├── .gitattributes
├── .gitignore
├── CMakeLists.txt
├── LICENSE
├── README.md
├── README_onnx_plngin.md
├── images
├── coco_1.jpg
└── render.jpg
├── main.cpp
├── run_yolov5.sh
├── src
├── application
│ ├── CMakeLists.txt
│ └── yolov5
│ │ ├── yolo.cpp
│ │ └── yolo.h
├── module
│ ├── CMakeLists.txt
│ ├── builder
│ │ ├── trt_builder.cpp
│ │ └── trt_builder.h
│ ├── common
│ │ ├── cuda_tools.cpp
│ │ ├── cuda_tools.h
│ │ ├── ilogger.cpp
│ │ ├── ilogger.h
│ │ └── utils.h
│ ├── core
│ │ ├── async_infer.h
│ │ ├── monopoly_allocator.h
│ │ ├── trt_tensor.cpp
│ │ └── trt_tensor.h
│ └── infer
│ │ ├── trt_infer.cpp
│ │ └── trt_infer.h
└── onnxplugin
│ ├── CMakeLists.txt
│ ├── include
│ ├── SiLUPlugin.h
│ ├── checkMacrosPlugin.h
│ ├── kernel.h
│ └── plugin.h
│ └── src
│ ├── SiLU.cu
│ └── SiLUPlugin.cpp
└── weights
├── yolov5n.engine
├── yolov5n.onnx
├── yolov5n.plugin.engine
└── yolov5n.plugin.onnx
/.gitattributes:
--------------------------------------------------------------------------------
1 | *.pt filter=lfs diff=lfs merge=lfs -text
2 | *.onnx filter=lfs diff=lfs merge=lfs -text
3 | *.serialized filter=lfs diff=lfs merge=lfs -text
4 | *.engine filter=lfs diff=lfs merge=lfs -text
5 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | bin
2 | build
3 | lib
4 | .vscode
5 | *.so
6 | model/*
7 |
--------------------------------------------------------------------------------
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | #检查cmake版本
2 | cmake_minimum_required(VERSION 3.5)
3 | #项目名
4 | project(yolov5tensorrt)
5 | #可执行文件保存目录
6 | set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/bin)
7 |
8 | option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
9 | set(CMAKE_CXX_STANDARD 11)
10 | set(CMAKE_BUILD_TYPE Debug)
11 |
12 | set(CUDA_GEN_CODE "-gencode=arch=compute_86,code=sm_86")
13 |
14 | #cuda
15 | find_package(CUDA REQUIRED)
16 | #自定义opencv路径
17 | set(OpenCV_DIR /home/ls/softwares/opencv-4.5.5/build)
18 | # find opencv
19 | find_package(OpenCV REQUIRED)
20 | if(NOT OpenCV_FOUND)
21 | message(ERROR "OpenCV not found!")
22 | endif(NOT OpenCV_FOUND)
23 | #tensorrt
24 | # set(TensorRT_DIR /home/ls/softwares/TensorRT-8.2.3.0)
25 | set(TensorRT_DIR /home/ls/softwares/TensorRT)
26 |
27 | include_directories(
28 | ${OpenCV_INCLUDE_DIRS}
29 | ${CUDA_INCLUDE_DIRS}
30 | ${TensorRT_DIR}/include
31 | )
32 |
33 | link_directories(
34 | ${TensorRT_DIR}/lib
35 | /usr/local/cuda/lib64
36 | )
37 |
38 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -O0 -Wfatal-errors -pthread -w -g")
39 | set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} -std=c++11 -O0 -Xcompiler -fPIC -g -w ${CUDA_GEN_CODE}")
40 |
41 | # 链接子项目部件
42 | add_subdirectory(${CMAKE_SOURCE_DIR}/src/module)
43 | add_subdirectory(${CMAKE_SOURCE_DIR}/src/application)
44 | add_subdirectory(${CMAKE_SOURCE_DIR}/src/onnxplugin)
45 | # 链接库目录
46 | link_directories(${CMAKE_SOURCE_DIR}/lib)
47 | # 链接依赖库
48 | link_libraries(module)
49 | link_libraries(application)
50 | link_libraries(onnxplugin)
51 |
52 | ADD_EXECUTABLE(${PROJECT_NAME} main.cpp)
53 | target_link_libraries(${PROJECT_NAME} nvinfer nvonnxparser)
54 | target_link_libraries(${PROJECT_NAME} cuda cublas cudart cudnn)
55 | target_link_libraries(${PROJECT_NAME} pthread)
56 | target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS})
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## yolov5_tensorrt
2 | *yolov5 deployment*
3 |
4 | ### environment
5 | - ubuntu 20.04
6 | - cuda 11.6.2
7 | - tensorrt 8.2.3.0
8 | - pytorch 1.10
9 |
10 | ### C++
11 | ```
12 | mkdir build
13 | cd build
14 | cmake ..
15 | make
16 | ```
17 |
18 | ## TENSORRT ONNX PLUGIN
19 |
20 | ### STEP1:add a plugin layer in onnx
21 | * in project [yolov5](https://github.com/ZJU-lishuang/yolov5_convert/tree/main/yolov5)
22 |
23 | `export PYTHONPATH="$PWD" && python models/export_plugin_onnx.py --weights ./weights/yolov5s.pt --img 640 --batch 1`
24 |
25 | ### STEP2:do constant folding
26 |
27 | #### install polygraphy
28 | * refer to [Polygraphy](https://github.com/NVIDIA/TensorRT/tree/master/tools/Polygraphy)
29 |
30 | #### constant folding
31 | `polygraphy surgeon sanitize model.onnx --fold-constants --output model_folded.onnx`
32 |
33 |
34 | ### STEP3(Optional):add the plugin layer in onnx-tensorrt
35 | add follow code to the `builtin_op_importers.cpp` in onnx-tensorrt.
36 | help onnx to parse the plugin layer in tensorrt.
37 | ```c++
38 | DEFINE_BUILTIN_OP_IMPORTER(SiLU)
39 | {
40 | std::vector inputTensors;
41 | std::vector weights;
42 | for(int i = 0; i < inputs.size(); ++i){
43 | auto& item = inputs.at(i);
44 | if(item.is_tensor()){
45 | nvinfer1::ITensor* input = &convertToTensor(item, ctx);
46 | inputTensors.push_back(input);
47 | }else{
48 | weights.push_back(item.weights());
49 | }
50 | }
51 |
52 | LOG_VERBOSE("call silu plugin: ");
53 | const std::string pluginName = "SiLU";
54 | const std::string pluginVersion = "1";
55 |
56 | LOG_INFO("Searching for plugin: " << pluginName << ", plugin_version: " << pluginVersion);
57 | printf("node.name().c_str()=",node.name().c_str());
58 |
59 | // Create plugin from registry
60 | const auto mPluginRegistry = getPluginRegistry();
61 | const auto pluginCreator
62 | = mPluginRegistry->getPluginCreator(pluginName.c_str(), pluginVersion.c_str());
63 |
64 | ASSERT(pluginCreator != nullptr, ErrorCode::kINVALID_VALUE);
65 |
66 | std::vector f;
67 | nvinfer1::PluginFieldCollection fc;
68 | fc.nbFields = f.size();
69 | fc.fields = f.data();
70 |
71 | auto plugin = pluginCreator->createPlugin(node.name().c_str(), &fc);
72 |
73 | ASSERT(plugin != nullptr && "NonMaxSuppression plugin was not found in the plugin registry!",
74 | ErrorCode::kUNSUPPORTED_NODE);
75 |
76 | // auto layer = ctx->network()->addPluginV2(&tensors[0], int(tensors.size()), *plugin);
77 | auto layer = ctx->network()->addPluginV2(inputTensors.data(), inputTensors.size(), *plugin);
78 | nvinfer1::ITensor* indices = layer->getOutput(0);
79 |
80 | RETURN_FIRST_OUTPUT(layer);
81 |
82 | }
83 | ```
84 |
85 | ### STEP4:add the plugin layer in TensorRT
86 | add the plugin layer in tensorrt by using `REGISTER_TENSORRT_PLUGIN`
87 | example:[SiLUPlugin.h](onnxplugin/include/SiLUPlugin.h)
88 |
89 |
--------------------------------------------------------------------------------
/README_onnx_plngin.md:
--------------------------------------------------------------------------------
1 | ## TensorRT onnx plugin
2 |
3 | ### Dependencies
4 |
5 | - [TensorRT open source libaries (master branch)](https://github.com/NVIDIA/TensorRT/tree/21.04)
6 |
7 | ### pytorch
8 | add a custom layer in pytorch model.
9 |
10 | following is a example.
11 | ```python
12 | import torch
13 | import torch.nn.functional as F
14 | import torch.nn as nn
15 |
16 | class SiLUImplementtation(torch.autograd.Function):
17 | # 主要是这里,对于autograd.Function这种自定义实现的op,只需要添加静态方法symbolic即可,除了g以外的参数应与forward函数的除ctx以外完全一样
18 | #“SiLU”作为插件名称
19 | @staticmethod
20 | def symbolic(g, input):
21 | return g.op("SiLU", input)
22 |
23 | def forward(self, x):
24 | return x * torch.sigmoid(x)
25 |
26 | #省略了backward
27 |
28 | class customSiLU(nn.Module):
29 | def forward(self, x):
30 | return SiLUImplementtation.apply(x)
31 |
32 |
33 | class FooModel(torch.nn.Module):
34 | def __init__(self):
35 | super(FooModel, self).__init__()
36 | self.SiLU = customSiLU()
37 |
38 | def forward(self, input1, input2):
39 | return input2 + self.SiLU(input1)
40 |
41 |
42 | dummy_input1 = torch.zeros((1, 3, 3, 3))
43 | dummy_input2 = torch.zeros((1, 1, 3, 3))
44 | model = FooModel()
45 |
46 | # 这里演示了2个输入的情况,实际上你可以自己定义几个输入
47 | # torch高版本需添加operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK来导出自定义层,参见torch.onnx官方文档
48 | torch.onnx.export(model, (dummy_input1, dummy_input2), 'test.onnx', verbose=True, opset_version=12,
49 | operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
50 | ```
51 |
52 | ### onnx
53 | Because `do_constant_folding` can be set to True only when `operator_export_type` is `ONNX`,the model need to do constant folding by other tools.
54 |
55 | refer to [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt/blob/master/docs/faq.md#inputsat0-must-be-an-initializer-or-inputsat0is_weights)
56 |
57 | `polygraphy surgeon sanitize model.onnx --fold-constants --output model_folded.onnx`
58 |
59 | Right now there is `FallbackPluginImporter` in builtin_op_importers.cpp.
60 |
61 | Any ops that are not supported will attempt to import as plugins.
62 |
63 | It is not necessary to add the plugin layer in onnx-tensorrt.
64 |
65 | ### tensorrt
66 |
67 | add the plugin layer in tensorrt by using `REGISTER_TENSORRT_PLUGIN`
68 |
69 |
70 |
--------------------------------------------------------------------------------
/images/coco_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJU-lishuang/yolov5_tensorrt/312787f096bacde243bea4798527aa09a2208f65/images/coco_1.jpg
--------------------------------------------------------------------------------
/images/render.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJU-lishuang/yolov5_tensorrt/312787f096bacde243bea4798527aa09a2208f65/images/render.jpg
--------------------------------------------------------------------------------
/main.cpp:
--------------------------------------------------------------------------------
1 | #include "src/module/builder/trt_builder.h"
2 | #include "src/module/infer/trt_infer.h"
3 | #include "src/module/core/trt_tensor.h"
4 | #include "src/module/common/ilogger.h"
5 | #include "src/application/yolov5/yolo.h"
6 | #include "src/onnxplugin/include/SiLUPlugin.h"
7 | #include
8 |
9 | #include
10 |
11 | using namespace TRT;
12 |
13 | static bool exists(const std::string& path){
14 | return access(path.c_str(), R_OK) == 0;
15 | }
16 |
17 | void set_device(int device_id) {
18 | if (device_id == -1)
19 | return;
20 |
21 | checkCudaRuntime(cudaSetDevice(device_id));
22 | }
23 |
24 | static void test_tensor1(){
25 |
26 | size_t cpu_bytes = 1024;
27 | size_t gpu_bytes = 2048;
28 |
29 | ///////////////////////////////////////////////////////////////////
30 | // 封装效果,自动分配和释放
31 | TRT::MixMemory memory;
32 | void* host_ptr = memory.cpu(cpu_bytes);
33 | void* device_ptr = memory.gpu(gpu_bytes);
34 |
35 | ///////////////////////////////////////////////////////////////////
36 | // 不封装效果
37 | // void* host_ptr = nullptr;
38 | // void* device_ptr = nullptr;
39 | // cudaMallocHost(&host_ptr, cpu_bytes);
40 | // cudaMalloc(&device_ptr, gpu_bytes);
41 |
42 | // cudaFreeHost(&host_ptr);
43 | // cudaFree(&device_ptr);
44 | ///////////////////////////////////////////////////////////////////
45 | }
46 |
47 | static void test_tensor2(){
48 |
49 | ///////////////////////////////////////////////////////////////////
50 | /* 内存的自动复制,依靠head属性标记数据最新的位置
51 | 若访问的数据不是最新的,则会自动发生复制操作 */
52 | TRT::Tensor tensor({1, 3, 5, 5},nullptr);
53 | INFO("tensor.head = %s", TRT::data_head_string(tensor.head())); /* 输出 Init,内存没有分配 */
54 |
55 | tensor.cpu()[0] = 512; /* 访问cpu时,分配cpu内存 */
56 | INFO("tensor.head = %s", TRT::data_head_string(tensor.head())); /* 输出 Host */
57 |
58 | float* device_ptr = tensor.gpu(); /* 访问gpu时,最新数据在Host,发生复制动作并标记最新数据在Device */
59 | INFO("tensor.head = %s", TRT::data_head_string(tensor.head())); /* 输出 Device */
60 | //INFO("device_ptr[0] = %f", device_ptr[0]); /* 输出 512.00000,由于gpu内存修改为cudaMalloc,这里无法直接访问 */
61 | }
62 |
63 | static void test_tensor3(){
64 |
65 | ///////////////////////////////////////////////////////////////////
66 | /* 计算维度的偏移量 */
67 | TRT::Tensor tensor({1, 3, 5, 5, 2, 5},nullptr);
68 | auto ptr_origin = tensor.cpu();
69 | auto ptr_channel2 = tensor.cpu(0, 2, 3, 2, 1, 3);
70 |
71 | INFO("Offset = %d", ptr_channel2 - ptr_origin); /* 输出678 */
72 | INFO("Offset = %d", tensor.offset(0, 2, 3, 2, 1, 3)); /* 输出678 */
73 |
74 | int offset_compute = ((((0 * 3 + 2) * 5 + 3) * 5 + 2) * 2 + 1) * 5 + 3;
75 | INFO("Compute = %d", offset_compute); /* 输出678 */
76 | }
77 |
78 | static void lesson1(){
79 | std::string onnx_file = "weights/yolov5n.onnx";
80 | std::string engine_file = "weights/yolov5n.engine";
81 | auto mode = Mode::FP32;
82 | unsigned int max_batch_size = 16;
83 | size_t max_workspace_size = 1<<30;
84 | compile(mode,max_batch_size,onnx_file,engine_file);
85 | }
86 |
87 | static void lesson2(){
88 | int gpuid = 0;
89 | /* 设置使用GPU */
90 | set_device(gpuid);
91 |
92 | // std::string onnx_file = "../weights/yolov5n.onnx";
93 | // std::string engine_file = "../weights/yolov5n.engine";
94 | std::string onnx_file = "../weights/yolov5n.plugin.onnx";
95 | std::string engine_file = "../weights/yolov5n.plugin.engine";
96 | if(!exists(engine_file)){
97 | auto mode = Mode::FP32;
98 | unsigned int max_batch_size = 16;
99 | size_t max_workspace_size = 1<<30;
100 | compile(mode,max_batch_size,onnx_file,engine_file);
101 | }
102 |
103 | std::shared_ptr infer(new TRTInferImpl());
104 | infer->load(engine_file);
105 | if(infer == nullptr){
106 | printf("Engine %s load failed", engine_file.c_str());
107 | // 解除主线程阻塞,模型加载失败
108 | return;
109 | }
110 | /* 打印引擎相关信息 */
111 | infer->print();
112 |
113 | /* 获取引擎的相关信息 */
114 | int max_batch_size = infer->get_max_batch_size();
115 | auto input = infer->tensor("images");
116 | auto output = infer->tensor("output");
117 | int num_classes = output->size(2) - 5;
118 |
119 | int input_width_ = input->size(3);
120 | int input_height_ = input->size(2);
121 | CUStream stream_ = infer->get_stream();
122 |
123 | input->resize_single_dim(0, max_batch_size).to_gpu();
124 | int infer_batch_size = 1;
125 | input->resize_single_dim(0, infer_batch_size);
126 |
127 | size_t size_image = input_width_ * input_height_ * 3;
128 | auto workspace = input->get_data();
129 | float* image_device = (float*)workspace->gpu(size_image);
130 |
131 | auto image = cv::imread("../images/coco_1.jpg");
132 | std::vector data = YOLOV5::v5prepareImage(image,input_width_,input_height_);
133 |
134 | checkCudaRuntime(cudaMemcpyAsync(image_device, data.data(), size_image*sizeof(float), cudaMemcpyHostToDevice, stream_));
135 |
136 | /* 开始推理 */
137 | infer->forward(false);
138 |
139 | std::vector result;
140 |
141 | float confidence_threshold=0.5;
142 | int num_boxes = output->size(1);
143 | for(int b=0;bcpu(b);
145 | for(int num_box=0;num_box r_w) {
170 | w = input_w;
171 | h = r_w * image.rows;
172 | x = 0;
173 | y = (input_h - h) / 2;
174 | } else {
175 | w = r_h * image.cols;
176 | h = input_h;
177 | x = (input_w - w) / 2;
178 | y = 0;
179 | }
180 | cv::Mat re(h, w, CV_8UC3);
181 | cv::resize(image, re, re.size(), 0, 0, cv::INTER_LINEAR);
182 | //show result in image
183 | for (auto it: result){
184 | float score = it.prob;
185 | int xmin=it.x-it.w/2-x;
186 | int xmax=it.x+it.w/2-x;
187 | int ymin=it.y-it.h/2-y;
188 | int ymax=it.y+it.h/2-y;
189 | cv::rectangle(re, cv::Point(xmin, ymin), cv::Point(xmax, ymax), cv::Scalar(255, 204,0), 3);
190 | cv::putText(re, std::to_string(score), cv::Point(xmin, ymin), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0,204,255));
191 | }
192 |
193 | cv::imwrite("../images/render.jpg", re);
194 |
195 | }
196 |
197 | static const char* cocolabels[] = {
198 | "person", "bicycle", "car", "motorcycle", "airplane",
199 | "bus", "train", "truck", "boat", "traffic light", "fire hydrant",
200 | "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse",
201 | "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack",
202 | "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis",
203 | "snowboard", "sports ball", "kite", "baseball bat", "baseball glove",
204 | "skateboard", "surfboard", "tennis racket", "bottle", "wine glass",
205 | "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich",
206 | "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake",
207 | "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv",
208 | "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave",
209 | "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
210 | "scissors", "teddy bear", "hair drier", "toothbrush"
211 | };
212 |
213 | static std::tuple hsv2bgr(float h, float s, float v){
214 | const int h_i = static_cast(h * 6);
215 | const float f = h * 6 - h_i;
216 | const float p = v * (1 - s);
217 | const float q = v * (1 - f*s);
218 | const float t = v * (1 - (1 - f) * s);
219 | float r, g, b;
220 | switch (h_i) {
221 | case 0:r = v; g = t; b = p;break;
222 | case 1:r = q; g = v; b = p;break;
223 | case 2:r = p; g = v; b = t;break;
224 | case 3:r = p; g = q; b = v;break;
225 | case 4:r = t; g = p; b = v;break;
226 | case 5:r = v; g = p; b = q;break;
227 | default:r = 1; g = 1; b = 1;break;}
228 | return std::make_tuple(static_cast(b * 255), static_cast(g * 255), static_cast(r * 255));
229 | }
230 |
231 | static std::tuple random_color(int id){
232 | float h_plane = ((((unsigned int)id << 2) ^ 0x937151) % 100) / 100.0f;;
233 | float s_plane = ((((unsigned int)id << 3) ^ 0x315793) % 100) / 100.0f;
234 | return hsv2bgr(h_plane, s_plane, 1);
235 | }
236 |
237 | static void lesson3(){
238 | std::string engine_file = "../weights/yolov5n.engine";
239 | float confidence_threshold = 0.4f;
240 | float nms_threshold = 0.5f;
241 | int gpuid = 0;
242 | //create infer
243 | auto yolo = YOLOV5::create_infer(engine_file,gpuid,confidence_threshold,nms_threshold);
244 |
245 | auto image = cv::imread("../images/coco_1.jpg");
246 | // 提交图片并获取结果
247 | auto objs = yolo->commit(image).get();
248 |
249 | int w, h, x=0, y=0;
250 | int input_w=640;
251 | int input_h=640;
252 | float r_w = input_w / (image.cols*1.0);
253 | float r_h = input_h / (image.rows*1.0);
254 | if (r_h > r_w) {
255 | w = input_w;
256 | h = r_w * image.rows;
257 | x = 0;
258 | y = (input_h - h) / 2;
259 | } else {
260 | w = r_h * image.cols;
261 | h = input_h;
262 | x = (input_w - w) / 2;
263 | y = 0;
264 | }
265 |
266 | cv::Mat re(h, w, CV_8UC3);
267 | cv::resize(image, re, re.size(), 0, 0, cv::INTER_LINEAR);
268 |
269 | for(auto& obj : objs){
270 | obj.left=obj.left-x;
271 | obj.top=obj.top-y;
272 | obj.right=obj.right-x;
273 | obj.bottom=obj.bottom-y;
274 | uint8_t b, g, r;
275 | std::tie(b, g, r) = random_color(obj.class_label);
276 | cv::rectangle(re, cv::Point(obj.left, obj.top), cv::Point(obj.right, obj.bottom), cv::Scalar(b, g, r), 5);
277 |
278 | auto name = cocolabels[obj.class_label];
279 | auto caption = cv::format("%s %.2f", name, obj.confidence);
280 | int width = cv::getTextSize(caption, 0, 1, 2, nullptr).width + 10;
281 | cv::rectangle(re, cv::Point(obj.left-3, obj.top-33), cv::Point(obj.left + width, obj.top), cv::Scalar(b, g, r), -1);
282 | cv::putText(re, caption, cv::Point(obj.left, obj.top-5), 0, 1, cv::Scalar::all(0), 2, 16);
283 | }
284 |
285 | printf("Save result to infer.jpg, %d objects\n", objs.size());
286 | cv::imwrite(cv::format("../images/render.jpg"), re);
287 |
288 | }
289 |
290 | int main(){
291 |
292 | // lesson1();
293 | // lesson2();
294 | lesson3();
295 | // test_tensor1();
296 | // test_tensor2();
297 | // test_tensor3();
298 | return 0;
299 | }
--------------------------------------------------------------------------------
/run_yolov5.sh:
--------------------------------------------------------------------------------
1 | sudo docker run --gpus "device=0" -it --rm --net=host --shm-size=1g --ipc=host \
2 | -v$(pwd)/:/workspace/yolov5_tensorrt \
3 | -v/home/ls/softwares/TensorRT:/workspace/TensorRT \
4 | -v/home/ls/softwares/cudnn:/workspace/cudnn \
5 | -v/home/ls/softwares/opencv-4.5.5:/workspace/opencv \
6 | -w /workspace/yolov5_tensorrt nvcr.io/nvidia/pytorch:22.03-py3
--------------------------------------------------------------------------------
/src/application/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | # 指定CMake版本
2 | cmake_minimum_required(VERSION 3.5)
3 | # 指定项目名称
4 | project(application)
5 |
6 | # 指定头文件目录
7 | # include_directories(${CMAKE_CURRENT_SOURCE_DIR}/include)
8 | # 指定源文件目录
9 | file(GLOB_RECURSE SOURCE_FILES ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)
10 |
11 | # 打印cmake当前目录地址&源文件目录地址
12 | message(application_CMAKE_CURRENT_SOURCE_DIR => ${CMAKE_CURRENT_SOURCE_DIR})
13 | # message( application_SOURCE_FILES => ${SOURCE_FILES})
14 |
15 | # 设置环境变量,编译用到的源文件全部都要放到这里,否则编译能够通过,
16 | # 但是执行的时候会出现各种问题,比如"symbol lookup error xxxxx , undefined symbol"
17 | set(ALL_SRCS ${SOURCE_FILES})
18 | # message(application_ALL_SRCS => ${ALL_SRCS})
19 |
20 | #设置生成库保存位置
21 | set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/lib)
22 |
23 | # 生成so包
24 | # SHARED ->生成动态库
25 | # STATIC ->生成静态库
26 | message(application_PROJECT_NAME => ${PROJECT_NAME})
27 | add_library(${PROJECT_NAME} SHARED ${ALL_SRCS})
--------------------------------------------------------------------------------
/src/application/yolov5/yolo.cpp:
--------------------------------------------------------------------------------
1 | #include "yolo.h"
2 | #include "../../module/core/async_infer.h"
3 | #include "../../module/infer/trt_infer.h"
4 | namespace YOLOV5{
5 |
6 | using namespace TRT;
7 |
8 | void set_device(int device_id) {
9 | if (device_id == -1)
10 | return;
11 |
12 | checkCudaRuntime(cudaSetDevice(device_id));
13 | }
14 |
15 | //* load_infer函数返回了一个TRTInferImpl类
16 | std::shared_ptr load_infer(const std::string& file) {
17 | /* 实例化一个推理对象 */
18 | std::shared_ptr infer(new TRTInferImpl());
19 | /* 加载trt文件,并反序列化,这里包含了模型的输入输出的绑定和流的设定 */
20 | if (!infer->load(file))
21 | infer.reset();
22 | return infer;
23 | }
24 |
25 | using ThreadSafedAsyncInferImpl = ThreadSafeAsyncInfer
26 | <
27 | cv::Mat, // input
28 | BoxArray, // output
29 | std::tuple, // start param
30 | int // additional
31 | >;
32 |
33 | class YoloTRTInferImpl : public Infer, public ThreadSafedAsyncInferImpl{
34 | public:
35 | virtual ~YoloTRTInferImpl(){
36 | stop();
37 | }
38 |
39 | virtual bool startup(const std::string& file,int gpuid,float confidence_threshold,float nms_threshold){
40 | confidence_threshold_ = confidence_threshold;
41 | nms_threshold_ = nms_threshold;
42 | return ThreadSafedAsyncInferImpl::startup(std::make_tuple(file,gpuid));
43 | }
44 |
45 | virtual void worker(std::promise& result) override{
46 | std::string file = std::get<0>(start_param_);
47 | int gpuid = std::get<1>(start_param_);
48 | set_device(gpuid);
49 | auto engine = load_infer(file);
50 | engine->print();
51 |
52 | int max_batch_size = engine->get_max_batch_size();
53 | auto input = engine->tensor("images");
54 | auto output = engine->tensor("output");
55 | int num_classes = output->size(2) - 5;
56 |
57 | input_width_ = input->size(3);
58 | input_height_ = input->size(2);
59 |
60 | tensor_allocator_ = std::make_shared>(max_batch_size * 2);
61 | stream_ = engine->get_stream();
62 | gpu_ = gpuid;
63 |
64 | result.set_value(true);
65 | input->resize_single_dim(0, max_batch_size).to_gpu();
66 |
67 | std::vector fetch_jobs;
68 |
69 | while(get_jobs_and_wait(fetch_jobs, max_batch_size)){
70 | /* 一旦进来说明有图片数据 ,获取图片的张数 */
71 | int infer_batch_size = fetch_jobs.size();
72 | input->resize_single_dim(0, infer_batch_size);
73 | /* 下面从队列取出job,把对应的仿射矩阵和预处理好的图片数据送到模型的输入 */
74 | /* 其中input就是engine对象的方法,该方法实际上是把预处理的数据传给engine的内部属性inputs_ */
75 | for(int ibatch = 0; ibatch < infer_batch_size; ++ibatch){
76 | auto& job = fetch_jobs[ibatch];
77 | auto& mono = job.mono_tensor->data();
78 | input->copy_from_gpu(input->offset(ibatch), mono->gpu(), mono->count());
79 | job.mono_tensor->release();
80 | }
81 | /* 开始推理 */
82 | engine->forward(false);
83 | /* 下面进行解码 */
84 | for(int ibatch = 0; ibatch < infer_batch_size; ++ibatch){
85 | auto& job = fetch_jobs[ibatch];/* 图片数据 */
86 | float* image_based_output = output->gpu(ibatch);
87 | auto& image_based_boxes = job.output;
88 |
89 | std::vector result;
90 | float confidence_threshold=0.5;
91 | int num_boxes = output->size(1);
92 | for(int b=0;bcpu(b);
94 | for(int num_box=0;num_boxset_value(image_based_boxes);
125 | }
126 | fetch_jobs.clear();
127 | }
128 | stream_ = nullptr;
129 | tensor_allocator_.reset();
130 | INFO("Engine destroy.");
131 |
132 | }
133 |
134 | virtual bool preprocess(Job& job,const cv::Mat& image) override{
135 | if(tensor_allocator_ == nullptr){
136 | INFOE("tensor_allocator_ is nullptr");
137 | return false;
138 | }
139 |
140 | job.mono_tensor = tensor_allocator_->query();
141 | if(job.mono_tensor == nullptr){
142 | INFOE("Tensor allocator query failed.");
143 | return false;
144 | }
145 |
146 | /* 配置gpu */
147 | AutoDevice auto_device(gpu_);
148 | /* 获取job里面的tensor的数据地址,第一次为nullptr */
149 | /* 这里需要理解的不是创建了新的tensor对象,只是把job的tensor地址拿出来使用,数据还是job指定的 */
150 | auto& tensor = job.mono_tensor->data();
151 | if(tensor == nullptr){
152 | // not init
153 | tensor = std::make_shared();
154 | tensor->set_workspace(std::make_shared());
155 | }
156 | /* 把tensor和流绑定,后续都会使用这个流进行处理,流的创建也是在模型创建时创建 */
157 | tensor->set_stream(stream_);
158 | /* 把tensor resize一下,此时的tensor还未填充数据 */
159 | tensor->resize(1, 3, input_height_, input_width_);
160 |
161 | size_t size_image = input_width_ * input_height_ * 3;
162 | auto workspace = tensor->get_data();
163 | float* gpu_workspace = (float*)workspace->gpu(size_image*sizeof(float));
164 | float* image_device = gpu_workspace;
165 |
166 | float* cpu_workspace = (float*)workspace->cpu(size_image*sizeof(float));
167 | float* image_host = cpu_workspace;
168 |
169 | std::vector data = YOLOV5::v5prepareImage(image,input_width_,input_height_);
170 | memcpy(image_host, data.data(), size_image*sizeof(float));
171 | // checkCudaRuntime(cudaMemcpyAsync(image_device, data.data(), size_image*sizeof(float), cudaMemcpyHostToDevice, stream_));
172 | // checkCudaRuntime(cudaMemcpyAsync(image_device, image_host, size_image*sizeof(float), cudaMemcpyHostToDevice, stream_));
173 | checkCudaRuntime(cudaMemcpyAsync(image_device, image_host, size_image*sizeof(float), cudaMemcpyHostToDevice, stream_));
174 |
175 | return true;
176 | }
177 |
178 | virtual std::vector> commits(const std::vector& images) override{
179 | return ThreadSafedAsyncInferImpl::commits(images);
180 | }
181 |
182 | virtual std::shared_future commit(const cv::Mat& image) override{
183 | return ThreadSafedAsyncInferImpl::commit(image);
184 | }
185 |
186 | private:
187 | int input_width_ = 0;
188 | int input_height_ = 0;
189 | int gpu_ = 0;
190 | float confidence_threshold_ = 0;
191 | float nms_threshold_ = 0;
192 | cudaStream_t stream_ = nullptr;
193 | };
194 |
195 | std::shared_ptr create_infer(const std::string& engine_file, int gpuid, float confidence_threshold, float nms_threshold){
196 | /* 创建一个推理实例,该实例具备了引擎的创建、加载模型,反序列化,创建线程等一系列操作, */
197 | std::shared_ptr instance(new YoloTRTInferImpl());
198 | if(!instance->startup(engine_file, gpuid, confidence_threshold, nms_threshold)){
199 | instance.reset();
200 | }
201 | return instance;
202 | }
203 |
204 | std::vector v5prepareImage(const cv::Mat &image,const int input_w,const int input_h){
205 |
206 | int w, h, x, y;
207 | // int input_w=IMAGE_WIDTH;
208 | // int input_h=IMAGE_HEIGHT;
209 | float r_w = input_w / (image.cols*1.0);
210 | float r_h = input_h / (image.rows*1.0);
211 | if (r_h > r_w) {
212 | w = input_w;
213 | h = r_w * image.rows;
214 | x = 0;
215 | y = (input_h - h) / 2;
216 | } else {
217 | w = r_h * image.cols;
218 | h = input_h;
219 | x = (input_w - w) / 2;
220 | y = 0;
221 | }
222 | cv::Mat re(h, w, CV_8UC3);
223 | cv::resize(image, re, re.size(), 0, 0, cv::INTER_LINEAR);
224 | cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
225 | re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
226 | out.convertTo(out, CV_32FC3, 1.0 / 255);
227 | int channels=3;
228 | std::vector img;
229 | std::vector data(channels* input_h * input_w);
230 |
231 | if (out.isContinuous())
232 | img.assign((float*)out.datastart, (float*)out.dataend);
233 |
234 | for (int c = 0; c < channels; c++) {
235 | for (int j = 0, hw = input_h * input_w; j < hw; j++) {
236 | data[c * hw + j] = img[channels * j + 2 - c];
237 | }
238 | }
239 | return data;
240 | }
241 |
242 | float IOUCalculate(const DetectRes &det_a, const DetectRes &det_b) {
243 | cv::Point2f center_a(det_a.x, det_a.y);
244 | cv::Point2f center_b(det_b.x, det_b.y);
245 | cv::Point2f left_up(std::min(det_a.x - det_a.w / 2, det_b.x - det_b.w / 2),
246 | std::min(det_a.y - det_a.h / 2, det_b.y - det_b.h / 2));
247 | cv::Point2f right_down(std::max(det_a.x + det_a.w / 2, det_b.x + det_b.w / 2),
248 | std::max(det_a.y + det_a.h / 2, det_b.y + det_b.h / 2));
249 | float distance_d = (center_a - center_b).x * (center_a - center_b).x + (center_a - center_b).y * (center_a - center_b).y;
250 | float distance_c = (left_up - right_down).x * (left_up - right_down).x + (left_up - right_down).y * (left_up - right_down).y;
251 | float inter_l = det_a.x - det_a.w / 2 > det_b.x - det_b.w / 2 ? det_a.x - det_a.w / 2 : det_b.x - det_b.w / 2;
252 | float inter_t = det_a.y - det_a.h / 2 > det_b.y - det_b.h / 2 ? det_a.y - det_a.h / 2 : det_b.y - det_b.h / 2;
253 | float inter_r = det_a.x + det_a.w / 2 < det_b.x + det_b.w / 2 ? det_a.x + det_a.w / 2 : det_b.x + det_b.w / 2;
254 | float inter_b = det_a.y + det_a.h / 2 < det_b.y + det_b.h / 2 ? det_a.y + det_a.h / 2 : det_b.y + det_b.h / 2;
255 | if (inter_b < inter_t || inter_r < inter_l)
256 | return 0;
257 | float inter_area = (inter_b - inter_t) * (inter_r - inter_l);
258 | float union_area = det_a.w * det_a.h + det_b.w * det_b.h - inter_area;
259 | if (union_area == 0)
260 | return 0;
261 | else
262 | return inter_area / union_area - distance_d / distance_c;
263 | }
264 |
265 | void NmsDetect(std::vector &detections) {
266 | sort(detections.begin(), detections.end(), [=](const DetectRes &left, const DetectRes &right) {
267 | return left.prob > right.prob;
268 | });
269 |
270 | for (int i = 0; i < (int)detections.size(); i++)
271 | for (int j = i + 1; j < (int)detections.size(); j++)
272 | {
273 | if (detections[i].classes == detections[j].classes)
274 | {
275 | float iou = IOUCalculate(detections[i], detections[j]);
276 | if (iou > 0.5)
277 | detections[j].prob = 0;
278 | }
279 | }
280 |
281 | detections.erase(std::remove_if(detections.begin(), detections.end(), [](const DetectRes &det)
282 | { return det.prob == 0; }), detections.end());
283 | }
284 |
285 |
286 |
287 | }
--------------------------------------------------------------------------------
/src/application/yolov5/yolo.h:
--------------------------------------------------------------------------------
1 | #ifndef YOLO_H
2 | #define YOLO_H
3 |
4 | #include
5 | #include
6 | #include
7 | namespace YOLOV5{
8 |
9 | struct Box{
10 | float left, top, right, bottom, confidence;
11 | int class_label;
12 |
13 | Box() = default;
14 |
15 | Box(float left, float top, float right, float bottom, float confidence, int class_label)
16 | :left(left), top(top), right(right), bottom(bottom), confidence(confidence), class_label(class_label){}
17 | };
18 |
19 | typedef std::vector BoxArray;
20 |
21 | class Infer{
22 | public:
23 | virtual std::shared_future commit(const cv::Mat& image) = 0;
24 | virtual std::vector> commits(const std::vector& images) = 0;
25 | };
26 |
27 | std::shared_ptr create_infer(const std::string& engine_file, int gpuid, float confidence_threshold, float nms_threshold);
28 |
29 | struct DetectRes{
30 | int classes;
31 | float x;
32 | float y;
33 | float w;
34 | float h;
35 | float prob;
36 | };
37 |
38 | std::vector v5prepareImage(const cv::Mat &image,const int input_w,const int input_h);
39 |
40 | void NmsDetect(std::vector &detections);
41 |
42 | }
43 |
44 | #endif
--------------------------------------------------------------------------------
/src/module/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | # 指定CMake版本
2 | cmake_minimum_required(VERSION 3.5)
3 | # 指定项目名称
4 | project(module)
5 |
6 | # 指定头文件目录
7 | # include_directories(${CMAKE_CURRENT_SOURCE_DIR}/include)
8 | # 指定源文件目录
9 | file(GLOB_RECURSE SOURCE_FILES ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)
10 |
11 | # 打印cmake当前目录地址&源文件目录地址
12 | message(module_CMAKE_CURRENT_SOURCE_DIR => ${CMAKE_CURRENT_SOURCE_DIR})
13 | # message( module_SOURCE_FILES => ${SOURCE_FILES})
14 |
15 | # 设置环境变量,编译用到的源文件全部都要放到这里,否则编译能够通过,
16 | # 但是执行的时候会出现各种问题,比如"symbol lookup error xxxxx , undefined symbol"
17 | set(ALL_SRCS ${SOURCE_FILES})
18 | # message(module_ALL_SRCS => ${ALL_SRCS})
19 |
20 | #设置生成库保存位置
21 | set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/lib)
22 |
23 | # 生成so包
24 | # SHARED ->生成动态库
25 | # STATIC ->生成静态库
26 | message(module_PROJECT_NAME => ${PROJECT_NAME})
27 | add_library(${PROJECT_NAME} SHARED ${ALL_SRCS})
--------------------------------------------------------------------------------
/src/module/builder/trt_builder.cpp:
--------------------------------------------------------------------------------
1 | #include "trt_builder.h"
2 | #include "../common/ilogger.h"
3 | #include "../common/utils.h"
4 | #include "../common/cuda_tools.h"
5 | #include
6 | #include
7 | #include
8 |
9 | using namespace nvinfer1;
10 | using namespace std;
11 |
12 | namespace TRT{
13 |
14 | static string join_dims(const vector& dims){
15 | stringstream output;
16 | char buf[64];
17 | const char* fmts[] = {"%d", " x %d"};
18 | for(int i = 0; i < dims.size(); ++i){
19 | snprintf(buf, sizeof(buf), fmts[i != 0], dims[i]);
20 | output << buf;
21 | }
22 | return output.str();
23 | }
24 |
25 | const char* mode_string(Mode type){
26 | switch (type){
27 | case Mode::FP32:
28 | return "FP32";
29 | case Mode::FP16:
30 | return "FP16";
31 | case Mode::INT8:
32 | return "INT8";
33 | default:
34 | return "UknowCompileMode";
35 | }
36 | }
37 |
38 | bool compile(
39 | Mode mode,
40 | unsigned int max_batch_size,
41 | const string& source_onnx,
42 | const string& saveto,
43 | size_t max_workspace_size){
44 |
45 | if(mode == Mode::INT8){
46 | INFOE("int8process must not nullptr, when in int8 mode.");
47 | return false;
48 | }
49 |
50 | INFO("Compile %s %s.", mode_string(mode), source_onnx.c_str());
51 | shared_ptr builder(createInferBuilder(gLogger), destroy_nvidia_pointer);
52 | if (builder == nullptr) {
53 | INFOE("Can not create builder.");
54 | return false;
55 | }
56 |
57 | shared_ptr config(builder->createBuilderConfig(), destroy_nvidia_pointer);
58 | if (mode == Mode::FP16) {
59 | if (!builder->platformHasFastFp16()) {
60 | INFOW("Platform not have fast fp16 support");
61 | }
62 | config->setFlag(BuilderFlag::kFP16);
63 | }
64 | else if (mode == Mode::INT8) {
65 | if (!builder->platformHasFastInt8()) {
66 | INFOW("Platform not have fast int8 support");
67 | }
68 | config->setFlag(BuilderFlag::kINT8);
69 | }
70 |
71 | shared_ptr network;
72 | shared_ptr onnxParser;
73 | const auto explicitBatch = 1U << static_cast(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
74 | network = shared_ptr(builder->createNetworkV2(explicitBatch), destroy_nvidia_pointer);
75 |
76 | //from onnx is not markOutput
77 | onnxParser.reset(nvonnxparser::createParser(*network, gLogger), destroy_nvidia_pointer);
78 | if (onnxParser == nullptr) {
79 | INFOE("Can not create parser.");
80 | return false;
81 | }
82 |
83 | if (!onnxParser->parseFromFile(source_onnx.c_str(), 1)) {
84 | INFOE("Can not parse OnnX file: %s", source_onnx.c_str());
85 | return false;
86 | }
87 |
88 | auto inputTensor = network->getInput(0);
89 | auto inputDims = inputTensor->getDimensions();
90 |
91 | INFO("Input shape is %s", join_dims(vector(inputDims.d, inputDims.d + inputDims.nbDims)).c_str());
92 | INFO("Set max batch size = %d", max_batch_size);
93 | INFO("Set max workspace size = %.2f MB", max_workspace_size / 1024.0f / 1024.0f);
94 |
95 | int net_num_input = network->getNbInputs();
96 | INFO("Network has %d inputs:", net_num_input);
97 | vector input_names(net_num_input);
98 | for(int i = 0; i < net_num_input; ++i){
99 | auto tensor = network->getInput(i);
100 | auto dims = tensor->getDimensions();
101 | auto dims_str = join_dims(vector(dims.d, dims.d+dims.nbDims));
102 | INFO(" %d.[%s] shape is %s", i, tensor->getName(), dims_str.c_str());
103 |
104 | input_names[i] = tensor->getName();
105 | }
106 |
107 | int net_num_output = network->getNbOutputs();
108 | INFO("Network has %d outputs:", net_num_output);
109 | for(int i = 0; i < net_num_output; ++i){
110 | auto tensor = network->getOutput(i);
111 | auto dims = tensor->getDimensions();
112 | auto dims_str = join_dims(vector(dims.d, dims.d+dims.nbDims));
113 | INFO(" %d.[%s] shape is %s", i, tensor->getName(), dims_str.c_str());
114 | }
115 |
116 | int net_num_layers = network->getNbLayers();
117 | INFO("Network has %d layers", net_num_layers);
118 | builder->setMaxBatchSize(max_batch_size);
119 | config->setMaxWorkspaceSize(max_workspace_size);
120 |
121 | auto profile = builder->createOptimizationProfile();
122 | for(int i = 0; i < net_num_input; ++i){
123 | auto input = network->getInput(i);
124 | auto input_dims = input->getDimensions();
125 | input_dims.d[0] = 1;
126 | profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMIN, input_dims);
127 | profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kOPT, input_dims);
128 | input_dims.d[0] = max_batch_size;
129 | profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMAX, input_dims);
130 | }
131 | config->addOptimizationProfile(profile);
132 |
133 | INFO("Building engine...");
134 | auto time_start = chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count();
135 | shared_ptr engine(builder->buildEngineWithConfig(*network, *config), destroy_nvidia_pointer);
136 | if (engine == nullptr) {
137 | INFOE("engine is nullptr");
138 | return false;
139 | }
140 |
141 | auto time_end = chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count();
142 | INFO("Build done %lld ms !", time_end - time_start);
143 |
144 | // serialize the engine, then close everything down
145 | shared_ptr seridata(engine->serialize(), destroy_nvidia_pointer);
146 | return save_file(saveto, seridata->data(), seridata->size());
147 | }
148 |
149 | }// namespace TRT
--------------------------------------------------------------------------------
/src/module/builder/trt_builder.h:
--------------------------------------------------------------------------------
1 | #ifndef TRT_BUILDER_H
2 | #define TRT_BUILDER_H
3 |
4 | #include
5 | #include
6 |
7 | namespace TRT{
8 |
9 | enum class Mode:int{
10 | FP32,
11 | FP16,
12 | INT8
13 | };
14 |
15 | bool compile(
16 | Mode mode,
17 | unsigned int max_batch_size,
18 | const std::string& source_onnx,
19 | const std::string& saveto,
20 | size_t max_workspace_size = 1<<30
21 | );
22 |
23 | }// namespace TRT
24 |
25 | #endif
--------------------------------------------------------------------------------
/src/module/common/cuda_tools.cpp:
--------------------------------------------------------------------------------
1 | #include "cuda_tools.h"
2 |
3 | bool check_runtime(cudaError_t e, const char* call, int line, const char *file){
4 | if (e != cudaSuccess) {
5 | INFOE("CUDA Runtime error %s # %s, code = %s [ %d ] in file %s:%d", call, cudaGetErrorString(e), cudaGetErrorName(e), e, file, line);
6 | return false;
7 | }
8 | return true;
9 | }
10 |
11 | bool check_device_id(int device_id){
12 | int device_count = -1;
13 | checkCudaRuntime(cudaGetDeviceCount(&device_count));
14 | if(device_id < 0 || device_id >= device_count){
15 | INFOE("Invalid device id: %d, count = %d", device_id, device_count);
16 | return false;
17 | }
18 | return true;
19 | }
20 |
21 | AutoDevice::AutoDevice(int device_id){
22 |
23 | cudaGetDevice(&old_);
24 | checkCudaRuntime(cudaSetDevice(device_id));
25 | }
26 |
27 | AutoDevice::~AutoDevice(){
28 | checkCudaRuntime(cudaSetDevice(old_));
29 | }
--------------------------------------------------------------------------------
/src/module/common/cuda_tools.h:
--------------------------------------------------------------------------------
1 | #ifndef CUDA_TOOLS_H
2 | #define CUDA_TOOLS_H
3 |
4 | #include "ilogger.h"
5 | #include
6 | #include
7 | #include
8 |
9 | using namespace nvinfer1;
10 |
11 | #define Assert(op) \
12 | do{ \
13 | bool cond = !(!(op)); \
14 | if(!cond){ \
15 | INFOF("Assert failed, " #op); \
16 | } \
17 | }while(false)
18 |
19 | #define checkCudaRuntime(call) check_runtime(call, #call, __LINE__, __FILE__)
20 |
21 | bool check_runtime(cudaError_t e, const char* call, int iLine, const char *szFile);
22 |
23 | bool check_device_id(int device_id);
24 |
25 | class Logger : public ILogger {
26 | public:
27 | virtual void log(Severity severity, const char* msg) noexcept override {
28 |
29 | if (severity == Severity::kINTERNAL_ERROR) {
30 | INFOE("NVInfer INTERNAL_ERROR: %s", msg);
31 | abort();
32 | }else if (severity == Severity::kERROR) {
33 | INFOE("NVInfer: %s", msg);
34 | }
35 | else if (severity == Severity::kWARNING) {
36 | INFOW("NVInfer: %s", msg);
37 | }
38 | else if (severity == Severity::kINFO) {
39 | INFOD("NVInfer: %s", msg);
40 | }
41 | else {
42 | INFOD("%s", msg);
43 | }
44 | }
45 | };
46 |
47 | static Logger gLogger;
48 |
49 | template
50 | static void destroy_nvidia_pointer(_T* ptr) {
51 | if (ptr) ptr->destroy();
52 | }
53 |
54 | /* 构造时设置当前gpuid,析构时修改为原来的gpuid */
55 | class AutoDevice{
56 | public:
57 | AutoDevice(int device_id = 0);
58 | virtual ~AutoDevice();
59 |
60 | private:
61 | int old_ = -1;
62 | };
63 |
64 | #endif
--------------------------------------------------------------------------------
/src/module/common/ilogger.cpp:
--------------------------------------------------------------------------------
1 | #include "ilogger.h"
2 | #include
3 | #include
4 |
5 | using namespace std;
6 |
7 | namespace iLogger{
8 | static string file_name(const string& path, bool include_suffix){
9 |
10 | if (path.empty()) return "";
11 |
12 | int p = path.rfind('/');
13 |
14 | p += 1;
15 |
16 | //include suffix
17 | if (include_suffix)
18 | return path.substr(p);
19 |
20 | int u = path.rfind('.');
21 | if (u == -1)
22 | return path.substr(p);
23 |
24 | if (u <= p) u = path.size();
25 | return path.substr(p, u - p);
26 | }
27 |
28 | static const char* level_string(LogLevel level){
29 | switch (level){
30 | case LogLevel::Debug: return "debug";
31 | case LogLevel::Verbose: return "verbo";
32 | case LogLevel::Info: return "info";
33 | case LogLevel::Warning: return "warn";
34 | case LogLevel::Error: return "error";
35 | case LogLevel::Fatal: return "fatal";
36 | default: return "unknow";
37 | }
38 | }
39 |
40 | void __log_func(const char* file, int line, LogLevel level, const char* fmt, ...){
41 |
42 | if(level > CURRENT_LOG_LEVEL)
43 | return;
44 |
45 | va_list vl;
46 | va_start(vl, fmt);
47 |
48 | char buffer[2048];
49 | string filename = file_name(file, true);
50 | int n = snprintf(buffer, sizeof(buffer), "[%s][%s:%d]:", level_string(level), filename.c_str(), line);
51 | vsnprintf(buffer + n, sizeof(buffer) - n, fmt, vl);
52 |
53 | fprintf(stdout, "%s\n", buffer);
54 | if (level == LogLevel::Fatal) {
55 | fflush(stdout);
56 | abort();
57 | }
58 | }
59 |
60 | }
--------------------------------------------------------------------------------
/src/module/common/ilogger.h:
--------------------------------------------------------------------------------
1 | #ifndef ILOGGER_HPP
2 | #define ILOGGER_HPP
3 |
4 | namespace iLogger{
5 |
6 | enum class LogLevel : int{
7 | Debug = 5,
8 | Verbose = 4,
9 | Info = 3,
10 | Warning = 2,
11 | Error = 1,
12 | Fatal = 0
13 | };
14 |
15 | /* 修改这个level来实现修改日志输出级别 */
16 | #define CURRENT_LOG_LEVEL LogLevel::Info
17 | // 可变参数宏__VA_ARGS__: 宏可以接受可变数目的参数
18 | #define INFOD(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Debug, __VA_ARGS__)
19 | #define INFOV(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Verbose, __VA_ARGS__)
20 | #define INFO(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Info, __VA_ARGS__)
21 | #define INFOW(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Warning, __VA_ARGS__)
22 | #define INFOE(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Error, __VA_ARGS__)
23 | #define INFOF(...) iLogger::__log_func(__FILE__, __LINE__, iLogger::LogLevel::Fatal, __VA_ARGS__)
24 |
25 | void __log_func(const char* file, int line, LogLevel level, const char* fmt, ...);
26 |
27 | }
28 |
29 | #endif
--------------------------------------------------------------------------------
/src/module/common/utils.h:
--------------------------------------------------------------------------------
1 | #ifndef UTILS_H
2 | #define UTILS_H
3 |
4 | #include
5 |
6 | namespace TRT{
7 |
8 | template
9 | struct TrtDestroyer
10 | {
11 | void operator()(T* t)
12 | {
13 | t->destroy();
14 | }
15 | };
16 |
17 | template
18 | using TrtUniquePtr = std::unique_ptr>;
19 |
20 | static bool save_file(const std::string& file, const void* data, size_t length){
21 |
22 | FILE* f = fopen(file.c_str(), "wb");
23 | if (!f) return false;
24 |
25 | if (data && length > 0){
26 | if (fwrite(data, 1, length, f) != length){
27 | fclose(f);
28 | return false;
29 | }
30 | }
31 | fclose(f);
32 | return true;
33 | }
34 |
35 | }
36 |
37 | #endif
38 |
--------------------------------------------------------------------------------
/src/module/core/async_infer.h:
--------------------------------------------------------------------------------
1 | #ifndef ASYNC_INFER_H
2 | #define ASYNC_INFER_H
3 |
4 | #include
5 | #include "monopoly_allocator.h"
6 | #include "trt_tensor.h"
7 |
8 | template,class JobAdditional=int>
9 | class ThreadSafeAsyncInfer{
10 | public:
11 | struct Job{
12 | Input input;
13 | Output output;
14 | JobAdditional additional;
15 | MonopolyAllocator::MonopolyDataPointer mono_tensor;
16 | std::shared_ptr> pro;
17 | };
18 |
19 | virtual ~ThreadSafeAsyncInfer(){
20 | stop();
21 | }
22 |
23 | void stop(){
24 | run_ = false;
25 | cond_.notify_all();
26 | {
27 | std::unique_lock l(jobs_lock_);
28 | while(!jobs_.empty()){
29 | auto& item = jobs_.front();
30 | if(item.pro)
31 | item.pro->set_value(Output());
32 | jobs_.pop();
33 | }
34 | };
35 |
36 | if(worker_){
37 | worker_->join();
38 | worker_.reset();
39 | }
40 | }
41 |
42 | bool startup(const StartParam& param){
43 | run_ = true;
44 | std::promise pro;
45 | start_param_ = param;
46 | worker_ = std::make_shared(&ThreadSafeAsyncInfer::worker,this,std::ref(pro));
47 | return pro.get_future().get();
48 | }
49 |
50 | virtual std::shared_future