├── AutoEncoders-for-Anomaly-Detection.ipynb ├── AutoEncoders-for-Anomaly-Detection_Matplotlib.ipynb ├── AutoEncoders.png ├── JADS workshop.zip ├── JADS_CarrerDay_Data.cvs ├── README.md └── outlier_pic.jpg /AutoEncoders.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abelusha/AutoEncoders-for-Anomaly-Detection/6a2b0b0baf84e3b77d42ffb0c5244fbc8fc20dd6/AutoEncoders.png -------------------------------------------------------------------------------- /JADS workshop.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abelusha/AutoEncoders-for-Anomaly-Detection/6a2b0b0baf84e3b77d42ffb0c5244fbc8fc20dd6/JADS workshop.zip -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # AutoEncoders-for-Anomaly-Detection 2 | 3 | This is a jupyter Notebook that where I use a Neural Network model, namely Autoencioders for detecting anomallies in my data. 4 | 5 | **Libraries & Respective Versions:** 6 | 7 | **Numpy version : 1.14.2** 8 | 9 | **Pandas version : 0.22.0** 10 | 11 | **Matplotlib version : 2.0.2** 12 | 13 | **Seaborn version : 0.7.1** 14 | 15 | **Plotly version : 2.7.0** 16 | 17 | **Tensorflow version : 1.8.0** 18 | 19 | **Keras version : 2.2.0** 20 | -------------------------------------------------------------------------------- /outlier_pic.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/abelusha/AutoEncoders-for-Anomaly-Detection/6a2b0b0baf84e3b77d42ffb0c5244fbc8fc20dd6/outlier_pic.jpg --------------------------------------------------------------------------------