├── requirements.txt ├── logger.py ├── LICENSE ├── README.md ├── .gitignore └── convert.py /requirements.txt: -------------------------------------------------------------------------------- 1 | colorlog==4.7.2 2 | onnx==1.8.1 3 | numpy==1.18.5 4 | typer==0.3.2 5 | -------------------------------------------------------------------------------- /logger.py: -------------------------------------------------------------------------------- 1 | import logging 2 | 3 | from colorlog import ColoredFormatter 4 | 5 | LOG_LEVEL = logging.INFO 6 | LOGFORMAT = " %(log_color)s%(levelname)-8s%(reset)s| %(name)s | %(log_color)s%(message)s%(reset)s | (%(filename)s:%(lineno)d)" 7 | logging.root.setLevel(LOG_LEVEL) 8 | formatter = ColoredFormatter(LOGFORMAT) 9 | stream = logging.StreamHandler() 10 | stream.setLevel(LOG_LEVEL) 11 | stream.setFormatter(formatter) 12 | log = logging.getLogger("onnx-typecast") 13 | log.setLevel(LOG_LEVEL) 14 | log.addHandler(stream) 15 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Aadhithya Sankar (ஆதித்யா சங்கர்) 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # onnx-typecast 2 | A simple python script to typecast ONNX model parameters from INT64 to INT32. 3 | 4 | ## Why? 5 | I wanted to play around with [ONNX.js](https://github.com/microsoft/onnxjs) and soon figured out that it doesn't support onnx models with INT64 parameters. Also, OpenCV doesn't seem to support INT64 parameters. 6 | 7 | ## What does this script do? 8 | - The script goes through the parameters of each node of the onnx model and blindly converts INT64 parameters to INT32. 9 | - It also converts the constant parameters from INT64 to INT32. 10 | - Finally, creates a new model and saves it. 11 | 12 | ## What's the catch? 13 | - **The script does not handle overflows and blindly converts all INT64 parameters to INT32.** 14 | - So ops that require `>INT32.max` or ` INT32 Converter") 75 | log.info(f"Loading Model: {model_path}") 76 | # * load model. 77 | model = onnx.load_model(model_path) 78 | ch.check_model(model) 79 | # * get model opset version. 80 | opset_version = model.opset_import[0].version 81 | graph = model.graph 82 | # * The initializer holds all non-constant weights. 83 | init = graph.initializer 84 | # * collect model params in a dictionary. 85 | params_dict = make_param_dictionary(init) 86 | log.info("Converting INT64 model params to INT32...") 87 | # * convert all INT64 aprams to INT32. 88 | converted_params = convert_params_to_int32(params_dict) 89 | log.info("Converting constant INT64 nodes to INT32...") 90 | new_nodes = convert_constant_nodes_to_int32(graph.node) 91 | 92 | graph_name = f"{graph.name}-int32" 93 | log.info("Creating new graph...") 94 | # * create a new graph with converted params and new nodes. 95 | graph_int32 = h.make_graph( 96 | new_nodes, 97 | graph_name, 98 | graph.input, 99 | graph.output, 100 | initializer=converted_params, 101 | ) 102 | log.info("Creating new int32 model...") 103 | model_int32 = h.make_model(graph_int32, producer_name="onnx-typecast") 104 | model_int32.opset_import[0].version = opset_version 105 | ch.check_model(model_int32) 106 | log.info(f"Saving converted model as: {out_path}") 107 | onnx.save_model(model_int32, out_path) 108 | log.info(f"Done Done London. 🎉") 109 | return 110 | 111 | 112 | if __name__ == "__main__": 113 | typer.run(convert_model_to_int32) 114 | --------------------------------------------------------------------------------