├── LICENSE
└── README.md
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 Zhiyong Wang
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 联邦学习 Federated Learning
2 |
3 | [](https://opensource.org/licenses/MIT)
4 | [](https://github.com/996icu/996.ICU/blob/master/LICENSE) [](https://996.icu)
5 |
6 |
7 | Everything about federated learning. *Your contribution is highly valued!*
8 |
9 | 关于联邦学习的资料,包括:介绍、综述文章、最新文章、代表工作及其代码、数据集、论文等等。 *欢迎一起贡献!*
10 |
11 | ---
12 |
13 | - 目录
14 | - [1. 教程 Tutorial](#1-教程-Tutorial)
15 | - [2. 相关论文 Related Papers](#2-相关论文-Related-Papers)
16 | - [3. 项目 Project](#3-项目-Project)
17 | - [4. 相关学者 Related Scholars](#4-相关学者-Related-Scholars)
18 |
19 | ---
20 |
21 | ## 1. 教程 Tutorial
22 |
23 | - 文字
24 | - [杨强:联邦学习](https://mp.weixin.qq.com/s/5FTrG5SZey2yeIbuyT3HoQ)
25 | - [Google - Federated Learning: Collaborative Machine Learning without Centralized Training Data](https://ai.googleblog.com/2017/04/federated-learning-collaborative.html)
26 | - [联邦学习的研究及应用](https://mp.weixin.qq.com/s?src=11×tamp=1555896266&ver=1561&signature=ZtLlc7qakNAdw8hV3dxaB30PxtK9hAshYsIxccFf-D4eJrUw6YKQcqD0lD3SDMEn4egQTafUZr429er7SueP6HKLTr*uFKfr6JuHc3OvfdJ-uExiEJStHFynC65htbLp&new=1)
27 | - [杨强:GDPR对AI的挑战和基于联邦迁移学习的对策](https://zhuanlan.zhihu.com/p/42646278)
28 |
29 | - PPT
30 | - [联邦学习的研究与应用](https://aisp-1251170195.file.myqcloud.com/fedweb/1553845987342.pdf)
31 | - [Federated Learning and Transfer Learning for Privacy, Security and Confidentiality](https://aisp-1251170195.file.myqcloud.com/fedweb/1552916850679.pdf) (AAAI-19)
32 | - [GDPR, Data Shortage and AI](https://aisp-1251170195.file.myqcloud.com/fedweb/1552916659436.pdf) (AAAI-19)
33 |
34 | - 视频
35 | - [GDPR, Data Shortage and AI](https://aaai.org/Conferences/AAAI-19/invited-speakers/#yang) (AAAI-19 Invited Talk)
36 |
37 | - 新闻
38 | - 2019/02/09 [谷歌发布全球首个产品级移动端分布式机器学习系统,数千万手机同步训练](https://www.jiemian.com/article/2853096.html)
39 |
40 | ---
41 |
42 | ## 2. 相关论文 Related Papers
43 |
44 | - 综述与介绍 Survey And Introduction
45 | - arXiv 201912 - [Advances and Open Problems in Federated Learning](https://arxiv.org/abs/1912.04977) 58位学者联名综述
46 | - TIST 201902 - [Federated Machine Learning: Concept and Applications](https://dl.acm.org/citation.cfm?id=3298981)
47 | - arXiv 201909 - [Federated Learning in Mobile Edge Networks: A Comprehensive Survey](https://arxiv.org/abs/1909.11875)
48 | - 应用 Application
49 | - 2019 - [Federated Learning for Mobile Keyboard Prediction](https://arxiv.org/abs/1811.03604) - Google将联邦学习用于自家输入法
50 | - 2019 - [Towards Federated Learning at Scale: System Design](https://arxiv.org/abs/1902.01046) - Google千万设备级联邦学习系统设计
51 | - 联邦学习的提出
52 | - 2015 - [Federated Optimization:Distributed Optimization Beyond the Datacenter](https://arxiv.org/abs/1511.03575)
53 | - 2016 - [Practical Secure Aggregation for Federated Learning on User-Held Data](https://arxiv.org/abs/1611.04482)
54 | - 2016 - [Federated Optimization: Distributed Machine Learning for On-Device Intelligence](https://arxiv.org/abs/1610.02527)
55 | - 2017 - [Federated Learning: Strategies for Improving Communication Efficiency](https://arxiv.org/abs/1610.05492)
56 | - 2017 - [Communication-Efficient Learning of Deep Networks from Decentralized Data](https://arxiv.org/abs/1602.05629) 联邦平均算法 the FederatedAveraging algorithm
57 | - 联邦学习安全性
58 | - NIPS 2016 - [Practical Secure Aggregation for Federated Learning on User-Held Data](https://arxiv.org/abs/1611.04482) 增强联邦学习的隐私保护能力
59 | - 2017 - [Differentially Private Federated Learning: A Client Level Perspective](https://arxiv.org/abs/1712.07557) 使用差分隐私避免泄露用户的贡献度
60 | - 2018 - [How to Backdoor Federated Leraning](https://arxiv.org/abs/1807.00459) Model Poisoning攻击
61 | - 2019 - [Can You Really Backdoor Federated Learning](https://arxiv.org/abs/1911.07963) 如何避免联邦学习被后门攻击
62 | - ICML 2019 - [Analyzing Federated Learning through an Adversarial Lens](https://arxiv.org/abs/1811.12470) Model Poisoning攻击
63 | - ICLR 2020 - [DBA: Distributed Backdoor Attacks against Federated Learning](https://openreview.net/forum?id=rkgyS0VFvr) Model Poisoning攻击,在两个最新鲁棒FL框架上验证
64 | - AAAI 2020 - [Robust Federated Training via Collaborative Machine Teaching using Trusted Instances](https://arxiv.org/abs/1905.02941) 鲁棒FL方法,诊断训练集中的Bugs和调整label.
65 | - 联邦学习扩展(FL+)
66 | - NIPS 2017 - [Federated Multi-Task Learning](http://papers.nips.cc/paper/7029-federated-multi-task-learning) 联邦多任务学习
67 | - arXiv 201901 - [Federated Reinforcement Learning](https://arxiv.org/abs/1901.08277) 联邦学习 + 强化学习 (Federated Learning + Reinforcement Learning)
68 | - arXiv 201901 - [SecureBoost: A Lossless Federated Learning Framework](https://arxiv.org/abs/1901.08755) 纵向联邦学习 (Vertical Federated Learning) 使用分布式决策树
69 | - arXiv 201810 - [Secure Federated Transfer Learning](https://arxiv.org/abs/1812.03337) 联邦迁移学习
70 | - ICML 2019 - [Bayesian Nonparametric Federated Learning of Neural Networks](https://arxiv.org/abs/1905.12022) 贝叶斯联邦学习
71 | - ICLR 2020 - [Federated Adversarial Domain Adaptation](https://arxiv.org/abs/1911.02054) 联邦对抗域适应
72 | - ICLR 2021 - [TOWARDS CAUSAL FEDERATED LEARNING FOR ENHANCED ROBUSTNESS AND PRIVACY] (https://arxiv.org/pdf/2104.06557.pdf) (Federated Learning + Causal Learning)
73 | - CyberC 2019 - [Record and Reward Federated Learning Contributions with Blockchain](https://mblocklab.com/RecordandReward.pdf) (Federated Learning + Blockchain)
74 |
75 | - 高效联邦学习
76 | - 2018 - [Expanding the Reach of Federated Leraning by Reducing Client Resource Requirements](https://arxiv.org/abs/1812.07210) 提出两个策略来提高通信效率
77 | - 2019 - [Robust and Communication-Efficient Federated Learning from Non-IID Data](https://arxiv.org/abs/1903.02891) 提出压缩框架STC,可以减少训练时间和通信代价
78 |
79 | ---
80 |
81 | ## 3. 项目 Project
82 |
83 | - [FATE - 微众银行](https://github.com/WeBankFinTech/FATE)
84 | - [TensorFlow Federated](https://github.com/tensorflow/federated)
85 | - [Federated-Learning](https://github.com/roxanneluo/Federated-Learning) : An implement of google's paper.
86 |
87 | ---
88 |
89 | ## 4. 相关学者 Related Scholars
90 |
91 | - [杨强 Yang Qiang](https://scholar.google.com/citations?hl=en&user=1LxWZLQAAAAJ)
92 | - [H. Brendan McMahan](https://scholar.google.com/citations?user=iKPWydkAAAAJ&hl=en)
93 | - [jakub konečný](https://scholar.google.com/citations?user=4vq7eXQAAAAJ&hl=en)
94 |
95 | ---
96 |
97 | ## Contributors
98 |
99 | Thanks goes to these wonderful people:
100 |
101 |
102 |
103 | | [
王智勇(Wang Zhiyong)](https://github.com/ZeroWangZY)
| [
刘一璟(Liu Yijing)](https://github.com/zyplanet)
|
104 | | :---: | :---: |
105 |
106 | ## 欢迎参与贡献
107 |
--------------------------------------------------------------------------------