├── INSTALL ├── LICENSE ├── README.md ├── baselMorphableModel ├── landmark_54.txt ├── landmark_62.txt ├── landmark_62_mp.txt ├── normals.pickle ├── uvParametrization.256.pickle └── uvParametrization.512.pickle ├── camera.py ├── config.py ├── demo.ipynb ├── environment.yml ├── gaussiansmoothing.py ├── image.py ├── input ├── s1.png ├── s2.png ├── s3.png ├── s4.png ├── s5.png ├── s6.png └── s7.png ├── landmarksfan.py ├── landmarksmediapipe.py ├── meshnormals.py ├── morphablemodel.py ├── normalsampler.py ├── optimConfig.ini ├── optimConfigShadows.ini ├── optimizer.py ├── output └── defaultoutput ├── pipeline.py ├── projection.py ├── renderer.py ├── replay.py ├── resources ├── beard.gif ├── beard.png ├── emily.gif ├── emily.png ├── results1.gif └── visual.jpg ├── sphericalharmonics.py ├── textureloss.py └── utils.py /INSTALL: -------------------------------------------------------------------------------- 1 | conda create --name faceNext python=3.6.7 2 | conda activate faceNext 3 | conda install pytorch==1.3.1 torchvision==0.4.2 cudatoolkit=10.1 -c pytorch 4 | pip install redner-gpu 5 | conda install -c conda-forge opencv 6 | conda install -c 1adrianb face_alignment=1.2.0 7 | conda install -c anaconda h5py 8 | pip install mediapipe -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # NextFace 2 | NextFace is a light-weight pytorch library for high-fidelity 3D face reconstruction from monocular image(s) where scene attributes –3D geometry, reflectance (diffuse, specular and roughness), pose, camera parameters, and scene illumination– are estimated. It is a first-order optimization method that uses pytorch autograd engine and ray tracing to fit a statistical morphable model to an input image(s). 3 |

4 |

5 | 6 |

7 | A demo on youtube from here: 8 |

9 |

10 | Practical Face Reconstruction via Differentiable Ray Tracing 11 |

12 | 13 | 14 | 15 | 16 | # News 17 | * **19 March 2023**: fixed a bug in the optimizer where the gradients were not activated for the camera pos (rotation and translation). Also I added a new optimization strategy for the second and third stage which should improve the overall performance. plz pull 18 | * **21 June 2022**: Many thanks for **[Jack Saunders](https://researchportal.bath.ac.uk/en/persons/jack-saunders)** for adding this new feature to NextFace: Added support for [mediapipe](https://google.github.io/mediapipe/solutions/face_mesh.html#overview) as a replacement for FAN landmarks detector. Mediapipe produces much stable and accurate results than FAN . To try mediapipe, you need to pull the new version of the code and install mediapipe ** pip install mediapipe** . Now by default the landmarks detector used is mediapipe, if you want to switch bach to FAN plz edit the **optimConfig.ini** file (set **lamdmarksDetectorType = 'fan'**) 19 | * **01 May 2022**: i you want to generate an animation like the one of the gif files in the readme that rotates the reconstruction on the vertical axis, plz run the replay.py script and give it the path of the pickle file that contains the optimized scene attributes ( located in checkpoints/stage3_output.pickle). 20 | * **26 April 2022**: I added export of the estimated light map (as an environment map). this can be useful if you want to render the face with other rendering engines (Unreal, Unity, OpenGL). plz pull the code. U can choose to export the lightmap as png or exr (check optimConfig.ini) 21 | * **25 April 2022**: if you want to generate textures with higher resolutions (1024x1024 or 2048x2048) I have added these two maps here : **https://github.com/abdallahdib/NextFace/releases**. to use these maps, download **uvParametrization.2048.pickle** and **uvParametrization.1024.pickle** and put them inside **baselMorphableModel** directory and change the **textureResolution** in **optimConfig.in** to 1024 or 2048. Also dont forget to pull the latest code. Plz note that with these large uvmaps optimization will require more cpu/gpu memory. 22 | * **24 April 2022**: added a colab notebook in: **demo.ipynb**. 23 | * **20 April 2022**: I replaced landmarks association file with a new one which gives better reconstruction, especially on face coutours. Plz pull 24 | * **20 April 2022**: I tried NextFace on a challenging face and surprisingly we still get appealing reconstruction, check below: 25 |

26 | 27 | # Features: 28 | * Reconstructs face at high fidelity from single or multiple RGB images 29 | * Estimates face geometry 30 | * Estimates detailed face reflectance (diffuse, specular and roughness) 31 | * Estimates scene light with spherical harmonics 32 | * Estimates head pose and orientation 33 | * Runs on both cpu and cuda-enabled gpu 34 | 35 | 36 | # Installation 37 | * Clone the repository 38 | * Execute the commands in 'INSTALL' file. these commands create a new conda environment called faceNext and install required packages. An 'environment.yml' is also provided. The library is tested with torch 1.3.1, torchvision 0.4.2 and cuda toolkit 10.1, but it should also work with recent pytorch versions. 39 | * Activate the environment: conda activate nextFace 40 | * Download basel face model from [here](https://faces.dmi.unibas.ch/bfm/bfm2017.html), just fill the form and you will receive an instant direct download link into your inbox. Downloaded **model2017-1_face12_nomouth.h5 file** and put it inside **./baselMorphableModel** directory 41 | * Download the albedo face model **albedoModel2020_face12_albedoPart.h5** from [here](https://github.com/waps101/AlbedoMM/releases/download/v1.0/albedoModel2020_face12_albedoPart.h5) and put it inside **./baselMorphableModel** directory 42 | 43 | 44 | # How to use 45 | 46 | ## Reconstruction from a single image 47 | * to reconstruct a face from a single image: run the following command: 48 | * **python optimizer.py --input *path-to-your-input-image* --output *output-path-where-to-save-results*** 49 | ## Reconstruction from multiple images (batch reconstruction) 50 | * In case you have multiple images with same resolution, u can run a batch optimization on these images. For this, put all ur images in the same directory and run the following command: 51 | * **python optimizer.py --input *path-to-your-folder-that-contains-all-ur-images* --output *output-path-where-to-save-results*** 52 | ## Reconstruction from mutliple images for the same person 53 | * if you have multiple images for the same person, put these images in the same folder and run the following command: 54 | * **python optimizer.py --sharedIdentity --input *path-to-your-folder-that-contains-all-ur-images* --output *output-path-where-to-save-results*** 55 | 56 | the **sharedIdentity** flag tells the optimizer that all images belong to the same person. In such case, the shape identity and face reflectance attributes are shared across all images. This generally produces better face reflectance and geometry estimation. 57 | ## Configuring NextFace 58 | * The file **optimConfig.ini** allows to control different aspect of NextFace such as: 59 | * optimization (regularizations, number of iterations...) 60 | * compute device (run on cpu or gpu) 61 | * spherical harmonics (number of bands, environment map resolution) 62 | * ray tracing (number of samples) 63 | * The code is self-documented and easy to follow 64 | 65 | # Output 66 | The optimization takes 4~5 minutes depending on your gpu performance. The output of the optimization is the following: 67 | * render_{imageIndex}.png: contains from left to right: input image, overlay of the final reconstruction on the input image, the final reconstruction, diffuse, specular and roughness maps projected on the face. 68 | * diffuseMap_{imageIndex}.png: the estimated diffuse map in uv space 69 | * specularMap_{imageIndex}.png: the estimated specular map in uv space 70 | * roughnessMap_{imageIndex}.png: the estimated roughness map in uv space 71 | * mesh{imageIndex}.obj: an obj file that contains the 3D mesh of the reconstructed face 72 | 73 | # How it works 74 | NextFace reprocudes the optimizatin strategy of our [early work](https://arxiv.org/abs/2101.05356). The optimization is composed of the three stages: 75 | * **stage 1**: or coarse stage, where face expression and head pose are estimated by minimizing the geometric loss between the 2d landmarks and their corresponding face vertices. this produces a good starting point for the next optimization stage 76 | * **stage 2**: the face shape identity/expression, statistical diffuse and specular albedos, head pose and scene light are estimated by minimizing the photo consistency loss between the ray traced image and the real one. 77 | * **stage 3**: to improve the statistical albedos estimated in the previous stage, the method optimizes, on per-pixel basis, the previously estimated albedos and try to capture more albedo details. Consistency, symmetry and smoothness regularizers (similar to [this work](https://arxiv.org/abs/2101.05356)) are used to avoid overfitting and add robustness against lighting conditions. 78 | By default, the method uses 9 order spherical harmonics bands (as in [this work](https://openaccess.thecvf.com/content/ICCV2021/papers/Dib_Towards_High_Fidelity_Monocular_Face_Reconstruction_With_Rich_Reflectance_Using_ICCV_2021_paper.pdf)) to capture scene light. you can modify the number of spherical harmonics bands in **optimConfig.ini** bands and see the importance of using high number of bands for a better shadows recovery. 79 | 80 | # Good practice for best reconstruction 81 | 82 | * To obtain best reconstruction with optimal albedos, ensure that the images are taken in good lighting conditions (no shadows and well lit...). 83 | * In case of single input image, ensure that the face is frontal to reconstructs a complete diffuse/specular/roughness, as the method recover only visible parts of the face. 84 | * Avoid extreme face expressions as the underlying model may fail to recover them. 85 | # Limitations 86 | * The method relies on landmarks to initialize the optimization (Stage 1). In case these landmarks are inaccurate, you may get sub-optimal reconstruction. NextFace uses landmarks from [face_alignment](https://github.com/1adrianb/face-alignment) which are robust against extreme poses however they are not as accurate as they can be. This limitation has been discussed [here](https://openaccess.thecvf.com/content/ICCV2021/papers/Dib_Towards_High_Fidelity_Monocular_Face_Reconstruction_With_Rich_Reflectance_Using_ICCV_2021_paper.pdf) and [here](https://arxiv.org/abs/2101.05356). Using [this landmark detector](https://arxiv.org/abs/2204.02776) from Microsoft seems promising. 87 | * NextFace is slow and execution speed decreases with the size of the input image. For instance, if you are running an old-gpu (like me), you can decrease the resolution of the input image in the **optimConfig.ini** file by reducing the value of the *maxResolution* parameter. Our [recent work](https://openaccess.thecvf.com/content/ICCV2021/papers/Dib_Towards_High_Fidelity_Monocular_Face_Reconstruction_With_Rich_Reflectance_Using_ICCV_2021_paper.pdf) solves for this and achieve near real-time performance using deep convolutional neural network. 88 | * NextFace cannot capture fine geometry details (wrinkles, pores...). these details may get baked in the final albedos. our recent [work](https://arxiv.org/abs/2203.07732) captures fine scale geometric details. 89 | * The spherical harmonics can only model lights at infinity, under strong directional shadows, the estimated light may not be accurate as it can be, so residual shadows may appear in the estimated albedos. You can attenuate this by increasing the value of regularizers in the **optimConfig.ini** file, but this trade-off albedo details. 90 | Below are the values to modify: 91 | * for diffuse map: *weightDiffuseSymmetryReg* and *weightDiffuseConsistencyReg*, 92 | * for specular map: *weightSpecularSymmetryReg*, *weightSpecularConsistencyReg* 93 | * for roughness map: *weightRoughnessSymmetryReg* and *weightRoughnessConsistencyReg* 94 | I also provided a configuration file named **optimConfigShadows.ini** which have higher values for these regularizers that u can try. 95 | * Using a single image to estimate face attribute is an ill-posed problem and the estimated reflectance maps(diffuse, specular and roughness) are view/camera dependent. To obtain intrinsic reflectance maps, you have to use multiple images per subject. 96 | 97 | # Roadmap 98 | If I have time: 99 | * Expression tracking from video by optimizating head pose and expression on per-frame basis, which is straightforward once you have estimated the intrinsic face parameters(reflectance and geometry). I did not implement it yet simply, because i am running an old gpu (GTX 970M). I may add this feature when I decide to buy an RTX :) 100 | * Add virtual lightstage as proposed in [this](https://arxiv.org/abs/2101.05356) to model high frequency point lights. 101 | * Add support for [FLAME](https://github.com/Rubikplayer/flame-fitting) morphable model. You are welcome if you can help. 102 | * Add GUI interface for loading images, landmarks edition, run optimization and visualize results. 103 | 104 | # License 105 | NextFace is available for free, under GPL license, to use for research and educational purposes only. Please check LICENSE file. 106 | 107 | # Acknowledgements 108 | The uvmap is taken from [here](https://github.com/unibas-gravis/parametric-face-image-generator/blob/master/data/regions/face12.json), landmarks association from [here](https://github.com/kimoktm/Face2face/blob/master/data/custom_mapping.txt). [redner](https://github.com/BachiLi/redner/) is used for ray tracing, albedo model from [here](https://github.com/waps101/AlbedoMM/). 109 | 110 | # contact 111 | mail: deeb.abdallah @at gmail 112 | 113 | twitter: abdallah_dib 114 | 115 | # Citation 116 | If you use NextFace and find it useful in your work, these works are relevant for you: 117 | 118 | ``` 119 | @inproceedings{dib2021practical, 120 | title={Practical face reconstruction via differentiable ray tracing}, 121 | author={Dib, Abdallah and Bharaj, Gaurav and Ahn, Junghyun and Th{\'e}bault, C{\'e}dric and Gosselin, Philippe and Romeo, Marco and Chevallier, Louis}, 122 | booktitle={Computer Graphics Forum}, 123 | volume={40}, 124 | number={2}, 125 | pages={153--164}, 126 | year={2021}, 127 | organization={Wiley Online Library} 128 | } 129 | 130 | @inproceedings{dib2021towards, 131 | title={Towards High Fidelity Monocular Face Reconstruction with Rich Reflectance using Self-supervised Learning and Ray Tracing}, 132 | author={Dib, Abdallah and Thebault, Cedric and Ahn, Junghyun and Gosselin, Philippe-Henri and Theobalt, Christian and Chevallier, Louis}, 133 | booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, 134 | pages={12819--12829}, 135 | year={2021} 136 | } 137 | 138 | @article{dib2022s2f2, 139 | title={S2F2: Self-Supervised High Fidelity Face Reconstruction from Monocular Image}, 140 | author={Dib, Abdallah and Ahn, Junghyun and Thebault, Cedric and Gosselin, Philippe-Henri and Chevallier, Louis}, 141 | journal={arXiv preprint arXiv:2203.07732}, 142 | year={2022} 143 | } 144 | -------------------------------------------------------------------------------- /baselMorphableModel/landmark_54.txt: -------------------------------------------------------------------------------- 1 | 7 26869 2 | 8 27061 3 | 9 27253 4 | 17 22586 5 | 18 22991 6 | 19 23303 7 | 20 23519 8 | 21 23736 9 | 22 24312 10 | 23 24527 11 | 24 24743 12 | 25 25055 13 | 26 25466 14 | 27 8134 15 | 28 8143 16 | 29 8151 17 | 30 8157 18 | 31 6986 19 | 32 7695 20 | 33 8167 21 | 34 8639 22 | 35 9346 23 | 36 2602 24 | 37 4146 25 | 38 4920 26 | 39 5830 27 | 40 4674 28 | 41 3900 29 | 42 10390 30 | 43 11287 31 | 44 12061 32 | 45 13481 33 | 46 12331 34 | 47 11557 35 | 48 5522 36 | 49 6026 37 | 50 7355 38 | 51 8181 39 | 52 9007 40 | 53 10329 41 | 54 10857 42 | 55 9730 43 | 56 8670 44 | 57 8199 45 | 58 7726 46 | 59 6898 47 | 60 6291 48 | 61 7364 49 | 62 8190 50 | 63 9016 51 | 64 10088 52 | 65 8663 53 | 66 8191 54 | 67 7719 -------------------------------------------------------------------------------- /baselMorphableModel/landmark_62.txt: -------------------------------------------------------------------------------- 1 | 0 16203 2 | 1 16235 3 | 2 16260 4 | 3 16290 5 | 7 26869 6 | 8 27061 7 | 9 27253 8 | 13 22481 9 | 14 22451 10 | 15 22426 11 | 16 22394 12 | 17 22586 13 | 18 22991 14 | 19 23303 15 | 20 23519 16 | 21 23736 17 | 22 24312 18 | 23 24527 19 | 24 24743 20 | 25 25055 21 | 26 25466 22 | 27 8134 23 | 28 8143 24 | 29 8151 25 | 30 8157 26 | 31 6986 27 | 32 7695 28 | 33 8167 29 | 34 8639 30 | 35 9346 31 | 36 2602 32 | 37 4146 33 | 38 4920 34 | 39 5830 35 | 40 4674 36 | 41 3900 37 | 42 10390 38 | 43 11287 39 | 44 12061 40 | 45 13481 41 | 46 12331 42 | 47 11557 43 | 48 5522 44 | 49 6026 45 | 50 7355 46 | 51 8181 47 | 52 9007 48 | 53 10329 49 | 54 10857 50 | 55 9730 51 | 56 8670 52 | 57 8199 53 | 58 7726 54 | 59 6898 55 | 60 6291 56 | 61 7364 57 | 62 8190 58 | 63 9016 59 | 64 10088 60 | 65 8663 61 | 66 8191 62 | 67 7719 -------------------------------------------------------------------------------- /baselMorphableModel/landmark_62_mp.txt: -------------------------------------------------------------------------------- 1 | 127 16203 2 | 234 16235 3 | 93 16260 4 | 132 16290 5 | 148 26869 6 | 152 27061 7 | 377 27253 8 | 361 22481 9 | 323 22451 10 | 454 22426 11 | 356 22394 12 | 70 22586 13 | 63 22991 14 | 105 23303 15 | 66 23519 16 | 107 23736 17 | 336 24312 18 | 296 24527 19 | 334 24743 20 | 293 25055 21 | 300 25466 22 | 6 8134 23 | 195 8143 24 | 5 8151 25 | 4 8157 26 | 240 6986 27 | 99 7695 28 | 2 8167 29 | 328 8639 30 | 460 9346 31 | 33 2602 32 | 160 4146 33 | 158 4920 34 | 133 5830 35 | 153 4674 36 | 144 3900 37 | 362 10390 38 | 385 11287 39 | 387 12061 40 | 263 13481 41 | 373 12331 42 | 380 11557 43 | 61 5522 44 | 40 6026 45 | 37 7355 46 | 0 8181 47 | 267 9007 48 | 270 10329 49 | 291 10857 50 | 321 9730 51 | 314 8670 52 | 17 8199 53 | 84 7726 54 | 91 6898 55 | 62 6291 56 | 82 7364 57 | 13 8190 58 | 312 9016 59 | 292 10088 60 | 317 8663 61 | 14 8191 62 | 87 7719 -------------------------------------------------------------------------------- /baselMorphableModel/normals.pickle: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/baselMorphableModel/normals.pickle -------------------------------------------------------------------------------- /baselMorphableModel/uvParametrization.256.pickle: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/baselMorphableModel/uvParametrization.256.pickle -------------------------------------------------------------------------------- /baselMorphableModel/uvParametrization.512.pickle: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/baselMorphableModel/uvParametrization.512.pickle -------------------------------------------------------------------------------- /camera.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import numpy as np 3 | 4 | 5 | 6 | class Camera: 7 | 8 | def __init__(self, device): 9 | self.device = device 10 | 11 | self.rotXm1 = torch.tensor(np.array([[0., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), dtype=torch.float, device=device) 12 | self.rotXm2 = torch.tensor(np.array([[0., 0., 0.], [0., 0., -1.], [0., 1., 0.]]), dtype=torch.float, device=device) 13 | self.rotXm3 = torch.tensor(np.array([[1., 0., 0.], [0., 0., 0.], [0., 0., 0.]]), dtype=torch.float, device=device) 14 | 15 | self.rotYm1 = torch.tensor(np.array([[1., 0., 0.], [0., 0., 0.], [0., 0., 1.]]), dtype=torch.float, device=device) 16 | self.rotYm2 = torch.tensor(np.array([[0., 0., 1.], [0., 0., 0.], [-1., 0., 0.]]), dtype=torch.float, device=device) 17 | self.rotYm3 = torch.tensor(np.array([[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]]), dtype=torch.float, device=device) 18 | 19 | self.rotZm1 = torch.tensor(np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]), dtype=torch.float, device=device) 20 | self.rotZm2 = torch.tensor(np.array([[0., -1., 0.], [1., 0., 0.], [0., 0., 0.]]), dtype=torch.float, device=device) 21 | self.rotZm3 = torch.tensor(np.array([[0., 0., 0.], [0., 0., 0.], [0., 0., 1.]]), dtype=torch.float, device=device) 22 | 23 | def computeTransformation(self, rotation, translation): 24 | ''' 25 | create a transformation matrix from rotation and translation 26 | rotation: [n, 3] 27 | translation: [n, 3] 28 | return: transformation matrix [n, 4, 3] 29 | ''' 30 | 31 | assert (rotation.dim() == 2 and rotation.shape[-1] == 3) 32 | assert(translation.dim() == 2 and translation.shape[-1] == 3) 33 | 34 | rotx = torch.cos(rotation[..., :1, None]).expand(-1, 3, 3) * self.rotXm1 \ 35 | + torch.sin(rotation[..., :1, None]).expand(-1, 3, 3) * self.rotXm2 \ 36 | + self.rotXm3 37 | roty = torch.cos(rotation[..., 1:2, None]).expand(-1, 3, 3) * self.rotYm1 \ 38 | + torch.sin(rotation[..., 1:2, None]).expand( -1, 3, 3) * self.rotYm2 \ 39 | + self.rotYm3 40 | rotz = torch.cos(rotation[..., 2:, None]).expand(-1, 3, 3) * self.rotZm1 \ 41 | + torch.sin(rotation[..., 2:, None]).expand(-1, 3, 3) * self.rotZm2 \ 42 | + self.rotZm3 43 | 44 | rotMatrix = torch.matmul(rotz, torch.matmul(roty, rotx)) 45 | transformation = torch.cat((rotMatrix, translation[ :, :, None]), -1) 46 | return transformation 47 | 48 | def transformVertices(self, vertices, translation, rotation): 49 | ''' 50 | transform vertices by the rotation and translation vector 51 | :param vertices: tensor [n, verticesNumber, 3] 52 | :param translation: tensor [n, 3] 53 | :param rotation: tensor [n, 3] 54 | :return: transformed vertices [n, verticesNumber, 3] 55 | ''' 56 | assert (vertices.dim() == 3 and vertices.shape[-1] == 3) 57 | 58 | transformationMatrix = self.computeTransformation(rotation, translation) 59 | ones = torch.ones([vertices.shape[0], vertices.shape[1], 1], dtype = torch.float, device = vertices.device) 60 | vertices = torch.cat((vertices, ones), -1) 61 | framesNumber = transformationMatrix.shape[0] 62 | verticesNumber = vertices.shape[1] 63 | out = torch.matmul(transformationMatrix.view(1, framesNumber, 1, 3, 4), 64 | vertices.view(framesNumber, verticesNumber, 4, 1)).view(1, framesNumber, verticesNumber, 3) 65 | return out[0] -------------------------------------------------------------------------------- /config.py: -------------------------------------------------------------------------------- 1 | import copy 2 | import sys 3 | 4 | 5 | class Config: 6 | def __init__(self): 7 | #compute device 8 | self.device = 'cuda' 9 | 10 | #tracker 11 | self.lamdmarksDetectorType = 'mediapipe' # Options ['mediapipe', 'fan'] 12 | 13 | #morphable model 14 | self.path = 'baselMorphableModel' 15 | self.textureResolution = 256 #256 or 512 16 | self.trimPca = False # if True keep only a subset of the pca basis (eigen vectors) 17 | 18 | #spherical harmonics 19 | self.bands = 9 20 | self.envMapRes = 64 21 | self.smoothSh = False 22 | self.saveExr = True 23 | #camera 24 | self.camFocalLength = 500.0 #focal length in pixels (f = f_{mm} * imageWidth / sensorWidth) 25 | self.optimizeFocalLength = True #if True the initial focal length is estimated otherwise it remains constant 26 | 27 | #image 28 | self.maxResolution = 512 29 | 30 | #optimization 31 | self.iterStep1 = 2000 # number of iterations for the coarse optim 32 | self.iterStep2 = 400 #number of iteration for the first dense optim (based on statistical priors) 33 | self.iterStep3 = 100 #number of iterations for refining the statistical albedo priors 34 | self.weightLandmarksLossStep2 = 0.001 #landmarks weight during step2 35 | self.weightLandmarksLossStep3 = 0.001 # landmarks weight during step3 36 | 37 | self.weightShapeReg = 0.001 #weight for shape regularization 38 | self.weightExpressionReg = 0.001 # weight for expression regularization 39 | self.weightAlbedoReg = 0.001 # weight for albedo regularization 40 | 41 | self.weightDiffuseSymmetryReg = 50. #symmetry regularizer weight for diffuse texture (at step 3) 42 | self.weightDiffuseConsistencyReg = 100. # consistency regularizer weight for diffuse texture (at step 3) 43 | self.weightDiffuseSmoothnessReg = 0.001 # smoothness regularizer weight for diffuse texture (at step 3) 44 | 45 | self.weightSpecularSymmetryReg = 30. # symmetry regularizer weight for specular texture (at step 3) 46 | self.weightSpecularConsistencyReg = 2. # consistency regularizer weight for specular texture (at step 3) 47 | self.weightSpecularSmoothnessReg = 0.001 # smoothness regularizer weight for specular texture (at step 3) 48 | 49 | self.weightRoughnessSymmetryReg = 10. # symmetry regularizer weight for roughness texture (at step 3) 50 | self.weightRoughnessConsistencyReg = 0. # consistency regularizer weight for roughness texture (at step 3) 51 | self.weightRoughnessSmoothnessReg = 0.002 # smoothness regularizer weight for roughness texture (at step 3) 52 | 53 | self.debugFrequency = 10 #display frequency during optimization 54 | self.saveIntermediateStage = False #if True the output of stage 1 and 2 are saved. stage 3 is always saved which is the output of the optim 55 | self.verbose = False #display loss on terminal if true 56 | 57 | self.rtSamples = 500 #the number of ray tracer samples to render the final output 58 | self.rtTrainingSamples = 8 # number of ray tracing to use during training 59 | def fillFromDicFile(self, filePath): 60 | ''' 61 | overwrite default config 62 | :param filePath: path to the new config file 63 | :return: 64 | ''' 65 | 66 | print('loading optim config from: ', filePath) 67 | fp = open(filePath, 'r') 68 | assert(fp is not None) 69 | Lines = fp.readlines() 70 | fp.close() 71 | 72 | dic = {} 73 | 74 | for line in Lines: 75 | oLine = copy.copy(line) 76 | 77 | if line[0] == '#' or line[0] == '\n': 78 | continue 79 | if '#' in line: 80 | line = line[0:line.find('#')].strip().replace('\t', '').replace('\n', '') 81 | 82 | if len(line) < 1: 83 | continue 84 | 85 | keyval = line.split('=') 86 | if len(keyval) == 2: 87 | #assert (len(keyval) == 2) 88 | key = keyval[0].strip() 89 | val = keyval[1].strip() 90 | val = val.replace('"', '').replace("'", "").strip() 91 | dic[key] = val 92 | else: 93 | print('[warning] unknown key/val: ', oLine, file=sys.stderr, flush=True) 94 | 95 | for k, v in dic.items(): 96 | aType = type(getattr(self, k)).__name__ 97 | if aType == 'str': 98 | setattr(self, k, v) 99 | elif aType == 'bool': 100 | setattr(self, k, v.lower() == 'true') 101 | elif aType == 'int': 102 | setattr(self, k, int(v)) 103 | elif aType == 'float': 104 | setattr(self, k, float(v)) 105 | else: 106 | raise RuntimeError("unknown dictionary type: "+ key + "=>" + val) 107 | def print(self): 108 | dic = self.__dict__ 109 | for key, val in dic.items(): 110 | print(key, '=>', val) 111 | -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | # This file may be used to create an environment using: 2 | # $ conda create --name --file 3 | # platform: win-64 4 | blas=1.0=mkl 5 | blosc=1.21.0=h19a0ad4_0 6 | brotli=1.0.9=ha925a31_2 7 | bzip2=1.0.8=he774522_0 8 | ca-certificates=2022.3.29=haa95532_0 9 | certifi=2020.6.20=pyhd3eb1b0_3 10 | cffi=1.14.6=py36h2bbff1b_0 11 | charls=2.1.0=h33f27b4_2 12 | cloudpickle=2.0.0=pyhd3eb1b0_0 13 | colorama=0.4.4=pyhd3eb1b0_0 14 | cudatoolkit=10.1.243=h74a9793_0 15 | cycler=0.11.0=pyhd3eb1b0_0 16 | cytoolz=0.11.0=py36he774522_0 17 | dask-core=2021.3.0=pyhd3eb1b0_0 18 | decorator=4.4.2=pypi_0 19 | face_alignment=1.2.0=py_1 20 | freeglut=3.2.2=h0e60522_1 21 | freetype=2.10.4=hd328e21_0 22 | giflib=5.2.1=h62dcd97_0 23 | h5py=2.10.0=py36h5e291fa_0 24 | hdf5=1.10.4=h7ebc959_0 25 | icc_rt=2019.0.0=h0cc432a_1 26 | icu=68.2=h0e60522_0 27 | imagecodecs=2020.5.30=py36hb1be65f_2 28 | imageio=2.15.0=pypi_0 29 | intel-openmp=2022.0.0=haa95532_3663 30 | jasper=2.0.33=h77af90b_0 31 | jpeg=9d=h2bbff1b_0 32 | kiwisolver=1.3.1=py36hd77b12b_0 33 | lcms2=2.12=h83e58a3_0 34 | libaec=1.0.4=h33f27b4_1 35 | libblas=3.8.0=20_mkl 36 | libcblas=3.8.0=20_mkl 37 | libclang=11.1.0=default_h5c34c98_1 38 | liblapack=3.8.0=20_mkl 39 | liblapacke=3.8.0=20_mkl 40 | libopencv=4.5.2=py36h14c9de7_0 41 | libpng=1.6.37=h2a8f88b_0 42 | libprotobuf=3.15.8=h7755175_1 43 | libtiff=4.2.0=hd0e1b90_0 44 | libwebp-base=1.2.2=h8ffe710_1 45 | libzopfli=1.0.3=ha925a31_0 46 | llvmlite=0.36.0=py36h34b8924_4 47 | lz4-c=1.9.3=h2bbff1b_1 48 | matplotlib-base=3.3.4=py36h49ac443_0 49 | mkl=2020.2=256 50 | mkl-service=2.3.0=py36h196d8e1_0 51 | mkl_fft=1.3.0=py36h46781fe_0 52 | mkl_random=1.1.1=py36h47e9c7a_0 53 | networkx=2.5.1=pypi_0 54 | ninja=1.10.2=h559b2a2_2 55 | numba=0.53.0=py36hf11a4ad_0 56 | numpy=1.19.2=py36hadc3359_0 57 | numpy-base=1.19.2=py36ha3acd2a_0 58 | olefile=0.46=py36_0 59 | opencv=4.5.2=py36ha15d459_0 60 | openjpeg=2.4.0=h4fc8c34_0 61 | openssl=1.1.1n=h8ffe710_0 62 | pillow=8.4.0=pypi_0 63 | pip=21.2.2=py36haa95532_0 64 | py-opencv=4.5.2=py36hfacbf0b_0 65 | pycparser=2.21=pyhd3eb1b0_0 66 | pyparsing=3.0.7=pypi_0 67 | pyreadline=2.1=py36_1 68 | python=3.6.7=h9f7ef89_2 69 | python-dateutil=2.8.2=pyhd3eb1b0_0 70 | python_abi=3.6=2_cp36m 71 | pytorch=1.3.1=py3.6_cuda101_cudnn7_0 72 | pywavelets=1.1.1=py36he774522_2 73 | pyyaml=5.4.1=py36h2bbff1b_1 74 | qt=5.12.9=h5909a2a_4 75 | redner-gpu=0.4.25=pypi_0 76 | scikit-image=0.17.2=pypi_0 77 | scipy=1.5.4=pypi_0 78 | setuptools=58.0.4=py36haa95532_0 79 | six=1.16.0=pyhd3eb1b0_1 80 | snappy=1.1.8=h33f27b4_0 81 | sqlite=3.38.2=h2bbff1b_0 82 | tifffile=2020.9.3=pypi_0 83 | tk=8.6.11=h2bbff1b_0 84 | toolz=0.11.2=pyhd3eb1b0_0 85 | torchvision=0.4.2=py36_cu101 86 | tornado=6.1=py36h2bbff1b_0 87 | tqdm=4.63.0=pyhd3eb1b0_0 88 | vc=14.2=h21ff451_1 89 | vs2015_runtime=14.27.29016=h5e58377_2 90 | wheel=0.37.1=pyhd3eb1b0_0 91 | wincertstore=0.2=py36h7fe50ca_0 92 | xz=5.2.5=h62dcd97_0 93 | yaml=0.2.5=he774522_0 94 | zlib=1.2.11=hbd8134f_5 95 | zstd=1.4.9=h19a0ad4_0 96 | mediapipe=0.8.3 -------------------------------------------------------------------------------- /gaussiansmoothing.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from torch import nn 3 | import numbers 4 | import math 5 | from torch.nn import functional as F 6 | 7 | class GaussianSmoothing(nn.Module): 8 | """ 9 | Apply gaussian smoothing on a 10 | 1d, 2d or 3d tensor. Filtering is performed seperately for each channel 11 | in the input using a depthwise convolution. 12 | Arguments: 13 | channels (int, sequence): Number of channels of the input tensors. Output will 14 | have this number of channels as well. 15 | kernel_size (int, sequence): Size of the gaussian kernel. 16 | sigma (float, sequence): Standard deviation of the gaussian kernel. 17 | dim (int, optional): The number of dimensions of the data. 18 | Default value is 2 (spatial). 19 | """ 20 | def __init__(self, channels, kernel_size, sigma, dim=2): 21 | super(GaussianSmoothing, self).__init__() 22 | if isinstance(kernel_size, numbers.Number): 23 | kernel_size = [kernel_size] * dim 24 | if isinstance(sigma, numbers.Number): 25 | sigma = [sigma] * dim 26 | 27 | # The gaussian kernel is the product of the 28 | # gaussian function of each dimension. 29 | kernel = 1 30 | meshgrids = torch.meshgrid( 31 | [ 32 | torch.arange(size, dtype=torch.float32) 33 | for size in kernel_size 34 | ] 35 | ) 36 | for size, std, mgrid in zip(kernel_size, sigma, meshgrids): 37 | mean = (size - 1) / 2 38 | kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \ 39 | torch.exp(-((mgrid - mean) / (2 * std)) ** 2) 40 | 41 | # Make sure sum of values in gaussian kernel equals 1. 42 | kernel = kernel / torch.sum(kernel) 43 | 44 | # Reshape to depthwise convolutional weight 45 | kernel = kernel.view(1, 1, *kernel.size()) 46 | kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) 47 | 48 | self.register_buffer('weight', kernel) 49 | self.groups = channels 50 | 51 | if dim == 1: 52 | self.conv = F.conv1d 53 | elif dim == 2: 54 | self.conv = F.conv2d 55 | elif dim == 3: 56 | self.conv = F.conv3d 57 | else: 58 | raise RuntimeError( 59 | 'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim) 60 | ) 61 | 62 | def forward(self, input): 63 | """ 64 | Apply gaussian filter to input. 65 | Arguments: 66 | input (torch.Tensor): Input to apply gaussian filter on. 67 | Returns: 68 | filtered (torch.Tensor): Filtered output. 69 | """ 70 | return self.conv(input, weight=self.weight, groups=self.groups) 71 | 72 | def smoothImage(img, filter): 73 | ''' 74 | smooth an image with filter 75 | ''' 76 | 77 | imgAd = img.permute(0, 3, 1, 2) 78 | imgAd = torch.nn.functional.pad(imgAd, (1, 1, 1, 1), mode='reflect') 79 | output = filter(imgAd) 80 | output = output.permute(0, 2, 3, 1) 81 | return output -------------------------------------------------------------------------------- /image.py: -------------------------------------------------------------------------------- 1 | import sys 2 | from os import walk 3 | import numpy as np 4 | import torch 5 | import cv2 6 | import os 7 | 8 | 9 | def saveImage(image, fileName, gamma = 2.2): 10 | ''' 11 | save image to drive 12 | :param image: float tensor [w, h, 3/4] 13 | :param fileName: path to where to save the image 14 | :param gamma: gamma correction 15 | :return: 16 | ''' 17 | 18 | import pyredner 19 | pyredner.imwrite(image.cpu().detach(), fileName, gamma = gamma) 20 | 21 | def overlayImage(background, image): 22 | ''' 23 | overlay image on top of background image an image on a background image. 24 | :param background: float tensor [width,height,3] 25 | :param image: float tensor [width, height, 4] 26 | :return: float tensor [width, height, 3] 27 | ''' 28 | assert(torch.is_tensor(background) and torch.is_tensor(image) and background.dim() == 3 and image.dim() == 3 and background.shape[0] == image.shape[0] and background.shape[1] == image.shape[1]) 29 | assert(background.shape[-1] == 3 and image.shape[-1] == 4) 30 | from torchvision import transforms 31 | background = transforms.ToPILImage()(background.permute(2, 1, 0).clone().detach().cpu()).convert("RGB") 32 | image = transforms.ToPILImage()(torch.clamp(image.permute(2, 1, 0), 0, 1).clone().detach().cpu()).convert("RGBA") 33 | background.paste(image, (0, 0), image) 34 | return transforms.ToTensor()(background).permute(2, 1, 0) 35 | 36 | def resizeImage(image, targetResolution): 37 | ''' 38 | resize an image (as numpy array) to the target resolution 39 | :param image: numpy array [h, w, 4/3/1] 40 | :param targetResolution: int > 0 41 | :return: numpy array [h, w, 4/3/1] 42 | ''' 43 | assert(image is not None and isinstance(image, np.ndarray) and len(image.shape) == 3 and image.shape[-1] == 3 or image.shape[-1] == 4 or image.shape[-1] == 1) 44 | dmax = max(image.shape[0], image.shape[1]) 45 | 46 | if (dmax > targetResolution): 47 | print("[INFO] resizing input image to fit:", targetResolution,"px resolution...") 48 | if (image.shape[0] > image.shape[1]): 49 | scale = float(targetResolution) / float(image.shape[0]) 50 | else: 51 | scale = float(targetResolution) / float(image.shape[1]) 52 | img = cv2.resize(image, (int(image.shape[1] * scale), int(image.shape[0] * scale)), interpolation=cv2.INTER_CUBIC ) 53 | else: 54 | return image 55 | return img 56 | 57 | class Image: 58 | 59 | def __init__(self, path, device, maxRes = 512): 60 | ''' 61 | class that represent a single image as a pytorch tensor [1, h, w, channels] 62 | :param path: the path to the image 63 | :param device: where to store the image ('cpu' or 'cuda') 64 | :param maxRes: maximum allowed resolution (depending on the gpu/cpu memory and speed, this limit can be increased or removed) 65 | ''' 66 | assert(maxRes > 0) 67 | print('loading image from path: ', path) 68 | self.device = device 69 | numpyImage = cv2.imread(path)[..., 0:3] 70 | assert (numpyImage is not None) 71 | numpyImage = resizeImage(cv2.cvtColor(numpyImage, cv2.COLOR_BGR2RGB), int(maxRes)) 72 | self.tensor = (torch.from_numpy(numpyImage).to(self.device).to(dtype=torch.float32) / 255.0).unsqueeze(0) 73 | self.height = numpyImage.shape[0] 74 | self.width = numpyImage.shape[1] 75 | self.channels = numpyImage.shape[2] 76 | self.gamma = 2.2 77 | self.center = torch.tensor([ self.width / 2, self.height / 2], dtype = torch.float32, device = self.device).reshape(1, -1) 78 | self.imageName = os.path.basename(path) 79 | 80 | class ImageFolder: 81 | 82 | def __init__(self, path, device, maxRes = 512): 83 | ''' 84 | class that represent images in a given path 85 | :param path: the path to the image 86 | :param device: where to store the image ('cpu' or 'cuda') 87 | ''' 88 | print('loading images from path: ', path) 89 | self.device = device 90 | self.tensor = None 91 | self.imageNames = [] 92 | supportedFormats = ['.jpg', '.jpeg', '.png'] 93 | 94 | filenames = next(walk(path), (None, None, []))[2] 95 | width = None 96 | height = None 97 | ct = 0 98 | 99 | assert (len(filenames) > 0) # no images found in the given directory 100 | for filename in filenames: 101 | if os.path.splitext(filename)[1].lower() in supportedFormats: 102 | image = Image(path + '/' + filename, device, maxRes) 103 | 104 | if width is None: 105 | width = image.width 106 | height = image.height 107 | self.tensor = torch.zeros([len(filenames), height, width, image.channels], device = self.device) 108 | self.center = torch.zeros([len(filenames), 2], device = self.device) 109 | 110 | assert image.width == width and image.height == height 111 | 112 | self.width = image.width 113 | self.height = image.height 114 | self.channels = image.channels 115 | self.tensor[ct] = image.tensor[0].clone().detach() 116 | self.center[ct] = image.center[0].clone().detach() 117 | self.imageNames.append(image.imageName) 118 | image = None 119 | 120 | ct += 1 121 | 122 | 123 | import gc 124 | gc.collect() 125 | self.gamma = 2.2 126 | 127 | @property 128 | def asNumpyArray(self): 129 | return self.tensor.detach().cpu().numpy() * 255.0 130 | 131 | if __name__ == "__main__": 132 | pass -------------------------------------------------------------------------------- /input/s1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s1.png -------------------------------------------------------------------------------- /input/s2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s2.png -------------------------------------------------------------------------------- /input/s3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s3.png -------------------------------------------------------------------------------- /input/s4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s4.png -------------------------------------------------------------------------------- /input/s5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s5.png -------------------------------------------------------------------------------- /input/s6.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s6.png -------------------------------------------------------------------------------- /input/s7.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/input/s7.png -------------------------------------------------------------------------------- /landmarksfan.py: -------------------------------------------------------------------------------- 1 | import face_alignment 2 | import numpy as np 3 | import torch 4 | import cv2 5 | 6 | 7 | class LandmarksDetectorFAN: 8 | def __init__(self, mask, device): 9 | ''' 10 | init landmark detector with given mask on target device 11 | :param mask: valid mask for the 68 landmarks of shape [n] 12 | :param device: 13 | ''' 14 | assert(mask.dim() == 1) 15 | assert(mask.max().item() <= 67 and mask.min().item() >= 0) 16 | 17 | self.device = device 18 | self.landmarksDetector = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False, device=self.device) 19 | self.mask = mask.to(self.device) 20 | 21 | def detect(self, images): 22 | ''' 23 | detect landmakrs on a batch of images 24 | :param images: tensor [n, height, width, channels] 25 | :return: tensor [n, landmarksNumber, 2] 26 | ''' 27 | #landmarks = torch.zeros([images.shape[0], self.mask.shape[0], 2], device = images.device, dtype = torch.float32) 28 | assert(images.dim() == 4) 29 | landmarks = [] 30 | for i in range(len(images)): 31 | land = self._detect(images[i].detach().cpu().numpy() * 255.0) 32 | landmarks.append(land) 33 | 34 | torch.set_grad_enabled(True) #it turns out that the landmark detector disables the autograd engine. this line fixes this 35 | return torch.tensor(landmarks, device = self.device) 36 | def _detect(self, image): 37 | arr = self.landmarksDetector.get_landmarks_from_image(image, None) 38 | if arr is None or len(arr) == 0: 39 | raise RuntimeError("No landmarks found in image...") 40 | if len(arr) > 1: 41 | print('found multiple subjects in image. extracting landmarks for first subject only...') 42 | 43 | landmarks = [] 44 | mask = self.mask.detach().cpu().numpy() 45 | for preds in arr: 46 | 47 | preds = preds[mask] 48 | subjectLandmarks = np.array([[p[0], p[1]] for p in preds]) 49 | landmarks.append(subjectLandmarks) 50 | break #only one subject per frame 51 | 52 | return landmarks[0] 53 | return torch.tensor(landmarks, device = self.device) 54 | 55 | def drawLandmarks(self, image, landmarks): 56 | ''' 57 | draw landmakrs on top of image (for debug) 58 | :param image: tensor representing the image [h, w, channels] 59 | :param landmarks: tensor representing the image landmarks [n, 2] 60 | :return: 61 | ''' 62 | assert(image.dim() == 3 and landmarks.dim() == 2 and landmarks.shape[-1] ==2) 63 | clone = np.copy(image.detach().cpu().numpy() * 255.0) 64 | land = landmarks.cpu().numpy() 65 | for x in land: 66 | cv2.circle(clone, (int(x[0]), int(x[1])), 1, (0, 0, 255), -1) 67 | return clone 68 | -------------------------------------------------------------------------------- /landmarksmediapipe.py: -------------------------------------------------------------------------------- 1 | import mediapipe as mp 2 | import numpy as np 3 | import torch 4 | import cv2 5 | 6 | class LandmarksDetectorMediapipe: 7 | def __init__(self, mask, device, is_video=False, refine_landmarks=False): 8 | ''' 9 | init landmark detector with given mask on target device 10 | :param mask: valid mask for the 468 landmarks of shape [n] 11 | :param device: 12 | :param is_video: set to true if passing frames sequentially in order 13 | :param refine_landmarks: if the facemesh attention module should be applied. Note: requires mediapipe 0.10 14 | ''' 15 | assert(mask.dim() == 1) 16 | assert(mask.max().item() <= 467 and mask.min().item() >= 0) 17 | 18 | self.device = device 19 | mp_face_mesh = mp.solutions.face_mesh 20 | 21 | if refine_landmarks: 22 | try: 23 | self.landmarksDetector = mp_face_mesh.FaceMesh( 24 | static_image_mode=not is_video, 25 | refine_landmarks=True, 26 | min_detection_confidence=0.5, 27 | min_tracking_confidence=0.5, 28 | ) 29 | except KeyError: 30 | raise KeyError('Refine landmarks is only available with the latest version of mediapipe') 31 | 32 | else: 33 | self.landmarksDetector = mp_face_mesh.FaceMesh( 34 | static_image_mode=not is_video, 35 | min_detection_confidence=0.5, 36 | min_tracking_confidence=0.5, 37 | ) 38 | 39 | self.mask = mask.to(self.device) 40 | 41 | def detect(self, images): 42 | ''' 43 | detect landmakrs on a batch of images 44 | :param images: tensor [n, height, width, channels] 45 | :return: tensor [n, landmarksNumber, 2] 46 | ''' 47 | #landmarks = torch.zeros([images.shape[0], self.mask.shape[0], 2], device = images.device, dtype = torch.float32) 48 | assert(images.dim() == 4) 49 | landmarks = [] 50 | for i in range(len(images)): 51 | land = self._detect((images[i].detach().cpu().numpy() * 255.0).astype('uint8')) 52 | landmarks.append(land) 53 | 54 | torch.set_grad_enabled(True) #it turns out that the landmark detector disables the autograd engine. this line fixes this 55 | return torch.tensor(landmarks, device = self.device) 56 | 57 | def _detect(self, image): 58 | 59 | height, width, _ = image.shape 60 | 61 | results = self.landmarksDetector.process(image) 62 | mask = self.mask.detach().cpu().numpy() 63 | multi_face_landmarks = results.multi_face_landmarks 64 | 65 | if multi_face_landmarks: 66 | face_landmarks = multi_face_landmarks[0] 67 | landmarks = np.array( 68 | [(lm.x * width, lm.y * height) for lm in face_landmarks.landmark] 69 | ) 70 | else: 71 | raise RuntimeError('No face was found in this image') 72 | 73 | return landmarks[mask] 74 | 75 | def drawLandmarks(self, image, landmarks): 76 | ''' 77 | draw landmakrs on top of image (for debug) 78 | :param image: tensor representing the image [h, w, channels] 79 | :param landmarks: tensor representing the image landmarks [n, 2] 80 | :return: 81 | ''' 82 | assert(image.dim() == 3 and landmarks.dim() == 2 and landmarks.shape[-1] ==2) 83 | clone = np.copy(image.detach().cpu().numpy() * 255.0) 84 | land = landmarks.cpu().numpy() 85 | for x in land: 86 | cv2.circle(clone, (int(x[0]), int(x[1])), 1, (0, 0, 255), -1) 87 | return clone 88 | 89 | -------------------------------------------------------------------------------- /meshnormals.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | class MeshNormals: 4 | 5 | def __init__(self, device, faces, vertexIndex, vertexFaceNeighbors): 6 | assert(vertexIndex is not None) 7 | assert(vertexFaceNeighbors is not None) 8 | 9 | self.device = device 10 | self.faces = faces 11 | self.vertexIndex = [] 12 | self.vertexFaceNeighbors = [] 13 | if vertexIndex is not None and vertexFaceNeighbors is not None: 14 | for i in range(len(vertexIndex)): 15 | self.vertexIndex.append(torch.tensor(vertexIndex[i]).to(self.device)) 16 | self.vertexFaceNeighbors.append(torch.tensor(vertexFaceNeighbors[i]).to(self.device)) 17 | 18 | def computeNormals(self, vertices): 19 | ''' 20 | compute vertices normal 21 | :param vertices: [..., verticesNumber, 3] 22 | :return: normalized normal vectors [..., verticesNumber, 3] 23 | ''' 24 | 25 | faces = self.faces 26 | assert(faces is not None) 27 | assert(vertices.shape[-1] == 3) 28 | 29 | v1 = vertices[..., faces[:, 0], :] 30 | v2 = vertices[..., faces[:, 1], :] - v1 31 | v3 = vertices[..., faces[:, 2], :] - v1 32 | faceNormals = torch.cross(v2, v3, dim=vertices.dim() - 1) 33 | 34 | normals = torch.zeros_like(vertices) 35 | for (ni, vi) in zip(self.vertexFaceNeighbors, self.vertexIndex): 36 | vc4 = faceNormals[..., ni, :] 37 | vc4 = torch.mean(vc4, -2) 38 | normals[..., vi, :] = vc4 39 | 40 | return torch.nn.functional.normalize(normals, 2, -1) 41 | 42 | -------------------------------------------------------------------------------- /morphablemodel.py: -------------------------------------------------------------------------------- 1 | from utils import loadDictionaryFromPickle, writeDictionaryToPickle 2 | from normalsampler import NormalSampler 3 | from meshnormals import MeshNormals 4 | import numpy as np 5 | import torch 6 | import h5py 7 | import sys 8 | import os 9 | 10 | class MorphableModel: 11 | 12 | def __init__(self, path, textureResolution = 256, trimPca = False, landmarksPathName = 'landmark_62_mp.txt', device='cuda'): 13 | ''' 14 | a statistical morphable model is a generative model that can generate faces with different identity, expression and skin reflectance 15 | it is mainly composed of an orthogonal basis (eigen vectors) obtained from applying principal component analysis (PCA) on a set of face scans. 16 | a linear combination of these eigen vectors produces different type shape and skin 17 | :param path: drive path of where the data of the morphable model is saved 18 | :param textureResolution: the resolution of the texture used for diffuse and specular reflectance 19 | :param trimPca: if True keep only a subset of the PCA basis 20 | :param landmarksPathName: a text file conains the association between the 2d pixel position and the 3D points in the mesh 21 | :param device: where to store the morphableModel data (cpu or gpu) 22 | ''' 23 | assert textureResolution == 256 or textureResolution == 512 or textureResolution == 1024 or textureResolution == 2048 #can handle only 256 or 512 texture res 24 | self.shapeBasisSize = 199 25 | self.albedoBasisSize = 145 26 | self.expBasisSize = 100 27 | self.device = device 28 | pathH5Model = path + '/model2017-1_face12_nomouth.h5' 29 | pathAlbedoModel = path + '/albedoModel2020_face12_albedoPart.h5' 30 | pathUV = path + '/uvParametrization.' + str(textureResolution) + '.pickle' 31 | pathLandmarks = path + '/' + landmarksPathName 32 | 33 | pathPickleFileName = path + '/morphableModel-2017.pickle' 34 | pathNormals = path + '/normals.pickle' 35 | 36 | if os.path.exists(pathPickleFileName) == False: 37 | print("Loading Basel Face Model 2017 from " + pathH5Model + "... this may take a while the first time... The next runtime it will be faster...") 38 | 39 | if os.path.exists(pathH5Model) == False: 40 | print('[Error] to use the library, you have to install basel morphable face model 2017 from: https://faces.dmi.unibas.ch/bfm/bfm2017.html', file=sys.stderr, flush=True) 41 | print('Fill the form on the link and you will get instant download link into your inbox.', file=sys.stderr, flush=True) 42 | print('Download "model2017-1_face12_nomouth.h5" and put it inside ',path, ' and run again...', file=sys.stderr, flush=True) 43 | exit(0) 44 | 45 | self.file = h5py.File(pathH5Model, 'r') 46 | assert(self.file is not None) 47 | 48 | print("loading shape basis...") 49 | self.shapeMean = torch.Tensor(self.file["shape"]["model"]["mean"]).reshape(-1, 3).to(device).float() 50 | self.shapePca = torch.Tensor(self.file["shape"]["model"]["pcaBasis"]).reshape(-1, 3, self.shapeBasisSize).to(device).float().permute(2, 0, 1) 51 | self.shapePcaVar = torch.Tensor(self.file["shape"]["model"]["pcaVariance"]).reshape(self.shapeBasisSize).to(device).float() 52 | 53 | print("loading expression basis...") 54 | self.expressionPca = torch.Tensor(self.file["expression"]["model"]["pcaBasis"]).reshape(-1, 3, self.expBasisSize).to(device).float().permute(2, 0, 1) 55 | self.expressionPcaVar = torch.Tensor(self.file["expression"]["model"]["pcaVariance"]).reshape(self.expBasisSize).to(device).float() 56 | self.faces = torch.Tensor(np.transpose(self.file["shape"]["representer"]["cells"])).reshape(-1, 3).to(device).long() 57 | self.file.close() 58 | 59 | print("Loading Albedo model from " + pathAlbedoModel + "...") 60 | if os.path.exists(pathAlbedoModel) == False: 61 | print('[ERROR] Please install the albedo model from the link below, put it inside', path, 'and run again: https://github.com/waps101/AlbedoMM/releases/download/v1.0/albedoModel2020_face12_albedoPart.h5', file=sys.stderr, flush=True) 62 | exit(0) 63 | 64 | self.file = h5py.File(pathAlbedoModel, 'r') 65 | assert(self.file is not None) 66 | 67 | self.diffuseAlbedoMean = torch.Tensor(self.file["diffuseAlbedo"]["model"]["mean"]).reshape(-1, 3).to(device).float() 68 | self.diffuseAlbedoPca = torch.Tensor(self.file["diffuseAlbedo"]["model"]["pcaBasis"]).reshape(-1, 3, self.albedoBasisSize).to(device).float().permute(2, 0, 1) 69 | self.diffuseAlbedoPcaVar = torch.Tensor(self.file["diffuseAlbedo"]["model"]["pcaVariance"]).reshape(self.albedoBasisSize).to(device).float() 70 | 71 | self.specularAlbedoMean = torch.Tensor(self.file["specularAlbedo"]["model"]["mean"]).reshape(-1, 3).to(device).float() 72 | self.specularAlbedoPca = torch.Tensor(self.file["specularAlbedo"]["model"]["pcaBasis"]).reshape(-1, 3, self.albedoBasisSize).to(device).float().permute(2, 0, 1) 73 | self.specularAlbedoPcaVar = torch.Tensor(self.file["specularAlbedo"]["model"]["pcaVariance"]).reshape(self.albedoBasisSize).to(device).float() 74 | self.file.close() 75 | 76 | #save to pickle for future loading 77 | dict = {'shapeMean': self.shapeMean.cpu().numpy(), 78 | 'shapePca': self.shapePca.cpu().numpy(), 79 | 'shapePcaVar': self.shapePcaVar.cpu().numpy(), 80 | 81 | 'diffuseAlbedoMean': self.diffuseAlbedoMean.cpu().numpy(), 82 | 'diffuseAlbedoPca': self.diffuseAlbedoPca.cpu().numpy(), 83 | 'diffuseAlbedoPcaVar': self.diffuseAlbedoPcaVar.cpu().numpy(), 84 | 85 | 'specularAlbedoMean': self.specularAlbedoMean.cpu().numpy(), 86 | 'specularAlbedoPca': self.specularAlbedoPca.cpu().numpy(), 87 | 'specularAlbedoPcaVar': self.specularAlbedoPcaVar.cpu().numpy(), 88 | 89 | 'expressionPca': self.expressionPca.cpu().numpy(), 90 | 'expressionPcaVar': self.expressionPcaVar.cpu().numpy(), 91 | 'faces': self.faces.cpu().numpy()} 92 | writeDictionaryToPickle(dict, pathPickleFileName) 93 | else: 94 | print("Loading Basel Face Model 2017 from " + pathPickleFileName + "...") 95 | 96 | dict = loadDictionaryFromPickle(pathPickleFileName) 97 | self.shapeMean = torch.tensor(dict['shapeMean']).to(device) 98 | self.shapePca = torch.tensor(dict['shapePca']).to(device) 99 | self.shapePcaVar = torch.tensor(dict['shapePcaVar']).to(device) 100 | 101 | self.diffuseAlbedoMean = torch.tensor(dict['diffuseAlbedoMean']).to(device) 102 | self.diffuseAlbedoPca = torch.tensor(dict['diffuseAlbedoPca']).to(device) 103 | self.diffuseAlbedoPcaVar = torch.tensor(dict['diffuseAlbedoPcaVar']).to(device) 104 | 105 | self.specularAlbedoMean = torch.tensor(dict['specularAlbedoMean']).to(device) 106 | self.specularAlbedoPca = torch.tensor(dict['specularAlbedoPca']).to(device) 107 | self.specularAlbedoPcaVar = torch.tensor(dict['specularAlbedoPcaVar']).to(device) 108 | 109 | self.expressionPca = torch.tensor(dict['expressionPca']).to(device) 110 | self.expressionPcaVar = torch.tensor(dict['expressionPcaVar']).to(device) 111 | self.faces = torch.tensor(dict['faces']).to(device) 112 | 113 | 114 | if trimPca: 115 | newDim = min(80, 116 | self.shapePca.shape[0], 117 | self.diffuseAlbedoPca.shape[0], 118 | self.specularAlbedoPcaVar.shape[0], 119 | self.expressionPca.shape[0]) 120 | 121 | self.shapePca = self.shapePca[0:newDim, ...] 122 | self.shapePcaVar = self.shapePcaVar[0:newDim, ...] 123 | 124 | self.diffuseAlbedoPca = self.diffuseAlbedoPca[0:newDim, ...] 125 | self.diffuseAlbedoPcaVar = self.diffuseAlbedoPcaVar[0:newDim, ...] 126 | 127 | self.specularAlbedoPca = self.specularAlbedoPca[0:newDim, ...] 128 | self.specularAlbedoPcaVar = self.specularAlbedoPcaVar[0:newDim, ...] 129 | 130 | self.expressionPca = self.expressionPca[0:newDim, ...] 131 | self.expressionPcaVar = self.expressionPcaVar[0:newDim, ...] 132 | self.shapeBasisSize = newDim 133 | self.expBasisSize = newDim 134 | self.albedoBasisSize = newDim 135 | 136 | print("loading mesh normals...") 137 | dic = loadDictionaryFromPickle(pathNormals) 138 | self.meshNormals = MeshNormals(device, self.faces, dic['vertexIndex'], dic['vertexFaceNeighbors']) 139 | 140 | print("loading uv parametrization...") 141 | self.uvParametrization = loadDictionaryFromPickle(pathUV) 142 | 143 | for key in self.uvParametrization: 144 | if key != 'uvResolution': 145 | self.uvParametrization[key] = torch.tensor(self.uvParametrization[key]).to(device) 146 | 147 | self.uvMap = self.uvParametrization['uvVertices'].to(device) 148 | 149 | print("loading landmarks association file...") 150 | self.landmarksAssociation = torch.tensor(np.loadtxt(pathLandmarks, delimiter='\t\t')[:, 1].astype(np.int64)).to(device) 151 | self.landmarksMask = torch.tensor(np.loadtxt(pathLandmarks, delimiter='\t\t')[:, 0].astype(np.int64)).to(device) 152 | 153 | print('creating sampler...') 154 | self.sampler = NormalSampler(self) 155 | 156 | def generateTextureFromAlbedo(self, albedo): 157 | ''' 158 | generate diffuse and specular textures from per vertex albedo color 159 | :param albedo: tensor of per vertex albedo color [n, verticesNumber, 3] 160 | :return: generated textures [n, self.getTextureResolution(), self.getTextureResolution(), 3] 161 | ''' 162 | assert (albedo.dim() == 3 and albedo.shape[-1] == self.diffuseAlbedoMean.shape[-1] and albedo.shape[-2] == self.diffuseAlbedoMean.shape[-2]) 163 | textureSize = self.uvParametrization['uvResolution'] 164 | halfRes = textureSize // 2 165 | baryCenterWeights = self.uvParametrization['uvFaces'] 166 | oFaces = self.uvParametrization['uvMapFaces'] 167 | uvxyMap = self.uvParametrization['uvXYMap'] 168 | 169 | neighboors = torch.arange(self.faces.shape[-1], dtype = torch.int64, device = self.faces.device) 170 | 171 | texture = (baryCenterWeights[:, neighboors, None] * albedo[:, self.faces[oFaces[:, None], neighboors]]).sum(dim=-2) 172 | textures = torch.zeros((albedo.size(0), textureSize, textureSize, 3), dtype=torch.float32, device = self.faces.device) 173 | textures[:, uvxyMap[:, 0], uvxyMap[:, 1]] = texture 174 | textures[:, halfRes, :, :] = (textures[:, halfRes -1, :, :] + textures[:, halfRes + 1, :, :]) * 0.5 175 | return textures.permute(0, 2, 1, 3).flip([1]) 176 | 177 | def getTextureResolution(self): 178 | ''' 179 | return the resolution of the texture 180 | :return: int scalar 181 | ''' 182 | return self.uvParametrization['uvResolution'] 183 | 184 | def computeShape(self, shapeCoff, expCoff): 185 | ''' 186 | compute vertices from shape and exp coeff 187 | :param shapeCoff: [n, self.shapeBasisSize] 188 | :param expCoff: [n, self.expBasisSize] 189 | :return: return vertices tensor [n, verticesNumber, 3] 190 | ''' 191 | assert (shapeCoff.dim() == 2 and shapeCoff.shape[1] == self.shapeBasisSize) 192 | assert (expCoff.dim() == 2 and expCoff.shape[1] == self.expBasisSize) 193 | 194 | vertices = self.shapeMean + torch.einsum('ni,ijk->njk', (shapeCoff, self.shapePca)) + torch.einsum('ni,ijk->njk', (expCoff, self.expressionPca)) 195 | return vertices 196 | 197 | def computeNormals(self, vertices): 198 | ''' 199 | compute normals for given vertices tensor 200 | :param vertices: float tensor [..., 3] 201 | :return: float tensor [..., 3] 202 | ''' 203 | assert(vertices.shape[-1] == 3) 204 | return self.meshNormals.computeNormals(vertices) 205 | 206 | def computeDiffuseAlbedo(self, diffAlbedoCoeff): 207 | ''' 208 | compute diffuse albedo from coeffs 209 | :param diffAlbedoCoeff: tensor [n, self.albedoBasisSize] 210 | :return: diffuse colors per vertex [n, verticesNumber, 3] 211 | ''' 212 | assert(diffAlbedoCoeff.dim() == 2 and diffAlbedoCoeff.shape[1] == self.albedoBasisSize) 213 | 214 | colors = self.diffuseAlbedoMean + torch.einsum('ni,ijk->njk', (diffAlbedoCoeff, self.diffuseAlbedoPca)) 215 | return colors 216 | 217 | def computeSpecularAlbedo(self, specAlbedoCoeff): 218 | ''' 219 | compute specular albedo from coeffs 220 | :param specAlbedoCoeff: [n, self.albedoBasisSize] 221 | :return: specular colors per vertex [n, verticesNumber, 3] 222 | ''' 223 | assert(specAlbedoCoeff.dim() == 2 and specAlbedoCoeff.shape[1] == self.albedoBasisSize) 224 | 225 | colors = self.specularAlbedoMean + torch.einsum('ni,ijk->njk', (specAlbedoCoeff, self.specularAlbedoPca)) 226 | return colors 227 | 228 | def computeShapeAlbedo(self, shapeCoeff, expCoeff, albedoCoeff): 229 | ''' 230 | compute vertices and diffuse/specular albedo from shape, exp and albedo coeff 231 | :param shapeCoeff: tensor [n, self.shapeBasisSize] 232 | :param expCoeff: tensor [n, self.expBasisSize] 233 | :param albedoCoeff: tensor [n, self.albedoBasisSize] 234 | :return: vertices [n, verticesNumber 3], diffuse albedo [n, verticesNumber 3], specAlbedo albedo [n, verticesNumber 3] 235 | ''' 236 | 237 | vertices = self.computeShape(shapeCoeff, expCoeff) 238 | diffAlbedo = self.computeDiffuseAlbedo(albedoCoeff) 239 | specAlbedo = self.computeSpecularAlbedo(albedoCoeff) 240 | return vertices, diffAlbedo, specAlbedo 241 | 242 | def sample(self, shapeNumber = 1): 243 | ''' 244 | random sample shape, expression, diffuse and specular albedo coeffs 245 | :param shapeNumber: number of shapes to sample 246 | :return: shapeCoeff [n, self.shapeBasisSize], expCoeff [n, self.expBasisSize], diffCoeff [n, albedoBasisSize], specCoeff [n, self.albedoBasisSize] 247 | ''' 248 | shapeCoeff = self.sampler.sample(shapeNumber, self.shapePcaVar) 249 | expCoeff = self.sampler.sample(shapeNumber, self.expressionPcaVar) 250 | diffAlbedoCoeff = self.sampler.sample(shapeNumber, self.diffuseAlbedoPcaVar) 251 | specAlbedoCoeff = self.sampler.sample(shapeNumber, self.specularAlbedoPcaVar) 252 | return shapeCoeff, expCoeff, diffAlbedoCoeff, specAlbedoCoeff 253 | 254 | 255 | -------------------------------------------------------------------------------- /normalsampler.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | class NormalSampler: 4 | 5 | def __init__(self, morphableModel): 6 | self.morphableModel = morphableModel 7 | 8 | def _sample(self, n, variance, std_multiplier = 1): 9 | std = torch.sqrt(variance) * std_multiplier 10 | std = std.expand((n, std.shape[0])) 11 | q = torch.distributions.Normal(torch.zeros_like(std).to(std.device), std * std_multiplier) 12 | samples = q.rsample() 13 | return samples 14 | 15 | def sampleShape(self, n, std_multiplier = 1): 16 | return self._sample(n, self.morphableModel.shapePcaVar, std_multiplier) 17 | 18 | def sampleExpression(self, n, std_multiplier=1): 19 | return self._sample(n, self.morphableModel.expressionPcaVar, std_multiplier) 20 | 21 | def sampleAlbedo(self, n, std_multiplier=1): 22 | return self._sample(n, self.morphableModel.diffuseAlbedoPcaVar, std_multiplier) 23 | 24 | def sample(self, shapeNumber = 1): 25 | shapeCoeff = self.sampleShape(shapeNumber) 26 | expCoeff = self.sampleExpression(shapeNumber) 27 | albedoCoeff = self.sampleAlbedo(shapeNumber) 28 | return shapeCoeff, expCoeff, albedoCoeff 29 | 30 | -------------------------------------------------------------------------------- /optimConfig.ini: -------------------------------------------------------------------------------- 1 | #compute device 2 | device = 'cuda' #'cuda' or 'cpu' 3 | 4 | #tracker 5 | lamdmarksDetectorType = 'fan' # 'mediapipe' or 'fan (mediapipe is much more stable than fan) 6 | 7 | #morphable model 8 | path = './baselMorphableModel' 9 | textureResolution = 512 10 | trimPca=False #if True keep only a subset of the pca basis (eigen vectors) 11 | 12 | #spherical harmonics 13 | bands = 9 14 | envMapRes = 64 15 | smoothSh=True #smooth the optimized environment map 16 | saveExr=False #save the optimized env map as exr or not ( if False a png is saved) 17 | 18 | #image 19 | maxResolution = 256 #maximum allowed resolution (if input image is larger it will be automatically scaled down). this limitation is here to allow the library to run on hardware with limited gpu memory and also to maintain a raisonable optimization speed on non rtx gpus. this limit can be increased on decent gpus/cpus 20 | 21 | #camera 22 | camFocalLength = 3000.0 #focal length in pixels (= f_{mm} * imageWidth / sensorWidth) 23 | optimizeFocalLength = True #if True the initial focal length is estimated otherwise it remains constant 24 | 25 | #optimization 26 | iterStep1 = 2000 # number of iterations for the coarse optim 27 | iterStep2 = 400 #number of iteration for the first dense optim (based on statistical priors) 28 | iterStep3 = 100 #number of iterations for refining the statistical albedo priors 29 | weightLandmarksLossStep2 = 0.001 #landmarks weight during step2 30 | weightLandmarksLossStep3 = 0.001 # landmarks weight during step3 31 | 32 | weightShapeReg = 0.001 #weight for shape regularization 33 | weightExpressionReg = 0.001 # weight for expression regularization 34 | weightAlbedoReg = 0.001 # weight for albedo regularization 35 | 36 | #regularizers for diffuse texture in step 3 37 | weightDiffuseSymmetryReg = 300. #symmetry regularizer weight for diffuse texture (at step 3). u may want to increase it in case of harsh shadows 38 | weightDiffuseConsistencyReg = 100. # consistency regularizer weight for diffuse texture (at step 3). u may want to increase it in case of harsh shadows 39 | weightDiffuseSmoothnessReg = 0.001 # smoothness regularizer weight for diffuse texture (at step 3) 40 | 41 | #regularizers for specular texture in step 3 42 | weightSpecularSymmetryReg = 200. # symmetry regularizer weight for specular texture (at step 3). u may want to increase it in case of harsh shadows 43 | weightSpecularConsistencyReg = 2. # consistency regularizer weight for specular texture (at step 3). u may want to increase it in case of harsh shadows 44 | weightSpecularSmoothnessReg = 0.001 # smoothness regularizer weight for specular texture (at step 3) 45 | 46 | #regularizers for roughness texture in step 3 47 | weightRoughnessSymmetryReg = 200. # symmetry regularizer weight for roughness texture (at step 3). u may want to increase it in case of harsh shadows 48 | weightRoughnessConsistencyReg = 0. # consistency regularizer weight for roughness texture (at step 3). u may want to increase it in case of harsh shadows 49 | weightRoughnessSmoothnessReg = 0.002 # smoothness regularizer weight for roughness texture (at step 3) 50 | 51 | #debug 52 | debugFrequency = 30 #display frequency during optimization (saved to debug directory) (0: no debug display) 53 | saveIntermediateStage = False #if True the output of stage 1 and 2 are saved. stage 3 is always saved which is the output of the optim 54 | verbose = False #display loss on terminal if true 55 | 56 | #ray tracing 57 | rtSamples = 4000 #the number of ray tracer samples to render the final output (higher is better but slower) best value is 20000 but on my old gpu it takes too much time to render. if u have nvidia rtx u are fine enjoy :) 58 | rtTrainingSamples = 8#number of ray tracing to use during training -------------------------------------------------------------------------------- /optimConfigShadows.ini: -------------------------------------------------------------------------------- 1 | #compute device 2 | device = 'cuda' #'cuda' or 'cpu' 3 | 4 | #tracker 5 | tracker = 'mediapipe' # 'mediapipe' or 'fan 6 | 7 | #morphable model 8 | path = './baselMorphableModel' 9 | textureResolution = 512 10 | trimPca=False #if True keep only a subset of the pca basis (eigen vectors) 11 | 12 | #spherical harmonics 13 | bands = 9 14 | envMapRes = 64 15 | 16 | #image 17 | maxResolution = 256 #maximum allowed resolution (if input image is larger it will be automatically scaled down). this limitation is here to allow the library to run on hardware with limited gpu memory and also to maintain a raisonable optimization speed on non rtx gpus. this limit can be increased on decent gpus/cpus 18 | 19 | #camera 20 | camFocalLength = 3000.0 #focal length in pixels (= f_{mm} * imageWidth / sensorWidth) 21 | optimizeFocalLength = True #if True the initial focal length is estimated otherwise it remains constant 22 | 23 | #optimization 24 | iterStep1 = 2000 # number of iterations for the coarse optim 25 | iterStep2 = 400 #number of iteration for the first dense optim (based on statistical priors) 26 | iterStep3 = 100 #number of iterations for refining the statistical albedo priors 27 | weightLandmarksLossStep2 = 0.001 #landmarks weight during step2 28 | weightLandmarksLossStep3 = 0.001 # landmarks weight during step3 29 | 30 | weightShapeReg = 0.001 #weight for shape regularization 31 | weightExpressionReg = 0.001 # weight for expression regularization 32 | weightAlbedoReg = 0.001 # weight for albedo regularization 33 | 34 | #regularizers for diffuse texture in step 3 35 | weightDiffuseSymmetryReg = 1200. #symmetry regularizer weight for diffuse texture (at step 3). u may want to increase it in case of harsh shadows 36 | weightDiffuseConsistencyReg = 100. # consistency regularizer weight for diffuse texture (at step 3). u may want to increase it in case of harsh shadows 37 | weightDiffuseSmoothnessReg = 0.001 # smoothness regularizer weight for diffuse texture (at step 3) 38 | 39 | #regularizers for specular texture in step 3 40 | weightSpecularSymmetryReg = 300. # symmetry regularizer weight for specular texture (at step 3). u may want to increase it in case of harsh shadows 41 | weightSpecularConsistencyReg = 2. # consistency regularizer weight for specular texture (at step 3). u may want to increase it in case of harsh shadows 42 | weightSpecularSmoothnessReg = 0.001 # smoothness regularizer weight for specular texture (at step 3) 43 | 44 | #regularizers for roughness texture in step 3 45 | weightRoughnessSymmetryReg = 300. # symmetry regularizer weight for roughness texture (at step 3). u may want to increase it in case of harsh shadows 46 | weightRoughnessConsistencyReg = 0. # consistency regularizer weight for roughness texture (at step 3). u may want to increase it in case of harsh shadows 47 | weightRoughnessSmoothnessReg = 0.002 # smoothness regularizer weight for roughness texture (at step 3) 48 | 49 | #debug 50 | debugFrequency = 30 #display frequency during optimization (saved to debug directory) (0: no debug display) 51 | saveIntermediateStage = False #if True the output of stage 1 and 2 are saved. stage 3 is always saved which is the output of the optim 52 | verbose = False #display loss on terminal if true 53 | 54 | #ray tracing 55 | rtSamples = 4000 #the number of ray tracer samples to render the final output (higher is better but slower) best value is 20000 but on my old gpu it takes too much time to render. if u have nvidia rtx u are fine enjoy :) 56 | rtTrainingSamples = 8#number of ray tracing to use during training -------------------------------------------------------------------------------- /optimizer.py: -------------------------------------------------------------------------------- 1 | from image import Image, ImageFolder, overlayImage, saveImage 2 | from gaussiansmoothing import GaussianSmoothing, smoothImage 3 | from projection import estimateCameraPosition 4 | 5 | from textureloss import TextureLoss 6 | from pipeline import Pipeline 7 | from config import Config 8 | from utils import * 9 | import argparse 10 | import pickle 11 | import tqdm 12 | import sys 13 | 14 | class Optimizer: 15 | 16 | def __init__(self, outputDir, config): 17 | self.config = config 18 | self.device = config.device 19 | self.verbose = config.verbose 20 | self.framesNumber = 0 21 | self.pipeline = Pipeline(self.config) 22 | 23 | if self.config.lamdmarksDetectorType == 'fan': 24 | from landmarksfan import LandmarksDetectorFAN 25 | self.landmarksDetector = LandmarksDetectorFAN(self.pipeline.morphableModel.landmarksMask, self.device) 26 | elif self.config.lamdmarksDetectorType == 'mediapipe': 27 | from landmarksmediapipe import LandmarksDetectorMediapipe 28 | self.landmarksDetector = LandmarksDetectorMediapipe(self.pipeline.morphableModel.landmarksMask, self.device) 29 | else: 30 | raise ValueError(f'lamdmarksDetectorType must be one of [mediapipe, fan] but was {self.config.lamdmarksDetectorType}') 31 | 32 | self.textureLoss = TextureLoss(self.device) 33 | 34 | self.inputImage = None 35 | self.landmarks = None 36 | torch.set_grad_enabled(False) 37 | self.smoothing = GaussianSmoothing(3, 3, 1.0, 2).to(self.device) 38 | self.outputDir = outputDir + '/' 39 | self.debugDir = self.outputDir + '/debug/' 40 | mkdir_p(self.outputDir) 41 | mkdir_p(self.debugDir) 42 | mkdir_p(self.outputDir + '/checkpoints/') 43 | 44 | self.vEnhancedDiffuse = None 45 | self.vEnhancedSpecular = None 46 | self.vEnhancedRoughness = None 47 | 48 | def saveParameters(self, outputFileName): 49 | 50 | dict = { 51 | 'vShapeCoeff': self.pipeline.vShapeCoeff.detach().cpu().numpy(), 52 | 'vAlbedoCoeff': self.pipeline.vAlbedoCoeff.detach().cpu().numpy(), 53 | 'vExpCoeff': self.pipeline.vExpCoeff.detach().cpu().numpy(), 54 | 'vRotation': self.pipeline.vRotation.detach().cpu().numpy(), 55 | 'vTranslation': self.pipeline.vTranslation.detach().cpu().numpy(), 56 | 'vFocals': self.pipeline.vFocals.detach().cpu().numpy(), 57 | 'vShCoeffs': self.pipeline.vShCoeffs.detach().cpu().numpy(), 58 | 'screenWidth':self.pipeline.renderer.screenWidth, 59 | 'screenHeight': self.pipeline.renderer.screenHeight, 60 | 'sharedIdentity': self.pipeline.sharedIdentity 61 | 62 | } 63 | if self.vEnhancedDiffuse is not None: 64 | dict['vEnhancedDiffuse'] = self.vEnhancedDiffuse.detach().cpu().numpy() 65 | if self.vEnhancedSpecular is not None: 66 | dict['vEnhancedSpecular'] = self.vEnhancedSpecular.detach().cpu().numpy() 67 | if self.vEnhancedRoughness is not None: 68 | dict['vEnhancedRoughness'] = self.vEnhancedRoughness.detach().cpu().numpy() 69 | 70 | handle = open(outputFileName, 'wb') 71 | pickle.dump(dict, handle, pickle.HIGHEST_PROTOCOL) 72 | handle.close() 73 | 74 | def loadParameters(self, pickelFileName): 75 | handle = open(pickelFileName, 'rb') 76 | assert handle is not None 77 | dict = pickle.load(handle) 78 | self.pipeline.vShapeCoeff = torch.tensor(dict['vShapeCoeff']).to(self.device) 79 | self.pipeline.vAlbedoCoeff = torch.tensor(dict['vAlbedoCoeff']).to(self.device) 80 | self.pipeline.vExpCoeff = torch.tensor(dict['vExpCoeff']).to(self.device) 81 | self.pipeline.vRotation = torch.tensor(dict['vRotation']).to(self.device) 82 | self.pipeline.vTranslation = torch.tensor(dict['vTranslation']).to(self.device) 83 | self.pipeline.vFocals = torch.tensor(dict['vFocals']).to(self.device) 84 | self.pipeline.vShCoeffs = torch.tensor(dict['vShCoeffs']).to(self.device) 85 | self.pipeline.renderer.screenWidth = int(dict['screenWidth']) 86 | self.pipeline.renderer.screenHeight = int(dict['screenHeight']) 87 | self.pipeline.sharedIdentity = bool(dict['sharedIdentity']) 88 | 89 | if "vEnhancedDiffuse" in dict: 90 | self.vEnhancedDiffuse = torch.tensor(dict['vEnhancedDiffuse']).to(self.device) 91 | 92 | if "vEnhancedSpecular" in dict: 93 | self.vEnhancedSpecular = torch.tensor(dict['vEnhancedSpecular']).to(self.device) 94 | 95 | if "vEnhancedRoughness" in dict: 96 | self.vEnhancedRoughness = torch.tensor(dict['vEnhancedRoughness']).to(self.device) 97 | 98 | handle.close() 99 | self.enableGrad() 100 | 101 | def enableGrad(self): 102 | self.pipeline.vShapeCoeff.requires_grad = True 103 | self.pipeline.vAlbedoCoeff.requires_grad = True 104 | self.pipeline.vExpCoeff.requires_grad = True 105 | self.pipeline.vRotation.requires_grad = True 106 | self.pipeline.vTranslation.requires_grad = True 107 | self.pipeline.vFocals.requires_grad = True 108 | self.pipeline.vShCoeffs.requires_grad = True 109 | 110 | def setImage(self, imagePath, sharedIdentity = False): 111 | ''' 112 | set image to estimate face reflectance and geometry 113 | :param imagePath: drive path to the image 114 | :param sharedIdentity: if true than the shape and albedo coeffs are equal to 1, as they belong to the same person identity 115 | :return: 116 | ''' 117 | if os.path.isfile(imagePath): 118 | self.inputImage = Image(imagePath, self.device, self.config.maxResolution) 119 | else: 120 | self.inputImage = ImageFolder(imagePath, self.device, self.config.maxResolution) 121 | 122 | self.framesNumber = self.inputImage.tensor.shape[0] 123 | #self.inputImage = Image(imagePath, self.device) 124 | self.pipeline.renderer.screenWidth = self.inputImage.width 125 | self.pipeline.renderer.screenHeight = self.inputImage.height 126 | 127 | print('detecting landmarks using:', self.config.lamdmarksDetectorType) 128 | landmarks = self.landmarksDetector.detect(self.inputImage.tensor) 129 | #assert (landmarks.shape[0] == 1) # can only handle single subject in image 130 | assert (landmarks.dim() == 3 and landmarks.shape[2] == 2) 131 | self.landmarks = landmarks 132 | for i in range(self.framesNumber): 133 | imagesLandmark = self.landmarksDetector.drawLandmarks(self.inputImage.tensor[i], self.landmarks[i]) 134 | cv2.imwrite(self.outputDir + '/landmarks' + str(i) + '.png', cv2.cvtColor(imagesLandmark, cv2.COLOR_BGR2RGB) ) 135 | self.pipeline.initSceneParameters(self.framesNumber, sharedIdentity) 136 | self.initCameraPos() #always init the head pose (rotation + translation) 137 | self.enableGrad() 138 | 139 | def initCameraPos(self): 140 | print('init camera pose...', file=sys.stderr, flush=True) 141 | association = self.pipeline.morphableModel.landmarksAssociation 142 | vertices = self.pipeline.computeShape() 143 | headPoints = vertices[:, association] 144 | rot, trans = estimateCameraPosition(self.pipeline.vFocals, self.inputImage.center, 145 | self.landmarks, headPoints, self.pipeline.vRotation, 146 | self.pipeline.vTranslation) 147 | 148 | self.pipeline.vRotation = rot.clone().detach() 149 | self.pipeline.vTranslation = trans.clone().detach() 150 | def getTextureIndex(self, i): 151 | if self.pipeline.sharedIdentity: 152 | return 0 153 | return i 154 | def debugFrame(self, image, target, diffuseTexture, specularTexture, roughnessTexture, outputPrefix): 155 | for i in range(image.shape[0]): 156 | diff = (image[i] - target[i]).abs() 157 | 158 | import cv2 159 | diffuse = cv2.resize(cv2.cvtColor(diffuseTexture[self.getTextureIndex(i)].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), (target.shape[2], target.shape[1])) 160 | spec = cv2.resize(cv2.cvtColor(specularTexture[self.getTextureIndex(i)].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), (target.shape[2], target.shape[1])) 161 | rough = roughnessTexture[self.getTextureIndex(i)].detach().cpu().numpy() 162 | rough = cv2.cvtColor(cv2.resize(rough, (target.shape[2], target.shape[1])), cv2.COLOR_GRAY2RGB) 163 | 164 | res = cv2.hconcat([cv2.cvtColor(image[i].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), 165 | cv2.cvtColor(target[i].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), 166 | cv2.cvtColor(diff.detach().cpu().numpy(), cv2.COLOR_BGR2RGB)]) 167 | ref = cv2.hconcat([diffuse, spec, rough]) 168 | 169 | debugFrame = cv2.vconcat([np.power(np.clip(res, 0.0, 1.0), 1.0 / 2.2) * 255, ref * 255]) 170 | cv2.imwrite(outputPrefix + '_frame' + str(i) + '.png', debugFrame) 171 | 172 | def regStatModel(self, coeff, var): 173 | loss = ((coeff * coeff) / var).mean() 174 | return loss 175 | 176 | def plotLoss(self, lossArr, index, fileName): 177 | import matplotlib.pyplot as plt 178 | plt.figure(index) 179 | plt.plot(lossArr) 180 | plt.scatter(np.arange(0, len(lossArr)).tolist(), lossArr, c='red') 181 | plt.savefig(fileName) 182 | 183 | def landmarkLoss(self, cameraVertices, landmarks): 184 | return self.pipeline.landmarkLoss(cameraVertices, landmarks, self.pipeline.vFocals, self.inputImage.center) 185 | 186 | def runStep1(self): 187 | print("1/3 => Optimizing head pose and expressions using landmarks...", file=sys.stderr, flush=True) 188 | torch.set_grad_enabled(True) 189 | 190 | params = [ 191 | {'params': self.pipeline.vRotation, 'lr': 0.02}, 192 | {'params': self.pipeline.vTranslation, 'lr': 0.02}, 193 | {'params': self.pipeline.vExpCoeff, 'lr': 0.02}, 194 | #{'params': self.pipeline.vShapeCoeff, 'lr': 0.02} 195 | ] 196 | 197 | if self.config.optimizeFocalLength: 198 | params.append({'params': self.pipeline.vFocals, 'lr': 0.02}) 199 | 200 | optimizer = torch.optim.Adam(params) 201 | losses = [] 202 | 203 | #for iter in range(2000): 204 | for iter in tqdm.tqdm(range(self.config.iterStep1)): 205 | optimizer.zero_grad() 206 | vertices = self.pipeline.computeShape() 207 | cameraVertices = self.pipeline.transformVertices(vertices) 208 | loss = self.landmarkLoss(cameraVertices, self.landmarks) 209 | loss += 0.1 * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar) 210 | loss.backward() 211 | optimizer.step() 212 | losses.append(loss.item()) 213 | if self.verbose: 214 | print(iter, '=>', loss.item()) 215 | 216 | self.plotLoss(losses, 0, self.outputDir + 'checkpoints/stage1_loss.png') 217 | self.saveParameters(self.outputDir + 'checkpoints/stage1_output.pickle') 218 | 219 | def runStep2(self): 220 | print("2/3 => Optimizing shape, statistical albedos, expression, head pose and scene light...", file=sys.stderr, flush=True) 221 | torch.set_grad_enabled(True) 222 | self.pipeline.renderer.samples = 8 223 | inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma) 224 | 225 | optimizer = torch.optim.Adam([ 226 | {'params': self.pipeline.vShCoeffs, 'lr': 0.005}, 227 | {'params': self.pipeline.vAlbedoCoeff, 'lr': 0.007} 228 | ]) 229 | losses = [] 230 | 231 | for iter in tqdm.tqdm(range(self.config.iterStep2 + 1)): 232 | if iter == 100: 233 | optimizer.add_param_group({'params': self.pipeline.vShapeCoeff, 'lr': 0.01}) 234 | optimizer.add_param_group({'params': self.pipeline.vExpCoeff, 'lr': 0.01}) 235 | optimizer.add_param_group({'params': self.pipeline.vRotation, 'lr': 0.0001}) 236 | optimizer.add_param_group({'params': self.pipeline.vTranslation, 'lr': 0.0001}) 237 | 238 | optimizer.zero_grad() 239 | vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff) 240 | cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation) 241 | diffuseTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo) 242 | specularTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo) 243 | 244 | images = self.pipeline.render(cameraVerts, diffuseTextures, specularTextures) 245 | mask = images[..., 3:] 246 | smoothedImage = smoothImage(images[..., 0:3], self.smoothing) 247 | diff = mask * (smoothedImage - inputTensor).abs() 248 | #photoLoss = diff.mean(dim=-1).sum() / float(self.framesNumber) 249 | photoLoss = 1000.* diff.mean() 250 | landmarksLoss = self.config.weightLandmarksLossStep2 * self.landmarkLoss(cameraVerts, self.landmarks) 251 | 252 | regLoss = 0.0001 * self.pipeline.vShCoeffs.pow(2).mean() 253 | regLoss += self.config.weightAlbedoReg * self.regStatModel(self.pipeline.vAlbedoCoeff, self.pipeline.morphableModel.diffuseAlbedoPcaVar) 254 | regLoss += self.config.weightShapeReg * self.regStatModel(self.pipeline.vShapeCoeff, self.pipeline.morphableModel.shapePcaVar) 255 | regLoss += self.config.weightExpressionReg * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar) 256 | 257 | loss = photoLoss + landmarksLoss + regLoss 258 | 259 | losses.append(loss.item()) 260 | loss.backward() 261 | optimizer.step() 262 | if self.verbose: 263 | print(iter, ' => Loss:', loss.item(), 264 | '. photo Loss:', photoLoss.item(), 265 | '. landmarks Loss: ', landmarksLoss.item(), 266 | '. regLoss: ', regLoss.item()) 267 | 268 | if self.config.debugFrequency > 0 and iter % self.config.debugFrequency == 0: 269 | self.debugFrame(smoothedImage, inputTensor, diffuseTextures, specularTextures, self.pipeline.vRoughness, self.debugDir + 'debug1_iter' + str(iter)) 270 | 271 | self.plotLoss(losses, 1, self.outputDir + 'checkpoints/stage2_loss.png') 272 | self.saveParameters(self.outputDir + 'checkpoints/stage2_output.pickle') 273 | 274 | def runStep3(self): 275 | print("3/3 => finetuning albedos, shape, expression, head pose and scene light...", file=sys.stderr, flush=True) 276 | torch.set_grad_enabled(True) 277 | self.pipeline.renderer.samples = 8 278 | 279 | inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma) 280 | vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff) 281 | vDiffTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo).detach().clone() if self.vEnhancedDiffuse is None else self.vEnhancedDiffuse.detach().clone() 282 | vSpecTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo).detach().clone() if self.vEnhancedSpecular is None else self.vEnhancedSpecular.detach().clone() 283 | vRoughTextures = self.pipeline.vRoughness.detach().clone() if self.vEnhancedRoughness is None else self.vEnhancedRoughness.detach().clone() 284 | 285 | refDiffTextures = vDiffTextures.detach().clone() 286 | refSpecTextures = vSpecTextures.detach().clone() 287 | refRoughTextures = vRoughTextures.detach().clone() 288 | vDiffTextures.requires_grad = True 289 | vSpecTextures.requires_grad = True 290 | vRoughTextures.requires_grad = True 291 | 292 | optimizer = torch.optim.Adam([ 293 | {'params': vDiffTextures, 'lr': 0.005}, 294 | {'params': vSpecTextures, 'lr': 0.02}, 295 | {'params': vRoughTextures, 'lr': 0.02} 296 | ]) 297 | '''' 298 | {'params': self.pipeline.vShCoeffs, 'lr': 0.005 * 2.}, 299 | {'params': self.pipeline.vShapeCoeff, 'lr': 0.01}, 300 | {'params': self.pipeline.vExpCoeff, 'lr': 0.01}, 301 | {'params': self.pipeline.vRotation, 'lr': 0.0005}, 302 | {'params': self.pipeline.vTranslation, 'lr': 0.0005}''' 303 | 304 | losses = [] 305 | 306 | for iter in tqdm.tqdm(range(self.config.iterStep3 + 1)): 307 | optimizer.zero_grad() 308 | vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff) 309 | cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation) 310 | 311 | images = self.pipeline.render(cameraVerts, vDiffTextures, vSpecTextures, vRoughTextures) 312 | mask = images[..., 3:] 313 | smoothedImage = smoothImage(images[..., 0:3], self.smoothing) 314 | diff = mask * (smoothedImage - inputTensor).abs() 315 | 316 | #loss = diff.mean(dim=-1).sum() / float(self.framesNumber) 317 | loss = 1000.0 * diff.mean() 318 | loss += 0.2 * (self.textureLoss.regTextures(vDiffTextures, refDiffTextures, ws = self.config.weightDiffuseSymmetryReg, wr = self.config.weightDiffuseConsistencyReg, wc = self.config.weightDiffuseConsistencyReg, wsm = self.config.weightDiffuseSmoothnessReg, wm = 0.) + \ 319 | self.textureLoss.regTextures(vSpecTextures, refSpecTextures, ws = self.config.weightSpecularSymmetryReg, wr = self.config.weightSpecularConsistencyReg, wc = self.config.weightSpecularConsistencyReg, wsm = self.config.weightSpecularSmoothnessReg, wm = 0.5) + \ 320 | self.textureLoss.regTextures(vRoughTextures, refRoughTextures, ws = self.config.weightRoughnessSymmetryReg, wr = self.config.weightRoughnessConsistencyReg, wc = self.config.weightRoughnessConsistencyReg, wsm = self.config.weightRoughnessSmoothnessReg, wm = 0.)) 321 | loss += 0.0001 * self.pipeline.vShCoeffs.pow(2).mean() 322 | loss += self.config.weightExpressionReg * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar) 323 | loss += self.config.weightShapeReg * self.regStatModel(self.pipeline.vShapeCoeff, self.pipeline.morphableModel.shapePcaVar) 324 | loss += self.config.weightLandmarksLossStep3 * self.landmarkLoss(cameraVerts, self.landmarks) 325 | 326 | losses.append(loss.item()) 327 | 328 | loss.backward() 329 | optimizer.step() 330 | if self.verbose: 331 | print(iter, ' => Loss:', loss.item()) 332 | 333 | if self.config.debugFrequency > 0 and iter % self.config.debugFrequency == 0: 334 | self.debugFrame(smoothedImage, inputTensor, vDiffTextures, vSpecTextures, vRoughTextures, self.debugDir + 'debug2_iter' + str(iter)) 335 | 336 | self.plotLoss(losses, 2, self.outputDir + 'checkpoints/stage3_loss.png') 337 | 338 | self.vEnhancedDiffuse = vDiffTextures.detach().clone() 339 | self.vEnhancedSpecular = vSpecTextures.detach().clone() 340 | self.vEnhancedRoughness = vRoughTextures.detach().clone() 341 | 342 | self.saveParameters(self.outputDir + 'checkpoints/stage3_output.pickle') 343 | 344 | def saveOutput(self, samples, outputDir = None, prefix = ''): 345 | if outputDir is None: 346 | outputDir = self.outputDir 347 | mkdir_p(outputDir) 348 | 349 | print("saving to: '", outputDir, "'. hold on... ", file=sys.stderr, flush=True) 350 | outputDir += '/' #use join 351 | 352 | inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma) 353 | vDiffTextures = self.vEnhancedDiffuse 354 | vSpecTextures = self.vEnhancedSpecular 355 | vRoughTextures = self.vEnhancedRoughness 356 | vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff) 357 | cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation) 358 | cameraNormals = self.pipeline.morphableModel.computeNormals(cameraVerts) 359 | 360 | 361 | if vDiffTextures is None: 362 | vDiffTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo) 363 | vSpecTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo) 364 | vRoughTextures = self.pipeline.vRoughness 365 | 366 | 367 | self.pipeline.renderer.samples = samples 368 | images = self.pipeline.render(None, vDiffTextures, vSpecTextures, vRoughTextures) 369 | 370 | diffuseAlbedo = self.pipeline.render(diffuseTextures=vDiffTextures, renderAlbedo=True) 371 | specularAlbedo = self.pipeline.render(diffuseTextures=vSpecTextures, renderAlbedo=True) 372 | roughnessAlbedo = self.pipeline.render(diffuseTextures=vRoughTextures.repeat(1, 1, 1, 3), renderAlbedo=True) 373 | illum = self.pipeline.render(diffuseTextures=torch.ones_like(vDiffTextures), specularTextures=torch.zeros_like(vDiffTextures)) 374 | 375 | for i in range(diffuseAlbedo.shape[0]): 376 | saveObj(outputDir + prefix + '/mesh' + str(i) + '.obj', 377 | 'material' + str(i) + '.mtl', 378 | cameraVerts[i], 379 | self.pipeline.faces32, 380 | cameraNormals[i], 381 | self.pipeline.morphableModel.uvMap, 382 | prefix + 'diffuseMap_' + str(self.getTextureIndex(i)) + '.png') 383 | 384 | envMaps = self.pipeline.sh.toEnvMap(self.pipeline.vShCoeffs, self.config.smoothSh) #smooth 385 | ext = '.png' 386 | if self.config.saveExr: 387 | ext = '.exr' 388 | saveImage(envMaps[i], outputDir + '/envMap_' + str(i) + ext) 389 | 390 | #saveImage(diffuseAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'diffuse_' + str(self.getTextureIndex(i)) + '.png') 391 | #saveImage(specularAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'specular_' + str(self.getTextureIndex(i)) + '.png') 392 | #saveImage(roughnessAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'roughness_' + str(self.getTextureIndex(i)) + '.png') 393 | #saveImage(illum[i], outputDir + prefix + 'illumination_' + str(i) + '.png') 394 | #saveImage(images[i], outputDir + prefix + 'finalReconstruction_' + str(i) + '.png') 395 | overlay = overlayImage(inputTensor[i], images[i]) 396 | #saveImage(overlay, outputDir + '/overlay_' + str(i) + '.png') 397 | 398 | renderAll = torch.cat([torch.cat([inputTensor[i], torch.ones_like(images[i])[..., 3:]], dim = -1), 399 | torch.cat([overlay.to(self.device), torch.ones_like(images[i])[..., 3:]], dim = -1), 400 | images[i], 401 | illum[i], 402 | diffuseAlbedo[self.getTextureIndex(i)], 403 | specularAlbedo[self.getTextureIndex(i)], 404 | roughnessAlbedo[self.getTextureIndex(i)]], dim=1) 405 | saveImage(renderAll, outputDir + '/render_' + str(i) + '.png') 406 | 407 | saveImage(vDiffTextures[self.getTextureIndex(i)], outputDir + prefix + 'diffuseMap_' + str(self.getTextureIndex(i)) + '.png') 408 | saveImage(vSpecTextures[self.getTextureIndex(i)], outputDir + prefix + 'specularMap_' + str(self.getTextureIndex(i)) + '.png') 409 | saveImage(vRoughTextures[self.getTextureIndex(i)].repeat(1, 1, 3), outputDir + prefix + 'roughnessMap_' + str(self.getTextureIndex(i)) + '.png') 410 | 411 | def run(self, imagePathOrDir, sharedIdentity = False, checkpoint = None, doStep1 = True, doStep2 = True, doStep3 = True): 412 | ''' 413 | run optimization on given path (can be a directory that contains images with same resolution or a direct path to an image) 414 | :param imagePathOrDir: a path to a directory or image 415 | :param sharedIdentity: if True, the images in the directory belongs to the same subject so the shape identity and skin reflectance are shared across all images 416 | :param checkpoint: a path to a checkpoint file (pickle) to resume optim (check saveParameters and loadParameters) 417 | :param doStep1: if True do stage 1 optim (landmarks loss) 418 | :param doStep2: if True do stage 2 optim (photo loss on statistical prior) 419 | :param doStep3: if True do stage 3 optim ( refine albedos) 420 | :return: 421 | ''' 422 | 423 | 424 | self.setImage(imagePathOrDir, sharedIdentity) 425 | assert(self.framesNumber >= 1) #could not load any image from path 426 | 427 | if checkpoint is not None and checkpoint != '': 428 | print('resuming optimization from checkpoint: ',checkpoint, file=sys.stderr, flush=True) 429 | self.loadParameters(checkpoint) 430 | 431 | import time 432 | start = time.time() 433 | if doStep1: 434 | self.runStep1() 435 | if self.config.saveIntermediateStage: 436 | self.saveOutput(self.config.rtSamples, self.outputDir + '/outputStage1', prefix='stage1_') 437 | if doStep2: 438 | self.runStep2() 439 | if self.config.saveIntermediateStage: 440 | self.saveOutput(self.config.rtSamples, self.outputDir + '/outputStage2', prefix='stage2_') 441 | if doStep3: 442 | self.runStep3() 443 | end = time.time() 444 | print("took {:.2f} minutes to optimize".format((end - start) / 60.), file=sys.stderr, flush=True) 445 | self.saveOutput(self.config.rtSamples, self.outputDir) 446 | 447 | if __name__ == "__main__": 448 | 449 | parser = argparse.ArgumentParser() 450 | parser.add_argument("--input", required=False, default='./input/s1.png', help="path to a directory or image to reconstruct (images in same directory should have the same resolution") 451 | 452 | parser.add_argument("--sharedIdentity", dest='sharedIdentity', action='store_true', help='in case input directory contains multiple images, this flag tells the optimizations that all images are for the same person ( that means the identity shape and skin reflectance is common for all images), if this flag is false, that each image belong to a different subject', required=False) 453 | #parser.add_argument("--no-sharedIdentity", dest='sharedIdentity', action='store_false', help='in case input directory contains multiple images, this flag tells the optimizations that all images are for the same person ( that means the identity shape and skin reflectance is common for all images), if this flag is false, that each image belong to a different subject', required=False) 454 | 455 | parser.add_argument("--output", required=False, default='./output/', help="path to the output directory where optimization results are saved in") 456 | parser.add_argument("--config", required=False, default='./optimConfig.ini', help="path to the configuration file (used to configure the optimization)") 457 | 458 | parser.add_argument("--checkpoint", required=False, default='', help="path to a checkpoint pickle file used to resume optimization") 459 | parser.add_argument("--skipStage1", dest='skipStage1', action='store_true', help='if true, the first (coarse) stage is skipped (stage1). useful if u want to resume optimization from a checkpoint', required=False) 460 | parser.add_argument("--skipStage2", dest='skipStage2', action='store_true', help='if true, the second stage is skipped (stage2). useful if u want to resume optimization from a checkpoint', required=False) 461 | parser.add_argument("--skipStage3", dest='skipStage3', action='store_true', help='if true, the third stage is skipped (stage3). useful if u want to resume optimization from a checkpoint', required=False) 462 | params = parser.parse_args() 463 | 464 | inputDir = params.input 465 | sharedIdentity = params.sharedIdentity 466 | outputDir = params.output + '/' + os.path.basename(inputDir.strip('/')) 467 | 468 | configFile = params.config 469 | checkpoint = params.checkpoint 470 | doStep1 = not params.skipStage1 471 | doStep2 = not params.skipStage2 472 | doStep3 = not params.skipStage3 473 | 474 | config = Config() 475 | config.fillFromDicFile(configFile) 476 | if config.device == 'cuda' and torch.cuda.is_available() == False: 477 | print('[WARN] no cuda enabled device found. switching to cpu... ') 478 | config.device = 'cpu' 479 | 480 | #check if mediapipe is available 481 | 482 | if config.lamdmarksDetectorType == 'mediapipe': 483 | try: 484 | from landmarksmediapipe import LandmarksDetectorMediapipe 485 | except: 486 | print('[WARN] Mediapipe for landmarks detection not availble. falling back to FAN landmarks detector. You may want to try Mediapipe because it is much accurate than FAN (pip install mediapipe)') 487 | config.lamdmarksDetectorType = 'fan' 488 | 489 | optimizer = Optimizer(outputDir, config) 490 | optimizer.run(inputDir, 491 | sharedIdentity= sharedIdentity, 492 | checkpoint= checkpoint, 493 | doStep1= doStep1, 494 | doStep2 = doStep2, 495 | doStep3= doStep3) -------------------------------------------------------------------------------- /output/defaultoutput: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/output/defaultoutput -------------------------------------------------------------------------------- /pipeline.py: -------------------------------------------------------------------------------- 1 | from sphericalharmonics import SphericalHarmonics 2 | from morphablemodel import MorphableModel 3 | from renderer import Renderer 4 | from camera import Camera 5 | from utils import * 6 | 7 | class Pipeline: 8 | 9 | def __init__(self, config): 10 | ''' 11 | a pipeline can generate and render textured faces under different camera angles and lighting conditions 12 | :param config: configuration file used to parameterize the pipeline 13 | ''' 14 | self.config = config 15 | self.device = config.device 16 | self.camera = Camera(self.device) 17 | self.sh = SphericalHarmonics(config.envMapRes, self.device) 18 | 19 | if self.config.lamdmarksDetectorType == 'fan': 20 | pathLandmarksAssociation = '/landmark_62.txt' 21 | elif self.config.lamdmarksDetectorType == 'mediapipe': 22 | pathLandmarksAssociation = '/landmark_62_mp.txt' 23 | else: 24 | raise ValueError(f'lamdmarksDetectorType must be one of [mediapipe, fan] but was {self.config.lamdmarksDetectorType}') 25 | 26 | self.morphableModel = MorphableModel(path = config.path, 27 | textureResolution= config.textureResolution, 28 | trimPca= config.trimPca, 29 | landmarksPathName=pathLandmarksAssociation, 30 | device = self.device 31 | ) 32 | self.renderer = Renderer(config.rtTrainingSamples, 1, self.device) 33 | self.uvMap = self.morphableModel.uvMap.clone() 34 | self.uvMap[:, 1] = 1.0 - self.uvMap[:, 1] 35 | self.faces32 = self.morphableModel.faces.to(torch.int32).contiguous() 36 | self.shBands = config.bands 37 | self.sharedIdentity = False 38 | 39 | def initSceneParameters(self, n, sharedIdentity = False): 40 | ''' 41 | init pipeline parameters (face shape, albedo, exp coeffs, light and head pose (camera)) 42 | :param n: the the number of parameters (if negative than the pipeline variables are not allocated) 43 | :param sharedIdentity: if true, the shape and albedo coeffs are equal to 1, as they belong to the same person identity 44 | :return: 45 | ''' 46 | 47 | if n <= 0: 48 | return 49 | 50 | self.sharedIdentity = sharedIdentity 51 | nShape = 1 if sharedIdentity == True else n 52 | 53 | self.vShapeCoeff = torch.zeros([nShape, self.morphableModel.shapeBasisSize], dtype = torch.float32, device = self.device) 54 | self.vAlbedoCoeff = torch.zeros([nShape, self.morphableModel.albedoBasisSize], dtype=torch.float32, device=self.device) 55 | 56 | self.vExpCoeff = torch.zeros([n, self.morphableModel.expBasisSize], dtype=torch.float32, device=self.device) 57 | self.vRotation = torch.zeros([n, 3], dtype=torch.float32, device=self.device) 58 | self.vTranslation = torch.zeros([n, 3], dtype=torch.float32, device=self.device) 59 | self.vTranslation[:, 2] = 500. 60 | self.vRotation[:, 0] = 3.14 61 | self.vFocals = self.config.camFocalLength * torch.ones([n], dtype=torch.float32, device=self.device) 62 | self.vShCoeffs = 0.0 * torch.ones([n, self.shBands * self.shBands, 3], dtype=torch.float32, device=self.device) 63 | self.vShCoeffs[..., 0, 0] = 0.5 64 | self.vShCoeffs[..., 2, 0] = -0.5 65 | self.vShCoeffs[..., 1] = self.vShCoeffs[..., 0] 66 | self.vShCoeffs[..., 2] = self.vShCoeffs[..., 0] 67 | 68 | texRes = self.morphableModel.getTextureResolution() 69 | self.vRoughness = 0.4 * torch.ones([nShape, texRes, texRes, 1], dtype=torch.float32, device=self.device) 70 | 71 | def computeShape(self): 72 | ''' 73 | compute shape vertices from the shape and expression coefficients 74 | :return: tensor of 3d vertices [n, verticesNumber, 3] 75 | ''' 76 | 77 | assert(self.vShapeCoeff is not None and self.vExpCoeff is not None) 78 | vertices = self.morphableModel.computeShape(self.vShapeCoeff, self.vExpCoeff) 79 | return vertices 80 | 81 | def transformVertices(self, vertices = None): 82 | ''' 83 | transform vertices to camera coordinate space 84 | :param vertices: tensor of 3d vertices [n, verticesNumber, 3] 85 | :return: transformed vertices [n, verticesNumber, 3] 86 | ''' 87 | 88 | if vertices is None: 89 | vertices = self.computeShape() 90 | 91 | assert(vertices.dim() == 3 and vertices.shape[-1] == 3) 92 | assert(self.vTranslation is not None and self.vRotation is not None) 93 | assert(vertices.shape[0] == self.vTranslation.shape[0] == self.vRotation.shape[0]) 94 | 95 | transformedVertices = self.camera.transformVertices(vertices, self.vTranslation, self.vRotation) 96 | return transformedVertices 97 | 98 | def render(self, cameraVerts = None, diffuseTextures = None, specularTextures = None, roughnessTextures = None, renderAlbedo = False): 99 | ''' 100 | ray trace an image given camera vertices and corresponding textures 101 | :param cameraVerts: camera vertices tensor [n, verticesNumber, 3] 102 | :param diffuseTextures: diffuse textures tensor [n, texRes, texRes, 3] 103 | :param specularTextures: specular textures tensor [n, texRes, texRes, 3] 104 | :param roughnessTextures: roughness textures tensor [n, texRes, texRes, 1] 105 | :param renderAlbedo: if True render albedo else ray trace image 106 | :return: ray traced images [n, resX, resY, 4] 107 | ''' 108 | if cameraVerts is None: 109 | vertices, diffAlbedo, specAlbedo = self.morphableModel.computeShapeAlbedo(self.vShapeCoeff, self.vExpCoeff, self.vAlbedoCoeff) 110 | cameraVerts = self.camera.transformVertices(vertices, self.vTranslation, self.vRotation) 111 | 112 | #compute normals 113 | normals = self.morphableModel.meshNormals.computeNormals(cameraVerts) 114 | 115 | if diffuseTextures is None: 116 | diffuseTextures = self.morphableModel.generateTextureFromAlbedo(diffAlbedo) 117 | 118 | if specularTextures is None: 119 | specularTextures = self.morphableModel.generateTextureFromAlbedo(specAlbedo) 120 | 121 | if roughnessTextures is None: 122 | roughnessTextures = self.vRoughness 123 | 124 | envMaps = self.sh.toEnvMap(self.vShCoeffs) 125 | 126 | assert(envMaps.dim() == 4 and envMaps.shape[-1] == 3) 127 | assert (cameraVerts.dim() == 3 and cameraVerts.shape[-1] == 3) 128 | assert (diffuseTextures.dim() == 4 and diffuseTextures.shape[1] == diffuseTextures.shape[2] == self.morphableModel.getTextureResolution() and diffuseTextures.shape[-1] == 3) 129 | assert (specularTextures.dim() == 4 and specularTextures.shape[1] == specularTextures.shape[2] == self.morphableModel.getTextureResolution() and specularTextures.shape[-1] == 3) 130 | assert (roughnessTextures.dim() == 4 and roughnessTextures.shape[1] == roughnessTextures.shape[2] == self.morphableModel.getTextureResolution() and roughnessTextures.shape[-1] == 1) 131 | assert(cameraVerts.shape[0] == envMaps.shape[0]) 132 | assert (diffuseTextures.shape[0] == specularTextures.shape[0] == roughnessTextures.shape[0]) 133 | 134 | scenes = self.renderer.buildScenes(cameraVerts, self.faces32, normals, self.uvMap, diffuseTextures, 135 | specularTextures, torch.clamp(roughnessTextures, 1e-20, 10.0), self.vFocals, envMaps) 136 | if renderAlbedo: 137 | images = self.renderer.renderAlbedo(scenes) 138 | else: 139 | images = self.renderer.render(scenes) 140 | 141 | return images 142 | 143 | def landmarkLoss(self, cameraVertices, landmarks, focals, cameraCenters, debugDir = None): 144 | ''' 145 | calculate scalar loss between vertices in camera space and 2d landmarks pixels 146 | :param cameraVertices: 3d vertices [n, nVertices, 3] 147 | :param landmarks: 2d corresponding pixels [n, nVertices, 2] 148 | :param landmarks: camera focals [n] 149 | :param cameraCenters: camera centers [n, 2 150 | :param debugDir: if not none save landmarks and vertices to an image file 151 | :return: scalar loss (float) 152 | ''' 153 | assert (cameraVertices.dim() == 3 and cameraVertices.shape[-1] == 3) 154 | assert (focals.dim() == 1) 155 | assert(cameraCenters.dim() == 2 and cameraCenters.shape[-1] == 2) 156 | assert (landmarks.dim() == 3 and landmarks.shape[-1] == 2) 157 | assert cameraVertices.shape[0] == landmarks.shape[0] == focals.shape[0] == cameraCenters.shape[0] 158 | 159 | headPoints = cameraVertices[:, self.morphableModel.landmarksAssociation] 160 | assert (landmarks.shape[-2] == headPoints.shape[-2]) 161 | 162 | projPoints = focals.view(-1, 1, 1) * headPoints[..., :2] / headPoints[..., 2:] 163 | projPoints += cameraCenters.unsqueeze(1) 164 | loss = torch.norm(projPoints - landmarks, 2, dim=-1).pow(2).mean() 165 | if debugDir: 166 | for i in range(projPoints.shape[0]): 167 | image = saveLandmarksVerticesProjections(self.inputImage.tensor[i], projPoints[i], self.landmarks[i]) 168 | cv2.imwrite(debugDir + '/lp' + str(i) +'.png', cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) 169 | 170 | return loss -------------------------------------------------------------------------------- /projection.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch 3 | import math 4 | import cv2 5 | 6 | def isRotationMatrix(R): 7 | """ 8 | return true if the R is a rotation matrix else False (M . T^T = I and det(M) = 1) 9 | """ 10 | if R.ndim != 2 or R.shape[0] != R.shape[1]: 11 | return False 12 | isIdentity = np.allclose(R.dot(R.T), np.identity(R.shape[0], np.float)) 13 | isDetEqualToOne = np.allclose(np.linalg.det(R), 1) 14 | return isIdentity and isDetEqualToOne 15 | 16 | 17 | def eulerToRodrigues(angles): 18 | """ 19 | convert euler angles to rodrigues 20 | """ 21 | rotx = np.array([[1, 0, 0], 22 | [0, math.cos(angles[0]), -math.sin(angles[0])], 23 | [0, math.sin(angles[0]), math.cos(angles[0])] 24 | ]) 25 | 26 | roty = np.array([[math.cos(angles[1]), 0, math.sin(angles[1])], 27 | [0, 1, 0], 28 | [-math.sin(angles[1]), 0, math.cos(angles[1])] 29 | ]) 30 | 31 | rotz = np.array([[math.cos(angles[2]), -math.sin(angles[2]), 0], 32 | [math.sin(angles[2]), math.cos(angles[2]), 0], 33 | [0, 0, 1] 34 | ]) 35 | 36 | R = np.dot(rotz, np.dot(roty, rotx)) 37 | rotVec, _ = cv2.Rodrigues(R) 38 | return rotVec 39 | 40 | 41 | def rodrigues2Euler(rotation_vector): 42 | """ 43 | retrieve euler angles from rodrigues matrix 44 | """ 45 | rMat, _ = cv2.Rodrigues(rotation_vector) 46 | assert (rMat.shape[0] == 3 and rMat.shape[1] == 3 and isRotationMatrix(rMat)) 47 | roll = math.atan2(rMat[2, 1], rMat[2, 2]) 48 | pitch = math.atan2(-rMat[2, 0], math.sqrt(rMat[0, 0] * rMat[0, 0] + rMat[1, 0] * rMat[1, 0])) 49 | yaw = math.atan2(rMat[1, 0], rMat[0, 0]) 50 | return np.array([roll, pitch, yaw]) 51 | 52 | 53 | def estimateCameraPosition(focalLength, image_center, landmarks, vertices, rotAngles, translation): 54 | ''' 55 | estimate the camera position (rotation and translation) using perspective n points pnp 56 | :param focalLength: tensor representing the camera focal length of shape [n] 57 | :param image_center: tensor representing the camera center point [n, 2] 58 | :param landmarks: tensor representing the 2d landmarks in pixel coordinates system [n, verticesNumber, 2] 59 | :param vertices: tensor representing the 3d coordinate position of the landmarks [n, verticesNumber, 3] 60 | :param rotAngles: the initial rotation angles [n, 3] 61 | :param translation: the initial translation angles [n, 3] 62 | :return: estimated rotation [n, 3] , estimated translations [n, 3] 63 | ''' 64 | assert (focalLength.dim() == 1 and 65 | image_center.dim() == 2 and 66 | image_center.shape[-1] == 2 and 67 | landmarks.dim() == 3 and landmarks.shape[-1] == 2 and 68 | vertices.dim() == 3 and vertices.shape[-1] == 3 and 69 | rotAngles.dim() == 2 and rotAngles.shape[-1] == 3 and 70 | translation.dim() == 2 and translation.shape[-1] == 3) 71 | assert (focalLength.shape[0] == image_center.shape[0] == landmarks.shape[0] == vertices.shape[0] == rotAngles.shape[0] == translation.shape[0]) 72 | rots = [] 73 | transs = [] 74 | for i in range(focalLength.shape[0]): 75 | rot, trans = solvePnP(focalLength[i].item(), 76 | image_center[i].detach().cpu().numpy(), 77 | vertices[i], 78 | landmarks[i], 79 | rotAngles[i], 80 | translation[i]) 81 | rots.append(rot) 82 | transs.append(trans) 83 | return torch.tensor(rots, device=vertices.device, dtype=torch.float32), torch.tensor(transs, device=vertices.device, 84 | dtype=torch.float32) 85 | 86 | 87 | def solvePnP(focalLength, imageCenter, vertices, pixels, rotAngles, translation): 88 | """ 89 | Finds an object pose from 3D vertices <-> 2D pixels correspondences 90 | Inputs: 91 | * focalLength: camera focal length 92 | * imageCenter: center [x, y] of the image 93 | * vertices: float tensor [n, 3], of vertices 94 | * pixels: float tensor [n, 2] of corresponding pixels 95 | * rotAngles: initial euler angles 96 | * translation: initial translation vector 97 | """ 98 | 99 | cameraMatrix = np.array( 100 | [[focalLength, 0, imageCenter[0]], 101 | [0, focalLength, imageCenter[1]], 102 | [0, 0, 1]], dtype="double" 103 | ) 104 | 105 | success, rotVec, transVec = cv2.solvePnP(vertices.clone().detach().cpu().numpy(), 106 | pixels[:, None].detach().cpu().numpy(), 107 | cameraMatrix, 108 | np.zeros((4, 1)), 109 | eulerToRodrigues(rotAngles.detach().cpu().numpy()), 110 | translation.detach().cpu().numpy(), 111 | True, 112 | flags=cv2.SOLVEPNP_ITERATIVE) 113 | assert success, "failed to estimate the pose using pNp" 114 | 115 | rotAngles = rodrigues2Euler(rotVec) 116 | 117 | if rotAngles[0] < 0.: 118 | rotAngles[0] += 2. * math.pi 119 | 120 | translation = transVec.reshape((3,)) 121 | return rotAngles, translation 122 | -------------------------------------------------------------------------------- /renderer.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import math 3 | import pyredner 4 | import redner 5 | import random 6 | 7 | from pyredner import set_print_timing 8 | 9 | 10 | def rayTrace(scene, 11 | channels, 12 | max_bounces = 1, 13 | sampler_type = pyredner.sampler_type.sobol, 14 | num_samples = 8, 15 | seed = None, 16 | sample_pixel_center = False, 17 | device = None): 18 | if device is None: 19 | device = pyredner.get_device() 20 | 21 | assert(isinstance(scene, list)) 22 | if seed == None: 23 | # Randomly generate a list of seed 24 | seed = [] 25 | for i in range(len(scene)): 26 | seed.append(random.randint(0, 16777216)) 27 | assert(len(seed) == len(scene)) 28 | # Render each scene in the batch and stack them together 29 | imgs = [] 30 | for sc, se in zip(scene, seed): 31 | scene_args = pyredner.RenderFunction.serialize_scene(\ 32 | scene = sc, 33 | num_samples = num_samples, 34 | max_bounces = max_bounces, 35 | sampler_type = sampler_type, 36 | channels = channels, 37 | use_primary_edge_sampling=False, 38 | use_secondary_edge_sampling=False, 39 | sample_pixel_center = sample_pixel_center, 40 | device = device) 41 | imgs.append(pyredner.RenderFunction.apply(se, *scene_args)) 42 | imgs = torch.stack(imgs) 43 | return imgs 44 | 45 | def renderPathTracing(scene, 46 | channels= None, 47 | max_bounces = 1, 48 | num_samples = 8, 49 | device = None): 50 | if channels is None: 51 | channels = [redner.channels.radiance] 52 | channels.append(redner.channels.alpha) 53 | #if alpha: 54 | # channels.append(redner.channels.alpha) 55 | return rayTrace(scene=scene, 56 | channels=channels, 57 | max_bounces=max_bounces, 58 | sampler_type=pyredner.sampler_type.independent, 59 | num_samples=num_samples, 60 | seed = None, 61 | sample_pixel_center=False, 62 | device=device) 63 | 64 | class Renderer: 65 | 66 | def __init__(self, samples, bounces, device): 67 | set_print_timing(False) #disable redner logs 68 | self.samples = samples 69 | self.bounces = bounces 70 | self.device = torch.device(device) 71 | self.clip_near = 10.0 72 | self.upVector = torch.tensor([0.0, -1.0, 0.0]) 73 | self.counter = 0 74 | self.screenWidth = 256 75 | self.screenHeight = 256 76 | 77 | def setupCamera(self, focal, image_width, image_height): 78 | 79 | fov = torch.tensor([360.0 * math.atan(image_width / (2.0 * focal)) / math.pi]) # calculate camera field of view from image size 80 | 81 | cam = pyredner.Camera( 82 | position = torch.tensor([0.0, 0.0, 0.0]), 83 | look_at = torch.tensor([0.0, 0.0, 1.0]), 84 | up = self.upVector, 85 | fov = fov.cpu(), 86 | clip_near = self.clip_near, 87 | cam_to_world = None , 88 | resolution = (image_height, image_width)) 89 | 90 | return cam 91 | 92 | def buildScenes(self, vertices, indices, normal, uv, diffuse, specular, roughness, focal, envMap): 93 | ''' 94 | build multiple pyredner scenes used for path tracing (uv mapping and indices are the same for all scenes) 95 | :param vertices: [n, verticesNumber, 3] 96 | :param indices: [indicesNumber, 3] 97 | :param normal: [n, verticesNumber, 3] 98 | :param uv: [verticesNumber, 2] 99 | :param diffuse: [n, resX, resY, 3] or [1, resX, resY, 3] 100 | :param specular: [n, resX, resY, 3] or [1, resX, resY, 3] 101 | :param roughness: [n, resX, resY, 1] or [1, resX, resY, 3] 102 | :param focal: [n] 103 | :param envMap: [n, resX, resY, 3] 104 | :return: return list of pyredner scenes 105 | ''' 106 | assert(vertices.dim() == 3 and vertices.shape[-1] == 3 and normal.dim() == 3 and normal.shape[-1] == 3) 107 | assert (indices.dim() == 2 and indices.shape[-1] == 3) 108 | assert (uv.dim() == 2 and uv.shape[-1] == 2) 109 | assert (diffuse.dim() == 4 and diffuse.shape[-1] == 3 and 110 | specular.dim() == 4 and specular.shape[-1] == 3 and 111 | roughness.dim() == 4 and roughness.shape[-1] == 1) 112 | assert(focal.dim() == 1) 113 | assert(envMap.dim() == 4 and envMap.shape[-1] == 3) 114 | assert(vertices.shape[0] == focal.shape[0] == envMap.shape[0]) 115 | assert(diffuse.shape[0] == specular.shape[0] == roughness.shape[0]) 116 | assert (diffuse.shape[0] == 1 or diffuse.shape[0] == vertices.shape[0]) 117 | sharedTexture = True if diffuse.shape[0] == 1 else False 118 | 119 | scenes = [] 120 | for i in range(vertices.shape[0]): 121 | texIndex = 0 if sharedTexture else i 122 | mat = pyredner.Material(pyredner.Texture(diffuse[texIndex]), 123 | pyredner.Texture(specular[texIndex]) if specular is not None else None, 124 | pyredner.Texture(roughness[texIndex]) if roughness is not None else None) 125 | obj = pyredner.Object(vertices[i], indices, mat, uvs=uv, normals=normal[i] if normal is not None else None) 126 | cam = self.setupCamera(focal[i], self.screenWidth, self.screenHeight) 127 | scene = pyredner.Scene(cam, materials=[mat], objects=[obj], envmap=pyredner.EnvironmentMap(envMap[i])) 128 | scenes.append(scene) 129 | 130 | return scenes 131 | 132 | def renderAlbedo(self, scenes): 133 | ''' 134 | render albedo of given pyredner scenes 135 | :param scenes: list of pyredner scenes 136 | :return: albedo images [n, screenWidth, screenHeight, 4] 137 | ''' 138 | #images =pyredner.render_albedo(scenes, alpha = True, num_samples = self.samples, device = self.device) 139 | images = renderPathTracing(scenes, 140 | channels= [pyredner.channels.diffuse_reflectance, pyredner.channels.alpha], 141 | max_bounces = 0, 142 | num_samples = self.samples , 143 | device = self.device) 144 | return images 145 | 146 | def render(self, scenes): 147 | ''' 148 | render scenes with ray tracing 149 | :param scenes: list of pyredner scenes 150 | :return: ray traced images [n, screenWidth, screenHeight, 4] 151 | ''' 152 | images = renderPathTracing(scenes, 153 | max_bounces = self.bounces, 154 | num_samples = self.samples , 155 | device = self.device) 156 | self.counter += 1 157 | return images -------------------------------------------------------------------------------- /replay.py: -------------------------------------------------------------------------------- 1 | from _nsis import out 2 | 3 | from optimizer import Optimizer 4 | from config import Config 5 | from utils import * 6 | import math 7 | from image import saveImage 8 | 9 | frameIndex = 0 10 | outputDir = './out' 11 | def produce(optimizer): 12 | global frameIndex 13 | images = optimizer.pipeline.render(None, optimizer.vEnhancedDiffuse, optimizer.vEnhancedSpecular, optimizer.vEnhancedRoughness) 14 | for i in range(images.shape[0]): 15 | fileName = outputDir + '/frame_' + str(i)+ '_%04d.png' % frameIndex 16 | saveImage(images[i], fileName) 17 | 18 | frameIndex += 1 19 | 20 | 21 | if __name__ == "__main__": 22 | 23 | ''' 24 | this code is used to rotate on vertical axis, an existing reconstruction from a pickle file. 25 | u need to have ffmpeg to produce the final gif image or video 26 | ''' 27 | import argparse 28 | parser = argparse.ArgumentParser() 29 | parser.add_argument("--input", required=True, 30 | help="path to a pickle file that contains the reconstruction (check optimizer.py)") 31 | 32 | parser.add_argument("--output", required=True, 33 | help="path to where to save the animation sequence.") 34 | 35 | parser.add_argument("--config", required=False, default='./optimConfig.ini', 36 | help="path to the configuration file (used to configure the optimization)") 37 | 38 | params = parser.parse_args() 39 | 40 | config = Config() 41 | 42 | configFile = params.config # './optimConfig.ini' 43 | outputDir = params.output + '/' #'./replay/' 44 | parameters = params.input #'../workspace/exp/checkpoints/stage3_output.pickle' 45 | 46 | mkdir_p(outputDir) 47 | config.fillFromDicFile(configFile) 48 | optimizer = Optimizer(outputDir, config) 49 | optimizer.pipeline.renderer.samples = config.rtSamples 50 | optimizer.loadParameters(parameters) 51 | 52 | DTR = math.pi / 180.0 53 | minBound = -30.0 * DTR # -65 54 | maxBound = 30.0 * DTR # 65 55 | step = 2.85 * DTR # 0.75 56 | 57 | initAngle = optimizer.pipeline.vRotation[..., 1].clone() 58 | currentAngle = initAngle.clone() 59 | 60 | if True: 61 | frameIndex = 0 62 | print('animating reconstruction, this may take some time depending on the number of raytracing samples and ur gpu. please wait...') 63 | while currentAngle > minBound: 64 | currentAngle -= step 65 | optimizer.pipeline.vRotation[..., 1] = currentAngle 66 | produce(optimizer) 67 | 68 | while currentAngle < maxBound: 69 | currentAngle += step 70 | optimizer.pipeline.vRotation[..., 1] = currentAngle 71 | produce(optimizer) 72 | 73 | while currentAngle > initAngle: 74 | currentAngle -= step 75 | optimizer.pipeline.vRotation[..., 1] = currentAngle 76 | produce(optimizer) 77 | 78 | optimizer.pipeline.vRotation[..., 1] = initAngle 79 | produce(optimizer) 80 | 81 | import os 82 | 83 | #cmd = "ffmpeg -y -i " + outputDir + "frame_0_%04d.png -vf fps=25 -vcodec png -pix_fmt rgba " + outputDir + "/optimized.mov" 84 | cmd = "ffmpeg -f image2 -framerate 20 -y -i " + outputDir + "frame_0_%04d.png " + outputDir + "/optimized.gif" 85 | os.system(cmd) 86 | 87 | 88 | 89 | 90 | 91 | -------------------------------------------------------------------------------- /resources/beard.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/beard.gif -------------------------------------------------------------------------------- /resources/beard.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/beard.png -------------------------------------------------------------------------------- /resources/emily.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/emily.gif -------------------------------------------------------------------------------- /resources/emily.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/emily.png -------------------------------------------------------------------------------- /resources/results1.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/results1.gif -------------------------------------------------------------------------------- /resources/visual.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abdallahdib/NextFace/07b2b1c7da2021e939e469f82fd9823e3d0ec67c/resources/visual.jpg -------------------------------------------------------------------------------- /sphericalharmonics.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import math 3 | import numpy as np 4 | 5 | ''' 6 | code taken and adapted from pyredner 7 | ''' 8 | 9 | # Code adapted from "Spherical Harmonic Lighting: The Gritty Details", Robin Green 10 | # http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf 11 | class SphericalHarmonics: 12 | def __init__(self, envMapResolution, device): 13 | self.device = device 14 | self.setEnvironmentMapResolution(envMapResolution) 15 | 16 | def setEnvironmentMapResolution(self, res): 17 | res = (res, res) 18 | self.resolution = res 19 | uv = np.mgrid[0:res[1], 0:res[0]].astype(np.float32) 20 | self.theta = torch.from_numpy((math.pi / res[1]) * (uv[1, :, :] + 0.5)).to(self.device) 21 | self.phi = torch.from_numpy((2 * math.pi / res[0]) * (uv[0, :, :] + 0.5)).to(self.device) 22 | 23 | def smoothSH(self, coeffs, window=6): 24 | ''' multiply (convolve in sptial domain) the coefficients with a low pass filter. 25 | Following the recommendation in https://www.ppsloan.org/publications/shdering.pdf 26 | ''' 27 | smoothed_coeffs = torch.zeros_like(coeffs) 28 | smoothed_coeffs[:, 0] += coeffs[:, 0] 29 | smoothed_coeffs[:, 1:1 + 3] += \ 30 | coeffs[:, 1:1 + 3] * math.pow(math.sin(math.pi * 1.0 / window) / (math.pi * 1.0 / window), 4.0) 31 | smoothed_coeffs[:, 4:4 + 5] += \ 32 | coeffs[:, 4:4 + 5] * math.pow(math.sin(math.pi * 2.0 / window) / (math.pi * 2.0 / window), 4.0) 33 | smoothed_coeffs[:, 9:9 + 7] += \ 34 | coeffs[:, 9:9 + 7] * math.pow(math.sin(math.pi * 3.0 / window) / (math.pi * 3.0 / window), 4.0) 35 | return smoothed_coeffs 36 | 37 | 38 | def associatedLegendrePolynomial(self, l, m, x): 39 | pmm = torch.ones_like(x) 40 | if m > 0: 41 | somx2 = torch.sqrt((1 - x) * (1 + x)) 42 | fact = 1.0 43 | for i in range(1, m + 1): 44 | pmm = pmm * (-fact) * somx2 45 | fact += 2.0 46 | if l == m: 47 | return pmm 48 | pmmp1 = x * (2.0 * m + 1.0) * pmm 49 | if l == m + 1: 50 | return pmmp1 51 | pll = torch.zeros_like(x) 52 | for ll in range(m + 2, l + 1): 53 | pll = ((2.0 * ll - 1.0) * x * pmmp1 - (ll + m - 1.0) * pmm) / (ll - m) 54 | pmm = pmmp1 55 | pmmp1 = pll 56 | return pll 57 | 58 | 59 | def normlizeSH(self, l, m): 60 | return math.sqrt((2.0 * l + 1.0) * math.factorial(l - m) / \ 61 | (4 * math.pi * math.factorial(l + m))) 62 | 63 | def SH(self, l, m, theta, phi): 64 | if m == 0: 65 | return self.normlizeSH(l, m) * self.associatedLegendrePolynomial(l, m, torch.cos(theta)) 66 | elif m > 0: 67 | return math.sqrt(2.0) * self.normlizeSH(l, m) * \ 68 | torch.cos(m * phi) * self.associatedLegendrePolynomial(l, m, torch.cos(theta)) 69 | else: 70 | return math.sqrt(2.0) * self.normlizeSH(l, -m) * \ 71 | torch.sin(-m * phi) * self.associatedLegendrePolynomial(l, -m, torch.cos(theta)) 72 | 73 | def toEnvMap(self, shCoeffs, smooth = False): 74 | ''' 75 | create an environment map from given sh coeffs 76 | :param shCoeffs: float tensor [n, bands * bands, 3] 77 | :param smooth: if True, the first 3 bands are smoothed 78 | :return: environment map tensor [n, resX, resY, 3] 79 | ''' 80 | assert(shCoeffs.dim() == 3 and shCoeffs.shape[-1] == 3) 81 | envMaps = torch.zeros( [shCoeffs.shape[0], self.resolution[0], self.resolution[1], 3]).to(shCoeffs.device) 82 | for i in range(shCoeffs.shape[0]): 83 | envMap =self.constructEnvMapFromSHCoeffs(shCoeffs[i], smooth) 84 | envMaps[i] = envMap 85 | return envMaps 86 | def constructEnvMapFromSHCoeffs(self, shCoeffs, smooth = False): 87 | 88 | assert (isinstance(shCoeffs, torch.Tensor) and shCoeffs.dim() == 2 and shCoeffs.shape[1] == 3) 89 | 90 | if smooth: 91 | smoothed_coeffs = self.smoothSH(shCoeffs.transpose(0, 1), 4) 92 | else: 93 | smoothed_coeffs = shCoeffs.transpose(0, 1) #self.smoothSH(shCoeffs.transpose(0, 1), 4) #smooth the first three bands? 94 | 95 | res = self.resolution 96 | 97 | theta = self.theta 98 | phi = self.phi 99 | result = torch.zeros(res[0], res[1], smoothed_coeffs.shape[0], device=smoothed_coeffs.device) 100 | bands = int(math.sqrt(smoothed_coeffs.shape[1])) 101 | i = 0 102 | 103 | for l in range(bands): 104 | for m in range(-l, l + 1): 105 | sh_factor = self.SH(l, m, theta, phi) 106 | result = result + sh_factor.view(sh_factor.shape[0], sh_factor.shape[1], 1) * smoothed_coeffs[:, i] 107 | i += 1 108 | result = torch.max(result, torch.zeros(res[0], res[1], smoothed_coeffs.shape[0], device=smoothed_coeffs.device)) 109 | return result 110 | -------------------------------------------------------------------------------- /textureloss.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | class TextureLoss: 4 | def __init__(self, device): 5 | self.device = device 6 | 7 | self.RGB2XYZ = torch.tensor([[41.2390799265959, 35.7584339383878, 18.0480788401834], 8 | [21.2639005871510, 71.5168678767756, 07.2192315360734], 9 | [01.9330818715592, 11.9194779794626, 95.0532152249661]], dtype=torch.float).to(self.device) 10 | 11 | def regTextures(self, vTex, refTex, ws=3., wr=10.0, wc=10., wsm=0.01, wm=0.): 12 | ''' 13 | regularize vTex with respect to refTex (more on this here: https://arxiv.org/abs/2101.05356) 14 | :param vTex: first texture [n, w, h, 3/1/] 15 | :param refTex: second texture [n, w, h, 3/1] 16 | :param ws: symmetry regularizer 17 | :param wr: rgb regularizer 18 | :param wc: consisntecy regularizer 19 | :param wsm: smoothness regularizer 20 | :param wm: mean regularizer 21 | :return: scalar loss 22 | ''' 23 | symReg = (vTex - vTex.flip([2])).abs().mean() # symmetry regularizer on vertical axis 24 | rgbReg = (vTex - refTex).abs().mean() # rgb regularization with respect to reference texture 25 | loss = ws * symReg + wr * rgbReg 26 | 27 | loss += 1000.0 * torch.clamp(-vTex, min=0).mean() # soft penalize < 0 28 | loss += 1000.0 * torch.clamp(vTex - 1.0, min=0).mean() # soft penalize > 1 29 | 30 | loss += wsm * ((vTex[:, 1:] - vTex[:, :-1]).pow(2).sum()) # smooth on y axis 31 | loss += wsm * ((vTex[:, :, 1:] - vTex[:, :, :-1]).pow(2).sum()) # smooth on x axis 32 | 33 | if wc > 0: # regularize in xyz space 34 | refTex_XYZ = torch.matmul(self.RGB2XYZ, refTex[..., None])[..., 0] 35 | refTex_xyz = refTex_XYZ[..., :2] / (1.0 + refTex_XYZ.sum(dim=-1, keepdim=True)) 36 | vTex_XYZ = torch.matmul(self.RGB2XYZ, vTex[..., None])[..., 0] 37 | vTex_xyz = vTex_XYZ[..., :2] / (1.0 + torch.clamp(vTex_XYZ, min=0.).sum(dim=-1, keepdim=True)) 38 | xy_regularization = (refTex_xyz - vTex_xyz).abs().mean() 39 | loss += wc * xy_regularization 40 | 41 | if wm > 0: # keep close to average (generally for specular map) 42 | loss += wm * ((vTex - vTex.mean(dim=-1, keepdim=True)).pow(2).sum()) 43 | 44 | return loss 45 | -------------------------------------------------------------------------------- /utils.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch 3 | import cv2 4 | import os 5 | 6 | def saveObj(filename, materialName, vertices, faces, normals = None, tcoords = None, textureFileName = 'texture.png'): 7 | ''' 8 | write mesh to an obj file 9 | :param filename: path to where to save the obj file 10 | :param materialFileName: material name 11 | :param vertices: float tensor [n, 3] 12 | :param faces: tensor [#triangles, 3] 13 | :param normals: float tensor [n, 3] 14 | :param tcoords: float tensor [n, 2] 15 | :param textureFileName: name of the texture to use with material 16 | :return: 17 | ''' 18 | assert(vertices.dim() == 2 and vertices.shape[-1] == 3) 19 | assert (faces.dim() == 2 and faces.shape[-1] == 3) 20 | 21 | if normals is not None: 22 | assert (normals.dim() == 2 and normals.shape[-1] == 3) 23 | 24 | if tcoords is not None: 25 | assert (tcoords.dim() == 2 and tcoords.shape[-1] == 2) 26 | 27 | if torch.is_tensor(vertices): 28 | vertices = vertices.detach().cpu().numpy() 29 | if torch.is_tensor(faces): 30 | faces = faces.detach().cpu().numpy() 31 | if torch.is_tensor(normals): 32 | normals = normals.detach().cpu().numpy() 33 | if torch.is_tensor(tcoords): 34 | tcoords = tcoords.detach().cpu().numpy() 35 | 36 | assert(isinstance(vertices, np.ndarray)) 37 | assert (isinstance(faces, np.ndarray)) 38 | assert (isinstance(normals, np.ndarray)) 39 | assert (isinstance(tcoords, np.ndarray)) 40 | 41 | #write material 42 | f = open(os.path.dirname(filename) + '/' + materialName, 'w') 43 | f.write('newmtl material0\n') 44 | f.write('map_Kd ' + textureFileName + '\n') 45 | f.close() 46 | 47 | f = open(filename, 'w') 48 | f.write('###########################################################\n') 49 | f.write('# OBJ file generated by faceYard 2021\n') 50 | f.write('#\n') 51 | f.write('# Num Vertices: %d\n' % (vertices.shape[0])) 52 | f.write('# Num Triangles: %d\n' % (faces.shape[0])) 53 | f.write('#\n') 54 | f.write('###########################################################\n') 55 | f.write('\n') 56 | f.write('mtllib ' + materialName + '\n') 57 | 58 | #write vertices 59 | for v in vertices: 60 | f.write('v %f %f %f\n' % (v[0], v[1], v[2])) 61 | 62 | # write the tcoords 63 | if tcoords is not None and tcoords.shape[0] > 0: 64 | for uv in tcoords: 65 | f.write('vt %f %f\n' % (uv[0], uv[1])) 66 | 67 | #write the normals 68 | if normals is not None and normals.shape[0] > 0: 69 | for n in normals: 70 | f.write('vn %f %f %f\n' % (n[0], n[1], n[2])) 71 | 72 | f.write('usemtl material0\n') 73 | #write face indices list 74 | for t in faces: 75 | f.write('f %d/%d/%d %d/%d/%d %d/%d/%d\n' % (t[0] + 1, t[0] + 1,t[0] + 1, 76 | t[1] + 1, t[1] + 1,t[1] + 1, 77 | t[2] + 1, t[2] + 1, t[2] + 1)) 78 | f.close() 79 | def saveLandmarksVerticesProjections(imageTensor, projPoints, landmarks): 80 | ''' 81 | for debug, render the projected vertices and landmakrs on image 82 | :param images: [w, h, 3] 83 | :param projPoints: [n, 3] 84 | :param landmarks: [n, 2] 85 | :return: tensor [w, h, 3 86 | ''' 87 | assert(imageTensor.dim() == 3 and imageTensor.shape[-1] == 3 ) 88 | assert(projPoints.dim() == 2 and projPoints.shape[-1] == 2) 89 | assert(projPoints.shape == landmarks.shape) 90 | image = imageTensor.clone().detach().cpu().numpy() * 255. 91 | landmarkCount = landmarks.shape[0] 92 | for i in range(landmarkCount): 93 | x = landmarks[i, 0] 94 | y = landmarks[i, 1] 95 | cv2.circle(image, (int(x), int(y)), 2, (0, 255, 0), -1) 96 | x = projPoints[i, 0] 97 | y = projPoints[i, 1] 98 | cv2.circle(image, (int(x), int(y)), 2, (0, 0, 255), -1) 99 | 100 | return image 101 | 102 | def mkdir_p(path): 103 | import errno 104 | import os 105 | 106 | try: 107 | os.makedirs(path) 108 | except OSError as exc: 109 | if exc.errno == errno.EEXIST and os.path.isdir(path): 110 | pass 111 | else: 112 | raise 113 | def loadDictionaryFromPickle(picklePath): 114 | import pickle 115 | handle = open(picklePath, 'rb') 116 | assert handle is not None 117 | dic = pickle.load(handle) 118 | handle.close() 119 | return dic 120 | def writeDictionaryToPickle(dict, picklePath): 121 | import pickle 122 | handle = open(picklePath, 'wb') 123 | pickle.dump(dict, handle, pickle.HIGHEST_PROTOCOL) 124 | handle.close() --------------------------------------------------------------------------------