├── content
├── tags
│ ├── image
│ │ └── contents.lr
│ ├── survey
│ │ └── contents.lr
│ ├── genetic
│ │ └── contents.lr
│ ├── spanish
│ │ └── contents.lr
│ ├── regression
│ │ └── contents.lr
│ ├── contents.lr
│ └── classification
│ │ └── contents.lr
├── contents.lr
├── sitemap.xml
│ └── contents.lr
├── german-credit
│ └── contents.lr
├── vote
│ ├── contents.lr
│ └── vote.csv
├── glass
│ ├── contents.lr
│ ├── glass.csv
│ └── glass.arff
├── all-aml-leukemia
│ └── contents.lr
├── travel-survey
│ └── contents.lr
├── about
│ └── contents.lr
├── labor
│ ├── contents.lr
│ ├── labor.csv
│ └── labor.arff
├── breast-cancer
│ ├── contents.lr
│ ├── breast-cancer.csv
│ └── breast-cancer.arff
├── diabetes
│ └── contents.lr
├── letter
│ └── contents.lr
├── tic-tac-toe
│ └── contents.lr
├── ionosphere
│ └── contents.lr
├── car
│ └── contents.lr
├── iris
│ ├── contents.lr
│ ├── iris.csv
│ └── iris.arff
├── zoo
│ ├── contents.lr
│ ├── zoo.csv
│ └── zoo.arff
├── soybean
│ └── contents.lr
└── divorce
│ ├── contents.lr
│ └── divorce.csv
├── biglittledata.lektorproject
├── models
├── tags.ini
├── page.ini
├── datasets.ini
├── tag.ini
└── dataset.ini
├── ipfs
├── ipfs.service
├── add-ipfs.yml
└── install-ipfs.yml
├── templates
├── page.html
├── sitemap.xml
├── tag.html
├── index.html
├── macros
│ └── pagination.html
├── layout.html
└── dataset.html
├── README.md
└── assets
└── static
└── style.css
/content/tags/image/contents.lr:
--------------------------------------------------------------------------------
1 | name: image
2 |
--------------------------------------------------------------------------------
/content/tags/survey/contents.lr:
--------------------------------------------------------------------------------
1 | name: survey
2 |
--------------------------------------------------------------------------------
/content/tags/genetic/contents.lr:
--------------------------------------------------------------------------------
1 | name: genetic
2 |
--------------------------------------------------------------------------------
/content/tags/spanish/contents.lr:
--------------------------------------------------------------------------------
1 | name: spanish
2 |
--------------------------------------------------------------------------------
/content/tags/regression/contents.lr:
--------------------------------------------------------------------------------
1 | name: regression
2 |
--------------------------------------------------------------------------------
/content/contents.lr:
--------------------------------------------------------------------------------
1 | _model: datasets
2 | ---
3 | _template: index.html
4 |
--------------------------------------------------------------------------------
/content/sitemap.xml/contents.lr:
--------------------------------------------------------------------------------
1 | _template: sitemap.xml
2 | ---
3 | _model: none
4 |
--------------------------------------------------------------------------------
/content/tags/contents.lr:
--------------------------------------------------------------------------------
1 | _model: tags
2 | ---
3 | _slug: tags
4 | ---
5 | _template: index.html
6 |
--------------------------------------------------------------------------------
/content/tags/classification/contents.lr:
--------------------------------------------------------------------------------
1 | name: classification
2 | ---
3 | _model: tag
4 | ---
5 | _template: tag.html
6 |
--------------------------------------------------------------------------------
/biglittledata.lektorproject:
--------------------------------------------------------------------------------
1 | [project]
2 | name = biglittledata
3 | locale = en_US
4 | url = "https://www.biglittledata.net"
5 | url_style = "relative"
6 |
--------------------------------------------------------------------------------
/models/tags.ini:
--------------------------------------------------------------------------------
1 | [model]
2 | name = Tags
3 | label = Tags
4 | hidden = yes
5 | protected = yes
6 |
7 | [children]
8 | model = tag
9 | order_by = name
10 |
11 |
--------------------------------------------------------------------------------
/models/page.ini:
--------------------------------------------------------------------------------
1 | [model]
2 | name = Page
3 | label = {{ this.title }}
4 |
5 | [fields.title]
6 | label = Title
7 | type = string
8 |
9 | [fields.body]
10 | label = Body
11 | type = markdown
12 |
--------------------------------------------------------------------------------
/ipfs/ipfs.service:
--------------------------------------------------------------------------------
1 | [Unit]
2 | Description=IPFS daemon
3 | After=network.target
4 |
5 | [Service]
6 | ExecStart=/usr/local/bin/ipfs daemon
7 | Restart=on-failure
8 |
9 | [Install]
10 | WantedBy=default.target
11 |
--------------------------------------------------------------------------------
/templates/page.html:
--------------------------------------------------------------------------------
1 | {% extends "layout.html" %}
2 | {% block title %}{{ this.title }}{% endblock %}
3 | {% block body %}
4 |
{{ this.title }}
5 |
6 | {{ this.body }}
7 |
8 | {% endblock %}
9 |
--------------------------------------------------------------------------------
/content/german-credit/contents.lr:
--------------------------------------------------------------------------------
1 | name: German Credit
2 | ---
3 | attributes: 21
4 | ---
5 | description: German Credit data
6 | ---
7 | instances: 1000
8 | ---
9 | license: Public Domain
10 | ---
11 | tags: classification
12 |
--------------------------------------------------------------------------------
/models/datasets.ini:
--------------------------------------------------------------------------------
1 | [model]
2 | name = Datasets
3 | label = Datasets
4 | hidden = yes
5 | protected = yes
6 |
7 | [children]
8 | model = dataset
9 | order_by = name
10 |
11 | [pagination]
12 | enabled = no
13 | per_page = 10
14 |
--------------------------------------------------------------------------------
/models/tag.ini:
--------------------------------------------------------------------------------
1 | [model]
2 | name = Tag
3 | label = {{ this.name }}
4 | hidden = yes
5 |
6 | [children]
7 | replaced_with = site.query('/').filter(F.tags.contains(this.name))
8 |
9 | [fields.name]
10 | label = Name
11 | type = string
12 |
--------------------------------------------------------------------------------
/content/vote/contents.lr:
--------------------------------------------------------------------------------
1 | name: Vote
2 | ---
3 | attributes: 16
4 | ---
5 | description: 1984 United Stated Congressional Voting Records; Classify as Republican or Democrat
6 | ---
7 | instances: 435
8 | ---
9 | license: Public Domain
10 | ---
11 | tags: classification
12 |
--------------------------------------------------------------------------------
/content/glass/contents.lr:
--------------------------------------------------------------------------------
1 | name: Glass
2 | ---
3 | attributes: 10
4 | ---
5 | description: From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc).
6 | ---
7 | instances: 214
8 | ---
9 | license: Public Domain
10 | ---
11 | tags: classification
12 |
--------------------------------------------------------------------------------
/templates/sitemap.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 | {%- for page in [site.root] if page != this recursive %}
4 | {{ page|url(external=true) }}
5 | {{- loop(page.children) }}
6 | {%- endfor %}
7 |
8 |
--------------------------------------------------------------------------------
/templates/tag.html:
--------------------------------------------------------------------------------
1 | {% extends "layout.html" %}
2 | {% block title %}Datasets tagged {{ this.name }}{% endblock %}
3 | {% block body %}
4 | Tag: {{ this.name }}
5 | Datasets:
6 |
7 | {% for i in this.children %}
8 | {{ i.name }}
9 | {% else %}
10 | No items.
11 | {% endfor %}
12 |
13 | {% endblock %}
14 |
--------------------------------------------------------------------------------
/content/all-aml-leukemia/contents.lr:
--------------------------------------------------------------------------------
1 | name: ALL-AML Leukemia
2 | ---
3 | attributes: 7130
4 | ---
5 | description: This dataset contains genetic expression arrays, enabling us to predict which kind of Leukemia has a person based on its genetic activity (ALL or AML) and also which genes are more important.
6 | ---
7 | instances: 72
8 | ---
9 | license: Public Domain
10 | ---
11 | tags: classification, genetic
12 |
--------------------------------------------------------------------------------
/ipfs/add-ipfs.yml:
--------------------------------------------------------------------------------
1 | - hosts: all
2 | become_method: sudo
3 | remote_user: pi
4 | name: Add files to IPFS
5 | vars_prompt:
6 | - name: ipfs
7 | prompt: Put here the IPFS hash to pin
8 | private: no
9 | tasks:
10 | - name: Download files
11 | command: "ipfs get /ipfs/{{ ipfs }}"
12 | become: yes
13 | - name: Pin files
14 | command: "ipfs pin add /ipfs/{{ ipfs }}"
15 | become: yes
16 |
17 |
--------------------------------------------------------------------------------
/content/travel-survey/contents.lr:
--------------------------------------------------------------------------------
1 | name: Travel Survey
2 | ---
3 | attributes: 12
4 | ---
5 | description:
6 |
7 | Travel Survey contains the result of a survey about travel made at Valladolid University. The questions, in Spanish, are all about the habits of travelers on their last travel.
8 |
9 | This dataset was made by [Adrián Arroyo](http://adrianistan.eu), Pablo Valdunciel, Duero Cuadrilleo and Héctor Sáenz.
10 | ---
11 | instances: 217
12 | ---
13 | license: Public Domain
14 | ---
15 | tags: spanish, survey
16 |
--------------------------------------------------------------------------------
/content/about/contents.lr:
--------------------------------------------------------------------------------
1 | _model: page
2 | ---
3 | title: About BigLittleData
4 | ---
5 | body:
6 |
7 | This website is a repository of datasets under open licenses, running under [IPFS](https://ipfs.io/). The main objectives are:
8 |
9 | * Easy interface to download datasets in different formats
10 | * Simple webpage to be able to be used anywhere
11 | * Distributed content using IPFS underlaying.
12 |
13 | To add or request datasets, go to: [https://github.com/aarroyoc/biglittledata](https://github.com/aarroyoc/biglittledata)
14 |
--------------------------------------------------------------------------------
/templates/index.html:
--------------------------------------------------------------------------------
1 | {% extends "layout.html" %}
2 | {% block title %}BigLittleData{% endblock %}
3 | {% block body %}
4 | Welcome to BigLittleData!
5 |
6 | A curated dataset repository with open licenses for machine learning, big data and statistics.
7 | Datasets
8 |
9 | {% for p in this.children %}
10 | {% if p._model == "dataset" %}
11 | {{ p.name }}
12 | {% endif %}
13 | {% endfor %}
14 |
15 |
16 | {% endblock %}
17 |
--------------------------------------------------------------------------------
/models/dataset.ini:
--------------------------------------------------------------------------------
1 | [model]
2 | name = Dataset
3 | label = {{ this.name }}
4 |
5 | [fields.name]
6 | label = Name
7 | type = string
8 |
9 | [fields.description]
10 | label = Description
11 | type = markdown
12 |
13 | [fields.attributes]
14 | label = Atributtes
15 | type = integer
16 |
17 | [fields.instances]
18 | label = Instances
19 | type = integer
20 |
21 | [fields.license]
22 | label = License
23 | type = string
24 |
25 | [fields.tags]
26 | label = Tags
27 | type = checkboxes
28 | source = site.query('/tags')
29 |
30 | [attachments]
31 | enabled = yes
32 |
--------------------------------------------------------------------------------
/templates/macros/pagination.html:
--------------------------------------------------------------------------------
1 | {% macro render_pagination(pagination) %}
2 |
15 | {% endmacro %}
16 |
--------------------------------------------------------------------------------
/content/labor/contents.lr:
--------------------------------------------------------------------------------
1 | name: Labor
2 | ---
3 | attributes: 16
4 | ---
5 | description:
6 |
7 | Final settlements in labor negotitions in Canadian industry.
8 |
9 | Testing concept learning software, in particular an experimental method to learn two-tiered concept descriptions. The data was used to learn the description of an acceptable and unacceptable contract. The unacceptable contracts were either obtained by interviewing experts, or by inventing near misses.
10 | ---
11 | instances: 57
12 | ---
13 | license: Public Domain
14 | ---
15 | tags: classification
16 |
--------------------------------------------------------------------------------
/content/breast-cancer/contents.lr:
--------------------------------------------------------------------------------
1 | name: Breast Cancer
2 | ---
3 | attributes: 9
4 | ---
5 | description:
6 |
7 | Breast Cancer Data. This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. (See also lymphography and primary-tumor.)
8 |
9 | This data set includes 201 instances of one class and 85 instances of another class. The instances are described by 9 attributes, some of which are linear and some are nominal.
10 | ---
11 | instances: 286
12 | ---
13 | license: Public Domain
14 | ---
15 | tags: classification
16 |
--------------------------------------------------------------------------------
/content/diabetes/contents.lr:
--------------------------------------------------------------------------------
1 | name: Diabetes
2 | ---
3 | attributes: 9
4 | ---
5 | description: This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.
6 | ---
7 | instances: 768
8 | ---
9 | tags: classification
10 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # BigLittleData
2 |
3 | A curated dataset repository with open licenses for machine learning, big data and statistics. It runs under [IPFS](https://ipfs.io/) using Lektor to build the website. The main objectives are:
4 |
5 | * Easy interface to download datasets in different formats
6 | * Simple webpage to be able to be used anywhere
7 | * Distributed content using IPFS underlaying.
8 |
9 | ## Building
10 |
11 | Install [Lektor](https://www.getlektor.com/)
12 |
13 | ```
14 | git clone git@github.com:aarroyoc/biglittledata.git
15 | lektor server (to add/edit/delete datasets)
16 | lektor build -O build
17 | cd build
18 | ipfs add -r .
19 | (get last hash and modify dnslink TXT in DNS provider, pin and keep ipfs alive)
20 | ```
21 | HTTPS support thanks to CloudFlare IPFS gateway
22 |
--------------------------------------------------------------------------------
/content/letter/contents.lr:
--------------------------------------------------------------------------------
1 | name: Letter Image Recognition
2 | ---
3 | attributes: 16
4 | ---
5 | description:
6 |
7 | The objective is to identify each of a large number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of integer values from 0 through 15. We typically train on the first 16000 items and then use the resulting model to predict the letter category for the remaining 4000.
8 | ---
9 | instances: 20000
10 | ---
11 | license: Public Domain
12 | ---
13 | tags: classification, image
14 |
--------------------------------------------------------------------------------
/assets/static/style.css:
--------------------------------------------------------------------------------
1 | body {
2 | font-family: 'Verdana', sans-serif;
3 | margin: 50px 25px;
4 | }
5 |
6 | a {
7 | color: #2a99b6;
8 | }
9 |
10 | a:hover {
11 | color: #33bbdf;
12 | }
13 |
14 | header, footer, div.page {
15 | max-width: 760px;
16 | width: calc(90vw - 60px);
17 | margin: 0 auto;
18 | background: #daeef3;
19 | padding: 20px 30px;
20 | }
21 |
22 | header h1 {
23 | color: #169bbd;
24 | margin: 0;
25 | font-weight: normal;
26 | font-size: 42px;
27 | }
28 |
29 | header nav ul {
30 | list-style: none;
31 | margin: 0;
32 | padding: 0;
33 | }
34 |
35 | header nav ul li {
36 | display: inline;
37 | margin: 0 8px 0 0;
38 | padding: 0;
39 | }
40 |
41 | div.page {
42 | background: #f1fbfe;
43 | }
44 |
45 | div.databox {
46 | display: flex;
47 | flex-direction: row;
48 | }
49 | div.databox > span {
50 | flex: 1;
51 | }
52 |
--------------------------------------------------------------------------------
/content/tic-tac-toe/contents.lr:
--------------------------------------------------------------------------------
1 | name: Tic Tac Toe
2 | ---
3 | attributes: 9
4 | ---
5 | description:
6 |
7 | Tic-Tac-Toe Endgame database.
8 |
9 | This database encodes the complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row").
10 |
11 | ### Attributes
12 | (x=player x has taken, o=player o has taken, b=blank)
13 |
14 | 1. top-left-square: {x,o,b}
15 | 2. top-middle-square: {x,o,b}
16 | 3. top-right-square: {x,o,b}
17 | 4. middle-left-square: {x,o,b}
18 | 5. middle-middle-square: {x,o,b}
19 | 6. middle-right-square: {x,o,b}
20 | 7. bottom-left-square: {x,o,b}
21 | 8. bottom-middle-square: {x,o,b}
22 | 9. bottom-right-square: {x,o,b}
23 | 10. Class: {positive,negative}
24 |
25 | ---
26 | instances: 958
27 | ---
28 | license: Public Domain
29 | ---
30 | tags: classification
31 |
--------------------------------------------------------------------------------
/content/ionosphere/contents.lr:
--------------------------------------------------------------------------------
1 | name: Ionosphere
2 | ---
3 | attributes: 35
4 | ---
5 | description:
6 |
7 | Classification of radar returns from the ionosphere.
8 |
9 | This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. See the paper for more details. The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not; their signals pass through the ionosphere.
10 |
11 | Received signals were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this databse are described by 2 attributes per pulse number, corresponding to the complex values returned by the function resulting from the complex electromagnetic signal.
12 | ---
13 | instances: 351
14 | ---
15 | license: Public Domain
16 | ---
17 | tags: classification
18 |
--------------------------------------------------------------------------------
/ipfs/install-ipfs.yml:
--------------------------------------------------------------------------------
1 | - hosts: all
2 | remote_user: pi
3 | become_method: sudo
4 | name: "Install IPFS"
5 | tasks:
6 | - name: Download IPFS
7 | get_url:
8 | url: "https://dist.ipfs.io/go-ipfs/v0.4.22/go-ipfs_v0.4.22_linux-arm.tar.gz"
9 | dest: /home/pi/ipfs.tar.gz
10 | - name: Extract IPFS
11 | unarchive:
12 | src: /home/pi/ipfs.tar.gz
13 | dest: /home/pi
14 | remote_src: yes
15 | - name: Copy IPFS
16 | command: cp /home/pi/go-ipfs/ipfs /usr/local/bin/ipfs
17 | become: yes
18 | - name: Check status
19 | stat:
20 | path: /root/.ipfs
21 | register: ipfs_folder
22 | become: yes
23 | - name: Init IPFS
24 | command: ipfs init
25 | become: yes
26 | when: not ipfs_folder.stat.exists
27 | - name: Copy IPFS systemd
28 | copy:
29 | src: ipfs.service
30 | dest: /etc/systemd/system/ipfs.service
31 | become: yes
32 | - name: Start IPFS daemon
33 | systemd:
34 | daemon_reload: yes
35 | enabled: yes
36 | name: ipfs
37 | state: restarted
38 | become: yes
39 |
--------------------------------------------------------------------------------
/content/car/contents.lr:
--------------------------------------------------------------------------------
1 | name: Car
2 | ---
3 | attributes: 7
4 | ---
5 | description:
6 |
7 | Car Evaluation Database was derived from a simple hierarchical decision model originally developed for the demonstration of DEX, M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp. 145-157, 1990.). The model evaluates cars according to the following concept structure:
8 |
9 | * CAR car acceptability
10 | * PRICE overall price
11 | * buying buying price
12 | * maint price of the maintenance
13 | * TECH technical characteristics
14 | * COMFORT comfort
15 | * doors number of doors
16 | * persons capacity in terms of persons to carry
17 | * lug_boot the size of luggage boot
18 | *safety estimated safety of the car
19 |
20 | ### Attributes
21 |
22 | buying: vhigh, high, med, low.
23 | maint: vhigh, high, med, low.
24 | doors: 2, 3, 4, 5more.
25 | persons: 2, 4, more.
26 | lug_boot: small, med, big.
27 | safety: low, med, high.
28 | class: unacc, acc, good, vgood
29 | ---
30 | instances: 1728
31 | ---
32 | license: Public Domain
33 | ---
34 | tags: classification
35 |
--------------------------------------------------------------------------------
/content/iris/contents.lr:
--------------------------------------------------------------------------------
1 | _model: dataset
2 | ---
3 | name: Iris
4 | ---
5 | description:
6 |
7 | The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis. It is sometimes called Anderson's Iris data set because Edgar Anderson collected the data to quantify the morphologic variation of Iris flowers of three related species. Two of the three species were collected in the Gaspé Peninsula "all from the same pasture, and picked on the same day and measured at the same time by the same person with the same apparatus".
8 |
9 | The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters. Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish the species from each other.
10 | ---
11 | license: Public Domain
12 | ---
13 | task: classification
14 | ---
15 | upload_date: 2019-11-03
16 | ---
17 | tags: classification
18 |
--------------------------------------------------------------------------------
/templates/layout.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | {% block title %}Welcome{% endblock %} — biglittledata
6 |
7 |
8 |
15 |
16 |
17 |
18 |
19 |
20 | {% for href, title in [
21 | ['/about', 'About']
22 | ] %}
23 | {{ title }}
25 | {% endfor %}
26 |
27 |
28 |
29 |
30 | {% block body %}{% endblock %}
31 |
32 |
33 | © Copyright 2019 by Adrián Arroyo Calle . All the datasets in this website are under open licenses.
34 |
35 |
36 |
--------------------------------------------------------------------------------
/content/zoo/contents.lr:
--------------------------------------------------------------------------------
1 | name: Zoo
2 | ---
3 | attributes: 18
4 | ---
5 | description:
6 |
7 | A simple database containing 17 Boolean-valued attributes. The "type" attribute appears to be the class attribute. Here is a breakdown of which animals are in which type:
8 |
9 | ### Class
10 |
11 | 1 -- (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink, mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf
12 |
13 | 2 -- (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren
14 |
15 | 3 -- (5) pitviper, seasnake, slowworm, tortoise, tuatara
16 |
17 | 4 -- (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole, stingray, tuna
18 |
19 | 5 -- (4) frog, frog, newt, toad
20 |
21 | 6 -- (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
22 |
23 | 7 -- (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish, worm
24 |
25 | ### Attributes
26 |
27 | 1. animal name: Unique for each instance
28 | 2. hair: Boolean
29 | 3. feathers: Boolean
30 | 4. eggs: Boolean
31 | 5. milk: Boolean
32 | 6. airborne: Boolean
33 | 7. aquatic: Boolean
34 | 8. predator: Boolean
35 | 9. toothed: Boolean
36 | 10. backbone: Boolean
37 | 11. breathes: Boolean
38 | 12. venomous: Boolean
39 | 13. fins: Boolean
40 | 14. legs: Numeric (set of values: {0,2,4,5,6,8})
41 | 15. tail: Boolean
42 | 16. domestic: Boolean
43 | 17. catsize: Boolean
44 | 18. type: Numeric (integer values in range [1,7])
45 | ---
46 | instances: 101
47 | ---
48 | license: Public Domain
49 | ---
50 | tags: classification
51 |
--------------------------------------------------------------------------------
/templates/dataset.html:
--------------------------------------------------------------------------------
1 | {% extends "layout.html" %}
2 | {% block title %}{{ this.name }}{% endblock %}
3 | {% block body %}
4 | {{ this.name }}
5 | Instances: {{ this.instances }} Attributes: {{ this.attributes }}
6 |
7 |
8 | {{ this.description }}
9 |
10 | Downloads
11 |
16 | License: {{ this.license }}
17 | {% if this.tags %}
18 | Tags:
19 | {% for t in this.tags -%}
20 |
21 |
22 | {{ t }}
23 |
24 |
25 | {% endfor %}
26 |
27 | {% endif %}
28 |
29 |
47 | Please enable JavaScript to view the comments powered by Disqus.
48 | {% endblock %}
49 |
--------------------------------------------------------------------------------
/content/soybean/contents.lr:
--------------------------------------------------------------------------------
1 | name: Soybean
2 | ---
3 | description:
4 |
5 | Michalski's famous soybean disease database.
6 |
7 | ### 19 Classes
8 | diaporthe-stem-canker, charcoal-rot, rhizoctonia-root-rot,
9 | phytophthora-rot, brown-stem-rot, powdery-mildew,
10 | downy-mildew, brown-spot, bacterial-blight,
11 | bacterial-pustule, purple-seed-stain, anthracnose,
12 | phyllosticta-leaf-spot, alternarialeaf-spot,
13 | frog-eye-leaf-spot, diaporthe-pod-&-stem-blight,
14 | cyst-nematode, 2-4-d-injury, herbicide-injury.
15 |
16 | ### Attributes
17 | 1. date: april,may,june,july,august,september,october,?.
18 | 2. plant-stand: normal,lt-normal,?.
19 | 3. precip: lt-norm,norm,gt-norm,?.
20 | 4. temp: lt-norm,norm,gt-norm,?.
21 | 5. hail: yes,no,?.
22 | 6. crop-hist: diff-lst-year,same-lst-yr,same-lst-two-yrs,
23 | same-lst-sev-yrs,?.
24 | 7. area-damaged: scattered,low-areas,upper-areas,whole-field,?.
25 | 8. severity: minor,pot-severe,severe,?.
26 | 9. seed-tmt: none,fungicide,other,?.
27 | 10. germination: 90-100%,80-89%,lt-80%,?.
28 | 11. plant-growth: norm,abnorm,?.
29 | 12. leaves: norm,abnorm.
30 | 13. leafspots-halo: absent,yellow-halos,no-yellow-halos,?.
31 | 14. leafspots-marg: w-s-marg,no-w-s-marg,dna,?.
32 | 15. leafspot-size: lt-1/8,gt-1/8,dna,?.
33 | 16. leaf-shread: absent,present,?.
34 | 17. leaf-malf: absent,present,?.
35 | 18. leaf-mild: absent,upper-surf,lower-surf,?.
36 | 19. stem: norm,abnorm,?.
37 | 20. lodging: yes,no,?.
38 | 21. stem-cankers: absent,below-soil,above-soil,above-sec-nde,?.
39 | 22. canker-lesion: dna,brown,dk-brown-blk,tan,?.
40 | 23. fruiting-bodies: absent,present,?.
41 | 24. external decay: absent,firm-and-dry,watery,?.
42 | 25. mycelium: absent,present,?.
43 | 26. int-discolor: none,brown,black,?.
44 | 27. sclerotia: absent,present,?.
45 | 28. fruit-pods: norm,diseased,few-present,dna,?.
46 | 29. fruit spots: absent,colored,brown-w/blk-specks,distort,dna,?.
47 | 30. seed: norm,abnorm,?.
48 | 31. mold-growth: absent,present,?.
49 | 32. seed-discolor: absent,present,?.
50 | 33. seed-size: norm,lt-norm,?.
51 | 34. shriveling: absent,present,?.
52 | 35. roots: norm,rotted,galls-cysts,?.
53 | ---
54 | license: Public Domain
55 | ---
56 | tags: classification
57 | ---
58 | upload_date: 2019-11-17
59 | ---
60 | attributes: 35
61 | ---
62 | instances: 683
63 |
--------------------------------------------------------------------------------
/content/divorce/contents.lr:
--------------------------------------------------------------------------------
1 | name: Divorce
2 | ---
3 | attributes: 55
4 | ---
5 | description:
6 |
7 | Participants completed the Personal Information Form and Divorce Predictors Scale.
8 |
9 | ### Attributes
10 | 1. If one of us apologizes when our discussion deteriorates, the discussion ends.
11 | 2. I know we can ignore our differences, even if things get hard sometimes.
12 | 3. When we need it, we can take our discussions with my spouse from the beginning and correct it.
13 | 4. When I discuss with my spouse, to contact him will eventually work.
14 | 5. The time I spent with my wife is special for us.
15 | 6. We don't have time at home as partners.
16 | 7. We are like two strangers who share the same environment at home rather than family.
17 | 8. I enjoy our holidays with my wife.
18 | 9. I enjoy traveling with my wife.
19 | 10. Most of our goals are common to my spouse.
20 | 11. I think that one day in the future, when I look back, I see that my spouse and I have been in harmony with each other.
21 | 12. My spouse and I have similar values in terms of personal freedom.
22 | 13. My spouse and I have similar sense of entertainment.
23 | 14. Most of our goals for people (children, friends, etc.) are the same.
24 | 15. Our dreams with my spouse are similar and harmonious.
25 | 16. We're compatible with my spouse about what love should be.
26 | 17. We share the same views about being happy in our life with my spouse
27 | 18. My spouse and I have similar ideas about how marriage should be
28 | 19. My spouse and I have similar ideas about how roles should be in marriage
29 | 20. My spouse and I have similar values in trust.
30 | 21. I know exactly what my wife likes.
31 | 22. I know how my spouse wants to be taken care of when she/he sick.
32 | 23. I know my spouse's favorite food.
33 | 24. I can tell you what kind of stress my spouse is facing in her/his life.
34 | 25. I have knowledge of my spouse's inner world.
35 | 26. I know my spouse's basic anxieties.
36 | 27. I know what my spouse's current sources of stress are.
37 | 28. I know my spouse's hopes and wishes.
38 | 29. I know my spouse very well.
39 | 30. I know my spouse's friends and their social relationships.
40 | 31. I feel aggressive when I argue with my spouse.
41 | 32. When discussing with my spouse, I usually use expressions such as ‘you always’ or ‘you never’ .
42 | 33. I can use negative statements about my spouse's personality during our discussions.
43 | 34. I can use offensive expressions during our discussions.
44 | 35. I can insult my spouse during our discussions.
45 | 36. I can be humiliating when we discussions.
46 | 37. My discussion with my spouse is not calm.
47 | 38. I hate my spouse's way of open a subject.
48 | 39. Our discussions often occur suddenly.
49 | 40. We're just starting a discussion before I know what's going on.
50 | 41. When I talk to my spouse about something, my calm suddenly breaks.
51 | 42. When I argue with my spouse, ı only go out and I don't say a word.
52 | 43. I mostly stay silent to calm the environment a little bit.
53 | 44. Sometimes I think it's good for me to leave home for a while.
54 | 45. I'd rather stay silent than discuss with my spouse.
55 | 46. Even if I'm right in the discussion, I stay silent to hurt my spouse.
56 | 47. When I discuss with my spouse, I stay silent because I am afraid of not being able to control my anger.
57 | 48. I feel right in our discussions.
58 | 49. I have nothing to do with what I've been accused of.
59 | 50. I'm not actually the one who's guilty about what I'm accused of.
60 | 51. I'm not the one who's wrong about problems at home.
61 | 52. I wouldn't hesitate to tell my spouse about her/his inadequacy.
62 | 53. When I discuss, I remind my spouse of her/his inadequacy.
63 | 54. I'm not afraid to tell my spouse about her/his incompetence.
64 | ---
65 | instances: 170
66 | ---
67 | license: Public Domain
68 | ---
69 | tags: classification
70 |
--------------------------------------------------------------------------------
/content/labor/labor.csv:
--------------------------------------------------------------------------------
1 | duration,wage-increase-first-year,wage-increase-second-year,wage-increase-third-year,cost-of-living-adjustment,working-hours,pension,standby-pay,shift-differential,education-allowance,statutory-holidays,vacation,longterm-disability-assistance,contribution-to-dental-plan,bereavement-assistance,contribution-to-health-plan,class
2 | 1,5,?,?,?,40,?,?,2,?,11,average,?,?,yes,?,good
3 | 2,4.5,5.8,?,?,35,ret_allw,?,?,yes,11,below_average,?,full,?,full,good
4 | ?,?,?,?,?,38,empl_contr,?,5,?,11,generous,yes,half,yes,half,good
5 | 3,3.7,4,5,tc,?,?,?,?,yes,?,?,?,?,yes,?,good
6 | 3,4.5,4.5,5,?,40,?,?,?,?,12,average,?,half,yes,half,good
7 | 2,2,2.5,?,?,35,?,?,6,yes,12,average,?,?,?,?,good
8 | 3,4,5,5,tc,?,empl_contr,?,?,?,12,generous,yes,none,yes,half,good
9 | 3,6.9,4.8,2.3,?,40,?,?,3,?,12,below_average,?,?,?,?,good
10 | 2,3,7,?,?,38,?,12,25,yes,11,below_average,yes,half,yes,?,good
11 | 1,5.7,?,?,none,40,empl_contr,?,4,?,11,generous,yes,full,?,?,good
12 | 3,3.5,4,4.6,none,36,?,?,3,?,13,generous,?,?,yes,full,good
13 | 2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,full,?,?,good
14 | 2,3.5,4,?,none,40,?,?,2,no,10,below_average,no,half,?,half,bad
15 | 3,3.5,4,5.1,tcf,37,?,?,4,?,13,generous,?,full,yes,full,good
16 | 1,3,?,?,none,36,?,?,10,no,11,generous,?,?,?,?,good
17 | 2,4.5,4,?,none,37,empl_contr,?,?,?,11,average,?,full,yes,?,good
18 | 1,2.8,?,?,?,35,?,?,2,?,12,below_average,?,?,?,?,good
19 | 1,2.1,?,?,tc,40,ret_allw,2,3,no,9,below_average,yes,half,?,none,bad
20 | 1,2,?,?,none,38,none,?,?,yes,11,average,no,none,no,none,bad
21 | 2,4,5,?,tcf,35,?,13,5,?,15,generous,?,?,?,?,good
22 | 2,4.3,4.4,?,?,38,?,?,4,?,12,generous,?,full,?,full,good
23 | 2,2.5,3,?,?,40,none,?,?,?,11,below_average,?,?,?,?,bad
24 | 3,3.5,4,4.6,tcf,27,?,?,?,?,?,?,?,?,?,?,good
25 | 2,4.5,4,?,?,40,?,?,4,?,10,generous,?,half,?,full,good
26 | 1,6,?,?,?,38,?,8,3,?,9,generous,?,?,?,?,good
27 | 3,2,2,2,none,40,none,?,?,?,10,below_average,?,half,yes,full,bad
28 | 2,4.5,4.5,?,tcf,?,?,?,?,yes,10,below_average,yes,none,?,half,good
29 | 2,3,3,?,none,33,?,?,?,yes,12,generous,?,?,yes,full,good
30 | 2,5,4,?,none,37,?,?,5,no,11,below_average,yes,full,yes,full,good
31 | 3,2,2.5,?,?,35,none,?,?,?,10,average,?,?,yes,full,bad
32 | 3,4.5,4.5,5,none,40,?,?,?,no,11,average,?,half,?,?,good
33 | 3,3,2,2.5,tc,40,none,?,5,no,10,below_average,yes,half,yes,full,bad
34 | 2,2.5,2.5,?,?,38,empl_contr,?,?,?,10,average,?,?,?,?,bad
35 | 2,4,5,?,none,40,none,?,3,no,10,below_average,no,none,?,none,bad
36 | 3,2,2.5,2.1,tc,40,none,2,1,no,10,below_average,no,half,yes,full,bad
37 | 2,2,2,?,none,40,none,?,?,no,11,average,yes,none,yes,full,bad
38 | 1,2,?,?,tc,40,ret_allw,4,0,no,11,generous,no,none,no,none,bad
39 | 1,2.8,?,?,none,38,empl_contr,2,3,no,9,below_average,yes,half,?,none,bad
40 | 3,2,2.5,2,?,37,empl_contr,?,?,?,10,average,?,?,yes,none,bad
41 | 2,4.5,4,?,none,40,?,?,4,?,12,average,yes,full,yes,half,good
42 | 1,4,?,?,none,?,none,?,?,yes,11,average,no,none,no,none,bad
43 | 2,2,3,?,none,38,empl_contr,?,?,yes,12,generous,yes,none,yes,full,bad
44 | 2,2.5,2.5,?,tc,39,empl_contr,?,?,?,12,average,?,?,yes,?,bad
45 | 2,2.5,3,?,tcf,40,none,?,?,?,11,below_average,?,?,yes,?,bad
46 | 2,4,4,?,none,40,none,?,3,?,10,below_average,no,none,?,none,bad
47 | 2,4.5,4,?,?,40,?,?,2,no,10,below_average,no,half,?,half,bad
48 | 2,4.5,4,?,none,40,?,?,5,?,11,average,?,full,yes,full,good
49 | 2,4.6,4.6,?,tcf,38,?,?,?,?,?,?,yes,half,?,half,good
50 | 2,5,4.5,?,none,38,?,14,5,?,11,below_average,yes,?,?,full,good
51 | 2,5.7,4.5,?,none,40,ret_allw,?,?,?,11,average,yes,full,yes,full,good
52 | 2,7,5.3,?,?,?,?,?,?,?,11,?,yes,full,?,?,good
53 | 3,2,3,?,tcf,?,empl_contr,?,?,yes,?,?,yes,half,yes,?,good
54 | 3,3.5,4,4.5,tcf,35,?,?,?,?,13,generous,?,?,yes,full,good
55 | 3,4,3.5,?,none,40,empl_contr,?,6,?,11,average,yes,full,?,full,good
56 | 3,5,4.4,?,none,38,empl_contr,10,6,?,11,generous,yes,?,?,full,good
57 | 3,5,5,5,?,40,?,?,?,?,12,average,?,half,yes,half,good
58 | 3,6,6,4,?,35,?,?,14,?,9,generous,yes,full,yes,full,good
59 |
--------------------------------------------------------------------------------
/content/iris/iris.csv:
--------------------------------------------------------------------------------
1 | sepallength,sepalwidth,petallength,petalwidth,class
2 | 5.1,3.5,1.4,0.2,Iris-setosa
3 | 4.9,3,1.4,0.2,Iris-setosa
4 | 4.7,3.2,1.3,0.2,Iris-setosa
5 | 4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,3.6,1.4,0.2,Iris-setosa
7 | 5.4,3.9,1.7,0.4,Iris-setosa
8 | 4.6,3.4,1.4,0.3,Iris-setosa
9 | 5,3.4,1.5,0.2,Iris-setosa
10 | 4.4,2.9,1.4,0.2,Iris-setosa
11 | 4.9,3.1,1.5,0.1,Iris-setosa
12 | 5.4,3.7,1.5,0.2,Iris-setosa
13 | 4.8,3.4,1.6,0.2,Iris-setosa
14 | 4.8,3,1.4,0.1,Iris-setosa
15 | 4.3,3,1.1,0.1,Iris-setosa
16 | 5.8,4,1.2,0.2,Iris-setosa
17 | 5.7,4.4,1.5,0.4,Iris-setosa
18 | 5.4,3.9,1.3,0.4,Iris-setosa
19 | 5.1,3.5,1.4,0.3,Iris-setosa
20 | 5.7,3.8,1.7,0.3,Iris-setosa
21 | 5.1,3.8,1.5,0.3,Iris-setosa
22 | 5.4,3.4,1.7,0.2,Iris-setosa
23 | 5.1,3.7,1.5,0.4,Iris-setosa
24 | 4.6,3.6,1,0.2,Iris-setosa
25 | 5.1,3.3,1.7,0.5,Iris-setosa
26 | 4.8,3.4,1.9,0.2,Iris-setosa
27 | 5,3,1.6,0.2,Iris-setosa
28 | 5,3.4,1.6,0.4,Iris-setosa
29 | 5.2,3.5,1.5,0.2,Iris-setosa
30 | 5.2,3.4,1.4,0.2,Iris-setosa
31 | 4.7,3.2,1.6,0.2,Iris-setosa
32 | 4.8,3.1,1.6,0.2,Iris-setosa
33 | 5.4,3.4,1.5,0.4,Iris-setosa
34 | 5.2,4.1,1.5,0.1,Iris-setosa
35 | 5.5,4.2,1.4,0.2,Iris-setosa
36 | 4.9,3.1,1.5,0.1,Iris-setosa
37 | 5,3.2,1.2,0.2,Iris-setosa
38 | 5.5,3.5,1.3,0.2,Iris-setosa
39 | 4.9,3.1,1.5,0.1,Iris-setosa
40 | 4.4,3,1.3,0.2,Iris-setosa
41 | 5.1,3.4,1.5,0.2,Iris-setosa
42 | 5,3.5,1.3,0.3,Iris-setosa
43 | 4.5,2.3,1.3,0.3,Iris-setosa
44 | 4.4,3.2,1.3,0.2,Iris-setosa
45 | 5,3.5,1.6,0.6,Iris-setosa
46 | 5.1,3.8,1.9,0.4,Iris-setosa
47 | 4.8,3,1.4,0.3,Iris-setosa
48 | 5.1,3.8,1.6,0.2,Iris-setosa
49 | 4.6,3.2,1.4,0.2,Iris-setosa
50 | 5.3,3.7,1.5,0.2,Iris-setosa
51 | 5,3.3,1.4,0.2,Iris-setosa
52 | 7,3.2,4.7,1.4,Iris-versicolor
53 | 6.4,3.2,4.5,1.5,Iris-versicolor
54 | 6.9,3.1,4.9,1.5,Iris-versicolor
55 | 5.5,2.3,4,1.3,Iris-versicolor
56 | 6.5,2.8,4.6,1.5,Iris-versicolor
57 | 5.7,2.8,4.5,1.3,Iris-versicolor
58 | 6.3,3.3,4.7,1.6,Iris-versicolor
59 | 4.9,2.4,3.3,1,Iris-versicolor
60 | 6.6,2.9,4.6,1.3,Iris-versicolor
61 | 5.2,2.7,3.9,1.4,Iris-versicolor
62 | 5,2,3.5,1,Iris-versicolor
63 | 5.9,3,4.2,1.5,Iris-versicolor
64 | 6,2.2,4,1,Iris-versicolor
65 | 6.1,2.9,4.7,1.4,Iris-versicolor
66 | 5.6,2.9,3.6,1.3,Iris-versicolor
67 | 6.7,3.1,4.4,1.4,Iris-versicolor
68 | 5.6,3,4.5,1.5,Iris-versicolor
69 | 5.8,2.7,4.1,1,Iris-versicolor
70 | 6.2,2.2,4.5,1.5,Iris-versicolor
71 | 5.6,2.5,3.9,1.1,Iris-versicolor
72 | 5.9,3.2,4.8,1.8,Iris-versicolor
73 | 6.1,2.8,4,1.3,Iris-versicolor
74 | 6.3,2.5,4.9,1.5,Iris-versicolor
75 | 6.1,2.8,4.7,1.2,Iris-versicolor
76 | 6.4,2.9,4.3,1.3,Iris-versicolor
77 | 6.6,3,4.4,1.4,Iris-versicolor
78 | 6.8,2.8,4.8,1.4,Iris-versicolor
79 | 6.7,3,5,1.7,Iris-versicolor
80 | 6,2.9,4.5,1.5,Iris-versicolor
81 | 5.7,2.6,3.5,1,Iris-versicolor
82 | 5.5,2.4,3.8,1.1,Iris-versicolor
83 | 5.5,2.4,3.7,1,Iris-versicolor
84 | 5.8,2.7,3.9,1.2,Iris-versicolor
85 | 6,2.7,5.1,1.6,Iris-versicolor
86 | 5.4,3,4.5,1.5,Iris-versicolor
87 | 6,3.4,4.5,1.6,Iris-versicolor
88 | 6.7,3.1,4.7,1.5,Iris-versicolor
89 | 6.3,2.3,4.4,1.3,Iris-versicolor
90 | 5.6,3,4.1,1.3,Iris-versicolor
91 | 5.5,2.5,4,1.3,Iris-versicolor
92 | 5.5,2.6,4.4,1.2,Iris-versicolor
93 | 6.1,3,4.6,1.4,Iris-versicolor
94 | 5.8,2.6,4,1.2,Iris-versicolor
95 | 5,2.3,3.3,1,Iris-versicolor
96 | 5.6,2.7,4.2,1.3,Iris-versicolor
97 | 5.7,3,4.2,1.2,Iris-versicolor
98 | 5.7,2.9,4.2,1.3,Iris-versicolor
99 | 6.2,2.9,4.3,1.3,Iris-versicolor
100 | 5.1,2.5,3,1.1,Iris-versicolor
101 | 5.7,2.8,4.1,1.3,Iris-versicolor
102 | 6.3,3.3,6,2.5,Iris-virginica
103 | 5.8,2.7,5.1,1.9,Iris-virginica
104 | 7.1,3,5.9,2.1,Iris-virginica
105 | 6.3,2.9,5.6,1.8,Iris-virginica
106 | 6.5,3,5.8,2.2,Iris-virginica
107 | 7.6,3,6.6,2.1,Iris-virginica
108 | 4.9,2.5,4.5,1.7,Iris-virginica
109 | 7.3,2.9,6.3,1.8,Iris-virginica
110 | 6.7,2.5,5.8,1.8,Iris-virginica
111 | 7.2,3.6,6.1,2.5,Iris-virginica
112 | 6.5,3.2,5.1,2,Iris-virginica
113 | 6.4,2.7,5.3,1.9,Iris-virginica
114 | 6.8,3,5.5,2.1,Iris-virginica
115 | 5.7,2.5,5,2,Iris-virginica
116 | 5.8,2.8,5.1,2.4,Iris-virginica
117 | 6.4,3.2,5.3,2.3,Iris-virginica
118 | 6.5,3,5.5,1.8,Iris-virginica
119 | 7.7,3.8,6.7,2.2,Iris-virginica
120 | 7.7,2.6,6.9,2.3,Iris-virginica
121 | 6,2.2,5,1.5,Iris-virginica
122 | 6.9,3.2,5.7,2.3,Iris-virginica
123 | 5.6,2.8,4.9,2,Iris-virginica
124 | 7.7,2.8,6.7,2,Iris-virginica
125 | 6.3,2.7,4.9,1.8,Iris-virginica
126 | 6.7,3.3,5.7,2.1,Iris-virginica
127 | 7.2,3.2,6,1.8,Iris-virginica
128 | 6.2,2.8,4.8,1.8,Iris-virginica
129 | 6.1,3,4.9,1.8,Iris-virginica
130 | 6.4,2.8,5.6,2.1,Iris-virginica
131 | 7.2,3,5.8,1.6,Iris-virginica
132 | 7.4,2.8,6.1,1.9,Iris-virginica
133 | 7.9,3.8,6.4,2,Iris-virginica
134 | 6.4,2.8,5.6,2.2,Iris-virginica
135 | 6.3,2.8,5.1,1.5,Iris-virginica
136 | 6.1,2.6,5.6,1.4,Iris-virginica
137 | 7.7,3,6.1,2.3,Iris-virginica
138 | 6.3,3.4,5.6,2.4,Iris-virginica
139 | 6.4,3.1,5.5,1.8,Iris-virginica
140 | 6,3,4.8,1.8,Iris-virginica
141 | 6.9,3.1,5.4,2.1,Iris-virginica
142 | 6.7,3.1,5.6,2.4,Iris-virginica
143 | 6.9,3.1,5.1,2.3,Iris-virginica
144 | 5.8,2.7,5.1,1.9,Iris-virginica
145 | 6.8,3.2,5.9,2.3,Iris-virginica
146 | 6.7,3.3,5.7,2.5,Iris-virginica
147 | 6.7,3,5.2,2.3,Iris-virginica
148 | 6.3,2.5,5,1.9,Iris-virginica
149 | 6.5,3,5.2,2,Iris-virginica
150 | 6.2,3.4,5.4,2.3,Iris-virginica
151 | 5.9,3,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/content/iris/iris.arff:
--------------------------------------------------------------------------------
1 | % 1. Title: Iris Plants Database
2 | %
3 | % 2. Sources:
4 | % (a) Creator: R.A. Fisher
5 | % (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
6 | % (c) Date: July, 1988
7 | %
8 | % 3. Past Usage:
9 | % - Publications: too many to mention!!! Here are a few.
10 | % 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
11 | % Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
12 | % to Mathematical Statistics" (John Wiley, NY, 1950).
13 | % 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
14 | % (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
15 | % 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
16 | % Structure and Classification Rule for Recognition in Partially Exposed
17 | % Environments". IEEE Transactions on Pattern Analysis and Machine
18 | % Intelligence, Vol. PAMI-2, No. 1, 67-71.
19 | % -- Results:
20 | % -- very low misclassification rates (0% for the setosa class)
21 | % 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
22 | % Transactions on Information Theory, May 1972, 431-433.
23 | % -- Results:
24 | % -- very low misclassification rates again
25 | % 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
26 | % conceptual clustering system finds 3 classes in the data.
27 | %
28 | % 4. Relevant Information:
29 | % --- This is perhaps the best known database to be found in the pattern
30 | % recognition literature. Fisher's paper is a classic in the field
31 | % and is referenced frequently to this day. (See Duda & Hart, for
32 | % example.) The data set contains 3 classes of 50 instances each,
33 | % where each class refers to a type of iris plant. One class is
34 | % linearly separable from the other 2; the latter are NOT linearly
35 | % separable from each other.
36 | % --- Predicted attribute: class of iris plant.
37 | % --- This is an exceedingly simple domain.
38 | %
39 | % 5. Number of Instances: 150 (50 in each of three classes)
40 | %
41 | % 6. Number of Attributes: 4 numeric, predictive attributes and the class
42 | %
43 | % 7. Attribute Information:
44 | % 1. sepal length in cm
45 | % 2. sepal width in cm
46 | % 3. petal length in cm
47 | % 4. petal width in cm
48 | % 5. class:
49 | % -- Iris Setosa
50 | % -- Iris Versicolour
51 | % -- Iris Virginica
52 | %
53 | % 8. Missing Attribute Values: None
54 | %
55 | % Summary Statistics:
56 | % Min Max Mean SD Class Correlation
57 | % sepal length: 4.3 7.9 5.84 0.83 0.7826
58 | % sepal width: 2.0 4.4 3.05 0.43 -0.4194
59 | % petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
60 | % petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
61 | %
62 | % 9. Class Distribution: 33.3% for each of 3 classes.
63 |
64 | @RELATION iris
65 |
66 | @ATTRIBUTE sepallength REAL
67 | @ATTRIBUTE sepalwidth REAL
68 | @ATTRIBUTE petallength REAL
69 | @ATTRIBUTE petalwidth REAL
70 | @ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
71 |
72 | @DATA
73 | 5.1,3.5,1.4,0.2,Iris-setosa
74 | 4.9,3.0,1.4,0.2,Iris-setosa
75 | 4.7,3.2,1.3,0.2,Iris-setosa
76 | 4.6,3.1,1.5,0.2,Iris-setosa
77 | 5.0,3.6,1.4,0.2,Iris-setosa
78 | 5.4,3.9,1.7,0.4,Iris-setosa
79 | 4.6,3.4,1.4,0.3,Iris-setosa
80 | 5.0,3.4,1.5,0.2,Iris-setosa
81 | 4.4,2.9,1.4,0.2,Iris-setosa
82 | 4.9,3.1,1.5,0.1,Iris-setosa
83 | 5.4,3.7,1.5,0.2,Iris-setosa
84 | 4.8,3.4,1.6,0.2,Iris-setosa
85 | 4.8,3.0,1.4,0.1,Iris-setosa
86 | 4.3,3.0,1.1,0.1,Iris-setosa
87 | 5.8,4.0,1.2,0.2,Iris-setosa
88 | 5.7,4.4,1.5,0.4,Iris-setosa
89 | 5.4,3.9,1.3,0.4,Iris-setosa
90 | 5.1,3.5,1.4,0.3,Iris-setosa
91 | 5.7,3.8,1.7,0.3,Iris-setosa
92 | 5.1,3.8,1.5,0.3,Iris-setosa
93 | 5.4,3.4,1.7,0.2,Iris-setosa
94 | 5.1,3.7,1.5,0.4,Iris-setosa
95 | 4.6,3.6,1.0,0.2,Iris-setosa
96 | 5.1,3.3,1.7,0.5,Iris-setosa
97 | 4.8,3.4,1.9,0.2,Iris-setosa
98 | 5.0,3.0,1.6,0.2,Iris-setosa
99 | 5.0,3.4,1.6,0.4,Iris-setosa
100 | 5.2,3.5,1.5,0.2,Iris-setosa
101 | 5.2,3.4,1.4,0.2,Iris-setosa
102 | 4.7,3.2,1.6,0.2,Iris-setosa
103 | 4.8,3.1,1.6,0.2,Iris-setosa
104 | 5.4,3.4,1.5,0.4,Iris-setosa
105 | 5.2,4.1,1.5,0.1,Iris-setosa
106 | 5.5,4.2,1.4,0.2,Iris-setosa
107 | 4.9,3.1,1.5,0.1,Iris-setosa
108 | 5.0,3.2,1.2,0.2,Iris-setosa
109 | 5.5,3.5,1.3,0.2,Iris-setosa
110 | 4.9,3.1,1.5,0.1,Iris-setosa
111 | 4.4,3.0,1.3,0.2,Iris-setosa
112 | 5.1,3.4,1.5,0.2,Iris-setosa
113 | 5.0,3.5,1.3,0.3,Iris-setosa
114 | 4.5,2.3,1.3,0.3,Iris-setosa
115 | 4.4,3.2,1.3,0.2,Iris-setosa
116 | 5.0,3.5,1.6,0.6,Iris-setosa
117 | 5.1,3.8,1.9,0.4,Iris-setosa
118 | 4.8,3.0,1.4,0.3,Iris-setosa
119 | 5.1,3.8,1.6,0.2,Iris-setosa
120 | 4.6,3.2,1.4,0.2,Iris-setosa
121 | 5.3,3.7,1.5,0.2,Iris-setosa
122 | 5.0,3.3,1.4,0.2,Iris-setosa
123 | 7.0,3.2,4.7,1.4,Iris-versicolor
124 | 6.4,3.2,4.5,1.5,Iris-versicolor
125 | 6.9,3.1,4.9,1.5,Iris-versicolor
126 | 5.5,2.3,4.0,1.3,Iris-versicolor
127 | 6.5,2.8,4.6,1.5,Iris-versicolor
128 | 5.7,2.8,4.5,1.3,Iris-versicolor
129 | 6.3,3.3,4.7,1.6,Iris-versicolor
130 | 4.9,2.4,3.3,1.0,Iris-versicolor
131 | 6.6,2.9,4.6,1.3,Iris-versicolor
132 | 5.2,2.7,3.9,1.4,Iris-versicolor
133 | 5.0,2.0,3.5,1.0,Iris-versicolor
134 | 5.9,3.0,4.2,1.5,Iris-versicolor
135 | 6.0,2.2,4.0,1.0,Iris-versicolor
136 | 6.1,2.9,4.7,1.4,Iris-versicolor
137 | 5.6,2.9,3.6,1.3,Iris-versicolor
138 | 6.7,3.1,4.4,1.4,Iris-versicolor
139 | 5.6,3.0,4.5,1.5,Iris-versicolor
140 | 5.8,2.7,4.1,1.0,Iris-versicolor
141 | 6.2,2.2,4.5,1.5,Iris-versicolor
142 | 5.6,2.5,3.9,1.1,Iris-versicolor
143 | 5.9,3.2,4.8,1.8,Iris-versicolor
144 | 6.1,2.8,4.0,1.3,Iris-versicolor
145 | 6.3,2.5,4.9,1.5,Iris-versicolor
146 | 6.1,2.8,4.7,1.2,Iris-versicolor
147 | 6.4,2.9,4.3,1.3,Iris-versicolor
148 | 6.6,3.0,4.4,1.4,Iris-versicolor
149 | 6.8,2.8,4.8,1.4,Iris-versicolor
150 | 6.7,3.0,5.0,1.7,Iris-versicolor
151 | 6.0,2.9,4.5,1.5,Iris-versicolor
152 | 5.7,2.6,3.5,1.0,Iris-versicolor
153 | 5.5,2.4,3.8,1.1,Iris-versicolor
154 | 5.5,2.4,3.7,1.0,Iris-versicolor
155 | 5.8,2.7,3.9,1.2,Iris-versicolor
156 | 6.0,2.7,5.1,1.6,Iris-versicolor
157 | 5.4,3.0,4.5,1.5,Iris-versicolor
158 | 6.0,3.4,4.5,1.6,Iris-versicolor
159 | 6.7,3.1,4.7,1.5,Iris-versicolor
160 | 6.3,2.3,4.4,1.3,Iris-versicolor
161 | 5.6,3.0,4.1,1.3,Iris-versicolor
162 | 5.5,2.5,4.0,1.3,Iris-versicolor
163 | 5.5,2.6,4.4,1.2,Iris-versicolor
164 | 6.1,3.0,4.6,1.4,Iris-versicolor
165 | 5.8,2.6,4.0,1.2,Iris-versicolor
166 | 5.0,2.3,3.3,1.0,Iris-versicolor
167 | 5.6,2.7,4.2,1.3,Iris-versicolor
168 | 5.7,3.0,4.2,1.2,Iris-versicolor
169 | 5.7,2.9,4.2,1.3,Iris-versicolor
170 | 6.2,2.9,4.3,1.3,Iris-versicolor
171 | 5.1,2.5,3.0,1.1,Iris-versicolor
172 | 5.7,2.8,4.1,1.3,Iris-versicolor
173 | 6.3,3.3,6.0,2.5,Iris-virginica
174 | 5.8,2.7,5.1,1.9,Iris-virginica
175 | 7.1,3.0,5.9,2.1,Iris-virginica
176 | 6.3,2.9,5.6,1.8,Iris-virginica
177 | 6.5,3.0,5.8,2.2,Iris-virginica
178 | 7.6,3.0,6.6,2.1,Iris-virginica
179 | 4.9,2.5,4.5,1.7,Iris-virginica
180 | 7.3,2.9,6.3,1.8,Iris-virginica
181 | 6.7,2.5,5.8,1.8,Iris-virginica
182 | 7.2,3.6,6.1,2.5,Iris-virginica
183 | 6.5,3.2,5.1,2.0,Iris-virginica
184 | 6.4,2.7,5.3,1.9,Iris-virginica
185 | 6.8,3.0,5.5,2.1,Iris-virginica
186 | 5.7,2.5,5.0,2.0,Iris-virginica
187 | 5.8,2.8,5.1,2.4,Iris-virginica
188 | 6.4,3.2,5.3,2.3,Iris-virginica
189 | 6.5,3.0,5.5,1.8,Iris-virginica
190 | 7.7,3.8,6.7,2.2,Iris-virginica
191 | 7.7,2.6,6.9,2.3,Iris-virginica
192 | 6.0,2.2,5.0,1.5,Iris-virginica
193 | 6.9,3.2,5.7,2.3,Iris-virginica
194 | 5.6,2.8,4.9,2.0,Iris-virginica
195 | 7.7,2.8,6.7,2.0,Iris-virginica
196 | 6.3,2.7,4.9,1.8,Iris-virginica
197 | 6.7,3.3,5.7,2.1,Iris-virginica
198 | 7.2,3.2,6.0,1.8,Iris-virginica
199 | 6.2,2.8,4.8,1.8,Iris-virginica
200 | 6.1,3.0,4.9,1.8,Iris-virginica
201 | 6.4,2.8,5.6,2.1,Iris-virginica
202 | 7.2,3.0,5.8,1.6,Iris-virginica
203 | 7.4,2.8,6.1,1.9,Iris-virginica
204 | 7.9,3.8,6.4,2.0,Iris-virginica
205 | 6.4,2.8,5.6,2.2,Iris-virginica
206 | 6.3,2.8,5.1,1.5,Iris-virginica
207 | 6.1,2.6,5.6,1.4,Iris-virginica
208 | 7.7,3.0,6.1,2.3,Iris-virginica
209 | 6.3,3.4,5.6,2.4,Iris-virginica
210 | 6.4,3.1,5.5,1.8,Iris-virginica
211 | 6.0,3.0,4.8,1.8,Iris-virginica
212 | 6.9,3.1,5.4,2.1,Iris-virginica
213 | 6.7,3.1,5.6,2.4,Iris-virginica
214 | 6.9,3.1,5.1,2.3,Iris-virginica
215 | 5.8,2.7,5.1,1.9,Iris-virginica
216 | 6.8,3.2,5.9,2.3,Iris-virginica
217 | 6.7,3.3,5.7,2.5,Iris-virginica
218 | 6.7,3.0,5.2,2.3,Iris-virginica
219 | 6.3,2.5,5.0,1.9,Iris-virginica
220 | 6.5,3.0,5.2,2.0,Iris-virginica
221 | 6.2,3.4,5.4,2.3,Iris-virginica
222 | 5.9,3.0,5.1,1.8,Iris-virginica
223 | %
224 | %
225 | %
226 |
--------------------------------------------------------------------------------
/content/labor/labor.arff:
--------------------------------------------------------------------------------
1 | % Date: Tue, 15 Nov 88 15:44:08 EST
2 | % From: stan
3 | % To: aha@ICS.UCI.EDU
4 | %
5 | % 1. Title: Final settlements in labor negotitions in Canadian industry
6 | %
7 | % 2. Source Information
8 | % -- Creators: Collective Barganing Review, montly publication,
9 | % Labour Canada, Industrial Relations Information Service,
10 | % Ottawa, Ontario, K1A 0J2, Canada, (819) 997-3117
11 | % The data includes all collective agreements reached
12 | % in the business and personal services sector for locals
13 | % with at least 500 members (teachers, nurses, university
14 | % staff, police, etc) in Canada in 87 and first quarter of 88.
15 | % -- Donor: Stan Matwin, Computer Science Dept, University of Ottawa,
16 | % 34 Somerset East, K1N 9B4, (stan@uotcsi2.bitnet)
17 | % -- Date: November 1988
18 | %
19 | % 3. Past Usage:
20 | % -- testing concept learning software, in particular
21 | % an experimental method to learn two-tiered concept descriptions.
22 | % The data was used to learn the description of an acceptable
23 | % and unacceptable contract.
24 | % The unacceptable contracts were either obtained by interviewing
25 | % experts, or by inventing near misses.
26 | % Examples of use are described in:
27 | % Bergadano, F., Matwin, S., Michalski, R.,
28 | % Zhang, J., Measuring Quality of Concept Descriptions,
29 | % Procs. of the 3rd European Working Sessions on Learning,
30 | % Glasgow, October 1988.
31 | % Bergadano, F., Matwin, S., Michalski, R., Zhang, J.,
32 | % Representing and Acquiring Imprecise and Context-dependent
33 | % Concepts in Knowledge-based Systems, Procs. of ISMIS'88,
34 | % North Holland, 1988.
35 | % 4. Relevant Information:
36 | % -- data was used to test 2tier approach with learning
37 | % from positive and negative examples
38 | %
39 | % 5. Number of Instances: 57
40 | %
41 | % 6. Number of Attributes: 16
42 | %
43 | % 7. Attribute Information:
44 | % 1. dur: duration of agreement
45 | % [1..7]
46 | % 2 wage1.wage : wage increase in first year of contract
47 | % [2.0 .. 7.0]
48 | % 3 wage2.wage : wage increase in second year of contract
49 | % [2.0 .. 7.0]
50 | % 4 wage3.wage : wage increase in third year of contract
51 | % [2.0 .. 7.0]
52 | % 5 cola : cost of living allowance
53 | % [none, tcf, tc]
54 | % 6 hours.hrs : number of working hours during week
55 | % [35 .. 40]
56 | % 7 pension : employer contributions to pension plan
57 | % [none, ret_allw, empl_contr]
58 | % 8 stby_pay : standby pay
59 | % [2 .. 25]
60 | % 9 shift_diff : shift differencial : supplement for work on II and III shift
61 | % [1 .. 25]
62 | % 10 educ_allw.boolean : education allowance
63 | % [true false]
64 | % 11 holidays : number of statutory holidays
65 | % [9 .. 15]
66 | % 12 vacation : number of paid vacation days
67 | % [ba, avg, gnr]
68 | % 13 lngtrm_disabil.boolean :
69 | % employer's help during employee longterm disabil
70 | % ity [true , false]
71 | % 14 dntl_ins : employers contribution towards the dental plan
72 | % [none, half, full]
73 | % 15 bereavement.boolean : employer's financial contribution towards the
74 | % covering the costs of bereavement
75 | % [true , false]
76 | % 16 empl_hplan : employer's contribution towards the health plan
77 | % [none, half, full]
78 | %
79 | % 8. Missing Attribute Values: None
80 | %
81 | % 9. Class Distribution:
82 | %
83 | % 10. Exceptions from format instructions: no commas between attribute values.
84 | %
85 | %
86 | @relation 'labor-neg-data'
87 | @attribute 'duration' real
88 | @attribute 'wage-increase-first-year' real
89 | @attribute 'wage-increase-second-year' real
90 | @attribute 'wage-increase-third-year' real
91 | @attribute 'cost-of-living-adjustment' {'none','tcf','tc'}
92 | @attribute 'working-hours' real
93 | @attribute 'pension' {'none','ret_allw','empl_contr'}
94 | @attribute 'standby-pay' real
95 | @attribute 'shift-differential' real
96 | @attribute 'education-allowance' {'yes','no'}
97 | @attribute 'statutory-holidays' real
98 | @attribute 'vacation' {'below_average','average','generous'}
99 | @attribute 'longterm-disability-assistance' {'yes','no'}
100 | @attribute 'contribution-to-dental-plan' {'none','half','full'}
101 | @attribute 'bereavement-assistance' {'yes','no'}
102 | @attribute 'contribution-to-health-plan' {'none','half','full'}
103 | @attribute 'class' {'bad','good'}
104 | @data
105 | 1,5,?,?,?,40,?,?,2,?,11,'average',?,?,'yes',?,'good'
106 | 2,4.5,5.8,?,?,35,'ret_allw',?,?,'yes',11,'below_average',?,'full',?,'full','good'
107 | ?,?,?,?,?,38,'empl_contr',?,5,?,11,'generous','yes','half','yes','half','good'
108 | 3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good'
109 | 3,4.5,4.5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good'
110 | 2,2,2.5,?,?,35,?,?,6,'yes',12,'average',?,?,?,?,'good'
111 | 3,4,5,5,'tc',?,'empl_contr',?,?,?,12,'generous','yes','none','yes','half','good'
112 | 3,6.9,4.8,2.3,?,40,?,?,3,?,12,'below_average',?,?,?,?,'good'
113 | 2,3,7,?,?,38,?,12,25,'yes',11,'below_average','yes','half','yes',?,'good'
114 | 1,5.7,?,?,'none',40,'empl_contr',?,4,?,11,'generous','yes','full',?,?,'good'
115 | 3,3.5,4,4.6,'none',36,?,?,3,?,13,'generous',?,?,'yes','full','good'
116 | 2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,'full',?,?,'good'
117 | 2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'
118 | 3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'
119 | 1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'
120 | 2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'
121 | 1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good'
122 | 1,2.1,?,?,'tc',40,'ret_allw',2,3,'no',9,'below_average','yes','half',?,'none','bad'
123 | 1,2,?,?,'none',38,'none',?,?,'yes',11,'average','no','none','no','none','bad'
124 | 2,4,5,?,'tcf',35,?,13,5,?,15,'generous',?,?,?,?,'good'
125 | 2,4.3,4.4,?,?,38,?,?,4,?,12,'generous',?,'full',?,'full','good'
126 | 2,2.5,3,?,?,40,'none',?,?,?,11,'below_average',?,?,?,?,'bad'
127 | 3,3.5,4,4.6,'tcf',27,?,?,?,?,?,?,?,?,?,?,'good'
128 | 2,4.5,4,?,?,40,?,?,4,?,10,'generous',?,'half',?,'full','good'
129 | 1,6,?,?,?,38,?,8,3,?,9,'generous',?,?,?,?,'good'
130 | 3,2,2,2,'none',40,'none',?,?,?,10,'below_average',?,'half','yes','full','bad'
131 | 2,4.5,4.5,?,'tcf',?,?,?,?,'yes',10,'below_average','yes','none',?,'half','good'
132 | 2,3,3,?,'none',33,?,?,?,'yes',12,'generous',?,?,'yes','full','good'
133 | 2,5,4,?,'none',37,?,?,5,'no',11,'below_average','yes','full','yes','full','good'
134 | 3,2,2.5,?,?,35,'none',?,?,?,10,'average',?,?,'yes','full','bad'
135 | 3,4.5,4.5,5,'none',40,?,?,?,'no',11,'average',?,'half',?,?,'good'
136 | 3,3,2,2.5,'tc',40,'none',?,5,'no',10,'below_average','yes','half','yes','full','bad'
137 | 2,2.5,2.5,?,?,38,'empl_contr',?,?,?,10,'average',?,?,?,?,'bad'
138 | 2,4,5,?,'none',40,'none',?,3,'no',10,'below_average','no','none',?,'none','bad'
139 | 3,2,2.5,2.1,'tc',40,'none',2,1,'no',10,'below_average','no','half','yes','full','bad'
140 | 2,2,2,?,'none',40,'none',?,?,'no',11,'average','yes','none','yes','full','bad'
141 | 1,2,?,?,'tc',40,'ret_allw',4,0,'no',11,'generous','no','none','no','none','bad'
142 | 1,2.8,?,?,'none',38,'empl_contr',2,3,'no',9,'below_average','yes','half',?,'none','bad'
143 | 3,2,2.5,2,?,37,'empl_contr',?,?,?,10,'average',?,?,'yes','none','bad'
144 | 2,4.5,4,?,'none',40,?,?,4,?,12,'average','yes','full','yes','half','good'
145 | 1,4,?,?,'none',?,'none',?,?,'yes',11,'average','no','none','no','none','bad'
146 | 2,2,3,?,'none',38,'empl_contr',?,?,'yes',12,'generous','yes','none','yes','full','bad'
147 | 2,2.5,2.5,?,'tc',39,'empl_contr',?,?,?,12,'average',?,?,'yes',?,'bad'
148 | 2,2.5,3,?,'tcf',40,'none',?,?,?,11,'below_average',?,?,'yes',?,'bad'
149 | 2,4,4,?,'none',40,'none',?,3,?,10,'below_average','no','none',?,'none','bad'
150 | 2,4.5,4,?,?,40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'
151 | 2,4.5,4,?,'none',40,?,?,5,?,11,'average',?,'full','yes','full','good'
152 | 2,4.6,4.6,?,'tcf',38,?,?,?,?,?,?,'yes','half',?,'half','good'
153 | 2,5,4.5,?,'none',38,?,14,5,?,11,'below_average','yes',?,?,'full','good'
154 | 2,5.7,4.5,?,'none',40,'ret_allw',?,?,?,11,'average','yes','full','yes','full','good'
155 | 2,7,5.3,?,?,?,?,?,?,?,11,?,'yes','full',?,?,'good'
156 | 3,2,3,?,'tcf',?,'empl_contr',?,?,'yes',?,?,'yes','half','yes',?,'good'
157 | 3,3.5,4,4.5,'tcf',35,?,?,?,?,13,'generous',?,?,'yes','full','good'
158 | 3,4,3.5,?,'none',40,'empl_contr',?,6,?,11,'average','yes','full',?,'full','good'
159 | 3,5,4.4,?,'none',38,'empl_contr',10,6,?,11,'generous','yes',?,?,'full','good'
160 | 3,5,5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good'
161 | 3,6,6,4,?,35,?,?,14,?,9,'generous','yes','full','yes','full','good'
162 | %
163 | %
164 | %
165 |
--------------------------------------------------------------------------------
/content/zoo/zoo.csv:
--------------------------------------------------------------------------------
1 | animal,hair,feathers,eggs,milk,airborne,aquatic,predator,toothed,backbone,breathes,venomous,fins,legs,tail,domestic,catsize,type
2 | aardvark,true,false,false,true,false,false,true,true,true,true,false,false,4,false,false,true,mammal
3 | antelope,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
4 | bass,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
5 | bear,true,false,false,true,false,false,true,true,true,true,false,false,4,false,false,true,mammal
6 | boar,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
7 | buffalo,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
8 | calf,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
9 | carp,false,false,true,false,false,true,false,true,true,false,false,true,0,true,true,false,fish
10 | catfish,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
11 | cavy,true,false,false,true,false,false,false,true,true,true,false,false,4,false,true,false,mammal
12 | cheetah,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
13 | chicken,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
14 | chub,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
15 | clam,false,false,true,false,false,false,true,false,false,false,false,false,0,false,false,false,invertebrate
16 | crab,false,false,true,false,false,true,true,false,false,false,false,false,4,false,false,false,invertebrate
17 | crayfish,false,false,true,false,false,true,true,false,false,false,false,false,6,false,false,false,invertebrate
18 | crow,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,false,bird
19 | deer,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
20 | dogfish,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
21 | dolphin,false,false,false,true,false,true,true,true,true,true,false,true,0,true,false,true,mammal
22 | dove,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
23 | duck,false,true,true,false,true,true,false,false,true,true,false,false,2,true,false,false,bird
24 | elephant,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
25 | flamingo,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,true,bird
26 | flea,false,false,true,false,false,false,false,false,false,true,false,false,6,false,false,false,insect
27 | frog,false,false,true,false,false,true,true,true,true,true,false,false,4,false,false,false,amphibian
28 | frog,false,false,true,false,false,true,true,true,true,true,true,false,4,false,false,false,amphibian
29 | fruitbat,true,false,false,true,true,false,false,true,true,true,false,false,2,true,false,false,mammal
30 | giraffe,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
31 | girl,true,false,false,true,false,false,true,true,true,true,false,false,2,false,true,true,mammal
32 | gnat,false,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
33 | goat,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
34 | gorilla,true,false,false,true,false,false,false,true,true,true,false,false,2,false,false,true,mammal
35 | gull,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
36 | haddock,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
37 | hamster,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,false,mammal
38 | hare,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,false,mammal
39 | hawk,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,false,bird
40 | herring,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
41 | honeybee,true,false,true,false,true,false,false,false,false,true,true,false,6,false,true,false,insect
42 | housefly,true,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
43 | kiwi,false,true,true,false,false,false,true,false,true,true,false,false,2,true,false,false,bird
44 | ladybird,false,false,true,false,true,false,true,false,false,true,false,false,6,false,false,false,insect
45 | lark,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
46 | leopard,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
47 | lion,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
48 | lobster,false,false,true,false,false,true,true,false,false,false,false,false,6,false,false,false,invertebrate
49 | lynx,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
50 | mink,true,false,false,true,false,true,true,true,true,true,false,false,4,true,false,true,mammal
51 | mole,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,false,mammal
52 | mongoose,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
53 | moth,true,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
54 | newt,false,false,true,false,false,true,true,true,true,true,false,false,4,true,false,false,amphibian
55 | octopus,false,false,true,false,false,true,true,false,false,false,false,false,8,false,false,true,invertebrate
56 | opossum,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,false,mammal
57 | oryx,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
58 | ostrich,false,true,true,false,false,false,false,false,true,true,false,false,2,true,false,true,bird
59 | parakeet,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
60 | penguin,false,true,true,false,false,true,true,false,true,true,false,false,2,true,false,true,bird
61 | pheasant,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
62 | pike,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
63 | piranha,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
64 | pitviper,false,false,true,false,false,false,true,true,true,true,true,false,0,true,false,false,reptile
65 | platypus,true,false,true,true,false,true,true,false,true,true,false,false,4,true,false,true,mammal
66 | polecat,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
67 | pony,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
68 | porpoise,false,false,false,true,false,true,true,true,true,true,false,true,0,true,false,true,mammal
69 | puma,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
70 | pussycat,true,false,false,true,false,false,true,true,true,true,false,false,4,true,true,true,mammal
71 | raccoon,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
72 | reindeer,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
73 | rhea,false,true,true,false,false,false,true,false,true,true,false,false,2,true,false,true,bird
74 | scorpion,false,false,false,false,false,false,true,false,false,true,true,false,8,true,false,false,invertebrate
75 | seahorse,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
76 | seal,true,false,false,true,false,true,true,true,true,true,false,true,0,false,false,true,mammal
77 | sealion,true,false,false,true,false,true,true,true,true,true,false,true,2,true,false,true,mammal
78 | seasnake,false,false,false,false,false,true,true,true,true,false,true,false,0,true,false,false,reptile
79 | seawasp,false,false,true,false,false,true,true,false,false,false,true,false,0,false,false,false,invertebrate
80 | skimmer,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
81 | skua,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
82 | slowworm,false,false,true,false,false,false,true,true,true,true,false,false,0,true,false,false,reptile
83 | slug,false,false,true,false,false,false,false,false,false,true,false,false,0,false,false,false,invertebrate
84 | sole,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
85 | sparrow,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
86 | squirrel,true,false,false,true,false,false,false,true,true,true,false,false,2,true,false,false,mammal
87 | starfish,false,false,true,false,false,true,true,false,false,false,false,false,5,false,false,false,invertebrate
88 | stingray,false,false,true,false,false,true,true,true,true,false,true,true,0,true,false,true,fish
89 | swan,false,true,true,false,true,true,false,false,true,true,false,false,2,true,false,true,bird
90 | termite,false,false,true,false,false,false,false,false,false,true,false,false,6,false,false,false,insect
91 | toad,false,false,true,false,false,true,false,true,true,true,false,false,4,false,false,false,amphibian
92 | tortoise,false,false,true,false,false,false,false,false,true,true,false,false,4,true,false,true,reptile
93 | tuatara,false,false,true,false,false,false,true,true,true,true,false,false,4,true,false,false,reptile
94 | tuna,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
95 | vampire,true,false,false,true,true,false,false,true,true,true,false,false,2,true,false,false,mammal
96 | vole,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,false,mammal
97 | vulture,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,true,bird
98 | wallaby,true,false,false,true,false,false,false,true,true,true,false,false,2,true,false,true,mammal
99 | wasp,true,false,true,false,true,false,false,false,false,true,true,false,6,false,false,false,insect
100 | wolf,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
101 | worm,false,false,true,false,false,false,false,false,false,true,false,false,0,false,false,false,invertebrate
102 | wren,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
103 |
--------------------------------------------------------------------------------
/content/glass/glass.csv:
--------------------------------------------------------------------------------
1 | RI,Na,Mg,Al,Si,K,Ca,Ba,Fe,Type
2 | 1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,'build wind float'
3 | 1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,'vehic wind float'
4 | 1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,'build wind float'
5 | 1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,tableware
6 | 1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,'build wind non-float'
7 | 1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,'build wind non-float'
8 | 1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,'vehic wind float'
9 | 1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,'build wind float'
10 | 1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,headlamps
11 | 1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,'build wind non-float'
12 | 1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,'build wind non-float'
13 | 1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,'build wind non-float'
14 | 1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,'build wind float'
15 | 1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,'vehic wind float'
16 | 1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,'vehic wind float'
17 | 1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,'build wind non-float'
18 | 1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,headlamps
19 | 1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,'build wind non-float'
20 | 1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,containers
21 | 1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,'build wind non-float'
22 | 1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,'build wind float'
23 | 1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,'build wind non-float'
24 | 1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,'build wind non-float'
25 | 1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,'build wind float'
26 | 1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,containers
27 | 1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,'build wind non-float'
28 | 1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,'build wind non-float'
29 | 1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,headlamps
30 | 1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,'build wind non-float'
31 | 1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,'vehic wind float'
32 | 1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,'build wind non-float'
33 | 1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,'vehic wind float'
34 | 1.51115,17.38,0,0.34,75.41,0,6.65,0,0,tableware
35 | 1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,'build wind non-float'
36 | 1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,'build wind float'
37 | 1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,'build wind float'
38 | 1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,'build wind float'
39 | 1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,'build wind non-float'
40 | 1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,'build wind non-float'
41 | 1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,'build wind non-float'
42 | 1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,'build wind float'
43 | 1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,'build wind non-float'
44 | 1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,'build wind non-float'
45 | 1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,'build wind non-float'
46 | 1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,'vehic wind float'
47 | 1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,'build wind float'
48 | 1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,containers
49 | 1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,'build wind float'
50 | 1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,'build wind float'
51 | 1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,'build wind non-float'
52 | 1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,'build wind float'
53 | 1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,'build wind non-float'
54 | 1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,'build wind float'
55 | 1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,'build wind non-float'
56 | 1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,headlamps
57 | 1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,'build wind float'
58 | 1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,headlamps
59 | 1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,'build wind float'
60 | 1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,'vehic wind float'
61 | 1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,'build wind non-float'
62 | 1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,'build wind non-float'
63 | 1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,'build wind float'
64 | 1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,'build wind float'
65 | 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,'build wind float'
66 | 1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,'build wind float'
67 | 1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,headlamps
68 | 1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,'build wind float'
69 | 1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,'vehic wind float'
70 | 1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,'build wind non-float'
71 | 1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,'build wind float'
72 | 1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,tableware
73 | 1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,'build wind non-float'
74 | 1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,tableware
75 | 1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,'build wind non-float'
76 | 1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,'build wind float'
77 | 1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,'build wind non-float'
78 | 1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,'build wind float'
79 | 1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,'build wind float'
80 | 1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,'vehic wind float'
81 | 1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,'build wind float'
82 | 1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,'build wind float'
83 | 1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,'build wind float'
84 | 1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,'vehic wind float'
85 | 1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,'build wind float'
86 | 1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,containers
87 | 1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,'build wind non-float'
88 | 1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,'build wind non-float'
89 | 1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,'build wind float'
90 | 1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,'build wind float'
91 | 1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,'build wind non-float'
92 | 1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,headlamps
93 | 1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,'build wind float'
94 | 1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,'build wind float'
95 | 1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,tableware
96 | 1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,headlamps
97 | 1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,'build wind float'
98 | 1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,headlamps
99 | 1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,'build wind non-float'
100 | 1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,'build wind non-float'
101 | 1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,'build wind non-float'
102 | 1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,'build wind float'
103 | 1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,'build wind non-float'
104 | 1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,headlamps
105 | 1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,headlamps
106 | 1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,headlamps
107 | 1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,containers
108 | 1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,'build wind non-float'
109 | 1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,headlamps
110 | 1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,'build wind float'
111 | 1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,containers
112 | 1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,'build wind non-float'
113 | 1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,headlamps
114 | 1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,'build wind float'
115 | 1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,headlamps
116 | 1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,'vehic wind float'
117 | 1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,headlamps
118 | 1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,'build wind non-float'
119 | 1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,headlamps
120 | 1.51818,13.72,0,0.56,74.45,0,10.99,0,0,'build wind non-float'
121 | 1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,'build wind float'
122 | 1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,'build wind non-float'
123 | 1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,'build wind float'
124 | 1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,'build wind non-float'
125 | 1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,'build wind non-float'
126 | 1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,containers
127 | 1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,'build wind float'
128 | 1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,headlamps
129 | 1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,headlamps
130 | 1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,'build wind float'
131 | 1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,'build wind float'
132 | 1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,'build wind non-float'
133 | 1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,'build wind non-float'
134 | 1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,headlamps
135 | 1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,'build wind float'
136 | 1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,containers
137 | 1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,'build wind float'
138 | 1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,'build wind float'
139 | 1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,'build wind non-float'
140 | 1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,'build wind float'
141 | 1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,'build wind non-float'
142 | 1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,'build wind float'
143 | 1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,'build wind float'
144 | 1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,'build wind float'
145 | 1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,containers
146 | 1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,'build wind non-float'
147 | 1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,'build wind non-float'
148 | 1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,'build wind non-float'
149 | 1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,'build wind non-float'
150 | 1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,'build wind non-float'
151 | 1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,'build wind non-float'
152 | 1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,headlamps
153 | 1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,'build wind float'
154 | 1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,'build wind non-float'
155 | 1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,'build wind non-float'
156 | 1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,'vehic wind float'
157 | 1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,'build wind float'
158 | 1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,headlamps
159 | 1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,containers
160 | 1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,'build wind float'
161 | 1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,'build wind non-float'
162 | 1.52664,11.23,0,0.77,73.21,0,14.68,0,0,'build wind non-float'
163 | 1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,'build wind float'
164 | 1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,headlamps
165 | 1.51321,13,0,3.02,70.7,6.21,6.93,0,0,containers
166 | 1.52739,11.02,0,0.75,73.08,0,14.96,0,0,'build wind non-float'
167 | 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,'build wind float'
168 | 1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,'build wind float'
169 | 1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,'build wind non-float'
170 | 1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,'build wind non-float'
171 | 1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,headlamps
172 | 1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,'build wind non-float'
173 | 1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,'build wind non-float'
174 | 1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,'build wind float'
175 | 1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,headlamps
176 | 1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,'build wind float'
177 | 1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,headlamps
178 | 1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,'build wind float'
179 | 1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,'build wind float'
180 | 1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,containers
181 | 1.51969,14.56,0,0.56,73.48,0,11.22,0,0,tableware
182 | 1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,'build wind non-float'
183 | 1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,'build wind non-float'
184 | 1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,'vehic wind float'
185 | 1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,'build wind non-float'
186 | 1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,'build wind float'
187 | 1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,headlamps
188 | 1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,'build wind float'
189 | 1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,'build wind float'
190 | 1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,'vehic wind float'
191 | 1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,containers
192 | 1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,'build wind float'
193 | 1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,'build wind float'
194 | 1.51905,14,2.39,1.56,72.37,0,9.57,0,0,tableware
195 | 1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,headlamps
196 | 1.51916,14.15,0,2.09,72.74,0,10.88,0,0,tableware
197 | 1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,'build wind non-float'
198 | 1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,'build wind non-float'
199 | 1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,'build wind non-float'
200 | 1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,'build wind non-float'
201 | 1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,'build wind non-float'
202 | 1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,'build wind non-float'
203 | 1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,'build wind float'
204 | 1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,'vehic wind float'
205 | 1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,'build wind float'
206 | 1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,'build wind non-float'
207 | 1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,'build wind float'
208 | 1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,headlamps
209 | 1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,'build wind float'
210 | 1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,'build wind float'
211 | 1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,'vehic wind float'
212 | 1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,'build wind non-float'
213 | 1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,'build wind non-float'
214 | 1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,'build wind non-float'
215 | 1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,tableware
216 |
--------------------------------------------------------------------------------
/content/zoo/zoo.arff:
--------------------------------------------------------------------------------
1 | % Changes to WEKA Format: SRG - November 1994
2 | % 1. Boolean attributes changed from 1 and 0 to Enumerated attribute with
3 | % values {true and false}
4 | % 2. Class Number (Attribute 18) changed to an Enumerated type with
5 | % values {1,2,3,4,5,6,7}
6 | %
7 | % December 1997 - Changed class attribute values to semi-sensible names
8 | %
9 | % 1. Title: Zoo database
10 | %
11 | % 2. Source Information
12 | % -- Creator: Richard Forsyth
13 | % -- Donor: Richard S. Forsyth
14 | % 8 Grosvenor Avenue
15 | % Mapperley Park
16 | % Nottingham NG3 5DX
17 | % 0602-621676
18 | % -- Date: 5/15/1990
19 | %
20 | % 3. Past Usage:
21 | % -- None known other than what is shown in Forsyth's PC/BEAGLE User's Guide.
22 | %
23 | % 4. Relevant Information:
24 | % -- A simple database containing 17 Boolean-valued attributes. The "type"
25 | % attribute appears to be the class attribute. Here is a breakdown of
26 | % which animals are in which type: (I find it unusual that there are
27 | % 2 instances of "frog" and one of "girl"!)
28 | %
29 | % Class# Set of animals:
30 | % ====== ===============================================================
31 | % 1 (41) aardvark, antelope, bear, boar, buffalo, calf,
32 | % cavy, cheetah, deer, dolphin, elephant,
33 | % fruitbat, giraffe, girl, goat, gorilla, hamster,
34 | % hare, leopard, lion, lynx, mink, mole, mongoose,
35 | % opossum, oryx, platypus, polecat, pony,
36 | % porpoise, puma, pussycat, raccoon, reindeer,
37 | % seal, sealion, squirrel, vampire, vole, wallaby,wolf
38 | % 2 (20) chicken, crow, dove, duck, flamingo, gull, hawk,
39 | % kiwi, lark, ostrich, parakeet, penguin, pheasant,
40 | % rhea, skimmer, skua, sparrow, swan, vulture, wren
41 | % 3 (5) pitviper, seasnake, slowworm, tortoise, tuatara
42 | % 4 (13) bass, carp, catfish, chub, dogfish, haddock,
43 | % herring, pike, piranha, seahorse, sole, stingray, tuna
44 | % 5 (4) frog, frog, newt, toad
45 | % 6 (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
46 | % 7 (10) clam, crab, crayfish, lobster, octopus,
47 | % scorpion, seawasp, slug, starfish, worm
48 | %
49 | % 5. Number of Instances: 101
50 | % 6. Number of Attributes: 18 (animal name, 15 Boolean attributes, 2 numerics)
51 | % 7. Attribute Information: (name of attribute and type of value domain)
52 | % 1. animal name: Unique for each instance
53 | % 2. hair Boolean
54 | % 3. feathers Boolean
55 | % 4. eggs Boolean
56 | % 5. milk Boolean
57 | % 6. airborne Boolean
58 | % 7. aquatic Boolean
59 | % 8. predator Boolean
60 | % 9. toothed Boolean
61 | % 10. backbone Boolean
62 | % 11. breathes Boolean
63 | % 12. venomous Boolean
64 | % 13. fins Boolean
65 | % 14. legs Numeric (set of values: {0,2,4,5,6,8})
66 | % 15. tail Boolean
67 | % 16. domestic Boolean
68 | % 17. catsize Boolean
69 | % 18. type Numeric (integer values in range [1,7])
70 | %
71 | % 8. Missing Attribute Values: None
72 | % 9. Class Distribution: Given above
73 |
74 | @RELATION zoo
75 |
76 | @ATTRIBUTE animal {aardvark,antelope,bass,bear,boar,buffalo,calf,carp,catfish,cavy,cheetah,chicken,chub,clam,crab,crayfish,crow,deer,dogfish,dolphin,dove,duck,elephant,flamingo,flea,frog,fruitbat,giraffe,girl,gnat,goat,gorilla,gull,haddock,hamster,hare,hawk,herring,honeybee,housefly,kiwi,ladybird,lark,leopard,lion,lobster,lynx,mink,mole,mongoose,moth,newt,octopus,opossum,oryx,ostrich,parakeet,penguin,pheasant,pike,piranha,pitviper,platypus,polecat,pony,porpoise,puma,pussycat,raccoon,reindeer,rhea,scorpion,seahorse,seal,sealion,seasnake,seawasp,skimmer,skua,slowworm,slug,sole,sparrow,squirrel,starfish,stingray,swan,termite,toad,tortoise,tuatara,tuna,vampire,vole,vulture,wallaby,wasp,wolf,worm,wren}
77 | @ATTRIBUTE hair {false, true}
78 | @ATTRIBUTE feathers {false, true}
79 | @ATTRIBUTE eggs {false, true}
80 | @ATTRIBUTE milk {false, true}
81 | @ATTRIBUTE airborne {false, true}
82 | @ATTRIBUTE aquatic {false, true}
83 | @ATTRIBUTE predator {false, true}
84 | @ATTRIBUTE toothed {false, true}
85 | @ATTRIBUTE backbone {false, true}
86 | @ATTRIBUTE breathes {false, true}
87 | @ATTRIBUTE venomous {false, true}
88 | @ATTRIBUTE fins {false, true}
89 | @ATTRIBUTE legs INTEGER [0,9]
90 | @ATTRIBUTE tail {false, true}
91 | @ATTRIBUTE domestic {false, true}
92 | @ATTRIBUTE catsize {false, true}
93 | @ATTRIBUTE type { mammal, bird, reptile, fish, amphibian, insect, invertebrate }
94 |
95 | @DATA
96 | %
97 | % Instances (101):
98 | %
99 | aardvark,true,false,false,true,false,false,true,true,true,true,false,false,4,false,false,true,mammal
100 | antelope,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
101 | bass,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
102 | bear,true,false,false,true,false,false,true,true,true,true,false,false,4,false,false,true,mammal
103 | boar,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
104 | buffalo,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
105 | calf,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
106 | carp,false,false,true,false,false,true,false,true,true,false,false,true,0,true,true,false,fish
107 | catfish,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
108 | cavy,true,false,false,true,false,false,false,true,true,true,false,false,4,false,true,false,mammal
109 | cheetah,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
110 | chicken,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
111 | chub,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
112 | clam,false,false,true,false,false,false,true,false,false,false,false,false,0,false,false,false,invertebrate
113 | crab,false,false,true,false,false,true,true,false,false,false,false,false,4,false,false,false,invertebrate
114 | crayfish,false,false,true,false,false,true,true,false,false,false,false,false,6,false,false,false,invertebrate
115 | crow,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,false,bird
116 | deer,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
117 | dogfish,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
118 | dolphin,false,false,false,true,false,true,true,true,true,true,false,true,0,true,false,true,mammal
119 | dove,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
120 | duck,false,true,true,false,true,true,false,false,true,true,false,false,2,true,false,false,bird
121 | elephant,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
122 | flamingo,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,true,bird
123 | flea,false,false,true,false,false,false,false,false,false,true,false,false,6,false,false,false,insect
124 | frog,false,false,true,false,false,true,true,true,true,true,false,false,4,false,false,false,amphibian
125 | frog,false,false,true,false,false,true,true,true,true,true,true,false,4,false,false,false,amphibian
126 | fruitbat,true,false,false,true,true,false,false,true,true,true,false,false,2,true,false,false,mammal
127 | giraffe,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
128 | girl,true,false,false,true,false,false,true,true,true,true,false,false,2,false,true,true,mammal
129 | gnat,false,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
130 | goat,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
131 | gorilla,true,false,false,true,false,false,false,true,true,true,false,false,2,false,false,true,mammal
132 | gull,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
133 | haddock,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
134 | hamster,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,false,mammal
135 | hare,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,false,mammal
136 | hawk,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,false,bird
137 | herring,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
138 | honeybee,true,false,true,false,true,false,false,false,false,true,true,false,6,false,true,false,insect
139 | housefly,true,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
140 | kiwi,false,true,true,false,false,false,true,false,true,true,false,false,2,true,false,false,bird
141 | ladybird,false,false,true,false,true,false,true,false,false,true,false,false,6,false,false,false,insect
142 | lark,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
143 | leopard,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
144 | lion,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
145 | lobster,false,false,true,false,false,true,true,false,false,false,false,false,6,false,false,false,invertebrate
146 | lynx,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
147 | mink,true,false,false,true,false,true,true,true,true,true,false,false,4,true,false,true,mammal
148 | mole,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,false,mammal
149 | mongoose,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
150 | moth,true,false,true,false,true,false,false,false,false,true,false,false,6,false,false,false,insect
151 | newt,false,false,true,false,false,true,true,true,true,true,false,false,4,true,false,false,amphibian
152 | octopus,false,false,true,false,false,true,true,false,false,false,false,false,8,false,false,true,invertebrate
153 | opossum,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,false,mammal
154 | oryx,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,true,mammal
155 | ostrich,false,true,true,false,false,false,false,false,true,true,false,false,2,true,false,true,bird
156 | parakeet,false,true,true,false,true,false,false,false,true,true,false,false,2,true,true,false,bird
157 | penguin,false,true,true,false,false,true,true,false,true,true,false,false,2,true,false,true,bird
158 | pheasant,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
159 | pike,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
160 | piranha,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,false,fish
161 | pitviper,false,false,true,false,false,false,true,true,true,true,true,false,0,true,false,false,reptile
162 | platypus,true,false,true,true,false,true,true,false,true,true,false,false,4,true,false,true,mammal
163 | polecat,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
164 | pony,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
165 | porpoise,false,false,false,true,false,true,true,true,true,true,false,true,0,true,false,true,mammal
166 | puma,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
167 | pussycat,true,false,false,true,false,false,true,true,true,true,false,false,4,true,true,true,mammal
168 | raccoon,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
169 | reindeer,true,false,false,true,false,false,false,true,true,true,false,false,4,true,true,true,mammal
170 | rhea,false,true,true,false,false,false,true,false,true,true,false,false,2,true,false,true,bird
171 | scorpion,false,false,false,false,false,false,true,false,false,true,true,false,8,true,false,false,invertebrate
172 | seahorse,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
173 | seal,true,false,false,true,false,true,true,true,true,true,false,true,0,false,false,true,mammal
174 | sealion,true,false,false,true,false,true,true,true,true,true,false,true,2,true,false,true,mammal
175 | seasnake,false,false,false,false,false,true,true,true,true,false,true,false,0,true,false,false,reptile
176 | seawasp,false,false,true,false,false,true,true,false,false,false,true,false,0,false,false,false,invertebrate
177 | skimmer,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
178 | skua,false,true,true,false,true,true,true,false,true,true,false,false,2,true,false,false,bird
179 | slowworm,false,false,true,false,false,false,true,true,true,true,false,false,0,true,false,false,reptile
180 | slug,false,false,true,false,false,false,false,false,false,true,false,false,0,false,false,false,invertebrate
181 | sole,false,false,true,false,false,true,false,true,true,false,false,true,0,true,false,false,fish
182 | sparrow,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
183 | squirrel,true,false,false,true,false,false,false,true,true,true,false,false,2,true,false,false,mammal
184 | starfish,false,false,true,false,false,true,true,false,false,false,false,false,5,false,false,false,invertebrate
185 | stingray,false,false,true,false,false,true,true,true,true,false,true,true,0,true,false,true,fish
186 | swan,false,true,true,false,true,true,false,false,true,true,false,false,2,true,false,true,bird
187 | termite,false,false,true,false,false,false,false,false,false,true,false,false,6,false,false,false,insect
188 | toad,false,false,true,false,false,true,false,true,true,true,false,false,4,false,false,false,amphibian
189 | tortoise,false,false,true,false,false,false,false,false,true,true,false,false,4,true,false,true,reptile
190 | tuatara,false,false,true,false,false,false,true,true,true,true,false,false,4,true,false,false,reptile
191 | tuna,false,false,true,false,false,true,true,true,true,false,false,true,0,true,false,true,fish
192 | vampire,true,false,false,true,true,false,false,true,true,true,false,false,2,true,false,false,mammal
193 | vole,true,false,false,true,false,false,false,true,true,true,false,false,4,true,false,false,mammal
194 | vulture,false,true,true,false,true,false,true,false,true,true,false,false,2,true,false,true,bird
195 | wallaby,true,false,false,true,false,false,false,true,true,true,false,false,2,true,false,true,mammal
196 | wasp,true,false,true,false,true,false,false,false,false,true,true,false,6,false,false,false,insect
197 | wolf,true,false,false,true,false,false,true,true,true,true,false,false,4,true,false,true,mammal
198 | worm,false,false,true,false,false,false,false,false,false,true,false,false,0,false,false,false,invertebrate
199 | wren,false,true,true,false,true,false,false,false,true,true,false,false,2,true,false,false,bird
200 | %
201 | %
202 | %
203 |
--------------------------------------------------------------------------------
/content/glass/glass.arff:
--------------------------------------------------------------------------------
1 | % 1. Title: Glass Identification Database
2 | %
3 | % 2. Sources:
4 | % (a) Creator: B. German
5 | % -- Central Research Establishment
6 | % Home Office Forensic Science Service
7 | % Aldermaston, Reading, Berkshire RG7 4PN
8 | % (b) Donor: Vina Spiehler, Ph.D., DABFT
9 | % Diagnostic Products Corporation
10 | % (213) 776-0180 (ext 3014)
11 | % (c) Date: September, 1987
12 | %
13 | % 3. Past Usage:
14 | % -- Rule Induction in Forensic Science
15 | % -- Ian W. Evett and Ernest J. Spiehler
16 | % -- Central Research Establishment
17 | % Home Office Forensic Science Service
18 | % Aldermaston, Reading, Berkshire RG7 4PN
19 | % -- Unknown technical note number (sorry, not listed here)
20 | % -- General Results: nearest neighbor held its own with respect to the
21 | % rule-based system
22 | %
23 | % 4. Relevant Information:n
24 | % Vina conducted a comparison test of her rule-based system, BEAGLE, the
25 | % nearest-neighbor algorithm, and discriminant analysis. BEAGLE is
26 | % a product available through VRS Consulting, Inc.; 4676 Admiralty Way,
27 | % Suite 206; Marina Del Ray, CA 90292 (213) 827-7890 and FAX: -3189.
28 | % In determining whether the glass was a type of "float" glass or not,
29 | % the following results were obtained (# incorrect answers):
30 | %
31 | % Type of Sample Beagle NN DA
32 | % Windows that were float processed (87) 10 12 21
33 | % Windows that were not: (76) 19 16 22
34 | %
35 | % The study of classification of types of glass was motivated by
36 | % criminological investigation. At the scene of the crime, the glass left
37 | % can be used as evidence...if it is correctly identified!
38 | %
39 | % 5. Number of Instances: 214
40 | %
41 | % 6. Number of Attributes: 10 (including an Id#) plus the class attribute
42 | % -- all attributes are continuously valued
43 | %
44 | % 7. Attribute Information:
45 | % 1. Id number: 1 to 214
46 | % 2. RI: refractive index
47 | % 3. Na: Sodium (unit measurement: weight percent in corresponding oxide, as
48 | % are attributes 4-10)
49 | % 4. Mg: Magnesium
50 | % 5. Al: Aluminum
51 | % 6. Si: Silicon
52 | % 7. K: Potassium
53 | % 8. Ca: Calcium
54 | % 9. Ba: Barium
55 | % 10. Fe: Iron
56 | % 11. Type of glass: (class attribute)
57 | % -- 1 building_windows_float_processed
58 | % -- 2 building_windows_non_float_processed
59 | % -- 3 vehicle_windows_float_processed
60 | % -- 4 vehicle_windows_non_float_processed (none in this database)
61 | % -- 5 containers
62 | % -- 6 tableware
63 | % -- 7 headlamps
64 | %
65 | % 8. Missing Attribute Values: None
66 | %
67 | % Summary Statistics:
68 | % Attribute: Min Max Mean SD Correlation with class
69 | % 2. RI: 1.5112 1.5339 1.5184 0.0030 -0.1642
70 | % 3. Na: 10.73 17.38 13.4079 0.8166 0.5030
71 | % 4. Mg: 0 4.49 2.6845 1.4424 -0.7447
72 | % 5. Al: 0.29 3.5 1.4449 0.4993 0.5988
73 | % 6. Si: 69.81 75.41 72.6509 0.7745 0.1515
74 | % 7. K: 0 6.21 0.4971 0.6522 -0.0100
75 | % 8. Ca: 5.43 16.19 8.9570 1.4232 0.0007
76 | % 9. Ba: 0 3.15 0.1750 0.4972 0.5751
77 | % 10. Fe: 0 0.51 0.0570 0.0974 -0.1879
78 | %
79 | % 9. Class Distribution: (out of 214 total instances)
80 | % -- 163 Window glass (building windows and vehicle windows)
81 | % -- 87 float processed
82 | % -- 70 building windows
83 | % -- 17 vehicle windows
84 | % -- 76 non-float processed
85 | % -- 76 building windows
86 | % -- 0 vehicle windows
87 | % -- 51 Non-window glass
88 | % -- 13 containers
89 | % -- 9 tableware
90 | % -- 29 headlamps
91 | %
92 | %
93 | %
94 | %
95 | %
96 | %
97 | %
98 | % Relabeled values in attribute 'Type'
99 | % From: '1' To: 'build wind float'
100 | % From: '2' To: 'build wind non-float'
101 | % From: '3' To: 'vehic wind float'
102 | % From: '4' To: 'vehic wind non-float'
103 | % From: '5' To: containers
104 | % From: '6' To: tableware
105 | % From: '7' To: headlamps
106 | %
107 | @relation Glass
108 | @attribute 'RI' real
109 | @attribute 'Na' real
110 | @attribute 'Mg' real
111 | @attribute 'Al' real
112 | @attribute 'Si' real
113 | @attribute 'K' real
114 | @attribute 'Ca' real
115 | @attribute 'Ba' real
116 | @attribute 'Fe' real
117 | @attribute 'Type' { 'build wind float', 'build wind non-float', 'vehic wind float', 'vehic wind non-float', containers, tableware, headlamps}
118 | @data
119 | 1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,'build wind float'
120 | 1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,'vehic wind float'
121 | 1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,'build wind float'
122 | 1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,tableware
123 | 1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,'build wind non-float'
124 | 1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,'build wind non-float'
125 | 1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,'vehic wind float'
126 | 1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,'build wind float'
127 | 1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,headlamps
128 | 1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,'build wind non-float'
129 | 1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,'build wind non-float'
130 | 1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,'build wind non-float'
131 | 1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,'build wind float'
132 | 1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,'vehic wind float'
133 | 1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,'vehic wind float'
134 | 1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,'build wind non-float'
135 | 1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,headlamps
136 | 1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,'build wind non-float'
137 | 1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,containers
138 | 1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,'build wind non-float'
139 | 1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,'build wind float'
140 | 1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,'build wind non-float'
141 | 1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,'build wind non-float'
142 | 1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,'build wind float'
143 | 1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,containers
144 | 1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,'build wind non-float'
145 | 1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,'build wind non-float'
146 | 1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,headlamps
147 | 1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,'build wind non-float'
148 | 1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,'vehic wind float'
149 | 1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,'build wind non-float'
150 | 1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,'vehic wind float'
151 | 1.51115,17.38,0,0.34,75.41,0,6.65,0,0,tableware
152 | 1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,'build wind non-float'
153 | 1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,'build wind float'
154 | 1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,'build wind float'
155 | 1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,'build wind float'
156 | 1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,'build wind non-float'
157 | 1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,'build wind non-float'
158 | 1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,'build wind non-float'
159 | 1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,'build wind float'
160 | 1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,'build wind non-float'
161 | 1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,'build wind non-float'
162 | 1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,'build wind non-float'
163 | 1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,'vehic wind float'
164 | 1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,'build wind float'
165 | 1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,containers
166 | 1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,'build wind float'
167 | 1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,'build wind float'
168 | 1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,'build wind non-float'
169 | 1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,'build wind float'
170 | 1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,'build wind non-float'
171 | 1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,'build wind float'
172 | 1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,'build wind non-float'
173 | 1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,headlamps
174 | 1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,'build wind float'
175 | 1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,headlamps
176 | 1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,'build wind float'
177 | 1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,'vehic wind float'
178 | 1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,'build wind non-float'
179 | 1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,'build wind non-float'
180 | 1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,'build wind float'
181 | 1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,'build wind float'
182 | 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,'build wind float'
183 | 1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,'build wind float'
184 | 1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,headlamps
185 | 1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,'build wind float'
186 | 1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,'vehic wind float'
187 | 1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,'build wind non-float'
188 | 1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,'build wind float'
189 | 1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,tableware
190 | 1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,'build wind non-float'
191 | 1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,tableware
192 | 1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,'build wind non-float'
193 | 1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,'build wind float'
194 | 1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,'build wind non-float'
195 | 1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,'build wind float'
196 | 1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,'build wind float'
197 | 1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,'vehic wind float'
198 | 1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,'build wind float'
199 | 1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,'build wind float'
200 | 1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,'build wind float'
201 | 1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,'vehic wind float'
202 | 1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,'build wind float'
203 | 1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,containers
204 | 1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,'build wind non-float'
205 | 1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,'build wind non-float'
206 | 1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,'build wind float'
207 | 1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,'build wind float'
208 | 1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,'build wind non-float'
209 | 1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,headlamps
210 | 1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,'build wind float'
211 | 1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,'build wind float'
212 | 1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,tableware
213 | 1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,headlamps
214 | 1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,'build wind float'
215 | 1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,headlamps
216 | 1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,'build wind non-float'
217 | 1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,'build wind non-float'
218 | 1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,'build wind non-float'
219 | 1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,'build wind float'
220 | 1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,'build wind non-float'
221 | 1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,headlamps
222 | 1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,headlamps
223 | 1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,headlamps
224 | 1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,containers
225 | 1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,'build wind non-float'
226 | 1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,headlamps
227 | 1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,'build wind float'
228 | 1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,containers
229 | 1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,'build wind non-float'
230 | 1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,headlamps
231 | 1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,'build wind float'
232 | 1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,headlamps
233 | 1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,'vehic wind float'
234 | 1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,headlamps
235 | 1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,'build wind non-float'
236 | 1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,headlamps
237 | 1.51818,13.72,0,0.56,74.45,0,10.99,0,0,'build wind non-float'
238 | 1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,'build wind float'
239 | 1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,'build wind non-float'
240 | 1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,'build wind float'
241 | 1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,'build wind non-float'
242 | 1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,'build wind non-float'
243 | 1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,containers
244 | 1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,'build wind float'
245 | 1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,headlamps
246 | 1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,headlamps
247 | 1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,'build wind float'
248 | 1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,'build wind float'
249 | 1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,'build wind non-float'
250 | 1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,'build wind non-float'
251 | 1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,headlamps
252 | 1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,'build wind float'
253 | 1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,containers
254 | 1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,'build wind float'
255 | 1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,'build wind float'
256 | 1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,'build wind non-float'
257 | 1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,'build wind float'
258 | 1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,'build wind non-float'
259 | 1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,'build wind float'
260 | 1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,'build wind float'
261 | 1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,'build wind float'
262 | 1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,containers
263 | 1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,'build wind non-float'
264 | 1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,'build wind non-float'
265 | 1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,'build wind non-float'
266 | 1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,'build wind non-float'
267 | 1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,'build wind non-float'
268 | 1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,'build wind non-float'
269 | 1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,headlamps
270 | 1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,'build wind float'
271 | 1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,'build wind non-float'
272 | 1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,'build wind non-float'
273 | 1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,'vehic wind float'
274 | 1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,'build wind float'
275 | 1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,headlamps
276 | 1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,containers
277 | 1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,'build wind float'
278 | 1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,'build wind non-float'
279 | 1.52664,11.23,0,0.77,73.21,0,14.68,0,0,'build wind non-float'
280 | 1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,'build wind float'
281 | 1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,headlamps
282 | 1.51321,13,0,3.02,70.7,6.21,6.93,0,0,containers
283 | 1.52739,11.02,0,0.75,73.08,0,14.96,0,0,'build wind non-float'
284 | 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,'build wind float'
285 | 1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,'build wind float'
286 | 1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,'build wind non-float'
287 | 1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,'build wind non-float'
288 | 1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,headlamps
289 | 1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,'build wind non-float'
290 | 1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,'build wind non-float'
291 | 1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,'build wind float'
292 | 1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,headlamps
293 | 1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,'build wind float'
294 | 1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,headlamps
295 | 1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,'build wind float'
296 | 1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,'build wind float'
297 | 1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,containers
298 | 1.51969,14.56,0,0.56,73.48,0,11.22,0,0,tableware
299 | 1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,'build wind non-float'
300 | 1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,'build wind non-float'
301 | 1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,'vehic wind float'
302 | 1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,'build wind non-float'
303 | 1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,'build wind float'
304 | 1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,headlamps
305 | 1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,'build wind float'
306 | 1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,'build wind float'
307 | 1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,'vehic wind float'
308 | 1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,containers
309 | 1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,'build wind float'
310 | 1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,'build wind float'
311 | 1.51905,14,2.39,1.56,72.37,0,9.57,0,0,tableware
312 | 1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,headlamps
313 | 1.51916,14.15,0,2.09,72.74,0,10.88,0,0,tableware
314 | 1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,'build wind non-float'
315 | 1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,'build wind non-float'
316 | 1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,'build wind non-float'
317 | 1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,'build wind non-float'
318 | 1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,'build wind non-float'
319 | 1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,'build wind non-float'
320 | 1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,'build wind float'
321 | 1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,'vehic wind float'
322 | 1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,'build wind float'
323 | 1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,'build wind non-float'
324 | 1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,'build wind float'
325 | 1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,headlamps
326 | 1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,'build wind float'
327 | 1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,'build wind float'
328 | 1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,'vehic wind float'
329 | 1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,'build wind non-float'
330 | 1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,'build wind non-float'
331 | 1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,'build wind non-float'
332 | 1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,tableware
333 |
--------------------------------------------------------------------------------
/content/divorce/divorce.csv:
--------------------------------------------------------------------------------
1 | Atr1;Atr2;Atr3;Atr4;Atr5;Atr6;Atr7;Atr8;Atr9;Atr10;Atr11;Atr12;Atr13;Atr14;Atr15;Atr16;Atr17;Atr18;Atr19;Atr20;Atr21;Atr22;Atr23;Atr24;Atr25;Atr26;Atr27;Atr28;Atr29;Atr30;Atr31;Atr32;Atr33;Atr34;Atr35;Atr36;Atr37;Atr38;Atr39;Atr40;Atr41;Atr42;Atr43;Atr44;Atr45;Atr46;Atr47;Atr48;Atr49;Atr50;Atr51;Atr52;Atr53;Atr54;Class
2 | 2;2;4;1;0;0;0;0;0;0;1;0;1;1;0;1;0;0;0;1;0;0;0;0;0;0;0;0;0;1;1;2;1;2;0;1;2;1;3;3;2;1;1;2;3;2;1;3;3;3;2;3;2;1;1
3 | 4;4;4;4;4;0;0;4;4;4;4;3;4;0;4;4;4;4;3;2;1;1;0;2;2;1;2;0;1;1;0;4;2;3;0;2;3;4;2;4;2;2;3;4;2;2;2;3;4;4;4;4;2;2;1
4 | 2;2;2;2;1;3;2;1;1;2;3;4;2;3;3;3;3;3;3;2;1;0;1;2;2;2;2;2;3;2;3;3;1;1;1;1;2;1;3;3;3;3;2;3;2;3;2;3;1;1;1;2;2;2;1
5 | 3;2;3;2;3;3;3;3;3;3;4;3;3;4;3;3;3;3;3;4;1;1;1;1;2;1;1;1;1;3;2;3;2;2;1;1;3;3;4;4;2;2;3;2;3;2;2;3;3;3;3;2;2;2;1
6 | 2;2;1;1;1;1;0;0;0;0;0;1;0;1;1;1;1;1;2;1;1;0;0;0;0;2;1;2;1;1;1;1;1;1;0;0;0;0;2;1;0;2;3;0;2;2;1;2;3;2;2;2;1;0;1
7 | 0;0;1;0;0;2;0;0;0;1;0;2;1;0;2;0;2;1;0;1;0;0;0;0;2;2;0;0;0;0;4;1;1;1;1;1;1;2;0;2;2;1;2;3;0;2;2;1;2;1;1;1;2;0;1
8 | 3;3;3;2;1;3;4;3;2;2;2;2;2;3;2;3;3;3;3;2;3;3;3;3;2;3;3;2;2;2;1;2;2;1;1;2;3;2;2;3;3;3;3;4;3;3;2;3;2;3;3;2;2;2;1
9 | 2;1;2;2;2;1;0;3;3;2;4;3;2;3;4;3;2;3;2;1;2;1;1;2;3;3;2;2;2;3;1;1;0;2;2;1;4;4;4;4;4;4;3;2;0;0;1;2;2;2;1;1;1;0;1
10 | 2;2;1;0;0;4;1;3;3;3;3;3;3;3;3;3;3;3;3;3;2;2;2;3;2;3;2;3;2;3;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;1;1;1;1;1;1;1;1;1;1
11 | 1;1;1;1;1;2;0;2;2;2;3;0;0;2;1;0;1;2;1;0;0;0;0;1;1;1;1;1;1;1;1;1;0;1;0;0;1;1;2;2;1;2;3;2;2;2;0;2;2;2;2;4;3;3;1
12 | 4;4;4;3;4;0;0;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
13 | 4;4;4;3;4;0;0;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
14 | 3;4;3;4;3;0;1;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
15 | 3;4;3;4;3;0;1;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
16 | 3;4;3;4;3;0;1;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;4;1
17 | 4;4;3;2;4;0;0;4;3;2;4;4;4;4;3;2;4;4;4;4;3;2;4;4;4;4;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
18 | 4;4;3;2;4;0;0;4;3;2;4;4;4;4;3;2;4;4;4;4;3;2;4;4;4;4;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
19 | 4;4;4;3;4;0;0;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
20 | 3;3;4;4;3;1;1;3;4;4;3;3;3;3;4;4;3;3;3;3;4;4;3;3;3;3;4;4;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
21 | 4;4;4;3;4;0;0;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;4;4;3;4;4;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
22 | 4;3;3;3;4;1;0;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
23 | 4;3;3;3;4;1;0;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
24 | 3;4;4;4;3;0;1;4;4;4;3;4;3;4;4;4;3;4;3;4;4;4;3;4;3;4;4;4;3;4;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;3;4;3;4;4;3;4;3;4;1
25 | 3;3;3;4;3;1;1;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
26 | 4;2;3;4;4;2;0;2;3;4;4;2;4;2;3;4;4;2;4;2;3;4;4;2;4;2;3;4;4;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
27 | 3;3;3;4;3;1;1;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
28 | 3;3;4;3;3;1;1;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;1
29 | 3;3;3;4;3;1;1;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;1
30 | 3;4;3;2;3;0;1;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
31 | 4;3;3;2;4;1;0;3;3;2;4;3;4;3;3;2;4;3;4;3;3;2;4;3;4;3;3;2;4;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
32 | 3;4;3;2;3;0;1;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
33 | 4;3;4;3;4;1;0;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
34 | 4;3;3;4;4;1;0;3;3;4;4;3;4;3;3;4;4;3;4;3;3;4;4;3;4;3;3;4;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
35 | 3;4;2;3;3;0;1;4;2;3;3;4;3;4;2;3;3;4;3;4;2;3;3;4;3;4;2;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;1
36 | 3;4;4;3;3;0;1;4;4;3;3;4;3;4;4;3;3;4;3;4;4;3;3;4;3;4;4;3;3;4;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
37 | 3;3;3;3;3;1;1;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
38 | 4;3;3;3;4;1;0;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;4;3;4;3;4;4;3;4;4;4;4;3;4;4;3;4;4;3;3;4;4;3;1
39 | 3;3;2;3;3;1;1;3;3;3;4;3;3;3;3;3;3;3;4;3;3;3;3;4;3;3;2;4;3;4;4;4;4;4;4;4;4;4;4;4;4;3;4;3;3;3;4;4;4;4;3;3;4;4;1
40 | 3;3;2;3;3;1;1;3;3;3;4;3;3;3;3;3;3;3;4;3;3;3;3;4;3;3;2;4;3;4;4;4;4;4;4;4;4;4;4;4;4;3;4;3;3;3;4;4;4;4;3;3;4;4;1
41 | 4;3;3;3;4;1;0;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
42 | 3;2;3;4;3;2;1;2;3;4;3;2;3;2;3;4;3;2;3;2;3;4;3;2;3;2;3;4;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;1
43 | 4;2;3;2;4;2;0;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
44 | 3;4;3;3;3;0;1;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;4;3;4;3;1
45 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
46 | 4;2;3;2;4;2;0;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
47 | 3;3;2;3;3;1;1;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
48 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
49 | 3;3;2;3;3;1;1;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
50 | 4;2;3;2;4;2;0;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
51 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
52 | 4;2;3;2;4;2;0;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;2;3;2;4;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
53 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;4;4;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;1
54 | 4;3;2;3;4;1;0;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
55 | 3;3;3;4;3;1;1;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;3;3;4;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;4;3;4;3;1
56 | 4;3;3;2;4;1;0;3;3;2;4;3;4;3;3;2;4;3;4;3;3;2;4;3;4;3;3;2;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;3;4;3;4;4;3;4;3;4;1
57 | 4;3;2;3;4;1;0;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;4;3;2;3;4;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;4;3;4;3;1
58 | 3;4;3;4;3;0;1;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;1
59 | 3;4;3;4;3;0;1;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;1
60 | 3;3;3;3;3;1;1;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
61 | 3;2;3;2;3;2;1;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
62 | 3;2;3;2;3;2;1;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
63 | 3;2;2;3;3;2;1;2;2;3;3;2;3;2;2;3;3;2;3;2;2;3;3;2;3;2;2;3;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
64 | 3;2;3;2;3;2;1;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
65 | 3;2;3;2;3;2;1;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;1
66 | 3;3;4;4;3;1;1;3;4;4;3;3;3;3;4;4;3;3;3;3;4;4;3;3;3;3;4;4;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;1
67 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
68 | 3;3;2;3;3;1;1;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
69 | 4;2;2;3;4;2;0;2;2;3;4;2;4;2;2;3;4;2;4;2;2;3;4;2;4;2;2;3;4;2;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;4;3;4;3;4;1
70 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;3;4;3;4;4;3;4;3;4;1
71 | 4;4;4;3;4;2;4;4;4;3;4;4;4;4;4;4;4;4;4;4;4;3;0;4;0;4;4;0;4;4;0;4;4;0;1;0;2;0;4;0;2;4;4;1;4;0;4;4;4;3;4;4;4;4;1
72 | 3;3;3;2;3;1;1;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;3;3;2;3;3;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;4;3;3;4;3;4;3;1
73 | 2;2;3;2;2;2;2;2;3;2;2;2;2;2;3;2;2;2;2;2;3;2;2;2;2;2;3;2;2;2;4;4;4;4;4;4;4;4;4;4;4;3;4;4;4;4;4;4;4;4;4;4;4;4;1
74 | 3;3;3;3;3;1;1;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;3;1
75 | 4;3;3;3;3;1;4;0;4;3;3;3;3;4;3;3;3;3;3;3;3;3;2;2;2;2;3;2;2;2;2;4;3;3;3;3;3;4;4;4;3;3;3;3;3;3;3;3;3;3;3;3;3;3;1
76 | 3;2;3;2;3;2;1;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;2;3;4;3;4;3;4;3;4;3;4;3;3;3;4;3;4;3;4;3;3;4;3;4;3;1
77 | 4;4;3;3;4;0;4;2;4;4;3;4;4;4;4;4;4;4;4;4;0;0;2;4;4;4;4;1;1;0;4;2;0;0;0;0;3;0;4;4;4;4;4;4;4;2;4;4;3;4;4;1;1;0;1
78 | 3;2;4;3;3;2;3;2;2;3;4;3;2;3;1;3;3;3;3;4;2;1;0;2;2;2;2;2;2;3;3;3;3;3;3;3;4;4;4;4;4;3;0;0;0;0;0;3;3;3;3;3;3;3;1
79 | 2;2;2;3;2;3;2;1;3;2;1;2;2;2;3;3;3;3;3;2;2;1;1;3;3;3;2;3;2;2;3;3;3;3;3;3;3;3;4;4;4;4;3;4;2;2;3;3;2;1;1;2;2;2;1
80 | 3;2;4;3;3;2;3;2;2;3;4;3;2;2;1;3;3;3;3;4;2;1;0;2;2;2;2;2;2;3;3;3;3;3;3;3;4;4;4;4;3;0;0;3;0;0;0;3;3;3;3;3;3;3;1
81 | 4;2;4;2;1;2;3;1;1;3;3;3;2;2;3;2;2;3;3;2;2;2;2;3;4;4;3;3;3;4;4;4;2;2;0;0;4;3;4;4;3;1;1;4;1;2;1;3;3;3;3;1;1;1;1
82 | 2;0;2;4;2;2;4;3;4;3;2;3;3;0;4;4;3;3;3;2;2;1;2;0;0;0;0;0;2;2;3;3;3;3;3;3;3;3;1;3;2;3;3;4;4;2;3;2;2;3;3;4;2;2;1
83 | 4;4;3;3;2;0;2;4;4;3;4;3;4;3;4;4;4;3;3;3;2;3;3;3;3;3;1;3;3;2;3;3;3;4;4;4;4;4;4;4;4;2;2;3;2;2;2;2;2;3;3;3;3;4;1
84 | 4;4;3;4;4;0;0;4;4;4;4;4;4;4;4;3;3;4;4;3;2;2;3;1;2;2;1;3;2;2;3;3;1;2;1;4;4;3;3;3;1;3;3;3;3;1;2;3;2;2;2;2;1;2;1
85 | 3;3;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;0;0;0;2;0;0;0;0;0;2;3;3;3;4;4;4;4;4;4;4;4;1;1;1;1;1;1;3;2;2;2;4;4;4;1
86 | 0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;1;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;1;0;0;0;1;0;0;0;1;0;0;1;0
87 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;2;3;1;0;0;1;1;0;0;0;0
88 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;1;0;2;0;1;1;1;1;0;0;0;1;1;1;0
89 | 0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;3;0;0;0;0;2;0;0;1;2;2;1;0
90 | 4;0;3;4;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;0;0;0;0;0;0;0
91 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;2;1;0;1;1;0;1;0;0;0;0;0;0;0;0;1;1;1;1;1;0;1;1;0
92 | 0;1;0;0;0;0;0;1;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;3;1;0;3;0;1;0;0;0;2;0;0;0
93 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;0;0;0;0;0;0;0;2;0;0;2;0;2;3;2;2;1;1;0;0
94 | 1;1;0;0;0;0;0;0;0;1;0;0;1;0;0;0;0;0;0;0;1;0;0;0;1;0;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;1;2;0;2;1;0;0;1;1;1;1;1;1;0
95 | 0;1;0;1;0;0;0;0;0;1;0;0;0;1;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;1;1;1;0;0;0;2;1;0;0;0;2;1;1;1;1;2;1;1;1;0;0;0;0
96 | 0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;0;0;0;0;2;1;1;1;0;0;2;0;1;0;1;0;0;0;0;0;0;2;2;2;2;1;0;0;0
97 | 0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;3;2;0;2;2;2;2;2;2;2;0
98 | 0;3;1;0;0;0;0;0;0;0;0;1;1;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;0;1;0;0;0;0;0;0;1;0;1;0;1;1;1;4;0;0;2;0;0;0;0
99 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;4;2;0;0;0;0;0;0;0;0;1;4;2;0;4;2;1;1;0;0;0;1;0;0;0
100 | 0;0;0;0;0;2;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;2;1;4;2;3;0;0;0;2;4;1;0
101 | 0;1;2;1;0;0;0;0;0;0;0;1;1;0;0;0;1;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;2;2;0;1;0;1;2;0;0;0;3;2;1;0
102 | 0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;0;1;0;0;1;0;0;0;0;0;2;0;2;2;1;2;0;0;0;4;4;0;0
103 | 0;0;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;1;0;2;0;1;0;0;0;0;0;0;0;0;3;0;0;2;2;0;0;1;1;3;4;0;0
104 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;2;4;2;3;1;1;2;0;0;1;4;1;2;0
105 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;2;0;3;0;3;3;1;2;1;1;1;0;1;0;0
106 | 0;0;0;0;0;1;0;0;0;0;1;1;1;0;0;0;0;0;1;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;3;0;3;4;3;0;2;2;2;0;0;0;0
107 | 0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;0;0;0;0;0;1;1;0;0;0;0;0;1;0;0;0;0;0;1;0;0;1;0;1;0;0;0;2;2;2;0;0;2;2;2;2;1;1;0;0
108 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;4;0;4;3;1;3;1;3;3;3;1;0;0
109 | 0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;4;0;0;0;0;0;0;0;0;3;0;2;2;2;2;4;4;0;0
110 | 0;0;3;0;0;1;0;0;0;0;0;2;0;0;1;0;1;0;0;1;0;0;0;0;1;0;0;0;0;1;0;2;0;0;0;0;0;0;1;0;0;0;1;0;1;1;1;3;3;2;2;0;0;0;0
111 | 0;0;0;0;0;1;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;1;0;0;1;0;0;0;1;1;2;0;1;2;2;2;2;2;2;2;2;2;0
112 | 0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;0;0;0;1;0;0;0;1;0;0;1;1;1;1;0;0;0;0;0;0;0;0;0;0;1;3;2;1;3;0;2;3;3;2;1;0;0;0
113 | 1;1;1;1;1;0;0;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;2;2;3;3;3;3;1;1;0;0
114 | 0;0;0;0;1;0;0;0;0;0;0;0;1;0;1;0;0;0;0;0;0;0;0;0;1;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;2;3;1;3;3;3;2;1;1;1;1;1;1;0
115 | 0;2;2;1;0;0;0;0;0;2;1;1;1;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;1;3;0;0;0;0;2;1;0;2;0;0;0;0;0;0;0;3;1;1;1;0;3;0;0
116 | 0;1;1;0;0;0;0;0;0;1;1;1;2;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;2;0;0;0;0;1;0;1;0;3;1;4;0;2;2;0;1;0;0;1;0;0
117 | 0;1;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;1;2;0;1;4;4;3;3;1;2;3;1;1;0
118 | 0;0;0;0;0;2;0;0;0;0;0;0;1;0;0;1;1;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;1;0;0;1;0;0;0;0;2;4;0;4;3;1;1;2;2;2;1;0;0;0
119 | 0;0;0;0;0;1;0;1;1;0;0;0;1;1;0;0;0;0;0;0;1;1;1;0;1;0;0;0;0;1;1;1;1;1;0;0;1;0;0;0;0;0;0;0;0;0;0;2;1;2;2;3;3;2;0
120 | 0;0;0;0;0;1;0;0;0;1;0;1;1;0;0;1;0;0;0;0;0;0;0;0;2;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;4;1;1;4;4;2;2;0;1;0
121 | 0;1;1;0;0;2;0;0;0;0;0;2;1;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;1;0;2;0;0;0;0;0;0;0;0;0;2;2;2;2;2;2;2;0;2;1;1;1;0;0
122 | 0;0;0;0;0;2;0;0;0;1;0;0;0;0;1;0;1;0;1;0;0;0;0;0;0;0;0;0;0;1;0;1;0;1;0;0;1;1;1;0;0;4;2;0;1;2;1;3;1;1;1;1;1;0;0
123 | 0;2;2;1;0;0;0;0;0;2;1;1;1;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;1;3;0;0;0;0;2;1;1;0;2;0;0;0;0;0;0;3;1;1;1;0;3;0;0
124 | 0;0;1;0;1;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;2;0;0;0;2;0;1;0;0;0;2;0;1;2;1;3;3;2;2;2;2;0;0
125 | 0;0;0;0;0;2;0;0;0;0;0;0;1;1;0;0;0;0;0;0;0;0;0;0;1;1;1;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;2;1;0;3;0;2;3;4;3;3;0;2;0
126 | 0;1;1;0;0;0;0;0;0;0;0;1;3;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;2;4;0;2;4;0;3;0;1;2;2;2;0;0
127 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;0;1;1;2;1;2;2;4;2;4;0;0;0;1;1;2;1;0;2;0
128 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;0;1;1;2;1;2;2;4;2;4;0;0;0;1;1;2;1;0;2;0
129 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;1;1;0;0;3;2;1;3;3;0;2;3;2;2;4;1;1;0
130 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;4;4;3;0;0;4;1;1;0;1;0;0;0;0;0;0;0;0;0;4;2;2;2;0
131 | 0;0;0;0;0;0;0;0;0;1;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;2;0;0;0;0;0;0;0;0;0;4;4;0;4;1;4;2;3;2;2;0;0;0;0
132 | 0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;1;0;0;0;1;1;0;0;0;1;1;1;1;1;1;0;0;0;0;0;0;1;1;1;0;1;0;1;2;2;2;2;2;2;2;2;0;1;0;0
133 | 0;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;1;1;0;0;2;1;2;2;1;2;2;0;1;3;0;2;2;2;2;0;0;0;0
134 | 0;0;2;0;2;4;0;0;0;0;0;0;2;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;3;0;1;0;0;1;0;0;0;1;0;4;0;1;1;2;3;0;1;1;0;0;0;0
135 | 1;2;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;1;0;0;1;1;1;1;1;0;0;0;0;2;1;0;1;0;0;1;0;0;0;1;0;2;0;0;2;1;2;2;2;2;2;1;0;0
136 | 1;0;1;0;0;0;0;1;0;0;1;0;1;0;0;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;1;0;0;0;0;2;0;2;0;2;3;0;3;3;3;2;2;0
137 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;1;1;0;0;0;1;1;0;0;3;2;1;2;2;1;2;3;2;2;3;1;1;0
138 | 0;0;2;0;0;0;0;0;0;0;0;1;1;0;0;0;1;0;0;0;0;0;0;0;1;0;0;0;0;0;2;1;0;2;3;0;1;0;2;0;0;0;0;0;2;3;1;2;1;2;1;2;2;0;0
139 | 0;0;1;0;0;0;0;1;1;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;1;0;0;0;0;0;0;0;2;2;0;3;3;3;3;0;1;3;3;3;1;0
140 | 0;0;1;0;0;0;0;1;1;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;1;0;0;0;0;0;0;0;2;2;0;3;3;3;3;0;1;3;3;3;1;0
141 | 3;1;1;0;0;0;0;0;0;0;1;0;0;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;3;0;0;1;1;1;0;3;3;2;2;0;2;2;0;0;4;0
142 | 0;2;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;0;2;0;0;0;1;0;0;1;1;2;0;1;2;3;0;1;1;2;2;1;0;1;3;2;2;0
143 | 0;1;2;0;0;0;0;0;0;1;1;1;2;1;1;1;0;0;1;0;1;0;0;0;0;0;0;0;0;0;1;1;0;1;0;0;1;1;1;1;1;1;1;0;1;1;0;2;1;1;1;1;1;1;0
144 | 4;3;4;4;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;4;4;4;0;0;0;0
145 | 3;0;0;0;0;0;0;0;0;0;0;1;1;2;1;0;0;1;1;0;0;0;0;1;0;0;1;0;0;0;0;0;0;0;0;0;0;0;1;1;0;0;3;2;4;4;0;1;0;0;1;4;1;0;0
146 | 0;0;2;4;0;0;0;0;0;2;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;2;0;1;0;0;0;2;0;0;2;2;3;0;3;2;0;2;4;0;0;1;0;0;0
147 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;1;0;1;3;4;0;4;3;4;3;1;3;3;0;1;0;0
148 | 2;1;1;0;0;1;0;0;0;0;0;1;0;1;0;0;1;0;1;0;0;0;0;1;0;1;1;0;0;0;0;1;0;2;0;0;1;0;2;1;2;1;3;1;3;1;1;3;0;0;0;0;0;0;0
149 | 0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;2;2;1;1;1;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;4;4;4;4;4;0;4;0;0;0;0;0;0
150 | 0;0;0;0;0;0;0;0;0;2;0;1;1;0;0;0;0;0;0;0;1;0;0;1;1;0;0;0;1;0;2;0;0;1;0;0;1;0;2;0;1;3;2;0;1;3;3;2;2;1;1;2;0;0;0
151 | 0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;4;4;4;4;4;4;4;2;2;0;0;0;0
152 | 0;3;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;1;0;0;4;4;0;4;4;4;3;1;1;1;2;0;1;0
153 | 0;1;1;1;1;0;0;0;0;0;1;1;2;1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;0;0;1;1;0;1;3;1;2;1;2;2;2;2;1;0
154 | 1;0;0;0;0;1;0;0;0;1;1;0;1;1;1;1;0;1;0;0;0;0;0;1;1;0;0;0;0;1;1;0;0;0;0;0;0;0;0;0;0;2;4;1;0;2;1;2;1;2;2;4;2;0;0
155 | 2;2;3;0;0;1;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;2;0;2;2;1;1;1;1;1;1;1;1;0
156 | 1;0;1;0;1;1;0;0;0;1;0;0;1;1;1;0;0;1;0;1;0;0;0;0;0;0;0;0;0;0;1;1;1;1;0;0;1;0;1;1;1;1;1;1;1;0;0;2;1;2;2;2;2;3;0
157 | 2;1;0;2;0;0;0;0;0;1;1;1;1;0;1;0;1;1;0;0;0;0;0;1;1;1;0;0;0;0;0;0;1;0;1;0;1;0;1;0;0;0;1;0;0;3;0;2;2;2;2;2;2;1;0
158 | 0;0;1;1;0;0;0;0;0;2;1;2;1;1;1;0;0;0;0;0;0;0;0;0;1;0;0;0;0;1;2;1;0;2;0;0;1;1;1;1;0;2;2;0;0;2;1;2;1;2;2;1;0;0;0
159 | 0;1;0;0;0;1;0;2;0;0;1;0;1;0;0;0;0;0;0;0;0;0;2;2;0;0;1;1;0;0;1;0;0;0;0;0;0;0;0;0;3;1;1;0;1;3;3;2;0;0;0;4;4;2;0
160 | 0;1;0;1;0;0;0;0;0;1;1;2;2;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;0;0;2;1;0;0;0;0;1;1;2;1;0;2;2;2;1;0;1;3;2;2;2;1;0;0;0
161 | 0;0;0;0;0;0;0;0;0;1;0;1;2;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;1;1;1;0;0;1;1;2;1;1;3;2;0;2;1;2;3;2;2;2;1;1;0;0
162 | 2;0;2;0;0;0;0;0;0;2;0;0;2;0;0;1;1;0;0;0;1;1;0;0;0;0;0;0;0;0;1;1;0;1;1;1;1;0;1;1;0;2;1;0;0;3;2;2;1;1;1;1;2;1;0
163 | 1;1;2;0;2;1;0;2;1;2;1;1;2;0;2;1;2;1;0;0;0;1;0;1;1;0;1;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;1;1;1;0;1;2;2;0;1;1;0
164 | 0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;2;2;4;4;4;2;2;2;2;4;2;2;0
165 | 2;0;1;0;0;0;0;0;0;2;1;0;1;0;2;2;1;0;0;0;1;0;0;1;0;1;0;0;0;0;2;0;0;0;0;0;2;2;1;0;0;2;2;1;2;3;0;2;0;0;2;1;0;0;0
166 | 2;1;1;0;0;2;0;0;0;2;0;1;1;1;1;0;0;0;0;0;0;0;0;0;1;1;0;0;0;1;1;1;2;2;0;0;0;0;0;0;1;0;1;2;0;1;0;3;1;1;3;1;1;1;0
167 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;4;3;4;0;0;4;0;1;0;1;0;0;0;0;1;0;4;1;1;4;2;2;2;0
168 | 0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;3;1;3;4;1;2;2;2;2;3;2;2;0
169 | 1;1;0;0;0;0;0;0;0;1;0;1;1;0;0;1;0;0;0;1;0;0;0;0;1;1;1;0;0;1;1;1;0;1;0;0;1;1;1;2;1;3;3;0;2;3;0;2;0;1;1;3;0;0;0
170 | 0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;1;0;4;1;2;1;1;0;4;3;3;2;2;3;2;4;3;1;0
171 | 0;0;0;0;0;0;0;1;0;0;0;1;1;1;0;0;0;0;0;1;1;0;1;1;0;0;0;0;0;0;1;3;0;0;0;0;0;0;0;0;0;2;2;0;1;3;4;4;0;1;3;3;3;1;0
172 |
--------------------------------------------------------------------------------
/content/breast-cancer/breast-cancer.csv:
--------------------------------------------------------------------------------
1 | age,menopause,tumor-size,inv-nodes,node-caps,deg-malig,breast,breast-quad,irradiat,Class
2 | 40-49,premeno,15-19,0-2,yes,3,right,left_up,no,recurrence-events
3 | 50-59,ge40,15-19,0-2,no,1,right,central,no,no-recurrence-events
4 | 50-59,ge40,35-39,0-2,no,2,left,left_low,no,recurrence-events
5 | 40-49,premeno,35-39,0-2,yes,3,right,left_low,yes,no-recurrence-events
6 | 40-49,premeno,30-34,3-5,yes,2,left,right_up,no,recurrence-events
7 | 50-59,premeno,25-29,3-5,no,2,right,left_up,yes,no-recurrence-events
8 | 50-59,ge40,40-44,0-2,no,3,left,left_up,no,no-recurrence-events
9 | 40-49,premeno,10-14,0-2,no,2,left,left_up,no,no-recurrence-events
10 | 40-49,premeno,0-4,0-2,no,2,right,right_low,no,no-recurrence-events
11 | 40-49,ge40,40-44,15-17,yes,2,right,left_up,yes,no-recurrence-events
12 | 50-59,premeno,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
13 | 60-69,ge40,15-19,0-2,no,2,right,left_up,no,no-recurrence-events
14 | 50-59,ge40,30-34,0-2,no,1,right,central,no,no-recurrence-events
15 | 50-59,ge40,25-29,0-2,no,2,right,left_up,no,no-recurrence-events
16 | 40-49,premeno,25-29,0-2,no,2,left,left_low,yes,recurrence-events
17 | 30-39,premeno,20-24,0-2,no,3,left,central,no,no-recurrence-events
18 | 50-59,premeno,10-14,3-5,no,1,right,left_up,no,no-recurrence-events
19 | 60-69,ge40,15-19,0-2,no,2,right,left_up,no,no-recurrence-events
20 | 50-59,premeno,40-44,0-2,no,2,left,left_up,no,no-recurrence-events
21 | 50-59,ge40,20-24,0-2,no,3,left,left_up,no,no-recurrence-events
22 | 50-59,lt40,20-24,0-2,?,1,left,left_low,no,recurrence-events
23 | 60-69,ge40,40-44,3-5,no,2,right,left_up,yes,no-recurrence-events
24 | 50-59,ge40,15-19,0-2,no,2,right,left_low,no,no-recurrence-events
25 | 40-49,premeno,10-14,0-2,no,1,right,left_up,no,no-recurrence-events
26 | 30-39,premeno,15-19,6-8,yes,3,left,left_low,yes,recurrence-events
27 | 50-59,ge40,20-24,3-5,yes,2,right,left_up,no,no-recurrence-events
28 | 50-59,ge40,10-14,0-2,no,2,right,left_low,no,no-recurrence-events
29 | 40-49,premeno,10-14,0-2,no,1,right,left_up,no,no-recurrence-events
30 | 60-69,ge40,30-34,3-5,yes,3,left,left_low,no,no-recurrence-events
31 | 40-49,premeno,15-19,15-17,yes,3,left,left_low,no,recurrence-events
32 | 60-69,ge40,30-34,0-2,no,3,right,central,no,recurrence-events
33 | 60-69,ge40,25-29,3-5,?,1,right,left_low,yes,no-recurrence-events
34 | 50-59,ge40,25-29,0-2,no,3,left,right_up,no,no-recurrence-events
35 | 50-59,ge40,20-24,0-2,no,3,right,left_up,no,no-recurrence-events
36 | 40-49,premeno,30-34,0-2,no,1,left,left_low,yes,recurrence-events
37 | 30-39,premeno,15-19,0-2,no,1,left,left_low,no,no-recurrence-events
38 | 40-49,premeno,10-14,0-2,no,2,right,left_up,no,no-recurrence-events
39 | 60-69,ge40,45-49,6-8,yes,3,left,central,no,no-recurrence-events
40 | 40-49,ge40,20-24,0-2,no,3,left,left_low,no,no-recurrence-events
41 | 40-49,premeno,10-14,0-2,no,1,right,right_low,no,no-recurrence-events
42 | 30-39,premeno,35-39,0-2,no,3,left,left_low,no,recurrence-events
43 | 40-49,premeno,35-39,9-11,yes,2,right,right_up,yes,no-recurrence-events
44 | 60-69,ge40,25-29,0-2,no,2,right,left_low,no,no-recurrence-events
45 | 50-59,ge40,20-24,3-5,yes,3,right,right_up,no,recurrence-events
46 | 30-39,premeno,15-19,0-2,no,1,left,left_low,no,no-recurrence-events
47 | 50-59,premeno,30-34,0-2,no,3,left,right_up,no,recurrence-events
48 | 60-69,ge40,10-14,0-2,no,2,right,left_up,yes,no-recurrence-events
49 | 40-49,premeno,35-39,0-2,yes,3,right,left_up,yes,no-recurrence-events
50 | 50-59,premeno,50-54,0-2,yes,2,right,left_up,yes,no-recurrence-events
51 | 50-59,ge40,40-44,0-2,no,3,right,left_up,no,no-recurrence-events
52 | 70-79,ge40,15-19,9-11,?,1,left,left_low,yes,recurrence-events
53 | 50-59,lt40,30-34,0-2,no,3,right,left_up,no,no-recurrence-events
54 | 40-49,premeno,0-4,0-2,no,3,left,central,no,no-recurrence-events
55 | 70-79,ge40,40-44,0-2,no,1,right,right_up,no,no-recurrence-events
56 | 40-49,premeno,25-29,0-2,?,2,left,right_low,yes,no-recurrence-events
57 | 50-59,ge40,25-29,15-17,yes,3,right,left_up,no,no-recurrence-events
58 | 50-59,premeno,20-24,0-2,no,1,left,left_low,no,no-recurrence-events
59 | 50-59,ge40,35-39,15-17,no,3,left,left_low,no,no-recurrence-events
60 | 50-59,ge40,50-54,0-2,no,1,right,right_up,no,no-recurrence-events
61 | 30-39,premeno,0-4,0-2,no,2,right,central,no,recurrence-events
62 | 50-59,ge40,40-44,6-8,yes,3,left,left_low,yes,recurrence-events
63 | 40-49,premeno,30-34,0-2,no,2,right,right_up,yes,no-recurrence-events
64 | 40-49,ge40,20-24,0-2,no,3,left,left_up,no,no-recurrence-events
65 | 40-49,premeno,30-34,15-17,yes,3,left,left_low,no,recurrence-events
66 | 40-49,ge40,20-24,0-2,no,2,right,left_up,no,recurrence-events
67 | 50-59,ge40,15-19,0-2,no,1,right,central,no,no-recurrence-events
68 | 30-39,premeno,25-29,0-2,no,2,right,left_low,no,no-recurrence-events
69 | 60-69,ge40,15-19,0-2,no,2,left,left_low,no,no-recurrence-events
70 | 50-59,premeno,50-54,9-11,yes,2,right,left_up,no,recurrence-events
71 | 30-39,premeno,10-14,0-2,no,1,right,left_low,no,no-recurrence-events
72 | 50-59,premeno,25-29,3-5,yes,3,left,left_low,yes,recurrence-events
73 | 60-69,ge40,25-29,3-5,?,1,right,left_up,yes,no-recurrence-events
74 | 60-69,ge40,10-14,0-2,no,1,right,left_low,no,no-recurrence-events
75 | 50-59,ge40,30-34,6-8,yes,3,left,right_low,no,recurrence-events
76 | 30-39,premeno,25-29,6-8,yes,3,left,right_low,yes,recurrence-events
77 | 50-59,ge40,10-14,0-2,no,1,left,left_low,no,no-recurrence-events
78 | 50-59,premeno,15-19,0-2,no,1,left,left_low,no,no-recurrence-events
79 | 40-49,premeno,25-29,0-2,no,2,right,central,no,no-recurrence-events
80 | 40-49,premeno,25-29,0-2,no,3,left,right_up,no,recurrence-events
81 | 60-69,ge40,30-34,6-8,yes,2,right,right_up,no,no-recurrence-events
82 | 50-59,lt40,15-19,0-2,no,2,left,left_low,no,no-recurrence-events
83 | 40-49,premeno,25-29,0-2,no,2,right,left_low,no,no-recurrence-events
84 | 40-49,premeno,30-34,0-2,no,1,right,left_up,no,no-recurrence-events
85 | 60-69,ge40,15-19,0-2,no,2,left,left_up,yes,no-recurrence-events
86 | 30-39,premeno,0-4,0-2,no,2,right,central,no,no-recurrence-events
87 | 50-59,ge40,35-39,0-2,no,3,left,left_up,no,no-recurrence-events
88 | 40-49,premeno,40-44,0-2,no,1,right,left_up,no,no-recurrence-events
89 | 30-39,premeno,25-29,6-8,yes,2,right,left_up,yes,no-recurrence-events
90 | 50-59,ge40,20-24,0-2,no,1,right,left_low,no,no-recurrence-events
91 | 50-59,ge40,30-34,0-2,no,1,left,left_up,no,no-recurrence-events
92 | 60-69,ge40,20-24,0-2,no,1,right,left_up,no,recurrence-events
93 | 30-39,premeno,30-34,3-5,no,3,right,left_up,yes,recurrence-events
94 | 50-59,lt40,20-24,0-2,?,1,left,left_up,no,recurrence-events
95 | 50-59,premeno,10-14,0-2,no,2,right,left_up,no,no-recurrence-events
96 | 50-59,ge40,20-24,0-2,no,2,right,left_up,no,no-recurrence-events
97 | 40-49,premeno,45-49,0-2,no,2,left,left_low,yes,no-recurrence-events
98 | 30-39,premeno,40-44,0-2,no,1,left,left_up,no,recurrence-events
99 | 50-59,premeno,10-14,0-2,no,1,left,left_low,no,no-recurrence-events
100 | 60-69,ge40,30-34,0-2,no,3,right,left_up,yes,recurrence-events
101 | 40-49,premeno,35-39,0-2,no,1,right,left_up,no,recurrence-events
102 | 40-49,premeno,20-24,3-5,yes,2,left,left_low,yes,recurrence-events
103 | 50-59,premeno,15-19,0-2,no,2,left,left_low,no,recurrence-events
104 | 50-59,ge40,30-34,0-2,no,3,right,left_low,no,no-recurrence-events
105 | 60-69,ge40,20-24,0-2,no,2,left,left_up,no,no-recurrence-events
106 | 40-49,premeno,20-24,0-2,no,1,left,right_low,no,no-recurrence-events
107 | 60-69,ge40,30-34,3-5,yes,2,left,central,yes,recurrence-events
108 | 60-69,ge40,20-24,3-5,no,2,left,left_low,yes,recurrence-events
109 | 50-59,premeno,25-29,0-2,no,2,left,right_up,no,recurrence-events
110 | 50-59,ge40,30-34,0-2,no,1,right,right_up,no,no-recurrence-events
111 | 40-49,premeno,20-24,0-2,no,2,left,right_low,no,no-recurrence-events
112 | 60-69,ge40,15-19,0-2,no,1,right,left_up,no,no-recurrence-events
113 | 60-69,ge40,30-34,0-2,no,2,left,left_low,yes,no-recurrence-events
114 | 30-39,premeno,30-34,0-2,no,2,left,left_up,no,no-recurrence-events
115 | 30-39,premeno,40-44,3-5,no,3,right,right_up,yes,no-recurrence-events
116 | 60-69,ge40,5-9,0-2,no,1,left,central,no,no-recurrence-events
117 | 60-69,ge40,10-14,0-2,no,1,left,left_up,no,no-recurrence-events
118 | 40-49,premeno,30-34,6-8,yes,3,right,left_up,no,recurrence-events
119 | 60-69,ge40,10-14,0-2,no,1,left,left_up,no,no-recurrence-events
120 | 40-49,premeno,35-39,9-11,yes,2,right,left_up,yes,no-recurrence-events
121 | 40-49,premeno,20-24,0-2,no,1,right,left_low,no,no-recurrence-events
122 | 40-49,premeno,30-34,0-2,yes,3,right,right_up,no,recurrence-events
123 | 50-59,premeno,25-29,0-2,yes,2,left,left_up,no,no-recurrence-events
124 | 40-49,premeno,15-19,0-2,no,2,left,left_low,no,no-recurrence-events
125 | 30-39,premeno,35-39,9-11,yes,3,left,left_low,no,recurrence-events
126 | 30-39,premeno,10-14,0-2,no,2,left,right_low,no,no-recurrence-events
127 | 50-59,ge40,30-34,0-2,no,1,right,left_low,no,no-recurrence-events
128 | 60-69,ge40,30-34,0-2,no,2,left,left_up,no,no-recurrence-events
129 | 60-69,ge40,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
130 | 40-49,premeno,15-19,0-2,no,2,left,left_up,no,recurrence-events
131 | 60-69,ge40,15-19,0-2,no,2,right,left_low,no,no-recurrence-events
132 | 40-49,premeno,30-34,0-2,no,2,left,right_low,no,no-recurrence-events
133 | 20-29,premeno,35-39,0-2,no,2,right,right_up,no,no-recurrence-events
134 | 40-49,premeno,30-34,0-2,no,3,right,right_up,no,recurrence-events
135 | 40-49,premeno,25-29,0-2,no,2,right,left_low,no,recurrence-events
136 | 30-39,premeno,30-34,0-2,no,3,left,left_low,no,no-recurrence-events
137 | 30-39,premeno,15-19,0-2,no,1,right,left_low,no,recurrence-events
138 | 50-59,ge40,0-4,0-2,no,1,right,central,no,no-recurrence-events
139 | 50-59,ge40,0-4,0-2,no,1,left,left_low,no,no-recurrence-events
140 | 60-69,ge40,50-54,0-2,no,3,right,left_up,no,recurrence-events
141 | 50-59,premeno,30-34,0-2,no,1,left,central,no,no-recurrence-events
142 | 60-69,ge40,20-24,24-26,yes,3,left,left_low,yes,recurrence-events
143 | 40-49,premeno,25-29,0-2,no,2,left,left_up,no,no-recurrence-events
144 | 40-49,premeno,30-34,3-5,no,2,right,left_up,no,recurrence-events
145 | 50-59,premeno,20-24,3-5,yes,2,left,left_low,no,no-recurrence-events
146 | 50-59,ge40,15-19,0-2,yes,2,left,central,yes,no-recurrence-events
147 | 50-59,premeno,10-14,0-2,no,3,left,left_low,no,no-recurrence-events
148 | 30-39,premeno,30-34,9-11,no,2,right,left_up,yes,recurrence-events
149 | 60-69,ge40,10-14,0-2,no,1,left,left_low,no,no-recurrence-events
150 | 40-49,premeno,40-44,0-2,no,2,right,left_low,no,no-recurrence-events
151 | 50-59,ge40,30-34,9-11,?,3,left,left_up,yes,no-recurrence-events
152 | 40-49,premeno,50-54,0-2,no,2,right,left_low,yes,recurrence-events
153 | 50-59,ge40,15-19,0-2,no,2,right,right_up,no,no-recurrence-events
154 | 50-59,ge40,40-44,3-5,yes,2,left,left_low,no,no-recurrence-events
155 | 30-39,premeno,25-29,3-5,yes,3,left,left_low,yes,recurrence-events
156 | 60-69,ge40,10-14,0-2,no,2,left,left_low,no,no-recurrence-events
157 | 60-69,lt40,10-14,0-2,no,1,left,right_up,no,no-recurrence-events
158 | 30-39,premeno,30-34,0-2,no,2,left,left_up,no,recurrence-events
159 | 30-39,premeno,20-24,3-5,yes,2,left,left_low,no,recurrence-events
160 | 50-59,ge40,10-14,0-2,no,1,right,left_up,no,no-recurrence-events
161 | 60-69,ge40,25-29,0-2,no,3,right,left_up,no,no-recurrence-events
162 | 50-59,ge40,25-29,3-5,yes,3,right,left_up,no,no-recurrence-events
163 | 40-49,premeno,30-34,6-8,no,2,left,left_up,no,no-recurrence-events
164 | 60-69,ge40,50-54,0-2,no,2,left,left_low,no,no-recurrence-events
165 | 50-59,premeno,30-34,0-2,no,3,left,left_low,no,no-recurrence-events
166 | 40-49,ge40,20-24,3-5,no,3,right,left_low,yes,recurrence-events
167 | 50-59,ge40,30-34,6-8,yes,2,left,right_low,yes,recurrence-events
168 | 60-69,ge40,25-29,3-5,no,2,right,right_up,no,recurrence-events
169 | 40-49,premeno,20-24,0-2,no,2,left,central,no,no-recurrence-events
170 | 40-49,premeno,20-24,0-2,no,2,left,left_up,no,no-recurrence-events
171 | 40-49,premeno,50-54,0-2,no,2,left,left_low,no,no-recurrence-events
172 | 50-59,ge40,20-24,0-2,no,2,right,central,no,recurrence-events
173 | 50-59,ge40,30-34,3-5,no,3,right,left_up,no,recurrence-events
174 | 40-49,ge40,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
175 | 50-59,premeno,25-29,0-2,no,1,right,left_up,no,recurrence-events
176 | 40-49,premeno,40-44,3-5,yes,3,right,left_up,yes,no-recurrence-events
177 | 40-49,premeno,20-24,0-2,no,2,right,left_up,no,no-recurrence-events
178 | 40-49,premeno,20-24,3-5,no,2,right,left_up,no,no-recurrence-events
179 | 40-49,premeno,25-29,9-11,yes,3,right,left_up,no,recurrence-events
180 | 40-49,premeno,25-29,0-2,no,2,right,left_low,no,recurrence-events
181 | 40-49,premeno,20-24,0-2,no,1,right,right_up,no,no-recurrence-events
182 | 30-39,premeno,40-44,0-2,no,2,right,right_up,no,no-recurrence-events
183 | 60-69,ge40,10-14,6-8,yes,3,left,left_up,yes,recurrence-events
184 | 40-49,premeno,35-39,0-2,no,1,left,left_low,no,no-recurrence-events
185 | 50-59,ge40,30-34,3-5,no,3,left,left_low,no,recurrence-events
186 | 40-49,premeno,5-9,0-2,no,1,left,left_low,yes,no-recurrence-events
187 | 60-69,ge40,15-19,0-2,no,1,left,right_low,no,no-recurrence-events
188 | 40-49,premeno,30-34,0-2,no,3,right,right_up,no,no-recurrence-events
189 | 40-49,premeno,25-29,0-2,no,3,left,left_up,no,recurrence-events
190 | 50-59,ge40,5-9,0-2,no,2,right,right_up,no,no-recurrence-events
191 | 50-59,premeno,25-29,0-2,no,2,right,right_low,no,no-recurrence-events
192 | 50-59,premeno,25-29,0-2,no,2,left,right_up,no,recurrence-events
193 | 40-49,premeno,10-14,0-2,no,2,left,left_low,yes,no-recurrence-events
194 | 60-69,ge40,35-39,6-8,yes,3,left,left_low,no,recurrence-events
195 | 60-69,ge40,50-54,0-2,no,2,right,left_up,yes,no-recurrence-events
196 | 40-49,premeno,25-29,0-2,no,2,right,left_up,no,no-recurrence-events
197 | 30-39,premeno,20-24,3-5,no,2,right,central,no,no-recurrence-events
198 | 30-39,premeno,30-34,0-2,no,1,right,left_up,no,recurrence-events
199 | 60-69,lt40,30-34,0-2,no,1,left,left_low,no,no-recurrence-events
200 | 40-49,premeno,15-19,12-14,no,3,right,right_low,yes,no-recurrence-events
201 | 60-69,ge40,20-24,0-2,no,3,right,left_low,no,recurrence-events
202 | 30-39,premeno,5-9,0-2,no,2,left,right_low,no,no-recurrence-events
203 | 40-49,premeno,30-34,0-2,no,3,left,left_up,no,no-recurrence-events
204 | 60-69,ge40,30-34,0-2,no,3,left,left_low,no,no-recurrence-events
205 | 40-49,premeno,25-29,0-2,no,1,right,right_low,no,no-recurrence-events
206 | 40-49,premeno,25-29,0-2,no,1,left,right_low,no,no-recurrence-events
207 | 60-69,ge40,40-44,3-5,yes,3,right,left_low,no,recurrence-events
208 | 50-59,ge40,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
209 | 50-59,premeno,30-34,0-2,no,3,right,left_up,yes,recurrence-events
210 | 40-49,ge40,30-34,3-5,no,3,left,left_low,no,recurrence-events
211 | 40-49,premeno,25-29,0-2,no,1,right,left_low,yes,no-recurrence-events
212 | 40-49,ge40,25-29,12-14,yes,3,left,right_low,yes,recurrence-events
213 | 40-49,premeno,40-44,0-2,no,1,left,left_low,no,recurrence-events
214 | 40-49,premeno,20-24,0-2,no,2,left,left_low,no,no-recurrence-events
215 | 50-59,ge40,25-29,0-2,no,1,left,right_low,no,no-recurrence-events
216 | 40-49,premeno,20-24,0-2,no,2,right,left_up,no,no-recurrence-events
217 | 70-79,ge40,40-44,0-2,no,1,right,left_up,no,no-recurrence-events
218 | 60-69,ge40,25-29,0-2,no,3,left,left_up,no,recurrence-events
219 | 50-59,premeno,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
220 | 60-69,ge40,45-49,0-2,no,1,right,right_up,yes,recurrence-events
221 | 50-59,ge40,20-24,0-2,yes,2,right,left_up,no,no-recurrence-events
222 | 50-59,ge40,25-29,0-2,no,1,left,left_low,no,no-recurrence-events
223 | 50-59,ge40,20-24,0-2,no,3,left,left_up,no,no-recurrence-events
224 | 40-49,premeno,20-24,3-5,no,2,right,left_low,no,no-recurrence-events
225 | 50-59,ge40,35-39,0-2,no,2,left,left_up,no,no-recurrence-events
226 | 30-39,premeno,20-24,0-2,no,3,left,left_up,yes,recurrence-events
227 | 60-69,ge40,30-34,0-2,no,1,right,left_up,no,no-recurrence-events
228 | 60-69,ge40,25-29,0-2,no,3,right,left_low,no,no-recurrence-events
229 | 40-49,ge40,30-34,0-2,no,2,left,left_up,yes,no-recurrence-events
230 | 30-39,premeno,25-29,0-2,no,2,left,left_low,no,no-recurrence-events
231 | 40-49,premeno,20-24,0-2,no,2,left,left_low,no,recurrence-events
232 | 30-39,premeno,20-24,0-2,no,2,left,right_low,no,no-recurrence-events
233 | 40-49,premeno,10-14,0-2,no,2,right,left_low,no,no-recurrence-events
234 | 50-59,premeno,15-19,0-2,no,2,right,right_low,no,no-recurrence-events
235 | 50-59,premeno,25-29,0-2,no,1,right,left_up,no,no-recurrence-events
236 | 60-69,ge40,20-24,0-2,no,2,right,left_up,no,no-recurrence-events
237 | 60-69,ge40,40-44,0-2,no,2,right,left_low,no,recurrence-events
238 | 30-39,lt40,15-19,0-2,no,3,right,left_up,no,no-recurrence-events
239 | 40-49,premeno,30-34,12-14,yes,3,left,left_up,yes,recurrence-events
240 | 60-69,ge40,30-34,0-2,yes,2,right,right_up,yes,recurrence-events
241 | 50-59,ge40,40-44,6-8,yes,3,left,left_low,yes,recurrence-events
242 | 50-59,ge40,30-34,0-2,no,3,left,?,no,recurrence-events
243 | 70-79,ge40,10-14,0-2,no,2,left,central,no,no-recurrence-events
244 | 30-39,premeno,40-44,0-2,no,2,left,left_low,yes,no-recurrence-events
245 | 40-49,premeno,30-34,0-2,no,2,right,right_low,no,no-recurrence-events
246 | 40-49,premeno,30-34,0-2,no,1,left,left_low,no,no-recurrence-events
247 | 60-69,ge40,15-19,0-2,no,2,left,left_low,no,no-recurrence-events
248 | 40-49,premeno,10-14,0-2,no,2,left,left_low,no,no-recurrence-events
249 | 60-69,ge40,20-24,0-2,no,1,left,left_low,no,no-recurrence-events
250 | 50-59,ge40,10-14,0-2,no,1,left,left_up,no,no-recurrence-events
251 | 50-59,premeno,25-29,0-2,no,1,left,left_low,no,no-recurrence-events
252 | 50-59,ge40,30-34,9-11,yes,3,left,right_low,yes,recurrence-events
253 | 50-59,ge40,10-14,0-2,no,2,left,left_low,no,no-recurrence-events
254 | 40-49,premeno,30-34,0-2,no,1,left,right_up,no,no-recurrence-events
255 | 70-79,ge40,0-4,0-2,no,1,left,right_low,no,no-recurrence-events
256 | 40-49,premeno,25-29,0-2,no,3,right,left_up,yes,no-recurrence-events
257 | 50-59,premeno,25-29,0-2,no,3,right,left_low,yes,recurrence-events
258 | 50-59,ge40,40-44,0-2,no,2,left,left_low,no,no-recurrence-events
259 | 60-69,ge40,25-29,0-2,no,3,left,right_low,yes,recurrence-events
260 | 40-49,premeno,30-34,3-5,yes,2,right,left_low,no,no-recurrence-events
261 | 50-59,ge40,20-24,0-2,no,2,left,left_up,no,recurrence-events
262 | 70-79,ge40,20-24,0-2,no,3,left,left_up,no,no-recurrence-events
263 | 30-39,premeno,25-29,0-2,no,1,left,central,no,no-recurrence-events
264 | 60-69,ge40,30-34,0-2,no,2,left,left_low,no,no-recurrence-events
265 | 40-49,premeno,20-24,3-5,yes,2,right,right_up,yes,recurrence-events
266 | 50-59,ge40,30-34,9-11,?,3,left,left_low,yes,no-recurrence-events
267 | 50-59,ge40,0-4,0-2,no,2,left,central,no,no-recurrence-events
268 | 40-49,premeno,20-24,0-2,no,3,right,left_low,yes,no-recurrence-events
269 | 30-39,premeno,35-39,0-2,no,3,left,left_low,no,recurrence-events
270 | 60-69,ge40,30-34,0-2,no,1,left,left_up,no,no-recurrence-events
271 | 60-69,ge40,20-24,0-2,no,1,left,left_low,no,no-recurrence-events
272 | 50-59,ge40,25-29,6-8,no,3,left,left_low,yes,recurrence-events
273 | 50-59,premeno,35-39,15-17,yes,3,right,right_up,no,recurrence-events
274 | 30-39,premeno,20-24,3-5,yes,2,right,left_up,yes,no-recurrence-events
275 | 40-49,premeno,20-24,6-8,no,2,right,left_low,yes,no-recurrence-events
276 | 50-59,ge40,35-39,0-2,no,3,left,left_low,no,no-recurrence-events
277 | 50-59,premeno,35-39,0-2,no,2,right,left_up,no,no-recurrence-events
278 | 40-49,premeno,25-29,0-2,no,2,left,left_up,yes,no-recurrence-events
279 | 40-49,premeno,35-39,0-2,no,2,right,right_up,no,no-recurrence-events
280 | 50-59,premeno,30-34,3-5,yes,2,left,left_low,yes,no-recurrence-events
281 | 40-49,premeno,20-24,0-2,no,2,right,right_up,no,no-recurrence-events
282 | 60-69,ge40,15-19,0-2,no,3,right,left_up,yes,no-recurrence-events
283 | 50-59,ge40,30-34,6-8,yes,2,left,left_low,no,no-recurrence-events
284 | 50-59,premeno,25-29,3-5,yes,2,left,left_low,yes,no-recurrence-events
285 | 30-39,premeno,30-34,6-8,yes,2,right,right_up,no,no-recurrence-events
286 | 50-59,premeno,15-19,0-2,no,2,right,left_low,no,no-recurrence-events
287 | 50-59,ge40,40-44,0-2,no,3,left,right_up,no,no-recurrence-events
288 |
--------------------------------------------------------------------------------
/content/vote/vote.csv:
--------------------------------------------------------------------------------
1 | handicapped-infants,water-project-cost-sharing,adoption-of-the-budget-resolution,physician-fee-freeze,el-salvador-aid,religious-groups-in-schools,anti-satellite-test-ban,aid-to-nicaraguan-contras,mx-missile,immigration,synfuels-corporation-cutback,education-spending,superfund-right-to-sue,crime,duty-free-exports,export-administration-act-south-africa,Class
2 | n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y,republican
3 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,?,republican
4 | ?,y,y,?,y,y,n,n,n,n,y,n,y,y,n,n,democrat
5 | n,y,y,n,?,y,n,n,n,n,y,n,y,n,n,y,democrat
6 | y,y,y,n,y,y,n,n,n,n,y,?,y,y,y,y,democrat
7 | n,y,y,n,y,y,n,n,n,n,n,n,y,y,y,y,democrat
8 | n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y,democrat
9 | n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y,republican
10 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
11 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?,democrat
12 | n,y,n,y,y,n,n,n,n,n,?,?,y,y,n,n,republican
13 | n,y,n,y,y,y,n,n,n,n,y,?,y,y,?,?,republican
14 | n,y,y,n,n,n,y,y,y,n,n,n,y,n,?,?,democrat
15 | y,y,y,n,n,y,y,y,?,y,y,?,n,n,y,?,democrat
16 | n,y,n,y,y,y,n,n,n,n,n,y,?,?,n,?,republican
17 | n,y,n,y,y,y,n,n,n,y,n,y,y,?,n,?,republican
18 | y,n,y,n,n,y,n,y,?,y,y,y,?,n,n,y,democrat
19 | y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y,democrat
20 | n,y,n,y,y,y,n,n,n,n,n,?,y,y,n,n,republican
21 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
22 | y,y,y,n,n,?,y,y,n,n,y,n,n,n,y,y,democrat
23 | y,y,y,n,n,n,y,y,y,n,n,n,?,?,y,y,democrat
24 | y,?,y,n,n,n,y,y,y,n,n,?,n,n,y,y,democrat
25 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
26 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
27 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
28 | y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
29 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
30 | y,n,n,y,y,n,y,y,y,n,n,y,y,y,n,y,republican
31 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
32 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
33 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?,democrat
34 | y,y,y,n,n,n,y,y,y,y,n,n,y,n,y,y,democrat
35 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
36 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
37 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
38 | y,?,n,y,y,y,n,n,n,y,n,y,?,y,n,y,republican
39 | y,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y,republican
40 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
41 | y,n,y,n,n,n,y,y,y,y,y,n,y,n,y,y,democrat
42 | y,y,y,n,n,n,y,y,y,n,?,n,n,n,n,?,democrat
43 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
44 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
45 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
46 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,?,democrat
47 | y,y,y,n,n,n,y,y,?,n,y,n,n,n,y,?,democrat
48 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
49 | y,n,y,n,n,n,y,y,?,n,n,n,n,n,n,?,democrat
50 | y,y,y,n,n,n,y,y,n,n,n,n,n,y,n,y,democrat
51 | n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
52 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
53 | n,y,n,y,y,y,n,?,n,n,n,y,y,y,n,y,republican
54 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,?,?,democrat
55 | y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
56 | y,y,y,n,n,y,?,y,n,n,y,y,n,y,n,?,democrat
57 | n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n,republican
58 | n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y,republican
59 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
60 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
61 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?,republican
62 | y,y,y,n,n,?,y,y,y,y,n,n,n,n,y,?,democrat
63 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
64 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,?,democrat
65 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y,democrat
66 | y,y,y,n,n,n,y,y,y,n,y,?,n,n,n,y,democrat
67 | y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y,republican
68 | n,y,n,y,y,y,y,n,n,n,y,y,y,y,n,y,republican
69 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
70 | y,?,y,n,n,n,y,y,y,n,n,n,y,n,y,y,democrat
71 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
72 | y,n,y,n,n,n,y,y,y,n,n,n,y,n,y,?,democrat
73 | y,y,y,y,n,n,y,y,y,y,y,n,n,y,n,y,republican
74 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,y,?,democrat
75 | y,n,y,y,y,n,y,n,y,y,n,n,y,y,n,y,republican
76 | y,n,y,n,n,y,y,y,y,y,y,n,n,y,y,y,democrat
77 | n,y,y,y,y,y,n,n,n,y,y,n,y,y,n,n,democrat
78 | n,y,y,n,y,y,n,n,n,y,y,y,y,y,n,?,democrat
79 | n,y,y,y,y,y,n,y,y,y,y,y,y,y,n,y,democrat
80 | y,y,y,n,y,y,n,n,n,y,y,n,y,y,n,y,democrat
81 | n,n,n,y,y,n,n,n,n,y,n,y,y,y,n,n,republican
82 | y,n,y,n,n,y,y,y,y,y,n,y,n,y,n,?,democrat
83 | y,n,y,n,n,n,y,y,?,y,y,y,n,y,n,y,democrat
84 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
85 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
86 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
87 | n,n,y,n,y,y,n,n,n,y,y,y,y,y,n,y,democrat
88 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
89 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
90 | n,y,y,n,y,y,y,n,y,y,y,n,y,y,n,y,democrat
91 | n,n,n,y,y,y,n,n,n,y,n,?,y,y,n,?,republican
92 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
93 | y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
94 | y,y,y,n,n,n,y,y,n,y,y,n,n,?,y,y,democrat
95 | y,n,y,n,n,n,y,n,y,y,y,n,n,n,y,y,democrat
96 | y,n,y,n,y,y,n,n,n,n,n,n,n,n,n,y,democrat
97 | y,n,y,n,y,y,n,?,?,n,y,?,?,?,y,y,democrat
98 | n,n,?,n,y,y,n,n,n,n,y,y,y,y,n,y,democrat
99 | y,n,n,n,y,y,y,n,n,y,y,n,n,y,n,y,democrat
100 | y,y,y,n,n,y,y,y,y,y,n,n,n,n,n,y,democrat
101 | n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,n,republican
102 | y,n,n,n,y,y,n,n,n,n,y,y,n,y,n,y,democrat
103 | y,n,y,n,y,y,y,n,n,n,y,n,n,y,n,y,democrat
104 | y,n,y,n,y,y,y,n,?,n,y,n,y,y,y,?,democrat
105 | y,n,n,n,y,y,?,n,?,n,n,n,n,y,?,n,democrat
106 | ?,?,?,?,n,y,y,y,y,y,?,n,y,y,n,?,democrat
107 | y,y,y,n,n,n,n,y,y,n,y,n,n,n,y,y,democrat
108 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
109 | n,?,?,?,?,?,?,?,?,?,?,?,?,y,?,?,republican
110 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
111 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
112 | n,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
113 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
114 | n,?,y,n,n,y,y,y,n,y,n,n,n,n,y,?,democrat
115 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
116 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
117 | n,?,y,n,?,?,y,y,y,y,?,?,n,n,y,y,democrat
118 | y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
119 | y,y,y,y,y,n,y,n,n,n,n,y,y,y,n,y,republican
120 | n,y,y,n,n,n,n,y,y,y,y,n,n,n,y,y,democrat
121 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
122 | n,?,?,y,y,y,n,n,n,y,n,y,y,y,?,y,republican
123 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
124 | n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y,republican
125 | y,?,n,y,y,y,n,y,n,n,n,y,y,y,n,y,republican
126 | n,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
127 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
128 | n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
129 | n,?,y,n,n,n,y,y,y,y,y,n,n,y,y,y,democrat
130 | n,?,y,n,n,y,n,y,n,y,y,n,n,n,y,y,democrat
131 | ?,?,y,n,n,n,y,y,?,n,?,?,?,?,?,?,democrat
132 | y,?,y,n,?,?,y,y,y,n,n,n,n,n,y,?,democrat
133 | n,n,y,n,n,y,n,y,y,y,n,n,n,y,n,y,democrat
134 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,?,republican
135 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
136 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?,republican
137 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
138 | n,y,n,y,y,y,n,n,n,y,y,y,y,n,n,y,republican
139 | n,?,y,n,n,y,y,y,y,y,n,n,n,y,y,y,democrat
140 | n,n,y,n,n,y,y,y,y,y,n,n,n,y,n,y,democrat
141 | y,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y,democrat
142 | n,n,n,y,n,n,y,y,y,y,n,n,y,y,n,y,republican
143 | n,n,n,y,y,y,y,y,y,y,n,y,y,y,?,y,republican
144 | n,n,n,y,y,y,y,y,y,y,n,y,y,y,n,y,republican
145 | ?,y,n,n,n,n,y,y,y,y,y,n,n,y,y,y,democrat
146 | n,?,n,n,n,y,y,y,y,y,n,n,n,y,n,?,democrat
147 | n,n,y,n,n,y,y,y,y,y,n,n,n,y,?,y,democrat
148 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
149 | n,n,n,n,n,n,y,y,y,y,n,y,y,y,y,y,democrat
150 | n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,y,republican
151 | n,n,y,n,n,n,y,y,y,y,n,n,y,n,y,y,democrat
152 | y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
153 | y,y,?,y,y,y,n,n,y,n,y,?,y,y,n,n,democrat
154 | n,y,y,n,n,y,n,y,y,y,y,n,y,n,y,y,democrat
155 | n,n,y,n,n,y,y,y,y,y,y,n,y,y,n,y,democrat
156 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
157 | y,y,n,y,y,y,n,?,n,n,y,y,y,y,n,n,republican
158 | y,y,n,y,y,y,y,n,n,n,n,y,y,y,n,n,republican
159 | n,y,y,n,n,y,n,y,y,n,y,n,?,?,?,?,democrat
160 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
161 | n,y,y,n,?,y,y,y,y,y,y,n,n,?,n,?,democrat
162 | n,y,n,n,y,y,n,n,n,n,n,y,y,y,y,y,democrat
163 | n,n,n,n,y,y,y,n,n,n,n,y,y,y,n,y,democrat
164 | n,y,y,n,y,y,y,n,n,n,y,y,y,y,n,y,democrat
165 | n,y,n,y,y,y,y,n,n,n,n,y,y,y,n,y,republican
166 | y,y,n,n,y,y,n,n,n,y,y,y,y,y,n,?,democrat
167 | n,y,y,n,n,y,y,y,y,y,y,n,y,n,y,?,democrat
168 | y,n,y,y,y,y,y,y,n,y,n,y,n,y,y,y,republican
169 | y,n,y,y,y,y,y,y,n,y,y,y,n,y,y,y,republican
170 | n,n,y,y,y,y,n,n,y,n,n,n,y,y,y,?,democrat
171 | y,n,y,n,n,n,y,y,y,y,y,n,n,y,n,y,democrat
172 | y,n,y,n,n,n,?,y,y,?,n,n,n,n,y,?,democrat
173 | n,?,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
174 | n,y,y,n,n,n,y,y,y,y,n,n,?,n,y,y,democrat
175 | n,n,n,n,y,y,n,n,n,y,y,y,y,y,n,y,democrat
176 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
177 | n,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
178 | n,n,y,y,n,n,y,y,y,y,n,n,n,y,y,y,republican
179 | n,n,y,n,n,n,y,y,y,y,y,?,n,n,y,y,democrat
180 | ?,n,y,n,n,n,y,y,y,y,y,?,n,n,y,?,democrat
181 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
182 | ?,?,y,n,n,n,y,y,y,?,?,n,n,n,?,?,democrat
183 | n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
184 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
185 | ?,?,?,?,?,?,?,?,y,?,?,?,?,?,?,?,democrat
186 | n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
187 | y,n,y,n,n,n,y,y,y,y,n,?,n,n,y,y,democrat
188 | n,y,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
189 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
190 | y,?,n,y,y,y,y,y,n,n,n,y,?,y,?,?,republican
191 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
192 | n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,?,republican
193 | n,y,n,y,y,y,n,?,n,y,n,y,y,y,n,?,republican
194 | n,n,n,n,n,y,y,y,y,n,y,n,n,y,y,y,democrat
195 | n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
196 | n,n,y,n,n,y,y,?,y,y,y,n,n,n,y,y,democrat
197 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,?,republican
198 | n,n,y,n,n,y,y,y,y,n,y,y,n,y,y,?,democrat
199 | n,?,y,y,y,y,n,n,n,y,n,n,n,y,n,y,republican
200 | n,n,y,n,n,n,y,y,y,y,y,n,?,n,y,?,democrat
201 | y,y,n,n,n,n,y,y,?,n,y,n,n,n,y,?,democrat
202 | n,n,y,n,n,n,y,y,y,n,n,n,n,y,y,y,democrat
203 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
204 | y,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y,democrat
205 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
206 | n,n,y,y,y,y,y,n,n,n,n,y,y,y,n,y,republican
207 | n,n,y,n,n,y,y,y,y,y,n,y,n,n,n,y,democrat
208 | n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y,republican
209 | y,?,n,y,y,y,y,n,n,y,n,y,y,y,n,y,republican
210 | n,n,y,n,n,n,y,y,y,n,n,?,n,n,y,y,democrat
211 | y,y,y,n,n,n,y,y,y,y,y,n,n,n,n,y,democrat
212 | n,n,y,n,n,y,y,y,y,n,n,n,n,n,y,y,democrat
213 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
214 | n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
215 | n,y,y,n,n,y,n,y,y,n,y,n,y,n,y,y,democrat
216 | y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
217 | n,y,y,y,y,y,n,n,n,y,y,y,y,y,y,?,democrat
218 | y,y,y,n,y,y,n,n,?,y,n,n,n,y,y,?,democrat
219 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
220 | y,?,y,n,n,n,y,y,y,n,?,n,n,n,y,?,democrat
221 | n,y,y,n,n,n,n,y,y,n,y,n,n,y,y,y,democrat
222 | n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
223 | n,y,y,n,y,y,n,n,n,n,y,n,n,n,y,?,democrat
224 | y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?,democrat
225 | n,n,n,y,y,n,n,n,n,n,n,y,y,y,n,y,republican
226 | n,y,n,y,y,y,n,n,n,y,n,?,y,y,n,n,republican
227 | n,?,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
228 | n,n,y,n,n,y,y,y,y,n,y,n,n,y,y,y,democrat
229 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,?,y,democrat
230 | n,y,n,y,y,y,n,n,n,n,n,y,y,?,n,y,republican
231 | n,y,y,y,y,y,y,n,y,y,n,y,y,y,n,y,republican
232 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
233 | n,y,n,y,y,y,n,n,y,y,n,y,y,y,n,y,republican
234 | n,y,y,n,n,n,y,y,n,n,y,n,n,n,y,?,democrat
235 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
236 | n,n,y,n,n,y,y,y,y,y,n,y,n,y,y,?,democrat
237 | n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y,republican
238 | n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
239 | y,n,y,n,n,y,y,y,n,n,n,y,y,n,n,y,democrat
240 | y,y,y,n,n,n,y,y,?,y,n,n,n,n,y,?,democrat
241 | n,n,n,y,y,y,y,n,n,y,n,n,n,y,y,y,republican
242 | n,n,n,y,n,y,y,?,y,n,n,y,y,y,n,y,republican
243 | y,n,y,n,n,n,y,y,y,y,y,n,n,y,y,y,democrat
244 | n,n,n,n,y,y,y,n,n,n,n,?,n,y,y,y,republican
245 | n,y,y,n,n,n,y,y,?,y,n,n,y,n,y,y,democrat
246 | y,n,y,n,n,n,n,y,y,y,n,n,n,n,y,y,democrat
247 | y,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
248 | n,n,y,n,y,n,y,y,y,n,n,n,n,y,?,y,democrat
249 | n,y,n,y,y,y,?,n,n,n,n,?,y,y,n,n,republican
250 | ?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,republican
251 | y,n,y,n,n,n,y,y,?,n,y,n,n,n,y,y,democrat
252 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
253 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
254 | y,y,y,n,n,y,y,y,y,n,n,n,n,n,y,y,democrat
255 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
256 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y,democrat
257 | y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y,democrat
258 | n,n,n,y,y,n,n,n,n,n,n,y,n,y,n,n,republican
259 | n,n,n,y,y,n,n,n,n,n,n,y,n,y,?,y,republican
260 | n,n,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
261 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
262 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y,democrat
263 | y,n,y,n,n,?,y,y,y,n,?,?,n,?,?,?,democrat
264 | y,n,y,n,n,n,y,y,y,y,n,n,?,n,y,y,democrat
265 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
266 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
267 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y,democrat
268 | n,n,n,y,y,y,n,n,n,y,n,y,n,y,n,y,republican
269 | y,n,n,n,n,n,y,y,y,y,n,n,n,y,n,y,republican
270 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
271 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
272 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
273 | n,y,y,n,n,y,y,y,y,n,?,n,n,n,n,y,democrat
274 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,?,democrat
275 | n,n,n,y,y,n,y,y,n,y,n,y,y,y,?,y,republican
276 | y,n,n,y,y,n,y,n,n,y,n,n,n,y,y,y,republican
277 | n,n,y,n,y,y,n,n,n,n,?,n,y,y,n,n,democrat
278 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,y,n,republican
279 | n,n,y,y,y,y,y,y,n,y,n,n,n,y,n,y,republican
280 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
281 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
282 | n,n,y,n,n,n,y,y,y,y,n,n,n,y,n,y,democrat
283 | y,n,y,y,y,y,y,y,n,n,n,n,n,y,n,?,republican
284 | y,n,n,y,y,y,n,n,n,y,n,?,y,y,n,n,republican
285 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
286 | n,n,y,n,n,y,y,y,y,y,y,n,n,n,?,y,democrat
287 | n,n,y,n,n,y,y,y,y,y,y,n,n,n,y,y,democrat
288 | n,n,y,n,n,y,?,y,?,y,y,y,n,y,y,?,democrat
289 | y,y,y,?,n,y,y,y,y,n,y,n,y,n,?,y,democrat
290 | y,y,y,n,y,y,n,y,n,y,y,n,y,y,y,y,democrat
291 | y,y,y,n,y,y,n,y,n,y,y,n,y,y,n,?,democrat
292 | y,n,y,n,?,y,?,y,y,y,n,n,y,y,n,y,democrat
293 | y,n,y,n,n,y,y,y,y,y,n,?,n,y,n,y,democrat
294 | y,n,y,n,n,y,y,y,n,y,y,n,y,y,y,y,democrat
295 | y,y,y,n,n,y,y,y,y,y,y,n,y,y,y,y,democrat
296 | n,y,y,n,n,y,y,y,n,y,y,n,y,y,n,?,democrat
297 | n,y,n,y,y,y,?,?,n,y,n,y,?,?,?,?,republican
298 | n,n,y,y,y,y,n,n,n,y,n,y,y,y,y,y,republican
299 | y,y,y,n,n,y,y,y,y,y,n,n,?,n,y,?,democrat
300 | n,y,n,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
301 | n,y,y,n,n,y,y,y,y,y,n,n,y,y,y,y,democrat
302 | n,n,n,y,y,n,y,y,y,y,n,y,y,y,n,y,republican
303 | n,n,?,n,n,y,y,y,y,n,n,n,n,n,y,y,democrat
304 | n,n,n,y,y,y,y,n,n,y,n,y,y,y,n,y,republican
305 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
306 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,?,republican
307 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
308 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
309 | y,n,y,n,n,y,y,y,y,n,n,n,n,y,n,?,democrat
310 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
311 | y,n,n,n,n,y,y,y,y,y,n,n,n,y,y,y,democrat
312 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,y,n,republican
313 | n,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y,democrat
314 | y,y,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
315 | n,y,y,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
316 | n,y,n,y,y,y,y,y,n,n,y,y,y,y,y,y,republican
317 | n,y,y,y,y,y,y,?,n,n,n,n,?,?,y,?,republican
318 | n,n,n,n,n,y,n,y,y,n,y,y,y,y,y,n,democrat
319 | y,n,n,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
320 | n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
321 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
322 | n,y,y,n,n,y,n,y,y,y,n,n,y,y,n,y,democrat
323 | y,y,y,n,n,n,y,y,y,y,n,n,y,n,n,y,democrat
324 | y,y,y,n,?,y,n,?,n,n,y,n,y,y,n,?,democrat
325 | y,y,y,n,y,y,n,y,?,y,n,n,y,y,n,?,democrat
326 | n,y,n,y,y,y,n,n,n,n,y,y,y,y,n,n,republican
327 | n,y,n,n,y,y,n,n,?,n,n,y,y,y,n,y,democrat
328 | y,y,n,y,n,n,y,y,y,n,y,n,n,y,n,y,democrat
329 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
330 | y,y,y,n,n,n,y,y,y,n,y,n,n,n,n,y,democrat
331 | y,?,y,n,n,y,y,y,y,y,n,n,n,n,y,?,democrat
332 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
333 | y,?,y,n,n,n,y,y,y,n,n,n,n,n,y,?,democrat
334 | y,n,y,n,n,n,y,y,y,n,y,n,n,n,y,?,democrat
335 | n,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
336 | n,y,y,n,n,y,y,y,?,n,y,y,n,n,y,y,democrat
337 | n,n,n,y,y,y,n,n,n,y,y,y,y,y,n,?,republican
338 | n,n,y,n,n,y,y,y,n,n,y,n,n,y,?,y,democrat
339 | y,n,y,n,n,n,y,y,y,n,n,n,n,n,y,y,democrat
340 | y,n,y,n,n,n,y,y,y,y,n,n,n,y,y,y,democrat
341 | y,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n,republican
342 | n,n,n,y,y,y,n,n,n,y,y,y,n,y,n,y,republican
343 | n,?,y,?,n,y,y,y,y,y,y,n,?,?,y,y,democrat
344 | n,y,y,n,y,?,y,n,n,y,y,n,y,n,y,y,democrat
345 | n,n,n,y,y,n,y,n,y,y,n,n,n,y,n,y,republican
346 | n,n,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat
347 | n,n,n,y,y,y,y,n,n,y,n,y,n,y,y,y,republican
348 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
349 | y,n,n,y,y,y,n,n,n,y,n,y,y,y,n,n,republican
350 | y,n,y,n,n,n,y,y,y,y,n,y,n,n,y,?,democrat
351 | n,y,y,y,y,y,y,y,y,n,n,y,y,y,n,y,republican
352 | n,y,n,n,n,y,y,n,y,n,y,n,n,n,y,y,democrat
353 | n,n,y,y,y,y,y,y,y,y,n,y,y,y,y,y,republican
354 | n,y,n,y,n,y,y,y,y,n,y,n,y,n,y,?,democrat
355 | n,n,y,y,y,y,y,n,n,y,y,y,y,y,n,y,republican
356 | n,y,y,n,n,y,y,y,y,y,n,?,n,n,y,y,democrat
357 | y,n,y,y,n,n,n,y,y,y,n,n,n,y,y,y,republican
358 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
359 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
360 | y,y,y,n,n,y,y,y,y,y,y,y,y,y,n,?,democrat
361 | n,n,n,y,y,y,n,n,n,y,?,y,y,y,n,y,republican
362 | y,n,y,n,n,y,y,y,y,y,n,n,y,n,n,y,democrat
363 | y,n,y,n,y,y,y,n,y,y,n,n,y,y,n,?,democrat
364 | y,y,y,n,n,y,y,y,y,y,y,y,y,n,n,y,democrat
365 | y,y,n,y,y,y,n,n,n,y,y,n,y,n,n,n,republican
366 | y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,y,republican
367 | n,y,n,n,y,y,n,n,n,y,y,n,y,y,n,n,democrat
368 | y,n,y,n,n,n,y,y,n,y,y,n,n,n,n,?,democrat
369 | y,y,y,n,y,y,y,y,n,y,y,n,n,n,y,?,democrat
370 | n,y,y,n,n,y,y,y,n,y,n,n,n,n,y,y,democrat
371 | n,y,n,y,y,y,n,n,n,n,n,n,y,y,n,y,republican
372 | y,y,y,n,?,y,y,y,n,y,?,?,n,n,y,y,democrat
373 | y,y,y,n,?,n,y,y,y,y,n,n,n,n,y,?,democrat
374 | n,y,y,y,y,y,n,n,n,n,y,y,?,y,n,n,democrat
375 | n,y,y,?,y,y,n,y,n,y,?,n,y,y,?,y,democrat
376 | n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
377 | n,y,n,y,y,y,n,n,n,n,y,y,n,y,n,n,democrat
378 | y,?,y,n,n,n,y,y,y,n,y,n,n,n,y,y,democrat
379 | n,y,n,y,y,y,?,?,n,n,?,?,y,?,?,?,republican
380 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
381 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
382 | y,y,y,n,n,y,?,y,y,n,y,n,y,n,y,y,democrat
383 | y,y,y,n,y,y,y,y,y,y,y,n,y,y,n,?,democrat
384 | y,y,n,y,y,y,n,n,n,n,y,n,y,y,n,?,democrat
385 | y,y,y,n,y,y,n,y,y,y,y,n,n,n,n,y,democrat
386 | y,y,y,y,y,y,n,n,n,n,y,y,y,y,n,y,democrat
387 | y,y,n,n,y,y,n,n,n,n,y,y,y,y,y,n,democrat
388 | n,?,y,n,y,y,n,y,n,n,y,n,n,n,n,?,democrat
389 | y,y,y,n,y,y,n,y,y,n,y,n,n,y,n,?,democrat
390 | n,y,y,y,y,y,n,n,n,n,n,y,y,y,n,?,democrat
391 | y,n,y,n,n,n,y,y,y,?,y,n,n,n,y,?,democrat
392 | ?,?,n,n,?,y,?,n,n,n,y,y,n,y,n,?,democrat
393 | y,y,n,n,n,n,n,y,y,n,y,n,n,n,y,n,democrat
394 | y,y,n,y,y,y,n,n,n,n,y,y,y,y,n,y,republican
395 | ?,?,?,?,n,y,n,y,y,n,n,y,y,n,n,?,republican
396 | y,y,?,?,?,y,n,n,n,n,y,n,y,n,n,y,democrat
397 | y,y,y,?,n,n,n,y,n,n,y,?,n,n,y,y,democrat
398 | y,y,y,n,y,y,n,y,n,n,y,n,y,n,y,y,democrat
399 | y,y,n,n,y,?,n,n,n,n,y,n,y,y,n,y,democrat
400 | n,y,y,n,y,y,n,y,n,n,n,n,n,n,n,y,democrat
401 | n,y,n,y,?,y,n,n,n,y,n,y,y,y,n,n,republican
402 | n,y,n,y,y,y,n,?,n,n,?,?,?,y,n,?,republican
403 | n,y,n,y,y,y,n,n,n,y,y,y,y,y,n,n,republican
404 | ?,n,y,y,n,y,y,y,y,y,n,y,n,y,n,y,republican
405 | n,y,n,y,y,y,n,n,n,y,n,y,?,y,n,n,republican
406 | y,y,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
407 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,y,republican
408 | y,n,y,n,y,y,n,n,y,y,n,n,y,y,n,y,democrat
409 | n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,n,democrat
410 | y,n,y,n,n,y,y,y,y,n,n,y,?,y,y,y,democrat
411 | n,n,n,y,y,y,n,n,n,n,n,y,y,y,n,n,republican
412 | n,n,n,y,y,y,n,n,n,n,y,y,y,y,n,y,republican
413 | y,n,y,n,n,y,y,y,y,y,y,n,n,n,n,y,democrat
414 | n,n,n,y,y,y,n,n,n,y,n,y,y,y,n,y,republican
415 | y,y,y,y,y,y,y,y,n,y,?,?,?,y,n,y,republican
416 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
417 | n,y,y,n,n,y,y,y,?,y,n,n,n,n,n,y,democrat
418 | y,y,n,y,y,y,n,n,n,y,n,n,y,y,n,y,republican
419 | y,y,y,n,n,n,y,y,y,y,y,n,y,n,n,y,democrat
420 | y,y,y,n,n,n,y,y,n,y,n,n,n,n,n,y,democrat
421 | y,y,y,n,n,n,y,y,y,n,n,n,n,n,n,y,democrat
422 | y,y,y,y,y,y,y,y,n,y,n,n,y,y,n,y,republican
423 | n,y,y,n,y,y,y,y,n,n,y,n,y,n,y,y,democrat
424 | n,n,y,n,n,y,y,y,y,n,y,n,n,n,y,y,democrat
425 | n,y,y,n,n,y,y,y,y,n,y,n,n,y,y,y,democrat
426 | n,y,y,n,n,?,y,y,y,y,y,n,?,y,y,y,democrat
427 | n,n,y,n,n,n,y,y,n,y,y,n,n,n,y,?,democrat
428 | y,n,y,n,n,n,y,y,y,y,n,n,n,n,y,y,democrat
429 | n,n,n,y,y,y,y,y,n,y,n,y,y,y,n,y,republican
430 | ?,?,?,n,n,n,y,y,y,y,n,n,y,n,y,y,democrat
431 | y,n,y,n,?,n,y,y,y,y,n,y,n,?,y,y,democrat
432 | n,n,y,y,y,y,n,n,y,y,n,y,y,y,n,y,republican
433 | n,n,y,n,n,n,y,y,y,y,n,n,n,n,n,y,democrat
434 | n,?,n,y,y,y,n,n,n,n,y,y,y,y,n,y,republican
435 | n,n,n,y,y,y,?,?,?,?,n,y,y,y,n,y,republican
436 | n,y,n,y,y,y,n,n,n,y,n,y,y,y,?,n,republican
437 |
--------------------------------------------------------------------------------
/content/breast-cancer/breast-cancer.arff:
--------------------------------------------------------------------------------
1 | % Citation Request:
2 | % This breast cancer domain was obtained from the University Medical Centre,
3 | % Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and
4 | % M. Soklic for providing the data. Please include this citation if you plan
5 | % to use this database.
6 | %
7 | % 1. Title: Breast cancer data (Michalski has used this)
8 | %
9 | % 2. Sources:
10 | % -- Matjaz Zwitter & Milan Soklic (physicians)
11 | % Institute of Oncology
12 | % University Medical Center
13 | % Ljubljana, Yugoslavia
14 | % -- Donors: Ming Tan and Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)
15 | % -- Date: 11 July 1988
16 | %
17 | % 3. Past Usage: (Several: here are some)
18 | % -- Michalski,R.S., Mozetic,I., Hong,J., & Lavrac,N. (1986). The
19 | % Multi-Purpose Incremental Learning System AQ15 and its Testing
20 | % Application to Three Medical Domains. In Proceedings of the
21 | % Fifth National Conference on Artificial Intelligence, 1041-1045,
22 | % Philadelphia, PA: Morgan Kaufmann.
23 | % -- accuracy range: 66%-72%
24 | % -- Clark,P. & Niblett,T. (1987). Induction in Noisy Domains. In
25 | % Progress in Machine Learning (from the Proceedings of the 2nd
26 | % European Working Session on Learning), 11-30, Bled,
27 | % Yugoslavia: Sigma Press.
28 | % -- 8 test results given: 65%-72% accuracy range
29 | % -- Tan, M., & Eshelman, L. (1988). Using weighted networks to
30 | % represent classification knowledge in noisy domains. Proceedings
31 | % of the Fifth International Conference on Machine Learning, 121-134,
32 | % Ann Arbor, MI.
33 | % -- 4 systems tested: accuracy range was 68%-73.5%
34 | % -- Cestnik,G., Konenenko,I, & Bratko,I. (1987). Assistant-86: A
35 | % Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko
36 | % & N.Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press.
37 | % -- Assistant-86: 78% accuracy
38 | %
39 | % 4. Relevant Information:
40 | % This is one of three domains provided by the Oncology Institute
41 | % that has repeatedly appeared in the machine learning literature.
42 | % (See also lymphography and primary-tumor.)
43 | %
44 | % This data set includes 201 instances of one class and 85 instances of
45 | % another class. The instances are described by 9 attributes, some of
46 | % which are linear and some are nominal.
47 | %
48 | % 5. Number of Instances: 286
49 | %
50 | % 6. Number of Attributes: 9 + the class attribute
51 | %
52 | % 7. Attribute Information:
53 | % 1. Class: no-recurrence-events, recurrence-events
54 | % 2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
55 | % 3. menopause: lt40, ge40, premeno.
56 | % 4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44,
57 | % 45-49, 50-54, 55-59.
58 | % 5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26,
59 | % 27-29, 30-32, 33-35, 36-39.
60 | % 6. node-caps: yes, no.
61 | % 7. deg-malig: 1, 2, 3.
62 | % 8. breast: left, right.
63 | % 9. breast-quad: left-up, left-low, right-up, right-low, central.
64 | % 10. irradiat: yes, no.
65 | %
66 | % 8. Missing Attribute Values: (denoted by "?")
67 | % Attribute #: Number of instances with missing values:
68 | % 6. 8
69 | % 9. 1.
70 | %
71 | % 9. Class Distribution:
72 | % 1. no-recurrence-events: 201 instances
73 | % 2. recurrence-events: 85 instances
74 | %
75 | % Num Instances: 286
76 | % Num Attributes: 10
77 | % Num Continuous: 0 (Int 0 / Real 0)
78 | % Num Discrete: 10
79 | % Missing values: 9 / 0.3%
80 | %
81 | % name type enum ints real missing distinct (1)
82 | % 1 'age' Enum 100% 0% 0% 0 / 0% 6 / 2% 0%
83 | % 2 'menopause' Enum 100% 0% 0% 0 / 0% 3 / 1% 0%
84 | % 3 'tumor-size' Enum 100% 0% 0% 0 / 0% 11 / 4% 0%
85 | % 4 'inv-nodes' Enum 100% 0% 0% 0 / 0% 7 / 2% 0%
86 | % 5 'node-caps' Enum 97% 0% 0% 8 / 3% 2 / 1% 0%
87 | % 6 'deg-malig' Enum 100% 0% 0% 0 / 0% 3 / 1% 0%
88 | % 7 'breast' Enum 100% 0% 0% 0 / 0% 2 / 1% 0%
89 | % 8 'breast-quad' Enum 100% 0% 0% 1 / 0% 5 / 2% 0%
90 | % 9 'irradiat' Enum 100% 0% 0% 0 / 0% 2 / 1% 0%
91 | % 10 'Class' Enum 100% 0% 0% 0 / 0% 2 / 1% 0%
92 | %
93 | %
94 | @relation breast-cancer
95 | @attribute age {'10-19','20-29','30-39','40-49','50-59','60-69','70-79','80-89','90-99'}
96 | @attribute menopause {'lt40','ge40','premeno'}
97 | @attribute tumor-size {'0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59'}
98 | @attribute inv-nodes {'0-2','3-5','6-8','9-11','12-14','15-17','18-20','21-23','24-26','27-29','30-32','33-35','36-39'}
99 | @attribute node-caps {'yes','no'}
100 | @attribute deg-malig {'1','2','3'}
101 | @attribute breast {'left','right'}
102 | @attribute breast-quad {'left_up','left_low','right_up','right_low','central'}
103 | @attribute 'irradiat' {'yes','no'}
104 | @attribute 'Class' {'no-recurrence-events','recurrence-events'}
105 | @data
106 | '40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events'
107 | '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'
108 | '50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events'
109 | '40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events'
110 | '40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events'
111 | '50-59','premeno','25-29','3-5','no','2','right','left_up','yes','no-recurrence-events'
112 | '50-59','ge40','40-44','0-2','no','3','left','left_up','no','no-recurrence-events'
113 | '40-49','premeno','10-14','0-2','no','2','left','left_up','no','no-recurrence-events'
114 | '40-49','premeno','0-4','0-2','no','2','right','right_low','no','no-recurrence-events'
115 | '40-49','ge40','40-44','15-17','yes','2','right','left_up','yes','no-recurrence-events'
116 | '50-59','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
117 | '60-69','ge40','15-19','0-2','no','2','right','left_up','no','no-recurrence-events'
118 | '50-59','ge40','30-34','0-2','no','1','right','central','no','no-recurrence-events'
119 | '50-59','ge40','25-29','0-2','no','2','right','left_up','no','no-recurrence-events'
120 | '40-49','premeno','25-29','0-2','no','2','left','left_low','yes','recurrence-events'
121 | '30-39','premeno','20-24','0-2','no','3','left','central','no','no-recurrence-events'
122 | '50-59','premeno','10-14','3-5','no','1','right','left_up','no','no-recurrence-events'
123 | '60-69','ge40','15-19','0-2','no','2','right','left_up','no','no-recurrence-events'
124 | '50-59','premeno','40-44','0-2','no','2','left','left_up','no','no-recurrence-events'
125 | '50-59','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
126 | '50-59','lt40','20-24','0-2',?,'1','left','left_low','no','recurrence-events'
127 | '60-69','ge40','40-44','3-5','no','2','right','left_up','yes','no-recurrence-events'
128 | '50-59','ge40','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
129 | '40-49','premeno','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
130 | '30-39','premeno','15-19','6-8','yes','3','left','left_low','yes','recurrence-events'
131 | '50-59','ge40','20-24','3-5','yes','2','right','left_up','no','no-recurrence-events'
132 | '50-59','ge40','10-14','0-2','no','2','right','left_low','no','no-recurrence-events'
133 | '40-49','premeno','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
134 | '60-69','ge40','30-34','3-5','yes','3','left','left_low','no','no-recurrence-events'
135 | '40-49','premeno','15-19','15-17','yes','3','left','left_low','no','recurrence-events'
136 | '60-69','ge40','30-34','0-2','no','3','right','central','no','recurrence-events'
137 | '60-69','ge40','25-29','3-5',?,'1','right','left_low','yes','no-recurrence-events'
138 | '50-59','ge40','25-29','0-2','no','3','left','right_up','no','no-recurrence-events'
139 | '50-59','ge40','20-24','0-2','no','3','right','left_up','no','no-recurrence-events'
140 | '40-49','premeno','30-34','0-2','no','1','left','left_low','yes','recurrence-events'
141 | '30-39','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
142 | '40-49','premeno','10-14','0-2','no','2','right','left_up','no','no-recurrence-events'
143 | '60-69','ge40','45-49','6-8','yes','3','left','central','no','no-recurrence-events'
144 | '40-49','ge40','20-24','0-2','no','3','left','left_low','no','no-recurrence-events'
145 | '40-49','premeno','10-14','0-2','no','1','right','right_low','no','no-recurrence-events'
146 | '30-39','premeno','35-39','0-2','no','3','left','left_low','no','recurrence-events'
147 | '40-49','premeno','35-39','9-11','yes','2','right','right_up','yes','no-recurrence-events'
148 | '60-69','ge40','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
149 | '50-59','ge40','20-24','3-5','yes','3','right','right_up','no','recurrence-events'
150 | '30-39','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
151 | '50-59','premeno','30-34','0-2','no','3','left','right_up','no','recurrence-events'
152 | '60-69','ge40','10-14','0-2','no','2','right','left_up','yes','no-recurrence-events'
153 | '40-49','premeno','35-39','0-2','yes','3','right','left_up','yes','no-recurrence-events'
154 | '50-59','premeno','50-54','0-2','yes','2','right','left_up','yes','no-recurrence-events'
155 | '50-59','ge40','40-44','0-2','no','3','right','left_up','no','no-recurrence-events'
156 | '70-79','ge40','15-19','9-11',?,'1','left','left_low','yes','recurrence-events'
157 | '50-59','lt40','30-34','0-2','no','3','right','left_up','no','no-recurrence-events'
158 | '40-49','premeno','0-4','0-2','no','3','left','central','no','no-recurrence-events'
159 | '70-79','ge40','40-44','0-2','no','1','right','right_up','no','no-recurrence-events'
160 | '40-49','premeno','25-29','0-2',?,'2','left','right_low','yes','no-recurrence-events'
161 | '50-59','ge40','25-29','15-17','yes','3','right','left_up','no','no-recurrence-events'
162 | '50-59','premeno','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
163 | '50-59','ge40','35-39','15-17','no','3','left','left_low','no','no-recurrence-events'
164 | '50-59','ge40','50-54','0-2','no','1','right','right_up','no','no-recurrence-events'
165 | '30-39','premeno','0-4','0-2','no','2','right','central','no','recurrence-events'
166 | '50-59','ge40','40-44','6-8','yes','3','left','left_low','yes','recurrence-events'
167 | '40-49','premeno','30-34','0-2','no','2','right','right_up','yes','no-recurrence-events'
168 | '40-49','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
169 | '40-49','premeno','30-34','15-17','yes','3','left','left_low','no','recurrence-events'
170 | '40-49','ge40','20-24','0-2','no','2','right','left_up','no','recurrence-events'
171 | '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'
172 | '30-39','premeno','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
173 | '60-69','ge40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
174 | '50-59','premeno','50-54','9-11','yes','2','right','left_up','no','recurrence-events'
175 | '30-39','premeno','10-14','0-2','no','1','right','left_low','no','no-recurrence-events'
176 | '50-59','premeno','25-29','3-5','yes','3','left','left_low','yes','recurrence-events'
177 | '60-69','ge40','25-29','3-5',?,'1','right','left_up','yes','no-recurrence-events'
178 | '60-69','ge40','10-14','0-2','no','1','right','left_low','no','no-recurrence-events'
179 | '50-59','ge40','30-34','6-8','yes','3','left','right_low','no','recurrence-events'
180 | '30-39','premeno','25-29','6-8','yes','3','left','right_low','yes','recurrence-events'
181 | '50-59','ge40','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
182 | '50-59','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
183 | '40-49','premeno','25-29','0-2','no','2','right','central','no','no-recurrence-events'
184 | '40-49','premeno','25-29','0-2','no','3','left','right_up','no','recurrence-events'
185 | '60-69','ge40','30-34','6-8','yes','2','right','right_up','no','no-recurrence-events'
186 | '50-59','lt40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
187 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
188 | '40-49','premeno','30-34','0-2','no','1','right','left_up','no','no-recurrence-events'
189 | '60-69','ge40','15-19','0-2','no','2','left','left_up','yes','no-recurrence-events'
190 | '30-39','premeno','0-4','0-2','no','2','right','central','no','no-recurrence-events'
191 | '50-59','ge40','35-39','0-2','no','3','left','left_up','no','no-recurrence-events'
192 | '40-49','premeno','40-44','0-2','no','1','right','left_up','no','no-recurrence-events'
193 | '30-39','premeno','25-29','6-8','yes','2','right','left_up','yes','no-recurrence-events'
194 | '50-59','ge40','20-24','0-2','no','1','right','left_low','no','no-recurrence-events'
195 | '50-59','ge40','30-34','0-2','no','1','left','left_up','no','no-recurrence-events'
196 | '60-69','ge40','20-24','0-2','no','1','right','left_up','no','recurrence-events'
197 | '30-39','premeno','30-34','3-5','no','3','right','left_up','yes','recurrence-events'
198 | '50-59','lt40','20-24','0-2',?,'1','left','left_up','no','recurrence-events'
199 | '50-59','premeno','10-14','0-2','no','2','right','left_up','no','no-recurrence-events'
200 | '50-59','ge40','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
201 | '40-49','premeno','45-49','0-2','no','2','left','left_low','yes','no-recurrence-events'
202 | '30-39','premeno','40-44','0-2','no','1','left','left_up','no','recurrence-events'
203 | '50-59','premeno','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
204 | '60-69','ge40','30-34','0-2','no','3','right','left_up','yes','recurrence-events'
205 | '40-49','premeno','35-39','0-2','no','1','right','left_up','no','recurrence-events'
206 | '40-49','premeno','20-24','3-5','yes','2','left','left_low','yes','recurrence-events'
207 | '50-59','premeno','15-19','0-2','no','2','left','left_low','no','recurrence-events'
208 | '50-59','ge40','30-34','0-2','no','3','right','left_low','no','no-recurrence-events'
209 | '60-69','ge40','20-24','0-2','no','2','left','left_up','no','no-recurrence-events'
210 | '40-49','premeno','20-24','0-2','no','1','left','right_low','no','no-recurrence-events'
211 | '60-69','ge40','30-34','3-5','yes','2','left','central','yes','recurrence-events'
212 | '60-69','ge40','20-24','3-5','no','2','left','left_low','yes','recurrence-events'
213 | '50-59','premeno','25-29','0-2','no','2','left','right_up','no','recurrence-events'
214 | '50-59','ge40','30-34','0-2','no','1','right','right_up','no','no-recurrence-events'
215 | '40-49','premeno','20-24','0-2','no','2','left','right_low','no','no-recurrence-events'
216 | '60-69','ge40','15-19','0-2','no','1','right','left_up','no','no-recurrence-events'
217 | '60-69','ge40','30-34','0-2','no','2','left','left_low','yes','no-recurrence-events'
218 | '30-39','premeno','30-34','0-2','no','2','left','left_up','no','no-recurrence-events'
219 | '30-39','premeno','40-44','3-5','no','3','right','right_up','yes','no-recurrence-events'
220 | '60-69','ge40','5-9','0-2','no','1','left','central','no','no-recurrence-events'
221 | '60-69','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
222 | '40-49','premeno','30-34','6-8','yes','3','right','left_up','no','recurrence-events'
223 | '60-69','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
224 | '40-49','premeno','35-39','9-11','yes','2','right','left_up','yes','no-recurrence-events'
225 | '40-49','premeno','20-24','0-2','no','1','right','left_low','no','no-recurrence-events'
226 | '40-49','premeno','30-34','0-2','yes','3','right','right_up','no','recurrence-events'
227 | '50-59','premeno','25-29','0-2','yes','2','left','left_up','no','no-recurrence-events'
228 | '40-49','premeno','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
229 | '30-39','premeno','35-39','9-11','yes','3','left','left_low','no','recurrence-events'
230 | '30-39','premeno','10-14','0-2','no','2','left','right_low','no','no-recurrence-events'
231 | '50-59','ge40','30-34','0-2','no','1','right','left_low','no','no-recurrence-events'
232 | '60-69','ge40','30-34','0-2','no','2','left','left_up','no','no-recurrence-events'
233 | '60-69','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
234 | '40-49','premeno','15-19','0-2','no','2','left','left_up','no','recurrence-events'
235 | '60-69','ge40','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
236 | '40-49','premeno','30-34','0-2','no','2','left','right_low','no','no-recurrence-events'
237 | '20-29','premeno','35-39','0-2','no','2','right','right_up','no','no-recurrence-events'
238 | '40-49','premeno','30-34','0-2','no','3','right','right_up','no','recurrence-events'
239 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','recurrence-events'
240 | '30-39','premeno','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
241 | '30-39','premeno','15-19','0-2','no','1','right','left_low','no','recurrence-events'
242 | '50-59','ge40','0-4','0-2','no','1','right','central','no','no-recurrence-events'
243 | '50-59','ge40','0-4','0-2','no','1','left','left_low','no','no-recurrence-events'
244 | '60-69','ge40','50-54','0-2','no','3','right','left_up','no','recurrence-events'
245 | '50-59','premeno','30-34','0-2','no','1','left','central','no','no-recurrence-events'
246 | '60-69','ge40','20-24','24-26','yes','3','left','left_low','yes','recurrence-events'
247 | '40-49','premeno','25-29','0-2','no','2','left','left_up','no','no-recurrence-events'
248 | '40-49','premeno','30-34','3-5','no','2','right','left_up','no','recurrence-events'
249 | '50-59','premeno','20-24','3-5','yes','2','left','left_low','no','no-recurrence-events'
250 | '50-59','ge40','15-19','0-2','yes','2','left','central','yes','no-recurrence-events'
251 | '50-59','premeno','10-14','0-2','no','3','left','left_low','no','no-recurrence-events'
252 | '30-39','premeno','30-34','9-11','no','2','right','left_up','yes','recurrence-events'
253 | '60-69','ge40','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
254 | '40-49','premeno','40-44','0-2','no','2','right','left_low','no','no-recurrence-events'
255 | '50-59','ge40','30-34','9-11',?,'3','left','left_up','yes','no-recurrence-events'
256 | '40-49','premeno','50-54','0-2','no','2','right','left_low','yes','recurrence-events'
257 | '50-59','ge40','15-19','0-2','no','2','right','right_up','no','no-recurrence-events'
258 | '50-59','ge40','40-44','3-5','yes','2','left','left_low','no','no-recurrence-events'
259 | '30-39','premeno','25-29','3-5','yes','3','left','left_low','yes','recurrence-events'
260 | '60-69','ge40','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
261 | '60-69','lt40','10-14','0-2','no','1','left','right_up','no','no-recurrence-events'
262 | '30-39','premeno','30-34','0-2','no','2','left','left_up','no','recurrence-events'
263 | '30-39','premeno','20-24','3-5','yes','2','left','left_low','no','recurrence-events'
264 | '50-59','ge40','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
265 | '60-69','ge40','25-29','0-2','no','3','right','left_up','no','no-recurrence-events'
266 | '50-59','ge40','25-29','3-5','yes','3','right','left_up','no','no-recurrence-events'
267 | '40-49','premeno','30-34','6-8','no','2','left','left_up','no','no-recurrence-events'
268 | '60-69','ge40','50-54','0-2','no','2','left','left_low','no','no-recurrence-events'
269 | '50-59','premeno','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
270 | '40-49','ge40','20-24','3-5','no','3','right','left_low','yes','recurrence-events'
271 | '50-59','ge40','30-34','6-8','yes','2','left','right_low','yes','recurrence-events'
272 | '60-69','ge40','25-29','3-5','no','2','right','right_up','no','recurrence-events'
273 | '40-49','premeno','20-24','0-2','no','2','left','central','no','no-recurrence-events'
274 | '40-49','premeno','20-24','0-2','no','2','left','left_up','no','no-recurrence-events'
275 | '40-49','premeno','50-54','0-2','no','2','left','left_low','no','no-recurrence-events'
276 | '50-59','ge40','20-24','0-2','no','2','right','central','no','recurrence-events'
277 | '50-59','ge40','30-34','3-5','no','3','right','left_up','no','recurrence-events'
278 | '40-49','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
279 | '50-59','premeno','25-29','0-2','no','1','right','left_up','no','recurrence-events'
280 | '40-49','premeno','40-44','3-5','yes','3','right','left_up','yes','no-recurrence-events'
281 | '40-49','premeno','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
282 | '40-49','premeno','20-24','3-5','no','2','right','left_up','no','no-recurrence-events'
283 | '40-49','premeno','25-29','9-11','yes','3','right','left_up','no','recurrence-events'
284 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','recurrence-events'
285 | '40-49','premeno','20-24','0-2','no','1','right','right_up','no','no-recurrence-events'
286 | '30-39','premeno','40-44','0-2','no','2','right','right_up','no','no-recurrence-events'
287 | '60-69','ge40','10-14','6-8','yes','3','left','left_up','yes','recurrence-events'
288 | '40-49','premeno','35-39','0-2','no','1','left','left_low','no','no-recurrence-events'
289 | '50-59','ge40','30-34','3-5','no','3','left','left_low','no','recurrence-events'
290 | '40-49','premeno','5-9','0-2','no','1','left','left_low','yes','no-recurrence-events'
291 | '60-69','ge40','15-19','0-2','no','1','left','right_low','no','no-recurrence-events'
292 | '40-49','premeno','30-34','0-2','no','3','right','right_up','no','no-recurrence-events'
293 | '40-49','premeno','25-29','0-2','no','3','left','left_up','no','recurrence-events'
294 | '50-59','ge40','5-9','0-2','no','2','right','right_up','no','no-recurrence-events'
295 | '50-59','premeno','25-29','0-2','no','2','right','right_low','no','no-recurrence-events'
296 | '50-59','premeno','25-29','0-2','no','2','left','right_up','no','recurrence-events'
297 | '40-49','premeno','10-14','0-2','no','2','left','left_low','yes','no-recurrence-events'
298 | '60-69','ge40','35-39','6-8','yes','3','left','left_low','no','recurrence-events'
299 | '60-69','ge40','50-54','0-2','no','2','right','left_up','yes','no-recurrence-events'
300 | '40-49','premeno','25-29','0-2','no','2','right','left_up','no','no-recurrence-events'
301 | '30-39','premeno','20-24','3-5','no','2','right','central','no','no-recurrence-events'
302 | '30-39','premeno','30-34','0-2','no','1','right','left_up','no','recurrence-events'
303 | '60-69','lt40','30-34','0-2','no','1','left','left_low','no','no-recurrence-events'
304 | '40-49','premeno','15-19','12-14','no','3','right','right_low','yes','no-recurrence-events'
305 | '60-69','ge40','20-24','0-2','no','3','right','left_low','no','recurrence-events'
306 | '30-39','premeno','5-9','0-2','no','2','left','right_low','no','no-recurrence-events'
307 | '40-49','premeno','30-34','0-2','no','3','left','left_up','no','no-recurrence-events'
308 | '60-69','ge40','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
309 | '40-49','premeno','25-29','0-2','no','1','right','right_low','no','no-recurrence-events'
310 | '40-49','premeno','25-29','0-2','no','1','left','right_low','no','no-recurrence-events'
311 | '60-69','ge40','40-44','3-5','yes','3','right','left_low','no','recurrence-events'
312 | '50-59','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
313 | '50-59','premeno','30-34','0-2','no','3','right','left_up','yes','recurrence-events'
314 | '40-49','ge40','30-34','3-5','no','3','left','left_low','no','recurrence-events'
315 | '40-49','premeno','25-29','0-2','no','1','right','left_low','yes','no-recurrence-events'
316 | '40-49','ge40','25-29','12-14','yes','3','left','right_low','yes','recurrence-events'
317 | '40-49','premeno','40-44','0-2','no','1','left','left_low','no','recurrence-events'
318 | '40-49','premeno','20-24','0-2','no','2','left','left_low','no','no-recurrence-events'
319 | '50-59','ge40','25-29','0-2','no','1','left','right_low','no','no-recurrence-events'
320 | '40-49','premeno','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
321 | '70-79','ge40','40-44','0-2','no','1','right','left_up','no','no-recurrence-events'
322 | '60-69','ge40','25-29','0-2','no','3','left','left_up','no','recurrence-events'
323 | '50-59','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
324 | '60-69','ge40','45-49','0-2','no','1','right','right_up','yes','recurrence-events'
325 | '50-59','ge40','20-24','0-2','yes','2','right','left_up','no','no-recurrence-events'
326 | '50-59','ge40','25-29','0-2','no','1','left','left_low','no','no-recurrence-events'
327 | '50-59','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
328 | '40-49','premeno','20-24','3-5','no','2','right','left_low','no','no-recurrence-events'
329 | '50-59','ge40','35-39','0-2','no','2','left','left_up','no','no-recurrence-events'
330 | '30-39','premeno','20-24','0-2','no','3','left','left_up','yes','recurrence-events'
331 | '60-69','ge40','30-34','0-2','no','1','right','left_up','no','no-recurrence-events'
332 | '60-69','ge40','25-29','0-2','no','3','right','left_low','no','no-recurrence-events'
333 | '40-49','ge40','30-34','0-2','no','2','left','left_up','yes','no-recurrence-events'
334 | '30-39','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
335 | '40-49','premeno','20-24','0-2','no','2','left','left_low','no','recurrence-events'
336 | '30-39','premeno','20-24','0-2','no','2','left','right_low','no','no-recurrence-events'
337 | '40-49','premeno','10-14','0-2','no','2','right','left_low','no','no-recurrence-events'
338 | '50-59','premeno','15-19','0-2','no','2','right','right_low','no','no-recurrence-events'
339 | '50-59','premeno','25-29','0-2','no','1','right','left_up','no','no-recurrence-events'
340 | '60-69','ge40','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
341 | '60-69','ge40','40-44','0-2','no','2','right','left_low','no','recurrence-events'
342 | '30-39','lt40','15-19','0-2','no','3','right','left_up','no','no-recurrence-events'
343 | '40-49','premeno','30-34','12-14','yes','3','left','left_up','yes','recurrence-events'
344 | '60-69','ge40','30-34','0-2','yes','2','right','right_up','yes','recurrence-events'
345 | '50-59','ge40','40-44','6-8','yes','3','left','left_low','yes','recurrence-events'
346 | '50-59','ge40','30-34','0-2','no','3','left',?,'no','recurrence-events'
347 | '70-79','ge40','10-14','0-2','no','2','left','central','no','no-recurrence-events'
348 | '30-39','premeno','40-44','0-2','no','2','left','left_low','yes','no-recurrence-events'
349 | '40-49','premeno','30-34','0-2','no','2','right','right_low','no','no-recurrence-events'
350 | '40-49','premeno','30-34','0-2','no','1','left','left_low','no','no-recurrence-events'
351 | '60-69','ge40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
352 | '40-49','premeno','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
353 | '60-69','ge40','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
354 | '50-59','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
355 | '50-59','premeno','25-29','0-2','no','1','left','left_low','no','no-recurrence-events'
356 | '50-59','ge40','30-34','9-11','yes','3','left','right_low','yes','recurrence-events'
357 | '50-59','ge40','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
358 | '40-49','premeno','30-34','0-2','no','1','left','right_up','no','no-recurrence-events'
359 | '70-79','ge40','0-4','0-2','no','1','left','right_low','no','no-recurrence-events'
360 | '40-49','premeno','25-29','0-2','no','3','right','left_up','yes','no-recurrence-events'
361 | '50-59','premeno','25-29','0-2','no','3','right','left_low','yes','recurrence-events'
362 | '50-59','ge40','40-44','0-2','no','2','left','left_low','no','no-recurrence-events'
363 | '60-69','ge40','25-29','0-2','no','3','left','right_low','yes','recurrence-events'
364 | '40-49','premeno','30-34','3-5','yes','2','right','left_low','no','no-recurrence-events'
365 | '50-59','ge40','20-24','0-2','no','2','left','left_up','no','recurrence-events'
366 | '70-79','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
367 | '30-39','premeno','25-29','0-2','no','1','left','central','no','no-recurrence-events'
368 | '60-69','ge40','30-34','0-2','no','2','left','left_low','no','no-recurrence-events'
369 | '40-49','premeno','20-24','3-5','yes','2','right','right_up','yes','recurrence-events'
370 | '50-59','ge40','30-34','9-11',?,'3','left','left_low','yes','no-recurrence-events'
371 | '50-59','ge40','0-4','0-2','no','2','left','central','no','no-recurrence-events'
372 | '40-49','premeno','20-24','0-2','no','3','right','left_low','yes','no-recurrence-events'
373 | '30-39','premeno','35-39','0-2','no','3','left','left_low','no','recurrence-events'
374 | '60-69','ge40','30-34','0-2','no','1','left','left_up','no','no-recurrence-events'
375 | '60-69','ge40','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
376 | '50-59','ge40','25-29','6-8','no','3','left','left_low','yes','recurrence-events'
377 | '50-59','premeno','35-39','15-17','yes','3','right','right_up','no','recurrence-events'
378 | '30-39','premeno','20-24','3-5','yes','2','right','left_up','yes','no-recurrence-events'
379 | '40-49','premeno','20-24','6-8','no','2','right','left_low','yes','no-recurrence-events'
380 | '50-59','ge40','35-39','0-2','no','3','left','left_low','no','no-recurrence-events'
381 | '50-59','premeno','35-39','0-2','no','2','right','left_up','no','no-recurrence-events'
382 | '40-49','premeno','25-29','0-2','no','2','left','left_up','yes','no-recurrence-events'
383 | '40-49','premeno','35-39','0-2','no','2','right','right_up','no','no-recurrence-events'
384 | '50-59','premeno','30-34','3-5','yes','2','left','left_low','yes','no-recurrence-events'
385 | '40-49','premeno','20-24','0-2','no','2','right','right_up','no','no-recurrence-events'
386 | '60-69','ge40','15-19','0-2','no','3','right','left_up','yes','no-recurrence-events'
387 | '50-59','ge40','30-34','6-8','yes','2','left','left_low','no','no-recurrence-events'
388 | '50-59','premeno','25-29','3-5','yes','2','left','left_low','yes','no-recurrence-events'
389 | '30-39','premeno','30-34','6-8','yes','2','right','right_up','no','no-recurrence-events'
390 | '50-59','premeno','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
391 | '50-59','ge40','40-44','0-2','no','3','left','right_up','no','no-recurrence-events'
392 | %
393 | %
394 | %
395 |
--------------------------------------------------------------------------------