├── ACTINN
├── ACTINN.sh
├── ACTINN_res_human.rds
├── ACTINN_res_mouse.rds
└── pre-process.R
├── CHETAH
├── CHETAH.R
├── CHETAH_res_human.rds
└── CHETAH_res_mouse.rds
├── CellAssign
├── CellAssign.R
├── CellAssign_res_human.rds
├── CellAssign_res_mouse.rds
└── marker_file_making.R
├── Garnett
├── Garnett.R
├── Garnett_res_human.rds
├── Garnett_res_mouse.rds
├── cds_object_making.R
└── marker_file_making.R
├── LICENSE
├── README.md
├── SCINA
├── SCINA.R
├── SCINA_res_human.rds
└── SCINA_res_mouse.rds
├── SVM
├── SVM.py
├── SVM_res_human.rds
└── SVM_res_mouse.rds
├── SingleR
├── SingleR.R
├── SingleR_res_human.rds
└── SingleR_res_mouse.rds
├── scDeepSort
├── scDeepSort_res_human.rds
└── scDeepSort_res_mouse.rds
├── scID
├── scID.R
├── scID_res_human.rds
└── scID_res_mouse.rds
├── scMap
├── scMap.R
├── scmap_cell_res_human.rds
├── scmap_cell_res_mouse.rds
├── scmap_cluster_res_human.rds
└── scmap_cluster_res_mouse.rds
├── scPred
├── scPred.R
├── scPred_res_human.rds
└── scPred_res_mouse.rds
└── singleCellNet
├── singleCellNet.R
├── singleCellNet_res_human.rds
└── singleCellNet_res_mouse.rds
/ACTINN/ACTINN.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | python actinn_format.py -i ref_ndata_train.csv.gz -o ref_ndata_train -f csv
4 | python actinn_format.py -i ndata.csv.gz -o ndata -f csv
5 | python actinn_predict.py -trs ref_ndata_train.h5 -trl ref_celltype.txt.gz -ts ndata.h5 -lr 0.0001 -ne 50 -ms 128 -pc True -op False
--------------------------------------------------------------------------------
/ACTINN/ACTINN_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/ACTINN/ACTINN_res_human.rds
--------------------------------------------------------------------------------
/ACTINN/ACTINN_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/ACTINN/ACTINN_res_mouse.rds
--------------------------------------------------------------------------------
/ACTINN/pre-process.R:
--------------------------------------------------------------------------------
1 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
2 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
3 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
4 |
5 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
6 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
7 |
8 | # training data
9 | ref_ndata<- as.matrix(ref_ndata)
10 | write.csv(ndata,file = 'ref_ndata_train.csv')
11 | R.utils::gzip('ref_ndata_train.csv',remove = F)
12 | write.table(ref_celltype,file = 'ref_celltype.txt',
13 | quote = F,sep = '\t',row.names = F,col.names = F)
14 | R.utils::gzip('ref_celltype.txt',remove = F)
15 |
16 | # test data
17 | ndata<- as.matrix(ndata)
18 | write.csv(ndata,file = 'ndata.csv')
19 | R.utils::gzip('ndata.csv',remove = F)
20 |
--------------------------------------------------------------------------------
/CHETAH/CHETAH.R:
--------------------------------------------------------------------------------
1 | library(CHETAH)
2 |
3 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
4 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
5 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
6 |
7 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
8 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
9 |
10 | # Create sce object
11 | ref_celltype<- data.frame(celltype = ref_celltype$celltype,stringsAsFactors = F)
12 | rownames(ref_celltype)<- colnames(ref_ndata)
13 | ref_sce <- SingleCellExperiment(assays = list(counts = as.matrix(ref_ndata)),
14 | colData = ref_celltype)
15 |
16 | test_sce <- SingleCellExperiment(assays = list(counts = as.matrix(test_data)))
17 |
18 | # predict
19 | test_sce <- CHETAHclassifier(input = test_sce,
20 | ref_cells = ref_sce)
21 |
22 | celltype$chetah<- test_sce$celltype_CHETAH
--------------------------------------------------------------------------------
/CHETAH/CHETAH_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/CHETAH/CHETAH_res_human.rds
--------------------------------------------------------------------------------
/CHETAH/CHETAH_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/CHETAH/CHETAH_res_mouse.rds
--------------------------------------------------------------------------------
/CellAssign/CellAssign.R:
--------------------------------------------------------------------------------
1 | library(SingleCellExperiment)
2 | library(cellassign)
3 | library(scran)
4 |
5 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
6 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
7 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
8 | # marker_file is obtained from [marker_file_making.R]
9 | marker_file<- marker_file[rownames(marker_file) %in% rownames(ndata),]
10 | cellname<- rep(1,ncol(marker_file))
11 | for (i in 1:ncol(marker_file)) {
12 | d1<- marker_file[,i]
13 | if (all(d1 == 0)) {
14 | cellname[i]<- 0
15 | }
16 | }
17 | cellname<- which(cellname == 1)
18 | marker_file<- marker_file[,cellname]
19 |
20 | # making colData and rowData
21 | ndata_colData<- data.frame(Cell = celltype$cell_barcode,stringsAsFactors = F)
22 | rownames(ndata_colData)<- ndata_colData$Cell
23 |
24 | ndata_rowData <- data.frame(Gene = rownames(ndata),stringsAsFactors = F)
25 | rownames(ndata_rowData) <- ndata_rowData$Gene
26 |
27 | # Create sce object
28 | ndata_sce <- SingleCellExperiment(assays = list(counts = as.matrix(ndata)),colData = ndata_colData,rowData = ndata_rowData)
29 | ndata_sce <- computeSumFactors(ndata_sce)
30 | ndata_sce_Size_factors <- sizeFactors(ndata_sce)
31 |
32 | # cellassign
33 | ndata_cellassign_fit <- cellassign(exprs_obj = ndata_sce[rownames(marker_file),],
34 | marker_gene_info = as.matrix(marker_file),
35 | s = ndata_sce_Size_factors,
36 | learning_rate = 1e-2,
37 | shrinkage = TRUE,
38 | verbose = TRUE)
39 |
--------------------------------------------------------------------------------
/CellAssign/CellAssign_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/CellAssign/CellAssign_res_human.rds
--------------------------------------------------------------------------------
/CellAssign/CellAssign_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/CellAssign/CellAssign_res_mouse.rds
--------------------------------------------------------------------------------
/CellAssign/marker_file_making.R:
--------------------------------------------------------------------------------
1 | # CellMatch is used to make marker file for each dataset. (https://github.com/ZJUFanLab/scCATCH)
2 | # select a specific species and tissue type for each dataset.
3 | # species ('Human' or 'Mouse'); tissue (e.g.,'Blood','Brain',etc.)
4 |
5 | CellMatch<- CellMatch[CellMatch$speciesType == species & CellMatch$tissueType %in% tissue & CellMatch$cancerType == 'Normal',]
6 | cell_types<- unique(CellMatch$cellName)
7 | genename<- unique(CellMatch$geneSymbol)
8 |
9 | marker_file<- as.data.frame(matrix(0,nrow = length(genename),ncol = length(cell_types)),stringsAsFactors = F)
10 | rownames(marker_file)<- genename
11 | colnames(marker_file)<- cell_types
12 | for (j in 1:length(cell_types)) {
13 | d1<- CellMatch[CellMatch$cellName == cell_types[j],]$geneSymbol
14 | d1<- unique(d1)
15 | marker_file[d1,j]<- 1
16 | }
17 |
--------------------------------------------------------------------------------
/Garnett/Garnett.R:
--------------------------------------------------------------------------------
1 | library(garnett)
2 | library(org.Hs.eg.db)
3 | library(org.Mm.eg.db)
4 |
5 | # ndata_cds is obtained from [cds_object_making.R]
6 | # marker_file.txt is obtained from [marker_file_making.R]
7 | # data_db (org.Hs.eg.db for human dataset; org.Mm.eg.db for mouse datasets)
8 |
9 | garnett_classifier <- train_cell_classifier(cds = ndata_cds,
10 | marker_file = marker_file.txt,
11 | db = data_db,
12 | cds_gene_id_type = "SYMBOL",
13 | num_unknown = 50,
14 | marker_file_gene_id_type = "SYMBOL")
15 |
16 | ndata_cds <- classify_cells(ndata_cds, garnett_classifier,
17 | db = data_db,
18 | cluster_extend = TRUE,
19 | cds_gene_id_type = "SYMBOL")
20 |
--------------------------------------------------------------------------------
/Garnett/Garnett_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/Garnett/Garnett_res_human.rds
--------------------------------------------------------------------------------
/Garnett/Garnett_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/Garnett/Garnett_res_mouse.rds
--------------------------------------------------------------------------------
/Garnett/cds_object_making.R:
--------------------------------------------------------------------------------
1 | library(monocle)
2 | library(BiocGenerics)
3 |
4 | # For each external testing dataset, we transformed it into a cds object for running Garnett.
5 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
6 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
7 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
8 |
9 | # processing pdata
10 | pdata<- data.frame(tsne_1 = 0, tsne_2 = 0, Size_Factor = 1, FACS_type = celltype$cell_type,stringsAsFactors = F)
11 | rownames(pdata)<- celltype$cell_barcode
12 | pdata$tsne_1<- sample(x = 0:nrow(pdata),size = nrow(pdata))/nrow(pdata)
13 | pdata$tsne_2<- sample(x = 0:nrow(pdata),size = nrow(pdata))/nrow(pdata)
14 |
15 | # processing fdata
16 | fdata<- data.frame(gene_short_name = rownames(ndata),num_cells_expressed = 0,stringsAsFactors = F)
17 | genename<- fdata$gene_short_name
18 | expressed_cells<- NULL
19 | for (j in 1:length(genename)) {
20 | d1<- as.numeric(ndata[j,])
21 | expressed_cells[j]<- length(d1[d1 > 0])
22 | }
23 | fdata$num_cells_expressed<- expressed_cells
24 | rownames(fdata)<- fdata$gene_short_name
25 |
26 | # making cds object
27 | fdata <- new("AnnotatedDataFrame", data = fdata)
28 | pdata <- new("AnnotatedDataFrame", data = pdata)
29 | ndata_cds <- newCellDataSet(ndata,phenoData = pdata,featureData = fdata)
30 | ndata_cds<- estimateSizeFactors(ndata_cds)
--------------------------------------------------------------------------------
/Garnett/marker_file_making.R:
--------------------------------------------------------------------------------
1 | library(garnett)
2 | library(org.Hs.eg.db)
3 | library(org.Mm.eg.db)
4 |
5 | # CellMatch is used to make marker file for each dataset. (https://github.com/ZJUFanLab/scCATCH)
6 | # select a specific species and tissue type for each dataset.
7 | # species ('Human' or 'Mouse'); tissue (e.g.,'Blood','Brain',etc.)
8 | CellMatch<- CellMatch[CellMatch$speciesType == species & CellMatch$tissueType %in% tissue & CellMatch$cancerType == 'Normal',]
9 | cell_types<- unique(CellMatch$cellName)
10 |
11 | marker_file.txt <- NULL
12 | for (j in 1:length(cell_types)) {
13 | marker_file.txt<- c(marker_file.txt,paste('>',cell_types[j],sep = ''))
14 |
15 | d1<- CellMatch[CellMatch$cellName == cell_types[j],]$geneSymbol
16 | d1<- unique(d1)
17 | res_markers<- NULL
18 | if (length(d1) == 1) {
19 | res_markers<- d1
20 | }
21 | if (length(d1) > 1) {
22 | res_markers<- d1[1]
23 | for (k in 2:length(d1)) {
24 | res_markers<- paste(res_markers,d1[k],sep = ', ')
25 | }
26 | }
27 | res_markers<- paste('expressed: ',res_markers,sep = '')
28 | marker_file.txt<- c(marker_file.txt,res_markers)
29 |
30 | d2<- CellMatch[CellMatch$cellName == cell_types[j],]$PMID
31 | d2<- unique(d2)
32 | res_reference<- NULL
33 | if (length(d2) == 1) {
34 | res_reference<- d2
35 | }
36 | if (length(d2) > 1) {
37 | res_reference<- d2[1]
38 | for (k in 2:length(d2)) {
39 | res_reference<- paste(res_reference,d2[k],sep = ', ')
40 | }
41 | }
42 | res_reference<- paste('references: ',res_reference,sep = '')
43 | marker_file.txt<- c(marker_file.txt,res_reference,'')
44 | }
45 |
46 | # ndata_cds is obtained from [cds_object_making.R]
47 | # check and reconstruct marker file for each dataset.
48 | # data_db (org.Hs.eg.db for human dataset; org.Mm.eg.db for mouse datasets)
49 | marker_check <- check_markers(ndata_cds, marker_file.txt,
50 | db = data_db,
51 | cds_gene_id_type = "SYMBOL",
52 | marker_file_gene_id_type = "SYMBOL")
53 |
54 | # exluding markers of Low nomination, High ambiguity, Not in db, Not in CDS.
55 | marker_check$in_cds<- as.character(marker_check$in_cds)
56 | marker_check<- marker_check[marker_check$summary == 'Low nomination?' | marker_check$summary == 'High ambiguity?' | marker_check$summary == 'Not in db' | marker_check$summary == 'Not in CDS',]
57 | CellMatch<- CellMatch[!CellMatch$geneSymbol %in% marker_check$marker_gene,]
58 |
59 | # re-making marker file
60 |
61 | marker_file.txt <- NULL
62 | for (j in 1:length(cell_types)) {
63 | marker_file.txt<- c(marker_file.txt,paste('>',cell_types[j],sep = ''))
64 |
65 | d1<- CellMatch[CellMatch$cellName == cell_types[j],]$geneSymbol
66 | d1<- unique(d1)
67 | res_markers<- NULL
68 | if (length(d1) == 1) {
69 | res_markers<- d1
70 | }
71 | if (length(d1) > 1) {
72 | res_markers<- d1[1]
73 | for (k in 2:length(d1)) {
74 | res_markers<- paste(res_markers,d1[k],sep = ', ')
75 | }
76 | }
77 | res_markers<- paste('expressed: ',res_markers,sep = '')
78 | marker_file.txt<- c(marker_file.txt,res_markers)
79 |
80 | d2<- CellMatch[CellMatch$cellName == cell_types[j],]$PMID
81 | d2<- unique(d2)
82 | res_reference<- NULL
83 | if (length(d2) == 1) {
84 | res_reference<- d2
85 | }
86 | if (length(d2) > 1) {
87 | res_reference<- d2[1]
88 | for (k in 2:length(d2)) {
89 | res_reference<- paste(res_reference,d2[k],sep = ', ')
90 | }
91 | }
92 | res_reference<- paste('references: ',res_reference,sep = '')
93 | marker_file.txt<- c(marker_file.txt,res_reference,'')
94 | }
95 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ### The source code and results for different methods on annotating external testing datsets of human and mouse.
2 |
3 | |Methods |Marker-dependent|Profile-dependent|Unsure cells|
4 | |:---: |:---: |:---: | :---: |
5 | |__scDeepSort__| |YES |YES |
6 | |__CellAssign__| YES | | |
7 | |__Garnett__| YES | |YES |
8 | |__SingleR__| | YES| |
9 | |__scMap-cell__| |YES |YES |
10 | |__scMap-cluster__| |YES |YES |
11 | |__ACTINN__| |YES | |
12 | |__CHETAH__| |YES |YES |
13 | |__scID__| | YES|YES |
14 | |__SCINA__| YES | |YES |
15 | |__scPred__| | YES|YES |
16 | |__singleCellNet__| |YES | |
17 |
--------------------------------------------------------------------------------
/SCINA/SCINA.R:
--------------------------------------------------------------------------------
1 | # SCINA function
2 | SCINA=function(exp,signatures,max_iter=100,convergence_n=10,convergence_rate=0.99,
3 | sensitivity_cutoff=1,rm_overlap=1,allow_unknown=1,log_file='SCINA.log'){
4 | check.inputs=function(exp, signatures, max_iter, convergence_n, convergence_rate, sensitivity_cutoff, rm_overlap, log_file){
5 | # Initialize parameters.
6 | quality=1
7 | def_max_iter=1000
8 | def_conv_n=10
9 | def_conv_rate=0.99
10 | def_dummycut=0.33
11 | allgenes=row.names(exp)
12 | # Check sequence matrices.
13 | if (any(is.na(exp))){
14 | cat('NA exists in expression matrix.',file=log_file,append=T)
15 | cat('\n',file=log_file,append=T)
16 | quality=0
17 | }
18 | # Check signatures.
19 | if (any(is.na(signatures))){
20 | cat('Null cell type signature genes.',file=log_file,append=T)
21 | cat('\n',file=log_file,append=T)
22 | quality=0
23 | }else{
24 | signatures=sapply(signatures,function(x) unique(x[(!is.na(x)) & (x %in% allgenes)]),simplify=F)
25 | # Remove duplicate genes.
26 | if(rm_overlap==1){
27 | tmp=table(unlist(signatures))
28 | signatures=sapply(signatures,function(x) x[x %in% names(tmp[tmp==1])],simplify=F)
29 | }
30 | # Check if any genes have all 0 counts
31 | signatures=sapply(signatures,function(x) x[apply(exp[x,,drop=F],1,sd)>0],simplify=F)
32 | }
33 | # Clean other parameters.
34 | if (is.na(convergence_n)){
35 | cat('Using convergence_n=default',file=log_file,append=T)
36 | cat('\n',file=log_file,append=T)
37 | convergence_n=def_conv_n
38 | }
39 | if (is.na(max_iter)){
40 | cat('Using max_iter=default',file=log_file,append=T)
41 | cat('\n',file=log_file,append=T)
42 | max_iter=def_max_iter
43 | }else{
44 | if (max_iter1e200]=1e200
69 | tmp[tmp<1e-200]=1e-200
70 | return(tmp)
71 | }
72 | cat('Start running SCINA.',file=log_file,append=F)
73 | cat('\n',file=log_file,append=T)
74 | #Create a status file for the webserver
75 | status_file=paste(log_file,'status',sep='.')
76 | all_sig=unique(unlist(signatures))
77 | # Create low-expression signatures.
78 | invert_sigs=grep('^low_',all_sig,value=T)
79 | if(!identical(invert_sigs, character(0))){
80 | cat('Converting expression matrix for low_genes.',file=log_file,append=T)
81 | cat('\n',file=log_file,append=T)
82 | invert_sigs_2add=unlist(lapply(invert_sigs,function(x) strsplit(x,'_')[[1]][2]))
83 | invert_sigs=invert_sigs[invert_sigs_2add%in%row.names(exp)]
84 | invert_sigs_2add=invert_sigs_2add[invert_sigs_2add%in%row.names(exp)]
85 | sub_exp=-exp[invert_sigs_2add,,drop=F]
86 | row.names(sub_exp)=invert_sigs
87 | exp=rbind(exp,sub_exp)
88 | rm(sub_exp,all_sig,invert_sigs,invert_sigs_2add)
89 | }
90 | # Check input parameters.
91 | quality=check.inputs(exp,signatures,max_iter,convergence_n,convergence_rate,sensitivity_cutoff,rm_overlap,log_file)
92 | if(quality$qual==0){
93 | cat('EXITING due to invalid parameters.',file=log_file,append=T)
94 | cat('\n',file=log_file,append=T)
95 | cat('0',file=status_file,append=F)
96 | stop('SCINA stopped.')
97 | }
98 | signatures=quality$sig
99 | max_iter=quality$para[1]
100 | convergence_n=quality$para[2]
101 | convergence_rate=quality$para[3]
102 | sensitivity_cutoff=quality$para[4]
103 | # Initialize variables.
104 | exp=as.matrix(exp)
105 | exp=exp[unlist(signatures),,drop=F]
106 | labels=matrix(0,ncol=convergence_n, nrow=dim(exp)[2])
107 | unsatisfied=1
108 | if(allow_unknown==1){
109 | tao=rep(1/(length(signatures)+1),length(signatures))
110 | }else{tao=rep(1/(length(signatures)),length(signatures))}
111 | theta=list()
112 | for(i in 1:length(signatures)){
113 | theta[[i]]=list()
114 | theta[[i]]$mean=t(apply(exp[signatures[[i]],,drop=F],1,function(x) quantile(x,c(0.7,0.3))))
115 | tmp=apply(exp[signatures[[i]],,drop=F],1,var)
116 | theta[[i]]$sigma1=diag(tmp,ncol = length(tmp))
117 | theta[[i]]$sigma2=theta[[i]]$sigma1
118 | }
119 | theta1<- NULL
120 | for(marker_set in 1:length(theta)){
121 | if(rlang::is_empty(theta[[marker_set]]$sigma1) == TRUE){
122 | theta1 <- c(theta1,marker_set)
123 | }
124 | }
125 | if (!is.null(theta1)) {
126 | theta<- theta[-theta1]
127 | signatures<- signatures[-theta1]
128 | tao<- tao[-theta1]
129 | }
130 | sigma_min=min(sapply(theta,function(x) min(c(diag(x$sigma1),diag(x$sigma2)))))/100
131 | remove_times=0
132 | # Run SCINA algorithm.
133 | while(unsatisfied==1){
134 | prob_mat=matrix(tao,ncol=dim(exp)[2],nrow=length(tao))
135 | row.names(prob_mat)=names(signatures)
136 | iter=0
137 | labels_i=1
138 | remove_times=remove_times+1
139 | while(iter 0) {
151 | prob_mat<- prob_mat[-prob_mat1,]
152 | theta<- theta[-prob_mat1]
153 | signatures<- signatures[-prob_mat1]
154 | }
155 | prob_mat=t(t(prob_mat)/(1-sum(tao)+colSums(prob_mat)))
156 | # M step: update sample distributions.
157 | tao=rowMeans(prob_mat)
158 | for(i in 1:length(signatures)){
159 | theta[[i]]$mean[,1]=(exp[signatures[[i]],]%*%prob_mat[i,])/sum(prob_mat[i,])
160 | theta[[i]]$mean[,2]=(exp[signatures[[i]],]%*%(1-prob_mat[i,]))/sum(1-prob_mat[i,])
161 | keep=theta[[i]]$mean[,1]<=theta[[i]]$mean[,2]
162 | if(any(keep)){
163 | theta[[i]]$mean[keep,1]=rowMeans(exp[signatures[[i]][keep],,drop=F])
164 | theta[[i]]$mean[keep,2]=theta[[i]]$mean[keep,1]
165 | }
166 | tmp1=t((exp[signatures[[i]],,drop=F]-theta[[i]]$mean[,1])^2)
167 | tmp2=t((exp[signatures[[i]],,drop=F]-theta[[i]]$mean[,2])^2)
168 | diag(theta[[i]]$sigma1)=diag(theta[[i]]$sigma2)=
169 | colSums(tmp1*prob_mat[i,]+tmp2*(1-prob_mat[i,]))/dim(prob_mat)[2]
170 | diag(theta[[i]]$sigma1)[diag(theta[[i]]$sigma1)=convergence_rate){
176 | cat('Job finished successfully.',file=log_file,append=T)
177 | cat('\n',file=log_file,append=T)
178 | cat('1',file=status_file,append=F)
179 | break
180 | }
181 | labels_i=labels_i+1
182 | if(labels_i==convergence_n+1){
183 | labels_i=1
184 | }
185 | if(iter==max_iter){
186 | cat('Maximum iterations, breaking out.',file=log_file,append=T)
187 | cat('\n',file=log_file,append=T)
188 | }
189 | }
190 | #Build result matrices.
191 | colnames(prob_mat)=colnames(exp)
192 | row.names(prob_mat)=names(signatures)
193 | row.names(labels)=colnames(exp)
194 | # Attempt to remove unused signatures.
195 | dummytest=sapply(1:length(signatures),function(i) mean(theta[[i]]$mean[,1]-theta[[i]]$mean[,2]==0))
196 | if(all(dummytest<=sensitivity_cutoff)){
197 | unsatisfied=0
198 | }else{
199 | rev=which(dummytest>sensitivity_cutoff);
200 | cat(paste('Remove dummy signatures:',rev,sep=' '),file=log_file,append=T)
201 | cat('\n',file=log_file,append=T)
202 | signatures=signatures[-rev]
203 | tmp=1-sum(tao)
204 | tao=tao[-rev]
205 | tao=tao/(tmp+sum(tao))
206 | theta=theta[-rev]
207 | }
208 | }
209 | return(list(cell_labels=c("unknown",names(signatures))[1+labels[,labels_i]],probabilities=prob_mat))
210 | }
211 |
212 |
213 | # CellMatch is used to make marker file for each dataset. (https://github.com/ZJUFanLab/scCATCH)
214 | # select a specific species and tissue type for each dataset.
215 | # species ('Human' or 'Mouse'); tissue (e.g.,'Blood','Brain',etc.)
216 |
217 | CellMatch<- CellMatch[CellMatch$speciesType == species & CellMatch$tissueType %in% tissue & CellMatch$cancerType == 'Normal',]
218 | cellname<- unique(CellMatch$cellName)
219 | cell_marker<- list()
220 | for (j in 1:length(cellname)) {
221 | cell_marker[[j]]<- CellMatch[CellMatch$cellName == cellname[j],]$geneSymbol
222 | names(cell_marker)[j]<- cellname[j]
223 | }
224 |
225 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
226 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
227 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
228 |
229 | test_res<- SCINA(exp = as.matrix(ndata),signatures = cell_marker)
230 | celltype$SCINA<- test_res$cell_labels
231 |
--------------------------------------------------------------------------------
/SCINA/SCINA_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SCINA/SCINA_res_human.rds
--------------------------------------------------------------------------------
/SCINA/SCINA_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SCINA/SCINA_res_mouse.rds
--------------------------------------------------------------------------------
/SVM/SVM.py:
--------------------------------------------------------------------------------
1 | from sklearn.svm import SVC
2 | import os
3 |
4 | import argparse
5 | import pandas as pd
6 | from sklearn.decomposition import PCA
7 | from time import time
8 | from scipy.sparse import csr_matrix, vstack
9 | from pathlib import Path
10 | import numpy as np
11 |
12 |
13 | def get_map_dict(species_data_path: Path, tissue):
14 | map_df = pd.read_excel(species_data_path / 'map.xlsx')
15 | # {num: {test_cell1: {train_cell1, train_cell2}, {test_cell2:....}}, num_2:{}...}
16 | map_dic = dict()
17 | for idx, row in enumerate(map_df.itertuples()):
18 | if getattr(row, 'Tissue') == tissue:
19 | num = getattr(row, 'num')
20 | test_celltype = getattr(row, 'Celltype')
21 | train_celltype = getattr(row, '_5')
22 | if map_dic.get(getattr(row, 'num')) is None:
23 | map_dic[num] = dict()
24 | map_dic[num][test_celltype] = set()
25 | elif map_dic[num].get(test_celltype) is None:
26 | map_dic[num][test_celltype] = set()
27 | map_dic[num][test_celltype].add(train_celltype)
28 | return map_dic
29 |
30 |
31 | def get_id_2_gene(gene_statistics_path, species_data_path, tissue, train_dir: str):
32 | if not gene_statistics_path.exists():
33 | data_path = species_data_path / train_dir
34 | data_files = data_path.glob(f'*{tissue}*_data.csv')
35 | genes = None
36 | for file in data_files:
37 | data = pd.read_csv(file, dtype=np.str, header=0).values[:, 0]
38 | if genes is None:
39 | genes = set(data)
40 | else:
41 | genes = genes | set(data)
42 | id2gene = list(genes)
43 | id2gene.sort()
44 | with open(gene_statistics_path, 'w', encoding='utf-8') as f:
45 | for gene in id2gene:
46 | f.write(gene + '\r\n')
47 | else:
48 | id2gene = []
49 | with open(gene_statistics_path, 'r', encoding='utf-8') as f:
50 | for line in f:
51 | id2gene.append(line.strip())
52 | return id2gene
53 |
54 |
55 | def get_id_2_label(cell_statistics_path, species_data_path, tissue, train_dir: str):
56 | if not cell_statistics_path.exists():
57 | data_path = species_data_path / train_dir
58 | cell_files = data_path.glob(f'*{tissue}*_celltype.csv')
59 | cell_types = set()
60 | for file in cell_files:
61 | df = pd.read_csv(file, dtype=np.str, header=0)
62 | df['Cell_type'] = df['Cell_type'].map(str.strip)
63 | cell_types = set(df.values[:, 2]) | cell_types
64 | # cell_types = set(pd.read_csv(file, dtype=np.str, header=0).values[:, 2]) | cell_types
65 | id2label = list(cell_types)
66 | with open(cell_statistics_path, 'w', encoding='utf-8') as f:
67 | for cell_type in id2label:
68 | f.write(cell_type + '\r\n')
69 | else:
70 | id2label = []
71 | with open(cell_statistics_path, 'r', encoding='utf-8') as f:
72 | for line in f:
73 | id2label.append(line.strip())
74 | return id2label
75 |
76 |
77 | def load_data(params):
78 | random_seed = params.random_seed
79 | dense_dim = params.dense_dim
80 | train = params.train_dataset
81 | test = params.test_dataset
82 | tissue = params.tissue
83 |
84 | proj_path = Path(__file__).parent.resolve().parent.resolve()
85 | species_data_path = proj_path / 'data' / params.species
86 | statistics_path = species_data_path / 'statistics'
87 | map_dict = get_map_dict(species_data_path, tissue)
88 |
89 | gene_statistics_path = statistics_path / (tissue + '_genes.txt') # train+test gene
90 | cell_statistics_path = statistics_path / (tissue + '_cell_type.txt') # train labels
91 |
92 | # generate gene statistics file
93 | id2gene = get_id_2_gene(gene_statistics_path, species_data_path, tissue, params.train_dir)
94 | # generate cell label statistics file
95 | id2label = get_id_2_label(cell_statistics_path, species_data_path, tissue, params.train_dir)
96 |
97 | train_num, test_num = 0, 0
98 | # prepare unified genes
99 | gene2id = {gene: idx for idx, gene in enumerate(id2gene)}
100 | num_genes = len(id2gene)
101 | # prepare unified labels
102 | num_labels = len(id2label)
103 | label2id = {label: idx for idx, label in enumerate(id2label)}
104 | print(f"totally {num_genes} genes, {num_labels} labels.")
105 |
106 | train_labels = []
107 | test_label_dict = dict() # test label dict
108 | test_index_dict = dict() # test-num: [begin-index, end-index]
109 | test_cell_id_dict = dict() # test-num: ['c1', 'c2'...]
110 | # TODO
111 | matrices = []
112 |
113 | for num in train + test:
114 | start = time()
115 | if num in train:
116 | data_path = species_data_path / (params.train_dir + f'/{params.species}_{tissue}{num}_data.csv')
117 | type_path = species_data_path / (params.train_dir + f'/{params.species}_{tissue}{num}_celltype.csv')
118 | else:
119 | data_path = species_data_path / (params.test_dir + f'/{params.species}_{tissue}{num}_data.csv')
120 | type_path = species_data_path / (params.test_dir + f'/{params.species}_{tissue}{num}_celltype.csv')
121 |
122 | # load celltype file then update labels accordingly
123 | cell2type = pd.read_csv(type_path, index_col=0)
124 | cell2type.columns = ['cell', 'type']
125 | cell2type['type'] = cell2type['type'].map(str.strip)
126 | if num in train:
127 | cell2type['id'] = cell2type['type'].map(label2id)
128 | assert not cell2type['id'].isnull().any(), 'something wrong in celltype file.'
129 | train_labels += cell2type['id'].tolist()
130 | else:
131 | # test_labels += cell2type['type'].tolist()
132 | test_label_dict[num] = cell2type['type'].tolist()
133 |
134 | # load data file then update graph
135 | df = pd.read_csv(data_path, index_col=0) # (gene, cell)
136 | if num in test:
137 | test_cell_id_dict[num] = list(df.columns)
138 | df = df.transpose(copy=True) # (cell, gene)
139 |
140 | assert cell2type['cell'].tolist() == df.index.tolist()
141 | df = df.rename(columns=gene2id)
142 | # filter out useless columns if exists (when using gene intersection)
143 | col = [c for c in df.columns if c in gene2id.values()]
144 | df = df[col]
145 | print(f'Nonzero Ratio: {df.fillna(0).astype(bool).sum().sum() / df.size * 100:.2f}%')
146 | # maintain inter-datasets index for graph and RNA-seq values
147 | arr = df.to_numpy()
148 | row_idx, col_idx = np.nonzero(arr > params.threshold) # intra-dataset index
149 | non_zeros = arr[(row_idx, col_idx)] # non-zero values
150 |
151 | gene_idx = df.columns[col_idx].astype(int).tolist() # gene_index
152 | info_shape = (len(df), num_genes)
153 | info = csr_matrix((non_zeros, (row_idx, gene_idx)), shape=info_shape)
154 | matrices.append(info)
155 |
156 | if num in train:
157 | train_num += len(df)
158 | else:
159 | test_index_dict[num] = list(range(train_num + test_num, train_num + test_num + len(df)))
160 | test_num += len(df)
161 | print(f'Costs {time() - start:.3f} s in total.')
162 | train_labels = np.array(list(map(int, train_labels)))
163 |
164 | # 2. create features
165 | sparse_feat = vstack(matrices).toarray() # cell-wise (cell, gene)
166 | test_feat_dict = dict()
167 | # transpose to gene-wise
168 | gene_pca = PCA(dense_dim, random_state=random_seed).fit(sparse_feat[:train_num].T)
169 | gene_feat = gene_pca.transform(sparse_feat[:train_num].T)
170 | gene_evr = sum(gene_pca.explained_variance_ratio_) * 100
171 | print(f'[PCA] Gene EVR: {gene_evr:.2f} %.')
172 |
173 | # do normalization
174 | sparse_feat = sparse_feat / (np.sum(sparse_feat, axis=1, keepdims=True) + 1e-6)
175 | # use weighted gene_feat as cell_feat
176 | cell_feat = sparse_feat.dot(gene_feat) # [total_cell_num, d]
177 | train_cell_feat = cell_feat[:train_num]
178 |
179 | for num in test_label_dict.keys():
180 | test_feat_dict[num] = cell_feat[test_index_dict[num]]
181 |
182 | return num_labels, train_labels, train_cell_feat, map_dict, np.array(id2label, dtype=np.str), \
183 | test_label_dict, test_feat_dict, test_cell_id_dict
184 |
185 |
186 | class Runner:
187 | def __init__(self, args):
188 | self.args = args
189 | self.prj_path = Path(__file__).parent.resolve().parent.resolve()
190 | self.num_labels, self.train_labels, self.train_cell_feat, self.map_dict, self.id2label, \
191 | self.test_label_dict, self.test_feat_dict, self.test_cell_id_dict = load_data(args)
192 | self.model = self.fit()
193 |
194 | def fit(self):
195 | model = SVC(random_state=self.args.random_seed, probability=True). \
196 | fit(self.train_cell_feat, self.train_labels)
197 | return model
198 |
199 | def evaluate(self):
200 | for num in self.args.test_dataset:
201 | score = self.model.predict_proba(self.test_feat_dict[num]) # [cell, class-num]
202 | pred_labels = []
203 | unsure_num, correct = 0, 0
204 | for pred, t_label in zip(score, self.test_label_dict[num]):
205 | pred_label = self.id2label[pred.argmax().item()]
206 | if pred_label in self.map_dict[num][t_label]:
207 | correct += 1
208 | pred_labels.append(pred_label)
209 |
210 | acc = correct / score.shape[0]
211 | print(f'SVM-{self.args.species}-{self.args.tissue}-{num}-ACC: {acc:.5f}')
212 | self.save(num, pred_labels)
213 |
214 | def save(self, num, pred):
215 | label_map = pd.read_excel(self.prj_path / 'data' / 'celltype2subtype.xlsx',
216 | sheet_name=self.args.species, header=0,
217 | names=['species', 'old_type', 'new_type', 'new_subtype'])
218 |
219 | save_path = self.prj_path / self.args.save_dir
220 | if not save_path.exists():
221 | save_path.mkdir()
222 |
223 | label_map = label_map.fillna('N/A', inplace=False)
224 | oldtype2newtype = {}
225 | oldtype2newsubtype = {}
226 | for _, old_type, new_type, new_subtype in label_map.itertuples(index=False):
227 | oldtype2newtype[old_type] = new_type
228 | oldtype2newsubtype[old_type] = new_subtype
229 | if not os.path.exists(self.args.save_dir):
230 | os.mkdir(self.args.save_dir)
231 |
232 | df = pd.DataFrame({
233 | 'index': self.test_cell_id_dict[num],
234 | 'original label': self.test_label_dict[num],
235 | 'cell type': [oldtype2newtype.get(p, p) for p in pred],
236 | 'cell subtype': [oldtype2newsubtype.get(p, p) for p in pred]
237 | })
238 | df.to_csv(
239 | save_path / ('SVM_' + self.args.species + f"_{self.args.tissue}_{num}.csv"),
240 | index=False)
241 | print(f"output has been stored in {self.args.species}_{self.args.tissue}_{num}.csv")
242 |
243 |
244 | def arg_parse():
245 | parser = argparse.ArgumentParser()
246 | parser.add_argument("--random_seed", type=int, default=10086)
247 | parser.add_argument("--train_dataset", nargs="+", required=True, type=int,
248 | help="list of dataset id")
249 | parser.add_argument("--test_dataset", nargs="+", required=True, type=int,
250 | help="list of dataset id")
251 | parser.add_argument("--species", default='mouse', type=str)
252 | parser.add_argument("--tissue", required=True, type=str)
253 | parser.add_argument("--train_dir", type=str, default='train')
254 | parser.add_argument("--test_dir", type=str, default='test')
255 |
256 | params = parser.parse_args()
257 | params.save_dir = 'result'
258 | params.dense_dim = 400
259 | params.threshold = 0
260 | return params
261 |
262 |
263 | if __name__ == '__main__':
264 | params = arg_parse()
265 |
266 | runner = Runner(params)
267 | runner.evaluate()
268 |
--------------------------------------------------------------------------------
/SVM/SVM_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SVM/SVM_res_human.rds
--------------------------------------------------------------------------------
/SVM/SVM_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SVM/SVM_res_mouse.rds
--------------------------------------------------------------------------------
/SingleR/SingleR.R:
--------------------------------------------------------------------------------
1 | library(SingleR)
2 |
3 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
4 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
5 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
6 |
7 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
8 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
9 |
10 | pre_res<- SingleR(test = as.matrix(ndata),ref = as.matrix(ref_ndata),labels = ref_celltype$celltype,method = 'single')
11 | celltype$SingleR<- pre_res$labels
--------------------------------------------------------------------------------
/SingleR/SingleR_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SingleR/SingleR_res_human.rds
--------------------------------------------------------------------------------
/SingleR/SingleR_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/SingleR/SingleR_res_mouse.rds
--------------------------------------------------------------------------------
/scDeepSort/scDeepSort_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scDeepSort/scDeepSort_res_human.rds
--------------------------------------------------------------------------------
/scDeepSort/scDeepSort_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scDeepSort/scDeepSort_res_mouse.rds
--------------------------------------------------------------------------------
/scID/scID.R:
--------------------------------------------------------------------------------
1 | library(scID)
2 |
3 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
4 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
5 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
6 |
7 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
8 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
9 |
10 | ref_cluster<- unique(ref_celltype$celltype)
11 | ref_cluster<- data.frame(cluster = 1:length(ref_cluster),celltype = ref_cluster,stringsAsFactors = F)
12 | ref_celltype$cluster<- 'NO'
13 | for (i in 1:nrow(ref_cluster)) {
14 | ref_celltype[ref_celltype$celltype == ref_cluster$celltype[i],]$cluster<- ref_cluster$cluster[i]
15 | }
16 |
17 | ref_Seurat<- CreateSeuratObject(counts = ref_ndata)
18 | Idents(ref_Seurat) <- ref_celltype$cluster
19 | ref_markers<- FindAllMarkers(object = ref_Seurat,test.use = 'MAST',only.pos = F,logfc.threshold = 0.5)
20 | # train and predict
21 | scID_output <- scid_multiclass(target_gem = as.matrix(ndata),
22 | reference_gem = as.matrix(ref_ndata),
23 | reference_clusters = Idents(ref_Seurat),
24 | markers = ref_markers)
25 |
26 | celltype$scID<- scID_output$labels
27 |
28 |
29 |
--------------------------------------------------------------------------------
/scID/scID_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scID/scID_res_human.rds
--------------------------------------------------------------------------------
/scID/scID_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scID/scID_res_mouse.rds
--------------------------------------------------------------------------------
/scMap/scMap.R:
--------------------------------------------------------------------------------
1 | library(SingleCellExperiment)
2 | library(scmap)
3 |
4 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
5 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
6 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
7 |
8 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
9 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
10 |
11 | # Create ref_ndata sce object
12 | ref_celltype<- data.frame(cell_type1 = ref_celltype$celltype,stringsAsFactors = F)
13 | rownames(ref_celltype)<- colnames(ref_ndata)
14 | ref_ndata_sce<- SingleCellExperiment(assays = list(normcounts = as.matrix(ref_ndata)),colData = ref_celltype)
15 | logcounts(ref_ndata_sce) <- normcounts(ref_ndata_sce)
16 | rowData(ref_ndata_sce)$feature_symbol <- rownames(ref_ndata_sce)
17 | isSpike(ref_ndata_sce, "ERCC") <- grepl("^ERCC-", rownames(ref_ndata_sce))
18 | ref_ndata_sce <- ref_ndata_sce[!duplicated(rownames(ref_ndata_sce)), ]
19 | ref_ndata_sce <- selectFeatures(ref_ndata_sce, suppress_plot = F)
20 |
21 | # Create test data sce object
22 | test_ndata_sce<- SingleCellExperiment(assays = list(normcounts = as.matrix(ndata)))
23 | logcounts(test_ndata_sce) <- normcounts(test_ndata_sce)
24 | rowData(test_ndata_sce)$feature_symbol <- rownames(test_ndata_sce)
25 | isSpike(test_ndata_sce, "ERCC") <- grepl("^ERCC-", rownames(test_ndata_sce))
26 | test_ndata_sce <- test_ndata_sce[!duplicated(rownames(test_ndata_sce)), ]
27 | test_ndata_sce <- selectFeatures(test_ndata_sce, suppress_plot = FALSE)
28 |
29 | # Annotating cell-based
30 | ref_ndata_sce <- indexCell(ref_ndata_sce)
31 | scmapCell_results <- scmapCell(
32 | test_ndata_sce,
33 | list(
34 | scmap = metadata(ref_ndata_sce)$scmap_cell_index
35 | )
36 | )
37 | scmapCell_clusters <- scmapCell2Cluster(
38 | scmapCell_results,
39 | list(
40 | as.character(colData(ref_ndata_sce)$cell_type1)
41 | )
42 | )
43 | celltype$scmap_cell<- scmapCell_clusters$scmap_cluster_labs
44 |
45 |
46 | # Annotating cluster-based
47 | ref_ndata_sce <- indexCluster(ref_ndata_sce)
48 | scmapCluster_results <- scmapCluster(
49 | test_ndata_sce,
50 | list(
51 | scmap = metadata(ref_ndata_sce)$scmap_cluster_index
52 | )
53 | )
54 | celltype$scmap_cluster<- scmapCluster_results$scmap_cluster_labs
55 |
--------------------------------------------------------------------------------
/scMap/scmap_cell_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scMap/scmap_cell_res_human.rds
--------------------------------------------------------------------------------
/scMap/scmap_cell_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scMap/scmap_cell_res_mouse.rds
--------------------------------------------------------------------------------
/scMap/scmap_cluster_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scMap/scmap_cluster_res_human.rds
--------------------------------------------------------------------------------
/scMap/scmap_cluster_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scMap/scmap_cluster_res_mouse.rds
--------------------------------------------------------------------------------
/scPred/scPred.R:
--------------------------------------------------------------------------------
1 | library(scPred)
2 | library(methods)
3 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
4 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
5 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
6 |
7 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
8 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
9 |
10 | getFeatureSpace_debug <- function(object, pVar, varLim = 0.01, correction = "fdr", sig = 0.05){
11 |
12 |
13 | # Validations -------------------------------------------------------------
14 |
15 | if(!is(object, "scPred") & !is(object, "Seurat")){
16 | stop("Invalid class for object: must be 'scPred' or 'Seurat'")
17 | }
18 |
19 | if(!any(correction %in% stats::p.adjust.methods)){
20 | stop("Invalid multiple testing correction method. See ?p.adjust function")
21 | }
22 |
23 | if(is(object, "scPred")){
24 | classes <- metadata(object)[[pVar]]
25 | }else{
26 | classes <- object[[pVar, drop = TRUE]]
27 | }
28 |
29 | if(is.null(classes)){
30 | stop("Prediction variable is not stored in metadata slot")
31 | }
32 |
33 | if(!is.factor(classes)){
34 | message("Transforming prediction variable to factor object...")
35 | classes <- as.factor(classes)
36 | }
37 |
38 | # Filter principal components by variance ---------------------------------
39 |
40 | if(is(object, "scPred")){ # scPred object
41 |
42 | # Get PCA
43 | i <- object@expVar > varLim
44 | pca <- getPCA(object)[,i]
45 |
46 | # Get variance explained
47 | expVar <- object@expVar
48 |
49 | }else{ # seurat object
50 |
51 | # Check if a PCA has been computed
52 | if(!("pca" %in% names(object@reductions))){
53 | stop("No PCA has been computet yet. See RunPCA() function")
54 | }
55 |
56 | # Check if available was normalized
57 |
58 | assay <- DefaultAssay(object)
59 | cellEmbeddings <- Embeddings(object)
60 |
61 |
62 | # Subset PCA
63 | expVar <- Stdev(object)**2/sum(Stdev(object)**2)
64 | names(expVar) <- colnames(Embeddings(object))
65 | i <- expVar > varLim
66 |
67 | # Create scPred object
68 | pca <- Embeddings(object)[,i]
69 |
70 | }
71 |
72 | uniqueClasses <- unique(classes)
73 | isValidName <- uniqueClasses == make.names(uniqueClasses)
74 |
75 | if(!all(isValidName)){
76 |
77 | invalidClasses <- paste0(uniqueClasses[!isValidName], collapse = "\n")
78 | message("Not all the classes are valid R variable names\n")
79 | message("The following classes are renamed: \n", invalidClasses)
80 | classes <- make.names(classes)
81 | classes <- factor(classes, levels = unique(classes))
82 | newPvar <- paste0(pVar, ".valid")
83 | if(is(object, "scPred")){
84 | object@metadata[[newPvar]] <- classes
85 | }else{
86 | object@meta.data[[newPvar]] <- classes
87 | }
88 | message("\nSee new classes in '", pVar, ".valid' column in metadata:")
89 | message(paste0(levels(classes)[!isValidName], collapse = "\n"), "\n")
90 | pVar <- newPvar
91 | }
92 |
93 |
94 |
95 |
96 | # Select informative principal components
97 | # If only 2 classes are present in prediction variable, train one model for the positive class
98 | # The positive class will be the first level of the factor variable
99 |
100 | if(length(levels(classes)) == 2){
101 |
102 | message("First factor level in '", pVar, "' metadata column considered as positive class")
103 | res <- .getFeatures(levels(classes)[1], expVar, classes, pca, correction, sig)
104 | res <- list(res)
105 | names(res) <- levels(classes)[1]
106 |
107 | }else{
108 |
109 | res <- pblapply(levels(classes), .getFeatures, expVar, classes, pca, correction, sig)
110 | names(res) <- levels(classes)
111 |
112 | }
113 |
114 |
115 | nFeatures <- unlist(lapply(res, nrow))
116 |
117 | noFeatures <- nFeatures == 0
118 |
119 | if(any(noFeatures)){
120 |
121 | warning("\nWarning: No features were found for classes:\n",
122 | paste0(names(res)[noFeatures], collapse = "\n"), "\n")
123 |
124 | res1<- list()
125 | for (j in 1:length(res)) {
126 | d1<- res[[j]]
127 | if (nrow(d1) > 0) {
128 | res1[names(res)[j]]<- res[j]
129 | }
130 | }
131 | res<- res1
132 | }
133 |
134 | message("\nDONE!")
135 |
136 |
137 | # Assign feature space to `features` slot
138 | if(inherits(object, "Seurat")){
139 |
140 | # Create scPred object
141 | scPredObject <- list(expVar = expVar,
142 | features = res,
143 | pVar = pVar,
144 | pseudo = FALSE)
145 |
146 | object@misc <- list(scPred = scPredObject)
147 |
148 | }else{
149 |
150 |
151 | object@features <- res
152 | object@pVar <- pVar
153 | }
154 |
155 | object
156 |
157 | }
158 |
159 | scPredict_debug <- function(object, newData = NULL, threshold = 0.9,
160 | returnProj = TRUE, returnData = FALSE, informative = TRUE,
161 | useProj = FALSE){
162 |
163 | # Function validations ----------------------------------------------------
164 |
165 | # Validate if provided object is an scPred object
166 | if(!is(object, "scPred")){
167 | stop("'object' must be of class 'scPred'")
168 | }
169 |
170 | # Validate if scPred models have been trained already
171 | if(!length(object@train)){
172 | stop("No models have been trained!")
173 | }
174 |
175 | # Predictions are only possible if new data is provided. The new data can be a gene expression
176 | # matrix or a loading projection that has been computed independently.
177 | # Validate if new data is provided. If only a projection is found in the @projection slot,
178 | # this one is used as the prediction/test data
179 | if(is.null(newData) & (nrow(object@projection) == 0)){ # Neither newData nor projection
180 |
181 | stop("No newData or pre-computed projection")
182 |
183 | }else if(is.null(newData) & nrow(object@projection)){ # No newData and projection
184 |
185 | message("Using projection stored in object as prediction set")
186 | useProj <- TRUE
187 |
188 | }else if(!is.null(newData) & nrow(object@projection)){ # NewData and projection
189 |
190 | if (!(is(newData, "matrix") | is(newData, "Matrix"))){
191 | stop("'newData' object must be a matrix or seurat object")
192 | }
193 | message("newData provided and projection stored in scPred object. Set 'useProj = TRUE' to override default projection execution")
194 | }
195 |
196 | # Evaluate if there are identified features stored in the scPred object
197 | if(!length(object@features)){
198 | stop("No informative principal components have been obtained yet.\nSee getInformativePCs() function")
199 | }
200 |
201 | # Convert newData to sparse Matrix object
202 | if(is(newData, "matrix")){
203 | newData <- Matrix(newData)
204 | }
205 |
206 | # Data projection ---------------------------------------------------------
207 |
208 | # By default, projection of training loadings is automatically done. This option can be override
209 | # with the `useProj` argument to use an independent projection stored directly in the object.
210 | if(!useProj){
211 | projection <- projectNewData(object = object,
212 | newData = newData,
213 | informative = informative,
214 | seurat = if(!is.null(object@svd$seurat)){TRUE}else{FALSE})
215 | }else{
216 | projection <- object@projection
217 | }
218 | # Get cell classes used for training
219 | classes <- names(object@features)
220 | # Cell class prediction ---------------------------------------------------
221 | # For all cell classes which a training models has been trained for, get
222 | # the prediction probability for each cell in the `projection` object
223 | message("Predicting cell types")
224 | res <- pbapply::pblapply(classes, .predictClass, object, projection)
225 | names(res) <- levels(classes)
226 | # Exclude NA cekk type
227 | res_nrow <- NULL
228 | for (i in 1:length(res)) {
229 | res_nrow1 <- nrow(res[[i]])
230 | res_nrow <- c(res_nrow,res_nrow1)
231 | if (res_nrow1 != nrow(projection)) {
232 | d1 <- data.frame(res_nrow1 = rep(0,nrow(projection)))
233 | colnames(d1)<- colnames(res[[i]])
234 | res[[i]]<- d1
235 | }
236 | }
237 | res_nrow1<- which(res_nrow != nrow(projection))
238 | # Gather results in a dataframe
239 | res <- as.data.frame(res)
240 | if (length(res_nrow1) > 0) {
241 | res <- res[,-res_nrow1]
242 | }
243 | row.names(res) <- rownames(projection)
244 | if(length(classes) == 1){
245 | # If only one model was trained (positive and negative classes present in prediction
246 | # variable only), get the probability for the negative class using the complement rule
247 | # P(negative_class) = 1 - positive_class
248 | allClasses <- unique(object@metadata[[object@pVar]])
249 | positiveClass <- classes
250 | negativeClass <- as.character(allClasses[!allClasses %in% classes])
251 | res[[negativeClass]] <- 1 - res[[positiveClass]]
252 | # Assign cells according to their associated probabilities
253 | res$predClass <- ifelse(res[,1] > threshold, positiveClass,
254 | ifelse(res[,2] > threshold, negativeClass, "unassigned")) %>%
255 | as.factor()
256 | # Save results to `@predictions` slot
257 | object@predictions <- res
258 | }else{
259 | # If more than one model was trained (there are 3 classes or more in the prediction variable),
260 | # obtain the maximum probability for each cell and assign the respective class to that cell.
261 | i <- apply(res, 1, which.max)
262 | prob <- c()
263 | for(j in seq_len(nrow(res))){
264 | prob[j] <- res[j,i[j]]
265 | }
266 | predictions <- data.frame(res, probability = prob, prePrediction = names(res)[i])
267 | rownames(predictions) <- rownames(projection)
268 | predictions %>%
269 | tibble::rownames_to_column("id") %>%
270 | dplyr::mutate(predClass = ifelse(probability > threshold, as.character(prePrediction), "unassigned")) %>%
271 | dplyr::select(-probability, -prePrediction) %>%
272 | tibble::column_to_rownames("id") -> finalPrediction
273 |
274 | # Save results to `@predictions` slot
275 | object@predictions <- finalPrediction
276 | }
277 | if(returnProj & !useProj){
278 | object@projection <- projection
279 | }
280 | if(returnData & !is.null(newData)){
281 | if(object@pseudo){
282 | object@predData <- log2(newData + 1)
283 | }else{
284 | object@predData <- newData
285 | }
286 | }
287 | return(object)
288 | }
289 |
290 |
291 |
292 | # Eigendecomposition
293 | scp <- eigenDecompose(as.matrix(ref_ndata),pseudo = F)
294 | metadata(scp) <- ref_celltype
295 | # Feature selection
296 | scp <- getFeatureSpace_debug(scp, pVar = "celltype")
297 | # Model training
298 | scp <- trainModel(scp)
299 | # Prediction step
300 | scp <- scPredict_debug(scp, newData = as.matrix(ndata))
301 |
302 | scp_pred<- getPredictions(scp)
303 | celltype$scPred<- scp_pred$predClass
304 |
305 |
--------------------------------------------------------------------------------
/scPred/scPred_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scPred/scPred_res_human.rds
--------------------------------------------------------------------------------
/scPred/scPred_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/scPred/scPred_res_mouse.rds
--------------------------------------------------------------------------------
/singleCellNet/singleCellNet.R:
--------------------------------------------------------------------------------
1 | library(singleCellNet)
2 | # Single-cell transcriptomics and cell type information are both curated from literature and pre-processed generating ndata and the corresponding celltype objects.
3 | # ndata represents the normolized dgCMatrix object using Seurat. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
4 | # celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
5 |
6 | # ref_ndata represents the normolized dgCMatrix object using Seurat from HCL or MCA. Each row represents a gene (gene symbol) and each column represents a cell (cell barcode).
7 | # ref_celltype represents the data.frame object containg two columns, namely cell barcode and cell type.
8 |
9 |
10 | colnames(ref_celltype)<- c('cell','ann')
11 | colnames(celltype)<- c('cell','ann')
12 | ref_ndata<- ref_ndata[rownames(ref_ndata) %in% rownames(ndata),]
13 | #train
14 | class_info<- scn_train(stTrain = ref_celltype,
15 | expTrain = ref_ndata,
16 | dLevel = "ann",
17 | colName_samp = "cell")
18 | # Predict
19 | crParkall<- scn_predict(class_info[['cnProc']], ndata, nrand = 2)
20 |
21 | stPark <- get_cate(classRes = crParkall,
22 | sampTab = celltype, dLevel = "ann", sid = "cell",
23 | nrand = 50)
--------------------------------------------------------------------------------
/singleCellNet/singleCellNet_res_human.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/singleCellNet/singleCellNet_res_human.rds
--------------------------------------------------------------------------------
/singleCellNet/singleCellNet_res_mouse.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZJUFanLab/scDeepSort_performance_comparison/10fbedf71efe10453f578f5174fab645faeb47e5/singleCellNet/singleCellNet_res_mouse.rds
--------------------------------------------------------------------------------