├── .gitignore
├── LICENSE
├── README.md
├── cvrl.py
├── models.py
├── soft_actor_critic.py
├── tools.py
└── wrappers.py
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | *.py[cod]
3 | *.egg-info
4 | ./dist
5 | logdir/*
6 | MUJOCO_LOG.TXT
7 | .vscode/
8 | *.pkl
9 | \.idea/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CVRL
2 | This repo contains the Tensorflow 2.0 implementation for the CoRL 2020 paper
3 |
4 | Xiao Ma, Siwei Chen, David Hsu, Wee Sun Lee: Contrastive Variational Model-Based Reinforcement Learning for Complex Observations. In Proc. 4th Conference on Robot Learning. [[paper]](https://arxiv.org/abs/2008.02430)
5 |
6 | For visualzations, please visit our [project page](https://sites.google.com/view/cvrl/home). Our talk is publicly available [here](https://youtu.be/koXGdHR6Nd4).
7 |
8 | ## Setup
9 | ```
10 | pip3 install --user tensorflow-gpu==2.2.0
11 | pip3 install --user tensorflow_probability
12 | pip3 install --user git+git://github.com/deepmind/dm_control.git
13 | pip3 install --user pandas
14 | pip3 install --user matplotlib
15 | ```
16 |
17 | You will need the [Mujoco license](https://www.roboti.us/license.html) to run the Mujoco tasks.
18 |
19 | To play with the natural Mujoco tasks, download the natural Mujoco background dataset from [here](https://drive.google.com/drive/folders/1r7i1PYY_Yhfhu7T8hlhi2DJtaeD6lIvp?usp=sharing) and put it at the root of this folder.
20 |
21 |
22 | ## Train the agent:
23 |
24 | ```
25 | python3 cvrl.py --logdir ./logdir/dmc_walker_walk/natural_walker_walk/1 --task dmc_walker_walk --natural True --obs_model contrastive --use_dreamer True --use_sac True --trajectory_opt True
26 | ```
27 |
28 | To view the training logs and execution videos, please use
29 | ```
30 | tensorboard --logdir ./logdir --bind_all
31 | ```
32 |
33 | ## Cite CVRL
34 |
35 | If you find this repo useful, please consider citing our paper
36 |
37 | ```bibtex
38 | @inproceedings{
39 | ma2020contrastive,
40 | title={Contrastive Variational Model-Based Reinforcement Learning for Complex Observations},
41 | author={Xiao Ma and Siwei Chen and David Hsu and Wee Sun Lee},
42 | booktitle={Proceedings of the 4th Conference on Robot Learning},
43 | year={2020}
44 | }
45 | ```
46 |
47 | ## Reference
48 | The code borrows heavily from Danijar Hafner's Dreamer [implementation](https://github.com/danijar/dreamer).
49 |
--------------------------------------------------------------------------------
/cvrl.py:
--------------------------------------------------------------------------------
1 | import wrappers
2 | import tools
3 | import models
4 | from tensorflow_probability import distributions as tfd
5 | from tensorflow.keras.mixed_precision import experimental as prec
6 | import tensorflow as tf
7 | import numpy as np
8 | import argparse
9 | import collections
10 | import functools
11 | import json
12 | import os
13 | import pathlib
14 | import sys
15 | import time
16 | import soft_actor_critic
17 |
18 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
19 |
20 | # enable headless training on servers for mujoco
21 | os.environ['MUJOCO_GL'] = 'egl'
22 |
23 | tf.executing_eagerly()
24 |
25 | tf.get_logger().setLevel('ERROR')
26 |
27 |
28 | sys.path.append(str(pathlib.Path(__file__).parent))
29 |
30 |
31 | def define_config():
32 | config = tools.AttrDict()
33 | # General.
34 | config.logdir = pathlib.Path('.')
35 | config.seed = 0
36 | config.steps = 5e6
37 | config.eval_every = 1e4
38 | config.log_every = 1e3
39 | config.log_scalars = True
40 | config.log_images = True
41 | config.gpu_growth = True
42 | config.precision = 16
43 | # Environment.
44 | config.task = 'dmc_walker_walk'
45 | config.envs = 1
46 | config.parallel = 'none'
47 | config.action_repeat = 2
48 | config.time_limit = 1000
49 | config.prefill = 5000
50 | config.eval_noise = 0.0
51 | config.clip_rewards = 'none'
52 | # Model.
53 | config.deter_size = 200
54 | config.stoch_size = 30
55 | config.num_units = 400
56 | config.dense_act = 'elu'
57 | config.cnn_act = 'relu'
58 | config.cnn_depth = 32
59 | config.pcont = False
60 | config.free_nats = 3.0
61 | config.kl_scale = 1.0
62 | config.pcont_scale = 10.0
63 | config.weight_decay = 0.0
64 | config.weight_decay_pattern = r'.*'
65 | # Training.
66 | config.batch_size = 50
67 | config.batch_length = 50
68 | config.train_every = 1000
69 | config.train_steps = 100
70 | config.pretrain = 100
71 | config.model_lr = 6e-4
72 | config.value_lr = 8e-5
73 | config.actor_lr = 8e-5
74 | config.grad_clip = 100.0
75 | config.dataset_balance = False
76 | # Behavior.
77 | config.discount = 0.99
78 | config.disclam = 0.95
79 | config.horizon = 15
80 | config.action_dist = 'tanh_normal'
81 | config.action_init_std = 5.0
82 | config.expl = 'additive_gaussian'
83 | config.expl_amount = 0.3
84 | config.expl_decay = 0.0
85 | config.expl_min = 0.0
86 | config.log_imgs = False
87 |
88 | # natural or not
89 | config.natural = False
90 |
91 | # obs model
92 | config.obs_model = 'contrastive'
93 |
94 | # SAC settings
95 | config.num_Qs = 2
96 |
97 | # use dreamer and SAC for hybrid actor-critic training
98 | config.use_sac = True
99 | config.use_dreamer = True
100 |
101 | # use trajectory optimization
102 | config.trajectory_opt = True
103 | config.traj_opt_lr = 0.003
104 | config.num_samples = 20
105 | return config
106 |
107 |
108 | class CVRL(tools.Module):
109 |
110 | def __init__(self, config, datadir, actspace, writer):
111 | self._c = config
112 | self._actspace = actspace
113 | self._actdim = actspace.n if hasattr(
114 | actspace, 'n') else actspace.shape[0]
115 | self._writer = writer
116 | self._random = np.random.RandomState(config.seed)
117 | with tf.device('cpu:0'):
118 | self._step = tf.Variable(count_steps(
119 | datadir, config), dtype=tf.int64)
120 | self._should_pretrain = tools.Once()
121 | self._should_train = tools.Every(config.train_every)
122 | self._should_log = tools.Every(config.log_every)
123 | self._last_log = None
124 | self._last_time = time.time()
125 | self._metrics = collections.defaultdict(tf.metrics.Mean)
126 | self._metrics['expl_amount'] # Create variable for checkpoint.
127 | self._float = prec.global_policy().compute_dtype
128 | self._dataset = iter(load_dataset(datadir, self._c))
129 | self._build_model()
130 |
131 | def __call__(self, obs, reset, state=None, training=True):
132 | step = self._step.numpy().item()
133 | tf.summary.experimental.set_step(step)
134 | if state is not None and reset.any():
135 | mask = tf.cast(1 - reset, self._float)[:, None]
136 | state = tf.nest.map_structure(lambda x: x * mask, state)
137 | if self._should_train(step):
138 | log = self._should_log(step)
139 | n = self._c.pretrain if self._should_pretrain() else self._c.train_steps
140 | print(f'Training for {n} steps.')
141 | # with self._strategy.scope():
142 | for train_step in range(n):
143 | log_images = self._c.log_images and log and train_step == 0
144 | self.train(next(self._dataset), log_images)
145 | if log:
146 | self._write_summaries()
147 | action, state = self.policy(obs, state, training)
148 | if training:
149 | self._step.assign_add(len(reset) * self._c.action_repeat)
150 | return action, state
151 |
152 | @tf.function
153 | def policy(self, obs, state, training):
154 | if state is None:
155 | latent = self._dynamics.initial(len(obs['image']))
156 | action = tf.zeros((len(obs['image']), self._actdim), self._float)
157 | else:
158 | latent, action = state
159 | embed = self._encode(preprocess(obs, self._c))
160 | latent, _ = self._dynamics.obs_step(latent, action, embed)
161 | feat = self._dynamics.get_feat(latent)
162 |
163 | if self._c.trajectory_opt:
164 | action = self._trajectory_optimization(latent)
165 | else:
166 | if training:
167 | action = self._actor(feat).sample()
168 | else:
169 | action = self._actor(feat).mode()
170 |
171 | action = self._exploration(action, training)
172 | state = (latent, action)
173 | return action, state
174 |
175 | def load(self, filename):
176 | super().load(filename)
177 | self._should_pretrain()
178 |
179 | @tf.function()
180 | def train(self, data, log_images=False):
181 | self._train(data, log_images)
182 |
183 | def _train(self, data, log_images):
184 | with tf.GradientTape() as model_tape:
185 | embed = self._encode(data)
186 | post, prior = self._dynamics.observe(embed, data['action'])
187 | feat = self._dynamics.get_feat(post)
188 | reward_pred = self._reward(feat)
189 | likes = tools.AttrDict()
190 | likes.reward = tf.reduce_mean(reward_pred.log_prob(data['reward']))
191 |
192 | # if we use the generative observation model, we need to perform observation reconstruction
193 | image_pred = self._decode(feat)
194 | # compute the contrative loss directly in CVRL
195 | cont_loss = self._contrastive(feat, embed)
196 |
197 | # the contrastive / generative implementation of the observation model p(o|s)
198 | if self._c.obs_model == 'generative':
199 | likes.image = tf.reduce_mean(image_pred.log_prob(data['image']))
200 | elif self._c.obs_model == 'contrastive':
201 | likes.image = tf.reduce_mean(cont_loss)
202 |
203 | if self._c.pcont:
204 | pcont_pred = self._pcont(feat)
205 | pcont_target = self._c.discount * data['discount']
206 | likes.pcont = tf.reduce_mean(pcont_pred.log_prob(pcont_target))
207 | likes.pcont *= self._c.pcont_scale
208 |
209 | prior_dist = self._dynamics.get_dist(prior)
210 | post_dist = self._dynamics.get_dist(post)
211 | div = tf.reduce_mean(tfd.kl_divergence(post_dist, prior_dist))
212 | div = tf.maximum(div, self._c.free_nats)
213 | model_loss = self._c.kl_scale * div - sum(likes.values())
214 |
215 | assert self._c.use_dreamer or self._c.use_sac
216 |
217 | if self._c.use_dreamer:
218 | with tf.GradientTape() as actor_tape:
219 | imag_feat = self._imagine_ahead(post)
220 | reward = self._reward(imag_feat).mode()
221 | if self._c.pcont:
222 | pcont = self._pcont(imag_feat).mean()
223 | else:
224 | pcont = self._c.discount * tf.ones_like(reward)
225 | value = self._value(imag_feat).mode()
226 | returns = tools.lambda_return(
227 | reward[:-1], value[:-1], pcont[:-1],
228 | bootstrap=value[-1], lambda_=self._c.disclam, axis=0)
229 | discount = tf.stop_gradient(tf.math.cumprod(tf.concat(
230 | [tf.ones_like(pcont[:1]), pcont[:-2]], 0), 0))
231 | actor_loss = -tf.reduce_mean(discount * returns)
232 |
233 | with tf.GradientTape() as value_tape:
234 | value_pred = self._value(imag_feat)[:-1]
235 | target = tf.stop_gradient(returns)
236 | value_loss = - \
237 | tf.reduce_mean(discount * value_pred.log_prob(target))
238 |
239 | actor_norm = self._actor_opt(actor_tape, actor_loss)
240 | value_norm = self._value_opt(value_tape, value_loss)
241 | else:
242 | actor_norm = actor_loss = 0
243 | value_norm = value_loss = 0
244 |
245 | model_norm = self._model_opt(model_tape, model_loss)
246 | states = tf.concat([post['stoch'], post['deter']], axis=-1)
247 | rewards = data['reward']
248 | dones = tf.zeros_like(rewards)
249 | actions = data['action']
250 |
251 | # if we use SAC, add the SAC training
252 | if self._c.use_sac:
253 | self._sac._do_training(self._step, states, actions, rewards, dones)
254 |
255 | if tf.distribute.get_replica_context().replica_id_in_sync_group == 0:
256 | if self._c.log_scalars:
257 | self._scalar_summaries(
258 | data, feat, prior_dist, post_dist, likes, div,
259 | model_loss, value_loss, actor_loss, model_norm, value_norm,
260 | actor_norm)
261 | if tf.equal(log_images, True) and self._c.log_imgs:
262 | self._image_summaries(data, embed, image_pred)
263 |
264 | def _build_model(self):
265 | acts = dict(
266 | elu=tf.nn.elu, relu=tf.nn.relu, swish=tf.nn.swish,
267 | leaky_relu=tf.nn.leaky_relu)
268 | cnn_act = acts[self._c.cnn_act]
269 | act = acts[self._c.dense_act]
270 | self._encode = models.ConvEncoder(self._c.cnn_depth, cnn_act)
271 | self._dynamics = models.RSSM(
272 | self._c.stoch_size, self._c.deter_size, self._c.deter_size)
273 | self._decode = models.ConvDecoder(self._c.cnn_depth, cnn_act)
274 | self._contrastive = models.ContrastiveObsModel(self._c.deter_size,
275 | self._c.deter_size * 2)
276 | self._reward = models.DenseDecoder((), 2, self._c.num_units, act=act)
277 | if self._c.pcont:
278 | self._pcont = models.DenseDecoder(
279 | (), 3, self._c.num_units, 'binary', act=act)
280 | self._value = models.DenseDecoder((), 3, self._c.num_units, act=act)
281 | self._Qs = [models.QNetwork(3, self._c.num_units, act=act) for _ in range(self._c.num_Qs)]
282 | self._actor = models.ActionDecoder(
283 | self._actdim, 4, self._c.num_units, self._c.action_dist,
284 | init_std=self._c.action_init_std, act=act)
285 | model_modules = [self._encode, self._dynamics,
286 | self._contrastive, self._reward, self._decode]
287 | if self._c.pcont:
288 | model_modules.append(self._pcont)
289 | Optimizer = functools.partial(
290 | tools.Adam, wd=self._c.weight_decay, clip=self._c.grad_clip,
291 | wdpattern=self._c.weight_decay_pattern)
292 | self._model_opt = Optimizer('model', model_modules, self._c.model_lr)
293 | self._value_opt = Optimizer('value', [self._value], self._c.value_lr)
294 | self._actor_opt = Optimizer('actor', [self._actor], self._c.actor_lr)
295 | self._q_opts = [Optimizer('qs', [qnet], self._c.value_lr) for qnet in self._Qs]
296 |
297 | if self._c.use_sac:
298 | self._sac = soft_actor_critic.SAC(self._actor, self._Qs, self._actor_opt, self._q_opts, self._actspace)
299 |
300 | self.train(next(self._dataset))
301 |
302 | def _exploration(self, action, training):
303 | if training:
304 | amount = self._c.expl_amount
305 | if self._c.expl_decay:
306 | amount *= 0.5 ** (tf.cast(self._step,
307 | tf.float32) / self._c.expl_decay)
308 | if self._c.expl_min:
309 | amount = tf.maximum(self._c.expl_min, amount)
310 | self._metrics['expl_amount'].update_state(amount)
311 | elif self._c.eval_noise:
312 | amount = self._c.eval_noise
313 | else:
314 | return action
315 | if self._c.expl == 'additive_gaussian':
316 | return tf.clip_by_value(tfd.Normal(action, amount).sample(), -1, 1)
317 | if self._c.expl == 'completely_random':
318 | return tf.random.uniform(action.shape, -1, 1)
319 | if self._c.expl == 'epsilon_greedy':
320 | indices = tfd.Categorical(0 * action).sample()
321 | return tf.where(
322 | tf.random.uniform(action.shape[:1], 0, 1) < amount,
323 | tf.one_hot(indices, action.shape[-1], dtype=self._float),
324 | action)
325 | raise NotImplementedError(self._c.expl)
326 |
327 | def _imagine_ahead(self, post):
328 | if self._c.pcont: # Last step could be terminal.
329 | post = {k: v[:, :-1] for k, v in post.items()}
330 |
331 | def flatten(x): return tf.reshape(x, [-1] + list(x.shape[2:]))
332 | start = {k: flatten(v) for k, v in post.items()}
333 |
334 | def policy(state): return self._actor(
335 | tf.stop_gradient(self._dynamics.get_feat(state))).sample()
336 | states = tools.static_scan(
337 | lambda prev, _: self._dynamics.img_step(prev, policy(prev)),
338 | tf.range(self._c.horizon), start)
339 | imag_feat = self._dynamics.get_feat(states)
340 | return imag_feat
341 |
342 | def _trajectory_optimization(self, post):
343 | def policy(state): return self._actor(
344 | tf.stop_gradient(self._dynamics.get_feat(state))).sample()
345 |
346 | def repeat(x):
347 | return tf.repeat(x, self._c.num_samples, axis=0)
348 |
349 | states, actions = tools.static_scan_action(
350 | lambda prev, action, _: self._dynamics.img_step(prev, action),
351 | lambda prev: policy(prev),
352 | tf.range(self._c.horizon), post)
353 |
354 | feat = self._dynamics.get_feat(states)
355 | reward = self._reward(feat).mode()
356 |
357 | if self._c.pcont:
358 | pcont = self._pcont(feat).mean()
359 | else:
360 | pcont = self._c.discount * tf.ones_like(reward)
361 | value = self._value(feat).mode()
362 |
363 | # compute the accumulated reward
364 | returns = tools.lambda_return(
365 | reward[:-1], value[:-1], pcont[:-1],
366 | bootstrap=value[-1], lambda_=self._c.disclam, axis=0)
367 |
368 | accumulated_reward = returns[0, 0]
369 |
370 | # since the reward and latent dynamics are fully differentiable, we can backprop the gradients to update the actions
371 | grad = tf.gradients(accumulated_reward, actions)[0]
372 | act = actions + grad * self._c.traj_opt_lr
373 |
374 | return act
375 |
376 |
377 | def _scalar_summaries(
378 | self, data, feat, prior_dist, post_dist, likes, div,
379 | model_loss, value_loss, actor_loss, model_norm, value_norm,
380 | actor_norm):
381 | self._metrics['model_grad_norm'].update_state(model_norm)
382 | self._metrics['value_grad_norm'].update_state(value_norm)
383 | self._metrics['actor_grad_norm'].update_state(actor_norm)
384 | self._metrics['prior_ent'].update_state(prior_dist.entropy())
385 | self._metrics['post_ent'].update_state(post_dist.entropy())
386 | for name, logprob in likes.items():
387 | self._metrics[name + '_loss'].update_state(-logprob)
388 | self._metrics['div'].update_state(div)
389 | self._metrics['model_loss'].update_state(model_loss)
390 | self._metrics['value_loss'].update_state(value_loss)
391 | self._metrics['actor_loss'].update_state(actor_loss)
392 | self._metrics['action_ent'].update_state(self._actor(feat).entropy())
393 |
394 | def _image_summaries(self, data, embed, image_pred):
395 | truth = data['image'][:6] + 0.5
396 | recon = image_pred.mode()[:6]
397 | init, _ = self._dynamics.observe(embed[:6, :5], data['action'][:6, :5])
398 | init = {k: v[:, -1] for k, v in init.items()}
399 | prior = self._dynamics.imagine(data['action'][:6, 5:], init)
400 | openl = self._decode(self._dynamics.get_feat(prior)).mode()
401 | model = tf.concat([recon[:, :5] + 0.5, openl + 0.5], 1)
402 | error = (model - truth + 1) / 2
403 | openl = tf.concat([truth, model, error], 2)
404 | tools.graph_summary(
405 | self._writer, tools.video_summary, 'agent/openl', openl)
406 |
407 | def _write_summaries(self):
408 | step = int(self._step.numpy())
409 | metrics = [(k, float(v.result())) for k, v in self._metrics.items()]
410 | if self._last_log is not None:
411 | duration = time.time() - self._last_time
412 | self._last_time += duration
413 | metrics.append(('fps', (step - self._last_log) / duration))
414 | self._last_log = step
415 | [m.reset_states() for m in self._metrics.values()]
416 | with (self._c.logdir / 'metrics.jsonl').open('a') as f:
417 | f.write(json.dumps({'step': step, **dict(metrics)}) + '\n')
418 | [tf.summary.scalar('agent/' + k, m) for k, m in metrics]
419 | print(f'[{step}]', ' / '.join(f'{k} {v:.1f}' for k, v in metrics))
420 | self._writer.flush()
421 |
422 |
423 | def preprocess(obs, config):
424 | dtype = prec.global_policy().compute_dtype
425 | obs = obs.copy()
426 | with tf.device('cpu:0'):
427 | obs['image'] = tf.cast(obs['image'], dtype) / 255.0 - 0.5
428 | clip_rewards = dict(none=lambda x: x, tanh=tf.tanh)[
429 | config.clip_rewards]
430 | obs['reward'] = clip_rewards(obs['reward'])
431 | return obs
432 |
433 |
434 | def count_steps(datadir, config):
435 | return tools.count_episodes(datadir)[1] * config.action_repeat
436 |
437 |
438 | def load_dataset(directory, config):
439 | episode = next(tools.load_episodes(directory, 1))
440 | types = {k: v.dtype for k, v in episode.items()}
441 | shapes = {k: (None,) + v.shape[1:] for k, v in episode.items()}
442 |
443 | def generator(): return tools.load_episodes(
444 | directory, config.train_steps, config.batch_length,
445 | config.dataset_balance)
446 | dataset = tf.data.Dataset.from_generator(generator, types, shapes)
447 | dataset = dataset.batch(config.batch_size, drop_remainder=True)
448 | dataset = dataset.map(functools.partial(preprocess, config=config))
449 | dataset = dataset.prefetch(10)
450 | return dataset
451 |
452 |
453 | def summarize_episode(episode, config, datadir, writer, prefix):
454 | episodes, steps = tools.count_episodes(datadir)
455 | length = (len(episode['reward']) - 1) * config.action_repeat
456 | ret = episode['reward'].sum()
457 | print(f'{prefix.title()} episode of length {length} with return {ret:.1f}.')
458 | metrics = [
459 | (f'{prefix}/return', float(episode['reward'].sum())),
460 | (f'{prefix}/length', len(episode['reward']) - 1),
461 | (f'episodes', episodes)]
462 | step = count_steps(datadir, config)
463 | with (config.logdir / 'metrics.jsonl').open('a') as f:
464 | f.write(json.dumps(dict([('step', step)] + metrics)) + '\n')
465 | with writer.as_default(): # Env might run in a different thread.
466 | tf.summary.experimental.set_step(step)
467 | [tf.summary.scalar('sim/' + k, v) for k, v in metrics]
468 | if prefix == 'test':
469 | tools.video_summary(f'sim/{prefix}/video', episode['image'][None])
470 |
471 |
472 | def make_env(config, writer, prefix, datadir, train):
473 | suite, task = config.task.split('_', 1)
474 | if suite == 'dmc':
475 | env = wrappers.DeepMindControl(task)
476 | env = wrappers.ActionRepeat(env, config.action_repeat)
477 | env = wrappers.NormalizeActions(env)
478 | if config.natural:
479 | data = tools.load_imgnet(train)
480 | env = wrappers.NaturalMujoco(env, data)
481 | elif suite == 'atari':
482 | env = wrappers.Atari(
483 | task, config.action_repeat, (64, 64), grayscale=False,
484 | life_done=True, sticky_actions=True)
485 | env = wrappers.OneHotAction(env)
486 | else:
487 | raise NotImplementedError(suite)
488 | env = wrappers.TimeLimit(env, config.time_limit / config.action_repeat)
489 | callbacks = []
490 | if train:
491 | callbacks.append(lambda ep: tools.save_episodes(datadir, [ep]))
492 | callbacks.append(
493 | lambda ep: summarize_episode(ep, config, datadir, writer, prefix))
494 | env = wrappers.Collect(env, callbacks, config.precision)
495 | env = wrappers.RewardObs(env)
496 | return env
497 |
498 |
499 | def main(config):
500 | if config.gpu_growth:
501 | for gpu in tf.config.experimental.list_physical_devices('GPU'):
502 | tf.config.experimental.set_memory_growth(gpu, True)
503 | assert config.precision in (16, 32), config.precision
504 | if config.precision == 16:
505 | prec.set_policy(prec.Policy('mixed_float16'))
506 | config.steps = int(config.steps)
507 | config.logdir.mkdir(parents=True, exist_ok=True)
508 | print('Logdir', config.logdir)
509 |
510 | arg_dict = vars(config).copy()
511 | del arg_dict['logdir']
512 |
513 | with open(os.path.join(config.logdir, 'args.json'), 'w') as fout:
514 | import json
515 | json.dump(arg_dict, fout)
516 |
517 | # Create environments.
518 | datadir = config.logdir / 'episodes'
519 | writer = tf.summary.create_file_writer(
520 | str(config.logdir), max_queue=1000, flush_millis=20000)
521 | writer.set_as_default()
522 | train_envs = [wrappers.Async(lambda: make_env(
523 | config, writer, 'train', datadir, train=True), config.parallel)
524 | for _ in range(config.envs)]
525 | test_envs = [wrappers.Async(lambda: make_env(
526 | config, writer, 'test', datadir, train=False), config.parallel)
527 | for _ in range(config.envs)]
528 | actspace = train_envs[0].action_space
529 |
530 | # Prefill dataset with random episodes.
531 | step = count_steps(datadir, config)
532 | prefill = max(0, config.prefill - step)
533 | print(f'Prefill dataset with {prefill} steps.')
534 | def random_agent(o, d, _): return ([actspace.sample() for _ in d], None)
535 | tools.simulate(random_agent, train_envs, prefill / config.action_repeat)
536 | writer.flush()
537 |
538 | # Train and regularly evaluate the agent.
539 | step = count_steps(datadir, config)
540 | print(f'Simulating agent for {config.steps-step} steps.')
541 | agent = CVRL(config, datadir, actspace, writer)
542 | if (config.logdir / 'variables.pkl').exists():
543 | print('Load checkpoint.')
544 | agent.load(config.logdir / 'variables.pkl')
545 | state = None
546 | while step < config.steps:
547 | print('Start evaluation.')
548 | tools.simulate(
549 | functools.partial(agent, training=False), test_envs, episodes=1)
550 | writer.flush()
551 | print('Start collection.')
552 | steps = config.eval_every // config.action_repeat
553 | state = tools.simulate(agent, train_envs, steps, state=state)
554 | step = count_steps(datadir, config)
555 | agent.save(config.logdir / 'variables.pkl')
556 | for env in train_envs + test_envs:
557 | env.close()
558 |
559 |
560 | if __name__ == '__main__':
561 | try:
562 | import colored_traceback
563 | colored_traceback.add_hook()
564 | except ImportError:
565 | pass
566 | parser = argparse.ArgumentParser()
567 | for key, value in define_config().items():
568 | parser.add_argument(
569 | f'--{key}', type=tools.args_type(value), default=value)
570 | args = parser.parse_args()
571 |
572 | main(args)
573 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import tensorflow as tf
3 | from tensorflow.keras import layers as tfkl
4 | from tensorflow_probability import distributions as tfd
5 | from tensorflow.keras.mixed_precision import experimental as prec
6 | import tools
7 |
8 |
9 | class RSSM(tools.Module):
10 |
11 | def __init__(self, stoch=30, deter=200, hidden=200, act=tf.nn.elu):
12 | super().__init__()
13 | self._activation = act
14 | self._stoch_size = stoch
15 | self._deter_size = deter
16 | self._hidden_size = hidden
17 | self._cell = tfkl.GRUCell(self._deter_size)
18 |
19 | def initial(self, batch_size):
20 | dtype = prec.global_policy().compute_dtype
21 | return dict(
22 | mean=tf.zeros([batch_size, self._stoch_size], dtype),
23 | std=tf.zeros([batch_size, self._stoch_size], dtype),
24 | stoch=tf.zeros([batch_size, self._stoch_size], dtype),
25 | deter=self._cell.get_initial_state(None, batch_size, dtype))
26 |
27 | @tf.function
28 | def observe(self, embed, action, state=None):
29 | if state is None:
30 | state = self.initial(tf.shape(action)[0])
31 | embed = tf.transpose(embed, [1, 0, 2])
32 | action = tf.transpose(action, [1, 0, 2])
33 | post, prior = tools.static_scan(
34 | lambda prev, inputs: self.obs_step(prev[0], *inputs),
35 | (action, embed), (state, state))
36 | post = {k: tf.transpose(v, [1, 0, 2]) for k, v in post.items()}
37 | prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()}
38 | return post, prior
39 |
40 | @tf.function
41 | def imagine(self, action, state=None):
42 | if state is None:
43 | state = self.initial(tf.shape(action)[0])
44 | assert isinstance(state, dict), state
45 | action = tf.transpose(action, [1, 0, 2])
46 | prior = tools.static_scan(self.img_step, action, state)
47 | prior = {k: tf.transpose(v, [1, 0, 2]) for k, v in prior.items()}
48 | return prior
49 |
50 | def get_feat(self, state):
51 | return tf.concat([state['stoch'], state['deter']], -1)
52 |
53 | def get_dist(self, state):
54 | return tfd.MultivariateNormalDiag(state['mean'], state['std'])
55 |
56 | @tf.function
57 | def obs_step(self, prev_state, prev_action, embed):
58 | prior = self.img_step(prev_state, prev_action)
59 | x = tf.concat([prior['deter'], embed], -1)
60 | x = self.get('obs1', tfkl.Dense, self._hidden_size,
61 | self._activation)(x)
62 | x = self.get('obs2', tfkl.Dense, 2 * self._stoch_size, None)(x)
63 | mean, std = tf.split(x, 2, -1)
64 | std = tf.nn.softplus(std) + 0.1
65 | stoch = self.get_dist({'mean': mean, 'std': std}).sample()
66 | post = {'mean': mean, 'std': std,
67 | 'stoch': stoch, 'deter': prior['deter']}
68 | return post, prior
69 |
70 | @tf.function
71 | def img_step(self, prev_state, prev_action):
72 | x = tf.concat([prev_state['stoch'], prev_action], -1)
73 | x = self.get('img1', tfkl.Dense, self._hidden_size,
74 | self._activation)(x)
75 | x, deter = self._cell(x, [prev_state['deter']])
76 | deter = deter[0] # Keras wraps the state in a list.
77 | x = self.get('img2', tfkl.Dense, self._hidden_size,
78 | self._activation)(x)
79 | x = self.get('img3', tfkl.Dense, 2 * self._stoch_size, None)(x)
80 | mean, std = tf.split(x, 2, -1)
81 | std = tf.nn.softplus(std) + 0.1
82 | stoch = self.get_dist({'mean': mean, 'std': std}).sample()
83 | prior = {'mean': mean, 'std': std, 'stoch': stoch, 'deter': deter}
84 | return prior
85 |
86 |
87 | class ConvEncoder(tools.Module):
88 |
89 | def __init__(self, depth=32, act=tf.nn.relu):
90 | self._act = act
91 | self._depth = depth
92 |
93 | def __call__(self, obs):
94 | kwargs = dict(strides=2, activation=self._act)
95 | x = tf.reshape(obs['image'], (-1,) + tuple(obs['image'].shape[-3:]))
96 | x = self.get('h1', tfkl.Conv2D, 1 * self._depth, 4, **kwargs)(x)
97 | x = self.get('h2', tfkl.Conv2D, 2 * self._depth, 4, **kwargs)(x)
98 | x = self.get('h3', tfkl.Conv2D, 4 * self._depth, 4, **kwargs)(x)
99 | x = self.get('h4', tfkl.Conv2D, 8 * self._depth, 4, **kwargs)(x)
100 | shape = tf.concat([tf.shape(obs['image'])[:-3], [32 * self._depth]], 0)
101 | return tf.reshape(x, shape)
102 |
103 |
104 | class ConvDecoder(tools.Module):
105 |
106 | def __init__(self, depth=32, act=tf.nn.relu, shape=(64, 64, 3)):
107 | self._act = act
108 | self._depth = depth
109 | self._shape = shape
110 |
111 | def __call__(self, features):
112 | kwargs = dict(strides=2, activation=self._act)
113 | x = self.get('h1', tfkl.Dense, 32 * self._depth, None)(features)
114 | x = tf.reshape(x, [-1, 1, 1, 32 * self._depth])
115 | x = self.get('h2', tfkl.Conv2DTranspose,
116 | 4 * self._depth, 5, **kwargs)(x)
117 | x = self.get('h3', tfkl.Conv2DTranspose,
118 | 2 * self._depth, 5, **kwargs)(x)
119 | x = self.get('h4', tfkl.Conv2DTranspose,
120 | 1 * self._depth, 6, **kwargs)(x)
121 | x = self.get('h5', tfkl.Conv2DTranspose,
122 | self._shape[-1], 6, strides=2)(x)
123 | mean = tf.reshape(x, tf.concat(
124 | [tf.shape(features)[:-1], self._shape], 0))
125 | return tfd.Independent(tfd.Normal(mean, 1), len(self._shape))
126 |
127 |
128 | class ContrastiveObsModel(tools.Module):
129 | """The contrastive observation model
130 | """
131 | def __init__(self, hz, hx, act=tf.nn.elu):
132 | self.act = act
133 | self.hz = hz
134 | self.hx = hx
135 |
136 | def __call__(self, z, x):
137 | """Both inputs have the shape of [batch_sz, length, dim]. For each positive sample, we use the rest of batch_sz * length - 1 samples as negative samples
138 |
139 | Args:
140 | z (tensor): latent state
141 | x (tensor): encoded observation
142 | """
143 |
144 | x = tf.reshape(x, (-1, x.shape[-1]))
145 | z = tf.reshape(z, (-1, z.shape[-1]))
146 |
147 | # use mixed precision of float32 to avoid overflow
148 | x = self.get('obs_enc1', tfkl.Dense, self.hx, self.act)(x)
149 | x = self.get('obs_enc2', tfkl.Dense, self.hz, self.act, dtype='float32')(x)
150 |
151 | z = self.get('state_merge1', tfkl.Dense, self.hz, self.act)(z)
152 | z = self.get('state_merge2', tfkl.Dense, self.hz, self.act,
153 | dtype='float32')(z)
154 |
155 | weight_mat = tf.matmul(z, x, transpose_b=True)
156 |
157 | positive = tf.linalg.tensor_diag_part(weight_mat)
158 | norm = tf.reduce_logsumexp(weight_mat, axis=1)
159 |
160 | # compute the infonce loss and change the predicion back to float16
161 | info_nce = tf.cast(positive - norm, 'float16')
162 |
163 | return info_nce
164 |
165 |
166 | class DenseDecoder(tools.Module):
167 |
168 | def __init__(self, shape, layers, units, dist='normal', act=tf.nn.elu):
169 | self._shape = shape
170 | self._layers = layers
171 | self._units = units
172 | self._dist = dist
173 | self._act = act
174 |
175 | def __call__(self, features):
176 | x = features
177 | for index in range(self._layers):
178 | x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x)
179 | x = self.get(f'hout', tfkl.Dense, np.prod(self._shape))(x)
180 | x = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0))
181 | if self._dist == 'normal':
182 | return tfd.Independent(tfd.Normal(x, 1), len(self._shape))
183 | if self._dist == 'binary':
184 | return tfd.Independent(tfd.Bernoulli(x), len(self._shape))
185 | raise NotImplementedError(self._dist)
186 |
187 | class QNetwork(tools.Module):
188 |
189 | def __init__(self, layers, units, dist='normal', act=tf.nn.elu, shape=()):
190 | self._shape = shape
191 | self._layers = layers
192 | self._units = units
193 | self._dist = dist
194 | self._act = act
195 |
196 | def __call__(self, features):
197 | x = features
198 | for index in range(self._layers):
199 | x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x)
200 | x = self.get(f'hout', tfkl.Dense, np.prod(self._shape))(x)
201 | x = tf.reshape(x, tf.concat([tf.shape(features)[:-1], self._shape], 0))
202 |
203 | return x
204 |
205 | class ActionDecoder(tools.Module):
206 |
207 | def __init__(
208 | self, size, layers, units, dist='tanh_normal', act=tf.nn.elu,
209 | min_std=1e-4, init_std=5, mean_scale=5):
210 | self._size = size
211 | self._layers = layers
212 | self._units = units
213 | self._dist = dist
214 | self._act = act
215 | self._min_std = min_std
216 | self._init_std = init_std
217 | self._mean_scale = mean_scale
218 |
219 | def __call__(self, features):
220 | raw_init_std = np.log(np.exp(self._init_std) - 1)
221 | x = features
222 | for index in range(self._layers):
223 | x = self.get(f'h{index}', tfkl.Dense, self._units, self._act)(x)
224 | if self._dist == 'tanh_normal':
225 | # https://www.desmos.com/calculator/rcmcf5jwe7
226 | x = self.get(f'hout', tfkl.Dense, 2 * self._size)(x)
227 | mean, std = tf.split(x, 2, -1)
228 | mean = self._mean_scale * tf.tanh(mean / self._mean_scale)
229 | std = tf.nn.softplus(std + raw_init_std) + self._min_std
230 | dist = tfd.Normal(mean, std)
231 | dist = tfd.TransformedDistribution(dist, tools.TanhBijector())
232 | dist = tfd.Independent(dist, 1)
233 | dist = tools.SampleDist(dist)
234 | elif self._dist == 'onehot':
235 | x = self.get(f'hout', tfkl.Dense, self._size)(x)
236 | dist = tools.OneHotDist(x)
237 | else:
238 | raise NotImplementedError(dist)
239 | return dist
240 |
241 | def actions_and_log_probs(self, features):
242 | dist = self(features)
243 | action = dist.sample()
244 | log_prob = dist.log_prob(action)
245 |
246 | return action, log_prob
247 |
--------------------------------------------------------------------------------
/soft_actor_critic.py:
--------------------------------------------------------------------------------
1 | # The code is modified from rail-berkeley/softlearning repo https://github.com/rail-berkeley/softlearning
2 |
3 | from copy import deepcopy
4 | from collections import OrderedDict
5 | from numbers import Number
6 |
7 | import numpy as np
8 | import tensorflow as tf
9 | import tensorflow_probability as tfp
10 |
11 | def td_targets(rewards, discounts, next_values):
12 | return rewards + discounts * next_values
13 |
14 | def compute_Q_targets(next_Q_values,
15 | next_log_pis,
16 | rewards,
17 | terminals,
18 | discount,
19 | entropy_scale,
20 | reward_scale):
21 | next_values = next_Q_values - entropy_scale * next_log_pis
22 | terminals = tf.cast(terminals, next_values.dtype)
23 |
24 | Q_targets = td_targets(
25 | rewards=reward_scale * rewards,
26 | discounts=discount,
27 | next_values=(1.0 - terminals) * next_values)
28 |
29 | return Q_targets
30 |
31 |
32 | def heuristic_target_entropy(action_space):
33 | heuristic_target_entropy = -np.prod(action_space.shape)
34 |
35 | return heuristic_target_entropy
36 |
37 |
38 | class SAC:
39 | """Soft Actor-Critic (SAC)
40 |
41 | References
42 | ----------
43 | [1] Tuomas Haarnoja*, Aurick Zhou*, Kristian Hartikainen*, George Tucker,
44 | Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
45 | Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and
46 | Applications. arXiv preprint arXiv:1812.05905. 2018.
47 | """
48 |
49 | def __init__(
50 | self,
51 | policy,
52 | Qs,
53 | policy_optimizer,
54 | q_optimizers,
55 | action_space,
56 | plotter=None,
57 | policy_lr=3e-4,
58 | Q_lr=3e-4,
59 | alpha_lr=3e-4,
60 | reward_scale=1.0,
61 | target_entropy='auto',
62 | discount=0.99,
63 | tau=5e-3,
64 | target_update_interval=1,
65 | save_full_state=False,
66 | Q_targets=None,
67 | ):
68 | """
69 | Args:
70 | env (`SoftlearningEnv`): Environment used for training.
71 | policy: A policy function approximator.
72 | Qs: Q-function approximators. The min of these
73 | approximators will be used. Usage of at least two Q-functions
74 | improves performance by reducing overestimation bias.
75 | plotter (`QFPolicyPlotter`): Plotter instance to be used for
76 | visualizing Q-function during training.
77 | lr (`float`): Learning rate used for the function approximators.
78 | discount (`float`): Discount factor for Q-function updates.
79 | tau (`float`): Soft value function target update weight.
80 | target_update_interval ('int'): Frequency at which target network
81 | updates occur in iterations.
82 | """
83 |
84 | self._policy = policy
85 |
86 | self._Qs = Qs
87 |
88 | if Q_targets is not None:
89 | self._Q_targets = Q_targets
90 | else:
91 | self._Q_targets = tuple(deepcopy(Q) for Q in Qs)
92 | self._update_target(tau=tf.constant(1.0))
93 |
94 | self._plotter = plotter
95 |
96 | self._policy_lr = policy_lr
97 | self._Q_lr = Q_lr
98 | self._alpha_lr = alpha_lr
99 |
100 | self._reward_scale = reward_scale
101 | self._target_entropy = (
102 | heuristic_target_entropy(action_space)
103 | if target_entropy == 'auto'
104 | else target_entropy)
105 |
106 | self._discount = discount
107 | self._tau = tau
108 | self._target_update_interval = target_update_interval
109 |
110 | self._save_full_state = save_full_state
111 |
112 | self._Q_optimizers = q_optimizers
113 | self._policy_optimizer = policy_optimizer
114 |
115 | self._log_alpha = tf.Variable(0.0, dtype=tf.float16)
116 | self._alpha = tfp.util.DeferredTensor(self._log_alpha, tf.exp)
117 |
118 | self._alpha_optimizer = tf.optimizers.Adam(
119 | self._alpha_lr, name='alpha_optimizer')
120 |
121 | def _compute_Q_targets(self, batch):
122 | next_observations = batch['next_observations']
123 | rewards = batch['rewards']
124 | terminals = batch['terminals']
125 |
126 | entropy_scale = self._alpha
127 | reward_scale = self._reward_scale
128 | discount = self._discount
129 |
130 | next_actions, next_log_pis = self._policy.actions_and_log_probs(
131 | next_observations)
132 | next_Qs_values = tuple(
133 | # Q.values(next_observations, next_actions) for Q in self._Q_targets)
134 | Q(tf.concat((next_observations, next_actions), axis=-1)) for Q in self._Q_targets)
135 | next_Q_values = tf.reduce_min(next_Qs_values, axis=0)
136 |
137 | Q_targets = compute_Q_targets(
138 | next_Q_values,
139 | next_log_pis,
140 | rewards,
141 | terminals,
142 | discount,
143 | entropy_scale,
144 | reward_scale)
145 |
146 | return tf.stop_gradient(Q_targets)
147 |
148 | def _update_critic(self, batch):
149 | """Update the Q-function.
150 |
151 | Creates a `tf.optimizer.minimize` operation for updating
152 | critic Q-function with gradient descent, and appends it to
153 | `self._training_ops` attribute.
154 |
155 | See Equations (5, 6) in [1], for further information of the
156 | Q-function update rule.
157 | """
158 | Q_targets = self._compute_Q_targets(batch)
159 | Q_targets = tf.expand_dims(Q_targets, axis=-1)
160 |
161 | observations = batch['observations']
162 | actions = batch['actions']
163 | rewards = batch['rewards']
164 | rewards = tf.expand_dims(rewards, axis=-1)
165 |
166 | # tf.debugging.assert_shapes((
167 | # (Q_targets, ('B', 1)), (rewards, ('B', 1))))
168 |
169 | Qs_values = []
170 | Qs_losses = []
171 | for Q, optimizer in zip(self._Qs, self._Q_optimizers):
172 | with tf.GradientTape() as tape:
173 | Q_values = Q(tf.concat((observations, actions), axis=-1))
174 | Q_losses = 0.5 * (
175 | tf.losses.MSE(y_true=Q_targets, y_pred=tf.expand_dims(Q_values, axis=-1)))
176 | Q_loss = tf.nn.compute_average_loss(Q_losses)
177 |
178 | optimizer(tape, Q_loss)
179 | Qs_losses.append(Q_losses)
180 | Qs_values.append(Q_values)
181 |
182 | return Qs_values, Qs_losses
183 |
184 | def _update_actor(self, batch):
185 | """Update the policy.
186 |
187 | Creates a `tf.optimizer.minimize` operations for updating
188 | policy and entropy with gradient descent, and adds them to
189 | `self._training_ops` attribute.
190 |
191 | See Section 4.2 in [1], for further information of the policy update,
192 | and Section 5 in [1] for further information of the entropy update.
193 | """
194 | observations = batch['observations']
195 |
196 | with tf.GradientTape() as tape:
197 | actions, log_pis = self._policy.actions_and_log_probs(observations)
198 |
199 | Qs_log_targets = tuple(
200 | # Q.values(observations, actions) for Q in self._Qs)
201 | Q(tf.concat((observations, actions), axis=-1)) for Q in self._Qs)
202 | Q_log_targets = tf.reduce_min(Qs_log_targets, axis=0)
203 | policy_losses = self._alpha * log_pis - Q_log_targets
204 | policy_loss = tf.nn.compute_average_loss(policy_losses)
205 |
206 | return policy_losses
207 |
208 | # @tf.function(experimental_relax_shapes=True)
209 | def _update_alpha(self, batch):
210 | if not isinstance(self._target_entropy, Number):
211 | return 0.0
212 |
213 | observations = batch['observations']
214 |
215 | actions, log_pis = self._policy.actions_and_log_probs(observations)
216 |
217 | with tf.GradientTape() as tape:
218 | alpha_losses = -1.0 * (
219 | self._alpha * tf.stop_gradient(log_pis + self._target_entropy))
220 |
221 | alpha_loss = tf.nn.compute_average_loss(alpha_losses)
222 |
223 | alpha_gradients = tape.gradient(alpha_loss, [self._log_alpha])
224 |
225 | return alpha_losses
226 |
227 | def _update_target(self, tau):
228 | for Q, Q_target in zip(self._Qs, self._Q_targets):
229 | for source_weight, target_weight in zip(
230 | Q.trainable_variables, Q_target.trainable_variables):
231 | target_weight.assign(
232 | tau * source_weight + (1.0 - tau) * target_weight)
233 |
234 | def _do_updates(self, states, actions, rewards, dones):
235 | """Runs the update operations for policy, Q, and alpha."""
236 | batch = OrderedDict((
237 | ('observations', states[:-1]),
238 | ('next_observations', states[1:]),
239 | ('rewards', rewards[:-1]),
240 | ('terminals', dones[:-1]),
241 | ('actions', actions[:-1])
242 | ))
243 | Qs_values, Qs_losses = self._update_critic(batch)
244 | policy_losses = self._update_actor(batch)
245 | alpha_losses = self._update_alpha(batch)
246 |
247 | diagnostics = OrderedDict((
248 | ('Q_value-mean', tf.reduce_mean(Qs_values)),
249 | ('Q_loss-mean', tf.reduce_mean(Qs_losses)),
250 | ('policy_loss-mean', tf.reduce_mean(policy_losses)),
251 | ('alpha', tf.convert_to_tensor(self._alpha)),
252 | ('alpha_loss-mean', tf.reduce_mean(alpha_losses)),
253 | ))
254 | return diagnostics
255 |
256 | def _do_training(self, iteration, states, actions, rewards, dones):
257 | training_diagnostics = self._do_updates(states, actions, rewards, dones)
258 |
259 | if iteration % self._target_update_interval == 0:
260 | # Run target ops here.
261 | self._update_target(tau=tf.constant(self._tau))
262 |
263 | return training_diagnostics
264 |
265 | def get_diagnostics(self,
266 | iteration,
267 | batch,
268 | training_paths,
269 | evaluation_paths):
270 | """Return diagnostic information as an ordered dictionary.
271 |
272 | Also calls the `draw` method of the plotter, if plotter defined.
273 | """
274 | diagnostics = OrderedDict((
275 | ('alpha', self._alpha.numpy()),
276 | ('policy', self._policy.get_diagnostics_np(batch['observations'])),
277 | ))
278 |
279 | if self._plotter:
280 | self._plotter.draw()
281 |
282 | return diagnostics
283 |
284 | @property
285 | def tf_saveables(self):
286 | saveables = {
287 | '_policy_optimizer': self._policy_optimizer,
288 | **{
289 | f'Q_optimizer_{i}': optimizer
290 | for i, optimizer in enumerate(self._Q_optimizers)
291 | },
292 | '_alpha': self._alpha,
293 | }
294 |
295 | if hasattr(self, '_alpha_optimizer'):
296 | saveables['_alpha_optimizer'] = self._alpha_optimizer
297 |
298 | return saveables
299 |
--------------------------------------------------------------------------------
/tools.py:
--------------------------------------------------------------------------------
1 | import datetime
2 | import io
3 | import pathlib
4 | import pickle
5 | import re
6 | import uuid
7 |
8 | import gym
9 | import numpy as np
10 | import tensorflow as tf
11 | import tensorflow.compat.v1 as tf1
12 | import tensorflow_probability as tfp
13 | from tensorflow.keras.mixed_precision import experimental as prec
14 | from tensorflow_probability import distributions as tfd
15 |
16 | from PIL import Image
17 |
18 |
19 | class AttrDict(dict):
20 |
21 | __setattr__ = dict.__setitem__
22 | __getattr__ = dict.__getitem__
23 |
24 |
25 | class Module(tf.Module):
26 |
27 | def save(self, filename):
28 | values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
29 | with pathlib.Path(filename).open('wb') as f:
30 | pickle.dump(values, f)
31 |
32 | def load(self, filename):
33 | with pathlib.Path(filename).open('rb') as f:
34 | values = pickle.load(f)
35 | tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
36 |
37 | def get(self, name, ctor, *args, **kwargs):
38 | # Create or get layer by name to avoid mentioning it in the constructor.
39 | if not hasattr(self, '_modules'):
40 | self._modules = {}
41 | if name not in self._modules:
42 | self._modules[name] = ctor(*args, **kwargs)
43 | return self._modules[name]
44 |
45 |
46 | def nest_summary(structure):
47 | if isinstance(structure, dict):
48 | return {k: nest_summary(v) for k, v in structure.items()}
49 | if isinstance(structure, list):
50 | return [nest_summary(v) for v in structure]
51 | if hasattr(structure, 'shape'):
52 | return str(structure.shape).replace(', ', 'x').strip('(), ')
53 | return '?'
54 |
55 |
56 | def graph_summary(writer, fn, *args):
57 | step = tf.summary.experimental.get_step()
58 |
59 | def inner(*args):
60 | tf.summary.experimental.set_step(step)
61 | with writer.as_default():
62 | fn(*args)
63 | return tf.numpy_function(inner, args, [])
64 |
65 |
66 | def video_summary(name, video, step=None, fps=20):
67 | name = name if isinstance(name, str) else str(name)
68 | if np.issubdtype(video.dtype, np.floating):
69 | video = np.clip(255 * video, 0, 255).astype(np.uint8)
70 | B, T, H, W, C = video.shape
71 | try:
72 | frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
73 | summary = tf1.Summary()
74 | image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
75 | image.encoded_image_string = encode_gif(frames, fps)
76 | summary.value.add(tag=name + '/gif', image=image)
77 | tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
78 | except (IOError, OSError) as e:
79 | print('GIF summaries require ffmpeg in $PATH.', e)
80 | frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
81 | tf.summary.image(name + '/grid', frames, step)
82 |
83 |
84 | def encode_gif(frames, fps):
85 | from subprocess import Popen, PIPE
86 | h, w, c = frames[0].shape
87 | pxfmt = {1: 'gray', 3: 'rgb24'}[c]
88 | cmd = ' '.join([
89 | f'ffmpeg -y -f rawvideo -vcodec rawvideo',
90 | f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
91 | f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
92 | f'-r {fps:.02f} -f gif -'])
93 | proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
94 | for image in frames:
95 | proc.stdin.write(image.tostring())
96 | out, err = proc.communicate()
97 | if proc.returncode:
98 | raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
99 | del proc
100 | return out
101 |
102 |
103 | def simulate(agent, envs, steps=0, episodes=0, state=None):
104 | # Initialize or unpack simulation state.
105 | if state is None:
106 | step, episode = 0, 0
107 | done = np.ones(len(envs), np.bool)
108 | length = np.zeros(len(envs), np.int32)
109 | obs = [None] * len(envs)
110 | agent_state = None
111 | else:
112 | step, episode, done, length, obs, agent_state = state
113 | while (steps and step < steps) or (episodes and episode < episodes):
114 | # Reset envs if necessary.
115 | if done.any():
116 | indices = [index for index, d in enumerate(done) if d]
117 | promises = [envs[i].reset(blocking=False) for i in indices]
118 | for index, promise in zip(indices, promises):
119 | obs[index] = promise()
120 | # Step agents.
121 | obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
122 | action, agent_state = agent(obs, done, agent_state)
123 | action = np.array(action)
124 | assert len(action) == len(envs)
125 | # Step envs.
126 | promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
127 | obs, _, done = zip(*[p()[:3] for p in promises])
128 | obs = list(obs)
129 | done = np.stack(done)
130 | episode += int(done.sum())
131 | length += 1
132 | step += (done * length).sum()
133 | length *= (1 - done)
134 | # Return new state to allow resuming the simulation.
135 | return (step - steps, episode - episodes, done, length, obs, agent_state)
136 |
137 |
138 | def count_episodes(directory):
139 | filenames = directory.glob('*.npz')
140 | lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
141 | episodes, steps = len(lengths), sum(lengths)
142 | return episodes, steps
143 |
144 |
145 | def save_episodes(directory, episodes):
146 | directory = pathlib.Path(directory).expanduser()
147 | directory.mkdir(parents=True, exist_ok=True)
148 | timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
149 | for episode in episodes:
150 | identifier = str(uuid.uuid4().hex)
151 | length = len(episode['reward'])
152 | filename = directory / f'{timestamp}-{identifier}-{length}.npz'
153 | with io.BytesIO() as f1:
154 | np.savez_compressed(f1, **episode)
155 | f1.seek(0)
156 | with filename.open('wb') as f2:
157 | f2.write(f1.read())
158 |
159 |
160 | def load_episodes(directory, rescan, length=None, balance=False, seed=0):
161 | directory = pathlib.Path(directory).expanduser()
162 | random = np.random.RandomState(seed)
163 | cache = {}
164 | while True:
165 | for filename in directory.glob('*.npz'):
166 | if filename not in cache:
167 | try:
168 | with filename.open('rb') as f:
169 | episode = np.load(f)
170 | episode = {k: episode[k] for k in episode.keys()}
171 | except Exception as e:
172 | print(f'Could not load episode: {e}')
173 | continue
174 | cache[filename] = episode
175 | keys = list(cache.keys())
176 | for index in random.choice(len(keys), rescan):
177 | episode = cache[keys[index]]
178 | if length:
179 | total = len(next(iter(episode.values())))
180 | available = total - length
181 | if available < 1:
182 | print(f'Skipped short episode of length {available}.')
183 | continue
184 | if balance:
185 | index = min(random.randint(0, total), available)
186 | else:
187 | index = int(random.randint(0, available))
188 | episode = {k: v[index: index + length]
189 | for k, v in episode.items()}
190 | yield episode
191 |
192 |
193 | class DummyEnv:
194 |
195 | def __init__(self):
196 | self._random = np.random.RandomState(seed=0)
197 | self._step = None
198 |
199 | @property
200 | def observation_space(self):
201 | low = np.zeros([64, 64, 3], dtype=np.uint8)
202 | high = 255 * np.ones([64, 64, 3], dtype=np.uint8)
203 | spaces = {'image': gym.spaces.Box(low, high)}
204 | return gym.spaces.Dict(spaces)
205 |
206 | @property
207 | def action_space(self):
208 | low = -np.ones([5], dtype=np.float32)
209 | high = np.ones([5], dtype=np.float32)
210 | return gym.spaces.Box(low, high)
211 |
212 | def reset(self):
213 | self._step = 0
214 | obs = self.observation_space.sample()
215 | return obs
216 |
217 | def step(self, action):
218 | obs = self.observation_space.sample()
219 | reward = self._random.uniform(0, 1)
220 | self._step += 1
221 | done = self._step >= 1000
222 | info = {}
223 | return obs, reward, done, info
224 |
225 |
226 | class SampleDist:
227 |
228 | def __init__(self, dist, samples=100):
229 | self._dist = dist
230 | self._samples = samples
231 |
232 | @property
233 | def name(self):
234 | return 'SampleDist'
235 |
236 | def __getattr__(self, name):
237 | return getattr(self._dist, name)
238 |
239 | def mean(self):
240 | samples = self._dist.sample(self._samples)
241 | return tf.reduce_mean(samples, 0)
242 |
243 | def mode(self):
244 | sample = self._dist.sample(self._samples)
245 | logprob = self._dist.log_prob(sample)
246 | return tf.gather(sample, tf.argmax(logprob))[0]
247 |
248 | def entropy(self):
249 | sample = self._dist.sample(self._samples)
250 | logprob = self.log_prob(sample)
251 | return -tf.reduce_mean(logprob, 0)
252 |
253 |
254 | class OneHotDist:
255 |
256 | def __init__(self, logits=None, probs=None):
257 | self._dist = tfd.Categorical(logits=logits, probs=probs)
258 | self._num_classes = self.mean().shape[-1]
259 | self._dtype = prec.global_policy().compute_dtype
260 |
261 | @property
262 | def name(self):
263 | return 'OneHotDist'
264 |
265 | def __getattr__(self, name):
266 | return getattr(self._dist, name)
267 |
268 | def prob(self, events):
269 | indices = tf.argmax(events, axis=-1)
270 | return self._dist.prob(indices)
271 |
272 | def log_prob(self, events):
273 | indices = tf.argmax(events, axis=-1)
274 | return self._dist.log_prob(indices)
275 |
276 | def mean(self):
277 | return self._dist.probs_parameter()
278 |
279 | def mode(self):
280 | return self._one_hot(self._dist.mode())
281 |
282 | def sample(self, amount=None):
283 | amount = [amount] if amount else []
284 | indices = self._dist.sample(*amount)
285 | sample = self._one_hot(indices)
286 | probs = self._dist.probs_parameter()
287 | sample += tf.cast(probs - tf.stop_gradient(probs), self._dtype)
288 | return sample
289 |
290 | def _one_hot(self, indices):
291 | return tf.one_hot(indices, self._num_classes, dtype=self._dtype)
292 |
293 |
294 | class TanhBijector(tfp.bijectors.Bijector):
295 |
296 | def __init__(self, validate_args=False, name='tanh'):
297 | super().__init__(
298 | forward_min_event_ndims=0,
299 | validate_args=validate_args,
300 | name=name)
301 |
302 | def _forward(self, x):
303 | return tf.nn.tanh(x)
304 |
305 | def _inverse(self, y):
306 | dtype = y.dtype
307 | y = tf.cast(y, tf.float32)
308 | y = tf.where(
309 | tf.less_equal(tf.abs(y), 1.),
310 | tf.clip_by_value(y, -0.99999997, 0.99999997), y)
311 | y = tf.atanh(y)
312 | y = tf.cast(y, dtype)
313 | return y
314 |
315 | def _forward_log_det_jacobian(self, x):
316 | log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype))
317 | return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
318 |
319 |
320 | def lambda_return(
321 | reward, value, pcont, bootstrap, lambda_, axis):
322 | # Setting lambda=1 gives a discounted Monte Carlo return.
323 | # Setting lambda=0 gives a fixed 1-step return.
324 | assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
325 | if isinstance(pcont, (int, float)):
326 | pcont = pcont * tf.ones_like(reward)
327 | dims = list(range(reward.shape.ndims))
328 | dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
329 | if axis != 0:
330 | reward = tf.transpose(reward, dims)
331 | value = tf.transpose(value, dims)
332 | pcont = tf.transpose(pcont, dims)
333 | if bootstrap is None:
334 | bootstrap = tf.zeros_like(value[-1])
335 | next_values = tf.concat([value[1:], bootstrap[None]], 0)
336 | inputs = reward + pcont * next_values * (1 - lambda_)
337 | returns = static_scan(
338 | lambda agg, cur: cur[0] + cur[1] * lambda_ * agg,
339 | (inputs, pcont), bootstrap, reverse=True)
340 | if axis != 0:
341 | returns = tf.transpose(returns, dims)
342 | return returns
343 |
344 |
345 | class Adam(tf.Module):
346 |
347 | def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
348 | self._name = name
349 | self._modules = modules
350 | self._clip = clip
351 | self._wd = wd
352 | self._wdpattern = wdpattern
353 | self._opt = tf.optimizers.Adam(lr)
354 | self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic')
355 | self._variables = None
356 |
357 | @property
358 | def variables(self):
359 | return self._opt.variables()
360 |
361 | def __call__(self, tape, loss):
362 | if self._variables is None:
363 | variables = [module.variables for module in self._modules]
364 | self._variables = tf.nest.flatten(variables)
365 | count = sum(np.prod(x.shape) for x in self._variables)
366 | print(f'Found {count} {self._name} parameters.')
367 | assert len(loss.shape) == 0, loss.shape
368 | with tape:
369 | loss = self._opt.get_scaled_loss(loss)
370 | grads = tape.gradient(loss, self._variables)
371 | grads = self._opt.get_unscaled_gradients(grads)
372 | norm = tf.linalg.global_norm(grads)
373 | if self._clip:
374 | grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
375 | if self._wd:
376 | context = tf.distribute.get_replica_context()
377 | context.merge_call(self._apply_weight_decay)
378 | self._opt.apply_gradients(zip(grads, self._variables))
379 | return norm
380 |
381 | def _apply_weight_decay(self, strategy):
382 | print('Applied weight decay to variables:')
383 | for var in self._variables:
384 | if re.search(self._wdpattern, self._name + '/' + var.name):
385 | print('- ' + self._name + '/' + var.name)
386 | strategy.extended.update(var, lambda var: self._wd * var)
387 |
388 |
389 | def args_type(default):
390 | if isinstance(default, bool):
391 | return lambda x: bool(['False', 'True'].index(x))
392 | if isinstance(default, int):
393 | return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
394 | if isinstance(default, pathlib.Path):
395 | return lambda x: pathlib.Path(x).expanduser()
396 | return type(default)
397 |
398 |
399 | def static_scan(fn, inputs, start, reverse=False):
400 | last = start
401 | outputs = [[] for _ in tf.nest.flatten(start)]
402 | indices = range(len(tf.nest.flatten(inputs)[0]))
403 | if reverse:
404 | indices = reversed(indices)
405 | for index in indices:
406 | inp = tf.nest.map_structure(lambda x: x[index], inputs)
407 | last = fn(last, inp)
408 | [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
409 | if reverse:
410 | outputs = [list(reversed(x)) for x in outputs]
411 | outputs = [tf.stack(x, 0) for x in outputs]
412 | return tf.nest.pack_sequence_as(start, outputs)
413 |
414 | def static_scan_action(fn1, fn2, inputs, start, reverse=False):
415 | last = start
416 | outputs = [[] for _ in tf.nest.flatten(start)]
417 | indices = range(len(tf.nest.flatten(inputs)[0]))
418 | actions = []
419 | if reverse:
420 | indices = reversed(indices)
421 | for index in indices:
422 | inp = tf.nest.map_structure(lambda x: x[index], inputs)
423 | action = fn2(last)
424 | last = fn1(last, action, inp)
425 | [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
426 | actions.append(action)
427 | if reverse:
428 | outputs = [list(reversed(x)) for x in outputs]
429 | outputs = [tf.stack(x, 0) for x in outputs]
430 | return tf.nest.pack_sequence_as(start, outputs), actions[0]
431 |
432 |
433 |
434 | def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
435 | return tf.random.normal(
436 | tuple(sample_shape) + tuple(self.event_shape),
437 | self.mean(), self.stddev(), self.dtype, seed, name)
438 |
439 |
440 | tfd.MultivariateNormalDiag.sample = _mnd_sample
441 |
442 |
443 | def _cat_sample(self, sample_shape=(), seed=None, name='sample'):
444 | assert len(sample_shape) in (0, 1), sample_shape
445 | assert len(self.logits_parameter().shape) == 2
446 | indices = tf.random.categorical(
447 | self.logits_parameter(), sample_shape[0] if sample_shape else 1,
448 | self.dtype, seed, name)
449 | if not sample_shape:
450 | indices = indices[..., 0]
451 | return indices
452 |
453 |
454 | tfd.Categorical.sample = _cat_sample
455 |
456 |
457 | class Every:
458 |
459 | def __init__(self, every):
460 | self._every = every
461 | self._last = None
462 |
463 | def __call__(self, step):
464 | if self._last is None:
465 | self._last = step
466 | return True
467 | if step >= self._last + self._every:
468 | self._last += self._every
469 | return True
470 | return False
471 |
472 |
473 | class Once:
474 |
475 | def __init__(self):
476 | self._once = True
477 |
478 | def __call__(self):
479 | if self._once:
480 | self._once = False
481 | return True
482 | return False
483 |
484 |
485 | def load_imgnet(train):
486 | import pickle
487 | name = 'train' if train else 'valid'
488 |
489 | with open('./natural_{}.pkl'.format(name), 'rb') as fin:
490 | imgnet = pickle.load(fin)
491 |
492 | imgnet = np.transpose(imgnet, axes=(0, 1, 3, 4, 2))
493 |
494 | return imgnet
495 |
--------------------------------------------------------------------------------
/wrappers.py:
--------------------------------------------------------------------------------
1 | import atexit
2 | import functools
3 | import sys
4 | import threading
5 | import traceback
6 | import gym
7 | import numpy as np
8 | from PIL import Image
9 | import cv2
10 |
11 | class DeepMindControl:
12 |
13 | def __init__(self, name, size=(64, 64), camera=None):
14 | domain, task = name.split('_', 1)
15 | if domain == 'cup': # Only domain with multiple words.
16 | domain = 'ball_in_cup'
17 | if isinstance(domain, str):
18 | from dm_control import suite
19 | self._env = suite.load(domain, task)
20 | else:
21 | assert task is None
22 | self._env = domain()
23 | self._size = size
24 | if camera is None:
25 | camera = dict(quadruped=2).get(domain, 0)
26 | self._camera = camera
27 |
28 | @property
29 | def observation_space(self):
30 | spaces = {}
31 | for key, value in self._env.observation_spec().items():
32 | spaces[key] = gym.spaces.Box(
33 | -np.inf, np.inf, value.shape, dtype=np.float32)
34 | spaces['image'] = gym.spaces.Box(
35 | 0, 255, self._size + (3,), dtype=np.uint8)
36 | return gym.spaces.Dict(spaces)
37 |
38 | @property
39 | def action_space(self):
40 | spec = self._env.action_spec()
41 | return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
42 |
43 | def step(self, action):
44 | time_step = self._env.step(action)
45 | obs = dict(time_step.observation)
46 | obs['image'] = self.render()
47 | reward = time_step.reward or 0
48 | done = time_step.last()
49 | info = {'discount': np.array(time_step.discount, np.float32)}
50 | return obs, reward, done, info
51 |
52 | def reset(self):
53 | time_step = self._env.reset()
54 | obs = dict(time_step.observation)
55 | obs['image'] = self.render()
56 | return obs
57 |
58 | def render(self, *args, **kwargs):
59 | if kwargs.get('mode', 'rgb_array') != 'rgb_array':
60 | raise ValueError("Only render mode 'rgb_array' is supported.")
61 | return self._env.physics.render(*self._size, camera_id=self._camera)
62 |
63 |
64 | class Atari:
65 |
66 | LOCK = threading.Lock()
67 |
68 | def __init__(
69 | self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
70 | life_done=False, sticky_actions=True):
71 | import gym
72 | version = 0 if sticky_actions else 4
73 | name = ''.join(word.title() for word in name.split('_'))
74 | with self.LOCK:
75 | self._env = gym.make('{}NoFrameskip-v{}'.format(name, version))
76 | self._action_repeat = action_repeat
77 | self._size = size
78 | self._grayscale = grayscale
79 | self._noops = noops
80 | self._life_done = life_done
81 | self._lives = None
82 | shape = self._env.observation_space.shape[:2] + \
83 | (() if grayscale else (3,))
84 | self._buffers = [np.empty(shape, dtype=np.uint8) for _ in range(2)]
85 | self._random = np.random.RandomState(seed=None)
86 |
87 | @property
88 | def observation_space(self):
89 | shape = self._size + (1 if self._grayscale else 3,)
90 | space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
91 | return gym.spaces.Dict({'image': space})
92 |
93 | @property
94 | def action_space(self):
95 | return self._env.action_space
96 |
97 | def close(self):
98 | return self._env.close()
99 |
100 | def reset(self):
101 | with self.LOCK:
102 | self._env.reset()
103 | noops = self._random.randint(1, self._noops + 1)
104 | for _ in range(noops):
105 | done = self._env.step(0)[2]
106 | if done:
107 | with self.LOCK:
108 | self._env.reset()
109 | self._lives = self._env.ale.lives()
110 | if self._grayscale:
111 | self._env.ale.getScreenGrayscale(self._buffers[0])
112 | else:
113 | self._env.ale.getScreenRGB2(self._buffers[0])
114 | self._buffers[1].fill(0)
115 | return self._get_obs()
116 |
117 | def step(self, action):
118 | total_reward = 0.0
119 | for step in range(self._action_repeat):
120 | _, reward, done, info = self._env.step(action)
121 | total_reward += reward
122 | if self._life_done:
123 | lives = self._env.ale.lives()
124 | done = done or lives < self._lives
125 | self._lives = lives
126 | if done:
127 | break
128 | elif step >= self._action_repeat - 2:
129 | index = step - (self._action_repeat - 2)
130 | if self._grayscale:
131 | self._env.ale.getScreenGrayscale(self._buffers[index])
132 | else:
133 | self._env.ale.getScreenRGB2(self._buffers[index])
134 | obs = self._get_obs()
135 | return obs, total_reward, done, info
136 |
137 | def render(self, mode):
138 | return self._env.render(mode)
139 |
140 | def _get_obs(self):
141 | if self._action_repeat > 1:
142 | np.maximum(self._buffers[0],
143 | self._buffers[1], out=self._buffers[0])
144 | image = np.array(Image.fromarray(self._buffers[0]).resize(
145 | self._size, Image.BILINEAR))
146 | image = np.clip(image, 0, 255).astype(np.uint8)
147 | image = image[:, :, None] if self._grayscale else image
148 | return {'image': image}
149 |
150 |
151 | class Collect:
152 |
153 | def __init__(self, env, callbacks=None, precision=32):
154 | self._env = env
155 | self._callbacks = callbacks or ()
156 | self._precision = precision
157 | self._episode = None
158 |
159 | def __getattr__(self, name):
160 | return getattr(self._env, name)
161 |
162 | def step(self, action):
163 | obs, reward, done, info = self._env.step(action)
164 | obs = {k: self._convert(v) for k, v in obs.items()}
165 | transition = obs.copy()
166 | transition['action'] = action
167 | transition['reward'] = reward
168 | transition['discount'] = info.get(
169 | 'discount', np.array(1 - float(done)))
170 | self._episode.append(transition)
171 | if done:
172 | episode = {k: [t[k] for t in self._episode]
173 | for k in self._episode[0]}
174 | episode = {k: self._convert(v) for k, v in episode.items()}
175 | info['episode'] = episode
176 | for callback in self._callbacks:
177 | callback(episode)
178 | return obs, reward, done, info
179 |
180 | def reset(self):
181 | obs = self._env.reset()
182 | transition = obs.copy()
183 | transition['action'] = np.zeros(self._env.action_space.shape)
184 | transition['reward'] = 0.0
185 | transition['discount'] = 1.0
186 | self._episode = [transition]
187 | return obs
188 |
189 | def _convert(self, value):
190 | value = np.array(value)
191 | if np.issubdtype(value.dtype, np.floating):
192 | dtype = {16: np.float16, 32: np.float32,
193 | 64: np.float64}[self._precision]
194 | elif np.issubdtype(value.dtype, np.signedinteger):
195 | dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
196 | elif np.issubdtype(value.dtype, np.uint8):
197 | dtype = np.uint8
198 | else:
199 | raise NotImplementedError(value.dtype)
200 | return value.astype(dtype)
201 |
202 |
203 | class TimeLimit:
204 |
205 | def __init__(self, env, duration):
206 | self._env = env
207 | self._duration = duration
208 | self._step = None
209 |
210 | def __getattr__(self, name):
211 | return getattr(self._env, name)
212 |
213 | def step(self, action):
214 | assert self._step is not None, 'Must reset environment.'
215 | obs, reward, done, info = self._env.step(action)
216 | self._step += 1
217 | if self._step >= self._duration:
218 | done = True
219 | if 'discount' not in info:
220 | info['discount'] = np.array(1.0).astype(np.float32)
221 | self._step = None
222 | return obs, reward, done, info
223 |
224 | def reset(self):
225 | self._step = 0
226 | return self._env.reset()
227 |
228 | class NaturalMujoco:
229 |
230 | def __init__(self, env, dataset):
231 | self.dataset = dataset
232 | self._pointer = (np.random.randint(self.dataset.shape[0]), 0)
233 | self._env = env
234 |
235 | def __getattr__(self, name):
236 | return getattr(self._env, name)
237 |
238 | def step(self, action):
239 | obs, reward, done, info = self._env.step(action)
240 | obs = self._noisify_obs(obs, done)
241 | return obs, reward, done, info
242 |
243 | def _noisify_obs(self, obs, done):
244 | obs = obs.copy()
245 | img = obs['image']
246 | video_id, img_id = self._pointer
247 | # fgbg = cv2.createBackgroundSubtractorKNN()
248 | # fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
249 | # temp = fgbg.apply(img) != 255
250 | # fgmask = temp[:, :, None].repeat(3, axis=2)
251 | # fgmask = ~(fgbg.apply(img) == 255)[:, :, None].repeat(3, axis=2)
252 |
253 | # ugly hack to extract only yellow pixels
254 | fgmask = (img[:, :, 0] > 100)[:, :, None].repeat(3, axis=2)
255 |
256 | if done:
257 | video_id = np.random.randint(self.dataset.shape[0])
258 | img_id = 0
259 | else:
260 | img_id = (img_id + 1) % self.dataset.shape[1]
261 |
262 | background = self.dataset[video_id, img_id]
263 | img = img * fgmask + background * (~fgmask)
264 |
265 | self._pointer = (video_id, img_id)
266 |
267 | obs['image'] = img
268 |
269 | return obs
270 |
271 | def reset(self):
272 | obs = self._env.reset()
273 | obs = self._noisify_obs(obs, False)
274 | return obs
275 |
276 |
277 |
278 | class ActionRepeat:
279 |
280 | def __init__(self, env, amount):
281 | self._env = env
282 | self._amount = amount
283 |
284 | def __getattr__(self, name):
285 | return getattr(self._env, name)
286 |
287 | def step(self, action):
288 | done = False
289 | total_reward = 0
290 | current_step = 0
291 | while current_step < self._amount and not done:
292 | obs, reward, done, info = self._env.step(action)
293 | total_reward += reward
294 | current_step += 1
295 | return obs, total_reward, done, info
296 |
297 |
298 | class NormalizeActions:
299 |
300 | def __init__(self, env):
301 | self._env = env
302 | self._mask = np.logical_and(
303 | np.isfinite(env.action_space.low),
304 | np.isfinite(env.action_space.high))
305 | self._low = np.where(self._mask, env.action_space.low, -1)
306 | self._high = np.where(self._mask, env.action_space.high, 1)
307 |
308 | def __getattr__(self, name):
309 | return getattr(self._env, name)
310 |
311 | @property
312 | def action_space(self):
313 | low = np.where(self._mask, -np.ones_like(self._low), self._low)
314 | high = np.where(self._mask, np.ones_like(self._low), self._high)
315 | return gym.spaces.Box(low, high, dtype=np.float32)
316 |
317 | def step(self, action):
318 | original = (action + 1) / 2 * (self._high - self._low) + self._low
319 | original = np.where(self._mask, original, action)
320 | return self._env.step(original)
321 |
322 |
323 | class ObsDict:
324 |
325 | def __init__(self, env, key='obs'):
326 | self._env = env
327 | self._key = key
328 |
329 | def __getattr__(self, name):
330 | return getattr(self._env, name)
331 |
332 | @property
333 | def observation_space(self):
334 | spaces = {self._key: self._env.observation_space}
335 | return gym.spaces.Dict(spaces)
336 |
337 | @property
338 | def action_space(self):
339 | return self._env.action_space
340 |
341 | def step(self, action):
342 | obs, reward, done, info = self._env.step(action)
343 | obs = {self._key: np.array(obs)}
344 | return obs, reward, done, info
345 |
346 | def reset(self):
347 | obs = self._env.reset()
348 | obs = {self._key: np.array(obs)}
349 | return obs
350 |
351 |
352 | class OneHotAction:
353 |
354 | def __init__(self, env):
355 | assert isinstance(env.action_space, gym.spaces.Discrete)
356 | self._env = env
357 |
358 | def __getattr__(self, name):
359 | return getattr(self._env, name)
360 |
361 | @property
362 | def action_space(self):
363 | shape = (self._env.action_space.n,)
364 | space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
365 | space.sample = self._sample_action
366 | return space
367 |
368 | def step(self, action):
369 | index = np.argmax(action).astype(int)
370 | reference = np.zeros_like(action)
371 | reference[index] = 1
372 | if not np.allclose(reference, action):
373 | raise ValueError(f'Invalid one-hot action:\n{action}')
374 | return self._env.step(index)
375 |
376 | def reset(self):
377 | return self._env.reset()
378 |
379 | def _sample_action(self):
380 | actions = self._env.action_space.n
381 | index = self._random.randint(0, actions)
382 | reference = np.zeros(actions, dtype=np.float32)
383 | reference[index] = 1.0
384 | return reference
385 |
386 |
387 | class RewardObs:
388 |
389 | def __init__(self, env):
390 | self._env = env
391 |
392 | def __getattr__(self, name):
393 | return getattr(self._env, name)
394 |
395 | @property
396 | def observation_space(self):
397 | spaces = self._env.observation_space.spaces
398 | assert 'reward' not in spaces
399 | spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
400 | return gym.spaces.Dict(spaces)
401 |
402 | def step(self, action):
403 | obs, reward, done, info = self._env.step(action)
404 | obs['reward'] = reward
405 | return obs, reward, done, info
406 |
407 | def reset(self):
408 | obs = self._env.reset()
409 | obs['reward'] = 0.0
410 | return obs
411 |
412 |
413 | class Async:
414 |
415 | _ACCESS = 1
416 | _CALL = 2
417 | _RESULT = 3
418 | _EXCEPTION = 4
419 | _CLOSE = 5
420 |
421 | def __init__(self, ctor, strategy='process'):
422 | self._strategy = strategy
423 | if strategy == 'none':
424 | self._env = ctor()
425 | elif strategy == 'thread':
426 | import multiprocessing.dummy as mp
427 | elif strategy == 'process':
428 | import multiprocessing as mp
429 | else:
430 | raise NotImplementedError(strategy)
431 | if strategy != 'none':
432 | self._conn, conn = mp.Pipe()
433 | self._process = mp.Process(target=self._worker, args=(ctor, conn))
434 | atexit.register(self.close)
435 | self._process.start()
436 | self._obs_space = None
437 | self._action_space = None
438 |
439 | @property
440 | def observation_space(self):
441 | if not self._obs_space:
442 | self._obs_space = self.__getattr__('observation_space')
443 | return self._obs_space
444 |
445 | @property
446 | def action_space(self):
447 | if not self._action_space:
448 | self._action_space = self.__getattr__('action_space')
449 | return self._action_space
450 |
451 | def __getattr__(self, name):
452 | if self._strategy == 'none':
453 | return getattr(self._env, name)
454 | self._conn.send((self._ACCESS, name))
455 | return self._receive()
456 |
457 | def call(self, name, *args, **kwargs):
458 | blocking = kwargs.pop('blocking', True)
459 | if self._strategy == 'none':
460 | return functools.partial(getattr(self._env, name), *args, **kwargs)
461 | payload = name, args, kwargs
462 | self._conn.send((self._CALL, payload))
463 | promise = self._receive
464 | return promise() if blocking else promise
465 |
466 | def close(self):
467 | if self._strategy == 'none':
468 | try:
469 | self._env.close()
470 | except AttributeError:
471 | pass
472 | return
473 | try:
474 | self._conn.send((self._CLOSE, None))
475 | self._conn.close()
476 | except IOError:
477 | # The connection was already closed.
478 | pass
479 | self._process.join()
480 |
481 | def step(self, action, blocking=True):
482 | return self.call('step', action, blocking=blocking)
483 |
484 | def reset(self, blocking=True):
485 | return self.call('reset', blocking=blocking)
486 |
487 | def _receive(self):
488 | try:
489 | message, payload = self._conn.recv()
490 | except ConnectionResetError:
491 | raise RuntimeError('Environment worker crashed.')
492 | # Re-raise exceptions in the main process.
493 | if message == self._EXCEPTION:
494 | stacktrace = payload
495 | raise Exception(stacktrace)
496 | if message == self._RESULT:
497 | return payload
498 | raise KeyError(f'Received message of unexpected type {message}')
499 |
500 | def _worker(self, ctor, conn):
501 | try:
502 | env = ctor()
503 | while True:
504 | try:
505 | # Only block for short times to have keyboard exceptions be raised.
506 | if not conn.poll(0.1):
507 | continue
508 | message, payload = conn.recv()
509 | except (EOFError, KeyboardInterrupt):
510 | break
511 | if message == self._ACCESS:
512 | name = payload
513 | result = getattr(env, name)
514 | conn.send((self._RESULT, result))
515 | continue
516 | if message == self._CALL:
517 | name, args, kwargs = payload
518 | result = getattr(env, name)(*args, **kwargs)
519 | conn.send((self._RESULT, result))
520 | continue
521 | if message == self._CLOSE:
522 | assert payload is None
523 | break
524 | raise KeyError(f'Received message of unknown type {message}')
525 | except Exception:
526 | stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
527 | print(f'Error in environment process: {stacktrace}')
528 | conn.send((self._EXCEPTION, stacktrace))
529 | conn.close()
530 |
--------------------------------------------------------------------------------