└── code /code: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import numpy as np 3 | from sklearn.model_selection import train_test_split 4 | from sklearn.linear_model import LinearRegression 5 | from sklearn.metrics import mean_absolute_error, mean_squared_error 6 | import matplotlib.pyplot as plt 7 | 8 | # Load dataset 9 | data = pd.read_csv('energy_consumption.csv') # Replace with your dataset path 10 | 11 | # Preprocess data (assuming the dataset has 'date' and 'energy_consumption' columns) 12 | data['date'] = pd.to_datetime(data['date']) 13 | data.set_index('date', inplace=True) 14 | data.sort_index(inplace=True) 15 | 16 | # Feature engineering (you can add more features as needed) 17 | data['month'] = data.index.month 18 | data['day'] = data.index.day 19 | data['hour'] = data.index.hour 20 | 21 | # Target variable 22 | X = data[['month', 'day', 'hour']] 23 | y = data['energy_consumption'] 24 | --------------------------------------------------------------------------------