└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Deep Learning-based Vulnerability Detection 2 | 3 | ### 2018 4 | 5 | + VulDeePecker: A Deep Learning-Based System for Vulnerability Detection [NDSS] [[paper]](https://arxiv.org/pdf/1801.01681.pdf) 6 | 7 | + Automated Vulnerability Detection in Source Code Using Deep Representation Learning [ICML] [[paper]](https://arxiv.org/pdf/1807.04320.pdf) 8 | 9 | + Cross-Project Transfer Representation Learning for Vulnerable Function Discovery [TII] [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329207) 10 | 11 | ### 2019 12 | 13 | + Machine-learning supported vulnerability detection in source code [FSE] [[paper]](https://dl.acm.org/doi/abs/10.1145/3338906.3341466) 14 | 15 | + Deep Learning-Based Vulnerable Function Detection: A Benchmark [ICICS] [[paper]](https://link.springer.com/chapter/10.1007/978-3-030-41579-2_13) 16 | 17 | + Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks [NIPS] [[paper]](https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf) 18 | 19 | + Software Vulnerability Discovery via Learning Multi-domain Knowledge Bases [TDSC] [[paper]](https://ieeexplore.ieee.org/abstract/document/8906156) 20 | 21 | ### 2020 22 | 23 | + Deep Learning based Vulnerability Detection:Are We There Yet? [TSE] [[paper]](https://arxiv.org/pdf/2009.07235.pdf) 24 | 25 | ### 2021 26 | 27 | + Combining Graph-based Learning with Automated Data Collection for Code Vulnerability Detection [TIFS] [[paper]](https://eprints.whiterose.ac.uk/168594/16/TIFS_2021.pdf) 28 | 29 | + µVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection [TDSC] [[paper]](https://arxiv.org/pdf/2001.02334.pdf) 30 | 31 | + SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities [TDSC] [[paper]](https://arxiv.org/pdf/1807.06756.pdf) 32 | 33 | + VulDeeLocator: A Deep Learning-based Fine-grained Vulnerability Detector [TDSC] [[paper]](https://arxiv.org/pdf/2001.02350.pdf) 34 | 35 | + AutoVAS: An Automated Vulnerability Analysis System with a Deep Learning Approach [Computers & Security] [[paper]](https://pdf.sciencedirectassets.com/271887/1-s2.0-S0167404821X00053/1-s2.0-S0167404821001322/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjENH%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIAfe1ZNVfjjFldmr4yAFzigETXPRH1XZWG3q7dRRzaKeAiAkxWtH62blzfCfzJQq8AoCwSlC0cIK416FvpBGfNkxOSr6AwhZEAQaDDA1OTAwMzU0Njg2NSIMGW2hBKND7HH2pKRsKtcDYMXKjh4xRCAkB4bWcPXE3UcqNddUsPk5knKm8QVc4ZlaJD%2BF5cUv8fSD80jlN3V6K18SOPD8CsP0silvWdt293q94RDWSLK4X5wZAu3TvRWETjEtT7sRiUIonJoLKkzUu%2FJA6RDU0GsxuQenIW0zl9VB8M47PbhYraR4v3dDtSx0XWPCXSz3h8LpiN4uCau4cJCzeVTLiyV8D1E7m6Zr9eCGtqzIX826zIG9RRvMEBZTIlNqDJuLvV4W6L0x7Hcpp6mXYHNRJI8Toomc66ygeVS%2BwGHZLXyBI6QI%2BmHpTuBOk6wFOKM0iScjChgDYUXP2S9jfmbUB%2FMKkDSCZJ8EyqSGhWmb4v0x1OOh%2FYZZCZhSFuxzWC0H7kxeHhrO5YWCwfGmCks5FqkG3cfyfjUO2A6mGZ4uD%2F0pg640RfQ8gRggoL8IH93YHt5X04E%2BldR%2FVat%2BKzn%2BclqpssPABzhC4C9XxKufxqJazpwcAJyIHyAlIuGQXbI0xf0qAavgGmPGtt%2BEInfIielrqzLZK%2BjCrLzOea4xz4mCXTUCBfmqSPDqDUBZPCSETeTy%2BaaB4xlOq2MxMuPY54JYLwMZjlz087UibZExOKZKy%2F1XJHz1YGY%2FjjCMMm2WMIHT8JEGOqYB2IriabLfh3wzjWm6ZlMoXAltZ9eZCqJ%2F5JJ%2FSxQjmjGDM5wfHtkQP8eYao7HtK3KiYt8Ef%2B3S4%2BWM44NuVr6soXvCCpUUAmhJ00Sg9XavuG82z43SLQpCoQeseZflbnPIx7pxazynXwyQDcezMIisZwV0uBEMcmHKreeEqNRELrRms8bMIxIhu7Pqx4ogEn3m%2BuYjwqd9PtuhV0m%2BKOhD6QaOHlcAA%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220324T084520Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6NLSQAMW%2F20220324%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=cb50265864c929ba0c480ff943cf1dac137668d1cdd062d6bca6288952a05a13&hash=c6102d05ab07e6ec44bd071d98e50f341bf6e603f0626dea45d0e68055d095e9&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0167404821001322&tid=spdf-fc9de7d7-c9c6-4cd2-8a90-97a3efae9d87&sid=19f268ff5671d64c4d989c07ad7df1d238fdgxrqa&type=client&ua=4c0052025c5e5a58000558&rr=6f0e2149cd866065) 36 | --------------------------------------------------------------------------------