argument('--base-dir', type=str)
11 | parser.add_argument('--result-file', type=str)
12 | parser.add_argument('--output-file', type=str)
13 | parser.add_argument('--output-result', type=str)
14 | parser.add_argument('--split', type=str, default='test')
15 | parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16 | return parser.parse_args()
17 |
18 |
19 | def convert_caps(results):
20 | fakecaps = []
21 | for result in results:
22 | image_id = result['question_id']
23 | caption = result['text']
24 | fakecaps.append({"image_id": int(image_id), "caption": caption})
25 | return fakecaps
26 |
27 |
28 | def get_pred_idx(prediction, choices, options):
29 | """
30 | Get the index (e.g. 2) from the prediction (e.g. 'C')
31 | """
32 | if prediction in options[:len(choices)]:
33 | return options.index(prediction)
34 | else:
35 | return -1
36 | return random.choice(range(len(choices)))
37 |
38 |
39 | if __name__ == "__main__":
40 | args = get_args()
41 |
42 | base_dir = args.base_dir
43 | split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
44 | problems = json.load(open(os.path.join(base_dir, "problems.json")))
45 | predictions = [json.loads(line) for line in open(args.result_file)]
46 | predictions = {pred['question_id']: pred for pred in predictions}
47 | split_problems = {idx: problems[idx] for idx in split_indices}
48 |
49 | results = {'correct': [], 'incorrect': []}
50 | sqa_results = {}
51 | sqa_results['acc'] = None
52 | sqa_results['correct'] = None
53 | sqa_results['count'] = None
54 | sqa_results['results'] = {}
55 | sqa_results['outputs'] = {}
56 |
57 | for prob_id, prob in split_problems.items():
58 | if prob_id not in predictions:
59 | pred = {'text': 'FAILED', 'prompt': 'Unknown'}
60 | pred_text = 'FAILED'
61 | else:
62 | pred = predictions[prob_id]
63 | pred_text = pred['text']
64 |
65 | if pred_text in args.options:
66 | answer = pred_text
67 | elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
68 | answer = pred_text[0]
69 | else:
70 | pattern = re.compile(r'The answer is ([A-Z]).')
71 | res = pattern.findall(pred_text)
72 | if len(res) == 1:
73 | answer = res[0] # 'A', 'B', ...
74 | else:
75 | answer = "FAILED"
76 |
77 | pred_idx = get_pred_idx(answer, prob['choices'], args.options)
78 |
79 | analysis = {
80 | 'question_id': prob_id,
81 | 'parsed_ans': answer,
82 | 'ground_truth': args.options[prob['answer']],
83 | 'question': pred['prompt'],
84 | 'pred': pred_text,
85 | 'is_multimodal': '' in pred['prompt'],
86 | }
87 |
88 | sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
89 | sqa_results['outputs'][prob_id] = pred_text
90 |
91 | if pred_idx == prob['answer']:
92 | results['correct'].append(analysis)
93 | else:
94 | results['incorrect'].append(analysis)
95 |
96 | correct = len(results['correct'])
97 | total = len(results['correct']) + len(results['incorrect'])
98 |
99 | ###### IMG ######
100 | multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
101 | multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
102 | multimodal_total = multimodal_correct + multimodal_incorrect
103 | ###### IMG ######
104 |
105 | print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
106 |
107 | sqa_results['acc'] = correct / total * 100
108 | sqa_results['correct'] = correct
109 | sqa_results['count'] = total
110 |
111 | with open(args.output_file, 'w') as f:
112 | json.dump(results, f, indent=2)
113 | with open(args.output_result, 'w') as f:
114 | json.dump(sqa_results, f, indent=2)
115 |
--------------------------------------------------------------------------------
/llava/eval/eval_science_qa_gpt4.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 | import re
5 | import random
6 | from collections import defaultdict
7 |
8 |
9 | def get_args():
10 | parser = argparse.ArgumentParser()
11 | parser.add_argument('--base-dir', type=str)
12 | parser.add_argument('--gpt4-result', type=str)
13 | parser.add_argument('--our-result', type=str)
14 | parser.add_argument('--split', type=str, default='test')
15 | parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16 | return parser.parse_args()
17 |
18 |
19 | def convert_caps(results):
20 | fakecaps = []
21 | for result in results:
22 | image_id = result['question_id']
23 | caption = result['text']
24 | fakecaps.append({"image_id": int(image_id), "caption": caption})
25 | return fakecaps
26 |
27 |
28 | def get_pred_idx(prediction, choices, options):
29 | """
30 | Get the index (e.g. 2) from the prediction (e.g. 'C')
31 | """
32 | if prediction in options[:len(choices)]:
33 | return options.index(prediction)
34 | else:
35 | return random.choice(range(len(choices)))
36 |
37 |
38 | if __name__ == "__main__":
39 | args = get_args()
40 |
41 | base_dir = args.base_dir
42 | split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
43 | problems = json.load(open(os.path.join(base_dir, "problems.json")))
44 | our_predictions = [json.loads(line) for line in open(args.our_result)]
45 | our_predictions = {pred['question_id']: pred for pred in our_predictions}
46 | split_problems = {idx: problems[idx] for idx in split_indices}
47 |
48 | gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
49 |
50 | results = defaultdict(lambda: 0)
51 |
52 | for prob_id, prob in split_problems.items():
53 | if prob_id not in our_predictions:
54 | continue
55 | if prob_id not in gpt4_predictions:
56 | continue
57 | our_pred = our_predictions[prob_id]['text']
58 | gpt4_pred = gpt4_predictions[prob_id]
59 |
60 | pattern = re.compile(r'The answer is ([A-Z]).')
61 | our_res = pattern.findall(our_pred)
62 | if len(our_res) == 1:
63 | our_answer = our_res[0] # 'A', 'B', ...
64 | else:
65 | our_answer = "FAILED"
66 | gpt4_res = pattern.findall(gpt4_pred)
67 | if len(gpt4_res) == 1:
68 | gpt4_answer = gpt4_res[0] # 'A', 'B', ...
69 | else:
70 | gpt4_answer = "FAILED"
71 |
72 | our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
73 | gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
74 |
75 | if gpt4_answer == 'FAILED':
76 | results['gpt4_failed'] += 1
77 | # continue
78 | gpt4_pred_idx = our_pred_idx
79 | # if our_pred_idx != prob['answer']:
80 | # print(our_predictions[prob_id]['prompt'])
81 | # print('-----------------')
82 | # print(f'LECTURE: {prob["lecture"]}')
83 | # print(f'SOLUTION: {prob["solution"]}')
84 | # print('=====================')
85 | else:
86 | # continue
87 | pass
88 | # gpt4_pred_idx = our_pred_idx
89 |
90 | if gpt4_pred_idx == prob['answer']:
91 | results['correct'] += 1
92 | else:
93 | results['incorrect'] += 1
94 |
95 |
96 | if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
97 | results['correct_upperbound'] += 1
98 |
99 | correct = results['correct']
100 | total = results['correct'] + results['incorrect']
101 | print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
102 | print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
103 | print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
104 |
105 |
--------------------------------------------------------------------------------
/llava/eval/eval_textvqa.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import json
4 | import re
5 |
6 | from llava.eval.m4c_evaluator import TextVQAAccuracyEvaluator
7 |
8 |
9 | def get_args():
10 | parser = argparse.ArgumentParser()
11 | parser.add_argument('--annotation-file', type=str)
12 | parser.add_argument('--result-file', type=str)
13 | parser.add_argument('--result-dir', type=str)
14 | return parser.parse_args()
15 |
16 |
17 | def prompt_processor(prompt):
18 | if prompt.startswith('OCR tokens: '):
19 | pattern = r"Question: (.*?) Short answer:"
20 | match = re.search(pattern, prompt, re.DOTALL)
21 | question = match.group(1)
22 | elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
23 | if prompt.startswith('Reference OCR token:'):
24 | question = prompt.split('\n')[1]
25 | else:
26 | question = prompt.split('\n')[0]
27 | elif len(prompt.split('\n')) == 2:
28 | question = prompt.split('\n')[0]
29 | else:
30 | assert False
31 |
32 | return question.lower()
33 |
34 |
35 | def eval_single(annotation_file, result_file):
36 | experiment_name = os.path.splitext(os.path.basename(result_file))[0]
37 | print(experiment_name)
38 | annotations = json.load(open(annotation_file))['data']
39 | annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
40 | results = [json.loads(line) for line in open(result_file)]
41 |
42 | pred_list = []
43 | for result in results:
44 | annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
45 | pred_list.append({
46 | "pred_answer": result['text'],
47 | "gt_answers": annotation['answers'],
48 | })
49 |
50 | evaluator = TextVQAAccuracyEvaluator()
51 | print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
52 |
53 |
54 | if __name__ == "__main__":
55 | args = get_args()
56 |
57 | if args.result_file is not None:
58 | eval_single(args.annotation_file, args.result_file)
59 |
60 | if args.result_dir is not None:
61 | for result_file in sorted(os.listdir(args.result_dir)):
62 | if not result_file.endswith('.jsonl'):
63 | print(f'Skipping {result_file}')
64 | continue
65 | eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))
66 |
--------------------------------------------------------------------------------
/llava/eval/generate_webpage_data_from_table.py:
--------------------------------------------------------------------------------
1 | """Generate json file for webpage."""
2 | import json
3 | import os
4 | import re
5 |
6 | # models = ['llama', 'alpaca', 'gpt35', 'bard']
7 | models = ['vicuna']
8 |
9 |
10 | def read_jsonl(path: str, key: str=None):
11 | data = []
12 | with open(os.path.expanduser(path)) as f:
13 | for line in f:
14 | if not line:
15 | continue
16 | data.append(json.loads(line))
17 | if key is not None:
18 | data.sort(key=lambda x: x[key])
19 | data = {item[key]: item for item in data}
20 | return data
21 |
22 |
23 | def trim_hanging_lines(s: str, n: int) -> str:
24 | s = s.strip()
25 | for _ in range(n):
26 | s = s.split('\n', 1)[1].strip()
27 | return s
28 |
29 |
30 | if __name__ == '__main__':
31 | questions = read_jsonl('table/question.jsonl', key='question_id')
32 |
33 | # alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
34 | # bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
35 | # gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
36 | # llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
37 | vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id')
38 | ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id')
39 |
40 | review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id')
41 | # review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
42 | # review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
43 | # review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
44 | # review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
45 |
46 | records = []
47 | for qid in questions.keys():
48 | r = {
49 | 'id': qid,
50 | 'category': questions[qid]['category'],
51 | 'question': questions[qid]['text'],
52 | 'answers': {
53 | # 'alpaca': alpaca_answers[qid]['text'],
54 | # 'llama': llama_answers[qid]['text'],
55 | # 'bard': bard_answers[qid]['text'],
56 | # 'gpt35': gpt35_answers[qid]['text'],
57 | 'vicuna': vicuna_answers[qid]['text'],
58 | 'ours': ours_answers[qid]['text'],
59 | },
60 | 'evaluations': {
61 | # 'alpaca': review_alpaca[qid]['text'],
62 | # 'llama': review_llama[qid]['text'],
63 | # 'bard': review_bard[qid]['text'],
64 | 'vicuna': review_vicuna[qid]['content'],
65 | # 'gpt35': review_gpt35[qid]['text'],
66 | },
67 | 'scores': {
68 | 'vicuna': review_vicuna[qid]['tuple'],
69 | # 'alpaca': review_alpaca[qid]['score'],
70 | # 'llama': review_llama[qid]['score'],
71 | # 'bard': review_bard[qid]['score'],
72 | # 'gpt35': review_gpt35[qid]['score'],
73 | },
74 | }
75 |
76 | # cleanup data
77 | cleaned_evals = {}
78 | for k, v in r['evaluations'].items():
79 | v = v.strip()
80 | lines = v.split('\n')
81 | # trim the first line if it's a pair of numbers
82 | if re.match(r'\d+[, ]+\d+', lines[0]):
83 | lines = lines[1:]
84 | v = '\n'.join(lines)
85 | cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**')
86 |
87 | r['evaluations'] = cleaned_evals
88 | records.append(r)
89 |
90 | # Reorder the records, this is optional
91 | for r in records:
92 | if r['id'] <= 20:
93 | r['id'] += 60
94 | else:
95 | r['id'] -= 20
96 | for r in records:
97 | if r['id'] <= 50:
98 | r['id'] += 10
99 | elif 50 < r['id'] <= 60:
100 | r['id'] -= 50
101 | for r in records:
102 | if r['id'] == 7:
103 | r['id'] = 1
104 | elif r['id'] < 7:
105 | r['id'] += 1
106 |
107 | records.sort(key=lambda x: x['id'])
108 |
109 | # Write to file
110 | with open('webpage/data.json', 'w') as f:
111 | json.dump({'questions': records, 'models': models}, f, indent=2)
112 |
--------------------------------------------------------------------------------
/llava/eval/model_qa.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
3 | import torch
4 | import os
5 | import json
6 | from tqdm import tqdm
7 | import shortuuid
8 |
9 | from llava.conversation import default_conversation
10 | from llava.utils import disable_torch_init
11 |
12 |
13 | @torch.inference_mode()
14 | def eval_model(model_name, questions_file, answers_file):
15 | # Model
16 | disable_torch_init()
17 | model_name = os.path.expanduser(model_name)
18 | tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
19 | model = AutoModelForCausalLM.from_pretrained(model_name,
20 | torch_dtype=torch.float16).cuda()
21 |
22 |
23 | ques_file = open(os.path.expanduser(questions_file), "r")
24 | ans_file = open(os.path.expanduser(answers_file), "w")
25 | for i, line in enumerate(tqdm(ques_file)):
26 | idx = json.loads(line)["question_id"]
27 | qs = json.loads(line)["text"]
28 | cat = json.loads(line)["category"]
29 | conv = default_conversation.copy()
30 | conv.append_message(conv.roles[0], qs)
31 | prompt = conv.get_prompt()
32 | inputs = tokenizer([prompt])
33 | input_ids = torch.as_tensor(inputs.input_ids).cuda()
34 | output_ids = model.generate(
35 | input_ids,
36 | do_sample=True,
37 | use_cache=True,
38 | temperature=0.7,
39 | max_new_tokens=1024,)
40 | outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
41 | try:
42 | index = outputs.index(conv.sep, len(prompt))
43 | except ValueError:
44 | outputs += conv.sep
45 | index = outputs.index(conv.sep, len(prompt))
46 |
47 | outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
48 | ans_id = shortuuid.uuid()
49 | ans_file.write(json.dumps({"question_id": idx,
50 | "text": outputs,
51 | "answer_id": ans_id,
52 | "model_id": model_name,
53 | "metadata": {}}) + "\n")
54 | ans_file.flush()
55 | ans_file.close()
56 |
57 | if __name__ == "__main__":
58 | parser = argparse.ArgumentParser()
59 | parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
60 | parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
61 | parser.add_argument("--answers-file", type=str, default="answer.jsonl")
62 | args = parser.parse_args()
63 |
64 | eval_model(args.model_name, args.question_file, args.answers_file)
65 |
--------------------------------------------------------------------------------
/llava/eval/model_vqa.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import torch
3 | import os
4 | import json
5 | from tqdm import tqdm
6 | import shortuuid
7 |
8 | from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9 | from llava.conversation import conv_templates, SeparatorStyle
10 | from llava.model.builder import load_pretrained_model
11 | from llava.utils import disable_torch_init
12 | from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
13 |
14 | from PIL import Image
15 | import math
16 |
17 |
18 | def split_list(lst, n):
19 | """Split a list into n (roughly) equal-sized chunks"""
20 | chunk_size = math.ceil(len(lst) / n) # integer division
21 | return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
22 |
23 |
24 | def get_chunk(lst, n, k):
25 | chunks = split_list(lst, n)
26 | return chunks[k]
27 |
28 |
29 | def eval_model(args):
30 | # Model
31 | disable_torch_init()
32 | model_path = os.path.expanduser(args.model_path)
33 | model_name = get_model_name_from_path(model_path)
34 | tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
35 |
36 | questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
37 | questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
38 | answers_file = os.path.expanduser(args.answers_file)
39 | os.makedirs(os.path.dirname(answers_file), exist_ok=True)
40 | ans_file = open(answers_file, "w")
41 | for line in tqdm(questions):
42 | idx = line["question_id"]
43 | image_file = line["image"]
44 | qs = line["text"]
45 | cur_prompt = qs
46 | if model.config.mm_use_im_start_end:
47 | qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
48 | else:
49 | qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
50 |
51 | conv = conv_templates[args.conv_mode].copy()
52 | conv.append_message(conv.roles[0], qs)
53 | conv.append_message(conv.roles[1], None)
54 | prompt = conv.get_prompt()
55 |
56 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
57 |
58 | image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
59 | image_tensor = process_images([image], image_processor, model.config)[0]
60 |
61 | with torch.inference_mode():
62 | output_ids = model.generate(
63 | input_ids,
64 | images=image_tensor.unsqueeze(0).half().cuda(),
65 | image_sizes=[image.size],
66 | do_sample=True if args.temperature > 0 else False,
67 | temperature=args.temperature,
68 | top_p=args.top_p,
69 | num_beams=args.num_beams,
70 | # no_repeat_ngram_size=3,
71 | max_new_tokens=1024,
72 | use_cache=True)
73 |
74 | outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
75 |
76 | ans_id = shortuuid.uuid()
77 | ans_file.write(json.dumps({"question_id": idx,
78 | "prompt": cur_prompt,
79 | "text": outputs,
80 | "answer_id": ans_id,
81 | "model_id": model_name,
82 | "metadata": {}}) + "\n")
83 | ans_file.flush()
84 | ans_file.close()
85 |
86 | if __name__ == "__main__":
87 | parser = argparse.ArgumentParser()
88 | parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
89 | parser.add_argument("--model-base", type=str, default=None)
90 | parser.add_argument("--image-folder", type=str, default="")
91 | parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
92 | parser.add_argument("--answers-file", type=str, default="answer.jsonl")
93 | parser.add_argument("--conv-mode", type=str, default="llava_v1")
94 | parser.add_argument("--num-chunks", type=int, default=1)
95 | parser.add_argument("--chunk-idx", type=int, default=0)
96 | parser.add_argument("--temperature", type=float, default=0.2)
97 | parser.add_argument("--top_p", type=float, default=None)
98 | parser.add_argument("--num_beams", type=int, default=1)
99 | args = parser.parse_args()
100 |
101 | eval_model(args)
102 |
--------------------------------------------------------------------------------
/llava/eval/model_vqa_science.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import torch
3 | import os
4 | import json
5 | from tqdm import tqdm
6 | import shortuuid
7 |
8 | from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9 | from llava.conversation import conv_templates, SeparatorStyle
10 | from llava.model.builder import load_pretrained_model
11 | from llava.utils import disable_torch_init
12 | from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
13 |
14 | from PIL import Image
15 | import math
16 |
17 |
18 | def split_list(lst, n):
19 | """Split a list into n (roughly) equal-sized chunks"""
20 | chunk_size = math.ceil(len(lst) / n) # integer division
21 | return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
22 |
23 |
24 | def get_chunk(lst, n, k):
25 | chunks = split_list(lst, n)
26 | return chunks[k]
27 |
28 |
29 | def eval_model(args):
30 | # Model
31 | disable_torch_init()
32 | model_path = os.path.expanduser(args.model_path)
33 | model_name = get_model_name_from_path(model_path)
34 | tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
35 |
36 | questions = json.load(open(os.path.expanduser(args.question_file), "r"))
37 | questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
38 | answers_file = os.path.expanduser(args.answers_file)
39 | os.makedirs(os.path.dirname(answers_file), exist_ok=True)
40 | ans_file = open(answers_file, "w")
41 | for i, line in enumerate(tqdm(questions)):
42 | idx = line["id"]
43 | question = line['conversations'][0]
44 | qs = question['value'].replace('', '').strip()
45 | cur_prompt = qs
46 |
47 | if 'image' in line:
48 | image_file = line["image"]
49 | image = Image.open(os.path.join(args.image_folder, image_file))
50 | image_tensor = process_images([image], image_processor, model.config)[0]
51 | images = image_tensor.unsqueeze(0).half().cuda()
52 | image_sizes = [image.size]
53 | if getattr(model.config, 'mm_use_im_start_end', False):
54 | qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
55 | else:
56 | qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
57 | cur_prompt = '' + '\n' + cur_prompt
58 | else:
59 | images = None
60 | image_sizes = None
61 |
62 | if args.single_pred_prompt:
63 | qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
64 | cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."
65 |
66 | conv = conv_templates[args.conv_mode].copy()
67 | conv.append_message(conv.roles[0], qs)
68 | conv.append_message(conv.roles[1], None)
69 | prompt = conv.get_prompt()
70 |
71 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
72 |
73 | with torch.inference_mode():
74 | output_ids = model.generate(
75 | input_ids,
76 | images=images,
77 | image_sizes=image_sizes,
78 | do_sample=True if args.temperature > 0 else False,
79 | temperature=args.temperature,
80 | max_new_tokens=1024,
81 | use_cache=True,
82 | )
83 |
84 | outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
85 |
86 | ans_id = shortuuid.uuid()
87 | ans_file.write(json.dumps({"question_id": idx,
88 | "prompt": cur_prompt,
89 | "text": outputs,
90 | "answer_id": ans_id,
91 | "model_id": model_name,
92 | "metadata": {}}) + "\n")
93 | ans_file.flush()
94 | ans_file.close()
95 |
96 | if __name__ == "__main__":
97 | parser = argparse.ArgumentParser()
98 | parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
99 | parser.add_argument("--model-base", type=str, default=None)
100 | parser.add_argument("--image-folder", type=str, default="")
101 | parser.add_argument("--question-file", type=str, default="tables/question.json")
102 | parser.add_argument("--answers-file", type=str, default="answer.jsonl")
103 | parser.add_argument("--conv-mode", type=str, default="llava_v0")
104 | parser.add_argument("--num-chunks", type=int, default=1)
105 | parser.add_argument("--chunk-idx", type=int, default=0)
106 | parser.add_argument("--temperature", type=float, default=0.2)
107 | parser.add_argument("--answer-prompter", action="store_true")
108 | parser.add_argument("--single-pred-prompt", action="store_true")
109 | args = parser.parse_args()
110 |
111 | eval_model(args)
112 |
--------------------------------------------------------------------------------
/llava/eval/qa_baseline_gpt35.py:
--------------------------------------------------------------------------------
1 | """Generate answers with GPT-3.5"""
2 | # Note: you need to be using OpenAI Python v0.27.0 for the code below to work
3 | import argparse
4 | import json
5 | import os
6 | import time
7 | import concurrent.futures
8 |
9 | import openai
10 | import tqdm
11 | import shortuuid
12 |
13 | MODEL = 'gpt-3.5-turbo'
14 | MODEL_ID = 'gpt-3.5-turbo:20230327'
15 |
16 | def get_answer(question_id: int, question: str, max_tokens: int):
17 | ans = {
18 | 'answer_id': shortuuid.uuid(),
19 | 'question_id': question_id,
20 | 'model_id': MODEL_ID,
21 | }
22 | for _ in range(3):
23 | try:
24 | response = openai.ChatCompletion.create(
25 | model=MODEL,
26 | messages=[{
27 | 'role': 'system',
28 | 'content': 'You are a helpful assistant.'
29 | }, {
30 | 'role': 'user',
31 | 'content': question,
32 | }],
33 | max_tokens=max_tokens,
34 | )
35 | ans['text'] = response['choices'][0]['message']['content']
36 | return ans
37 | except Exception as e:
38 | print('[ERROR]', e)
39 | ans['text'] = '#ERROR#'
40 | time.sleep(1)
41 | return ans
42 |
43 |
44 | if __name__ == '__main__':
45 | parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
46 | parser.add_argument('-q', '--question')
47 | parser.add_argument('-o', '--output')
48 | parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
49 | args = parser.parse_args()
50 |
51 | questions_dict = {}
52 | with open(os.path.expanduser(args.question)) as f:
53 | for line in f:
54 | if not line:
55 | continue
56 | q = json.loads(line)
57 | questions_dict[q['question_id']] = q['text']
58 |
59 | answers = []
60 |
61 | with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
62 | futures = []
63 | for qid, question in questions_dict.items():
64 | future = executor.submit(get_answer, qid, question, args.max_tokens)
65 | futures.append(future)
66 |
67 | for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
68 | answers.append(future.result())
69 |
70 | answers.sort(key=lambda x: x['question_id'])
71 |
72 | with open(os.path.expanduser(args.output), 'w') as f:
73 | table = [json.dumps(ans) for ans in answers]
74 | f.write('\n'.join(table))
75 |
--------------------------------------------------------------------------------
/llava/eval/run_llava.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import torch
3 |
4 | from llava.constants import (
5 | IMAGE_TOKEN_INDEX,
6 | DEFAULT_IMAGE_TOKEN,
7 | DEFAULT_IM_START_TOKEN,
8 | DEFAULT_IM_END_TOKEN,
9 | IMAGE_PLACEHOLDER,
10 | )
11 | from llava.conversation import conv_templates, SeparatorStyle
12 | from llava.model.builder import load_pretrained_model
13 | from llava.utils import disable_torch_init
14 | from llava.mm_utils import (
15 | process_images,
16 | tokenizer_image_token,
17 | get_model_name_from_path,
18 | )
19 |
20 | from PIL import Image
21 |
22 | import requests
23 | from PIL import Image
24 | from io import BytesIO
25 | import re
26 |
27 |
28 | def image_parser(args):
29 | out = args.image_file.split(args.sep)
30 | return out
31 |
32 |
33 | def load_image(image_file):
34 | if image_file.startswith("http") or image_file.startswith("https"):
35 | response = requests.get(image_file)
36 | image = Image.open(BytesIO(response.content)).convert("RGB")
37 | else:
38 | image = Image.open(image_file).convert("RGB")
39 | return image
40 |
41 |
42 | def load_images(image_files):
43 | out = []
44 | for image_file in image_files:
45 | image = load_image(image_file)
46 | out.append(image)
47 | return out
48 |
49 |
50 | def eval_model(args):
51 | # Model
52 | disable_torch_init()
53 |
54 | model_name = get_model_name_from_path(args.model_path)
55 | tokenizer, model, image_processor, context_len = load_pretrained_model(
56 | args.model_path, args.model_base, model_name
57 | )
58 |
59 | qs = args.query
60 | image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
61 | if IMAGE_PLACEHOLDER in qs:
62 | if model.config.mm_use_im_start_end:
63 | qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
64 | else:
65 | qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
66 | else:
67 | if model.config.mm_use_im_start_end:
68 | qs = image_token_se + "\n" + qs
69 | else:
70 | qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
71 |
72 | if "llama-2" in model_name.lower():
73 | conv_mode = "llava_llama_2"
74 | elif "mistral" in model_name.lower():
75 | conv_mode = "mistral_instruct"
76 | elif "v1.6-34b" in model_name.lower():
77 | conv_mode = "chatml_direct"
78 | elif "v1" in model_name.lower():
79 | conv_mode = "llava_v1"
80 | elif "mpt" in model_name.lower():
81 | conv_mode = "mpt"
82 | else:
83 | conv_mode = "llava_v0"
84 |
85 | if args.conv_mode is not None and conv_mode != args.conv_mode:
86 | print(
87 | "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
88 | conv_mode, args.conv_mode, args.conv_mode
89 | )
90 | )
91 | else:
92 | args.conv_mode = conv_mode
93 |
94 | conv = conv_templates[args.conv_mode].copy()
95 | conv.append_message(conv.roles[0], qs)
96 | conv.append_message(conv.roles[1], None)
97 | prompt = conv.get_prompt()
98 |
99 | image_files = image_parser(args)
100 | images = load_images(image_files)
101 | image_sizes = [x.size for x in images]
102 | images_tensor = process_images(
103 | images,
104 | image_processor,
105 | model.config
106 | ).to(model.device, dtype=torch.float16)
107 |
108 | input_ids = (
109 | tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
110 | .unsqueeze(0)
111 | .cuda()
112 | )
113 |
114 | with torch.inference_mode():
115 | output_ids = model.generate(
116 | input_ids,
117 | images=images_tensor,
118 | image_sizes=image_sizes,
119 | do_sample=True if args.temperature > 0 else False,
120 | temperature=args.temperature,
121 | top_p=args.top_p,
122 | num_beams=args.num_beams,
123 | max_new_tokens=args.max_new_tokens,
124 | use_cache=True,
125 | )
126 |
127 | outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
128 | print(outputs)
129 |
130 |
131 | if __name__ == "__main__":
132 | parser = argparse.ArgumentParser()
133 | parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
134 | parser.add_argument("--model-base", type=str, default=None)
135 | parser.add_argument("--image-file", type=str, required=True)
136 | parser.add_argument("--query", type=str, required=True)
137 | parser.add_argument("--conv-mode", type=str, default=None)
138 | parser.add_argument("--sep", type=str, default=",")
139 | parser.add_argument("--temperature", type=float, default=0.2)
140 | parser.add_argument("--top_p", type=float, default=None)
141 | parser.add_argument("--num_beams", type=int, default=1)
142 | parser.add_argument("--max_new_tokens", type=int, default=512)
143 | args = parser.parse_args()
144 |
145 | eval_model(args)
146 |
--------------------------------------------------------------------------------
/llava/eval/summarize_gpt_review.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | from collections import defaultdict
4 |
5 | import numpy as np
6 |
7 | import argparse
8 |
9 | def parse_args():
10 | parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
11 | parser.add_argument('-d', '--dir', default=None)
12 | parser.add_argument('-v', '--version', default=None)
13 | parser.add_argument('-s', '--select', nargs='*', default=None)
14 | parser.add_argument('-f', '--files', nargs='*', default=[])
15 | parser.add_argument('-i', '--ignore', nargs='*', default=[])
16 | return parser.parse_args()
17 |
18 |
19 | if __name__ == '__main__':
20 | args = parse_args()
21 |
22 | if args.ignore is not None:
23 | args.ignore = [int(x) for x in args.ignore]
24 |
25 | if len(args.files) > 0:
26 | review_files = args.files
27 | else:
28 | review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_') or 'review' in args.dir)]
29 |
30 | for review_file in sorted(review_files):
31 | config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
32 | if args.select is not None and any(x not in config for x in args.select):
33 | continue
34 | if '0613' in config:
35 | version = '0613'
36 | else:
37 | version = '0314'
38 | if args.version is not None and args.version != version:
39 | continue
40 | scores = defaultdict(list)
41 | print(config)
42 | with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
43 | for review_str in f:
44 | review = json.loads(review_str)
45 | if review['question_id'] in args.ignore:
46 | continue
47 | if 'category' in review:
48 | scores[review['category']].append(review['tuple'])
49 | scores['all'].append(review['tuple'])
50 | else:
51 | if 'tuple' in review:
52 | scores['all'].append(review['tuple'])
53 | else:
54 | scores['all'].append(review['score'])
55 | for k, v in sorted(scores.items()):
56 | stats = np.asarray(v).mean(0).tolist()
57 | stats = [round(x, 3) for x in stats]
58 | # print(k, stats, round(stats[1]/stats[0]*100, 1))
59 | print(k, round(stats[1]/stats[0]*100, 1), round(stats[0] * 10, 1), round(stats[1] * 10, 1))
60 | print('=================================')
61 |
--------------------------------------------------------------------------------
/llava/eval/table/model.jsonl:
--------------------------------------------------------------------------------
1 | {"model_id": "vicuna-13b:20230322-clean-lang", "model_name": "vicuna-13b", "model_version": "20230322-clean-lang", "model_metadata": "vicuna-13b-20230322-clean-lang"}
2 | {"model_id": "alpaca-13b:v1", "model_name": "alpaca-13b", "model_version": "v1", "model_metadata": "alpaca-13b"}
3 | {"model_id": "llama-13b:v1", "model_name": "llama-13b", "model_version": "v1", "model_metadata": "hf-llama-13b"}
4 | {"model_id": "bard:20230327", "model_name": "bard", "model_version": "20230327", "model_metadata": "Google Bard 20230327"}
5 | {"model_id": "gpt-3.5-turbo:20230327", "model_name": "gpt-3.5-turbo", "model_version": "20230327", "model_metadata": "OpenAI ChatGPT gpt-3.5-turbo Chat Completion"}
6 |
--------------------------------------------------------------------------------
/llava/eval/table/prompt.jsonl:
--------------------------------------------------------------------------------
1 | {"prompt_id": 1, "system_prompt": "You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[Assistant 1]\n{answer_1}\n\n[End of Assistant 1]\n\n[Assistant 2]\n{answer_2}\n\n[End of Assistant 2]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above.\nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\nIn the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment."}, "description": "Prompt for general questions"}
2 | {"prompt_id": 2, "system_prompt": "You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[Assistant 1]\n{answer_1}\n\n[End of Assistant 1]\n\n[Assistant 2]\n{answer_2}\n\n[End of Assistant 2]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "Your task is to evaluate the coding abilities of the above two assistants. They have been asked to implement a program to solve a given problem. Please review their code submissions, paying close attention to their problem-solving approach, code structure, readability, and the inclusion of helpful comments.\n\nPlease ensure that the assistants' submissions:\n\n1. Correctly implement the given problem statement.\n2. Contain accurate and efficient code.\n3. Include clear and concise comments that explain the code's logic and functionality.\n4. Adhere to proper coding standards and best practices.\n\nOnce you have carefully reviewed both submissions, provide detailed feedback on their strengths and weaknesses, along with any suggestions for improvement. You should first output a single line containing two scores on the scale of 1-10 (1: no code/no sense; 10: perfect) for Assistant 1 and 2, respectively. Then give extra comments starting from the next line."}, "description": "Prompt for coding questions"}
3 | {"prompt_id": 3, "system_prompt": "You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[Assistant 1]\n{answer_1}\n\n[End of Assistant 1]\n\n[Assistant 2]\n{answer_2}\n\n[End of Assistant 2]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to request your feedback on the mathematical proficiency of two AI assistants regarding the given user question.\nFirstly, please solve the problem independently, without referring to the answers provided by Assistant 1 and Assistant 2.\nAfterward, please examine the problem-solving process of Assistant 1 and Assistant 2 step-by-step to ensure their correctness, identifying any incorrect steps if present. Your evaluation should take into account not only the answer but also the problem-solving steps.\nFinally, please output a Python tuple containing two numerical scores for Assistant 1 and Assistant 2, ranging from 1 to 10, respectively. If applicable, explain the reasons for any variations in their scores and determine which assistant performed better."}, "description": "Prompt for math questions"}
4 | {"prompt_id": 4, "system_prompt": "You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Visual Context]\n{context}\n[Question]\n{question}\n\n[Assistant 1]\n{answer_1}\n\n[End of Assistant 1]\n\n[Assistant 2]\n{answer_2}\n\n[End of Assistant 2]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with five descriptive sentences describing the same image and the bounding box coordinates of each object in the scene. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. \nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\nIn the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment."}, "description": "Prompt for visual questions"}
5 |
--------------------------------------------------------------------------------
/llava/eval/table/reviewer.jsonl:
--------------------------------------------------------------------------------
1 | {"reviewer_id": "gpt-4-0328-default", "prompt_id": 1, "metadata": {"temperature": 0.2, "max_tokens": 1024}, "description": "GPT-4 for general questions"}
2 | {"reviewer_id": "gpt-4-0328-coding", "prompt_id": 2, "metadata": {"temperature": 0.2, "max_tokens": 1024}, "description": "GPT-4 for coding questions"}
3 | {"reviewer_id": "gpt-4-0328-math", "prompt_id": 3, "metadata": {"temperature": 0.2, "max_tokens": 1024}, "description": "GPT-4 for math questions"}
4 | {"reviewer_id": "gpt-4-0417-visual", "prompt_id": 4, "metadata": {"temperature": 0.2, "max_tokens": 1024}, "description": "GPT-4 for math questions"}
5 |
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/alpaca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/eval/webpage/figures/alpaca.png
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/bard.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/eval/webpage/figures/bard.jpg
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/chatgpt.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/llama.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/eval/webpage/figures/llama.jpg
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/llava/eval/webpage/figures/vicuna.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/eval/webpage/figures/vicuna.jpeg
--------------------------------------------------------------------------------
/llava/eval/webpage/styles.css:
--------------------------------------------------------------------------------
1 | body {
2 | font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
3 | background-color: #f8f9fa;
4 | }
5 |
6 | .navbar-dark .navbar-nav .nav-link {
7 | color: #f1cf68;
8 | font-size: 1.1rem;
9 | padding: 0.5rem 0.6rem;
10 | }
11 |
12 | .card-header {
13 | font-weight: bold;
14 | }
15 |
16 | .card {
17 | box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
18 | transition: 0.3s;
19 | }
20 |
21 | .card:hover {
22 | box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
23 | }
24 |
25 | button {
26 | transition: background-color 0.3s;
27 | }
28 |
29 | button:hover {
30 | background-color: #007bff;
31 | }
32 |
33 | @media (max-width: 767px) {
34 | .form-row .form-group {
35 | margin-bottom: 10px;
36 | }
37 | }
38 |
39 | /* Extra styles */
40 |
41 | .expandable-card .card-text-container {
42 | max-height: 200px;
43 | overflow-y: hidden;
44 | position: relative;
45 | }
46 |
47 | .expandable-card.expanded .card-text-container {
48 | max-height: none;
49 | }
50 |
51 | .expand-btn {
52 | position: relative;
53 | display: none;
54 | background-color: rgba(255, 255, 255, 0.8);
55 | color: #510c75;
56 | border-color: transparent;
57 | }
58 |
59 | .expand-btn:hover {
60 | background-color: rgba(200, 200, 200, 0.8);
61 | text-decoration: none;
62 | border-color: transparent;
63 | color: #510c75;
64 | }
65 |
66 | .expand-btn:focus {
67 | outline: none;
68 | text-decoration: none;
69 | }
70 |
71 | .expandable-card:not(.expanded) .card-text-container:after {
72 | content: "";
73 | position: absolute;
74 | bottom: 0;
75 | left: 0;
76 | width: 100%;
77 | height: 90px;
78 | background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 1));
79 | }
80 |
81 | .expandable-card:not(.expanded) .expand-btn {
82 | margin-top: -40px;
83 | }
84 |
85 | .card-body {
86 | padding-bottom: 5px;
87 | }
88 |
89 | .vertical-flex-layout {
90 | justify-content: center;
91 | align-items: center;
92 | height: 100%;
93 | display: flex;
94 | flex-direction: column;
95 | gap: 5px;
96 | }
97 |
98 | .figure-img {
99 | max-width: 100%;
100 | height: auto;
101 | }
102 |
103 | .adjustable-font-size {
104 | font-size: calc(0.5rem + 2vw);
105 | }
106 |
--------------------------------------------------------------------------------
/llava/model/__init__.py:
--------------------------------------------------------------------------------
1 | try:
2 | from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
3 | from .language_model.llava_mpt import LlavaMptForCausalLM, LlavaMptConfig
4 | from .language_model.llava_mistral import LlavaMistralForCausalLM, LlavaMistralConfig
5 | except:
6 | pass
7 |
--------------------------------------------------------------------------------
/llava/model/apply_delta.py:
--------------------------------------------------------------------------------
1 | """
2 | Usage:
3 | python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
4 | """
5 | import argparse
6 |
7 | import torch
8 | from tqdm import tqdm
9 | from transformers import AutoTokenizer, AutoModelForCausalLM
10 | from llava import LlavaLlamaForCausalLM
11 |
12 |
13 | def apply_delta(base_model_path, target_model_path, delta_path):
14 | print("Loading base model")
15 | base = AutoModelForCausalLM.from_pretrained(
16 | base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17 |
18 | print("Loading delta")
19 | delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
20 | delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
21 |
22 | print("Applying delta")
23 | for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
24 | if name not in base.state_dict():
25 | assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
26 | continue
27 | if param.data.shape == base.state_dict()[name].shape:
28 | param.data += base.state_dict()[name]
29 | else:
30 | assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
31 | f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
32 | bparam = base.state_dict()[name]
33 | param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
34 |
35 | print("Saving target model")
36 | delta.save_pretrained(target_model_path)
37 | delta_tokenizer.save_pretrained(target_model_path)
38 |
39 |
40 | if __name__ == "__main__":
41 | parser = argparse.ArgumentParser()
42 | parser.add_argument("--base-model-path", type=str, required=True)
43 | parser.add_argument("--target-model-path", type=str, required=True)
44 | parser.add_argument("--delta-path", type=str, required=True)
45 |
46 | args = parser.parse_args()
47 |
48 | apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
49 |
--------------------------------------------------------------------------------
/llava/model/consolidate.py:
--------------------------------------------------------------------------------
1 | """
2 | Usage:
3 | python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
4 | """
5 | import argparse
6 |
7 | import torch
8 | from transformers import AutoTokenizer, AutoModelForCausalLM
9 | from llava.model import *
10 | from llava.model.utils import auto_upgrade
11 |
12 |
13 | def consolidate_ckpt(src_path, dst_path):
14 | print("Loading model")
15 | auto_upgrade(src_path)
16 | src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17 | src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
18 | src_model.save_pretrained(dst_path)
19 | src_tokenizer.save_pretrained(dst_path)
20 |
21 |
22 | if __name__ == "__main__":
23 | parser = argparse.ArgumentParser()
24 | parser.add_argument("--src", type=str, required=True)
25 | parser.add_argument("--dst", type=str, required=True)
26 |
27 | args = parser.parse_args()
28 |
29 | consolidate_ckpt(args.src, args.dst)
30 |
--------------------------------------------------------------------------------
/llava/model/language_model/llava_mpt.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Haotian Liu
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 |
16 | from typing import Optional, Tuple
17 |
18 | import torch
19 |
20 | from transformers import AutoConfig, AutoModelForCausalLM, \
21 | MptConfig, MptForCausalLM, MptModel
22 | from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
23 |
24 |
25 | class LlavaMptConfig(MptConfig):
26 | model_type = "llava_mpt"
27 |
28 |
29 | class LlavaMptModel(LlavaMetaModel, MptModel):
30 | config_class = LlavaMptConfig
31 |
32 | def __init__(self, config: MptConfig):
33 | config.hidden_size = config.d_model
34 | super(LlavaMptModel, self).__init__(config)
35 |
36 | def embed_tokens(self, x):
37 | return self.wte(x)
38 |
39 |
40 | class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM):
41 | config_class = LlavaMptConfig
42 | supports_gradient_checkpointing = True
43 |
44 | def __init__(self, config):
45 | super(MptForCausalLM, self).__init__(config)
46 |
47 | self.transformer = LlavaMptModel(config)
48 | self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
49 |
50 | # Initialize weights and apply final processing
51 | self.post_init()
52 |
53 | def get_model(self):
54 | return self.transformer
55 |
56 | def _set_gradient_checkpointing(self, module, value=False):
57 | if isinstance(module, LlavaMptModel):
58 | module.gradient_checkpointing = value
59 |
60 | def forward(
61 | self,
62 | input_ids: Optional[torch.LongTensor] = None,
63 | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
64 | attention_mask: Optional[torch.Tensor] = None,
65 | inputs_embeds: Optional[torch.Tensor] = None,
66 | labels: Optional[torch.Tensor] = None,
67 | use_cache: Optional[bool] = None,
68 | output_attentions: Optional[bool] = None,
69 | output_hidden_states: Optional[bool] = None,
70 | return_dict: Optional[bool] = None,
71 | images=None):
72 |
73 | input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
74 |
75 | return super().forward(
76 | input_ids,
77 | past_key_values=past_key_values,
78 | attention_mask=attention_mask,
79 | inputs_embeds=inputs_embeds,
80 | labels=labels,
81 | use_cache=use_cache,
82 | output_attentions=output_attentions,
83 | output_hidden_states=output_hidden_states,
84 | return_dict=return_dict,
85 | )
86 |
87 | def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
88 | images = kwargs.pop("images", None)
89 | _inputs = super().prepare_inputs_for_generation(
90 | input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
91 | )
92 | _inputs['images'] = images
93 | return _inputs
94 |
95 |
96 | AutoConfig.register("llava_mpt", LlavaMptConfig)
97 | AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM)
98 |
--------------------------------------------------------------------------------
/llava/model/make_delta.py:
--------------------------------------------------------------------------------
1 | """
2 | Usage:
3 | python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
4 | """
5 | import argparse
6 |
7 | import torch
8 | from tqdm import tqdm
9 | from transformers import AutoTokenizer, AutoModelForCausalLM
10 | from llava.model.utils import auto_upgrade
11 |
12 |
13 | def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
14 | print("Loading base model")
15 | base = AutoModelForCausalLM.from_pretrained(
16 | base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17 |
18 | print("Loading target model")
19 | auto_upgrade(target_model_path)
20 | target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
21 |
22 | print("Calculating delta")
23 | for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
24 | if name not in base.state_dict():
25 | assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
26 | continue
27 | if param.data.shape == base.state_dict()[name].shape:
28 | param.data -= base.state_dict()[name]
29 | else:
30 | assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
31 | bparam = base.state_dict()[name]
32 | param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
33 |
34 | print("Saving delta")
35 | if hub_repo_id:
36 | kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
37 | else:
38 | kwargs = {}
39 | target.save_pretrained(delta_path, **kwargs)
40 | target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
41 | target_tokenizer.save_pretrained(delta_path, **kwargs)
42 |
43 |
44 | if __name__ == "__main__":
45 | parser = argparse.ArgumentParser()
46 | parser.add_argument("--base-model-path", type=str, required=True)
47 | parser.add_argument("--target-model-path", type=str, required=True)
48 | parser.add_argument("--delta-path", type=str, required=True)
49 | parser.add_argument("--hub-repo-id", type=str, default=None)
50 | args = parser.parse_args()
51 |
52 | make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
53 |
--------------------------------------------------------------------------------
/llava/model/multimodal_encoder/builder.py:
--------------------------------------------------------------------------------
1 | import os
2 | from .clip_encoder import CLIPVisionTower
3 |
4 |
5 | def build_vision_tower(vision_tower_cfg, **kwargs):
6 | vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
7 | is_absolute_path_exists = os.path.exists(vision_tower)
8 | if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
9 | return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
10 |
11 | raise ValueError(f'Unknown vision tower: {vision_tower}')
12 |
--------------------------------------------------------------------------------
/llava/model/multimodal_encoder/clip_encoder.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
5 |
6 |
7 | class CLIPVisionTower(nn.Module):
8 | def __init__(self, vision_tower, args, delay_load=False):
9 | super().__init__()
10 |
11 | self.is_loaded = False
12 |
13 | self.vision_tower_name = vision_tower
14 | self.select_layer = args.mm_vision_select_layer
15 | self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
16 |
17 | if not delay_load:
18 | self.load_model()
19 | elif getattr(args, 'unfreeze_mm_vision_tower', False):
20 | self.load_model()
21 | else:
22 | self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
23 |
24 | def load_model(self, device_map=None):
25 | if self.is_loaded:
26 | print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
27 | return
28 |
29 | self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
30 | self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
31 | self.vision_tower.requires_grad_(False)
32 |
33 | self.is_loaded = True
34 |
35 | def feature_select(self, image_forward_outs):
36 | image_features = image_forward_outs.hidden_states[self.select_layer]
37 | if self.select_feature == 'patch':
38 | image_features = image_features[:, 1:]
39 | elif self.select_feature == 'cls_patch':
40 | image_features = image_features
41 | else:
42 | raise ValueError(f'Unexpected select feature: {self.select_feature}')
43 | return image_features
44 |
45 | @torch.no_grad()
46 | def forward(self, images):
47 | if type(images) is list:
48 | image_features = []
49 | for image in images:
50 | image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
51 | image_feature = self.feature_select(image_forward_out).to(image.dtype)
52 | image_features.append(image_feature)
53 | else:
54 | image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
55 | image_features = self.feature_select(image_forward_outs).to(images.dtype)
56 |
57 | return image_features
58 |
59 | @property
60 | def dummy_feature(self):
61 | return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
62 |
63 | @property
64 | def dtype(self):
65 | return self.vision_tower.dtype
66 |
67 | @property
68 | def device(self):
69 | return self.vision_tower.device
70 |
71 | @property
72 | def config(self):
73 | if self.is_loaded:
74 | return self.vision_tower.config
75 | else:
76 | return self.cfg_only
77 |
78 | @property
79 | def hidden_size(self):
80 | return self.config.hidden_size
81 |
82 | @property
83 | def num_patches_per_side(self):
84 | return self.config.image_size // self.config.patch_size
85 |
86 | @property
87 | def num_patches(self):
88 | return (self.config.image_size // self.config.patch_size) ** 2
89 |
--------------------------------------------------------------------------------
/llava/model/multimodal_projector/builder.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import re
4 |
5 |
6 | class IdentityMap(nn.Module):
7 | def __init__(self):
8 | super().__init__()
9 |
10 | def forward(self, x, *args, **kwargs):
11 | return x
12 |
13 | @property
14 | def config(self):
15 | return {"mm_projector_type": 'identity'}
16 |
17 |
18 | class SimpleResBlock(nn.Module):
19 | def __init__(self, channels):
20 | super().__init__()
21 | self.pre_norm = nn.LayerNorm(channels)
22 |
23 | self.proj = nn.Sequential(
24 | nn.Linear(channels, channels),
25 | nn.GELU(),
26 | nn.Linear(channels, channels)
27 | )
28 | def forward(self, x):
29 | x = self.pre_norm(x)
30 | return x + self.proj(x)
31 |
32 |
33 | def build_vision_projector(config, delay_load=False, **kwargs):
34 | projector_type = getattr(config, 'mm_projector_type', 'linear')
35 |
36 | if projector_type == 'linear':
37 | return nn.Linear(config.mm_hidden_size, config.hidden_size)
38 |
39 | mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
40 | if mlp_gelu_match:
41 | mlp_depth = int(mlp_gelu_match.group(1))
42 | modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
43 | for _ in range(1, mlp_depth):
44 | modules.append(nn.GELU())
45 | modules.append(nn.Linear(config.hidden_size, config.hidden_size))
46 | return nn.Sequential(*modules)
47 |
48 | if projector_type == 'identity':
49 | return IdentityMap()
50 |
51 | raise ValueError(f'Unknown projector type: {projector_type}')
52 |
--------------------------------------------------------------------------------
/llava/model/utils.py:
--------------------------------------------------------------------------------
1 | from transformers import AutoConfig
2 |
3 |
4 | def auto_upgrade(config):
5 | cfg = AutoConfig.from_pretrained(config)
6 | if 'llava' in config and 'llava' not in cfg.model_type:
7 | assert cfg.model_type == 'llama'
8 | print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
9 | print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
10 | confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
11 | if confirm.lower() in ["y", "yes"]:
12 | print("Upgrading checkpoint...")
13 | assert len(cfg.architectures) == 1
14 | setattr(cfg.__class__, "model_type", "llava")
15 | cfg.architectures[0] = 'LlavaLlamaForCausalLM'
16 | cfg.save_pretrained(config)
17 | print("Checkpoint upgraded.")
18 | else:
19 | print("Checkpoint upgrade aborted.")
20 | exit(1)
21 |
--------------------------------------------------------------------------------
/llava/serve/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/serve/__init__.py
--------------------------------------------------------------------------------
/llava/serve/cli.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import torch
3 |
4 | from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
5 | from llava.conversation import conv_templates, SeparatorStyle
6 | from llava.model.builder import load_pretrained_model
7 | from llava.utils import disable_torch_init
8 | from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
9 |
10 | from PIL import Image
11 |
12 | import requests
13 | from PIL import Image
14 | from io import BytesIO
15 | from transformers import TextStreamer
16 |
17 |
18 | def load_image(image_file):
19 | if image_file.startswith('http://') or image_file.startswith('https://'):
20 | response = requests.get(image_file)
21 | image = Image.open(BytesIO(response.content)).convert('RGB')
22 | else:
23 | image = Image.open(image_file).convert('RGB')
24 | return image
25 |
26 |
27 | def main(args):
28 | # Model
29 | disable_torch_init()
30 |
31 | model_name = get_model_name_from_path(args.model_path)
32 | tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
33 |
34 | if "llama-2" in model_name.lower():
35 | conv_mode = "llava_llama_2"
36 | elif "mistral" in model_name.lower():
37 | conv_mode = "mistral_instruct"
38 | elif "v1.6-34b" in model_name.lower():
39 | conv_mode = "chatml_direct"
40 | elif "v1" in model_name.lower():
41 | conv_mode = "llava_v1"
42 | elif "mpt" in model_name.lower():
43 | conv_mode = "mpt"
44 | else:
45 | conv_mode = "llava_v0"
46 |
47 | if args.conv_mode is not None and conv_mode != args.conv_mode:
48 | print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
49 | else:
50 | args.conv_mode = conv_mode
51 |
52 | conv = conv_templates[args.conv_mode].copy()
53 | if "mpt" in model_name.lower():
54 | roles = ('user', 'assistant')
55 | else:
56 | roles = conv.roles
57 |
58 | image = load_image(args.image_file)
59 | image_size = image.size
60 | # Similar operation in model_worker.py
61 | image_tensor = process_images([image], image_processor, model.config)
62 | if type(image_tensor) is list:
63 | image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
64 | else:
65 | image_tensor = image_tensor.to(model.device, dtype=torch.float16)
66 |
67 | while True:
68 | try:
69 | inp = input(f"{roles[0]}: ")
70 | except EOFError:
71 | inp = ""
72 | if not inp:
73 | print("exit...")
74 | break
75 |
76 | print(f"{roles[1]}: ", end="")
77 |
78 | if image is not None:
79 | # first message
80 | if model.config.mm_use_im_start_end:
81 | inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
82 | else:
83 | inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
84 | conv.append_message(conv.roles[0], inp)
85 | image = None
86 | else:
87 | # later messages
88 | conv.append_message(conv.roles[0], inp)
89 | conv.append_message(conv.roles[1], None)
90 | prompt = conv.get_prompt()
91 |
92 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
93 | stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
94 | keywords = [stop_str]
95 | streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
96 |
97 | with torch.inference_mode():
98 | output_ids = model.generate(
99 | input_ids,
100 | images=image_tensor,
101 | image_sizes=[image_size],
102 | do_sample=True if args.temperature > 0 else False,
103 | temperature=args.temperature,
104 | max_new_tokens=args.max_new_tokens,
105 | streamer=streamer,
106 | use_cache=True)
107 |
108 | outputs = tokenizer.decode(output_ids[0]).strip()
109 | conv.messages[-1][-1] = outputs
110 |
111 | if args.debug:
112 | print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
113 |
114 |
115 | if __name__ == "__main__":
116 | parser = argparse.ArgumentParser()
117 | parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
118 | parser.add_argument("--model-base", type=str, default=None)
119 | parser.add_argument("--image-file", type=str, required=True)
120 | parser.add_argument("--device", type=str, default="cuda")
121 | parser.add_argument("--conv-mode", type=str, default=None)
122 | parser.add_argument("--temperature", type=float, default=0.2)
123 | parser.add_argument("--max-new-tokens", type=int, default=512)
124 | parser.add_argument("--load-8bit", action="store_true")
125 | parser.add_argument("--load-4bit", action="store_true")
126 | parser.add_argument("--debug", action="store_true")
127 | args = parser.parse_args()
128 | main(args)
129 |
--------------------------------------------------------------------------------
/llava/serve/examples/extreme_ironing.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/serve/examples/extreme_ironing.jpg
--------------------------------------------------------------------------------
/llava/serve/examples/waterview.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YiyangZhou/POVID/92c7c67850fa38cb25c953db329aa9298bab8b9e/llava/serve/examples/waterview.jpg
--------------------------------------------------------------------------------
/llava/serve/register_worker.py:
--------------------------------------------------------------------------------
1 | """
2 | Manually register workers.
3 |
4 | Usage:
5 | python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002
6 | """
7 |
8 | import argparse
9 |
10 | import requests
11 |
12 | if __name__ == "__main__":
13 | parser = argparse.ArgumentParser()
14 | parser.add_argument("--controller-address", type=str)
15 | parser.add_argument("--worker-name", type=str)
16 | parser.add_argument("--check-heart-beat", action="store_true")
17 | args = parser.parse_args()
18 |
19 | url = args.controller_address + "/register_worker"
20 | data = {
21 | "worker_name": args.worker_name,
22 | "check_heart_beat": args.check_heart_beat,
23 | "worker_status": None,
24 | }
25 | r = requests.post(url, json=data)
26 | assert r.status_code == 200
27 |
--------------------------------------------------------------------------------
/llava/serve/test_message.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 |
4 | import requests
5 |
6 | from llava.conversation import default_conversation
7 |
8 |
9 | def main():
10 | if args.worker_address:
11 | worker_addr = args.worker_address
12 | else:
13 | controller_addr = args.controller_address
14 | ret = requests.post(controller_addr + "/refresh_all_workers")
15 | ret = requests.post(controller_addr + "/list_models")
16 | models = ret.json()["models"]
17 | models.sort()
18 | print(f"Models: {models}")
19 |
20 | ret = requests.post(controller_addr + "/get_worker_address",
21 | json={"model": args.model_name})
22 | worker_addr = ret.json()["address"]
23 | print(f"worker_addr: {worker_addr}")
24 |
25 | if worker_addr == "":
26 | return
27 |
28 | conv = default_conversation.copy()
29 | conv.append_message(conv.roles[0], args.message)
30 | prompt = conv.get_prompt()
31 |
32 | headers = {"User-Agent": "LLaVA Client"}
33 | pload = {
34 | "model": args.model_name,
35 | "prompt": prompt,
36 | "max_new_tokens": args.max_new_tokens,
37 | "temperature": 0.7,
38 | "stop": conv.sep,
39 | }
40 | response = requests.post(worker_addr + "/worker_generate_stream", headers=headers,
41 | json=pload, stream=True)
42 |
43 | print(prompt.replace(conv.sep, "\n"), end="")
44 | for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
45 | if chunk:
46 | data = json.loads(chunk.decode("utf-8"))
47 | output = data["text"].split(conv.sep)[-1]
48 | print(output, end="\r")
49 | print("")
50 |
51 |
52 | if __name__ == "__main__":
53 | parser = argparse.ArgumentParser()
54 | parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
55 | parser.add_argument("--worker-address", type=str)
56 | parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
57 | parser.add_argument("--max-new-tokens", type=int, default=32)
58 | parser.add_argument("--message", type=str, default=
59 | "Tell me a story with more than 1000 words.")
60 | args = parser.parse_args()
61 |
62 | main()
63 |
--------------------------------------------------------------------------------
/llava/train/llama_flash_attn_monkey_patch.py:
--------------------------------------------------------------------------------
1 | from typing import Optional, Tuple
2 | import warnings
3 |
4 | import torch
5 |
6 | import transformers
7 | from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
8 |
9 | try:
10 | from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
11 | except ImportError:
12 | from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
13 | from flash_attn.bert_padding import unpad_input, pad_input
14 |
15 |
16 | def forward(
17 | self,
18 | hidden_states: torch.Tensor,
19 | attention_mask: Optional[torch.Tensor] = None,
20 | position_ids: Optional[torch.Tensor] = None,
21 | past_key_value: Optional[Tuple[torch.Tensor]] = None,
22 | output_attentions: bool = False,
23 | use_cache: bool = False,
24 | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
25 | if output_attentions:
26 | warnings.warn(
27 | "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
28 | )
29 |
30 | bsz, q_len, _ = hidden_states.size()
31 |
32 | query_states = (
33 | self.q_proj(hidden_states)
34 | .view(bsz, q_len, self.num_heads, self.head_dim)
35 | .transpose(1, 2)
36 | )
37 | key_states = (
38 | self.k_proj(hidden_states)
39 | .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
40 | .transpose(1, 2)
41 | )
42 | value_states = (
43 | self.v_proj(hidden_states)
44 | .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
45 | .transpose(1, 2)
46 | ) # shape: (b, num_heads, s, head_dim)
47 |
48 | kv_seq_len = key_states.shape[-2]
49 | if past_key_value is not None:
50 | kv_seq_len += past_key_value[0].shape[-2]
51 |
52 | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
53 | query_states, key_states = apply_rotary_pos_emb(
54 | query_states, key_states, cos, sin, position_ids
55 | )
56 |
57 | if past_key_value is not None:
58 | # reuse k, v
59 | key_states = torch.cat([past_key_value[0], key_states], dim=2)
60 | value_states = torch.cat([past_key_value[1], value_states], dim=2)
61 |
62 | past_key_value = (key_states, value_states) if use_cache else None
63 |
64 | # repeat k/v heads if n_kv_heads < n_heads
65 | key_states = repeat_kv(key_states, self.num_key_value_groups)
66 | value_states = repeat_kv(value_states, self.num_key_value_groups)
67 |
68 | # Transform the data into the format required by flash attention
69 | qkv = torch.stack([query_states, key_states, value_states], dim=2)
70 | qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
71 | key_padding_mask = attention_mask
72 |
73 | if key_padding_mask is None:
74 | qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
75 | cu_q_lens = torch.arange(
76 | 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
77 | )
78 | max_s = q_len
79 | output = flash_attn_unpadded_qkvpacked_func(
80 | qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
81 | )
82 | output = output.view(bsz, q_len, -1)
83 | else:
84 | qkv = qkv.reshape(bsz, q_len, -1)
85 | qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
86 | qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
87 | output_unpad = flash_attn_unpadded_qkvpacked_func(
88 | qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
89 | )
90 | output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
91 | output = pad_input(output_unpad, indices, bsz, q_len)
92 |
93 | return self.o_proj(output), None, past_key_value
94 |
95 |
96 | # Disable the transformation of the attention mask in LlamaModel as the flash attention
97 | # requires the attention mask to be the same as the key_padding_mask
98 | def _prepare_decoder_attention_mask(
99 | self, attention_mask, input_shape, inputs_embeds, past_key_values_length
100 | ):
101 | # [bsz, seq_len]
102 | return attention_mask
103 |
104 |
105 | def replace_llama_attn_with_flash_attn():
106 | cuda_major, cuda_minor = torch.cuda.get_device_capability()
107 | if cuda_major < 8:
108 | warnings.warn(
109 | "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
110 | "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
111 | )
112 | transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
113 | _prepare_decoder_attention_mask
114 | )
115 | transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
116 |
--------------------------------------------------------------------------------
/llava/train/llama_xformers_attn_monkey_patch.py:
--------------------------------------------------------------------------------
1 | """
2 | Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
3 | """
4 |
5 | import logging
6 | import math
7 | from typing import Optional, Tuple
8 |
9 | import torch
10 | import transformers.models.llama.modeling_llama
11 | from torch import nn
12 |
13 | try:
14 | import xformers.ops
15 | except ImportError:
16 | logging.error("xformers not found! Please install it before trying to use it.")
17 |
18 |
19 | def replace_llama_attn_with_xformers_attn():
20 | transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
21 |
22 |
23 | def xformers_forward(
24 | self,
25 | hidden_states: torch.Tensor,
26 | attention_mask: Optional[torch.Tensor] = None,
27 | position_ids: Optional[torch.LongTensor] = None,
28 | past_key_value: Optional[Tuple[torch.Tensor]] = None,
29 | output_attentions: bool = False,
30 | use_cache: bool = False,
31 | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
32 | # pylint: disable=duplicate-code
33 | bsz, q_len, _ = hidden_states.size()
34 |
35 | query_states = (
36 | self.q_proj(hidden_states)
37 | .view(bsz, q_len, self.num_heads, self.head_dim)
38 | .transpose(1, 2)
39 | )
40 | key_states = (
41 | self.k_proj(hidden_states)
42 | .view(bsz, q_len, self.num_heads, self.head_dim)
43 | .transpose(1, 2)
44 | )
45 | value_states = (
46 | self.v_proj(hidden_states)
47 | .view(bsz, q_len, self.num_heads, self.head_dim)
48 | .transpose(1, 2)
49 | )
50 |
51 | kv_seq_len = key_states.shape[-2]
52 | if past_key_value is not None:
53 | kv_seq_len += past_key_value[0].shape[-2]
54 | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
55 | (
56 | query_states,
57 | key_states,
58 | ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
59 | query_states, key_states, cos, sin, position_ids
60 | )
61 | # [bsz, nh, t, hd]
62 |
63 | if past_key_value is not None:
64 | # reuse k, v, self_attention
65 | key_states = torch.cat([past_key_value[0], key_states], dim=2)
66 | value_states = torch.cat([past_key_value[1], value_states], dim=2)
67 |
68 | past_key_value = (key_states, value_states) if use_cache else None
69 |
70 | # We only apply xformers optimizations if we don't need to output the whole attention matrix
71 | if not output_attentions:
72 | query_states = query_states.transpose(1, 2)
73 | key_states = key_states.transpose(1, 2)
74 | value_states = value_states.transpose(1, 2)
75 |
76 | # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
77 | # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
78 | if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
79 | # input and output should be of form (bsz, q_len, num_heads, head_dim)
80 | attn_output = xformers.ops.memory_efficient_attention(
81 | query_states, key_states, value_states, attn_bias=None
82 | )
83 | else:
84 | # input and output should be of form (bsz, q_len, num_heads, head_dim)
85 | attn_output = xformers.ops.memory_efficient_attention(
86 | query_states,
87 | key_states,
88 | value_states,
89 | attn_bias=xformers.ops.LowerTriangularMask(),
90 | )
91 | attn_weights = None
92 | else:
93 | attn_weights = torch.matmul(
94 | query_states, key_states.transpose(2, 3)
95 | ) / math.sqrt(self.head_dim)
96 |
97 | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
98 | raise ValueError(
99 | f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
100 | f" {attn_weights.size()}"
101 | )
102 |
103 | if attention_mask is not None:
104 | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
105 | raise ValueError(
106 | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
107 | )
108 | attn_weights = attn_weights + attention_mask
109 | attn_weights = torch.max(
110 | attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
111 | )
112 |
113 | # upcast attention to fp32
114 | attn_weights = nn.functional.softmax(
115 | attn_weights, dim=-1, dtype=torch.float32
116 | ).to(query_states.dtype)
117 | attn_output = torch.matmul(attn_weights, value_states)
118 |
119 | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
120 | raise ValueError(
121 | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
122 | f" {attn_output.size()}"
123 | )
124 |
125 | attn_output = attn_output.transpose(1, 2)
126 |
127 | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
128 | attn_output = self.o_proj(attn_output)
129 | return attn_output, attn_weights, past_key_value
130 |
--------------------------------------------------------------------------------
/llava/train/train_mem.py:
--------------------------------------------------------------------------------
1 | from llava.train.train import train
2 |
3 | if __name__ == "__main__":
4 | train(attn_implementation="flash_attention_2")
5 |
--------------------------------------------------------------------------------
/llava/train/train_xformers.py:
--------------------------------------------------------------------------------
1 | # Make it more memory efficient by monkey patching the LLaMA model with xformers attention.
2 |
3 | # Need to call this before importing transformers.
4 | from llava.train.llama_xformers_attn_monkey_patch import (
5 | replace_llama_attn_with_xformers_attn,
6 | )
7 |
8 | replace_llama_attn_with_xformers_attn()
9 |
10 | from llava.train.train import train
11 |
12 | if __name__ == "__main__":
13 | train()
14 |
--------------------------------------------------------------------------------
/llava/utils.py:
--------------------------------------------------------------------------------
1 | import datetime
2 | import logging
3 | import logging.handlers
4 | import os
5 | import sys
6 |
7 | import requests
8 |
9 | from llava.constants import LOGDIR
10 |
11 | server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
12 | moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
13 |
14 | handler = None
15 |
16 |
17 | def build_logger(logger_name, logger_filename):
18 | global handler
19 |
20 | formatter = logging.Formatter(
21 | fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
22 | datefmt="%Y-%m-%d %H:%M:%S",
23 | )
24 |
25 | # Set the format of root handlers
26 | if not logging.getLogger().handlers:
27 | logging.basicConfig(level=logging.INFO)
28 | logging.getLogger().handlers[0].setFormatter(formatter)
29 |
30 | # Redirect stdout and stderr to loggers
31 | stdout_logger = logging.getLogger("stdout")
32 | stdout_logger.setLevel(logging.INFO)
33 | sl = StreamToLogger(stdout_logger, logging.INFO)
34 | sys.stdout = sl
35 |
36 | stderr_logger = logging.getLogger("stderr")
37 | stderr_logger.setLevel(logging.ERROR)
38 | sl = StreamToLogger(stderr_logger, logging.ERROR)
39 | sys.stderr = sl
40 |
41 | # Get logger
42 | logger = logging.getLogger(logger_name)
43 | logger.setLevel(logging.INFO)
44 |
45 | # Add a file handler for all loggers
46 | if handler is None:
47 | os.makedirs(LOGDIR, exist_ok=True)
48 | filename = os.path.join(LOGDIR, logger_filename)
49 | handler = logging.handlers.TimedRotatingFileHandler(
50 | filename, when='D', utc=True, encoding='UTF-8')
51 | handler.setFormatter(formatter)
52 |
53 | for name, item in logging.root.manager.loggerDict.items():
54 | if isinstance(item, logging.Logger):
55 | item.addHandler(handler)
56 |
57 | return logger
58 |
59 |
60 | class StreamToLogger(object):
61 | """
62 | Fake file-like stream object that redirects writes to a logger instance.
63 | """
64 | def __init__(self, logger, log_level=logging.INFO):
65 | self.terminal = sys.stdout
66 | self.logger = logger
67 | self.log_level = log_level
68 | self.linebuf = ''
69 |
70 | def __getattr__(self, attr):
71 | return getattr(self.terminal, attr)
72 |
73 | def write(self, buf):
74 | temp_linebuf = self.linebuf + buf
75 | self.linebuf = ''
76 | for line in temp_linebuf.splitlines(True):
77 | # From the io.TextIOWrapper docs:
78 | # On output, if newline is None, any '\n' characters written
79 | # are translated to the system default line separator.
80 | # By default sys.stdout.write() expects '\n' newlines and then
81 | # translates them so this is still cross platform.
82 | if line[-1] == '\n':
83 | self.logger.log(self.log_level, line.rstrip())
84 | else:
85 | self.linebuf += line
86 |
87 | def flush(self):
88 | if self.linebuf != '':
89 | self.logger.log(self.log_level, self.linebuf.rstrip())
90 | self.linebuf = ''
91 |
92 |
93 | def disable_torch_init():
94 | """
95 | Disable the redundant torch default initialization to accelerate model creation.
96 | """
97 | import torch
98 | setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
99 | setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
100 |
101 |
102 | def violates_moderation(text):
103 | """
104 | Check whether the text violates OpenAI moderation API.
105 | """
106 | url = "https://api.openai.com/v1/moderations"
107 | headers = {"Content-Type": "application/json",
108 | "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
109 | text = text.replace("\n", "")
110 | data = "{" + '"input": ' + f'"{text}"' + "}"
111 | data = data.encode("utf-8")
112 | try:
113 | ret = requests.post(url, headers=headers, data=data, timeout=5)
114 | flagged = ret.json()["results"][0]["flagged"]
115 | except requests.exceptions.RequestException as e:
116 | flagged = False
117 | except KeyError as e:
118 | flagged = False
119 |
120 | return flagged
121 |
122 |
123 | def pretty_print_semaphore(semaphore):
124 | if semaphore is None:
125 | return "None"
126 | return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
127 |
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/000_caps.txt:
--------------------------------------------------------------------------------
1 | A man wearing multiple neck ties making a goofy face.
2 | A man in a white shirt wearing very many ties.
3 | a man with ties on poses for a picture
4 | A man wearing multiple ties on his neck.
5 | A young man smiles while wearing several ties.
6 |
7 | tie: [0.574, 0.298, 0.752, 0.704]
8 | tie: [0.464, 0.339, 0.639, 0.789]
9 | tie: [0.349, 0.363, 0.563, 0.732]
10 | tie: [0.259, 0.255, 0.668, 0.805]
11 | person: [0.019, 0.065, 0.962, 0.988]
12 | person: [0.0, 0.24, 0.214, 1.0]
13 | tie: [0.316, 0.778, 0.443, 0.867]
14 | tie: [0.386, 0.707, 0.496, 0.801]
15 | tie: [0.251, 0.354, 0.402, 0.747]
16 | tie: [0.44, 0.318, 0.63, 0.397]
17 | tie: [0.566, 0.33, 0.655, 0.543]
18 | tie: [0.25, 0.409, 0.359, 0.556]
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/000_conv.txt:
--------------------------------------------------------------------------------
1 | Question:
2 | What is unusual about this photo?
3 | ===
4 | Answer:
5 | In the photo, the man is wearing a total of ten ties around his neck. This is considered unusual because it is not common for someone to wear multiple ties at once. In a typical setting, a person would wear only one tie. The man's goofy facial expression also adds to the unconventional and humorous nature of the image.
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/001_caps.txt:
--------------------------------------------------------------------------------
1 | A group of people standing outside of a black vehicle with various luggage.
2 | Luggage surrounds a vehicle in an underground parking area
3 | People try to fit all of their luggage in an SUV.
4 | The sport utility vehicle is parked in the public garage, being packed for a trip
5 | Some people with luggage near a van that is transporting it.
6 |
7 | person: [0.681, 0.242, 0.774, 0.694]
8 | person: [0.63, 0.222, 0.686, 0.516]
9 | person: [0.444, 0.233, 0.487, 0.34]
10 | backpack: [0.384, 0.696, 0.485, 0.914]
11 | backpack: [0.755, 0.413, 0.846, 0.692]
12 | suitcase: [0.758, 0.413, 0.845, 0.69]
13 | suitcase: [0.1, 0.497, 0.173, 0.579]
14 | bicycle: [0.282, 0.363, 0.327, 0.442]
15 | car: [0.786, 0.25, 0.848, 0.322]
16 | car: [0.783, 0.27, 0.827, 0.335]
17 | car: [0.86, 0.254, 0.891, 0.3]
18 | car: [0.261, 0.101, 0.787, 0.626]
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/001_conv.txt:
--------------------------------------------------------------------------------
1 | Question:
2 | What challenges do these people face?
3 | ===
4 | Answer:
5 | In the image, a group of people is standing outside a black SUV in a parking area, surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks to be packed, which suggests that the group has a significant amount of belongings to accommodate. They might have to strategize and arrange the luggage efficiently to ensure that everything fits properly into the vehicle. Additionally, they need to consider the comfort of the passengers and visibility while driving, so the placement of the luggage must not obstruct the driver's view or make the passengers uncomfortable during the trip.
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/002_caps.txt:
--------------------------------------------------------------------------------
1 | There is a movie theater that displays the show times above the doors.
2 | A red fire hydrant is deep in the snow.
3 | The fire hydrant is in the snow near a recently plowed sidewalk.
4 | This city has had a very hard winter with snow.
5 | A hotel for dogs in the snow in winter.
6 |
7 | fire hydrant: [0.326, 0.612, 0.426, 0.72]
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/002_conv.txt:
--------------------------------------------------------------------------------
1 | Question:
2 | What challenges might this city face?
3 | ===
4 | Answer:
5 | The city faces challenges due to the harsh winter conditions and heavy snowfall. In the image, a red fire hydrant is almost buried deep in the snow, which indicates the significant amount of snow the city has experienced. This can lead to various challenges such as difficulties in transportation, increased risk of accidents, and disruptions to daily life. For example, the recently plowed sidewalk near the fire hydrant shows that the city has to constantly clear snow from roads and sidewalks to maintain access and safety for pedestrians and vehicles. Moreover, emergency services, like firefighters, might face challenges accessing crucial equipment, such as fire hydrants, during emergencies due to the snow accumulation. This highlights the importance of effective snow management strategies and preparedness in such cities to minimize the impact of harsh winter conditions on residents and essential services.
--------------------------------------------------------------------------------
/playground/data/prompts/complex_reasoning/system_message.txt:
--------------------------------------------------------------------------------
1 | You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
2 |
3 | The task is to use the provided caption and bounding box information, create a plausible question about the image, and provide the answer in detail.
4 |
5 | Create complex questions beyond describing the scene.
6 | To answer such questions, one should require first understanding the visual content, then based on the background knowledge or reasoning, either explain why the things are happening that way, or provide guides and help to user's request. Make the question challenging by not including the visual content details in the question so that the user needs to reason about that first.
7 |
8 | Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects.
9 |
10 | When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image.
--------------------------------------------------------------------------------
/playground/data/prompts/conversation/000_caps.txt:
--------------------------------------------------------------------------------
1 | There is a movie theater that displays the show times above the doors.
2 | A red fire hydrant is deep in the snow.
3 | The fire hydrant is in the snow near a recently plowed sidewalk.
4 | This city has had a very hard winter with snow.
5 | A hotel for dogs in the snow in winter.
--------------------------------------------------------------------------------
/playground/data/prompts/conversation/000_conv.txt:
--------------------------------------------------------------------------------
1 | Question:
2 | What color is the fire hydrant in the image?
3 | ===
4 | Answer:
5 | The fire hydrant in the image is red.
6 | ===
7 | Question:
8 | Is the fire hydrant fully covered by snow or partially visible?
9 | ===
10 | Answer:
11 | The fire hydrant is partially visible, with a significant portion of it covered by the deep snow.
12 | ===
13 | Question:
14 | What is the condition of the sidewalk near the fire hydrant?
15 | ===
16 | Answer:
17 | The sidewalk near the fire hydrant has been recently plowed, so it is relatively clear of snow compared to the surrounding area.
18 | ===
19 | Question:
20 | What does the image suggest about the winter season in the city?
21 | ===
22 | Answer:
23 | The image suggests that the winter season in the city has been quite harsh and challenging. The significant snow accumulation seen in the image indicates that the city has experienced heavy snowfall, which can lead to various difficulties and disruptions for its residents.
24 |
25 | For instance, the deep snow covering the fire hydrant could potentially hinder its accessibility in case of emergencies, which poses safety concerns. The recently plowed sidewalk implies that the city's maintenance crews have been actively working to keep the walkways clear and safe for pedestrians, but the sheer amount of snowfall might make it difficult to keep up with the continuous snow removal efforts.
26 |
27 | Furthermore, such extreme winter conditions can impact transportation, leading to traffic issues, delays in public transit, and increased risks of accidents due to slippery roads. It can also cause problems for businesses and schools, as people might face challenges commuting to work or attending classes. Additionally, the heavy snow can put extra strain on infrastructure, such as roofs and power lines, increasing the likelihood of structural damage or power outages.
28 |
29 | In conclusion, the image of the red fire hydrant deep in the snow and the recently plowed sidewalk suggest that the city has faced a particularly severe winter season, with substantial snowfall that has likely caused various challenges and disruptions for its residents and infrastructure.
--------------------------------------------------------------------------------
/playground/data/prompts/conversation/001_caps.txt:
--------------------------------------------------------------------------------
1 | A man is skiing in the open snow covered hills
2 | A skier is making his way into the snow.
3 | A skier on the foothills of a huge mountain range.
4 | A skier looks at mountains while standing near a trail sign.
5 | a single person skiing by an area with a lot of bushes
--------------------------------------------------------------------------------
/playground/data/prompts/conversation/001_conv.txt:
--------------------------------------------------------------------------------
1 | Question:
2 | What is the skier doing?
3 | ===
4 | Answer:
5 | The skier is skiing in the snow-covered hills, making his way through the snow and enjoying the beautiful mountain scenery. They are also standing near a trail sign, which indicates their location on the mountain.
6 | ===
7 | Question:
8 | Are there any other people or skiers visible in the image?
9 | ===
10 | Answer:
11 | No, there is only a single person skiing in the image, and they are surrounded by an area with a lot of bushes.
12 | ===
13 | Question:
14 | What kind of skiing is the person doing? Cross-country or downhill?
15 | ===
16 | Answer:
17 | Based on what I can see in the photo, it is not possible to definitively determine whether the skier is doing cross-country or downhill skiing. However, given the presence of a trail sign and the fact that they are skiing in the foothills, it is more likely that the skier is engaged in cross-country skiing. Downhill skiing typically takes place on more steep slopes and involves ski lifts, whereas cross-country skiing often occurs on relatively flatter terrain with marked trails.
18 | ===
19 | Question:
20 | Can you explain cross-country and downhill skiing a bit more?
21 | ===
22 | Answer:
23 | Cross-country skiing and downhill skiing are two distinct types of skiing, each with its own techniques, equipment, and terrain preferences.
24 |
25 | 1. Cross-Country Skiing:
26 | Also known as Nordic skiing, cross-country skiing involves traversing relatively flat terrain or gentle slopes using skis and poles. It is a popular recreational and competitive sport that focuses on endurance, balance, and aerobic fitness. Cross-country skiers use their own locomotion to move across snow-covered terrain, rather than relying on ski lifts or other forms of assistance.
27 | There are two main techniques in cross-country skiing:
28 | - Classic: This technique involves skiing in parallel tracks, using a forward-and-backward gliding motion while keeping the skis parallel to each other. The skier uses their poles to propel themselves forward.
29 | - Skate skiing: This technique is similar to ice skating, where the skier pushes off one ski at an angle and glides on the other. It requires a smooth, groomed surface and is typically faster than the classic technique.
30 | Cross-country ski equipment consists of lightweight skis, boots, bindings, and poles. The boots are more flexible than those used in downhill skiing, allowing for better ankle movement and control.
31 |
32 | 2. Downhill Skiing:
33 | Also known as alpine skiing, downhill skiing involves descending slopes at high speeds using skis and poles for balance and control. This sport is more focused on speed, technique, and navigating challenging terrain, including steep slopes, moguls, and even jumps.
34 | Downhill skiing can be further categorized into several disciplines, such as slalom, giant slalom, super-G, and downhill racing. Each discipline has its own set of rules, courses, and ski equipment.
35 | Downhill ski equipment includes heavier and stiffer skis, boots, bindings, and poles than those used in cross-country skiing. The boots are more rigid to provide better support and control during high-speed descents and sharp turns.
36 |
37 | In summary, cross-country skiing is an endurance-based sport that involves traveling across flat or gently sloping terrain, while downhill skiing is focused on speed and technique as skiers navigate steeper slopes and challenging terrain. Both sports require specialized equipment and techniques, but they offer different experiences and challenges to participants.
--------------------------------------------------------------------------------
/playground/data/prompts/conversation/system_message.txt:
--------------------------------------------------------------------------------
1 | You are an AI visual assistant, and you are seeing a single image. What you see are provided with five sentences, describing the same image you are looking at. Answer all questions as you are seeing the image.
2 |
3 | Design a conversation between you and a person asking about this photo. The answers should be in a tone that a visual AI assistant is seeing the image and answering the question.
4 | Ask diverse questions and give corresponding answers.
5 |
6 | Include questions asking about the visual content of the image, including the object types, counting the objects, object actions, object locations, relative positions between objects, etc. Only include questions that have definite answers:
7 | (1) one can see the content in the image that the question asks about and can answer confidently;
8 | (2) one can determine confidently from the image that it is not in the image.
9 | Do not ask any question that cannot be answered confidently.
10 |
11 | Also include complex questions that are relevant to the content in the image, for example, asking about background knowledge of the objects in the image, asking to discuss about events happening in the image, etc. Again, do not ask about uncertain details.
12 | Provide detailed answers when answering complex questions. For example, give detailed examples or reasoning steps to make the content more convincing and well-organized. You can include multiple paragraphs if necessary.
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/000_caps.txt:
--------------------------------------------------------------------------------
1 | A harbor filled with lots of boats next to a building.
2 | A bicycle parked in front of several boats at a dock.
3 | A red bicycle in front of a line of docked white yachts
4 | A bike sits before boats which sit before a long building.
5 | A bicycle is a convenient means of land transportation when you live on a boat.
6 |
7 | bicycle: [0.287, 0.641, 0.507, 0.874]
8 | bicycle: [0.566, 0.667, 0.63, 0.731]
9 | boat: [0.318, 0.579, 0.575, 0.724]
10 | boat: [0.704, 0.607, 0.818, 0.727]
11 | boat: [0.818, 0.601, 0.942, 0.744]
12 | boat: [0.002, 0.53, 0.243, 0.71]
13 | boat: [0.541, 0.611, 0.668, 0.731]
14 | person: [0.778, 0.527, 0.797, 0.57]
15 | cup: [0.708, 0.733, 0.724, 0.758]
16 | boat: [0.236, 0.532, 0.404, 0.64]
17 | boat: [0.81, 0.632, 0.836, 0.676]
18 | boat: [0.957, 0.526, 1.0, 0.752]
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/000_conv.txt:
--------------------------------------------------------------------------------
1 | It is a harbor filled with numerous boats of various sizes docked next to a long building. Among the boats, there are a few white yachts lined up, standing out from the rest. There is a red bicycle prominently parked in front of the line of docked boats, serving as a convenient means of land transportation for those living on the boats. Another bicycle can be seen further back in the scene, near the middle of the harbor.
2 |
3 | A person is visible near the right side of the harbor, possibly enjoying the view or attending to their boat. Additionally, there is a cup placed on a surface near the middle of the scene.
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/001_caps.txt:
--------------------------------------------------------------------------------
1 | A group of people standing outside of a black vehicle with various luggage.
2 | Luggage surrounds a vehicle in an underground parking area
3 | People try to fit all of their luggage in an SUV.
4 | The sport utility vehicle is parked in the public garage, being packed for a trip
5 | Some people with luggage near a van that is transporting it.
6 |
7 | person: [0.681, 0.242, 0.774, 0.694]
8 | person: [0.63, 0.222, 0.686, 0.516]
9 | person: [0.444, 0.233, 0.487, 0.34]
10 | backpack: [0.384, 0.696, 0.485, 0.914]
11 | backpack: [0.755, 0.413, 0.846, 0.692]
12 | suitcase: [0.758, 0.413, 0.845, 0.69]
13 | suitcase: [0.1, 0.497, 0.173, 0.579]
14 | bicycle: [0.282, 0.363, 0.327, 0.442]
15 | car: [0.786, 0.25, 0.848, 0.322]
16 | car: [0.783, 0.27, 0.827, 0.335]
17 | car: [0.86, 0.254, 0.891, 0.3]
18 | car: [0.261, 0.101, 0.787, 0.626]
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/001_conv.txt:
--------------------------------------------------------------------------------
1 | The image is an underground parking area with a black sport utility vehicle (SUV) parked. There are three people in the scene, with one person standing closer to the left side of the vehicle, another person in the middle, and the third person on the right side. They are all working together to pack their luggage into the SUV for a trip.
2 |
3 | In the parking area, various luggage items are scattered around the vehicle. There are two backpacks, one located near the left rear wheel and the other closer to the right side of the vehicle. Additionally, there are two suitcases, one on the right side of the car and another further away near the center of the parking area. A bicycle can also be seen on the left side of the vehicle.
4 |
5 | Other cars are parked around the main SUV, with one car positioned behind it and slightly to the left, another behind and slightly to the right, and the third car further behind on the right side.
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/002_caps.txt:
--------------------------------------------------------------------------------
1 | A man holds a Wii-mote above his head while another looks on.
2 | A guy and his friend are playing Nintendo Wii.
3 | A young man is holding a video game remote over his head.
4 | two men standing in a room while one plays with a wii mote
5 | Some guys standing and playing a video game.
6 |
7 | couch: [0.697, 0.759, 0.995, 1.0]
8 | dining table: [0.426, 0.755, 1.0, 0.987]
9 | person: [0.082, 0.252, 0.342, 1.0]
10 | person: [0.399, 0.085, 0.742, 0.982]
11 | remote: [0.477, 0.135, 0.516, 0.187]
12 | sink: [0.016, 0.501, 0.063, 0.52]
13 | potted plant: [0.798, 0.384, 0.888, 0.645]
14 | refrigerator: [0.305, 0.389, 0.414, 0.547]
15 | chair: [0.72, 0.509, 0.858, 0.725]
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/002_conv.txt:
--------------------------------------------------------------------------------
1 | The image shows two men standing in a room, engaged in playing a video game on a Nintendo Wii console. One of the men is holding a Wii remote above his head with enthusiasm, while the other man looks on, likely enjoying the friendly competition.
2 |
3 | The room appears to be a living space with a couch located in the background and a dining table nearby. A potted plant can be seen placed close to the couch, and a chair is situated in the middle of the room. The room also features a kitchen area with a sink and a refrigerator visible in the background.
--------------------------------------------------------------------------------
/playground/data/prompts/detail_description/system_message.txt:
--------------------------------------------------------------------------------
1 | You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
2 |
3 | Using the provided caption and bounding box information, describe the scene in a detailed manner.
4 |
5 | Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects.
6 |
7 | When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image.
--------------------------------------------------------------------------------
/povid_infer.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import torch
3 | import os
4 | import json
5 | from tqdm import tqdm
6 | import shortuuid
7 |
8 | from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9 | from llava.conversation import conv_templates, SeparatorStyle
10 | from llava.model.builder import load_pretrained_model
11 | from llava.utils import disable_torch_init
12 | from llava import conversation as conversation_lib
13 | from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
14 | from llava.model import *
15 |
16 | from PIL import Image
17 | import math
18 | import numpy as np
19 |
20 | if torch.cuda.is_available():
21 | device = torch.device("cuda")
22 |
23 | def split_list(lst, n):
24 | """Split a list into n (roughly) equal-sized chunks"""
25 | chunk_size = math.ceil(len(lst) / n) # integer division
26 | return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
27 |
28 |
29 | def get_chunk(lst, n, k):
30 | chunks = split_list(lst, n)
31 | return chunks[k]
32 |
33 |
34 | def eval_model(args):
35 | # Model
36 | disable_torch_init()
37 | model_path = os.path.expanduser(args.model_path)
38 | model_name = get_model_name_from_path(model_path)
39 | tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
40 | model = model.to(device)
41 |
42 | input_dir = args.input_dir
43 | output_file = args.output_file
44 | nu = 0
45 | with torch.no_grad():
46 | with open(output_file, "a+") as f:
47 | for filename in tqdm(os.listdir(input_dir)):
48 | if filename.endswith((".jpg", ".jpeg", ".png")) and nu <= 0:
49 | if filename in open(output_file).read():continue
50 | qs = 'Describe this image.'
51 | cur_prompt = qs
52 | if model.config.mm_use_im_start_end:
53 | qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
54 | else:
55 | qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
56 | conv = conv_templates[args.conv_mode].copy()
57 | conv.append_message(conv.roles[0], qs)
58 | conv.append_message(conv.roles[1], None)
59 | prompt = conv.get_prompt()
60 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
61 | image = Image.open(os.path.join(args.input_dir, filename))
62 | image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].to(device)
63 | stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
64 | keywords = [stop_str]
65 | stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
66 |
67 | with torch.inference_mode():
68 | output_ids = model.generate(
69 | input_ids=input_ids,
70 | images=image_tensor.unsqueeze(0).half().cuda(),
71 | do_sample=True,
72 | temperature=args.temperature,
73 | top_p= 1,
74 | num_beams= 1,
75 | output_attentions=True,
76 | # no_repeat_ngram_size=3, args.top_p args.num_beams
77 | max_new_tokens=1024,
78 | use_cache=True)
79 | input_token_len = input_ids.shape[1]
80 | n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
81 | if n_diff_input_output > 0:
82 | print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
83 | outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
84 | outputs = outputs.strip()
85 | result = {"id": filename, "question": cur_prompt, "answer": outputs, "model": "llava_lora_05_05_step_500"}
86 | json.dump(result, f)
87 | f.write('\n')
88 | f.flush()
89 | nu += 1
90 | f.close()
91 |
92 | if __name__ == "__main__":
93 | parser = argparse.ArgumentParser()
94 | parser.add_argument("--model-path", type=str, default="[your final stage lora ckpt path]")
95 | parser.add_argument("--model-base", type=str, default="[your first stage ckpt path]")
96 | parser.add_argument("--input_dir", type=str, default="./data/coco")
97 | parser.add_argument("--output_file", type=str, default="[your output path]")
98 | parser.add_argument("--conv-mode", type=str, default="v1")
99 | parser.add_argument("--num-chunks", type=int, default=1)
100 | parser.add_argument("--chunk-idx", type=int, default=0)
101 | parser.add_argument("--temperature", type=float, default=0.2)
102 | parser.add_argument("--top_p", type=float, default=None)
103 | parser.add_argument("--num_beams", type=int, default=1)
104 | args = parser.parse_args()
105 |
106 | eval_model(args)
107 |
108 |
109 |
110 |
111 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["setuptools>=61.0"]
3 | build-backend = "setuptools.build_meta"
4 |
5 | [project]
6 | name = "llava"
7 | version = "1.2.2.post1"
8 | description = "Towards GPT-4 like large language and visual assistant."
9 | readme = "README.md"
10 | requires-python = ">=3.8"
11 | classifiers = [
12 | "Programming Language :: Python :: 3",
13 | "License :: OSI Approved :: Apache Software License",
14 | ]
15 | dependencies = [
16 | "torch==2.1.2", "torchvision==0.16.2",
17 | "transformers==4.33.0", "tokenizers==0.13.3", "sentencepiece==0.1.99", "shortuuid",
18 | "accelerate==0.21.0", "peft", "bitsandbytes",
19 | "pydantic", "markdown2[all]", "numpy", "scikit-learn==1.2.2",
20 | "gradio==4.16.0", "gradio_client==0.8.1",
21 | "requests", "httpx==0.24.0", "uvicorn", "fastapi",
22 | "einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13",
23 | ]
24 |
25 | [project.optional-dependencies]
26 | train = ["deepspeed==0.12.6", "ninja", "wandb"]
27 | build = ["build", "twine"]
28 |
29 | [project.urls]
30 | "Homepage" = "https://llava-vl.github.io"
31 | "Bug Tracker" = "https://github.com/haotian-liu/LLaVA/issues"
32 |
33 | [tool.setuptools.packages.find]
34 | exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
35 |
36 | [tool.wheel]
37 | exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
38 |
--------------------------------------------------------------------------------
/scripts/convert_gqa_for_eval.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 |
5 | parser = argparse.ArgumentParser()
6 | parser.add_argument("--src", type=str)
7 | parser.add_argument("--dst", type=str)
8 | args = parser.parse_args()
9 |
10 | all_answers = []
11 | for line_idx, line in enumerate(open(args.src)):
12 | res = json.loads(line)
13 | question_id = res['question_id']
14 | text = res['text'].rstrip('.').lower()
15 | all_answers.append({"questionId": question_id, "prediction": text})
16 |
17 | with open(args.dst, 'w') as f:
18 | json.dump(all_answers, f)
19 |
--------------------------------------------------------------------------------
/scripts/convert_mmbench_for_submission.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import pandas as pd
5 |
6 | def get_args():
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument("--annotation-file", type=str, required=True)
9 | parser.add_argument("--result-dir", type=str, required=True)
10 | parser.add_argument("--upload-dir", type=str, required=True)
11 | parser.add_argument("--experiment", type=str, required=True)
12 |
13 | return parser.parse_args()
14 |
15 | if __name__ == "__main__":
16 | args = get_args()
17 |
18 | df = pd.read_table(args.annotation_file)
19 |
20 | cur_df = df.copy()
21 | cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
22 | cur_df.insert(6, 'prediction', None)
23 | for pred in open(os.path.join(args.result_dir, f"{args.experiment}.jsonl")):
24 | pred = json.loads(pred)
25 | cur_df.loc[df['index'] == pred['question_id'], 'prediction'] = pred['text']
26 |
27 | cur_df.to_excel(os.path.join(args.upload_dir, f"{args.experiment}.xlsx"), index=False, engine='openpyxl')
28 |
--------------------------------------------------------------------------------
/scripts/convert_mmvet_for_eval.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 |
5 | parser = argparse.ArgumentParser()
6 | parser.add_argument("--src", type=str)
7 | parser.add_argument("--dst", type=str)
8 | args = parser.parse_args()
9 |
10 | cur_result = {}
11 |
12 | for line in open(args.src):
13 | data = json.loads(line)
14 | qid = data['question_id']
15 | cur_result[f'v1_{qid}'] = data['text']
16 |
17 | with open(args.dst, 'w') as f:
18 | json.dump(cur_result, f, indent=2)
19 |
--------------------------------------------------------------------------------
/scripts/convert_seed_for_submission.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 |
5 |
6 | def get_args():
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument("--annotation-file", type=str)
9 | parser.add_argument("--result-file", type=str)
10 | parser.add_argument("--result-upload-file", type=str)
11 | return parser.parse_args()
12 |
13 |
14 | def eval_single(result_file, eval_only_type=None):
15 | results = {}
16 | for line in open(result_file):
17 | row = json.loads(line)
18 | results[row['question_id']] = row
19 |
20 | type_counts = {}
21 | correct_counts = {}
22 | for question_data in data['questions']:
23 | if eval_only_type is not None and question_data['data_type'] != eval_only_type: continue
24 | data_type = question_data['question_type_id']
25 | type_counts[data_type] = type_counts.get(data_type, 0) + 1
26 | try:
27 | question_id = int(question_data['question_id'])
28 | except:
29 | question_id = question_data['question_id']
30 | if question_id not in results:
31 | correct_counts[data_type] = correct_counts.get(data_type, 0)
32 | continue
33 | row = results[question_id]
34 | if row['text'] == question_data['answer']:
35 | correct_counts[data_type] = correct_counts.get(data_type, 0) + 1
36 |
37 | total_count = 0
38 | total_correct = 0
39 | for data_type in sorted(type_counts.keys()):
40 | accuracy = correct_counts[data_type] / type_counts[data_type] * 100
41 | if eval_only_type is None:
42 | print(f"{ques_type_id_to_name[data_type]}: {accuracy:.2f}%")
43 |
44 | total_count += type_counts[data_type]
45 | total_correct += correct_counts[data_type]
46 |
47 | total_accuracy = total_correct / total_count * 100
48 | if eval_only_type is None:
49 | print(f"Total accuracy: {total_accuracy:.2f}%")
50 | else:
51 | print(f"{eval_only_type} accuracy: {total_accuracy:.2f}%")
52 |
53 | return results
54 |
55 | if __name__ == "__main__":
56 | args = get_args()
57 | data = json.load(open(args.annotation_file))
58 | ques_type_id_to_name = {id:n for n,id in data['question_type'].items()}
59 |
60 | results = eval_single(args.result_file)
61 | eval_single(args.result_file, eval_only_type='image')
62 | eval_single(args.result_file, eval_only_type='video')
63 |
64 | with open(args.result_upload_file, 'w') as fp:
65 | for question in data['questions']:
66 | qid = question['question_id']
67 | if qid in results:
68 | result = results[qid]
69 | else:
70 | result = results[int(qid)]
71 | fp.write(json.dumps({
72 | 'question_id': qid,
73 | 'prediction': result['text']
74 | }) + '\n')
75 |
--------------------------------------------------------------------------------
/scripts/convert_sqa_to_llava.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import fire
4 | import re
5 | from convert_sqa_to_llava_base_prompt import build_prompt_chatbot
6 |
7 |
8 | def convert_to_llava(base_dir, split, prompt_format="QCM-LEA"):
9 | split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split]
10 | problems = json.load(open(os.path.join(base_dir, "problems.json")))
11 |
12 | split_problems = build_prompt_chatbot(
13 | problems, split_indices, prompt_format,
14 | use_caption=False, is_test=False)
15 |
16 | target_format = []
17 | for prob_id, (input, output) in split_problems.items():
18 | if input.startswith('Question: '):
19 | input = input.replace('Question: ', '')
20 | if output.startswith('Answer: '):
21 | output = output.replace('Answer: ', '')
22 |
23 | raw_prob_data = problems[prob_id]
24 | if raw_prob_data['image'] is None:
25 | target_format.append({
26 | "id": prob_id,
27 | "conversations": [
28 | {'from': 'human', 'value': f"{input}"},
29 | {'from': 'gpt', 'value': f"{output}"},
30 | ],
31 | })
32 |
33 | else:
34 | target_format.append({
35 | "id": prob_id,
36 | "image": os.path.join(prob_id, raw_prob_data['image']),
37 | "conversations": [
38 | {'from': 'human', 'value': f"{input}\n"},
39 | {'from': 'gpt', 'value': f"{output}"},
40 | ],
41 | })
42 |
43 | print(f'Number of samples: {len(target_format)}')
44 |
45 | with open(os.path.join(base_dir, f"llava_{split}_{prompt_format}.json"), "w") as f:
46 | json.dump(target_format, f, indent=2)
47 |
48 |
49 | def convert_to_jsonl(base_dir, split, prompt_format="QCM-LEPA"):
50 | split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split]
51 | problems = json.load(open(os.path.join(base_dir, "problems.json")))
52 |
53 | split_problems = build_prompt_chatbot(
54 | problems, split_indices, prompt_format,
55 | use_caption=False, is_test=False)
56 |
57 | writer = open(os.path.join(base_dir, f"scienceqa_{split}_{prompt_format}.jsonl"), "w")
58 | for prob_id, (input, output) in split_problems.items():
59 | if input.startswith('Question: '):
60 | input = input.replace('Question: ', '')
61 | if output.startswith('Answer: '):
62 | output = output.replace('Answer: ', '')
63 |
64 | raw_prob_data = problems[prob_id]
65 | if raw_prob_data['image'] is None:
66 | data = {
67 | "id": prob_id,
68 | "instruction": f"{input}",
69 | "output": f"{output}",
70 | }
71 |
72 | else:
73 | data = {
74 | "id": prob_id,
75 | "image": os.path.join(prob_id, raw_prob_data['image']),
76 | "instruction": f"{input}\n",
77 | "output": f"{output}",
78 | }
79 | writer.write(json.dumps(data) + '\n')
80 | writer.close()
81 |
82 |
83 | def main(task, **kwargs):
84 | globals()[task](**kwargs)
85 |
86 |
87 | if __name__ == "__main__":
88 | fire.Fire(main)
89 |
--------------------------------------------------------------------------------
/scripts/convert_vizwiz_for_submission.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import json
4 |
5 | from llava.eval.m4c_evaluator import EvalAIAnswerProcessor
6 |
7 |
8 | def parse_args():
9 | parser = argparse.ArgumentParser()
10 | parser.add_argument('--annotation-file', type=str, required=True)
11 | parser.add_argument('--result-file', type=str, required=True)
12 | parser.add_argument('--result-upload-file', type=str, required=True)
13 | return parser.parse_args()
14 |
15 |
16 | if __name__ == '__main__':
17 |
18 | args = parse_args()
19 |
20 | os.makedirs(os.path.dirname(args.result_upload_file), exist_ok=True)
21 |
22 | results = []
23 | error_line = 0
24 | for line_idx, line in enumerate(open(args.result_file)):
25 | try:
26 | results.append(json.loads(line))
27 | except:
28 | error_line += 1
29 | results = {x['question_id']: x['text'] for x in results}
30 | test_split = [json.loads(line) for line in open(args.annotation_file)]
31 | split_ids = set([x['question_id'] for x in test_split])
32 |
33 | print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}')
34 |
35 | all_answers = []
36 |
37 | answer_processor = EvalAIAnswerProcessor()
38 |
39 | for x in test_split:
40 | assert x['question_id'] in results
41 | all_answers.append({
42 | 'image': x['image'],
43 | 'answer': answer_processor(results[x['question_id']])
44 | })
45 |
46 | with open(args.result_upload_file, 'w') as f:
47 | json.dump(all_answers, f)
48 |
--------------------------------------------------------------------------------
/scripts/convert_vqav2_for_submission.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import json
4 |
5 | from llava.eval.m4c_evaluator import EvalAIAnswerProcessor
6 |
7 |
8 | def parse_args():
9 | parser = argparse.ArgumentParser()
10 | parser.add_argument('--dir', type=str, default="./playground/data/eval/vqav2")
11 | parser.add_argument('--ckpt', type=str, required=True)
12 | parser.add_argument('--split', type=str, required=True)
13 | return parser.parse_args()
14 |
15 |
16 | if __name__ == '__main__':
17 |
18 | args = parse_args()
19 |
20 | src = os.path.join(args.dir, 'answers', args.split, args.ckpt, 'merge.jsonl')
21 | test_split = os.path.join(args.dir, 'llava_vqav2_mscoco_test2015.jsonl')
22 | dst = os.path.join(args.dir, 'answers_upload', args.split, f'{args.ckpt}.json')
23 | os.makedirs(os.path.dirname(dst), exist_ok=True)
24 |
25 | results = []
26 | error_line = 0
27 | for line_idx, line in enumerate(open(src)):
28 | try:
29 | results.append(json.loads(line))
30 | except:
31 | error_line += 1
32 |
33 | results = {x['question_id']: x['text'] for x in results}
34 | test_split = [json.loads(line) for line in open(test_split)]
35 | split_ids = set([x['question_id'] for x in test_split])
36 |
37 | print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}')
38 |
39 | all_answers = []
40 |
41 | answer_processor = EvalAIAnswerProcessor()
42 |
43 | for x in test_split:
44 | if x['question_id'] not in results:
45 | all_answers.append({
46 | 'question_id': x['question_id'],
47 | 'answer': ''
48 | })
49 | else:
50 | all_answers.append({
51 | 'question_id': x['question_id'],
52 | 'answer': answer_processor(results[x['question_id']])
53 | })
54 |
55 | with open(dst, 'w') as f:
56 | json.dump(all_answers, open(dst, 'w'))
57 |
--------------------------------------------------------------------------------
/scripts/extract_mm_projector.py:
--------------------------------------------------------------------------------
1 | """
2 | This is just a utility that I use to extract the projector for quantized models.
3 | It is NOT necessary at all to train, or run inference/serve demos.
4 | Use this script ONLY if you fully understand its implications.
5 | """
6 |
7 |
8 | import os
9 | import argparse
10 | import torch
11 | import json
12 | from collections import defaultdict
13 |
14 |
15 | def parse_args():
16 | parser = argparse.ArgumentParser(description='Extract MMProjector weights')
17 | parser.add_argument('--model-path', type=str, help='model folder')
18 | parser.add_argument('--output', type=str, help='output file')
19 | args = parser.parse_args()
20 | return args
21 |
22 |
23 | if __name__ == '__main__':
24 | args = parse_args()
25 |
26 | keys_to_match = ['mm_projector']
27 | ckpt_to_key = defaultdict(list)
28 | try:
29 | model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json')))
30 | for k, v in model_indices['weight_map'].items():
31 | if any(key_match in k for key_match in keys_to_match):
32 | ckpt_to_key[v].append(k)
33 | except FileNotFoundError:
34 | # Smaller models or model checkpoints saved by DeepSpeed.
35 | v = 'pytorch_model.bin'
36 | for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys():
37 | if any(key_match in k for key_match in keys_to_match):
38 | ckpt_to_key[v].append(k)
39 |
40 | loaded_weights = {}
41 |
42 | for ckpt_name, weight_keys in ckpt_to_key.items():
43 | ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu')
44 | for k in weight_keys:
45 | loaded_weights[k] = ckpt[k]
46 |
47 | torch.save(loaded_weights, args.output)
48 |
--------------------------------------------------------------------------------
/scripts/finetune.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | # Uncomment and set the following variables correspondingly to run this script:
6 |
7 | ################## VICUNA ##################
8 | # PROMPT_VERSION=v1
9 | # MODEL_VERSION="vicuna-v1-3-7b"
10 | ################## VICUNA ##################
11 |
12 | ################## LLaMA-2 ##################
13 | # PROMPT_VERSION="llava_llama_2"
14 | # MODEL_VERSION="llama-2-7b-chat"
15 | ################## LLaMA-2 ##################
16 |
17 | deepspeed llava/train/train_mem.py \
18 | --deepspeed ./scripts/zero2.json \
19 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
20 | --version $PROMPT_VERSION \
21 | --data_path ./playground/data/llava_instruct_80k.json \
22 | --image_folder /path/to/coco/train2017 \
23 | --vision_tower openai/clip-vit-large-patch14 \
24 | --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
25 | --mm_vision_select_layer -2 \
26 | --mm_use_im_start_end False \
27 | --mm_use_im_patch_token False \
28 | --bf16 True \
29 | --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \
30 | --num_train_epochs 1 \
31 | --per_device_train_batch_size 16 \
32 | --per_device_eval_batch_size 4 \
33 | --gradient_accumulation_steps 1 \
34 | --evaluation_strategy "no" \
35 | --save_strategy "steps" \
36 | --save_steps 50000 \
37 | --save_total_limit 1 \
38 | --learning_rate 2e-5 \
39 | --weight_decay 0. \
40 | --warmup_ratio 0.03 \
41 | --lr_scheduler_type "cosine" \
42 | --logging_steps 1 \
43 | --tf32 True \
44 | --model_max_length 2048 \
45 | --gradient_checkpointing True \
46 | --dataloader_num_workers 4 \
47 | --lazy_preprocess True \
48 | --report_to wandb
49 |
--------------------------------------------------------------------------------
/scripts/finetune_full_schedule.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | # Uncomment and set the following variables correspondingly to run this script:
6 |
7 | ################## VICUNA ##################
8 | # PROMPT_VERSION=v1
9 | # MODEL_VERSION="vicuna-v1-3-7b"
10 | ################## VICUNA ##################
11 |
12 | ################## LLaMA-2 ##################
13 | # PROMPT_VERSION="llava_llama_2"
14 | # MODEL_VERSION="llama-2-7b-chat"
15 | ################## LLaMA-2 ##################
16 |
17 | deepspeed llava/train/train_mem.py \
18 | --deepspeed ./scripts/zero2.json \
19 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
20 | --version $PROMPT_VERSION \
21 | --data_path ./playground/data/llava_instruct_158k.json \
22 | --image_folder /path/to/coco/train2017 \
23 | --vision_tower openai/clip-vit-large-patch14 \
24 | --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
25 | --mm_vision_select_layer -2 \
26 | --mm_use_im_start_end False \
27 | --mm_use_im_patch_token False \
28 | --bf16 True \
29 | --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \
30 | --num_train_epochs 3 \
31 | --per_device_train_batch_size 16 \
32 | --per_device_eval_batch_size 4 \
33 | --gradient_accumulation_steps 1 \
34 | --evaluation_strategy "no" \
35 | --save_strategy "steps" \
36 | --save_steps 50000 \
37 | --save_total_limit 1 \
38 | --learning_rate 2e-5 \
39 | --weight_decay 0. \
40 | --warmup_ratio 0.03 \
41 | --lr_scheduler_type "cosine" \
42 | --logging_steps 1 \
43 | --tf32 True \
44 | --model_max_length 2048 \
45 | --gradient_checkpointing True \
46 | --dataloader_num_workers 4 \
47 | --lazy_preprocess True \
48 | --report_to wandb
49 |
--------------------------------------------------------------------------------
/scripts/finetune_lora.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | # Uncomment and set the following variables correspondingly to run this script:
6 |
7 | ################## VICUNA ##################
8 | # PROMPT_VERSION=v1
9 | # MODEL_VERSION="vicuna-v1-3-7b"
10 | ################## VICUNA ##################
11 |
12 | ################## LLaMA-2 ##################
13 | # PROMPT_VERSION="llava_llama_2"
14 | # MODEL_VERSION="llama-2-7b-chat"
15 | ################## LLaMA-2 ##################
16 |
17 | deepspeed llava/train/train_mem.py \
18 | --deepspeed ./scripts/zero2.json \
19 | --lora_enable True \
20 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
21 | --version $PROMPT_VERSION \
22 | --data_path ./playground/data/llava_instruct_80k.json \
23 | --image_folder /path/to/coco/train2017 \
24 | --vision_tower openai/clip-vit-large-patch14 \
25 | --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
26 | --mm_vision_select_layer -2 \
27 | --mm_use_im_start_end False \
28 | --mm_use_im_patch_token False \
29 | --bf16 True \
30 | --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \
31 | --num_train_epochs 1 \
32 | --per_device_train_batch_size 16 \
33 | --per_device_eval_batch_size 4 \
34 | --gradient_accumulation_steps 1 \
35 | --evaluation_strategy "no" \
36 | --save_strategy "steps" \
37 | --save_steps 50000 \
38 | --save_total_limit 1 \
39 | --learning_rate 2e-5 \
40 | --weight_decay 0. \
41 | --warmup_ratio 0.03 \
42 | --lr_scheduler_type "cosine" \
43 | --logging_steps 1 \
44 | --tf32 True \
45 | --model_max_length 2048 \
46 | --gradient_checkpointing True \
47 | --lazy_preprocess True \
48 | --dataloader_num_workers 4 \
49 | --report_to wandb
50 |
--------------------------------------------------------------------------------
/scripts/finetune_qlora.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | # Uncomment and set the following variables correspondingly to run this script:
6 |
7 | ################## VICUNA ##################
8 | # PROMPT_VERSION=v1
9 | # MODEL_VERSION="vicuna-v1-3-7b"
10 | ################## VICUNA ##################
11 |
12 | ################## LLaMA-2 ##################
13 | # PROMPT_VERSION="llava_llama_2"
14 | # MODEL_VERSION="llama-2-7b-chat"
15 | ################## LLaMA-2 ##################
16 |
17 | deepspeed llava/train/train_mem.py \
18 | --deepspeed ./scripts/zero2.json \
19 | --lora_enable True \
20 | --bits 4 \
21 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
22 | --version $PROMPT_VERSION \
23 | --data_path ./playground/data/llava_instruct_80k.json \
24 | --image_folder /path/to/coco/train2017 \
25 | --vision_tower openai/clip-vit-large-patch14 \
26 | --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \
27 | --mm_vision_select_layer -2 \
28 | --mm_use_im_start_end False \
29 | --mm_use_im_patch_token False \
30 | --bf16 True \
31 | --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \
32 | --num_train_epochs 1 \
33 | --per_device_train_batch_size 16 \
34 | --per_device_eval_batch_size 4 \
35 | --gradient_accumulation_steps 1 \
36 | --evaluation_strategy "no" \
37 | --save_strategy "steps" \
38 | --save_steps 50000 \
39 | --save_total_limit 1 \
40 | --learning_rate 2e-5 \
41 | --weight_decay 0. \
42 | --warmup_ratio 0.03 \
43 | --lr_scheduler_type "cosine" \
44 | --logging_steps 1 \
45 | --tf32 True \
46 | --model_max_length 2048 \
47 | --gradient_checkpointing True \
48 | --lazy_preprocess True \
49 | --dataloader_num_workers 4 \
50 | --report_to wandb
51 |
--------------------------------------------------------------------------------
/scripts/finetune_sqa.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | deepspeed llava/train/train_mem.py \
6 | --deepspeed ./scripts/zero2.json \
7 | --model_name_or_path lmsys/vicuna-13b-v1.3 \
8 | --version $PROMPT_VERSION \
9 | --data_path /Data/ScienceQA/data/scienceqa/llava_train_QCM-LEA.json \
10 | --image_folder /Data/ScienceQA/data/scienceqa/images/train \
11 | --vision_tower openai/clip-vit-large-patch14 \
12 | --pretrain_mm_mlp_adapter ./checkpoints/huggingface/liuhaotian/llava-pretrain-vicuna-13b-v1.3/mm_projector.bin \
13 | --mm_vision_select_layer -2 \
14 | --mm_use_im_start_end False \
15 | --mm_use_im_patch_token False \
16 | --bf16 True \
17 | --output_dir ./checkpoints/llava-vicuna-13b-v1.3-pretrain_lcs558k_plain-ScienceQA_QCM_LEA-12e \
18 | --num_train_epochs 12 \
19 | --per_device_train_batch_size 16 \
20 | --per_device_eval_batch_size 4 \
21 | --gradient_accumulation_steps 1 \
22 | --evaluation_strategy "no" \
23 | --save_strategy "steps" \
24 | --save_steps 50000 \
25 | --save_total_limit 1 \
26 | --learning_rate 2e-5 \
27 | --weight_decay 0. \
28 | --warmup_ratio 0.03 \
29 | --lr_scheduler_type "cosine" \
30 | --logging_steps 1 \
31 | --tf32 True \
32 | --model_max_length 2048 \
33 | --gradient_checkpointing True \
34 | --dataloader_num_workers 4 \
35 | --lazy_preprocess True \
36 | --report_to wandb
37 |
--------------------------------------------------------------------------------
/scripts/merge_lora_weights.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | from llava.model.builder import load_pretrained_model
3 | from llava.mm_utils import get_model_name_from_path
4 |
5 |
6 | def merge_lora(args):
7 | model_name = get_model_name_from_path(args.model_path)
8 | tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map='cpu')
9 |
10 | model.save_pretrained(args.save_model_path)
11 | tokenizer.save_pretrained(args.save_model_path)
12 |
13 |
14 | if __name__ == "__main__":
15 | parser = argparse.ArgumentParser()
16 | parser.add_argument("--model-path", type=str, required=True)
17 | parser.add_argument("--model-base", type=str, required=True)
18 | parser.add_argument("--save-model-path", type=str, required=True)
19 |
20 | args = parser.parse_args()
21 |
22 | merge_lora(args)
23 |
--------------------------------------------------------------------------------
/scripts/pretrain.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5!
4 |
5 | # Uncomment and set the following variables correspondingly to run this script:
6 |
7 | # MODEL_VERSION=vicuna-v1-3-7b
8 | # MODEL_VERSION=llama-2-7b-chat
9 |
10 | ########### DO NOT CHANGE ###########
11 | ########### USE THIS FOR BOTH ###########
12 | PROMPT_VERSION=plain
13 | ########### DO NOT CHANGE ###########
14 |
15 | deepspeed llava/train/train_mem.py \
16 | --deepspeed ./scripts/zero2.json \
17 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
18 | --version $PROMPT_VERSION \
19 | --data_path /path/to/pretrain_data.json \
20 | --image_folder /path/to/images \
21 | --vision_tower openai/clip-vit-large-patch14 \
22 | --tune_mm_mlp_adapter True \
23 | --mm_vision_select_layer -2 \
24 | --mm_use_im_start_end False \
25 | --mm_use_im_patch_token False \
26 | --bf16 True \
27 | --output_dir ./checkpoints/llava-$MODEL_VERSION-pretrain \
28 | --num_train_epochs 1 \
29 | --per_device_train_batch_size 16 \
30 | --per_device_eval_batch_size 4 \
31 | --gradient_accumulation_steps 1 \
32 | --evaluation_strategy "no" \
33 | --save_strategy "steps" \
34 | --save_steps 24000 \
35 | --save_total_limit 1 \
36 | --learning_rate 2e-3 \
37 | --weight_decay 0. \
38 | --warmup_ratio 0.03 \
39 | --lr_scheduler_type "cosine" \
40 | --logging_steps 1 \
41 | --tf32 True \
42 | --model_max_length 2048 \
43 | --gradient_checkpointing True \
44 | --dataloader_num_workers 4 \
45 | --lazy_preprocess True \
46 | --report_to wandb
47 |
--------------------------------------------------------------------------------
/scripts/pretrain_xformers.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Uncomment and set the following variables correspondingly to run this script:
4 |
5 | # MODEL_VERSION=vicuna-v1-3-7b
6 | # MODEL_VERSION=llama-2-7b-chat
7 |
8 | ########### DO NOT CHANGE ###########
9 | ########### USE THIS FOR BOTH ###########
10 | PROMPT_VERSION=plain
11 | ########### DO NOT CHANGE ###########
12 |
13 | deepspeed llava/train/train_xformers.py \
14 | --deepspeed ./scripts/zero2.json \
15 | --model_name_or_path ./checkpoints/$MODEL_VERSION \
16 | --version $PROMPT_VERSION \
17 | --data_path /path/to/pretrain_data.json \
18 | --image_folder /path/to/images \
19 | --vision_tower openai/clip-vit-large-patch14 \
20 | --tune_mm_mlp_adapter True \
21 | --mm_vision_select_layer -2 \
22 | --mm_use_im_start_end False \
23 | --mm_use_im_patch_token False \
24 | --bf16 False \
25 | --output_dir ./checkpoints/llava-$MODEL_VERSION-pretrain \
26 | --num_train_epochs 1 \
27 | --per_device_train_batch_size 4 \
28 | --per_device_eval_batch_size 4 \
29 | --gradient_accumulation_steps 4 \
30 | --evaluation_strategy "no" \
31 | --save_strategy "steps" \
32 | --save_steps 24000 \
33 | --save_total_limit 1 \
34 | --learning_rate 2e-3 \
35 | --weight_decay 0. \
36 | --warmup_ratio 0.03 \
37 | --lr_scheduler_type "cosine" \
38 | --logging_steps 1 \
39 | --tf32 False \
40 | --model_max_length 2048 \
41 | --gradient_checkpointing True \
42 | --dataloader_num_workers 4 \
43 | --lazy_preprocess True \
44 | --report_to wandb
45 |
--------------------------------------------------------------------------------
/scripts/run_dpo.sh:
--------------------------------------------------------------------------------
1 | # conda env
2 | source activate [your env path]/envs/POVID
3 | cd ../
4 | deepspeed llava/train/train_dpo.py \
5 | --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
6 | --deepspeed ./scripts/zero2.json \
7 | --model_name_or_path ./checkpoint/llava-v1.5-7b/ \
8 | --version v1 \
9 | --data_path ./data/POVID_preference_data_for_VLLMs.json \
10 | --image_folder ./data/coco \
11 | --vision_tower openai/clip-vit-large-patch14-336 \
12 | --mm_projector_type mlp2x_gelu \
13 | --mm_vision_select_layer -2 \
14 | --mm_use_im_start_end False \
15 | --mm_use_im_patch_token False \
16 | --image_aspect_ratio pad \
17 | --group_by_modality_length True \
18 | --bf16 True \
19 | --output_dir ./checkpoint/output/POVID_stage_one_LoRa \
20 | --num_train_epochs 3 \
21 | --per_device_train_batch_size 1\
22 | --per_device_eval_batch_size 1 \
23 | --gradient_accumulation_steps 1 \
24 | --evaluation_strategy "no" \
25 | --save_strategy "steps" \
26 | --save_steps 200 \
27 | --save_total_limit 1 \
28 | --learning_rate 1e-7 \
29 | --weight_decay 0. \
30 | --warmup_ratio 0.03 \
31 | --lr_scheduler_type "cosine" \
32 | --logging_steps 1 \
33 | --report_to wandb
34 | --tf32 True \
35 | --model_max_length 1024 \
36 | --gradient_checkpointing True \
37 | --dataloader_num_workers 4 \
38 | --lazy_preprocess True \
39 |
--------------------------------------------------------------------------------
/scripts/run_povid.sh:
--------------------------------------------------------------------------------
1 | # conda env
2 | source activate [your env path]/envs/POVID
3 | cd ..
4 | deepspeed llava/train/train_dpo_inherent.py \
5 | --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
6 | --deepspeed ./scripts/zero2.json \
7 | --model_name_or_path ./checkpoint/output/POVID_stage_one_merged \
8 | --version v1 \
9 | --data_path ./data/POVID_preference_data_for_VLLMs.json \
10 | --image_folder ./data/coco \
11 | --vision_tower openai/clip-vit-large-patch14-336 \
12 | --mm_projector_type mlp2x_gelu \
13 | --mm_vision_select_layer -2 \
14 | --mm_use_im_start_end False \
15 | --mm_use_im_patch_token False \
16 | --image_aspect_ratio pad \
17 | --group_by_modality_length True \
18 | --bf16 True \
19 | --output_dir ./checkpoint/output/POVID_stage_two_LoRa \
20 | --num_train_epochs 1 \
21 | --per_device_train_batch_size 1\
22 | --per_device_eval_batch_size 1 \
23 | --gradient_accumulation_steps 1 \
24 | --evaluation_strategy "no" \
25 | --save_strategy "steps" \
26 | --save_steps 200 \
27 | --save_total_limit 1 \
28 | --learning_rate 1e-7 \
29 | --weight_decay 0. \
30 | --warmup_ratio 0.03 \
31 | --lr_scheduler_type "cosine" \
32 | --logging_steps 1 \
33 | --report_to wandb
34 | --tf32 True \
35 | --model_max_length 1024 \
36 | --gradient_checkpointing True \
37 | --dataloader_num_workers 4 \
38 | --lazy_preprocess True \
39 |
--------------------------------------------------------------------------------
/scripts/sqa_eval_batch.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | CHUNKS=8
4 | for IDX in {0..7}; do
5 | CUDA_VISIBLE_DEVICES=$IDX python -m llava.eval.model_vqa_science \
6 | --model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \
7 | --question-file ~/haotian/datasets/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \
8 | --image-folder ~/haotian/datasets/ScienceQA/data/scienceqa/images/test \
9 | --answers-file ./test_llava-13b-chunk$CHUNKS_$IDX.jsonl \
10 | --num-chunks $CHUNKS \
11 | --chunk-idx $IDX \
12 | --conv-mode llava_v1 &
13 | done
14 |
--------------------------------------------------------------------------------
/scripts/sqa_eval_gather.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | CHUNKS=8
4 | output_file="test_llava-13b.jsonl"
5 |
6 | # Clear out the output file if it exists.
7 | > "$output_file"
8 |
9 | # Loop through the indices and concatenate each file.
10 | for idx in $(seq 0 $((CHUNKS-1))); do
11 | cat "./test_llava-13b-chunk${idx}.jsonl" >> "$output_file"
12 | done
13 |
14 | python llava/eval/eval_science_qa.py \
15 | --base-dir ~/haotian/datasets/ScienceQA/data/scienceqa \
16 | --result-file ./test_llava-13b.jsonl \
17 | --output-file ./test_llava-13b_output.json \
18 | --output-result ./test_llava-13b_result.json
19 |
--------------------------------------------------------------------------------
/scripts/upload_pypi.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Step 0: Clean up
4 | rm -rf dist
5 |
6 | # Step 1: Change the package name to "llava-torch"
7 | sed -i 's/name = "llava"/name = "llava-torch"/' pyproject.toml
8 |
9 | # Step 2: Build the package
10 | python -m build
11 |
12 | # Step 3: Revert the changes in pyproject.toml to the original
13 | sed -i 's/name = "llava-torch"/name = "llava"/' pyproject.toml
14 |
15 | # Step 4: Upload to PyPI
16 | python -m twine upload dist/*
17 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/gqa.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
4 | IFS=',' read -ra GPULIST <<< "$gpu_list"
5 |
6 | CHUNKS=${#GPULIST[@]}
7 |
8 | CKPT="llava-v1.5-13b"
9 | SPLIT="llava_gqa_testdev_balanced"
10 | GQADIR="./playground/data/eval/gqa/data"
11 |
12 | for IDX in $(seq 0 $((CHUNKS-1))); do
13 | CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \
14 | --model-path liuhaotian/llava-v1.5-13b \
15 | --question-file ./playground/data/eval/gqa/$SPLIT.jsonl \
16 | --image-folder ./playground/data/eval/gqa/data/images \
17 | --answers-file ./playground/data/eval/gqa/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl \
18 | --num-chunks $CHUNKS \
19 | --chunk-idx $IDX \
20 | --temperature 0 \
21 | --conv-mode vicuna_v1 &
22 | done
23 |
24 | wait
25 |
26 | output_file=./playground/data/eval/gqa/answers/$SPLIT/$CKPT/merge.jsonl
27 |
28 | # Clear out the output file if it exists.
29 | > "$output_file"
30 |
31 | # Loop through the indices and concatenate each file.
32 | for IDX in $(seq 0 $((CHUNKS-1))); do
33 | cat ./playground/data/eval/gqa/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file"
34 | done
35 |
36 | python scripts/convert_gqa_for_eval.py --src $output_file --dst $GQADIR/testdev_balanced_predictions.json
37 |
38 | cd $GQADIR
39 | python eval/eval.py --tier testdev_balanced
40 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/llavabench.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/llava-bench-in-the-wild/questions.jsonl \
6 | --image-folder ./playground/data/eval/llava-bench-in-the-wild/images \
7 | --answers-file ./playground/data/eval/llava-bench-in-the-wild/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | mkdir -p playground/data/eval/llava-bench-in-the-wild/reviews
12 |
13 | python llava/eval/eval_gpt_review_bench.py \
14 | --question playground/data/eval/llava-bench-in-the-wild/questions.jsonl \
15 | --context playground/data/eval/llava-bench-in-the-wild/context.jsonl \
16 | --rule llava/eval/table/rule.json \
17 | --answer-list \
18 | playground/data/eval/llava-bench-in-the-wild/answers_gpt4.jsonl \
19 | playground/data/eval/llava-bench-in-the-wild/answers/llava-v1.5-13b.jsonl \
20 | --output \
21 | playground/data/eval/llava-bench-in-the-wild/reviews/llava-v1.5-13b.jsonl
22 |
23 | python llava/eval/summarize_gpt_review.py -f playground/data/eval/llava-bench-in-the-wild/reviews/llava-v1.5-13b.jsonl
24 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/mmbench.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | SPLIT="mmbench_dev_20230712"
4 |
5 | python -m llava.eval.model_vqa_mmbench \
6 | --model-path liuhaotian/llava-v1.5-13b \
7 | --question-file ./playground/data/eval/mmbench/$SPLIT.tsv \
8 | --answers-file ./playground/data/eval/mmbench/answers/$SPLIT/llava-v1.5-13b.jsonl \
9 | --single-pred-prompt \
10 | --temperature 0 \
11 | --conv-mode vicuna_v1
12 |
13 | mkdir -p playground/data/eval/mmbench/answers_upload/$SPLIT
14 |
15 | python scripts/convert_mmbench_for_submission.py \
16 | --annotation-file ./playground/data/eval/mmbench/$SPLIT.tsv \
17 | --result-dir ./playground/data/eval/mmbench/answers/$SPLIT \
18 | --upload-dir ./playground/data/eval/mmbench/answers_upload/$SPLIT \
19 | --experiment llava-v1.5-13b
20 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/mmbench_cn.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | SPLIT="mmbench_dev_cn_20231003"
4 |
5 | python -m llava.eval.model_vqa_mmbench \
6 | --model-path liuhaotian/llava-v1.5-13b \
7 | --question-file ./playground/data/eval/mmbench_cn/$SPLIT.tsv \
8 | --answers-file ./playground/data/eval/mmbench_cn/answers/$SPLIT/llava-v1.5-13b.jsonl \
9 | --lang cn \
10 | --single-pred-prompt \
11 | --temperature 0 \
12 | --conv-mode vicuna_v1
13 |
14 | mkdir -p playground/data/eval/mmbench/answers_upload/$SPLIT
15 |
16 | python scripts/convert_mmbench_for_submission.py \
17 | --annotation-file ./playground/data/eval/mmbench_cn/$SPLIT.tsv \
18 | --result-dir ./playground/data/eval/mmbench_cn/answers/$SPLIT \
19 | --upload-dir ./playground/data/eval/mmbench_cn/answers_upload/$SPLIT \
20 | --experiment llava-v1.5-13b
21 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/mme.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa_loader \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/MME/llava_mme.jsonl \
6 | --image-folder ./playground/data/eval/MME/MME_Benchmark_release_version \
7 | --answers-file ./playground/data/eval/MME/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | cd ./playground/data/eval/MME
12 |
13 | python convert_answer_to_mme.py --experiment llava-v1.5-13b
14 |
15 | cd eval_tool
16 |
17 | python calculation.py --results_dir answers/llava-v1.5-13b
18 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/mmvet.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/mm-vet/llava-mm-vet.jsonl \
6 | --image-folder ./playground/data/eval/mm-vet/images \
7 | --answers-file ./playground/data/eval/mm-vet/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | mkdir -p ./playground/data/eval/mm-vet/results
12 |
13 | python scripts/convert_mmvet_for_eval.py \
14 | --src ./playground/data/eval/mm-vet/answers/llava-v1.5-13b.jsonl \
15 | --dst ./playground/data/eval/mm-vet/results/llava-v1.5-13b.json
16 |
17 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/pope.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa_loader \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/pope/llava_pope_test.jsonl \
6 | --image-folder ./playground/data/eval/pope/val2014 \
7 | --answers-file ./playground/data/eval/pope/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | python llava/eval/eval_pope.py \
12 | --annotation-dir ./playground/data/eval/pope/coco \
13 | --question-file ./playground/data/eval/pope/llava_pope_test.jsonl \
14 | --result-file ./playground/data/eval/pope/answers/llava-v1.5-13b.jsonl
15 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/qbench.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | if [ "$1" = "dev" ]; then
4 | echo "Evaluating in 'dev' split."
5 | elif [ "$1" = "test" ]; then
6 | echo "Evaluating in 'test' split."
7 | else
8 | echo "Unknown split, please choose between 'dev' and 'test'."
9 | exit 1
10 | fi
11 |
12 | python -m llava.eval.model_vqa_qbench \
13 | --model-path liuhaotian/llava-v1.5-13b \
14 | --image-folder ./playground/data/eval/qbench/images_llvisionqa/ \
15 | --questions-file ./playground/data/eval/qbench/llvisionqa_$1.json \
16 | --answers-file ./playground/data/eval/qbench/llvisionqa_$1_answers.jsonl \
17 | --conv-mode llava_v1 \
18 | --lang en
19 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/qbench_zh.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | if [ "$1" = "dev" ]; then
4 | ZH_SPLIT="验证集"
5 | echo "Evaluating in 'dev' split."
6 | elif [ "$1" = "test" ]; then
7 | ZH_SPLIT="测试集"
8 | echo "Evaluating in 'test' split."
9 | else
10 | echo "Unknown split, please choose between 'dev' and 'test'."
11 | exit 1
12 | fi
13 |
14 | python -m llava.eval.model_vqa_qbench \
15 | --model-path liuhaotian/llava-v1.5-13b \
16 | --image-folder ./playground/data/eval/qbench/images_llvisionqa/ \
17 | --questions-file ./playground/data/eval/qbench/质衡-问答-$ZH_SPLIT.json \
18 | --answers-file ./playground/data/eval/qbench/llvisionqa_zh_$1_answers.jsonl \
19 | --conv-mode llava_v1 \
20 | --lang zh
21 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/seed.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
4 | IFS=',' read -ra GPULIST <<< "$gpu_list"
5 |
6 | CHUNKS=${#GPULIST[@]}
7 |
8 | CKPT="llava-v1.5-13b"
9 |
10 | for IDX in $(seq 0 $((CHUNKS-1))); do
11 | CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \
12 | --model-path liuhaotian/llava-v1.5-13b \
13 | --question-file ./playground/data/eval/seed_bench/llava-seed-bench.jsonl \
14 | --image-folder ./playground/data/eval/seed_bench \
15 | --answers-file ./playground/data/eval/seed_bench/answers/$CKPT/${CHUNKS}_${IDX}.jsonl \
16 | --num-chunks $CHUNKS \
17 | --chunk-idx $IDX \
18 | --temperature 0 \
19 | --conv-mode vicuna_v1 &
20 | done
21 |
22 | wait
23 |
24 | output_file=./playground/data/eval/seed_bench/answers/$CKPT/merge.jsonl
25 |
26 | # Clear out the output file if it exists.
27 | > "$output_file"
28 |
29 | # Loop through the indices and concatenate each file.
30 | for IDX in $(seq 0 $((CHUNKS-1))); do
31 | cat ./playground/data/eval/seed_bench/answers/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file"
32 | done
33 |
34 | # Evaluate
35 | python scripts/convert_seed_for_submission.py \
36 | --annotation-file ./playground/data/eval/seed_bench/SEED-Bench.json \
37 | --result-file $output_file \
38 | --result-upload-file ./playground/data/eval/seed_bench/answers_upload/llava-v1.5-13b.jsonl
39 |
40 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/sqa.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa_science \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/scienceqa/llava_test_CQM-A.json \
6 | --image-folder ./playground/data/eval/scienceqa/images/test \
7 | --answers-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b.jsonl \
8 | --single-pred-prompt \
9 | --temperature 0 \
10 | --conv-mode vicuna_v1
11 |
12 | python llava/eval/eval_science_qa.py \
13 | --base-dir ./playground/data/eval/scienceqa \
14 | --result-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b.jsonl \
15 | --output-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b_output.jsonl \
16 | --output-result ./playground/data/eval/scienceqa/answers/llava-v1.5-13b_result.json
17 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/textvqa.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa_loader \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/textvqa/llava_textvqa_val_v051_ocr.jsonl \
6 | --image-folder ./playground/data/eval/textvqa/train_images \
7 | --answers-file ./playground/data/eval/textvqa/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | python -m llava.eval.eval_textvqa \
12 | --annotation-file ./playground/data/eval/textvqa/TextVQA_0.5.1_val.json \
13 | --result-file ./playground/data/eval/textvqa/answers/llava-v1.5-13b.jsonl
14 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/vizwiz.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | python -m llava.eval.model_vqa_loader \
4 | --model-path liuhaotian/llava-v1.5-13b \
5 | --question-file ./playground/data/eval/vizwiz/llava_test.jsonl \
6 | --image-folder ./playground/data/eval/vizwiz/test \
7 | --answers-file ./playground/data/eval/vizwiz/answers/llava-v1.5-13b.jsonl \
8 | --temperature 0 \
9 | --conv-mode vicuna_v1
10 |
11 | python scripts/convert_vizwiz_for_submission.py \
12 | --annotation-file ./playground/data/eval/vizwiz/llava_test.jsonl \
13 | --result-file ./playground/data/eval/vizwiz/answers/llava-v1.5-13b.jsonl \
14 | --result-upload-file ./playground/data/eval/vizwiz/answers_upload/llava-v1.5-13b.json
15 |
--------------------------------------------------------------------------------
/scripts/v1_5/eval/vqav2.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
4 | IFS=',' read -ra GPULIST <<< "$gpu_list"
5 |
6 | CHUNKS=${#GPULIST[@]}
7 |
8 | CKPT="llava-v1.5-13b"
9 | SPLIT="llava_vqav2_mscoco_test-dev2015"
10 |
11 | for IDX in $(seq 0 $((CHUNKS-1))); do
12 | CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \
13 | --model-path liuhaotian/llava-v1.5-13b \
14 | --question-file ./playground/data/eval/vqav2/$SPLIT.jsonl \
15 | --image-folder ./playground/data/eval/vqav2/test2015 \
16 | --answers-file ./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl \
17 | --num-chunks $CHUNKS \
18 | --chunk-idx $IDX \
19 | --temperature 0 \
20 | --conv-mode vicuna_v1 &
21 | done
22 |
23 | wait
24 |
25 | output_file=./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/merge.jsonl
26 |
27 | # Clear out the output file if it exists.
28 | > "$output_file"
29 |
30 | # Loop through the indices and concatenate each file.
31 | for IDX in $(seq 0 $((CHUNKS-1))); do
32 | cat ./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file"
33 | done
34 |
35 | python scripts/convert_vqav2_for_submission.py --split $SPLIT --ckpt $CKPT
36 |
37 |
--------------------------------------------------------------------------------
/scripts/v1_5/finetune.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | deepspeed llava/train/train_mem.py \
4 | --deepspeed ./scripts/zero3.json \
5 | --model_name_or_path lmsys/vicuna-13b-v1.5 \
6 | --version v1 \
7 | --data_path ./playground/data/llava_v1_5_mix665k.json \
8 | --image_folder ./playground/data \
9 | --vision_tower openai/clip-vit-large-patch14-336 \
10 | --pretrain_mm_mlp_adapter ./checkpoints/llava-v1.5-13b-pretrain/mm_projector.bin \
11 | --mm_projector_type mlp2x_gelu \
12 | --mm_vision_select_layer -2 \
13 | --mm_use_im_start_end False \
14 | --mm_use_im_patch_token False \
15 | --image_aspect_ratio pad \
16 | --group_by_modality_length True \
17 | --bf16 True \
18 | --output_dir ./checkpoints/llava-v1.5-13b \
19 | --num_train_epochs 1 \
20 | --per_device_train_batch_size 16 \
21 | --per_device_eval_batch_size 4 \
22 | --gradient_accumulation_steps 1 \
23 | --evaluation_strategy "no" \
24 | --save_strategy "steps" \
25 | --save_steps 50000 \
26 | --save_total_limit 1 \
27 | --learning_rate 2e-5 \
28 | --weight_decay 0. \
29 | --warmup_ratio 0.03 \
30 | --lr_scheduler_type "cosine" \
31 | --logging_steps 1 \
32 | --tf32 True \
33 | --model_max_length 2048 \
34 | --gradient_checkpointing True \
35 | --dataloader_num_workers 4 \
36 | --lazy_preprocess True \
37 | --report_to wandb
38 |
--------------------------------------------------------------------------------
/scripts/v1_5/finetune_lora.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | deepspeed llava/train/train_mem.py \
4 | --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
5 | --deepspeed ./scripts/zero3.json \
6 | --model_name_or_path lmsys/vicuna-13b-v1.5 \
7 | --version v1 \
8 | --data_path ./playground/data/llava_v1_5_mix665k.json \
9 | --image_folder ./playground/data \
10 | --vision_tower openai/clip-vit-large-patch14-336 \
11 | --pretrain_mm_mlp_adapter ./checkpoints/llava-v1.5-13b-pretrain/mm_projector.bin \
12 | --mm_projector_type mlp2x_gelu \
13 | --mm_vision_select_layer -2 \
14 | --mm_use_im_start_end False \
15 | --mm_use_im_patch_token False \
16 | --image_aspect_ratio pad \
17 | --group_by_modality_length True \
18 | --bf16 True \
19 | --output_dir ./checkpoints/llava-v1.5-13b-lora \
20 | --num_train_epochs 1 \
21 | --per_device_train_batch_size 16 \
22 | --per_device_eval_batch_size 4 \
23 | --gradient_accumulation_steps 1 \
24 | --evaluation_strategy "no" \
25 | --save_strategy "steps" \
26 | --save_steps 50000 \
27 | --save_total_limit 1 \
28 | --learning_rate 2e-4 \
29 | --weight_decay 0. \
30 | --warmup_ratio 0.03 \
31 | --lr_scheduler_type "cosine" \
32 | --logging_steps 1 \
33 | --tf32 True \
34 | --model_max_length 2048 \
35 | --gradient_checkpointing True \
36 | --dataloader_num_workers 4 \
37 | --lazy_preprocess True \
38 | --report_to wandb
39 |
--------------------------------------------------------------------------------
/scripts/v1_5/finetune_task.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | deepspeed llava/train/train_mem.py \
4 | --deepspeed ./scripts/zero3.json \
5 | --model_name_or_path liuhaotian/llava-v1.5-13b \
6 | --version v1 \
7 | --data_path ./playground/data/llava_v1_5_mix665k.json \
8 | --image_folder ./playground/data \
9 | --vision_tower openai/clip-vit-large-patch14-336 \
10 | --mm_projector_type mlp2x_gelu \
11 | --mm_vision_select_layer -2 \
12 | --mm_use_im_start_end False \
13 | --mm_use_im_patch_token False \
14 | --image_aspect_ratio pad \
15 | --group_by_modality_length True \
16 | --bf16 True \
17 | --output_dir ./checkpoints/llava-v1.5-13b-task \
18 | --num_train_epochs 1 \
19 | --per_device_train_batch_size 16 \
20 | --per_device_eval_batch_size 4 \
21 | --gradient_accumulation_steps 1 \
22 | --evaluation_strategy "no" \
23 | --save_strategy "steps" \
24 | --save_steps 50000 \
25 | --save_total_limit 1 \
26 | --learning_rate 2e-5 \
27 | --weight_decay 0. \
28 | --warmup_ratio 0.03 \
29 | --lr_scheduler_type "cosine" \
30 | --logging_steps 1 \
31 | --tf32 True \
32 | --model_max_length 2048 \
33 | --gradient_checkpointing True \
34 | --dataloader_num_workers 4 \
35 | --lazy_preprocess True \
36 | --report_to wandb
37 |
--------------------------------------------------------------------------------
/scripts/v1_5/finetune_task_lora.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | deepspeed llava/train/train_mem.py \
4 | --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
5 | --deepspeed ./scripts/zero3.json \
6 | --model_name_or_path liuhaotian/llava-v1.5-13b \
7 | --version v1 \
8 | --data_path ./playground/data/llava_v1_5_mix665k.json \
9 | --image_folder ./playground/data \
10 | --vision_tower openai/clip-vit-large-patch14-336 \
11 | --mm_projector_type mlp2x_gelu \
12 | --mm_vision_select_layer -2 \
13 | --mm_use_im_start_end False \
14 | --mm_use_im_patch_token False \
15 | --image_aspect_ratio pad \
16 | --group_by_modality_length True \
17 | --bf16 True \
18 | --output_dir ./checkpoints/llava-v1.5-13b-task-lora \
19 | --num_train_epochs 1 \
20 | --per_device_train_batch_size 16 \
21 | --per_device_eval_batch_size 4 \
22 | --gradient_accumulation_steps 1 \
23 | --evaluation_strategy "no" \
24 | --save_strategy "steps" \
25 | --save_steps 50000 \
26 | --save_total_limit 1 \
27 | --learning_rate 2e-4 \
28 | --weight_decay 0. \
29 | --warmup_ratio 0.03 \
30 | --lr_scheduler_type "cosine" \
31 | --logging_steps 1 \
32 | --tf32 True \
33 | --model_max_length 2048 \
34 | --gradient_checkpointing True \
35 | --dataloader_num_workers 4 \
36 | --lazy_preprocess True \
37 | --report_to wandb
38 |
--------------------------------------------------------------------------------
/scripts/v1_5/pretrain.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | deepspeed llava/train/train_mem.py \
4 | --deepspeed ./scripts/zero2.json \
5 | --model_name_or_path lmsys/vicuna-13b-v1.5 \
6 | --version plain \
7 | --data_path ./playground/data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json \
8 | --image_folder ./playground/data/LLaVA-Pretrain/images \
9 | --vision_tower openai/clip-vit-large-patch14-336 \
10 | --mm_projector_type mlp2x_gelu \
11 | --tune_mm_mlp_adapter True \
12 | --mm_vision_select_layer -2 \
13 | --mm_use_im_start_end False \
14 | --mm_use_im_patch_token False \
15 | --bf16 True \
16 | --output_dir ./checkpoints/llava-v1.5-13b-pretrain \
17 | --num_train_epochs 1 \
18 | --per_device_train_batch_size 32 \
19 | --per_device_eval_batch_size 4 \
20 | --gradient_accumulation_steps 1 \
21 | --evaluation_strategy "no" \
22 | --save_strategy "steps" \
23 | --save_steps 24000 \
24 | --save_total_limit 1 \
25 | --learning_rate 1e-3 \
26 | --weight_decay 0. \
27 | --warmup_ratio 0.03 \
28 | --lr_scheduler_type "cosine" \
29 | --logging_steps 1 \
30 | --tf32 True \
31 | --model_max_length 2048 \
32 | --gradient_checkpointing True \
33 | --dataloader_num_workers 4 \
34 | --lazy_preprocess True \
35 | --report_to wandb
36 |
--------------------------------------------------------------------------------
/scripts/zero2.json:
--------------------------------------------------------------------------------
1 | {
2 | "fp16": {
3 | "enabled": "auto",
4 | "loss_scale": 0,
5 | "loss_scale_window": 1000,
6 | "initial_scale_power": 16,
7 | "hysteresis": 2,
8 | "min_loss_scale": 1
9 | },
10 | "bf16": {
11 | "enabled": "auto"
12 | },
13 | "train_micro_batch_size_per_gpu": "auto",
14 | "train_batch_size": "auto",
15 | "gradient_accumulation_steps": "auto",
16 | "zero_optimization": {
17 | "stage": 2,
18 | "overlap_comm": true,
19 | "contiguous_gradients": true,
20 | "sub_group_size": 1e9,
21 | "reduce_bucket_size": "auto"
22 | }
23 | }
--------------------------------------------------------------------------------
/scripts/zero3.json:
--------------------------------------------------------------------------------
1 | {
2 | "fp16": {
3 | "enabled": "auto",
4 | "loss_scale": 0,
5 | "loss_scale_window": 1000,
6 | "initial_scale_power": 16,
7 | "hysteresis": 2,
8 | "min_loss_scale": 1
9 | },
10 | "bf16": {
11 | "enabled": "auto"
12 | },
13 | "train_micro_batch_size_per_gpu": "auto",
14 | "train_batch_size": "auto",
15 | "gradient_accumulation_steps": "auto",
16 | "zero_optimization": {
17 | "stage": 3,
18 | "overlap_comm": true,
19 | "contiguous_gradients": true,
20 | "sub_group_size": 1e9,
21 | "reduce_bucket_size": "auto",
22 | "stage3_prefetch_bucket_size": "auto",
23 | "stage3_param_persistence_threshold": "auto",
24 | "stage3_max_live_parameters": 1e9,
25 | "stage3_max_reuse_distance": 1e9,
26 | "stage3_gather_16bit_weights_on_model_save": true
27 | }
28 | }
--------------------------------------------------------------------------------
/scripts/zero3_offload.json:
--------------------------------------------------------------------------------
1 | {
2 | "fp16": {
3 | "enabled": "auto",
4 | "loss_scale": 0,
5 | "loss_scale_window": 1000,
6 | "initial_scale_power": 16,
7 | "hysteresis": 2,
8 | "min_loss_scale": 1
9 | },
10 | "bf16": {
11 | "enabled": "auto"
12 | },
13 | "optimizer": {
14 | "type": "AdamW",
15 | "params": {
16 | "lr": "auto",
17 | "betas": "auto",
18 | "eps": "auto",
19 | "weight_decay": "auto"
20 | }
21 | },
22 | "scheduler": {
23 | "type": "WarmupLR",
24 | "params": {
25 | "warmup_min_lr": "auto",
26 | "warmup_max_lr": "auto",
27 | "warmup_num_steps": "auto"
28 | }
29 | },
30 | "zero_optimization": {
31 | "stage": 3,
32 | "offload_optimizer": {
33 | "device": "cpu",
34 | "pin_memory": true
35 | },
36 | "offload_param": {
37 | "device": "cpu",
38 | "pin_memory": true
39 | },
40 | "overlap_comm": true,
41 | "contiguous_gradients": true,
42 | "sub_group_size": 1e9,
43 | "reduce_bucket_size": "auto",
44 | "stage3_prefetch_bucket_size": "auto",
45 | "stage3_param_persistence_threshold": "auto",
46 | "stage3_max_live_parameters": 1e9,
47 | "stage3_max_reuse_distance": 1e9,
48 | "gather_16bit_weights_on_model_save": true
49 | },
50 | "gradient_accumulation_steps": "auto",
51 | "gradient_clipping": "auto",
52 | "train_batch_size": "auto",
53 | "train_micro_batch_size_per_gpu": "auto",
54 | "steps_per_print": 1e5,
55 | "wall_clock_breakdown": false
56 | }
--------------------------------------------------------------------------------