├── LICENSE
├── README.md
├── __init__.py
├── evaluate.py
├── log
└── __init__.py
├── models.py
├── quantization
├── __init__.py
├── lsqplus_quantize_V1.py
├── lsqplus_quantize_V2.py
├── lsqquantize_V1.py
└── lsqquantize_V2.py
├── seebnparam.py
└── trains.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # LSQ and LSQ+
2 | LSQ+ net or LSQplus net and LSQ net
3 |
4 | ## commit log
5 | `
6 | 2023-01-08
7 | `
8 | Dorefa and Pact, [https://github.com/ZouJiu1/Dorefa_Pact](https://github.com/ZouJiu1/Dorefa_Pact)
9 | --------------------------------------------------------------------------------------------------------------
10 | add torch.nn.Parameter .data, retrain models 18-01-2022
11 |
12 | I'm not the author, I just complish an unofficial implementation of LSQ+ or LSQplus and LSQ,the origin paper you can find LSQ+ here [arxiv.org/abs/2004.09576](https://arxiv.org/abs/2004.09576) and LSQ here [arxiv.org/abs/1902.08153](https://arxiv.org/abs/1902.08153).
13 |
14 | pytorch==1.8.1
15 |
16 | You should train 32-bit float model firstly, then you can finetune a low bit-width quantization QAT model by loading the trained 32-bit float model
17 |
18 | Dataset used for training is CIFAR10 and model used is Resnet18 revised
19 |
20 | ## Version introduction
21 | lsqplus_quantize_V1.py: initialize s、beta of activation quantization according to LSQ+ [LSQ+: Improving low-bit quantization through learnable offsets and better initialization](https://arxiv.org/abs/2004.09576)
22 | lsqplus_quantize_V2.py: initialize s、beta of activation quantization according to min max values
23 | lsqquantize_V1.py:initialize s of activation quantization according to LSQ [Learned Step Size Quantization](https://arxiv.org/abs/1902.08153)
24 | lsqquantize_V2.py: initialize s of activation quantization = 1
25 | lsqplus_quantize_V2.py has the best result when use cifar10 dataset
26 |
27 | ## The Train Results
28 | ### For the below table all set a_bit=8, w_bit=8
29 | | version | weight per_channel | learning rate | A s initial | A beta initial | best epoch | Accuracy | models
30 | | ------ | --------- | ------ | ------ | ------ | ------ | ------ | ------ |
31 | | Float 32bit | - | <=66 0.1
<=86 0.01
<=99 0.001
<=112 0.0001 | - | - | 112 | 92.6 | [https://www.aliyundrive.com/s/6B2AZ45fFjx](https://www.aliyundrive.com/s/6B2AZ45fFjx) |
32 | | lsqplus_quantize_V1 | × | <=31 0.1
<=61 0.01
<=81 0.001
<112 0.0001 | 1 | -1e-9 | 90 | 90.3 | [https://www.aliyundrive.com/s/FNZRhoTe8uW](https://www.aliyundrive.com/s/FNZRhoTe8uW) |
33 | | lsqplus_quantize_V2 | × | as before | - | - | 87 | 92.8 | [https://www.aliyundrive.com/s/WDH3ZnEa7vy](https://www.aliyundrive.com/s/WDH3ZnEa7vy) |
34 | | lsqplus_quantize_V1 | ✔ | as before | - | - | 96 | 91.19 | [https://www.aliyundrive.com/s/JATsi4vdurp](https://www.aliyundrive.com/s/JATsi4vdurp) |
35 | | lsqplus_quantize_V2 | ✔ | as before | - | - | 69 | 92.8 | [https://www.aliyundrive.com/s/LRWHaBLQGWc](https://www.aliyundrive.com/s/LRWHaBLQGWc) |
36 | | lsqquantize_V1 | × | as before | - | - | 102 | 91.89 | [https://www.aliyundrive.com/s/nR1KZZRuB23](https://www.aliyundrive.com/s/nR1KZZRuB23) |
37 | | lsqquantize_V2 | × | as before | - | - | 69 | 91.82 | [https://www.aliyundrive.com/s/7fjmViqUvh4](https://www.aliyundrive.com/s/7fjmViqUvh4) |
38 | | lsqquantize_V1 | ✔ | as before | - | - | 108 | 91.29 | [https://www.aliyundrive.com/s/](https://www.aliyundrive.com/s/PX84qGorVxY) |
39 | | lsqquantize_V2 | ✔ | as before | - | - | 72 | 91.72 | [https://www.aliyundrive.com/s/7nGvMVZcKp7](https://www.aliyundrive.com/s/7nGvMVZcKp7) |
40 |
41 | all
42 |
43 | [https://www.aliyundrive.com/s/hng9XsvhYru](https://www.aliyundrive.com/s/hng9XsvhYru)
44 |
45 |
46 | A represent activation, I use moving average method to initialize s and beta.
47 |
48 | LEARNED STEP SIZE QUANTIZATION
49 | LSQ+: Improving low-bit quantization through learnable offsets and better initialization
50 |
51 | ### References
52 | https://github.com/666DZY666/micronet
53 | https://github.com/hustzxd/LSQuantization
54 | https://github.com/zhutmost/lsq-net
55 | https://github.com/Zhen-Dong/HAWQ
56 | https://github.com/KwangHoonAn/PACT
57 | https://github.com/Jermmy/pytorch-quantization-demo
58 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 |
2 |
3 |
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | #encoding=utf-8
2 | #Author: ZouJiu
3 | #Time: 2021-11-13
4 |
5 | import numpy as np
6 | import torch
7 | import os
8 | import time
9 | import torch
10 | import torchvision
11 | import torchvision.transforms as transforms
12 | from torch.utils.data import Dataset, DataLoader
13 | # from load_datas import TF, trainDataset, collate_fn
14 | import models #, resnet50
15 | from quantization.lsqquantize_V1 import prepare as lsqprepareV1
16 | from quantization.lsqquantize_V2 import prepare as lsqprepareV2
17 | from quantization.lsqplus_quantize_V1 import prepare as lsqplusprepareV1
18 | from quantization.lsqplus_quantize_V2 import prepare as lsqplusprepareV2
19 | from quantization.lsqplus_quantize_V1 import update_LSQplus_activation_Scalebeta
20 | import torch.optim as optim
21 | import datetime
22 | os.environ["CUDA_VISIBLE_DEVICES"] = '1'
23 |
24 | def adjust_lr(optimizer, stepiters, epoch):
25 | if epoch < 135:
26 | lr = 0.1
27 | elif epoch < 185:
28 | lr = 0.01
29 | elif epoch < 290:
30 | lr = 0.001
31 | else:
32 | import sys
33 | sys.exit(0)
34 | for param_group in optimizer.param_groups:
35 | param_group['lr'] = lr
36 |
37 | def evaluate():
38 | config = {'a_bit':8, 'w_bit':8, "all_positive":False, "per_channel":True,
39 | "num_classes":10,"batch_init":20}
40 | pretrainedmodel = r'C:\Users\10696\Desktop\QAT\lsq+\log\model_108_42510_0.003_92.528_2021-11-27_17-49-47.pth'
41 | Resnet_pretrain = False #test
42 | batch_size = 128
43 | num_epochs = 290
44 | Floatmodel = True #QAT or float-32 train
45 | LSQplus = True #LSQ+ or LSQ
46 | scratch = True #从最开始训练,不是finetuning, 若=False就是finetuning
47 | tim = datetime.datetime.strftime(datetime.datetime.now(),"%Y-%m-%d %H-%M-%S").replace(' ', '_')
48 |
49 | test_transform = transforms.Compose([
50 | # transforms.Resize((32, 32)),
51 | transforms.ToTensor(),
52 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))])
53 |
54 | batch_size = 128 #Accuracy all is: 73.4
55 |
56 | testset = torchvision.datasets.CIFAR10(root='datas', train=False,
57 | download=True, transform=test_transform)
58 | testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
59 | shuffle=False, num_workers=2, drop_last=True)
60 |
61 | classes = ('plane', 'car', 'bird', 'cat',
62 | 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
63 | device = "cuda" if torch.cuda.is_available() else "cpu"
64 |
65 | model = models.resnet18(pretrained = Resnet_pretrain, num_classes=config['num_classes'])
66 |
67 | #LSQ+
68 | if LSQplus and not Floatmodel:
69 | lsqplusprepare(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
70 | all_positive=config["all_positive"], per_channel=config["per_channel"],
71 | batch_init = config["batch_init"])
72 | elif not LSQplus and not Floatmodel:
73 | #LSQ
74 | lsqprepare(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
75 | all_positive=config["all_positive"], per_channel=config["per_channel"],
76 | batch_init = config["batch_init"])
77 | elif Floatmodel:
78 | pass
79 |
80 | if not Floatmodel:
81 | print(model)
82 | if not os.path.exists(pretrainedmodel):
83 | print('the pretrainedmodel do not exists %s'%pretrainedmodel)
84 | if pretrainedmodel and os.path.exists(pretrainedmodel):
85 | print('loading pretrained model: ', pretrainedmodel)
86 | if torch.cuda.is_available():
87 | state_dict = torch.load(pretrainedmodel, map_location='cuda')
88 | else:
89 | state_dict = torch.load(pretrainedmodel, map_location='cpu')
90 | model.load_state_dict(state_dict['state_dict'])
91 | if not scratch:
92 | iteration = state_dict['iteration']
93 | alliters = state_dict['alliters']
94 | nowepoch = state_dict['nowepoch']
95 | else:
96 | iteration = 0
97 | alliters = 0
98 | nowepoch = 0
99 | print('loading complete')
100 | else:
101 | print('no pretrained model')
102 | iteration = 0
103 | alliters = 0
104 | nowepoch = 0
105 | model = model.to(device)
106 |
107 | print('validation of testes')
108 | # prepare to count predictions for each class
109 | correct_pred = {classname: 0 for classname in classes}
110 | total_pred = {classname: 0 for classname in classes}
111 |
112 | model.eval()
113 | # again no gradients needed
114 | with torch.no_grad():
115 | for data in testloader:
116 | images, labels = data
117 | images = images.to(device)
118 | labels = labels.to(device)
119 | outputs = model(images)
120 | _, predictions = torch.max(outputs, 1)
121 | # collect the correct predictions for each class
122 | for label, prediction in zip(labels, predictions):
123 | if label == prediction:
124 | correct_pred[classes[label]] += 1
125 | total_pred[classes[label]] += 1
126 |
127 |
128 | # print accuracy for each class
129 | correctall = 0
130 | alltest = 0
131 | for classname, correct_count in correct_pred.items():
132 | accuracy = 100 * float(correct_count) / total_pred[classname]
133 | print("Accuracy for class {:5s} is: {:.1f} %".format(classname,
134 | accuracy))
135 | correctall += correct_count
136 | alltest += total_pred[classname]
137 | print("Accuracy all is: {:.1f}".format(100 * float(correctall)/alltest))
138 |
139 |
140 | if __name__ == '__main__':
141 | evaluate()
142 |
--------------------------------------------------------------------------------
/log/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZouJiu1/LSQplus/2076e86479491f0e68ada31d36948596a1ee24f9/log/__init__.py
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import Tensor
3 | import torch.nn as nn
4 | from torch.nn import functional as F
5 | from torch.hub import load_state_dict_from_url
6 | from typing import Type, Any, Callable, Union, List, Optional
7 |
8 |
9 | __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
10 | 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
11 | 'wide_resnet50_2', 'wide_resnet101_2']
12 |
13 |
14 | model_urls = {
15 | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
16 | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
17 | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
18 | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
19 | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
20 | 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
21 | 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
22 | 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
23 | 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
24 | }
25 |
26 |
27 | def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
28 | """3x3 convolution with padding"""
29 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
30 | padding=dilation, groups=groups, bias=False, dilation=dilation)
31 |
32 |
33 | def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
34 | """1x1 convolution"""
35 | return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
36 |
37 |
38 | class BasicBlock(nn.Module):
39 | expansion: int = 1
40 |
41 | def __init__(
42 | self,
43 | inplanes: int,
44 | planes: int,
45 | stride: int = 1,
46 | downsample: Optional[nn.Module] = None,
47 | groups: int = 1,
48 | base_width: int = 64,
49 | dilation: int = 1,
50 | norm_layer: Optional[Callable[..., nn.Module]] = None
51 | ) -> None:
52 | super(BasicBlock, self).__init__()
53 | if norm_layer is None:
54 | norm_layer = nn.BatchNorm2d
55 | if groups != 1 or base_width != 64:
56 | raise ValueError('BasicBlock only supports groups=1 and base_width=64')
57 | if dilation > 1:
58 | raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
59 | # Both self.conv1 and self.downsample layers downsample the input when stride != 1
60 | self.conv1 = conv3x3(inplanes, planes, stride)
61 | self.bn1 = norm_layer(planes)
62 | self.relu = nn.ReLU(inplace=True)
63 | self.conv2 = conv3x3(planes, planes)
64 | self.bn2 = norm_layer(planes)
65 | self.downsample = downsample
66 | self.stride = stride
67 |
68 | def forward(self, x: Tensor) -> Tensor:
69 | identity = x
70 | out = self.conv1(x)
71 | out = self.bn1(out)
72 | out = self.relu(out)
73 |
74 | out = self.conv2(out)
75 | out = self.bn2(out)
76 |
77 | if self.downsample is not None:
78 | identity = self.downsample(x)
79 |
80 | out += identity
81 | out = self.relu(out)
82 |
83 | return out
84 |
85 |
86 | class Bottleneck(nn.Module):
87 | # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
88 | # while original implementation places the stride at the first 1x1 convolution(self.conv1)
89 | # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
90 | # This variant is also known as ResNet V1.5 and improves accuracy according to
91 | # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
92 |
93 | expansion: int = 4
94 |
95 | def __init__(
96 | self,
97 | inplanes: int,
98 | planes: int,
99 | stride: int = 1,
100 | downsample: Optional[nn.Module] = None,
101 | groups: int = 1,
102 | base_width: int = 64,
103 | dilation: int = 1,
104 | norm_layer: Optional[Callable[..., nn.Module]] = None
105 | ) -> None:
106 | super(Bottleneck, self).__init__()
107 | if norm_layer is None:
108 | norm_layer = nn.BatchNorm2d
109 | width = int(planes * (base_width / 64.)) * groups
110 | # Both self.conv2 and self.downsample layers downsample the input when stride != 1
111 | self.conv1 = conv1x1(inplanes, width)
112 | self.bn1 = norm_layer(width)
113 | self.conv2 = conv3x3(width, width, stride, groups, dilation)
114 | self.bn2 = norm_layer(width)
115 | self.conv3 = conv1x1(width, planes * self.expansion)
116 | self.bn3 = norm_layer(planes * self.expansion)
117 | self.relu = nn.ReLU(inplace=True)
118 | self.downsample = downsample
119 | self.stride = stride
120 |
121 | def forward(self, x: Tensor) -> Tensor:
122 | identity = x
123 |
124 | out = self.conv1(x)
125 | out = self.bn1(out)
126 | out = self.relu(out)
127 |
128 | out = self.conv2(out)
129 | out = self.bn2(out)
130 | out = self.relu(out)
131 |
132 | out = self.conv3(out)
133 | out = self.bn3(out)
134 |
135 | if self.downsample is not None:
136 | identity = self.downsample(x)
137 |
138 | out += identity
139 | out = self.relu(out)
140 |
141 | return out
142 |
143 |
144 | class ResNet(nn.Module):
145 |
146 | def __init__(
147 | self,
148 | block: Type[Union[BasicBlock, Bottleneck]],
149 | layers: List[int],
150 | num_classes: int = 1000,
151 | zero_init_residual: bool = False,
152 | groups: int = 1,
153 | width_per_group: int = 64,
154 | replace_stride_with_dilation: Optional[List[bool]] = None,
155 | norm_layer: Optional[Callable[..., nn.Module]] = None
156 | ) -> None:
157 | super(ResNet, self).__init__()
158 | if norm_layer is None:
159 | norm_layer = nn.BatchNorm2d
160 | self._norm_layer = norm_layer
161 |
162 | self.inplanes = 64
163 | self.dilation = 1
164 | if replace_stride_with_dilation is None:
165 | # each element in the tuple indicates if we should replace
166 | # the 2x2 stride with a dilated convolution instead
167 | replace_stride_with_dilation = [False, False, False]
168 | if len(replace_stride_with_dilation) != 3:
169 | raise ValueError("replace_stride_with_dilation should be None "
170 | "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
171 | self.groups = groups
172 | self.base_width = width_per_group
173 | self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1,
174 | bias=False)
175 | self.bn1 = norm_layer(self.inplanes)
176 | self.relu = nn.ReLU(inplace=True)
177 | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
178 | self.layer1 = self._make_layer(block, 64, layers[0])
179 | self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
180 | dilate=replace_stride_with_dilation[0])
181 | self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
182 | dilate=replace_stride_with_dilation[1])
183 | self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
184 | dilate=replace_stride_with_dilation[2])
185 | # self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
186 | self.poolavg = nn.AvgPool2d(4)
187 | self.fc = nn.Linear(512 * block.expansion, num_classes)
188 |
189 | for m in self.modules():
190 | if isinstance(m, nn.Conv2d):
191 | nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
192 | elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
193 | nn.init.constant_(m.weight, 1)
194 | nn.init.constant_(m.bias, 0)
195 |
196 | # Zero-initialize the last BN in each residual branch,
197 | # so that the residual branch starts with zeros, and each residual block behaves like an identity.
198 | # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
199 | if zero_init_residual:
200 | for m in self.modules():
201 | if isinstance(m, Bottleneck):
202 | nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
203 | elif isinstance(m, BasicBlock):
204 | nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
205 |
206 | def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
207 | stride: int = 1, dilate: bool = False) -> nn.Sequential:
208 | norm_layer = self._norm_layer
209 | downsample = None
210 | previous_dilation = self.dilation
211 | if dilate:
212 | self.dilation *= stride
213 | stride = 1
214 | if stride != 1 or self.inplanes != planes * block.expansion:
215 | downsample = nn.Sequential(
216 | conv1x1(self.inplanes, planes * block.expansion, stride),
217 | norm_layer(planes * block.expansion),
218 | )
219 |
220 | layers = []
221 | layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
222 | self.base_width, previous_dilation, norm_layer))
223 | self.inplanes = planes * block.expansion
224 | for _ in range(1, blocks):
225 | layers.append(block(self.inplanes, planes, groups=self.groups,
226 | base_width=self.base_width, dilation=self.dilation,
227 | norm_layer=norm_layer))
228 |
229 | return nn.Sequential(*layers)
230 |
231 | def _forward_impl(self, x: Tensor) -> Tensor:
232 | # See note [TorchScript super()]
233 | x = self.conv1(x)
234 | x = self.bn1(x)
235 | x = self.relu(x)
236 | # x = self.maxpool(x)
237 |
238 | x = self.layer1(x)
239 | x = self.layer2(x)
240 | x = self.layer3(x)
241 | x = self.layer4(x)
242 |
243 | # x = self.avgpool(x)
244 | # x = torch.flatten(x, 1)
245 |
246 | x = self.poolavg(x)
247 | x = x.view(x.size()[0], -1)
248 | x = self.fc(x)
249 |
250 | return x
251 |
252 | def forward(self, x: Tensor) -> Tensor:
253 | return self._forward_impl(x)
254 |
255 |
256 | def _resnet(
257 | arch: str,
258 | block: Type[Union[BasicBlock, Bottleneck]],
259 | layers: List[int],
260 | pretrained: bool,
261 | progress: bool,
262 | **kwargs: Any
263 | ) -> ResNet:
264 | model = ResNet(block, layers, **kwargs)
265 | # if pretrained:
266 | # state_dict = load_state_dict_from_url(model_urls[arch],
267 | # progress=progress)
268 | # delete = []
269 | # for key, value in state_dict.items():
270 | # if 'fc' in key:
271 | # delete.append(key)
272 | # print('detele: ', delete)
273 | # for key in delete:
274 | # state_dict.pop(key)
275 | # model.load_state_dict(state_dict, strict=False)
276 | return model
277 |
278 |
279 | def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
280 | r"""ResNet-18 model from
281 | `"Deep Residual Learning for Image Recognition" `_.
282 |
283 | Args:
284 | pretrained (bool): If True, returns a model pre-trained on ImageNet
285 | progress (bool): If True, displays a progress bar of the download to stderr
286 | """
287 | return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
288 | **kwargs)
289 |
290 |
291 | def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
292 | r"""ResNet-34 model from
293 | `"Deep Residual Learning for Image Recognition" `_.
294 |
295 | Args:
296 | pretrained (bool): If True, returns a model pre-trained on ImageNet
297 | progress (bool): If True, displays a progress bar of the download to stderr
298 | """
299 | return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
300 | **kwargs)
301 |
302 |
303 | def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
304 | r"""ResNet-50 model from
305 | `"Deep Residual Learning for Image Recognition" `_.
306 |
307 | Args:
308 | pretrained (bool): If True, returns a model pre-trained on ImageNet
309 | progress (bool): If True, displays a progress bar of the download to stderr
310 | """
311 | return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
312 | **kwargs)
313 |
314 |
315 | def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
316 | r"""ResNet-101 model from
317 | `"Deep Residual Learning for Image Recognition" `_.
318 |
319 | Args:
320 | pretrained (bool): If True, returns a model pre-trained on ImageNet
321 | progress (bool): If True, displays a progress bar of the download to stderr
322 | """
323 | return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
324 | **kwargs)
325 |
326 |
327 | def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
328 | r"""ResNet-152 model from
329 | `"Deep Residual Learning for Image Recognition" `_.
330 |
331 | Args:
332 | pretrained (bool): If True, returns a model pre-trained on ImageNet
333 | progress (bool): If True, displays a progress bar of the download to stderr
334 | """
335 | return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
336 | **kwargs)
337 |
338 |
339 | def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
340 | r"""ResNeXt-50 32x4d model from
341 | `"Aggregated Residual Transformation for Deep Neural Networks" `_.
342 |
343 | Args:
344 | pretrained (bool): If True, returns a model pre-trained on ImageNet
345 | progress (bool): If True, displays a progress bar of the download to stderr
346 | """
347 | kwargs['groups'] = 32
348 | kwargs['width_per_group'] = 4
349 | return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
350 | pretrained, progress, **kwargs)
351 |
352 |
353 | def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
354 | r"""ResNeXt-101 32x8d model from
355 | `"Aggregated Residual Transformation for Deep Neural Networks" `_.
356 |
357 | Args:
358 | pretrained (bool): If True, returns a model pre-trained on ImageNet
359 | progress (bool): If True, displays a progress bar of the download to stderr
360 | """
361 | kwargs['groups'] = 32
362 | kwargs['width_per_group'] = 8
363 | return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
364 | pretrained, progress, **kwargs)
365 |
366 |
367 | def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
368 | r"""Wide ResNet-50-2 model from
369 | `"Wide Residual Networks" `_.
370 |
371 | The model is the same as ResNet except for the bottleneck number of channels
372 | which is twice larger in every block. The number of channels in outer 1x1
373 | convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
374 | channels, and in Wide ResNet-50-2 has 2048-1024-2048.
375 |
376 | Args:
377 | pretrained (bool): If True, returns a model pre-trained on ImageNet
378 | progress (bool): If True, displays a progress bar of the download to stderr
379 | """
380 | kwargs['width_per_group'] = 64 * 2
381 | return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
382 | pretrained, progress, **kwargs)
383 |
384 |
385 | def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
386 | r"""Wide ResNet-101-2 model from
387 | `"Wide Residual Networks" `_.
388 |
389 | The model is the same as ResNet except for the bottleneck number of channels
390 | which is twice larger in every block. The number of channels in outer 1x1
391 | convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
392 | channels, and in Wide ResNet-50-2 has 2048-1024-2048.
393 |
394 | Args:
395 | pretrained (bool): If True, returns a model pre-trained on ImageNet
396 | progress (bool): If True, displays a progress bar of the download to stderr
397 | """
398 | kwargs['width_per_group'] = 64 * 2
399 | return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
400 | pretrained, progress, **kwargs)
401 |
402 | def wide_resnet1202(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
403 | r"""
404 | The model is the same as ResNet except for the bottleneck number of channels
405 | which is twice larger in every block. The number of channels in outer 1x1
406 | convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
407 | channels, and in Wide ResNet-50-2 has 2048-1024-2048.
408 |
409 | Args:
410 | pretrained (bool): If True, returns a model pre-trained on ImageNet
411 | progress (bool): If True, displays a progress bar of the download to stderr
412 | """
413 | return _resnet('resnet1202', BasicBlock, [200, 200, 200, 200],
414 | pretrained=False, progress=progress, **kwargs)
415 |
--------------------------------------------------------------------------------
/quantization/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ZouJiu1/LSQplus/2076e86479491f0e68ada31d36948596a1ee24f9/quantization/__init__.py
--------------------------------------------------------------------------------
/quantization/lsqplus_quantize_V1.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Function
7 | from quantization.lsqquantize_V1 import Round
8 |
9 | class ALSQPlus(Function):
10 | @staticmethod
11 | def forward(ctx, weight, alpha, g, Qn, Qp, beta):
12 | # assert alpha > 0, "alpha={}".format(alpha)
13 | ctx.save_for_backward(weight, alpha, beta)
14 | ctx.other = g, Qn, Qp
15 | w_q = Round.apply(torch.div((weight - beta), alpha).clamp(Qn, Qp))
16 | w_q = w_q * alpha + beta
17 | return w_q
18 |
19 | @staticmethod
20 | def backward(ctx, grad_weight):
21 | weight, alpha, beta = ctx.saved_tensors
22 | g, Qn, Qp = ctx.other
23 | q_w = (weight - beta) / alpha
24 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
25 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
26 | between = 1.0 - smaller -bigger #得到位于量化区间的index
27 | grad_alpha = ((smaller * Qn + bigger * Qp +
28 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0)
29 | grad_beta = ((smaller + bigger) * grad_weight * g).sum().unsqueeze(dim=0)
30 | #在量化区间之外的值都是常数,故导数也是0
31 | grad_weight = between * grad_weight
32 | #返回的梯度要和forward的参数对应起来
33 | return grad_weight, grad_alpha, None, None, None, grad_beta
34 |
35 | class WLSQPlus(Function):
36 | @staticmethod
37 | def forward(ctx, weight, alpha, g, Qn, Qp, per_channel):
38 | # assert alpha > 0, "alpha={}".format(alpha)
39 | ctx.save_for_backward(weight, alpha)
40 | ctx.other = g, Qn, Qp, per_channel
41 | if per_channel:
42 | sizes = weight.size()
43 | weight = weight.contiguous().view(weight.size()[0], -1)
44 | weight = torch.transpose(weight, 0, 1)
45 | alpha = torch.broadcast_to(alpha, weight.size())
46 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
47 | w_q = w_q * alpha
48 | w_q = torch.transpose(w_q, 0, 1)
49 | w_q = w_q.contiguous().view(sizes)
50 | else:
51 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
52 | w_q = w_q * alpha
53 | return w_q
54 |
55 | @staticmethod
56 | def backward(ctx, grad_weight):
57 | weight, alpha = ctx.saved_tensors
58 | g, Qn, Qp, per_channel = ctx.other
59 | if per_channel:
60 | sizes = weight.size()
61 | weight = weight.contiguous().view(weight.size()[0], -1)
62 | weight = torch.transpose(weight, 0, 1)
63 | alpha = torch.broadcast_to(alpha, weight.size())
64 | q_w = weight / alpha
65 | q_w = torch.transpose(q_w, 0, 1)
66 | q_w = q_w.contiguous().view(sizes)
67 | else:
68 | q_w = weight / alpha
69 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
70 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
71 | between = 1.0 - smaller -bigger #得到位于量化区间的index
72 | if per_channel:
73 | grad_alpha = ((smaller * Qn + bigger * Qp +
74 | between * Round.apply(q_w) - between * q_w)*grad_weight * g)
75 | grad_alpha = grad_alpha.contiguous().view(grad_alpha.size()[0], -1).sum(dim=1)
76 | else:
77 | grad_alpha = ((smaller * Qn + bigger * Qp +
78 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0)
79 | #在量化区间之外的值都是常数,故导数也是0
80 | grad_weight = between * grad_weight
81 | return grad_weight, grad_alpha, None, None, None, None
82 |
83 | def grad_scale(x, scale):
84 | y = x
85 | y_grad = x * scale
86 | return (y - y_grad).detach() + y_grad
87 |
88 | def round_pass(x):
89 | y = x.round()
90 | y_grad = x
91 | return (y - y_grad).detach() + y_grad
92 |
93 | def get_percentile_min_max(input, lower_percentile, uppper_percentile, output_tensor):
94 | batch_size = input.shape[0]
95 | lower_index = round(batch_size * (1 - lower_percentile*0.01))
96 | upper_index = round(batch_size * (1 - uppper_percentile*0.01))
97 |
98 | upper_bound = torch.kthvalue(input, k=upper_index).values
99 |
100 | if lower_percentile==0:
101 | lower_bound = upper_bound * 0
102 | else:
103 | low_bound = -torch.kthvalue(-input, k=lower_index).values
104 |
105 |
106 | # A(特征)量化
107 | class LSQPlusActivationQuantizer(nn.Module):
108 | def __init__(self, a_bits, all_positive=False,batch_init = 20):
109 | #activations 没有per-channel这个选项的
110 | super(LSQPlusActivationQuantizer, self).__init__()
111 | self.a_bits = a_bits
112 | self.all_positive = all_positive
113 | self.batch_init = batch_init
114 | if self.all_positive:
115 | # unsigned activation is quantized to [0, 2^b-1]
116 | self.Qn = 0
117 | self.Qp = 2 ** self.a_bits - 1
118 | else:
119 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
120 | self.Qn = - 2 ** (self.a_bits - 1)
121 | self.Qp = 2 ** (self.a_bits - 1) - 1
122 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True)
123 | # self.beta = torch.nn.Parameter(torch.tensor([float(0)]))
124 | self.beta = torch.nn.Parameter(torch.tensor([float(-1e-9)]), requires_grad=True)
125 | self.init_state = 0
126 |
127 | # 量化/反量化
128 | def forward(self, activation):
129 | #V1
130 | # print(self.a_bits, self.batch_init)
131 | if self.a_bits == 32:
132 | q_a = activation
133 | elif self.a_bits == 1:
134 | print('!Binary quantization is not supported !')
135 | assert self.a_bits != 1
136 | else:
137 | if self.init_state==0:
138 | self.g = 1.0/math.sqrt(activation.numel() * self.Qp)
139 | self.init_state += 1
140 | q_a = ALSQPlus.apply(activation, self.s, self.g, self.Qn, self.Qp, self.beta)
141 | # print(self.s, self.beta)
142 | return q_a
143 |
144 | # W(权重)量化
145 | class LSQPlusWeightQuantizer(nn.Module):
146 | def __init__(self, w_bits, all_positive=False, per_channel=False,batch_init = 20):
147 | super(LSQPlusWeightQuantizer, self).__init__()
148 | self.w_bits = w_bits
149 | self.all_positive = all_positive
150 | self.batch_init = batch_init
151 | if self.all_positive:
152 | # unsigned activation is quantized to [0, 2^b-1]
153 | self.Qn = 0
154 | self.Qp = 2 ** w_bits - 1
155 | else:
156 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
157 | self.Qn = - 2 ** (w_bits - 1)
158 | self.Qp = 2 ** (w_bits - 1) - 1
159 | self.per_channel = per_channel
160 | self.init_state = 0
161 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True)
162 | # self.beta = torch.nn.Parameter(torch.ones(0), requires_grad=True)
163 |
164 | # 量化/反量化
165 | def forward(self, weight):
166 | if self.init_state==0:
167 | self.g = 1.0/math.sqrt(weight.numel() * self.Qp)
168 | self.div = 2**self.w_bits - 1
169 | if self.per_channel:
170 | weight_tmp = weight.detach().contiguous().view(weight.size()[0], -1)
171 | mean = torch.mean(weight_tmp, dim=1)
172 | std = torch.std(weight_tmp, dim=1)
173 | self.s.data, _ = torch.max(torch.stack([torch.abs(mean-3*std), torch.abs(mean + 3*std)]), dim=0)
174 | self.s.data = self.s.data/self.div
175 | else:
176 | mean = torch.mean(weight.detach())
177 | std = torch.std(weight.detach())
178 | self.s.data = max([torch.abs(mean-3*std), torch.abs(mean + 3*std)])/self.div
179 | self.init_state += 1
180 | elif self.init_state Qp).float() #bool值转浮点值,1.0或者0.0
223 | between = 1.0 - smaller -bigger #得到位于量化区间的index
224 | grad_alpha = ((smaller * Qn + bigger * Qp +
225 | between * Round.apply(q_input) - between * q_input) * g).sum().unsqueeze(dim=0)
226 | grad_beta = ((smaller + bigger) * g).sum().unsqueeze(dim=0)
227 | # print('grad_beta: ',grad_beta,g, smaller.sum(), bigger.sum(), between.sum(),Qn, Qp)
228 | child.activation_quantizer.s.grad.data.add_(g*(2*(child.quant_input-child.input)*grad_alpha).sum().unsqueeze(dim=0))
229 | child.activation_quantizer.beta.grad.data.add_(g*(2*(child.quant_input-child.input)*grad_beta).sum().unsqueeze(dim=0))
230 |
231 | model._modules[name] = child
232 | # print('after: ', model._modules[name].activation_quantizer.s.grad.data, model._modules[name].activation_quantizer.beta.grad.data, s, beta,
233 | # torch.square(child.quant_input-child.input).sum())
234 | else:
235 | child = update_LSQplus_activation_Scalebeta(child)
236 | model._modules[name] = child
237 | return model
238 |
239 |
240 |
241 | class QuantConv2d(nn.Conv2d):
242 | def __init__(self,
243 | in_channels,
244 | out_channels,
245 | kernel_size,
246 | stride=1,
247 | padding=0,
248 | dilation=1,
249 | groups=1,
250 | bias=True,
251 | padding_mode='zeros',
252 | a_bits=8,
253 | w_bits=8,
254 | quant_inference=False,
255 | all_positive=False,
256 | per_channel=False,
257 | batch_init = 20):
258 | super(QuantConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups,
259 | bias, padding_mode)
260 | self.quant_inference = quant_inference
261 | self.activation_quantizer = LSQPlusActivationQuantizer(a_bits=a_bits, all_positive=all_positive,batch_init = batch_init)
262 | self.weight_quantizer = LSQPlusWeightQuantizer(w_bits=w_bits, all_positive=all_positive, per_channel=per_channel,batch_init = batch_init)
263 |
264 | def forward(self, input):
265 | self.input = input
266 | self.quant_input = self.activation_quantizer(self.input)
267 | if not self.quant_inference:
268 | self.quant_weight = self.weight_quantizer(self.weight)
269 | else:
270 | self.quant_weight = self.weight
271 |
272 | output = F.conv2d(self.quant_input, self.quant_weight, self.bias, self.stride, self.padding, self.dilation,
273 | self.groups)
274 | return output
275 |
276 |
277 | class QuantConvTranspose2d(nn.ConvTranspose2d):
278 | def __init__(self,
279 | in_channels,
280 | out_channels,
281 | kernel_size,
282 | stride=1,
283 | padding=0,
284 | output_padding=0,
285 | dilation=1,
286 | groups=1,
287 | bias=True,
288 | padding_mode='zeros',
289 | a_bits=8,
290 | w_bits=8,
291 | quant_inference=False,
292 | all_positive=False,
293 | per_channel=False,
294 | batch_init = 20):
295 | super(QuantConvTranspose2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, output_padding,
296 | dilation, groups, bias, padding_mode)
297 | self.quant_inference = quant_inference
298 | self.activation_quantizer = LSQPlusActivationQuantizer(a_bits=a_bits, all_positive=all_positive,batch_init = batch_init)
299 | self.weight_quantizer = LSQPlusWeightQuantizer(w_bits=w_bits, all_positive=all_positive, per_channel=per_channel,batch_init = batch_init)
300 |
301 | def forward(self, input):
302 | self.input = input
303 | self.quant_input = self.activation_quantizer(self.input)
304 | if not self.quant_inference:
305 | self.quant_weight = self.weight_quantizer(self.weight)
306 | else:
307 | self.quant_weight = self.weight
308 | output = F.conv_transpose2d(self.quant_input, self.quant_weight, self.bias, self.stride, self.padding, self.output_padding,
309 | self.groups, self.dilation)
310 | return output
311 |
312 |
313 | class QuantLinear(nn.Linear):
314 | def __init__(self,
315 | in_features,
316 | out_features,
317 | bias=True,
318 | a_bits=8,
319 | w_bits=8,
320 | quant_inference=False,
321 | all_positive=False,
322 | per_channel=False,
323 | batch_init = 20):
324 | super(QuantLinear, self).__init__(in_features, out_features, bias)
325 | self.quant_inference = quant_inference
326 | self.activation_quantizer = LSQPlusActivationQuantizer(a_bits=a_bits, all_positive=all_positive,batch_init = batch_init)
327 | self.weight_quantizer = LSQPlusWeightQuantizer(w_bits=w_bits, all_positive=all_positive, per_channel=per_channel,batch_init = batch_init)
328 |
329 | def forward(self, input):
330 | self.input = input
331 | self.quant_input = self.activation_quantizer(self.input)
332 | if not self.quant_inference:
333 | self.quant_weight = self.weight_quantizer(self.weight)
334 | else:
335 | self.quant_weight = self.weight
336 | output = F.linear(self.quant_input, self.quant_weight, self.bias)
337 | return output
338 |
339 |
340 | def add_quant_op(module, layer_counter, a_bits=8, w_bits=8,
341 | quant_inference=False, all_positive=False, per_channel=False, batch_init = 20):
342 | for name, child in module.named_children():
343 | if isinstance(child, nn.Conv2d):
344 | layer_counter[0] += 1
345 | if layer_counter[0] >= 1: #第一层也量化
346 | if child.bias is not None:
347 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
348 | child.kernel_size, stride=child.stride,
349 | padding=child.padding, dilation=child.dilation,
350 | groups=child.groups, bias=True, padding_mode=child.padding_mode,
351 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
352 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
353 | quant_conv.bias.data = child.bias
354 | else:
355 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
356 | child.kernel_size, stride=child.stride,
357 | padding=child.padding, dilation=child.dilation,
358 | groups=child.groups, bias=False, padding_mode=child.padding_mode,
359 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
360 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
361 | quant_conv.weight.data = child.weight
362 | module._modules[name] = quant_conv
363 | elif isinstance(child, nn.ConvTranspose2d):
364 | layer_counter[0] += 1
365 | if layer_counter[0] >= 1: #第一层也量化
366 | if child.bias is not None:
367 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
368 | child.out_channels,
369 | child.kernel_size,
370 | stride=child.stride,
371 | padding=child.padding,
372 | output_padding=child.output_padding,
373 | dilation=child.dilation,
374 | groups=child.groups,
375 | bias=True,
376 | padding_mode=child.padding_mode,
377 | a_bits=a_bits,
378 | w_bits=w_bits,
379 | quant_inference=quant_inference,
380 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
381 | quant_conv_transpose.bias.data = child.bias
382 | else:
383 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
384 | child.out_channels,
385 | child.kernel_size,
386 | stride=child.stride,
387 | padding=child.padding,
388 | output_padding=child.output_padding,
389 | dilation=child.dilation,
390 | groups=child.groups, bias=False,
391 | padding_mode=child.padding_mode,
392 | a_bits=a_bits,
393 | w_bits=w_bits,
394 | quant_inference=quant_inference,
395 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
396 | quant_conv_transpose.weight.data = child.weight
397 | module._modules[name] = quant_conv_transpose
398 | elif isinstance(child, nn.Linear):
399 | layer_counter[0] += 1
400 | if layer_counter[0] >= 1: #第一层也量化
401 | if child.bias is not None:
402 | quant_linear = QuantLinear(child.in_features, child.out_features,
403 | bias=True, a_bits=a_bits, w_bits=w_bits,
404 | quant_inference=quant_inference,
405 | all_positive=all_positive, per_channel=per_channel,
406 | batch_init = batch_init)
407 | quant_linear.bias.data = child.bias
408 | else:
409 | quant_linear = QuantLinear(child.in_features, child.out_features,
410 | bias=False, a_bits=a_bits, w_bits=w_bits,
411 | quant_inference=quant_inference,
412 | all_positive=all_positive, per_channel=per_channel,
413 | batch_init = batch_init)
414 | quant_linear.weight.data = child.weight
415 | module._modules[name] = quant_linear
416 | else:
417 | add_quant_op(child, layer_counter, a_bits=a_bits, w_bits=w_bits,
418 | quant_inference=quant_inference, all_positive=all_positive,
419 | per_channel=per_channel, batch_init = batch_init)
420 |
421 |
422 | def prepare(model, inplace=False, a_bits=8, w_bits=8, quant_inference=False,
423 | all_positive=False, per_channel=False, batch_init = 20):
424 | if not inplace:
425 | model = copy.deepcopy(model)
426 | layer_counter = [0]
427 | add_quant_op(model, layer_counter, a_bits=a_bits, w_bits=w_bits,
428 | quant_inference=quant_inference,
429 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
430 | return model
431 |
--------------------------------------------------------------------------------
/quantization/lsqplus_quantize_V2.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Function
7 | from quantization.lsqquantize_V1 import Round
8 |
9 | class ALSQPlus(Function):
10 | @staticmethod
11 | def forward(ctx, weight, alpha, g, Qn, Qp, beta):
12 | # assert alpha > 0, "alpha={}".format(alpha)
13 | ctx.save_for_backward(weight, alpha, beta)
14 | ctx.other = g, Qn, Qp
15 | w_q = Round.apply(torch.div((weight - beta), alpha).clamp(Qn, Qp))
16 | w_q = w_q * alpha + beta
17 | return w_q
18 |
19 | @staticmethod
20 | def backward(ctx, grad_weight):
21 | weight, alpha, beta = ctx.saved_tensors
22 | g, Qn, Qp = ctx.other
23 | q_w = (weight - beta) / alpha
24 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
25 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
26 | between = 1.0 - smaller -bigger #得到位于量化区间的index
27 | grad_alpha = ((smaller * Qn + bigger * Qp +
28 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0)
29 | grad_beta = ((smaller + bigger) * grad_weight * g).sum().unsqueeze(dim=0)
30 | #在量化区间之外的值都是常数,故导数也是0
31 | grad_weight = between * grad_weight
32 | #返回的梯度要和forward的参数对应起来
33 | return grad_weight, grad_alpha, None, None, None, grad_beta
34 |
35 | class WLSQPlus(Function):
36 | @staticmethod
37 | def forward(ctx, weight, alpha, g, Qn, Qp, per_channel):
38 | # assert alpha > 0, "alpha={}".format(alpha)
39 | ctx.save_for_backward(weight, alpha)
40 | ctx.other = g, Qn, Qp, per_channel
41 | if per_channel:
42 | sizes = weight.size()
43 | weight = weight.contiguous().view(weight.size()[0], -1)
44 | weight = torch.transpose(weight, 0, 1)
45 | alpha = torch.broadcast_to(alpha, weight.size())
46 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
47 | w_q = w_q * alpha
48 | w_q = torch.transpose(w_q, 0, 1)
49 | w_q = w_q.contiguous().view(sizes)
50 | else:
51 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
52 | w_q = w_q * alpha
53 | return w_q
54 |
55 | @staticmethod
56 | def backward(ctx, grad_weight):
57 | weight, alpha = ctx.saved_tensors
58 | g, Qn, Qp, per_channel = ctx.other
59 | if per_channel:
60 | sizes = weight.size()
61 | weight = weight.contiguous().view(weight.size()[0], -1)
62 | weight = torch.transpose(weight, 0, 1)
63 | alpha = torch.broadcast_to(alpha, weight.size())
64 | q_w = weight / alpha
65 | q_w = torch.transpose(q_w, 0, 1)
66 | q_w = q_w.contiguous().view(sizes)
67 | else:
68 | q_w = weight / alpha
69 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
70 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
71 | between = 1.0 - smaller -bigger #得到位于量化区间的index
72 | if per_channel:
73 | grad_alpha = ((smaller * Qn + bigger * Qp +
74 | between * Round.apply(q_w) - between * q_w)*grad_weight * g)
75 | grad_alpha = grad_alpha.contiguous().view(grad_alpha.size()[0], -1).sum(dim=1)
76 | else:
77 | grad_alpha = ((smaller * Qn + bigger * Qp +
78 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0)
79 | #在量化区间之外的值都是常数,故导数也是0
80 | grad_weight = between * grad_weight
81 | return grad_weight, grad_alpha, None, None, None, None
82 |
83 | def grad_scale(x, scale):
84 | y = x
85 | y_grad = x * scale
86 | return (y - y_grad).detach() + y_grad
87 |
88 | def round_pass(x):
89 | y = x.round()
90 | y_grad = x
91 | return (y - y_grad).detach() + y_grad
92 |
93 | def get_percentile_min_max(input, lower_percentile, uppper_percentile, output_tensor):
94 | batch_size = input.shape[0]
95 | lower_index = round(batch_size * (1 - lower_percentile*0.01))
96 | upper_index = round(batch_size * (1 - uppper_percentile*0.01))
97 |
98 | upper_bound = torch.kthvalue(input, k=upper_index).values
99 |
100 | if lower_percentile==0:
101 | lower_bound = upper_bound * 0
102 | else:
103 | low_bound = -torch.kthvalue(-input, k=lower_index).values
104 |
105 | # def update_scale_betas():
106 | # for m in model.modules():
107 | # if isinstance(m, nn.)
108 |
109 | # A(特征)量化
110 | class LSQPlusActivationQuantizer(nn.Module):
111 | def __init__(self, a_bits, all_positive=False,batch_init = 20):
112 | #activations 没有per-channel这个选项的
113 | super(LSQPlusActivationQuantizer, self).__init__()
114 | self.a_bits = a_bits
115 | self.all_positive = all_positive
116 | self.batch_init = batch_init
117 | if self.all_positive:
118 | # unsigned activation is quantized to [0, 2^b-1]
119 | self.Qn = 0
120 | self.Qp = 2 ** self.a_bits - 1
121 | else:
122 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
123 | self.Qn = - 2 ** (self.a_bits - 1)
124 | self.Qp = 2 ** (self.a_bits - 1) - 1
125 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True)
126 | self.beta = torch.nn.Parameter(torch.ones(0), requires_grad=True)
127 | self.init_state = 0
128 |
129 | # 量化/反量化
130 | def forward(self, activation):
131 | if self.init_state==0:
132 | self.g = 1.0/math.sqrt(activation.numel() * self.Qp)
133 | mina = torch.min(activation.detach())
134 | self.s.data = (torch.max(activation.detach()) - mina)/(self.Qp-self.Qn)
135 | self.beta.data = mina - self.s.data *self.Qn
136 | self.init_state += 1
137 | elif self.init_state= 1: #第一层也量化
329 | if child.bias is not None:
330 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
331 | child.kernel_size, stride=child.stride,
332 | padding=child.padding, dilation=child.dilation,
333 | groups=child.groups, bias=True, padding_mode=child.padding_mode,
334 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
335 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
336 | quant_conv.bias.data = child.bias
337 | else:
338 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
339 | child.kernel_size, stride=child.stride,
340 | padding=child.padding, dilation=child.dilation,
341 | groups=child.groups, bias=False, padding_mode=child.padding_mode,
342 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
343 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
344 | quant_conv.weight.data = child.weight
345 | module._modules[name] = quant_conv
346 | elif isinstance(child, nn.ConvTranspose2d):
347 | layer_counter[0] += 1
348 | if layer_counter[0] >= 1: #第一层也量化
349 | if child.bias is not None:
350 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
351 | child.out_channels,
352 | child.kernel_size,
353 | stride=child.stride,
354 | padding=child.padding,
355 | output_padding=child.output_padding,
356 | dilation=child.dilation,
357 | groups=child.groups,
358 | bias=True,
359 | padding_mode=child.padding_mode,
360 | a_bits=a_bits,
361 | w_bits=w_bits,
362 | quant_inference=quant_inference,
363 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
364 | quant_conv_transpose.bias.data = child.bias
365 | else:
366 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
367 | child.out_channels,
368 | child.kernel_size,
369 | stride=child.stride,
370 | padding=child.padding,
371 | output_padding=child.output_padding,
372 | dilation=child.dilation,
373 | groups=child.groups, bias=False,
374 | padding_mode=child.padding_mode,
375 | a_bits=a_bits,
376 | w_bits=w_bits,
377 | quant_inference=quant_inference,
378 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
379 | quant_conv_transpose.weight.data = child.weight
380 | module._modules[name] = quant_conv_transpose
381 | elif isinstance(child, nn.Linear):
382 | layer_counter[0] += 1
383 | if layer_counter[0] >= 1: #第一层也量化
384 | if child.bias is not None:
385 | quant_linear = QuantLinear(child.in_features, child.out_features,
386 | bias=True, a_bits=a_bits, w_bits=w_bits,
387 | quant_inference=quant_inference,
388 | all_positive=all_positive, per_channel=per_channel,
389 | batch_init = batch_init)
390 | quant_linear.bias.data = child.bias
391 | else:
392 | quant_linear = QuantLinear(child.in_features, child.out_features,
393 | bias=False, a_bits=a_bits, w_bits=w_bits,
394 | quant_inference=quant_inference,
395 | all_positive=all_positive, per_channel=per_channel,
396 | batch_init = batch_init)
397 | quant_linear.weight.data = child.weight
398 | module._modules[name] = quant_linear
399 | else:
400 | add_quant_op(child, layer_counter, a_bits=a_bits, w_bits=w_bits,
401 | quant_inference=quant_inference, all_positive=all_positive,
402 | per_channel=per_channel, batch_init = batch_init)
403 |
404 |
405 | def prepare(model, inplace=False, a_bits=8, w_bits=8, quant_inference=False,
406 | all_positive=False, per_channel=False, batch_init = 20):
407 | if not inplace:
408 | model = copy.deepcopy(model)
409 | layer_counter = [0]
410 | add_quant_op(model, layer_counter, a_bits=a_bits, w_bits=w_bits,
411 | quant_inference=quant_inference,
412 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
413 | return model
--------------------------------------------------------------------------------
/quantization/lsqquantize_V1.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Function
7 |
8 |
9 | # ********************* quantizers(量化器,量化) *********************
10 | # 取整(ste)
11 | class Round(Function):
12 | @staticmethod
13 | def forward(self, input):
14 | sign = torch.sign(input)
15 | output = sign * torch.floor(torch.abs(input) + 0.5)
16 | return output
17 |
18 | @staticmethod
19 | def backward(self, grad_output):
20 | grad_input = grad_output.clone()
21 | return grad_input
22 |
23 | class FunLSQ(Function):
24 | @staticmethod
25 | def forward(ctx, weight, alpha, g, Qn, Qp, per_channel=False):
26 | #根据论文里LEARNED STEP SIZE QUANTIZATION第2节的公式
27 | # assert alpha > 0, "alpha={}".format(alpha)
28 | ctx.save_for_backward(weight, alpha)
29 | ctx.other = g, Qn, Qp, per_channel
30 | if per_channel:
31 | sizes = weight.size()
32 | weight = weight.contiguous().view(weight.size()[0], -1)
33 | weight = torch.transpose(weight, 0, 1)
34 | alpha = torch.broadcast_to(alpha, weight.size())
35 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
36 | w_q = w_q * alpha
37 | w_q = torch.transpose(w_q, 0, 1)
38 | w_q = w_q.contiguous().view(sizes)
39 | else:
40 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
41 | w_q = w_q * alpha
42 | return w_q
43 |
44 | @staticmethod
45 | def backward(ctx, grad_weight):
46 | #根据论文里LEARNED STEP SIZE QUANTIZATION第2.1节
47 | #分为三部分:位于量化区间的、小于下界的、大于上界的
48 | weight, alpha = ctx.saved_tensors
49 | g, Qn, Qp, per_channel = ctx.other
50 | if per_channel:
51 | sizes = weight.size()
52 | weight = weight.contiguous().view(weight.size()[0], -1)
53 | weight = torch.transpose(weight, 0, 1)
54 | alpha = torch.broadcast_to(alpha, weight.size())
55 | q_w = weight / alpha
56 | q_w = torch.transpose(q_w, 0, 1)
57 | q_w = q_w.contiguous().view(sizes)
58 | else:
59 | q_w = weight / alpha
60 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
61 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
62 | between = 1.0 - smaller -bigger #得到位于量化区间的index
63 | if per_channel:
64 | grad_alpha = ((smaller * Qn + bigger * Qp +
65 | between * Round.apply(q_w) - between * q_w)*grad_weight * g)
66 | grad_alpha = grad_alpha.contiguous().view(grad_alpha.size()[0], -1).sum(dim=1)
67 | else:
68 | grad_alpha = ((smaller * Qn + bigger * Qp +
69 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0) #?
70 | #在量化区间之外的值都是常数,故导数也是0
71 | grad_weight = between * grad_weight
72 | return grad_weight, grad_alpha, None, None, None, None
73 |
74 | def grad_scale(x, scale):
75 | y = x
76 | y_grad = x * scale
77 | return (y - y_grad).detach() + y_grad
78 |
79 | def round_pass(x):
80 | y = x.round()
81 | y_grad = x
82 | return (y - y_grad).detach() + y_grad
83 |
84 | # A(特征)量化
85 | class LSQActivationQuantizer(nn.Module):
86 | def __init__(self, a_bits, all_positive=False, batch_init = 20):
87 | #activations 没有per-channel这个选项的
88 | super(LSQActivationQuantizer, self).__init__()
89 | self.a_bits = a_bits
90 | self.all_positive = all_positive
91 | self.batch_init = batch_init
92 | if self.all_positive:
93 | # unsigned activation is quantized to [0, 2^b-1]
94 | self.Qn = 0
95 | self.Qp = 2 ** self.a_bits - 1
96 | else:
97 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
98 | self.Qn = - 2 ** (self.a_bits - 1)
99 | self.Qp = 2 ** (self.a_bits - 1) - 1
100 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True)
101 | # self.s = torch.nn.Parameter(torch.ones(0.01), requires_grad=True)
102 | # self.register_parameter('Ascale', self.s)
103 | self.init_state = 0
104 |
105 | # 量化/反量化
106 | def forward(self, activation):
107 | '''
108 | For this work, each layer of weights and each layer of activations has a distinct step size, represented
109 | as an fp32 value, initialized to 2h|v|i/√OP , computed on either the initial weights values or the first
110 | batch of activations, respectively
111 | '''
112 | #V1
113 | if self.init_state==0:
114 | self.g = 1.0/math.sqrt(activation.numel() * self.Qp)
115 | self.s.data = torch.mean(torch.abs(activation.detach()))*2/(math.sqrt(self.Qp))
116 | self.init_state += 1
117 | elif self.init_state= 1: #第一层也量化
293 | if child.bias is not None:
294 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
295 | child.kernel_size, stride=child.stride,
296 | padding=child.padding, dilation=child.dilation,
297 | groups=child.groups, bias=True, padding_mode=child.padding_mode,
298 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
299 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
300 | quant_conv.bias.data = child.bias
301 | else:
302 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
303 | child.kernel_size, stride=child.stride,
304 | padding=child.padding, dilation=child.dilation,
305 | groups=child.groups, bias=False, padding_mode=child.padding_mode,
306 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
307 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
308 | quant_conv.weight.data = child.weight
309 | module._modules[name] = quant_conv
310 | elif isinstance(child, nn.ConvTranspose2d):
311 | layer_counter[0] += 1
312 | if layer_counter[0] >= 1: #第一层也量化
313 | if child.bias is not None:
314 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
315 | child.out_channels,
316 | child.kernel_size,
317 | stride=child.stride,
318 | padding=child.padding,
319 | output_padding=child.output_padding,
320 | dilation=child.dilation,
321 | groups=child.groups,
322 | bias=True,
323 | padding_mode=child.padding_mode,
324 | a_bits=a_bits,
325 | w_bits=w_bits,
326 | quant_inference=quant_inference,
327 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
328 | quant_conv_transpose.bias.data = child.bias
329 | else:
330 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
331 | child.out_channels,
332 | child.kernel_size,
333 | stride=child.stride,
334 | padding=child.padding,
335 | output_padding=child.output_padding,
336 | dilation=child.dilation,
337 | groups=child.groups, bias=False,
338 | padding_mode=child.padding_mode,
339 | a_bits=a_bits,
340 | w_bits=w_bits,
341 | quant_inference=quant_inference,
342 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
343 | quant_conv_transpose.weight.data = child.weight
344 | module._modules[name] = quant_conv_transpose
345 | elif isinstance(child, nn.Linear):
346 | layer_counter[0] += 1
347 | if layer_counter[0] >= 1: #第一层也量化
348 | if child.bias is not None:
349 | quant_linear = QuantLinear(child.in_features, child.out_features,
350 | bias=True, a_bits=a_bits, w_bits=w_bits,
351 | quant_inference=quant_inference,
352 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
353 | quant_linear.bias.data = child.bias
354 | else:
355 | quant_linear = QuantLinear(child.in_features, child.out_features,
356 | bias=False, a_bits=a_bits, w_bits=w_bits,
357 | quant_inference=quant_inference,
358 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
359 | quant_linear.weight.data = child.weight
360 | module._modules[name] = quant_linear
361 | else:
362 | add_quant_op(child, layer_counter, a_bits=a_bits, w_bits=w_bits,
363 | quant_inference=quant_inference, all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
364 |
365 |
366 | def prepare(model, inplace=False, a_bits=8, w_bits=8, quant_inference=False,
367 | all_positive=False, per_channel=False, batch_init = 20):
368 | if not inplace:
369 | model = copy.deepcopy(model)
370 | layer_counter = [0]
371 | add_quant_op(model, layer_counter, a_bits=a_bits, w_bits=w_bits,
372 | quant_inference=quant_inference, all_positive=all_positive,
373 | per_channel=per_channel, batch_init = batch_init)
374 | return model
375 |
--------------------------------------------------------------------------------
/quantization/lsqquantize_V2.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Function
7 | '''
8 | self.s = torch.nn.Parameter(torch.ones(1)) #V2
9 | 激活值量化参数s初始化使用了常数1
10 | '''
11 |
12 | # ********************* quantizers(量化器,量化) *********************
13 | # 取整(ste)
14 | class Round(Function):
15 | @staticmethod
16 | def forward(self, input):
17 | sign = torch.sign(input)
18 | output = sign * torch.floor(torch.abs(input) + 0.5)
19 | return output
20 |
21 | @staticmethod
22 | def backward(self, grad_output):
23 | grad_input = grad_output.clone()
24 | return grad_input
25 |
26 | class FunLSQ(Function):
27 | @staticmethod
28 | def forward(ctx, weight, alpha, g, Qn, Qp, per_channel=False):
29 | #根据论文里LEARNED STEP SIZE QUANTIZATION第2节的公式
30 | # assert alpha > 0, "alpha={}".format(alpha)
31 | ctx.save_for_backward(weight, alpha)
32 | ctx.other = g, Qn, Qp, per_channel
33 | if per_channel:
34 | sizes = weight.size()
35 | weight = weight.contiguous().view(weight.size()[0], -1)
36 | weight = torch.transpose(weight, 0, 1)
37 | alpha = torch.broadcast_to(alpha, weight.size())
38 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
39 | w_q = w_q * alpha
40 | w_q = torch.transpose(w_q, 0, 1)
41 | w_q = w_q.contiguous().view(sizes)
42 | else:
43 | w_q = Round.apply(torch.div(weight, alpha).clamp(Qn, Qp))
44 | w_q = w_q * alpha
45 | return w_q
46 |
47 | @staticmethod
48 | def backward(ctx, grad_weight):
49 | #根据论文里LEARNED STEP SIZE QUANTIZATION第2.1节
50 | #分为三部分:位于量化区间的、小于下界的、大于上界的
51 | weight, alpha = ctx.saved_tensors
52 | g, Qn, Qp, per_channel = ctx.other
53 | if per_channel:
54 | sizes = weight.size()
55 | weight = weight.contiguous().view(weight.size()[0], -1)
56 | weight = torch.transpose(weight, 0, 1)
57 | alpha = torch.broadcast_to(alpha, weight.size())
58 | q_w = weight / alpha
59 | q_w = torch.transpose(q_w, 0, 1)
60 | q_w = q_w.contiguous().view(sizes)
61 | else:
62 | q_w = weight / alpha
63 | smaller = (q_w < Qn).float() #bool值转浮点值,1.0或者0.0
64 | bigger = (q_w > Qp).float() #bool值转浮点值,1.0或者0.0
65 | between = 1.0 - smaller -bigger #得到位于量化区间的index
66 | if per_channel:
67 | grad_alpha = ((smaller * Qn + bigger * Qp +
68 | between * Round.apply(q_w) - between * q_w)*grad_weight * g)
69 | grad_alpha = grad_alpha.contiguous().view(grad_alpha.size()[0], -1).sum(dim=1)
70 | else:
71 | grad_alpha = ((smaller * Qn + bigger * Qp +
72 | between * Round.apply(q_w) - between * q_w)*grad_weight * g).sum().unsqueeze(dim=0) #?
73 | #在量化区间之外的值都是常数,故导数也是0
74 | grad_weight = between * grad_weight
75 | return grad_weight, grad_alpha, None, None, None, None
76 |
77 | def grad_scale(x, scale):
78 | y = x
79 | y_grad = x * scale
80 | return (y - y_grad).detach() + y_grad
81 |
82 | def round_pass(x):
83 | y = x.round()
84 | y_grad = x
85 | return (y - y_grad).detach() + y_grad
86 |
87 | # A(特征)量化
88 | class LSQActivationQuantizer(nn.Module):
89 | def __init__(self, a_bits, all_positive=False, batch_init = 20):
90 | #activations 没有per-channel这个选项的
91 | super(LSQActivationQuantizer, self).__init__()
92 | self.a_bits = a_bits
93 | self.all_positive = all_positive
94 | self.batch_init = batch_init
95 | if self.all_positive:
96 | # unsigned activation is quantized to [0, 2^b-1]
97 | self.Qn = 0
98 | self.Qp = 2 ** self.a_bits - 1
99 | else:
100 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
101 | self.Qn = - 2 ** (self.a_bits - 1)
102 | self.Qp = 2 ** (self.a_bits - 1) - 1
103 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True) #V2
104 | # self.register_parameter('Ascale', self.s)
105 | self.init_state = 0
106 |
107 | # 量化/反量化
108 | def forward(self, activation):
109 | if self.a_bits == 32:
110 | output = activation
111 | elif self.a_bits == 1:
112 | print('!Binary quantization is not supported !')
113 | assert self.a_bits != 1
114 | else:
115 | if self.init_state==0:
116 | self.g = 1.0/math.sqrt(activation.numel() * self.Qp)
117 | self.init_state += 1
118 | # print(self.s, self.g)
119 | q_a = FunLSQ.apply(activation, self.s, self.g, self.Qn, self.Qp)
120 |
121 | # alpha = grad_scale(self.s, g)
122 | # q_a = Round.apply((activation/alpha).clamp(Qn, Qp)) * alpha
123 | return q_a
124 |
125 | # W(权重)量化
126 | class LSQWeightQuantizer(nn.Module):
127 | def __init__(self, w_bits, all_positive=False, per_channel=False, batch_init = 20):
128 | super(LSQWeightQuantizer, self).__init__()
129 | self.w_bits = w_bits
130 | self.all_positive = all_positive
131 | self.batch_init = batch_init
132 | if self.all_positive:
133 | # unsigned activation is quantized to [0, 2^b-1]
134 | self.Qn = 0
135 | self.Qp = 2 ** w_bits - 1
136 | else:
137 | # signed weight/activation is quantized to [-2^(b-1), 2^(b-1)-1]
138 | self.Qn = - 2 ** (w_bits - 1)
139 | self.Qp = 2 ** (w_bits - 1) - 1
140 | self.per_channel = per_channel
141 | self.s = torch.nn.Parameter(torch.ones(1), requires_grad=True)
142 | # self.register_parameter('Wscale', self.s)
143 | self.init_state = 0
144 |
145 | # 量化/反量化
146 | def forward(self, weight):
147 | if self.init_state==0:
148 | self.g = 1.0/math.sqrt(weight.numel() * self.Qp)
149 | if self.per_channel:
150 | weight_tmp = weight.detach().contiguous().view(weight.size()[0], -1)
151 | self.s.data = torch.mean(torch.abs(weight_tmp), dim=1)*2/(math.sqrt(self.Qp))
152 | else:
153 | self.s.data = torch.mean(torch.abs(weight.detach()))*2/(math.sqrt(self.Qp))
154 | self.init_state += 1
155 | elif self.init_state= 1: #第一层也量化
282 | if child.bias is not None:
283 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
284 | child.kernel_size, stride=child.stride,
285 | padding=child.padding, dilation=child.dilation,
286 | groups=child.groups, bias=True, padding_mode=child.padding_mode,
287 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
288 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
289 | quant_conv.bias.data = child.bias
290 | else:
291 | quant_conv = QuantConv2d(child.in_channels, child.out_channels,
292 | child.kernel_size, stride=child.stride,
293 | padding=child.padding, dilation=child.dilation,
294 | groups=child.groups, bias=False, padding_mode=child.padding_mode,
295 | a_bits=a_bits, w_bits=w_bits, quant_inference=quant_inference,
296 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
297 | quant_conv.weight.data = child.weight
298 | module._modules[name] = quant_conv
299 | elif isinstance(child, nn.ConvTranspose2d):
300 | layer_counter[0] += 1
301 | if layer_counter[0] >= 1: #第一层也量化
302 | if child.bias is not None:
303 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
304 | child.out_channels,
305 | child.kernel_size,
306 | stride=child.stride,
307 | padding=child.padding,
308 | output_padding=child.output_padding,
309 | dilation=child.dilation,
310 | groups=child.groups,
311 | bias=True,
312 | padding_mode=child.padding_mode,
313 | a_bits=a_bits,
314 | w_bits=w_bits,
315 | quant_inference=quant_inference,
316 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
317 | quant_conv_transpose.bias.data = child.bias
318 | else:
319 | quant_conv_transpose = QuantConvTranspose2d(child.in_channels,
320 | child.out_channels,
321 | child.kernel_size,
322 | stride=child.stride,
323 | padding=child.padding,
324 | output_padding=child.output_padding,
325 | dilation=child.dilation,
326 | groups=child.groups, bias=False,
327 | padding_mode=child.padding_mode,
328 | a_bits=a_bits,
329 | w_bits=w_bits,
330 | quant_inference=quant_inference,
331 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
332 | quant_conv_transpose.weight.data = child.weight
333 | module._modules[name] = quant_conv_transpose
334 | elif isinstance(child, nn.Linear):
335 | layer_counter[0] += 1
336 | if layer_counter[0] >= 1: #第一层也量化
337 | if child.bias is not None:
338 | quant_linear = QuantLinear(child.in_features, child.out_features,
339 | bias=True, a_bits=a_bits, w_bits=w_bits,
340 | quant_inference=quant_inference,
341 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
342 | quant_linear.bias.data = child.bias
343 | else:
344 | quant_linear = QuantLinear(child.in_features, child.out_features,
345 | bias=False, a_bits=a_bits, w_bits=w_bits,
346 | quant_inference=quant_inference,
347 | all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
348 | quant_linear.weight.data = child.weight
349 | module._modules[name] = quant_linear
350 | else:
351 | add_quant_op(child, layer_counter, a_bits=a_bits, w_bits=w_bits,
352 | quant_inference=quant_inference, all_positive=all_positive, per_channel=per_channel, batch_init = batch_init)
353 |
354 |
355 | def prepare(model, inplace=False, a_bits=8, w_bits=8, quant_inference=False,
356 | all_positive=False, per_channel=False, batch_init = 20):
357 | if not inplace:
358 | model = copy.deepcopy(model)
359 | layer_counter = [0]
360 | add_quant_op(model, layer_counter, a_bits=a_bits, w_bits=w_bits,
361 | quant_inference=quant_inference, all_positive=all_positive,
362 | per_channel=per_channel, batch_init = batch_init)
363 | return model
364 |
--------------------------------------------------------------------------------
/seebnparam.py:
--------------------------------------------------------------------------------
1 | #encoding=utf-8
2 | #Author: ZouJiu
3 | #Time: 2021-11-13
4 |
5 | import numpy as np
6 | import torch
7 | import os
8 | import time
9 | import torch
10 | import torchvision
11 | import torchvision.transforms as transforms
12 | from torch.utils.data import Dataset, DataLoader
13 | # from load_datas import TF, trainDataset, collate_fn
14 | import models #, resnet50
15 | from quantization.lsqquantize_V1 import prepare as lsqprepareV1
16 | from quantization.lsqquantize_V2 import prepare as lsqprepareV2
17 | from quantization.lsqplus_quantize_V1 import prepare as lsqplusprepareV1
18 | from quantization.lsqplus_quantize_V2 import prepare as lsqplusprepareV2
19 | from quantization.lsqplus_quantize_V1 import update_LSQplus_activation_Scalebeta
20 | import torch.optim as optim
21 | import datetime
22 | import matplotlib.pyplot as plt
23 | # os.environ["CUDA_VISIBLE_DEVICES"] = '0'
24 |
25 | def adjust_lr(optimizer, stepiters, epoch):
26 | # if stepiters < 100: #2warmup start
27 | # lr = stepiters*0.01/100
28 | # elif stepiters < 2000:
29 | # lr = 0.001
30 | # elif stepiters < 3000:
31 | # lr = 0.001
32 | if epoch <= 30:
33 | lr = 0.1
34 | elif epoch <= 46:
35 | lr = 0.01
36 | elif epoch <= 55:
37 | lr = 0.001
38 | else:
39 | lr = 0.0001
40 | for param_group in optimizer.param_groups:
41 | param_group['lr'] = lr
42 | return lr
43 |
44 | def trainer():
45 | #batch_init 使用预训练模型对量化参数进行初始化的iters or steps
46 | config = {'a_bit':8, 'w_bit':8, "all_positive":False, "per_channel":True,
47 | "num_classes":10,"batch_init":20}
48 | pretrainedmodel = r'C:\Users\10696\Desktop\QAT\lsq+\log\model_108_42510_0.003_92.528_2021-11-27_17-49-47.pth'
49 | # Resnet_pretrain = False
50 | batch_size = 128
51 | num_epochs = 112
52 | Floatmodel = True #QAT or float-32 train False or True
53 | LSQplus = False #LSQ+ or LSQ True or False
54 | version = 'V1'
55 | scratch = False #从最开始训练,不是finetuning, 若=False就是finetuning
56 | showstep = 31
57 | #LSQPlusActivationQuantizer里的self.beta初始值要关注
58 | plusV1_inititers = 30 #update激活层的量化参数s和beta
59 | assert showstep > 0
60 | assert isinstance(showstep, int)
61 | assert isinstance(batch_size, int)
62 | assert isinstance(num_epochs, int)
63 | if Floatmodel:
64 | prefix = 'float32'
65 | elif LSQplus and not Floatmodel and version=='V1':
66 | if not config['per_channel']:
67 | prefix = 'LSQplus_V1'
68 | else:
69 | prefix = 'LSQplus_V1_pcl'
70 | elif LSQplus and not Floatmodel and version=='V2':
71 | if not config['per_channel']:
72 | prefix = 'LSQplus_V2'
73 | else:
74 | prefix = 'LSQplus_V2_pcl'
75 | elif not LSQplus and not Floatmodel and version=='V1':
76 | if not config['per_channel']:
77 | prefix = 'LSQ_V1'
78 | else:
79 | prefix = 'LSQ_V1_pcl'
80 | elif not LSQplus and not Floatmodel and version=='V2':
81 | if not config['per_channel']:
82 | prefix = 'LSQ_V2'
83 | else:
84 | prefix = 'LSQ_V2_pcl'
85 | else:
86 | print('setting is wrong......, please check it')
87 | exit(-1)
88 |
89 | tim = datetime.datetime.strftime(datetime.datetime.now(),"%Y-%m-%d %H-%M-%S").replace(' ', '_')
90 | logfile = r'log'+os.sep+prefix+'_log_%s.txt'%tim
91 | savepath = r'log'
92 | flogs = open(logfile, 'w')
93 |
94 | train_transform = transforms.Compose([
95 | transforms.RandomCrop(32, padding=4),
96 | transforms.RandomHorizontalFlip(p=0.5),
97 | # transforms.Resize((32, 32)),
98 | transforms.ToTensor(),
99 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))])
100 | test_transform = transforms.Compose([
101 | # transforms.Resize((32, 32)),
102 | transforms.ToTensor(),
103 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))])
104 |
105 | trainset = torchvision.datasets.CIFAR10(root='datas', train=True,
106 | download=True, transform=train_transform)
107 | trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
108 | shuffle=True, num_workers=2, drop_last=True)
109 |
110 | testset = torchvision.datasets.CIFAR10(root='datas', train=False,
111 | download=True, transform=test_transform)
112 | testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
113 | shuffle=False, num_workers=2, drop_last=True)
114 |
115 | classes = ('plane', 'car', 'bird', 'cat',
116 | 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
117 | device = "cuda" if torch.cuda.is_available() else "cpu"
118 |
119 | model = models.resnet18(num_classes=config['num_classes'])
120 |
121 | #LSQ+
122 | if LSQplus and not Floatmodel and version=='V1':
123 | #LSQplus V1
124 | lsqplusprepareV1(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
125 | all_positive=config["all_positive"], per_channel=config["per_channel"],
126 | batch_init = config["batch_init"])
127 | print(model, '\npreparing lsqplus V1 models')
128 | elif LSQplus and not Floatmodel and version=='V2':
129 | #LSQplus V2
130 | lsqplusprepareV2(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
131 | all_positive=config["all_positive"], per_channel=config["per_channel"],
132 | batch_init = config["batch_init"])
133 | print(model, '\npreparing lsqplus V2 models')
134 | elif not LSQplus and not Floatmodel and version=='V1':
135 | #LSQ V1
136 | lsqprepareV1(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
137 | all_positive=config["all_positive"], per_channel=config["per_channel"],
138 | batch_init = config["batch_init"])
139 | print(model, '\npreparing lsq V1 models')
140 | elif not LSQplus and not Floatmodel and version=='V2':
141 | #LSQ V2
142 | lsqprepareV2(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
143 | all_positive=config["all_positive"], per_channel=config["per_channel"],
144 | batch_init = config["batch_init"])
145 | print(model, '\npreparing lsq V2 models')
146 | elif Floatmodel:
147 | print(model, '\npreparing float models')
148 | pass
149 | # if not Floatmodel:
150 | # print(model)
151 | flogs.write(str(model)+'\n')
152 | if not os.path.exists(pretrainedmodel):
153 | print('the pretrainedmodel do not exists %s'%pretrainedmodel)
154 | if pretrainedmodel and os.path.exists(pretrainedmodel):
155 | print('loading pretrained model: ', pretrainedmodel)
156 | if torch.cuda.is_available():
157 | state_dict = torch.load(pretrainedmodel, map_location='cuda')
158 | else:
159 | state_dict = torch.load(pretrainedmodel, map_location='cpu')
160 | missingkeys, unexpected_keys = model.load_state_dict(state_dict['state_dict'], strict=False)
161 | print('missingkeys: ', missingkeys)
162 | print('unexpected_keys: ', unexpected_keys)
163 | if not scratch:
164 | iteration = state_dict['iteration']
165 | alliters = state_dict['alliters']
166 | nowepoch = state_dict['nowepoch']
167 | else:
168 | iteration = 0
169 | alliters = 0
170 | nowepoch = 0
171 | print('loading complete')
172 | else:
173 | print('no pretrained model')
174 | iteration = 0
175 | alliters = 0
176 | nowepoch = 0
177 | model = model.to(device)
178 |
179 | weight = []
180 | count = 0
181 | weightsepa = []
182 | for m in model.modules():
183 | if isinstance(m, torch.nn.Conv2d):
184 | w = m.weight.data.clone().detach().numpy() #out channel, in channel, h, w
185 | out_channel = w.shape[0]
186 | w_per_channel = np.reshape(w, (out_channel, -1))
187 | w_per_layer = np.reshape(w, (-1))
188 | print(w_per_channel.shape, w_per_layer.shape)
189 | weight.append(w_per_layer)
190 | weightsepa.extend(w_per_channel)
191 | print(len(weightsepa[-1]))
192 | count += 1
193 |
194 | print(len(weightsepa[11]))
195 | plt.hist(weightsepa[11], bins=100)
196 | plt.title("all weights parameters")
197 | plt.ylabel('numbers')
198 | plt.xlabel("weights")
199 | plt.show()
200 |
201 | # plt.figure(figsize=(1620,1620))
202 | fig, axs = plt.subplots(3, 3)
203 | for i in range(3):
204 | for j in range(3):
205 | axs[i, j].hist(weight[i+j], bins=100)
206 | # axs[i, j].set_title("weights of layer %d"%(i+j+1))
207 |
208 | plt.show()
209 |
210 | bn = []
211 | count = 0
212 | bnsepa = []
213 | for m in model.modules():
214 | if isinstance(m, torch.nn.BatchNorm2d):
215 | size = m.weight.data.shape[0]
216 | gammas = list(m.weight.data.clone().detach().numpy())
217 | bn.extend(gammas)
218 | bnsepa.append(gammas)
219 | print(len(bnsepa[-1]))
220 | count += 1
221 |
222 | plt.hist(bn, bins=100)
223 | plt.ylabel('numbers')
224 | plt.xlabel("γ")
225 | plt.show()
226 |
227 | # bn.sort()
228 | plt.plot(np.arange(len(bn)), bn)
229 | plt.title("resnet18 BN γ parameters γ*x+β")
230 | plt.ylabel("no sorted γ")
231 | plt.xlabel("indexs")
232 | plt.show()
233 |
234 | bn.sort()
235 | plt.plot(np.arange(len(bn)), bn)
236 | plt.title("resnet18 BN γ parameters γ*x+β")
237 | plt.ylabel("sorted γ")
238 | plt.xlabel("indexs")
239 | plt.show()
240 |
241 | tmp9 = bnsepa[2]
242 | plt.plot(np.arange(len(tmp9)), tmp9)
243 | plt.title("resnet18 BN γ parameters γ*x+β")
244 | plt.ylabel("no sorted γ")
245 | plt.xlabel("3th layer")
246 | plt.show()
247 |
248 | tmp9 = bnsepa[2]
249 | tmp9.sort()
250 | plt.plot(np.arange(len(tmp9)), tmp9)
251 | plt.title("resnet18 BN γ parameters γ*x+β")
252 | plt.ylabel("sorted γ")
253 | plt.xlabel("3th layer")
254 | plt.show()
255 |
256 | tmp9 = bnsepa[17]
257 | plt.plot(np.arange(len(tmp9)), tmp9)
258 | plt.title("resnet18 BN γ parameters γ*x+β")
259 | plt.ylabel("no sorted γ")
260 | plt.xlabel("18th layer")
261 | plt.show()
262 |
263 | tmp9 = bnsepa[17]
264 | tmp9.sort()
265 | plt.plot(np.arange(len(tmp9)), tmp9)
266 | plt.title("resnet18 BN γ parameters γ*x+β")
267 | plt.ylabel("sorted γ")
268 | plt.xlabel("18th layer")
269 | plt.show()
270 |
271 | plt.close()
272 | print(len(bnsepa))
273 | print(bn[:30])
274 | print(bn[-30:])
275 |
276 | if __name__ == '__main__':
277 | trainer()
278 |
--------------------------------------------------------------------------------
/trains.py:
--------------------------------------------------------------------------------
1 | #encoding=utf-8
2 | #Author: ZouJiu
3 | #Time: 2021-11-13
4 |
5 | import numpy as np
6 | import torch
7 | import os
8 | import time
9 | import torch
10 | import torchvision
11 | import torchvision.transforms as transforms
12 | from torch.utils.data import Dataset, DataLoader
13 | # from load_datas import TF, trainDataset, collate_fn
14 | import models #, resnet50
15 | from quantization.lsqquantize_V1 import prepare as lsqprepareV1
16 | from quantization.lsqquantize_V2 import prepare as lsqprepareV2
17 | from quantization.lsqplus_quantize_V1 import prepare as lsqplusprepareV1
18 | from quantization.lsqplus_quantize_V2 import prepare as lsqplusprepareV2
19 | from quantization.lsqplus_quantize_V1 import update_LSQplus_activation_Scalebeta
20 | import torch.optim as optim
21 | import datetime
22 | # os.environ["CUDA_VISIBLE_DEVICES"] = '0'
23 |
24 | def adjust_lr(optimizer, stepiters, epoch):
25 | # if stepiters < 100: #2warmup start
26 | # lr = stepiters*0.01/100
27 | # elif stepiters < 2000:
28 | # lr = 0.001
29 | # elif stepiters < 3000:
30 | # lr = 0.001
31 | if epoch <= 31:
32 | lr = 0.1
33 | elif epoch <= 61:
34 | lr = 0.01
35 | elif epoch <= 81:
36 | lr = 0.001
37 | else:
38 | lr = 0.0001
39 | for param_group in optimizer.param_groups:
40 | param_group['lr'] = lr
41 | return lr
42 |
43 | def trainer():
44 | #batch_init 使用预训练模型对量化参数进行初始化的iters or steps
45 | config = {'a_bit':8, 'w_bit':8, "all_positive":False, "per_channel":False,
46 | "num_classes":10,"batch_init":20}
47 | pretrainedmodel = r'C:\Users\10696\Desktop\QAT\lsq+\log\model_108_42510_0.003_92.528_2021-11-27_17-49-47.pth'
48 | # Resnet_pretrain = False
49 | batch_size = 128
50 | num_epochs = 112
51 | Floatmodel = False #QAT or float-32 train False or True
52 | LSQplus = False #LSQ+ or LSQ True or False
53 | version = 'V1'
54 | scratch = True #从最开始训练,不是finetuning, 若=False就是finetuning
55 | showstep = 31
56 | #LSQPlusActivationQuantizer里的self.beta初始值要关注
57 | plusV1_inititers = 30 #update激活层的量化参数s和beta
58 | assert showstep > 0
59 | assert isinstance(showstep, int)
60 | assert isinstance(batch_size, int)
61 | assert isinstance(num_epochs, int)
62 | if Floatmodel:
63 | prefix = 'float32'
64 | elif LSQplus and not Floatmodel and version=='V1':
65 | if not config['per_channel']:
66 | prefix = 'LSQplus_V1'
67 | else:
68 | prefix = 'LSQplus_V1_pcl'
69 | elif LSQplus and not Floatmodel and version=='V2':
70 | if not config['per_channel']:
71 | prefix = 'LSQplus_V2'
72 | else:
73 | prefix = 'LSQplus_V2_pcl'
74 | elif not LSQplus and not Floatmodel and version=='V1':
75 | if not config['per_channel']:
76 | prefix = 'LSQ_V1'
77 | else:
78 | prefix = 'LSQ_V1_pcl'
79 | elif not LSQplus and not Floatmodel and version=='V2':
80 | if not config['per_channel']:
81 | prefix = 'LSQ_V2'
82 | else:
83 | prefix = 'LSQ_V2_pcl'
84 | else:
85 | print('setting is wrong......, please check it')
86 | exit(-1)
87 |
88 | tim = datetime.datetime.strftime(datetime.datetime.now(),"%Y-%m-%d %H-%M-%S").replace(' ', '_')
89 | logfile = r'log'+os.sep+prefix+'_log_%s.txt'%tim
90 | savepath = r'log'
91 | flogs = open(logfile, 'w')
92 |
93 | train_transform = transforms.Compose([
94 | transforms.RandomCrop(32, padding=4),
95 | transforms.RandomHorizontalFlip(p=0.5),
96 | # transforms.Resize((32, 32)),
97 | transforms.ToTensor(),
98 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))])
99 | test_transform = transforms.Compose([
100 | # transforms.Resize((32, 32)),
101 | transforms.ToTensor(),
102 | transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))])
103 |
104 | trainset = torchvision.datasets.CIFAR10(root='datas', train=True,
105 | download=True, transform=train_transform)
106 | trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
107 | shuffle=True, num_workers=2, drop_last=True)
108 |
109 | testset = torchvision.datasets.CIFAR10(root='datas', train=False,
110 | download=True, transform=test_transform)
111 | testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
112 | shuffle=False, num_workers=2, drop_last=True)
113 |
114 | classes = ('plane', 'car', 'bird', 'cat',
115 | 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
116 | device = "cuda" if torch.cuda.is_available() else "cpu"
117 |
118 | model = models.resnet18(num_classes=config['num_classes'])
119 |
120 | #LSQ+
121 | if LSQplus and not Floatmodel and version=='V1':
122 | #LSQplus V1
123 | lsqplusprepareV1(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
124 | all_positive=config["all_positive"], per_channel=config["per_channel"],
125 | batch_init = config["batch_init"])
126 | print(model, '\npreparing lsqplus V1 models')
127 | elif LSQplus and not Floatmodel and version=='V2':
128 | #LSQplus V2
129 | lsqplusprepareV2(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
130 | all_positive=config["all_positive"], per_channel=config["per_channel"],
131 | batch_init = config["batch_init"])
132 | print(model, '\npreparing lsqplus V2 models')
133 | elif not LSQplus and not Floatmodel and version=='V1':
134 | #LSQ V1
135 | lsqprepareV1(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
136 | all_positive=config["all_positive"], per_channel=config["per_channel"],
137 | batch_init = config["batch_init"])
138 | print(model, '\npreparing lsq V1 models')
139 | elif not LSQplus and not Floatmodel and version=='V2':
140 | #LSQ V2
141 | lsqprepareV2(model, inplace=True, a_bits=config["a_bit"], w_bits=config["w_bit"],
142 | all_positive=config["all_positive"], per_channel=config["per_channel"],
143 | batch_init = config["batch_init"])
144 | print(model, '\npreparing lsq V2 models')
145 | elif Floatmodel:
146 | print(model, '\npreparing float models')
147 | pass
148 | # if not Floatmodel:
149 | # print(model)
150 | flogs.write(str(model)+'\n')
151 | if not os.path.exists(pretrainedmodel):
152 | print('the pretrainedmodel do not exists %s'%pretrainedmodel)
153 | if pretrainedmodel and os.path.exists(pretrainedmodel):
154 | print('loading pretrained model: ', pretrainedmodel)
155 | if torch.cuda.is_available():
156 | state_dict = torch.load(pretrainedmodel, map_location='cuda')
157 | else:
158 | state_dict = torch.load(pretrainedmodel, map_location='cpu')
159 | missingkeys, unexpected_keys = model.load_state_dict(state_dict['state_dict'], strict=False)
160 | print('missingkeys: ', missingkeys)
161 | print('unexpected_keys: ', unexpected_keys)
162 | if not scratch:
163 | iteration = state_dict['iteration']
164 | alliters = state_dict['alliters']
165 | nowepoch = state_dict['nowepoch']
166 | else:
167 | iteration = 0
168 | alliters = 0
169 | nowepoch = 0
170 | print('loading complete')
171 | else:
172 | print('no pretrained model')
173 | iteration = 0
174 | alliters = 0
175 | nowepoch = 0
176 | model = model.to(device)
177 | # print(torch.__version__)
178 | time.sleep(3)
179 | adam = False
180 | lr = 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
181 | momnetum=0.9
182 | params = [p for p in model.parameters() if p.requires_grad]
183 | # if adam:
184 | # optimizer = optim.Adam(params, lr=lr, betas=(momnetum, 0.999)) # adjust beta1 to momentum
185 | # else:
186 | optimizer = optim.SGD(params, lr=lr, momentum=momnetum, weight_decay=5e-4)
187 | # and a learning rate scheduler
188 | # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
189 | # step_size=7,
190 | # gamma=0.1)
191 | torch.manual_seed(999999)
192 | start = time.time()
193 | print('Using {} device'.format(device))
194 | flogs.write('Using {} device'.format(device)+'\n')
195 | stepiters = 0
196 | criterion = torch.nn.CrossEntropyLoss()
197 | pre = -999999
198 | for epoch in range(num_epochs):
199 | print('\nEpoch {}/{}'.format(epoch, num_epochs))
200 | flogs.write('Epoch {}/{}'.format(epoch, num_epochs)+'\n')
201 | print('-'*100)
202 | running_loss = 0
203 | if epochnowepoch:
254 | print('validation of testes')
255 | with torch.no_grad():
256 | count = 0
257 | print('length of testloader: ', len(testloader))
258 | for data in testloader:
259 | count += 1
260 | images, labels = data
261 | images = images.to(device)
262 | labels = labels.to(device)
263 | outputs = model(images)
264 | # if count==100:
265 | # break
266 | _, predictions = torch.max(outputs, 1)
267 | # collect the correct predictions for each class
268 | for label, prediction in zip(labels, predictions):
269 | if label == prediction:
270 | correct_pred[classes[label]] += 1
271 | total_pred[classes[label]] += 1
272 |
273 | # print accuracy for each class
274 | correctall = 0
275 | alltest = 0
276 | for classname, correct_count in correct_pred.items():
277 | accuracy = 100 * float(correct_count) / total_pred[classname]
278 | print("Validation Accuracy for class {:5s} is: {:.1f} %".format(classname,
279 | accuracy))
280 | correctall += correct_count
281 | alltest += total_pred[classname]
282 | flogs.write("Accuracy for class {:5s} is: {:.1f} %".format(classname, accuracy)+'\n')
283 | flogs.flush()
284 | Accuracy = round(100 * float(correctall)/alltest, 3)
285 | print("Accuracy all is: {:.1f}".format(Accuracy))
286 |
287 | # lr_scheduler.step()
288 | iteration=0
289 | try:
290 | if epoch>nowepoch and Accuracy>pre:
291 | torch.save(savestate, os.path.join(savepath, prefix+'_models_{}_{}_{}_{:.3f}_{}_{}.pth'.format(
292 | lr, epoch, stepiters, loss.item(),Accuracy,tim)))
293 | pre = Accuracy
294 | except:
295 | pass
296 | # evaluate(model, dataloader_test, device = device)
297 | timeused = time.time() - start
298 | print('Training complete in {:.0f}m {:.0f}s'.format(timeused//60, timeused%60))
299 | flogs.close()
300 |
301 | if __name__ == '__main__':
302 | trainer()
303 |
--------------------------------------------------------------------------------