├── assets
├── erf.png
├── ms2d.jpg
└── mamba_image.png
├── analyze
├── mmpretrain_configs
│ ├── readme.md
│ └── configs
│ │ ├── tinyvit
│ │ ├── tinyvit-11m-distill_8xb256_in1k.py
│ │ ├── tinyvit-21m-distill_8xb256_in1k.py
│ │ ├── tinyvit-5m-distill_8xb256_in1k.py
│ │ ├── tinyvit-11m_8xb256_in1k.py
│ │ ├── tinyvit-21m_8xb256_in1k.py
│ │ └── tinyvit-5m_8xb256_in1k.py
│ │ ├── repvgg
│ │ ├── repvgg-A0_deploy_in1k.py
│ │ ├── repvgg-A1_8xb32_in1k.py
│ │ ├── repvgg-B3g4_8xb32_in1k.py
│ │ ├── repvgg-A2_8xb32_in1k.py
│ │ ├── repvgg-B0_8xb32_in1k.py
│ │ ├── repvgg-B1_8xb32_in1k.py
│ │ ├── repvgg-B2_8xb32_in1k.py
│ │ ├── repvgg-B1g2_8xb32_in1k.py
│ │ ├── repvgg-B1g4_8xb32_in1k.py
│ │ └── repvgg-B2g4_8xb32_in1k.py
│ │ ├── repmlp
│ │ ├── repmlp-base_delopy_8xb64_in1k.py
│ │ └── repmlp-base_deploy_8xb64_in1k-256px.py
│ │ ├── mobileone
│ │ └── deploy
│ │ │ ├── mobileone-s0_deploy_8xb32_in1k.py
│ │ │ ├── mobileone-s1_deploy_8xb32_in1k.py
│ │ │ ├── mobileone-s2_deploy_8xb32_in1k.py
│ │ │ ├── mobileone-s3_deploy_8xb32_in1k.py
│ │ │ └── mobileone-s4_deploy_8xb32_in1k.py
│ │ ├── riformer
│ │ └── deploy
│ │ │ ├── riformer-m36-deploy_8xb128_in1k.py
│ │ │ ├── riformer-m48-deploy_8xb64_in1k.py
│ │ │ ├── riformer-s12-deploy_8xb128_in1k.py
│ │ │ ├── riformer-s24-deploy_8xb128_in1k.py
│ │ │ ├── riformer-s36-deploy_8xb128_in1k.py
│ │ │ ├── riformer-m36-deploy_8xb64_in1k-384px.py
│ │ │ ├── riformer-m48-deploy_8xb64_in1k-384px.py
│ │ │ ├── riformer-s12-deploy_8xb128_in1k-384px.py
│ │ │ ├── riformer-s24-deploy_8xb128_in1k-384px.py
│ │ │ └── riformer-s36-deploy_8xb64_in1k-384px.py
│ │ ├── levit
│ │ ├── deploy
│ │ │ ├── levit-128_8xb256_in1k.py
│ │ │ ├── levit-128s_8xb256_in1k.py
│ │ │ ├── levit-192_8xb256_in1k.py
│ │ │ ├── levit-256_8xb256_in1k.py
│ │ │ └── levit-384_8xb256_in1k.py
│ │ ├── levit-256_8xb256_in1k.py
│ │ ├── levit-128_8xb256_in1k.py
│ │ ├── levit-192_8xb256_in1k.py
│ │ ├── levit-128s_8xb256_in1k.py
│ │ └── levit-384_8xb256_in1k.py
│ │ ├── replknet
│ │ ├── deploy
│ │ │ ├── replknet-31B-deploy_32xb64_in1k.py
│ │ │ ├── replknet-31B-deploy_32xb64_in1k-384px.py
│ │ │ ├── replknet-31L-deploy_32xb64_in1k-384px.py
│ │ │ └── replknet-XL-deploy_32xb64_in1k-320px.py
│ │ ├── replknet-31B_32xb64_in1k.py
│ │ ├── replknet-XL_32xb64_in1k-320px.py
│ │ ├── replknet-31B_32xb64_in1k-384px.py
│ │ └── replknet-31L_32xb64_in1k-384px.py
│ │ ├── efficientnet_v2
│ │ ├── efficientnetv2-l_8xb32_in21k.py
│ │ ├── efficientnetv2-m_8xb32_in21k.py
│ │ └── efficientnetv2-xl_8xb32_in21k.py
│ │ ├── resnet
│ │ ├── resnet50_8xb32-fp16_in1k.py
│ │ ├── resnet50_8xb32-fp16-dynamic_in1k.py
│ │ ├── resnet101_8xb32_in1k.py
│ │ ├── resnet152_8xb32_in1k.py
│ │ ├── resnet18_8xb32_in1k.py
│ │ ├── resnet34_8xb32_in1k.py
│ │ ├── resnet50_8xb32_in1k.py
│ │ ├── resnet18_8xb16_cifar10.py
│ │ ├── resnet34_8xb16_cifar10.py
│ │ ├── resnet50_32xb64-warmup_in1k.py
│ │ ├── resnet50_8xb16_cifar10.py
│ │ ├── resnet101_8xb16_cifar10.py
│ │ ├── resnet152_8xb16_cifar10.py
│ │ ├── resnet50_8xb32-coslr_in1k.py
│ │ ├── resnet50_8xb32-cutmix_in1k.py
│ │ ├── resnet50_8xb32-mixup_in1k.py
│ │ ├── resnet50_32xb64-warmup-coslr_in1k.py
│ │ ├── resnet50_8xb16-mixup_cifar10.py
│ │ ├── resnet50_8xb32-lbs_in1k.py
│ │ ├── resnetv1c50_8xb32_in1k.py
│ │ ├── resnetv1d101_8xb32_in1k.py
│ │ ├── resnetv1d152_8xb32_in1k.py
│ │ ├── resnetv1d50_8xb32_in1k.py
│ │ ├── resnetv1c101_8xb32_in1k.py
│ │ ├── resnetv1c152_8xb32_in1k.py
│ │ ├── resnet50_8xb128_coslr-90e_in21k.py
│ │ ├── resnet50_32xb64-warmup-lbs_in1k.py
│ │ ├── resnet50_8xb32-coslr-preciseBN_in1k.py
│ │ └── resnet50_8xb16_cifar100.py
│ │ ├── efficientformer
│ │ ├── efficientformer-l3_8xb128_in1k.py
│ │ ├── efficientformer-l7_8xb128_in1k.py
│ │ └── efficientformer-l1_8xb128_in1k.py
│ │ ├── twins
│ │ ├── twins-svt-small_8xb128_in1k.py
│ │ ├── twins-pcpvt-small_8xb128_in1k.py
│ │ ├── twins-pcpvt-large_16xb64_in1k.py
│ │ └── twins-svt-large_16xb64_in1k.py
│ │ ├── simmim
│ │ └── simmim_swin-base-w6_16xb128-amp-coslr-100e_in1k-192px.py
│ │ ├── regnet
│ │ ├── regnetx-1.6gf_8xb128_in1k.py
│ │ ├── regnetx-800mf_8xb128_in1k.py
│ │ ├── regnetx-12gf_8xb64_in1k.py
│ │ ├── regnetx-3.2gf_8xb64_in1k.py
│ │ └── regnetx-4.0gf_8xb64_in1k.py
│ │ ├── vgg
│ │ ├── vgg11bn_8xb32_in1k.py
│ │ ├── vgg13bn_8xb32_in1k.py
│ │ ├── vgg16bn_8xb32_in1k.py
│ │ ├── vgg19bn_8xb32_in1k.py
│ │ ├── vgg11_8xb32_in1k.py
│ │ ├── vgg13_8xb32_in1k.py
│ │ ├── vgg16_8xb32_in1k.py
│ │ └── vgg19_8xb32_in1k.py
│ │ ├── seresnet
│ │ ├── seresnet101_8xb32_in1k.py
│ │ ├── seresnet50_8xb32_in1k.py
│ │ ├── seresnext50-32x4d_8xb32_in1k.py
│ │ └── seresnext101-32x4d_8xb32_in1k.py
│ │ ├── vig
│ │ ├── vig-base_8xb128_in1k.py
│ │ ├── vig-tiny_8xb128_in1k.py
│ │ ├── vig-small_8xb128_in1k.py
│ │ ├── pvig-small_8xb128_in1k.py
│ │ ├── pvig-tiny_8xb128_in1k.py
│ │ └── pvig-medium_8xb128_in1k.py
│ │ ├── wrn
│ │ ├── wide-resnet50_8xb32_in1k.py
│ │ ├── wide-resnet50_timm_8xb32_in1k.py
│ │ └── wide-resnet101_8xb32_in1k.py
│ │ ├── resnext
│ │ ├── resnext50-32x4d_8xb32_in1k.py
│ │ ├── resnext101-32x4d_8xb32_in1k.py
│ │ ├── resnext101-32x8d_8xb32_in1k.py
│ │ └── resnext152-32x4d_8xb32_in1k.py
│ │ ├── res2net
│ │ ├── res2net101-w26-s4_8xb32_in1k.py
│ │ ├── res2net50-w14-s8_8xb32_in1k.py
│ │ └── res2net50-w26-s8_8xb32_in1k.py
│ │ ├── mobilenet_v2
│ │ └── mobilenet-v2_8xb32_in1k.py
│ │ ├── revvit
│ │ ├── revvit-base_8xb256_in1k.py
│ │ └── revvit-small_8xb256_in1k.py
│ │ ├── mixmim
│ │ └── benchmarks
│ │ │ └── mixmim-base_8xb64_in1k.py
│ │ ├── shufflenet_v1
│ │ └── shufflenet-v1-1x_16xb64_in1k.py
│ │ ├── shufflenet_v2
│ │ └── shufflenet-v2-1x_16xb64_in1k.py
│ │ ├── swin_transformer_v2
│ │ ├── swinv2-base-w8_16xb64_in1k-256px.py
│ │ ├── swinv2-tiny-w8_16xb64_in1k-256px.py
│ │ ├── swinv2-small-w8_16xb64_in1k-256px.py
│ │ ├── swinv2-base-w16_16xb64_in1k-256px.py
│ │ ├── swinv2-small-w16_16xb64_in1k-256px.py
│ │ ├── swinv2-tiny-w16_16xb64_in1k-256px.py
│ │ ├── swinv2-large-w16_in21k-pre_16xb64_in1k-256px.py
│ │ ├── swinv2-base-w16_in21k-pre_16xb64_in1k-256px.py
│ │ ├── swinv2-base-w24_in21k-pre_16xb64_in1k-384px.py
│ │ └── swinv2-large-w24_in21k-pre_16xb64_in1k-384px.py
│ │ ├── conformer
│ │ ├── conformer-base-p16_8xb128_in1k.py
│ │ ├── conformer-small-p16_8xb128_in1k.py
│ │ ├── conformer-small-p32_8xb128_in1k.py
│ │ └── conformer-tiny-p16_8xb128_in1k.py
│ │ ├── eva
│ │ ├── eva-g-p14_8xb16_in1k-336px.py
│ │ ├── eva-g-p14_8xb16_in1k-560px.py
│ │ ├── eva-l-p14_8xb16_in1k-196px.py
│ │ └── eva-l-p14_8xb16_in1k-336px.py
│ │ ├── mlp_mixer
│ │ ├── mlp-mixer-base-p16_64xb64_in1k.py
│ │ └── mlp-mixer-large-p16_64xb64_in1k.py
│ │ ├── _base_
│ │ ├── models
│ │ │ ├── vgg11.py
│ │ │ ├── vgg13.py
│ │ │ ├── vgg16.py
│ │ │ ├── vgg19.py
│ │ │ ├── inception_v3.py
│ │ │ ├── vgg11bn.py
│ │ │ ├── vgg13bn.py
│ │ │ ├── vgg16bn.py
│ │ │ ├── vgg19bn.py
│ │ │ ├── densenet
│ │ │ │ ├── densenet121.py
│ │ │ │ ├── densenet161.py
│ │ │ │ ├── densenet169.py
│ │ │ │ └── densenet201.py
│ │ │ ├── convmixer
│ │ │ │ ├── convmixer-1024-20.py
│ │ │ │ ├── convmixer-1536-20.py
│ │ │ │ └── convmixer-768-32.py
│ │ │ ├── efficientnet_b0.py
│ │ │ ├── efficientnet_b1.py
│ │ │ ├── efficientnet_b2.py
│ │ │ ├── efficientnet_b3.py
│ │ │ ├── efficientnet_b4.py
│ │ │ ├── efficientnet_b5.py
│ │ │ ├── efficientnet_b6.py
│ │ │ ├── efficientnet_b7.py
│ │ │ ├── efficientnet_b8.py
│ │ │ ├── efficientnet_l2.py
│ │ │ ├── shufflenet_v1_1x.py
│ │ │ ├── mobilevit
│ │ │ │ ├── mobilevit_s.py
│ │ │ │ ├── mobilevit_xs.py
│ │ │ │ └── mobilevit_xxs.py
│ │ │ ├── mobilenet_v2_1x.py
│ │ │ ├── regnet
│ │ │ │ ├── regnetx_1.6gf.py
│ │ │ │ ├── regnetx_12gf.py
│ │ │ │ ├── regnetx_3.2gf.py
│ │ │ │ ├── regnetx_4.0gf.py
│ │ │ │ ├── regnetx_400mf.py
│ │ │ │ ├── regnetx_6.4gf.py
│ │ │ │ ├── regnetx_8.0gf.py
│ │ │ │ └── regnetx_800mf.py
│ │ │ ├── shufflenet_v2_1x.py
│ │ │ ├── efficientnet_v2
│ │ │ │ ├── efficientnetv2_b0.py
│ │ │ │ ├── efficientnetv2_b1.py
│ │ │ │ ├── efficientnetv2_b2.py
│ │ │ │ ├── efficientnetv2_b3.py
│ │ │ │ ├── efficientnetv2_l.py
│ │ │ │ ├── efficientnetv2_m.py
│ │ │ │ ├── efficientnetv2_s.py
│ │ │ │ └── efficientnetv2_xl.py
│ │ │ ├── replknet-XL_in1k.py
│ │ │ ├── repvgg-A0_in1k.py
│ │ │ ├── replknet-31L_in1k.py
│ │ │ ├── swin_transformer
│ │ │ │ ├── large_224.py
│ │ │ │ ├── base_384.py
│ │ │ │ └── large_384.py
│ │ │ ├── efficientnet_em.py
│ │ │ ├── efficientnet_es.py
│ │ │ ├── resnet18_cifar.py
│ │ │ ├── resnet34_cifar.py
│ │ │ ├── resnet101_cifar.py
│ │ │ ├── resnet152_cifar.py
│ │ │ ├── resnet50_cifar.py
│ │ │ ├── hrnet
│ │ │ │ ├── hrnet-w18.py
│ │ │ │ ├── hrnet-w30.py
│ │ │ │ ├── hrnet-w32.py
│ │ │ │ ├── hrnet-w40.py
│ │ │ │ ├── hrnet-w44.py
│ │ │ │ ├── hrnet-w48.py
│ │ │ │ └── hrnet-w64.py
│ │ │ ├── mobilenet_v3
│ │ │ │ └── mobilenet_v3_small_cifar.py
│ │ │ ├── resnet101.py
│ │ │ ├── resnet152.py
│ │ │ ├── resnet18.py
│ │ │ ├── resnet34.py
│ │ │ ├── resnet50.py
│ │ │ ├── resnet34_gem.py
│ │ │ ├── resnetv1c50.py
│ │ │ ├── resnetv1d101.py
│ │ │ ├── resnetv1d152.py
│ │ │ ├── resnetv1d50.py
│ │ │ ├── seresnet101.py
│ │ │ ├── seresnet50.py
│ │ │ ├── van
│ │ │ │ ├── van_base.py
│ │ │ │ └── van_large.py
│ │ │ ├── res2net101-w26-s4.py
│ │ │ ├── res2net50-w14-s8.py
│ │ │ ├── res2net50-w26-s4.py
│ │ │ ├── res2net50-w26-s6.py
│ │ │ ├── res2net50-w26-s8.py
│ │ │ ├── res2net50-w48-s2.py
│ │ │ ├── swin_transformer_v2
│ │ │ │ ├── large_256.py
│ │ │ │ └── large_384.py
│ │ │ ├── mobileone
│ │ │ │ ├── mobileone_s0.py
│ │ │ │ ├── mobileone_s1.py
│ │ │ │ ├── mobileone_s2.py
│ │ │ │ ├── mobileone_s3.py
│ │ │ │ └── mobileone_s4.py
│ │ │ ├── repmlp-base_224.py
│ │ │ ├── resnet50_label_smooth.py
│ │ │ ├── resnet50_mixup.py
│ │ │ ├── resnext101_32x4d.py
│ │ │ ├── resnext101_32x8d.py
│ │ │ ├── resnext152_32x4d.py
│ │ │ ├── resnext50_32x4d.py
│ │ │ ├── davit
│ │ │ │ ├── davit-tiny.py
│ │ │ │ ├── davit-base.py
│ │ │ │ └── davit-small.py
│ │ │ ├── resnet50_cifar_mixup.py
│ │ │ ├── seresnext101_32x4d.py
│ │ │ ├── seresnext50_32x4d.py
│ │ │ ├── wide-resnet50.py
│ │ │ └── convnext_v2
│ │ │ │ ├── atto.py
│ │ │ │ ├── nano.py
│ │ │ │ ├── pico.py
│ │ │ │ └── femto.py
│ │ └── schedules
│ │ │ ├── imagenet_sgd_coslr_200e.py
│ │ │ ├── imagenet_lars_coslr_90e.py
│ │ │ ├── imagenet_sgd_coslr_100e.py
│ │ │ ├── imagenet_sgd_steplr_100e.py
│ │ │ ├── cifar10_bs128.py
│ │ │ ├── imagenet_bs256_epochstep.py
│ │ │ ├── imagenet_bs256.py
│ │ │ ├── imagenet_bs256_140e.py
│ │ │ └── imagenet_bs256_coslr.py
│ │ ├── davit
│ │ ├── davit-base_4xb256_in1k.py
│ │ ├── davit-tiny_4xb256_in1k.py
│ │ └── davit-small_4xb256_in1k.py
│ │ ├── hivit
│ │ ├── hivit-base-p16_16xb64_in1k.py
│ │ ├── hivit-small-p16_16xb64_in1k.py
│ │ └── hivit-tiny-p16_16xb64_in1k.py
│ │ ├── swin_transformer
│ │ ├── swin-base_16xb64_in1k.py
│ │ ├── swin-large_16xb64_in1k.py
│ │ ├── swin-small_16xb64_in1k.py
│ │ ├── swin-tiny_16xb64_in1k.py
│ │ ├── swin-base_16xb64_in1k-384px.py
│ │ └── swin-large_16xb64_in1k-384px.py
│ │ ├── hrnet
│ │ ├── hrnet-w18_4xb32_in1k.py
│ │ ├── hrnet-w30_4xb32_in1k.py
│ │ ├── hrnet-w32_4xb32_in1k.py
│ │ ├── hrnet-w40_4xb32_in1k.py
│ │ ├── hrnet-w44_4xb32_in1k.py
│ │ ├── hrnet-w48_4xb32_in1k.py
│ │ └── hrnet-w64_4xb32_in1k.py
│ │ ├── hornet
│ │ ├── hornet-base_8xb64_in1k.py
│ │ ├── hornet-small_8xb64_in1k.py
│ │ ├── hornet-base-gf_8xb64_in1k.py
│ │ ├── hornet-tiny_8xb128_in1k.py
│ │ ├── hornet-small-gf_8xb64_in1k.py
│ │ └── hornet-tiny-gf_8xb128_in1k.py
│ │ ├── mae
│ │ └── benchmarks
│ │ │ ├── vit-huge-p14_8xb128-fsdp-coslr-50e_in1k.py
│ │ │ └── vit-large-p16_8xb128-fsdp-coslr-50e_in1k.py
│ │ ├── mobilenet_v3
│ │ └── mobilenet-v3-small_8xb16_cifar10.py
│ │ ├── vision_transformer
│ │ ├── vit-base-p16_64xb64_in1k.py
│ │ ├── vit-base-p32_64xb64_in1k.py
│ │ ├── vit-large-p16_64xb64_in1k.py
│ │ └── vit-large-p32_64xb64_in1k.py
│ │ ├── glip
│ │ ├── glip-t_headless.py
│ │ └── glip-l_headless.py
│ │ ├── edgenext
│ │ ├── edgenext-base_8xb256-usi_in1k.py
│ │ └── edgenext-small_8xb256-usi_in1k.py
│ │ ├── dinov2
│ │ ├── vit-base-p14_dinov2-pre_headless.py
│ │ ├── vit-large-p14_dinov2-pre_headless.py
│ │ └── vit-small-p14_dinov2-pre_headless.py
│ │ ├── barlowtwins
│ │ └── benchmarks
│ │ │ └── resnet50_8xb32-linear-coslr-100e_in1k.py
│ │ ├── eva02
│ │ ├── eva02-small-p14_headless.py
│ │ └── eva02-tiny-p14_headless.py
│ │ └── densenet
│ │ ├── densenet121_4xb256_in1k.py
│ │ ├── densenet161_4xb256_in1k.py
│ │ ├── densenet169_4xb256_in1k.py
│ │ └── densenet201_4xb256_in1k.py
└── get_ckpt.py
├── detection
├── configs
│ ├── mask_rcnn
│ │ ├── mask-rcnn_r50_fpn_ms-poly-3x_coco.py
│ │ ├── mask-rcnn_r50_fpn_amp-1x_coco.py
│ │ ├── mask-rcnn_r50_fpn_1x_coco.py
│ │ ├── mask-rcnn_r50_fpn_2x_coco.py
│ │ ├── mask-rcnn_r50-caffe-c4_1x_coco.py
│ │ ├── mask-rcnn_r101_fpn_1x_coco.py
│ │ ├── mask-rcnn_r101_fpn_2x_coco.py
│ │ ├── mask-rcnn_r101-caffe_fpn_1x_coco.py
│ │ ├── mask-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py
│ │ ├── mask-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py
│ │ ├── mask-rcnn_r101_fpn_ms-poly-3x_coco.py
│ │ ├── mask-rcnn_r50-caffe_fpn_ms-poly-2x_coco.py
│ │ ├── mask-rcnn_r50-caffe_fpn_ms-poly-3x_coco.py
│ │ ├── mask-rcnn_r50-caffe_fpn_1x_coco.py
│ │ ├── mask-rcnn_x101-32x4d_fpn_1x_coco.py
│ │ ├── mask-rcnn_x101-32x4d_fpn_2x_coco.py
│ │ ├── mask-rcnn_x101-64x4d_fpn_1x_coco.py
│ │ ├── mask-rcnn_x101-64x4d_fpn_2x_coco.py
│ │ ├── mask-rcnn_x101-32x4d_fpn_ms-poly-3x_coco.py
│ │ └── mask-rcnn_x101-64x4d_fpn_ms-poly_3x_coco.py
│ └── swin
│ │ ├── mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
│ │ └── mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco.py
├── readme.md
├── tools
│ ├── analysis_tools
│ │ └── mot
│ │ │ └── dist_mot_search.sh
│ ├── dataset_converters
│ │ └── scripts
│ │ │ ├── preprocess_voc2012.sh
│ │ │ └── preprocess_voc2007.sh
│ ├── dist_train.sh
│ ├── dist_test_tracking.sh
│ └── dist_test.sh
└── testmmcv.py
├── .idea
├── vcs.xml
├── .gitignore
├── inspectionProfiles
│ └── profiles_settings.xml
├── modules.xml
├── sshConfigs.xml
└── misc.xml
├── segmentation
├── configs
│ ├── upernet
│ │ ├── upernet_r101_4xb4-80k_ade20k-512x512.py
│ │ ├── upernet_r101_4xb4-160k_ade20k-512x512.py
│ │ ├── upernet_r101_4xb4-20k_voc12aug-512x512.py
│ │ ├── upernet_r101_4xb4-40k_voc12aug-512x512.py
│ │ ├── upernet_r101_4xb2-40k_cityscapes-512x1024.py
│ │ ├── upernet_r101_4xb2-40k_cityscapes-769x769.py
│ │ ├── upernet_r101_4xb2-80k_cityscapes-512x1024.py
│ │ ├── upernet_r101_4xb2-80k_cityscapes-769x769.py
│ │ ├── upernet_r18_4xb2-40k_cityscapes-512x1024.py
│ │ ├── upernet_r18_4xb2-80k_cityscapes-512x1024.py
│ │ ├── upernet_r50_4xb2-40k_cityscapes-512x1024.py
│ │ ├── upernet_r50_4xb2-80k_cityscapes-512x1024.py
│ │ ├── upernet_r50_4xb4-160k_ade20k-512x512.py
│ │ ├── upernet_r50_4xb4-80k_ade20k-512x512.py
│ │ ├── upernet_r18_4xb4-160k_ade20k-512x512.py
│ │ ├── upernet_r18_4xb4-80k_ade20k-512x512.py
│ │ ├── upernet_r50_4xb4-20k_voc12aug-512x512.py
│ │ ├── upernet_r50_4xb4-40k_voc12aug-512x512.py
│ │ ├── upernet_r18_4xb4-20k_voc12aug-512x512.py
│ │ ├── upernet_r18_4xb4-40k_voc12aug-512x512.py
│ │ ├── upernet_r50_4xb2-40k_cityscapes-769x769.py
│ │ └── upernet_r50_4xb2-80k_cityscapes-769x769.py
│ ├── vit
│ │ ├── vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py
│ │ ├── vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py
│ │ ├── vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py
│ │ └── vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py
│ ├── swin
│ │ ├── swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── swin-large-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
│ │ └── swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
│ └── _base_
│ │ └── default_runtime.py
├── readme.md
└── tools
│ ├── dist_train.sh
│ └── dist_test.sh
├── requirements.txt
├── classification
├── readme.md
├── configs
│ ├── vssm
│ │ ├── vssm_tiny_224.yaml
│ │ ├── vssm_small_224.yaml
│ │ └── vssm_base_224.yaml
│ └── ms_vssm
│ │ ├── vssm_micro_224_ms.yaml
│ │ ├── vssm_nano_224_ms.yaml
│ │ └── vssm_tiny_224_ms.yaml
└── data
│ └── __init__.py
└── kernels
└── selective_scan
└── csrc
└── selective_scan
├── cusnrow
├── selective_scan_core_bwd3.cu
├── selective_scan_core_bwd4.cu
├── selective_scan_core_bwd.cu
├── selective_scan_core_bwd2.cu
├── selective_scan_core_fwd.cu
├── selective_scan_core_fwd2.cu
├── selective_scan_core_fwd3.cu
└── selective_scan_core_fwd4.cu
├── cus
├── selective_scan_core_bwd.cu
└── selective_scan_core_fwd.cu
└── cusndstate
└── selective_scan_core_bwd.cu
/assets/erf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YuHengsss/MSVMamba/HEAD/assets/erf.png
--------------------------------------------------------------------------------
/assets/ms2d.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YuHengsss/MSVMamba/HEAD/assets/ms2d.jpg
--------------------------------------------------------------------------------
/assets/mamba_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/YuHengsss/MSVMamba/HEAD/assets/mamba_image.png
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/readme.md:
--------------------------------------------------------------------------------
1 | ## origins
2 | copied from https://github.com/open-mmlab/mmpretrain: `version 1.1.1`
3 |
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-11m-distill_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './tinyvit-11m_8xb256_in1k.py',
3 | ]
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-21m-distill_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './tinyvit-21m_8xb256_in1k.py',
3 | ]
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-5m-distill_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './tinyvit-5m_8xb256_in1k.py',
3 | ]
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-A0_deploy_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-A1_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='A1'))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B3g4_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-B3_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B3g4'))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repmlp/repmlp-base_delopy_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./repmlp-base_8xb64_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobileone/deploy/mobileone-s0_deploy_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../mobileone-s0_8xb32_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobileone/deploy/mobileone-s1_deploy_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../mobileone-s1_8xb32_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobileone/deploy/mobileone-s2_deploy_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../mobileone-s2_8xb32_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobileone/deploy/mobileone-s3_deploy_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../mobileone-s3_8xb32_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobileone/deploy/mobileone-s4_deploy_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['../mobileone-s4_8xb32_in1k.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repmlp/repmlp-base_deploy_8xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./repmlp-base_8xb64_in1k-256px.py']
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-A2_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='A2'), head=dict(in_channels=1408))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B0_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B0'), head=dict(in_channels=1280))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B1_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B1'), head=dict(in_channels=2048))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B2_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B2'), head=dict(in_channels=2560))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-m36-deploy_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-m36_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-m48-deploy_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-m48_8xb64_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s12-deploy_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s12_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s24-deploy_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s24_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s36-deploy_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s36_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B1g2_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B1g2'), head=dict(in_channels=2048))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B1g4_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-A0_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B1g4'), head=dict(in_channels=2048))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/repvgg/repvgg-B2g4_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './repvgg-B3_8xb32_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='B2g4'), head=dict(in_channels=2560))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/deploy/levit-128_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../levit-128_8xb256_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True), head=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/deploy/levit-128s_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../levit-128s_8xb256_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True), head=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/deploy/levit-192_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../levit-192_8xb256_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True), head=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/deploy/levit-256_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../levit-256_8xb256_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True), head=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/deploy/levit-384_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../levit-384_8xb256_in1k.py'
2 |
3 | model = dict(backbone=dict(deploy=True), head=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-m36-deploy_8xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-m36_8xb64_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-m48-deploy_8xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-m48_8xb64_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s12-deploy_8xb128_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s12_8xb128_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s24-deploy_8xb128_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s24_8xb128_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/riformer/deploy/riformer-s36-deploy_8xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../riformer-s36_8xb64_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(deploy=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/deploy/replknet-31B-deploy_32xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../replknet-31B_32xb64_in1k.py'
2 |
3 | model = dict(backbone=dict(small_kernel_merged=True))
4 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientnet_v2/efficientnetv2-l_8xb32_in21k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./efficientnetv2-s_8xb32_in21k.py']
2 |
3 | # model setting
4 | model = dict(backbone=dict(arch='l'), )
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientnet_v2/efficientnetv2-m_8xb32_in21k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./efficientnetv2-s_8xb32_in21k.py']
2 |
3 | # model setting
4 | model = dict(backbone=dict(arch='m'), )
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientnet_v2/efficientnetv2-xl_8xb32_in21k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./efficientnetv2-s_8xb32_in21k.py']
2 |
3 | # model setting
4 | model = dict(backbone=dict(arch='xl'), )
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/deploy/replknet-31B-deploy_32xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../replknet-31B_32xb64_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(small_kernel_merged=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/deploy/replknet-31L-deploy_32xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../replknet-31L_32xb64_in1k-384px.py'
2 |
3 | model = dict(backbone=dict(small_kernel_merged=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/deploy/replknet-XL-deploy_32xb64_in1k-320px.py:
--------------------------------------------------------------------------------
1 | _base_ = '../replknet-XL_32xb64_in1k-320px.py'
2 |
3 | model = dict(backbone=dict(small_kernel_merged=True))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-fp16_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./resnet50_8xb32_in1k.py']
2 |
3 | # schedule settings
4 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale=512.)
5 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientformer/efficientformer-l3_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './efficientformer-l1_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='l3'), head=dict(in_channels=512))
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientformer/efficientformer-l7_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = './efficientformer-l1_8xb128_in1k.py'
2 |
3 | model = dict(backbone=dict(arch='l7'), head=dict(in_channels=768))
4 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/twins/twins-svt-small_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['twins-svt-base_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(backbone=dict(arch='small'), head=dict(in_channels=512))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-fp16-dynamic_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./resnet50_8xb32_in1k.py']
2 |
3 | # schedule settings
4 | optim_wrapper = dict(type='AmpOptimWrapper', loss_scale='dynamic')
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/twins/twins-pcpvt-small_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['twins-pcpvt-base_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(backbone=dict(arch='small'), head=dict(in_channels=512))
5 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch
2 | torchvision
3 | torchaudio
4 | packaging
5 | timm==0.4.12
6 | pytest
7 | chardet
8 | yacs
9 | termcolor
10 | submitit
11 | tensorboardX
12 | fvcore
13 | seaborn
14 | tensorboard
15 |
--------------------------------------------------------------------------------
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Editor-based HTTP Client requests
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50_fpn_amp-1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 |
3 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
4 | optim_wrapper = dict(type='AmpOptimWrapper')
5 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet101_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet101.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet152_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet152.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet18_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet18.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet34_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet34.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/simmim/simmim_swin-base-w6_16xb128-amp-coslr-100e_in1k-192px.py:
--------------------------------------------------------------------------------
1 | _base_ = 'simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py'
2 |
3 | # dataset 16 GPUs x 128
4 | train_dataloader = dict(batch_size=128)
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet18_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet18_cifar.py', '../_base_/datasets/cifar10_bs16.py',
3 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet34_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet34_cifar.py', '../_base_/datasets/cifar10_bs16.py',
3 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_32xb64-warmup_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs64.py',
3 | '../_base_/schedules/imagenet_bs2048.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_cifar.py', '../_base_/datasets/cifar10_bs16.py',
3 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/swin/mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py'
2 | # Enable automatic-mixed-precision training with AmpOptimWrapper.
3 | optim_wrapper = dict(type='AmpOptimWrapper')
4 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/regnet/regnetx-1.6gf_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./regnetx-400mf_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(type='RegNet', arch='regnetx_1.6gf'),
6 | head=dict(in_channels=912, ))
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/regnet/regnetx-800mf_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./regnetx-400mf_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(type='RegNet', arch='regnetx_800mf'),
6 | head=dict(in_channels=672, ))
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet101_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet101_cifar.py',
3 | '../_base_/datasets/cifar10_bs16.py',
4 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet152_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet152_cifar.py',
3 | '../_base_/datasets/cifar10_bs16.py',
4 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask-rcnn_r50-caffe-c4.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-coslr_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
3 | '../_base_/schedules/imagenet_bs256_coslr.py',
4 | '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-cutmix_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_cutmix.py',
3 | '../_base_/datasets/imagenet_bs32.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-mixup_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_mixup.py',
3 | '../_base_/datasets/imagenet_bs32.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg11bn_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg11bn.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg13bn_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg13bn.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg16bn_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg16bn.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg19bn_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg19bn.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_32xb64-warmup-coslr_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs64.py',
3 | '../_base_/schedules/imagenet_bs2048_coslr.py',
4 | '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb16-mixup_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_cifar_mixup.py',
3 | '../_base_/datasets/cifar10_bs16.py',
4 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-lbs_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_label_smooth.py',
3 | '../_base_/datasets/imagenet_bs32.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1c50_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1c50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1d101_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1d101.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1d152_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1d152.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1d50_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1d50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/seresnet/seresnet101_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/seresnet101.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/vig-base_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/vig_base.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/vig-tiny_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/vig_tiny.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/wrn/wide-resnet50_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/wide-resnet50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnext/resnext50-32x4d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnext50_32x4d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/vig-small_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/vig_small.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/wrn/wide-resnet50_timm_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/wide-resnet50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_bicubic.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/res2net/res2net101-w26-s4_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/res2net101-w26-s4.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/res2net/res2net50-w14-s8_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/res2net50-w14-s8.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/res2net/res2net50-w26-s8_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/res2net50-w26-s8.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnext/resnext101-32x4d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnext101_32x4d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnext/resnext101-32x8d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnext101_32x8d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnext/resnext152-32x4d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnext152_32x4d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/seresnet/seresnet50_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/seresnet50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_140e.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/seresnet/seresnext50-32x4d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/seresnext50_32x4d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/pvig-small_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/pyramid_vig_small.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/pvig-tiny_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/pyramid_vig_tiny.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/detection/readme.md:
--------------------------------------------------------------------------------
1 | ## origins
2 | `configs/` and `tools/` are copied from https://github.com/open-mmlab/mmdetection: `version 3.3.0`
3 |
4 |
5 | ## modifications
6 | `tools/train.py#12` is added with `import model`
7 | `tools/test.py#17` is added with `import model`
8 |
9 |
--------------------------------------------------------------------------------
/segmentation/readme.md:
--------------------------------------------------------------------------------
1 | ## origins
2 | `configs/` and `tools/` are copied from https://github.com/open-mmlab/mmsegmentation: `version 1.2.2`
3 |
4 | ## modifications
5 | `tools/train.py#13` is added with `import model`
6 | `tools/test.py#8` is added with `import model`
7 |
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/seresnet/seresnext101-32x4d_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/seresnext101_32x4d.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vig/pvig-medium_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vig/pyramid_vig_medium.py',
3 | '../_base_/datasets/imagenet_bs128_vig_224.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | )
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/twins/twins-pcpvt-large_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['twins-pcpvt-base_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(backbone=dict(arch='large'), head=dict(in_channels=512))
5 |
6 | # dataset settings
7 | train_dataloader = dict(batch_size=64)
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/twins/twins-svt-large_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['twins-svt-base_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(backbone=dict(arch='large'), head=dict(in_channels=1024))
5 |
6 | # dataset settings
7 | train_dataloader = dict(batch_size=64)
8 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | neck=None)
7 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | neck=None)
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mobilenet_v2_1x.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_epochstep.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/classification/readme.md:
--------------------------------------------------------------------------------
1 | ## origins
2 |
3 | based on https://github.com/microsoft/Swin-Transformer#20240103
4 |
5 | `main.py` and `utils/utils_ema.py` is modified from https://github.com/microsoft/Swin-Transformer#20240103, based on https://github.com/facebookresearch/ConvNeXt#20240103
6 |
7 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1, final_norm=True))
6 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/revvit/revvit-base_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/revvit/revvit-base.py',
3 | '../_base_/datasets/imagenet_bs128_revvit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_revvit.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/revvit/revvit-small_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/revvit/revvit-small.py',
3 | '../_base_/datasets/imagenet_bs128_revvit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_revvit.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-11m_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/datasets/imagenet_bs32_pil_bicubic.py',
3 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
4 | '../_base_/default_runtime.py',
5 | '../_base_/models/tinyvit/tinyvit-11m.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-21m_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/datasets/imagenet_bs32_pil_bicubic.py',
3 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
4 | '../_base_/default_runtime.py',
5 | '../_base_/models/tinyvit/tinyvit-21m.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/tinyvit/tinyvit-5m_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/datasets/imagenet_bs32_pil_bicubic.py',
3 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
4 | '../_base_/default_runtime.py',
5 | '../_base_/models/tinyvit/tinyvit-5m.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mixmim/benchmarks/mixmim-base_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../../_base_/models/mixmim/mixmim_base.py',
3 | '../../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../../_base_/schedules/imagenet_bs256.py',
5 | '../../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/shufflenet_v1_1x.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs1024_linearlr_bn_nowd.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/shufflenet_v2_1x.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs1024_linearlr_bn_nowd.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r101-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r101_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1c101_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1c50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(backbone=dict(depth=101))
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnetv1c152_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnetv1c50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(backbone=dict(depth=152))
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/wrn/wide-resnet101_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/wide-resnet50.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(backbone=dict(depth=101))
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/efficientformer/efficientformer-l1_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/efficientformer-l1.py',
3 | '../_base_/datasets/imagenet_bs128_poolformer_small_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-base-w8_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/base_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-tiny-w8_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/tiny_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-small-w8_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/small_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r18_fpn_8xb8-amp-lsj-200e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=18,
6 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
7 | neck=dict(in_channels=[64, 128, 256, 512]))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(in_channels=[64, 128, 256, 512]),
6 | auxiliary_head=dict(in_channels=256))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(in_channels=[64, 128, 256, 512]),
6 | auxiliary_head=dict(in_channels=256))
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg11_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg11.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(optimizer=dict(lr=0.01))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg13_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg13.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(optimizer=dict(lr=0.01))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg16_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg16.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(optimizer=dict(lr=0.01))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vgg/vgg19_8xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vgg19.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(optimizer=dict(lr=0.01))
10 |
--------------------------------------------------------------------------------
/detection/tools/analysis_tools/mot/dist_mot_search.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | PORT=${PORT:-29500}
6 |
7 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
8 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
9 | $(dirname "$0")/mot_param_search.py $CONFIG --launcher pytorch ${@:3}
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/conformer/conformer-base-p16_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/conformer/base-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_conformer.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | train_dataloader = dict(batch_size=128)
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/conformer/conformer-small-p16_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/conformer/small-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_conformer.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | train_dataloader = dict(batch_size=128)
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/conformer/conformer-small-p32_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/conformer/small-p32.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_conformer.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | train_dataloader = dict(batch_size=128)
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/conformer/conformer-tiny-p16_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/conformer/tiny-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_conformer.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | train_dataloader = dict(batch_size=128)
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva/eva-g-p14_8xb16_in1k-336px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/eva/eva-g.py',
3 | '../_base_/datasets/imagenet_bs16_eva_336.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(img_size=336))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva/eva-g-p14_8xb16_in1k-560px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/eva/eva-g.py',
3 | '../_base_/datasets/imagenet_bs16_eva_560.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(img_size=560))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva/eva-l-p14_8xb16_in1k-196px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/eva/eva-l.py',
3 | '../_base_/datasets/imagenet_bs16_eva_196.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(img_size=196))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva/eva-l-p14_8xb16_in1k-336px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/eva/eva-l.py',
3 | '../_base_/datasets/imagenet_bs16_eva_336.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(img_size=336))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mlp_mixer/mlp-mixer-base-p16_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mlp_mixer_base_patch16.py',
3 | '../_base_/datasets/imagenet_bs64_mixer_224.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mlp_mixer/mlp-mixer-large-p16_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mlp_mixer_large_patch16.py',
3 | '../_base_/datasets/imagenet_bs64_mixer_224.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg11.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VGG', depth=11, num_classes=1000),
5 | neck=None,
6 | head=dict(
7 | type='ClsHead',
8 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
9 | topk=(1, 5),
10 | ))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg13.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VGG', depth=13, num_classes=1000),
5 | neck=None,
6 | head=dict(
7 | type='ClsHead',
8 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
9 | topk=(1, 5),
10 | ))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg16.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VGG', depth=16, num_classes=1000),
5 | neck=None,
6 | head=dict(
7 | type='ClsHead',
8 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
9 | topk=(1, 5),
10 | ))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg19.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VGG', depth=19, num_classes=1000),
5 | neck=None,
6 | head=dict(
7 | type='ClsHead',
8 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
9 | topk=(1, 5),
10 | ))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/davit/davit-base_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/davit/davit-base.py',
3 | '../_base_/datasets/imagenet_bs256_davit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # data settings
9 | train_dataloader = dict(batch_size=256)
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/davit/davit-tiny_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/davit/davit-tiny.py',
3 | '../_base_/datasets/imagenet_bs256_davit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # data settings
9 | train_dataloader = dict(batch_size=256)
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/levit-256_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/levit-256-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs2048_adamw_levit.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=256)
10 |
--------------------------------------------------------------------------------
/.idea/sshConfigs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/davit/davit-small_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/davit/davit-small.py',
3 | '../_base_/datasets/imagenet_bs256_davit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # data settings
9 | train_dataloader = dict(batch_size=256)
10 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r101_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | depth=101,
9 | init_cfg=dict(type='Pretrained',
10 | checkpoint='torchvision://resnet101')))
11 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/detection/tools/dataset_converters/scripts/preprocess_voc2012.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | DOWNLOAD_DIR=$1
4 | DATA_ROOT=$2
5 |
6 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012/raw/VOCtrainval_11-May-2012.tar -C $DATA_ROOT
7 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012/raw/VOC2012test.tar -C $DATA_ROOT
8 | rm -rf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2012
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/inception_v3.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='InceptionV3', num_classes=1000, aux_logits=False),
5 | neck=None,
6 | head=dict(
7 | type='ClsHead',
8 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
9 | topk=(1, 5)),
10 | )
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hivit/hivit-base-p16_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hivit/base_224.py',
3 | '../_base_/datasets/imagenet_bs64_hivit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_hivit.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hivit/hivit-small-p16_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hivit/small_224.py',
3 | '../_base_/datasets/imagenet_bs64_hivit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_hivit.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hivit/hivit-tiny-p16_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hivit/tiny_224.py',
3 | '../_base_/datasets/imagenet_bs64_hivit_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_hivit.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-base-w16_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/base_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-small-w16_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/small_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-tiny-w16_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/tiny_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
9 |
--------------------------------------------------------------------------------
/detection/tools/dataset_converters/scripts/preprocess_voc2007.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | DOWNLOAD_DIR=$1
4 | DATA_ROOT=$2
5 |
6 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007/raw/VOCtrainval_06-Nov-2007.tar -C $DATA_ROOT
7 | tar -xvf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007/raw/VOCtestnoimgs_06-Nov-2007.tar -C $DATA_ROOT
8 | rm -rf $DOWNLOAD_DIR/OpenDataLab___PASCAL_VOC2007
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-base_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/base_224.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-large_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/large_224.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-small_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/small_224.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-tiny_16xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/tiny_224.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg11bn.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VGG', depth=11, norm_cfg=dict(type='BN'), num_classes=1000),
6 | neck=None,
7 | head=dict(
8 | type='ClsHead',
9 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
10 | topk=(1, 5),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg13bn.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VGG', depth=13, norm_cfg=dict(type='BN'), num_classes=1000),
6 | neck=None,
7 | head=dict(
8 | type='ClsHead',
9 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
10 | topk=(1, 5),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg16bn.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VGG', depth=16, norm_cfg=dict(type='BN'), num_classes=1000),
6 | neck=None,
7 | head=dict(
8 | type='ClsHead',
9 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
10 | topk=(1, 5),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/vgg19bn.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VGG', depth=19, norm_cfg=dict(type='BN'), num_classes=1000),
6 | neck=None,
7 | head=dict(
8 | type='ClsHead',
9 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
10 | topk=(1, 5),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-base_16xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/base_384.py',
3 | '../_base_/datasets/imagenet_bs64_swin_384.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer/swin-large_16xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer/large_384.py',
3 | '../_base_/datasets/imagenet_bs64_swin_384.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
10 |
--------------------------------------------------------------------------------
/detection/configs/swin/mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py'
2 | pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa
3 | model = dict(
4 | backbone=dict(
5 | depths=[2, 2, 18, 2],
6 | init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
7 |
--------------------------------------------------------------------------------
/classification/configs/vssm/vssm_tiny_224.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_tiny
4 | DROP_PATH_RATE: 0.2
5 | VSSM:
6 | EMBED_DIM: 96
7 | DEPTHS: [ 2, 2, 9, 2 ]
8 | SSM_D_STATE: 16
9 | SSM_DT_RANK: "auto"
10 | SSM_RATIO: 2.0
11 | MLP_RATIO: 0.0
12 | DOWNSAMPLE: "v1"
13 | PATCHEMBED: "v1"
14 | RECURRENT: False
15 | # SSM_FORWARDTYPE: "v0" # if you want exactly the same
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb128_coslr-90e_in21k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50.py', '../_base_/datasets/imagenet21k_bs128.py',
3 | '../_base_/schedules/imagenet_bs1024_coslr.py',
4 | '../_base_/default_runtime.py'
5 | ]
6 |
7 | # model settings
8 | model = dict(head=dict(num_classes=21843))
9 |
10 | # runtime settings
11 | train_cfg = dict(by_epoch=True, max_epochs=90)
12 |
--------------------------------------------------------------------------------
/classification/configs/vssm/vssm_small_224.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_small
4 | DROP_PATH_RATE: 0.3
5 | VSSM:
6 | EMBED_DIM: 96
7 | DEPTHS: [ 2, 2, 27, 2 ]
8 | SSM_D_STATE: 16
9 | SSM_DT_RANK: "auto"
10 | SSM_RATIO: 2.0
11 | MLP_RATIO: 0.0
12 | DOWNSAMPLE: "v1"
13 | PATCHEMBED: "v1"
14 | RECURRENT: False
15 | # SSM_FORWARDTYPE: "v0" # if you want exactly the same
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/densenet/densenet121.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='DenseNet', arch='121'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1024,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/densenet/densenet161.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='DenseNet', arch='161'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2208,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/densenet/densenet169.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='DenseNet', arch='169'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1664,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/densenet/densenet201.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='DenseNet', arch='201'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1920,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_32xb64-warmup-lbs_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./resnet50_32xb64-warmup_in1k.py']
2 | model = dict(
3 | head=dict(
4 | type='LinearClsHead',
5 | num_classes=1000,
6 | in_channels=2048,
7 | loss=dict(
8 | type='LabelSmoothLoss',
9 | loss_weight=1.0,
10 | label_smooth_val=0.1,
11 | num_classes=1000),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convmixer/convmixer-1024-20.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='ConvMixer', arch='1024/20'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1024,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convmixer/convmixer-1536-20.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='ConvMixer', arch='1536/20'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1536,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
5 | backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
6 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
7 | neck=None,
8 | auxiliary_head=dict(num_classes=150, in_channels=384))
9 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
5 | backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
6 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
7 | neck=None,
8 | auxiliary_head=dict(num_classes=150, in_channels=384))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b0.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b0'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b1.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b1'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b2.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b2'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1408,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b3.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b3'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1536,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b4.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b4'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1792,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b5.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b5'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2048,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b6.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b6'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2304,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b7.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b7'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2560,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_b8.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='b8'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2816,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_l2.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNet', arch='l2'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=5504,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/shufflenet_v1_1x.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='ShuffleNetV1', groups=3),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=960,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/segmentation/configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py'
3 | ]
4 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth' # noqa
5 | model = dict(
6 | backbone=dict(
7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)))
8 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobilevit/mobilevit_s.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='MobileViT', arch='small'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=640,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/levit-128_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/levit-256-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs2048_adamw_levit.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(arch='128'), head=dict(in_channels=384))
10 |
11 | # dataset settings
12 | train_dataloader = dict(batch_size=256)
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/levit-192_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/levit-256-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs2048_adamw_levit.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(arch='192'), head=dict(in_channels=384))
10 |
11 | # dataset settings
12 | train_dataloader = dict(batch_size=256)
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobilenet_v2_1x.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='MobileNetV2', widen_factor=1.0),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobilevit/mobilevit_xs.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='MobileViT', arch='x_small'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=384,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobilevit/mobilevit_xxs.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='MobileViT', arch='xx_small'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=320,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_1.6gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_1.6gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=912,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_12gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_12gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=2240,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_3.2gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_3.2gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1008,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_4.0gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_4.0gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1360,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_400mf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_400mf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=384,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_6.4gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_6.4gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1624,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_8.0gf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_8.0gf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1920,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/regnet/regnetx_800mf.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='RegNet', arch='regnetx_800mf'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=672,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/shufflenet_v2_1x.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='ShuffleNetV2', widen_factor=1.0),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1024,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/levit-128s_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/levit-256-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs2048_adamw_levit.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # model settings
9 | model = dict(backbone=dict(arch='128s'), head=dict(in_channels=384))
10 |
11 | # dataset settings
12 | train_dataloader = dict(batch_size=256)
13 |
--------------------------------------------------------------------------------
/classification/configs/vssm/vssm_base_224.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_base
4 | DROP_PATH_RATE: 0.5
5 | # DROP_PATH_RATE: 0.6
6 | VSSM:
7 | EMBED_DIM: 128
8 | DEPTHS: [ 2, 2, 27, 2 ]
9 | SSM_D_STATE: 16
10 | SSM_DT_RANK: "auto"
11 | SSM_RATIO: 2.0
12 | MLP_RATIO: 0.0
13 | DOWNSAMPLE: "v1"
14 | PATCHEMBED: "v1"
15 | RECURRENT: False
16 | # SSM_FORWARDTYPE: "v0" # if you want exactly the same
17 |
18 |
--------------------------------------------------------------------------------
/classification/data/__init__.py:
--------------------------------------------------------------------------------
1 | from .build import build_loader as _build_loader
2 | from .data_simmim_pt import build_loader_simmim
3 | from .data_simmim_ft import build_loader_finetune
4 |
5 |
6 | def build_loader(config, simmim=False, is_pretrain=False):
7 | if not simmim:
8 | return _build_loader(config)
9 | if is_pretrain:
10 | return build_loader_simmim(config)
11 | else:
12 | return build_loader_finetune(config)
13 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor,
9 | decode_head=dict(num_classes=150),
10 | auxiliary_head=dict(num_classes=150))
11 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor,
9 | decode_head=dict(num_classes=150),
10 | auxiliary_head=dict(num_classes=150))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convmixer/convmixer-768-32.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='ConvMixer', arch='768/32', act_cfg=dict(type='ReLU')),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=768,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | ))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_b0.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='b0'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_b1.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='b1'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_b2.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='b2'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1408,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_b3.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='b3'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1536,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_l.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='l'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_m.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='m'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_s.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='s'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_v2/efficientnetv2_xl.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='EfficientNetV2', arch='xl'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1280,
10 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
11 | topk=(1, 5),
12 | ))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_sgd_coslr_200e.py:
--------------------------------------------------------------------------------
1 | # optimizer wrapper
2 | optim_wrapper = dict(
3 | type='OptimWrapper',
4 | optimizer=dict(type='SGD', lr=0.03, weight_decay=1e-4, momentum=0.9))
5 |
6 | # learning rate scheduler
7 | param_scheduler = [
8 | dict(type='CosineAnnealingLR', T_max=200, by_epoch=True, begin=0, end=200)
9 | ]
10 |
11 | # runtime settings
12 | train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=200)
13 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | pretrained='open-mmlab://resnet18_v1c',
7 | backbone=dict(depth=18),
8 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150),
9 | auxiliary_head=dict(in_channels=256, num_classes=150))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | pretrained='open-mmlab://resnet18_v1c',
7 | backbone=dict(depth=18),
8 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150),
9 | auxiliary_head=dict(in_channels=256, num_classes=150))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py' # noqa
3 | ]
4 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_22k_20220317-e5c09f74.pth' # noqa
5 | model = dict(
6 | backbone=dict(
7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | crop_size = (512, 512)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(
9 | data_preprocessor=data_preprocessor,
10 | decode_head=dict(num_classes=21),
11 | auxiliary_head=dict(num_classes=21))
12 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | crop_size = (512, 512)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(
9 | data_preprocessor=data_preprocessor,
10 | decode_head=dict(num_classes=21),
11 | auxiliary_head=dict(num_classes=21))
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/replknet-31B_32xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/replknet-31B_in1k.py',
3 | '../_base_/datasets/imagenet_bs32_pil_bicubic.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | param_scheduler = dict(
10 | type='CosineAnnealingLR', T_max=300, by_epoch=True, begin=0, end=300)
11 |
12 | train_cfg = dict(by_epoch=True, max_epochs=300)
13 |
--------------------------------------------------------------------------------
/analyze/get_ckpt.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import os
3 |
4 |
5 | def modema(ckpt=None):
6 | opath = os.path.join(os.path.dirname(ckpt), f"new_{os.path.basename(ckpt)}")
7 | _ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
8 | _ckpt["model"] = _ckpt["model_ema"]
9 | torch.save(_ckpt, open(opath, "wb"))
10 |
11 | if __name__ == "__main__":
12 | modema("./vmamba_small_e238_ema.pth")
13 |
14 | # Readme: How to use ema ckpts:
15 | # python get_ckpt.py
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/replknet-XL_32xb64_in1k-320px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/replknet-XL_in1k.py',
3 | '../_base_/datasets/imagenet_bs8_pil_bicubic_320.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | param_scheduler = dict(
10 | type='CosineAnnealingLR', T_max=300, by_epoch=True, begin=0, end=300)
11 |
12 | train_cfg = dict(by_epoch=True, max_epochs=300)
13 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'
2 |
3 | train_cfg = dict(max_epochs=24)
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=24,
12 | by_epoch=True,
13 | milestones=[16, 22],
14 | gamma=0.1)
15 | ]
16 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'
2 |
3 | train_cfg = dict(max_epochs=36)
4 | # learning rate
5 | param_scheduler = [
6 | dict(
7 | type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
8 | dict(
9 | type='MultiStepLR',
10 | begin=0,
11 | end=24,
12 | by_epoch=True,
13 | milestones=[28, 34],
14 | gamma=0.1)
15 | ]
16 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | pretrained='open-mmlab://resnet18_v1c',
8 | backbone=dict(depth=18),
9 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=21),
10 | auxiliary_head=dict(in_channels=256, num_classes=21))
11 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r18_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | pretrained='open-mmlab://resnet18_v1c',
8 | backbone=dict(depth=18),
9 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=21),
10 | auxiliary_head=dict(in_channels=256, num_classes=21))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/replknet-XL_in1k.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='RepLKNet',
5 | arch='XL',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=2048,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/repvgg-A0_in1k.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='RepVGG',
5 | arch='A0',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=1280,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w18_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w18.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w30_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w30.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w32_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w32.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w40_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w40.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w44_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w44.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w48_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w48.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hrnet/hrnet-w64_4xb32_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hrnet/hrnet-w64.py',
3 | '../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # NOTE: `auto_scale_lr` is for automatically scaling LR
9 | # based on the actual training batch size.
10 | # base_batch_size = (4 GPUs) x (32 samples per GPU)
11 | auto_scale_lr = dict(base_batch_size=128)
12 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/replknet-31B_32xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/replknet-31B_in1k.py',
3 | '../_base_/datasets/imagenet_bs16_pil_bicubic_384.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | param_scheduler = dict(
10 | type='CosineAnnealingLR', T_max=300, by_epoch=True, begin=0, end=300)
11 |
12 | train_cfg = dict(by_epoch=True, max_epochs=300)
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/replknet/replknet-31L_32xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/replknet-31L_in1k.py',
3 | '../_base_/datasets/imagenet_bs16_pil_bicubic_384.py',
4 | '../_base_/schedules/imagenet_bs256_coslr.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # schedule settings
9 | param_scheduler = dict(
10 | type='CosineAnnealingLR', T_max=300, by_epoch=True, begin=0, end=300)
11 |
12 | train_cfg = dict(by_epoch=True, max_epochs=300)
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/replknet-31L_in1k.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='RepLKNet',
5 | arch='31L',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=1536,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/swin_transformer/large_224.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | # Only for evaluation
3 | model = dict(
4 | type='ImageClassifier',
5 | backbone=dict(type='SwinTransformer', arch='large', img_size=224),
6 | neck=dict(type='GlobalAveragePooling'),
7 | head=dict(
8 | type='LinearClsHead',
9 | num_classes=1000,
10 | in_channels=1536,
11 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
12 | topk=(1, 5)))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/levit/levit-384_8xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/levit-256-p16.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs2048_adamw_levit.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # model settings
9 | model = dict(
10 | backbone=dict(arch='384', drop_path_rate=0.1),
11 | head=dict(in_channels=768),
12 | )
13 |
14 | # dataset settings
15 | train_dataloader = dict(batch_size=256)
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-base_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-base.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=64)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-small_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-small.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=64)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
5 | backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
6 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
7 | neck=dict(in_channels=[384, 384, 384, 384], out_channels=384),
8 | auxiliary_head=dict(num_classes=150, in_channels=384))
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-base-gf_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-base-gf.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=64)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-tiny_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-tiny.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=128)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=100.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_lars_coslr_90e.py:
--------------------------------------------------------------------------------
1 | # optimizer wrapper
2 | optim_wrapper = dict(
3 | type='OptimWrapper',
4 | optimizer=dict(type='LARS', lr=1.6, momentum=0.9, weight_decay=0.))
5 |
6 | # learning rate scheduler
7 | param_scheduler = [
8 | dict(type='CosineAnnealingLR', T_max=90, by_epoch=True, begin=0, end=90)
9 | ]
10 |
11 | # runtime settings
12 | train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=90)
13 | val_cfg = dict()
14 | test_cfg = dict()
15 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_sgd_coslr_100e.py:
--------------------------------------------------------------------------------
1 | # optimizer wrapper
2 | optim_wrapper = dict(
3 | type='OptimWrapper',
4 | optimizer=dict(type='SGD', lr=0.3, momentum=0.9, weight_decay=1e-6))
5 |
6 | # learning rate scheduler
7 | param_scheduler = [
8 | dict(type='CosineAnnealingLR', T_max=100, by_epoch=True, begin=0, end=100)
9 | ]
10 |
11 | # runtime settings
12 | train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100)
13 | val_cfg = dict()
14 | test_cfg = dict()
15 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_sgd_steplr_100e.py:
--------------------------------------------------------------------------------
1 | # optimizer wrapper
2 | optim_wrapper = dict(
3 | type='OptimWrapper',
4 | optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=1e-4))
5 |
6 | # learning rate scheduler
7 | param_scheduler = [
8 | dict(type='MultiStepLR', by_epoch=True, milestones=[60, 80], gamma=0.1)
9 | ]
10 |
11 | # runtime settings
12 | train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100)
13 | val_cfg = dict()
14 | test_cfg = dict()
15 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-small-gf_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-small-gf.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=64)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/hornet/hornet-tiny-gf_8xb128_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/hornet/hornet-tiny-gf.py',
3 | '../_base_/datasets/imagenet_bs64_swin_224.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | data = dict(samples_per_gpu=128)
9 |
10 | optim_wrapper = dict(optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=1.0))
11 |
12 | custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mae/benchmarks/vit-huge-p14_8xb128-fsdp-coslr-50e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./vit-huge-p14_8xb128-coslr-50e_in1k.py']
2 |
3 | strategy = dict(
4 | type='FSDPStrategy',
5 | model_wrapper=dict(
6 | auto_wrap_policy=dict(
7 | type='torch.distributed.fsdp.wrap.size_based_auto_wrap_policy',
8 | min_num_params=1e7)))
9 |
10 | optim_wrapper = dict(type='AmpOptimWrapper')
11 |
12 | # runner which supports strategies
13 | runner_type = 'FlexibleRunner'
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mae/benchmarks/vit-large-p16_8xb128-fsdp-coslr-50e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./vit-large-p16_8xb128-coslr-50e_in1k.py']
2 |
3 | strategy = dict(
4 | type='FSDPStrategy',
5 | model_wrapper=dict(
6 | auto_wrap_policy=dict(
7 | type='torch.distributed.fsdp.wrap.size_based_auto_wrap_policy',
8 | min_num_params=1e7)))
9 |
10 | optim_wrapper = dict(type='AmpOptimWrapper')
11 |
12 | # runner which supports strategies
13 | runner_type = 'FlexibleRunner'
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/mobilenet_v3/mobilenet-v3-small_8xb16_cifar10.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mobilenet_v3/mobilenet_v3_small_cifar.py',
3 | '../_base_/datasets/cifar10_bs16.py',
4 | '../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | # schedule settings
8 | param_scheduler = dict(
9 | type='MultiStepLR',
10 | by_epoch=True,
11 | milestones=[120, 170],
12 | gamma=0.1,
13 | )
14 |
15 | train_cfg = dict(by_epoch=True, max_epochs=200)
16 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_r50-caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | # use caffe img_norm
4 | data_preprocessor=dict(
5 | mean=[103.530, 116.280, 123.675],
6 | std=[1.0, 1.0, 1.0],
7 | bgr_to_rgb=False),
8 | backbone=dict(
9 | norm_cfg=dict(requires_grad=False),
10 | style='caffe',
11 | init_cfg=dict(
12 | type='Pretrained',
13 | checkpoint='open-mmlab://detectron2/resnet50_caffe')))
14 |
--------------------------------------------------------------------------------
/segmentation/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | CONFIG=$1
2 | GPUS=$2
3 | NNODES=${NNODES:-1}
4 | NODE_RANK=${NODE_RANK:-0}
5 | PORT=${PORT:-29500}
6 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
7 |
8 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
9 | python -m torch.distributed.launch \
10 | --nnodes=$NNODES \
11 | --node_rank=$NODE_RANK \
12 | --master_addr=$MASTER_ADDR \
13 | --nproc_per_node=$GPUS \
14 | --master_port=$PORT \
15 | $(dirname "$0")/train.py \
16 | $CONFIG \
17 | --launcher pytorch ${@:3}
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_em.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | # `em` means EfficientNet-EdgeTPU-M arch
5 | backbone=dict(type='EfficientNet', arch='em', act_cfg=dict(type='ReLU')),
6 | neck=dict(type='GlobalAveragePooling'),
7 | head=dict(
8 | type='LinearClsHead',
9 | num_classes=1000,
10 | in_channels=1280,
11 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
12 | topk=(1, 5),
13 | ))
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/efficientnet_es.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | # `es` means EfficientNet-EdgeTPU-S arch
5 | backbone=dict(type='EfficientNet', arch='es', act_cfg=dict(type='ReLU')),
6 | neck=dict(type='GlobalAveragePooling'),
7 | head=dict(
8 | type='LinearClsHead',
9 | num_classes=1000,
10 | in_channels=1280,
11 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
12 | topk=(1, 5),
13 | ))
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb32-coslr-preciseBN_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = 'resnet50_8xb32-coslr_in1k.py'
2 |
3 | # Precise BN hook will update the bn stats, so this hook should be executed
4 | # before CheckpointHook(priority of 'VERY_LOW') and
5 | # EMAHook(priority of 'NORMAL') So set the priority of PreciseBNHook to
6 | # 'ABOVENORMAL' here.
7 | custom_hooks = [
8 | dict(
9 | type='PreciseBNHook',
10 | num_samples=8192,
11 | interval=1,
12 | priority='ABOVE_NORMAL')
13 | ]
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-large-w16_in21k-pre_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | # Only for evaluation
2 | _base_ = [
3 | '../_base_/models/swin_transformer_v2/large_256.py',
4 | '../_base_/datasets/imagenet_bs64_swin_256.py',
5 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
6 | '../_base_/default_runtime.py'
7 | ]
8 |
9 | model = dict(
10 | type='ImageClassifier',
11 | backbone=dict(
12 | window_size=[16, 16, 16, 8], pretrained_window_sizes=[12, 12, 12, 6]),
13 | )
14 |
--------------------------------------------------------------------------------
/classification/configs/ms_vssm/vssm_micro_224_ms.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_micro_ms_e300
4 | DROP_PATH_RATE: 0.2
5 | VSSM:
6 | EMBED_DIM: 64
7 | DEPTHS: [ 1, 2, 5, 2]
8 | SSM_D_STATE: 1
9 | SSM_DT_RANK: "auto"
10 | SSM_RATIO: 2.0
11 | MLP_RATIO: 0.0
12 | DOWNSAMPLE: "v1"
13 | PATCHEMBED: "v1"
14 | CONVFFN: True
15 | ADD_SE: True
16 | SSCORE_TYPE: "multiscale_4scan_12"
17 | FFN_DROPOUT: 0.0
18 |
19 | #ms version: 11.88M & 1.532GFLOPs, 300 epochs, b32 0.16iter/s
--------------------------------------------------------------------------------
/classification/configs/ms_vssm/vssm_nano_224_ms.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_nano_ms_e300
4 | DROP_PATH_RATE: 0.2
5 | VSSM:
6 | EMBED_DIM: 48
7 | DEPTHS: [ 1, 2, 5, 2]
8 | SSM_D_STATE: 1
9 | SSM_DT_RANK: "auto"
10 | SSM_RATIO: 2.0
11 | MLP_RATIO: 0.0
12 | DOWNSAMPLE: "v1"
13 | PATCHEMBED: "v1"
14 | CONVFFN: True
15 | ADD_SE: True
16 | SSCORE_TYPE: "multiscale_4scan_12"
17 | FFN_DROPOUT: 0.0
18 |
19 |
20 | #ms version: 6.86M & 0.88GFLOPs, 300 epochs, b32 0.14iter/s
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet18_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=18,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=10,
14 | in_channels=512,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | ))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet34_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=34,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=10,
14 | in_channels=512,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | ))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet101_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=10,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | ))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet152_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=152,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=10,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | ))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet50_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=10,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | ))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-base-w16_in21k-pre_16xb64_in1k-256px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/base_256.py',
3 | '../_base_/datasets/imagenet_bs64_swin_256.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | model = dict(
9 | type='ImageClassifier',
10 | backbone=dict(
11 | window_size=[16, 16, 16, 8],
12 | drop_path_rate=0.2,
13 | pretrained_window_sizes=[12, 12, 12, 6]))
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vision_transformer/vit-base-p16_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vit-base-p16.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model setting
9 | model = dict(
10 | head=dict(hidden_dim=3072),
11 | train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)),
12 | )
13 |
14 | # schedule setting
15 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vision_transformer/vit-base-p32_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vit-base-p32.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model setting
9 | model = dict(
10 | head=dict(hidden_dim=3072),
11 | train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)),
12 | )
13 |
14 | # schedule setting
15 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vision_transformer/vit-large-p16_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vit-large-p16.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model setting
9 | model = dict(
10 | head=dict(hidden_dim=3072),
11 | train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)),
12 | )
13 |
14 | # schedule setting
15 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/vision_transformer/vit-large-p32_64xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/vit-large-p32.py',
3 | '../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
4 | '../_base_/schedules/imagenet_bs4096_AdamW.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | # model setting
9 | model = dict(
10 | head=dict(hidden_dim=3072),
11 | train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)),
12 | )
13 |
14 | # schedule setting
15 | optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
16 |
--------------------------------------------------------------------------------
/classification/configs/ms_vssm/vssm_tiny_224_ms.yaml:
--------------------------------------------------------------------------------
1 | MODEL:
2 | TYPE: vssm
3 | NAME: vssm_tiny_ms_e300
4 | DROP_PATH_RATE: 0.2
5 | VSSM:
6 | EMBED_DIM: 96
7 | DEPTHS: [ 1, 2, 9, 2]
8 | SSM_D_STATE: 1
9 | SSM_DT_RANK: "auto"
10 | SSM_RATIO: 2.0
11 | MLP_RATIO: 0.0
12 | DOWNSAMPLE: "v1"
13 | PATCHEMBED: "v1"
14 | CONVFFN: True
15 | ADD_SE: True
16 | SSCORE_TYPE: "multiscale_4scan_12"
17 | FFN_DROPOUT: 0.0
18 |
19 | #ms version: 33.08M & 4.613GFLOPs, 300 epochs, b32 0.25iter/s [1292]
20 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_r101_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/segmentation/configs/_base_/default_runtime.py:
--------------------------------------------------------------------------------
1 | default_scope = 'mmseg'
2 | env_cfg = dict(
3 | cudnn_benchmark=True,
4 | mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
5 | dist_cfg=dict(backend='nccl'),
6 | )
7 | vis_backends = [dict(type='LocalVisBackend')]
8 | visualizer = dict(
9 | type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer')
10 | log_processor = dict(by_epoch=False)
11 | log_level = 'INFO'
12 | load_from = None
13 | resume = False
14 |
15 | tta_model = dict(type='SegTTAModel')
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w18.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w18'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(18, 36, 72, 144)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w30.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w30'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(30, 60, 120, 240)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w32.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w32'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(32, 64, 128, 256)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w40.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w40'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(40, 80, 160, 320)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w44.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w44'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(44, 88, 176, 352)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w48.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w48'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(48, 96, 192, 384)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/hrnet/hrnet-w64.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='HRNet', arch='w64'),
5 | neck=[
6 | dict(type='HRFuseScales', in_channels=(64, 128, 256, 512)),
7 | dict(type='GlobalAveragePooling'),
8 | ],
9 | head=dict(
10 | type='LinearClsHead',
11 | in_channels=2048,
12 | num_classes=1000,
13 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
14 | topk=(1, 5),
15 | ))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobilenet_v3/mobilenet_v3_small_cifar.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='MobileNetV3', arch='small'),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='StackedLinearClsHead',
8 | num_classes=10,
9 | in_channels=576,
10 | mid_channels=[1280],
11 | act_cfg=dict(type='HSwish'),
12 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
13 | topk=(1, 5)))
14 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x101-32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask-rcnn_x101-32x4d_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/segmentation/configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
5 | backbone=dict(
6 | num_heads=6, embed_dims=384, drop_path_rate=0.1, final_norm=True),
7 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
8 | neck=dict(in_channels=[384, 384, 384, 384], out_channels=384),
9 | auxiliary_head=dict(num_classes=150, in_channels=384))
10 |
--------------------------------------------------------------------------------
/detection/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | NNODES=${NNODES:-1}
6 | NODE_RANK=${NODE_RANK:-0}
7 | PORT=${PORT:-29500}
8 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
9 |
10 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
11 | python -m torch.distributed.launch \
12 | --nnodes=$NNODES \
13 | --node_rank=$NODE_RANK \
14 | --master_addr=$MASTER_ADDR \
15 | --nproc_per_node=$GPUS \
16 | --master_port=$PORT \
17 | $(dirname "$0")/train.py \
18 | $CONFIG \
19 | --launcher pytorch ${@:3}
20 |
--------------------------------------------------------------------------------
/segmentation/configs/swin/swin-large-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | 'swin-large-patch4-window7-in22k-pre_upernet_'
3 | '8xb2-160k_ade20k-512x512.py'
4 | ]
5 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth' # noqa
6 | model = dict(
7 | backbone=dict(
8 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file),
9 | pretrain_img_size=384,
10 | window_size=12))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet101.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet152.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=152,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet18.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=18,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=512,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet34.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=34,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=512,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet50.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet34_gem.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=34,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GeneralizedMeanPooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=512,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnetv1c50.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNetV1c',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnetv1d101.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNetV1d',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnetv1d152.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNetV1d',
6 | depth=152,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnetv1d50.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNetV1d',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/seresnet101.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='SEResNet',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/seresnet50.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='SEResNet',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5),
17 | ))
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/glip/glip-t_headless.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='SwinTransformer',
5 | arch='tiny',
6 | img_size=224,
7 | out_indices=(1, 2, 3), # original weight is for detection
8 | ),
9 | neck=None,
10 | head=None)
11 |
12 | data_preprocessor = dict(
13 | # RGB format normalization parameters
14 | mean=[103.53, 116.28, 123.675],
15 | std=[57.375, 57.12, 58.395],
16 | # convert image from BGR to RGB
17 | to_rgb=False,
18 | )
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/van/van_base.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VAN', arch='base', drop_path_rate=0.1),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=512,
10 | init_cfg=None, # suppress the default init_cfg of LinearClsHead.
11 | loss=dict(
12 | type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
13 | cal_acc=False))
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/van/van_large.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(type='VAN', arch='large', drop_path_rate=0.2),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=512,
10 | init_cfg=None, # suppress the default init_cfg of LinearClsHead.
11 | loss=dict(
12 | type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
13 | cal_acc=False))
14 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-base-w24_in21k-pre_16xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/swin_transformer_v2/base_384.py',
3 | '../_base_/datasets/imagenet_bs64_swin_384.py',
4 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
5 | '../_base_/default_runtime.py'
6 | ]
7 |
8 | model = dict(
9 | type='ImageClassifier',
10 | backbone=dict(
11 | img_size=384,
12 | window_size=[24, 24, 24, 12],
13 | drop_path_rate=0.2,
14 | pretrained_window_sizes=[12, 12, 12, 6]))
15 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/swin_transformer_v2/swinv2-large-w24_in21k-pre_16xb64_in1k-384px.py:
--------------------------------------------------------------------------------
1 | # Only for evaluation
2 | _base_ = [
3 | '../_base_/models/swin_transformer_v2/large_384.py',
4 | '../_base_/datasets/imagenet_bs64_swin_384.py',
5 | '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
6 | '../_base_/default_runtime.py'
7 | ]
8 |
9 | model = dict(
10 | type='ImageClassifier',
11 | backbone=dict(
12 | img_size=384,
13 | window_size=[24, 24, 24, 12],
14 | pretrained_window_sizes=[12, 12, 12, 6]),
15 | )
16 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | crop_size = (769, 769)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(
9 | data_preprocessor=data_preprocessor,
10 | decode_head=dict(align_corners=True),
11 | auxiliary_head=dict(align_corners=True),
12 | test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
13 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_80k.py'
5 | ]
6 | crop_size = (769, 769)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(
9 | data_preprocessor=data_preprocessor,
10 | decode_head=dict(align_corners=True),
11 | auxiliary_head=dict(align_corners=True),
12 | test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
13 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net101-w26-s4.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net50-w14-s8.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=50,
6 | scales=8,
7 | base_width=14,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net50-w26-s4.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=50,
6 | scales=4,
7 | base_width=26,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net50-w26-s6.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=50,
6 | scales=6,
7 | base_width=26,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net50-w26-s8.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=50,
6 | scales=8,
7 | base_width=26,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/res2net50-w48-s2.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=50,
6 | scales=2,
7 | base_width=48,
8 | deep_stem=False,
9 | avg_down=False,
10 | ),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=2048,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/swin_transformer_v2/large_256.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | # Only for evaluation
3 | model = dict(
4 | type='ImageClassifier',
5 | backbone=dict(
6 | type='SwinTransformerV2',
7 | arch='large',
8 | img_size=256,
9 | drop_path_rate=0.2),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=1536,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5)))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/swin_transformer_v2/large_384.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | # Only for evaluation
3 | model = dict(
4 | type='ImageClassifier',
5 | backbone=dict(
6 | type='SwinTransformerV2',
7 | arch='large',
8 | img_size=384,
9 | drop_path_rate=0.2),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=1536,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5)))
17 |
--------------------------------------------------------------------------------
/segmentation/tools/dist_test.sh:
--------------------------------------------------------------------------------
1 | CONFIG=$1
2 | CHECKPOINT=$2
3 | GPUS=$3
4 | NNODES=${NNODES:-1}
5 | NODE_RANK=${NODE_RANK:-0}
6 | PORT=${PORT:-29500}
7 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
8 |
9 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
10 | python3 -m torch.distributed.launch \
11 | --nnodes=$NNODES \
12 | --node_rank=$NODE_RANK \
13 | --master_addr=$MASTER_ADDR \
14 | --nproc_per_node=$GPUS \
15 | --master_port=$PORT \
16 | $(dirname "$0")/test.py \
17 | $CONFIG \
18 | $CHECKPOINT \
19 | --launcher pytorch \
20 | ${@:4}
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/edgenext/edgenext-base_8xb256-usi_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./edgenext-base_8xb256_in1k.py']
2 |
3 | # dataset setting
4 |
5 | test_pipeline = [
6 | dict(type='LoadImageFromFile'),
7 | dict(
8 | type='ResizeEdge',
9 | scale=269,
10 | edge='short',
11 | backend='pillow',
12 | interpolation='bicubic'),
13 | dict(type='CenterCrop', crop_size=256),
14 | dict(type='PackInputs')
15 | ]
16 |
17 | val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
18 |
19 | test_dataloader = val_dataloader
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/resnet/resnet50_8xb16_cifar100.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/resnet50_cifar.py',
3 | '../_base_/datasets/cifar100_bs16.py',
4 | '../_base_/schedules/cifar10_bs128.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # model settings
9 | model = dict(head=dict(num_classes=100))
10 |
11 | # schedule settings
12 | optim_wrapper = dict(optimizer=dict(weight_decay=0.0005))
13 |
14 | param_scheduler = dict(
15 | type='MultiStepLR',
16 | by_epoch=True,
17 | milestones=[60, 120, 160],
18 | gamma=0.2,
19 | )
20 |
--------------------------------------------------------------------------------
/detection/tools/dist_test_tracking.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | NNODES=${NNODES:-1}
6 | NODE_RANK=${NODE_RANK:-0}
7 | PORT=${PORT:-29500}
8 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
9 |
10 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
11 | python -m torch.distributed.launch \
12 | --nnodes=$NNODES \
13 | --node_rank=$NODE_RANK \
14 | --master_addr=$MASTER_ADDR \
15 | --nproc_per_node=$GPUS \
16 | --master_port=$PORT \
17 | $(dirname "$0")/test_tracking.py \
18 | $CONFIG \
19 | --launcher pytorch \
20 | ${@:3}
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/edgenext/edgenext-small_8xb256-usi_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./edgenext-small_8xb256_in1k.py']
2 |
3 | # dataset setting
4 |
5 | test_pipeline = [
6 | dict(type='LoadImageFromFile'),
7 | dict(
8 | type='ResizeEdge',
9 | scale=269,
10 | edge='short',
11 | backend='pillow',
12 | interpolation='bicubic'),
13 | dict(type='CenterCrop', crop_size=256),
14 | dict(type='PackInputs')
15 | ]
16 |
17 | val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
18 |
19 | test_dataloader = val_dataloader
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobileone/mobileone_s0.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='MobileOne',
5 | arch='s0',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=1024,
13 | loss=dict(
14 | type='LabelSmoothLoss',
15 | label_smooth_val=0.1,
16 | mode='original',
17 | ),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobileone/mobileone_s1.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='MobileOne',
5 | arch='s1',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=1280,
13 | loss=dict(
14 | type='LabelSmoothLoss',
15 | label_smooth_val=0.1,
16 | mode='original',
17 | ),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobileone/mobileone_s2.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='MobileOne',
5 | arch='s2',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=2048,
13 | loss=dict(
14 | type='LabelSmoothLoss',
15 | label_smooth_val=0.1,
16 | mode='original',
17 | ),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobileone/mobileone_s3.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='MobileOne',
5 | arch='s3',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=2048,
13 | loss=dict(
14 | type='LabelSmoothLoss',
15 | label_smooth_val=0.1,
16 | mode='original',
17 | ),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/mobileone/mobileone_s4.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='MobileOne',
5 | arch='s4',
6 | out_indices=(3, ),
7 | ),
8 | neck=dict(type='GlobalAveragePooling'),
9 | head=dict(
10 | type='LinearClsHead',
11 | num_classes=1000,
12 | in_channels=2048,
13 | loss=dict(
14 | type='LabelSmoothLoss',
15 | label_smooth_val=0.1,
16 | mode='original',
17 | ),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/detection/testmmcv.py:
--------------------------------------------------------------------------------
1 | from mmcv.ops import batched_nms
2 | import torch
3 |
4 |
5 | def check_mmcv():
6 |
7 | device = torch.device('cuda:0')
8 |
9 | bboxes = torch.randn(2, 4, device=device)
10 | scores = torch.randn(2, device=device)
11 | labels = torch.zeros(2, dtype=torch.long, device=device)
12 | det_bboxes, keep_idxs = batched_nms(bboxes.to(torch.float32), scores.to(torch.float32), labels, {
13 | 'type': 'nms',
14 | 'iou_threshold': 0.6
15 | })
16 |
17 | print('OK.')
18 |
19 |
20 | if __name__ == '__main__':
21 | check_mmcv()
22 |
--------------------------------------------------------------------------------
/detection/tools/dist_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | CHECKPOINT=$2
5 | GPUS=$3
6 | NNODES=${NNODES:-1}
7 | NODE_RANK=${NODE_RANK:-0}
8 | PORT=${PORT:-29500}
9 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
10 |
11 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
12 | python -m torch.distributed.launch \
13 | --nnodes=$NNODES \
14 | --node_rank=$NODE_RANK \
15 | --master_addr=$MASTER_ADDR \
16 | --nproc_per_node=$GPUS \
17 | --master_port=$PORT \
18 | $(dirname "$0")/test.py \
19 | $CONFIG \
20 | $CHECKPOINT \
21 | --launcher pytorch \
22 | ${@:4}
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/repmlp-base_224.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='RepMLPNet',
6 | arch='B',
7 | img_size=224,
8 | out_indices=(3, ),
9 | reparam_conv_kernels=(1, 3),
10 | deploy=False),
11 | neck=dict(type='GlobalAveragePooling'),
12 | head=dict(
13 | type='LinearClsHead',
14 | num_classes=1000,
15 | in_channels=768,
16 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/swin_transformer/base_384.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | # Only for evaluation
3 | model = dict(
4 | type='ImageClassifier',
5 | backbone=dict(
6 | type='SwinTransformer',
7 | arch='base',
8 | img_size=384,
9 | stage_cfgs=dict(block_cfgs=dict(window_size=12))),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=1024,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5)))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/swin_transformer/large_384.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | # Only for evaluation
3 | model = dict(
4 | type='ImageClassifier',
5 | backbone=dict(
6 | type='SwinTransformer',
7 | arch='large',
8 | img_size=384,
9 | stage_cfgs=dict(block_cfgs=dict(window_size=12))),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=1536,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
16 | topk=(1, 5)))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet50_label_smooth.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(
16 | type='LabelSmoothLoss', label_smooth_val=0.1, loss_weight=1.0),
17 | topk=(1, 5),
18 | ))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/dinov2/vit-base-p14_dinov2-pre_headless.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VisionTransformer',
6 | arch='base',
7 | img_size=518,
8 | patch_size=14,
9 | layer_scale_init_value=1e-5,
10 | ),
11 | neck=None,
12 | head=None)
13 |
14 | data_preprocessor = dict(
15 | # RGB format normalization parameters
16 | mean=[123.675, 116.28, 103.53],
17 | std=[58.395, 57.12, 57.375],
18 | # convert image from BGR to RGB
19 | to_rgb=True,
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/dinov2/vit-large-p14_dinov2-pre_headless.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VisionTransformer',
6 | arch='large',
7 | img_size=518,
8 | patch_size=14,
9 | layer_scale_init_value=1e-5,
10 | ),
11 | neck=None,
12 | head=None)
13 |
14 | data_preprocessor = dict(
15 | # RGB format normalization parameters
16 | mean=[123.675, 116.28, 103.53],
17 | std=[58.395, 57.12, 57.375],
18 | # convert image from BGR to RGB
19 | to_rgb=True,
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/barlowtwins/benchmarks/resnet50_8xb32-linear-coslr-100e_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../../_base_/models/resnet50.py',
3 | '../../_base_/datasets/imagenet_bs32_pil_resize.py',
4 | '../../_base_/schedules/imagenet_sgd_coslr_100e.py',
5 | '../../_base_/default_runtime.py',
6 | ]
7 |
8 | model = dict(
9 | backbone=dict(
10 | frozen_stages=4,
11 | init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.')))
12 |
13 | # runtime settings
14 | default_hooks = dict(
15 | checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/dinov2/vit-small-p14_dinov2-pre_headless.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='VisionTransformer',
6 | arch='dinov2-small',
7 | img_size=518,
8 | patch_size=14,
9 | layer_scale_init_value=1e-5,
10 | ),
11 | neck=None,
12 | head=None)
13 |
14 | data_preprocessor = dict(
15 | # RGB format normalization parameters
16 | mean=[123.675, 116.28, 103.53],
17 | std=[58.395, 57.12, 57.375],
18 | # convert image from BGR to RGB
19 | to_rgb=True,
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet50_mixup.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='MultiLabelLinearClsHead',
13 | num_classes=1000,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)),
16 | train_cfg=dict(augments=dict(type='Mixup', alpha=0.2)),
17 | )
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnext101_32x4d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=4,
11 | style='pytorch'),
12 | neck=dict(type='GlobalAveragePooling'),
13 | head=dict(
14 | type='LinearClsHead',
15 | num_classes=1000,
16 | in_channels=2048,
17 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnext101_32x8d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=8,
11 | style='pytorch'),
12 | neck=dict(type='GlobalAveragePooling'),
13 | head=dict(
14 | type='LinearClsHead',
15 | num_classes=1000,
16 | in_channels=2048,
17 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnext152_32x4d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=152,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=4,
11 | style='pytorch'),
12 | neck=dict(type='GlobalAveragePooling'),
13 | head=dict(
14 | type='LinearClsHead',
15 | num_classes=1000,
16 | in_channels=2048,
17 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnext50_32x4d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=4,
11 | style='pytorch'),
12 | neck=dict(type='GlobalAveragePooling'),
13 | head=dict(
14 | type='LinearClsHead',
15 | num_classes=1000,
16 | in_channels=2048,
17 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
18 | topk=(1, 5),
19 | ))
20 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/cifar10_bs128.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optim_wrapper = dict(
3 | optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
4 | # learning policy
5 | param_scheduler = dict(
6 | type='MultiStepLR', by_epoch=True, milestones=[100, 150], gamma=0.1)
7 |
8 | # train, val, test setting
9 | train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
10 | val_cfg = dict()
11 | test_cfg = dict()
12 |
13 | # NOTE: `auto_scale_lr` is for automatically scaling LR
14 | # based on the actual training batch size.
15 | auto_scale_lr = dict(base_batch_size=128)
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_bs256_epochstep.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optim_wrapper = dict(
3 | optimizer=dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=0.00004))
4 |
5 | # learning policy
6 | param_scheduler = dict(type='StepLR', by_epoch=True, step_size=1, gamma=0.98)
7 |
8 | # train, val, test setting
9 | train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
10 | val_cfg = dict()
11 | test_cfg = dict()
12 |
13 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
14 | # based on the actual training batch size.
15 | auto_scale_lr = dict(base_batch_size=256)
16 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/glip/glip-l_headless.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='SwinTransformer',
5 | arch='large',
6 | img_size=384,
7 | out_indices=(1, 2, 3), # original weight is for detection
8 | stage_cfgs=dict(block_cfgs=dict(window_size=12))),
9 | neck=None,
10 | head=None)
11 |
12 | data_preprocessor = dict(
13 | # RGB format normalization parameters
14 | mean=[103.53, 116.28, 123.675],
15 | std=[57.375, 57.12, 58.395],
16 | # convert image from BGR to RGB
17 | to_rgb=False,
18 | )
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/davit/davit-tiny.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='DaViT', arch='t', out_indices=(3, ), drop_path_rate=0.1),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=768,
10 | loss=dict(
11 | type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
12 | ),
13 | train_cfg=dict(augments=[
14 | dict(type='Mixup', alpha=0.8),
15 | dict(type='CutMix', alpha=1.0)
16 | ]))
17 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-32x4d_fpn_ms-poly-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | type='ResNeXt',
9 | depth=101,
10 | groups=32,
11 | base_width=4,
12 | num_stages=4,
13 | out_indices=(0, 1, 2, 3),
14 | frozen_stages=1,
15 | norm_cfg=dict(type='BN', requires_grad=True),
16 | style='pytorch',
17 | init_cfg=dict(
18 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
19 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask-rcnn_x101-64x4d_fpn_ms-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/ms-poly_3x_coco-instance.py',
3 | '../_base_/models/mask-rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | type='ResNeXt',
9 | depth=101,
10 | groups=64,
11 | base_width=4,
12 | num_stages=4,
13 | out_indices=(0, 1, 2, 3),
14 | frozen_stages=1,
15 | norm_cfg=dict(type='BN', requires_grad=True),
16 | style='pytorch',
17 | init_cfg=dict(
18 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/davit/davit-base.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='DaViT', arch='base', out_indices=(3, ), drop_path_rate=0.4),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=1024,
10 | loss=dict(
11 | type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
12 | ),
13 | train_cfg=dict(augments=[
14 | dict(type='Mixup', alpha=0.8),
15 | dict(type='CutMix', alpha=1.0)
16 | ]))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/davit/davit-small.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='DaViT', arch='small', out_indices=(3, ), drop_path_rate=0.2),
5 | neck=dict(type='GlobalAveragePooling'),
6 | head=dict(
7 | type='LinearClsHead',
8 | num_classes=1000,
9 | in_channels=768,
10 | loss=dict(
11 | type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
12 | ),
13 | train_cfg=dict(augments=[
14 | dict(type='Mixup', alpha=0.8),
15 | dict(type='CutMix', alpha=1.0)
16 | ]))
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/resnet50_cifar_mixup.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet_CIFAR',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | style='pytorch'),
10 | neck=dict(type='GlobalAveragePooling'),
11 | head=dict(
12 | type='MultiLabelLinearClsHead',
13 | num_classes=10,
14 | in_channels=2048,
15 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)),
16 | train_cfg=dict(augments=dict(type='Mixup', alpha=1.)),
17 | )
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_bs256.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optim_wrapper = dict(
3 | optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
4 |
5 | # learning policy
6 | param_scheduler = dict(
7 | type='MultiStepLR', by_epoch=True, milestones=[30, 60, 90], gamma=0.1)
8 |
9 | # train, val, test setting
10 | train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
11 | val_cfg = dict()
12 | test_cfg = dict()
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
15 | # based on the actual training batch size.
16 | auto_scale_lr = dict(base_batch_size=256)
17 |
--------------------------------------------------------------------------------
/segmentation/configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | './swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py'
3 | ]
4 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth' # noqa
5 | model = dict(
6 | backbone=dict(
7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file),
8 | depths=[2, 2, 18, 2]),
9 | decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=150),
10 | auxiliary_head=dict(in_channels=384, num_classes=150))
11 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_bs256_140e.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optim_wrapper = dict(
3 | optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
4 |
5 | # learning policy
6 | param_scheduler = dict(
7 | type='MultiStepLR', by_epoch=True, milestones=[40, 80, 120], gamma=0.1)
8 |
9 | # train, val, test setting
10 | train_cfg = dict(by_epoch=True, max_epochs=140, val_interval=1)
11 | val_cfg = dict()
12 | test_cfg = dict()
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
15 | # based on the actual training batch size.
16 | auto_scale_lr = dict(base_batch_size=256)
17 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/schedules/imagenet_bs256_coslr.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optim_wrapper = dict(
3 | optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
4 |
5 | # learning policy
6 | param_scheduler = dict(
7 | type='CosineAnnealingLR', T_max=100, by_epoch=True, begin=0, end=100)
8 |
9 | # train, val, test setting
10 | train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
11 | val_cfg = dict()
12 | test_cfg = dict()
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR,
15 | # based on the actual training batch size.
16 | auto_scale_lr = dict(base_batch_size=256)
17 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_bwd3.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_bwd_cuda<3, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<3, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<3, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_bwd4.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_bwd_cuda<4, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<4, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<4, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva02/eva02-small-p14_headless.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='ViTEVA02',
5 | arch='s',
6 | img_size=224,
7 | patch_size=14,
8 | final_norm=False,
9 | out_type='avg_featmap'),
10 | neck=None,
11 | head=None,
12 | )
13 |
14 | data_preprocessor = dict(
15 | # RGB format normalization parameters
16 | mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
17 | std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
18 | # convert image from BGR to RGB
19 | to_rgb=True,
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/eva02/eva02-tiny-p14_headless.py:
--------------------------------------------------------------------------------
1 | model = dict(
2 | type='ImageClassifier',
3 | backbone=dict(
4 | type='ViTEVA02',
5 | arch='t',
6 | img_size=224,
7 | patch_size=14,
8 | final_norm=False,
9 | out_type='avg_featmap'),
10 | neck=None,
11 | head=None,
12 | )
13 |
14 | data_preprocessor = dict(
15 | # RGB format normalization parameters
16 | mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
17 | std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
18 | # convert image from BGR to RGB
19 | to_rgb=True,
20 | )
21 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel.cuh"
5 |
6 | template void selective_scan_bwd_cuda<1, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<1, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<1, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/seresnext101_32x4d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='SEResNeXt',
6 | depth=101,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=4,
11 | se_ratio=16,
12 | style='pytorch'),
13 | neck=dict(type='GlobalAveragePooling'),
14 | head=dict(
15 | type='LinearClsHead',
16 | num_classes=1000,
17 | in_channels=2048,
18 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
19 | topk=(1, 5),
20 | ))
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/seresnext50_32x4d.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='SEResNeXt',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | groups=32,
10 | width_per_group=4,
11 | se_ratio=16,
12 | style='pytorch'),
13 | neck=dict(type='GlobalAveragePooling'),
14 | head=dict(
15 | type='LinearClsHead',
16 | num_classes=1000,
17 | in_channels=2048,
18 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
19 | topk=(1, 5),
20 | ))
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/wide-resnet50.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ResNet',
6 | depth=50,
7 | num_stages=4,
8 | out_indices=(3, ),
9 | stem_channels=64,
10 | base_channels=128,
11 | expansion=2,
12 | style='pytorch'),
13 | neck=dict(type='GlobalAveragePooling'),
14 | head=dict(
15 | type='LinearClsHead',
16 | num_classes=1000,
17 | in_channels=2048,
18 | loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
19 | topk=(1, 5),
20 | ))
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/densenet/densenet121_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/densenet/densenet121.py',
3 | '../_base_/datasets/imagenet_bs64.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=256)
10 |
11 | # schedule settings
12 | train_cfg = dict(by_epoch=True, max_epochs=90)
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR
15 | # based on the actual training batch size.
16 | # base_batch_size = (4 GPUs) x (256 samples per GPU)
17 | auto_scale_lr = dict(base_batch_size=1024)
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/densenet/densenet161_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/densenet/densenet161.py',
3 | '../_base_/datasets/imagenet_bs64.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=256)
10 |
11 | # schedule settings
12 | train_cfg = dict(by_epoch=True, max_epochs=90)
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR
15 | # based on the actual training batch size.
16 | # base_batch_size = (4 GPUs) x (256 samples per GPU)
17 | auto_scale_lr = dict(base_batch_size=1024)
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/densenet/densenet169_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/densenet/densenet169.py',
3 | '../_base_/datasets/imagenet_bs64.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=256)
10 |
11 | # schedule settings
12 | train_cfg = dict(by_epoch=True, max_epochs=90)
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR
15 | # based on the actual training batch size.
16 | # base_batch_size = (4 GPUs) x (256 samples per GPU)
17 | auto_scale_lr = dict(base_batch_size=1024)
18 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/densenet/densenet201_4xb256_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/densenet/densenet201.py',
3 | '../_base_/datasets/imagenet_bs64.py',
4 | '../_base_/schedules/imagenet_bs256.py',
5 | '../_base_/default_runtime.py',
6 | ]
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=256)
10 |
11 | # schedule settings
12 | train_cfg = dict(by_epoch=True, max_epochs=90)
13 |
14 | # NOTE: `auto_scale_lr` is for automatically scaling LR
15 | # based on the actual training batch size.
16 | # base_batch_size = (4 GPUs) x (256 samples per GPU)
17 | auto_scale_lr = dict(base_batch_size=1024)
18 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_fwd_kernel.cuh"
5 |
6 | template void selective_scan_fwd_cuda<1, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
7 | template void selective_scan_fwd_cuda<1, at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
8 | template void selective_scan_fwd_cuda<1, at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convnext_v2/atto.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ConvNeXt',
6 | arch='atto',
7 | drop_path_rate=0.1,
8 | layer_scale_init_value=0.,
9 | use_grn=True,
10 | ),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=320,
15 | loss=dict(type='LabelSmoothLoss', label_smooth_val=0.2),
16 | init_cfg=None,
17 | ),
18 | init_cfg=dict(
19 | type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.),
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convnext_v2/nano.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ConvNeXt',
6 | arch='nano',
7 | drop_path_rate=0.1,
8 | layer_scale_init_value=0.,
9 | use_grn=True,
10 | ),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=640,
15 | loss=dict(type='LabelSmoothLoss', label_smooth_val=0.2),
16 | init_cfg=None,
17 | ),
18 | init_cfg=dict(
19 | type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.),
20 | )
21 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convnext_v2/pico.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ConvNeXt',
6 | arch='pico',
7 | drop_path_rate=0.1,
8 | layer_scale_init_value=0.,
9 | use_grn=True,
10 | ),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=512,
15 | loss=dict(type='LabelSmoothLoss', label_smooth_val=0.1),
16 | init_cfg=None,
17 | ),
18 | init_cfg=dict(
19 | type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.),
20 | )
21 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_bwd.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_bwd_cuda<1, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<1, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<1, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_bwd2.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_bwd_cuda<2, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<2, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<2, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/_base_/models/convnext_v2/femto.py:
--------------------------------------------------------------------------------
1 | # Model settings
2 | model = dict(
3 | type='ImageClassifier',
4 | backbone=dict(
5 | type='ConvNeXt',
6 | arch='femto',
7 | drop_path_rate=0.1,
8 | layer_scale_init_value=0.,
9 | use_grn=True,
10 | ),
11 | head=dict(
12 | type='LinearClsHead',
13 | num_classes=1000,
14 | in_channels=384,
15 | loss=dict(type='LabelSmoothLoss', label_smooth_val=0.1),
16 | init_cfg=None,
17 | ),
18 | init_cfg=dict(
19 | type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.),
20 | )
21 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusndstate/selective_scan_core_bwd.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_bwd_kernel_ndstate.cuh"
5 |
6 | template void selective_scan_bwd_cuda<1, float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
7 | template void selective_scan_bwd_cuda<1, at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
8 | template void selective_scan_bwd_cuda<1, at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_fwd.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_fwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_fwd_cuda<1, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
7 | template void selective_scan_fwd_cuda<1, at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
8 | template void selective_scan_fwd_cuda<1, at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_fwd2.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_fwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_fwd_cuda<2, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
7 | template void selective_scan_fwd_cuda<2, at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
8 | template void selective_scan_fwd_cuda<2, at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_fwd3.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_fwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_fwd_cuda<3, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
7 | template void selective_scan_fwd_cuda<3, at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
8 | template void selective_scan_fwd_cuda<3, at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/kernels/selective_scan/csrc/selective_scan/cusnrow/selective_scan_core_fwd4.cu:
--------------------------------------------------------------------------------
1 | /******************************************************************************
2 | * Copyright (c) 2023, Tri Dao.
3 | ******************************************************************************/
4 | #include "selective_scan_fwd_kernel_nrow.cuh"
5 |
6 | template void selective_scan_fwd_cuda<4, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
7 | template void selective_scan_fwd_cuda<4, at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
8 | template void selective_scan_fwd_cuda<4, at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
9 |
10 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/regnet/regnetx-12gf_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./regnetx-400mf_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(type='RegNet', arch='regnetx_12gf'),
6 | head=dict(in_channels=2240, ))
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=64)
10 |
11 | # schedule settings
12 | # for batch_size 512, use lr = 0.4
13 | optim_wrapper = dict(optimizer=dict(lr=0.4))
14 |
15 | # NOTE: `auto_scale_lr` is for automatically scaling LR
16 | # based on the actual training batch size.
17 | # base_batch_size = (8 GPUs) x (64 samples per GPU)
18 | auto_scale_lr = dict(base_batch_size=512)
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/regnet/regnetx-3.2gf_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./regnetx-400mf_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(type='RegNet', arch='regnetx_3.2gf'),
6 | head=dict(in_channels=1008, ))
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=64)
10 |
11 | # schedule settings
12 | # for batch_size 512, use lr = 0.4
13 | optim_wrapper = dict(optimizer=dict(lr=0.4))
14 |
15 | # NOTE: `auto_scale_lr` is for automatically scaling LR
16 | # based on the actual training batch size.
17 | # base_batch_size = (8 GPUs) x (64 samples per GPU)
18 | auto_scale_lr = dict(base_batch_size=512)
19 |
--------------------------------------------------------------------------------
/analyze/mmpretrain_configs/configs/regnet/regnetx-4.0gf_8xb64_in1k.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./regnetx-400mf_8xb128_in1k.py']
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(type='RegNet', arch='regnetx_4.0gf'),
6 | head=dict(in_channels=1360, ))
7 |
8 | # dataset settings
9 | train_dataloader = dict(batch_size=64)
10 |
11 | # schedule settings
12 | # for batch_size 512, use lr = 0.4
13 | optim_wrapper = dict(optimizer=dict(lr=0.4))
14 |
15 | # NOTE: `auto_scale_lr` is for automatically scaling LR
16 | # based on the actual training batch size.
17 | # base_batch_size = (8 GPUs) x (64 samples per GPU)
18 | auto_scale_lr = dict(base_batch_size=512)
19 |
--------------------------------------------------------------------------------