├── .gitattributes
├── .github
├── labeler.yml
├── release-drafter.yml
├── semantic.yml
└── workflows
│ ├── check-docs.yml
│ ├── pr-labeler.yml
│ ├── publish-doc-to-remote.yml
│ ├── release-drafter.yml
│ ├── run-test-coverage.yml
│ ├── run-test.yml
│ └── upload-to-pypi.yml
├── .gitignore
├── .pylintrc
├── LICENSE.txt
├── Makefile
├── README.md
├── adapt
├── __init__.py
├── _tree_utils.py
├── base.py
├── feature_based
│ ├── __init__.py
│ ├── _adda.py
│ ├── _ccsa.py
│ ├── _cdan.py
│ ├── _coral.py
│ ├── _dann.py
│ ├── _deepcoral.py
│ ├── _fa.py
│ ├── _fmmd.py
│ ├── _mcd.py
│ ├── _mdd.py
│ ├── _pred.py
│ ├── _sa.py
│ ├── _tca.py
│ └── _wdgrl.py
├── instance_based
│ ├── __init__.py
│ ├── _balancedweighting.py
│ ├── _iwc.py
│ ├── _iwn.py
│ ├── _kliep.py
│ ├── _kmm.py
│ ├── _ldm.py
│ ├── _nearestneighborsweighting.py
│ ├── _rulsif.py
│ ├── _tradaboost.py
│ ├── _ulsif.py
│ └── _wann.py
├── metrics.py
├── parameter_based
│ ├── __init__.py
│ ├── _finetuning.py
│ ├── _linint.py
│ ├── _regular.py
│ └── _transfer_tree.py
└── utils.py
├── codecov.yml
├── docs
├── .nojekyll
├── _images
│ ├── adda.png
│ ├── all.gif
│ ├── cdan.png
│ ├── colab_logo_32px.png
│ ├── contribute.png
│ ├── coral.gif
│ ├── dann.gif
│ ├── dann.png
│ ├── deep_da.png
│ ├── deepcoral.png
│ ├── examples_Classification_9_0.png
│ ├── examples_Developer_Guide_17_0.png
│ ├── examples_Developer_Guide_29_0.png
│ ├── examples_Flowers_example_14_0.png
│ ├── examples_Flowers_example_23_0.png
│ ├── examples_Flowers_example_29_0.png
│ ├── examples_Flowers_example_5_0.png
│ ├── examples_Heart_Failure_13_0.png
│ ├── examples_Heart_Failure_14_0.png
│ ├── examples_Heart_Failure_17_0.png
│ ├── examples_Heart_Failure_18_0.png
│ ├── examples_Heart_Failure_21_0.png
│ ├── examples_Heart_Failure_22_0.png
│ ├── examples_Heart_Failure_25_0.png
│ ├── examples_Heart_Failure_26_0.png
│ ├── examples_Heart_Failure_29_1.png
│ ├── examples_Heart_Failure_30_0.png
│ ├── examples_Heart_Failure_33_0.png
│ ├── examples_Heart_Failure_34_0.png
│ ├── examples_Heart_Failure_37_0.png
│ ├── examples_Heart_Failure_38_0.png
│ ├── examples_Heart_Failure_41_0.png
│ ├── examples_Heart_Failure_42_0.png
│ ├── examples_Heart_Failure_45_0.png
│ ├── examples_Heart_Failure_46_0.png
│ ├── examples_Heart_Failure_6_0.png
│ ├── examples_Multi_fidelity_11_0.png
│ ├── examples_Multi_fidelity_14_0.png
│ ├── examples_Multi_fidelity_17_0.png
│ ├── examples_Multi_fidelity_6_0.png
│ ├── examples_Office_example_24_0.png
│ ├── examples_Office_example_26_0.png
│ ├── examples_Office_example_34_0.png
│ ├── examples_Office_example_36_0.png
│ ├── examples_Office_example_5_0.png
│ ├── examples_Office_example_5_1.png
│ ├── examples_Quick_start_3_0.png
│ ├── examples_Regression_9_0.png
│ ├── examples_Rotation_11_0.png
│ ├── examples_Rotation_12_0.png
│ ├── examples_Rotation_14_0.png
│ ├── examples_Rotation_15_0.png
│ ├── examples_Rotation_16_1.png
│ ├── examples_Rotation_17_0.png
│ ├── examples_Rotation_4_0.png
│ ├── examples_Rotation_6_0.png
│ ├── examples_Rotation_8_1.png
│ ├── examples_Sample_bias_example_13_0.png
│ ├── examples_Sample_bias_example_16_0.png
│ ├── examples_Sample_bias_example_19_0.png
│ ├── examples_Sample_bias_example_27_0.png
│ ├── examples_Sample_bias_example_31_0.png
│ ├── examples_Sample_bias_example_39_0.png
│ ├── examples_Sample_bias_example_50_0.png
│ ├── examples_Two_moons_12_0.png
│ ├── examples_Two_moons_14_0.png
│ ├── examples_Two_moons_17_0.png
│ ├── examples_Two_moons_19_0.png
│ ├── examples_Two_moons_22_0.png
│ ├── examples_Two_moons_24_0.png
│ ├── examples_Two_moons_27_0.png
│ ├── examples_Two_moons_29_0.png
│ ├── examples_Two_moons_32_1.png
│ ├── examples_Two_moons_34_0.png
│ ├── examples_Two_moons_37_0.png
│ ├── examples_Two_moons_39_0.png
│ ├── examples_Two_moons_42_0.png
│ ├── examples_Two_moons_44_0.png
│ ├── examples_Two_moons_47_0.png
│ ├── examples_Two_moons_49_0.png
│ ├── examples_Two_moons_53_0.png
│ ├── examples_Two_moons_55_0.png
│ ├── examples_Two_moons_6_0.png
│ ├── examples_sample_bias_12_0.png
│ ├── examples_sample_bias_15_0.png
│ ├── examples_sample_bias_2d_11_0.png
│ ├── examples_sample_bias_2d_14_0.png
│ ├── examples_sample_bias_2d_17_0.png
│ ├── examples_sample_bias_2d_6_0.png
│ ├── examples_sample_bias_6_0.png
│ ├── examples_sample_bias_9_0.png
│ ├── feature_based.png
│ ├── flowers.jpg
│ ├── fork.png
│ ├── github_logo_32px.png
│ ├── instance_based.png
│ ├── kmm.gif
│ ├── parameter_based.png
│ ├── regular.gif
│ ├── regulartransfer.png
│ ├── sample_bias_img.png
│ ├── srcOnlyCla.gif
│ ├── srcOnlyReg.gif
│ ├── tgtOnly.gif
│ ├── tradaboost.gif
│ └── wdgrl.png
├── _static
│ ├── basic.css
│ ├── binder_badge_logo.svg
│ ├── broken_example.png
│ ├── css
│ │ ├── badge_only.css
│ │ ├── custom.css
│ │ ├── custom_index.css
│ │ ├── fonts
│ │ │ ├── Roboto-Slab-Bold.woff
│ │ │ ├── Roboto-Slab-Bold.woff2
│ │ │ ├── Roboto-Slab-Regular.woff
│ │ │ ├── Roboto-Slab-Regular.woff2
│ │ │ ├── fontawesome-webfont.eot
│ │ │ ├── fontawesome-webfont.svg
│ │ │ ├── fontawesome-webfont.ttf
│ │ │ ├── fontawesome-webfont.woff
│ │ │ ├── fontawesome-webfont.woff2
│ │ │ ├── lato-bold-italic.woff
│ │ │ ├── lato-bold-italic.woff2
│ │ │ ├── lato-bold.woff
│ │ │ ├── lato-bold.woff2
│ │ │ ├── lato-normal-italic.woff
│ │ │ ├── lato-normal-italic.woff2
│ │ │ ├── lato-normal.woff
│ │ │ └── lato-normal.woff2
│ │ └── theme.css
│ ├── doctools.js
│ ├── documentation_options.js
│ ├── file.png
│ ├── images
│ │ ├── adda.png
│ │ ├── borelli.jpg
│ │ ├── carto4.png
│ │ ├── cdan.png
│ │ ├── classification_setup.png
│ │ ├── colab_logo_32px.png
│ │ ├── contribute.png
│ │ ├── dann.png
│ │ ├── deep_da.png
│ │ ├── deepcoral.png
│ │ ├── download_logo_32px.png
│ │ ├── feature_based.png
│ │ ├── finetuned.png
│ │ ├── flowers.jpg
│ │ ├── fork.png
│ │ ├── github_logo_32px.png
│ │ ├── idaml.jpg
│ │ ├── instance_based.png
│ │ ├── michelin.png
│ │ ├── multifidelity_setup.png
│ │ ├── office_item.png
│ │ ├── parameter_based.png
│ │ ├── regression_setup.png
│ │ ├── regulartransfer.png
│ │ ├── results_qs.png
│ │ ├── rotation_setup.png
│ │ ├── sample_bias_2d_setup.png
│ │ ├── sample_bias_corr_img.png
│ │ ├── sample_bias_img.png
│ │ ├── sample_bias_setup.png
│ │ ├── thumbnai_flowchart.PNG
│ │ ├── two_moons_setup.png
│ │ └── wdgrl.png
│ ├── jquery-3.5.1.js
│ ├── jquery.js
│ ├── js
│ │ ├── badge_only.js
│ │ ├── custom.js
│ │ ├── html5shiv-printshiv.min.js
│ │ ├── html5shiv.min.js
│ │ └── theme.js
│ ├── language_data.js
│ ├── minus.png
│ ├── no_image.png
│ ├── plus.png
│ ├── pygments.css
│ ├── searchtools.js
│ ├── sg_gallery-binder.css
│ ├── sg_gallery-dataframe.css
│ ├── sg_gallery-rendered-html.css
│ ├── sg_gallery.css
│ ├── underscore-1.13.1.js
│ └── underscore.js
├── contents.html
├── examples
│ ├── Classification.html
│ ├── Developer_Guide.html
│ ├── Flowers_example.html
│ ├── Heart_Failure.html
│ ├── Multi_fidelity.html
│ ├── Office_example.html
│ ├── Quick_start.html
│ ├── Regression.html
│ ├── Rotation.html
│ ├── Sample_bias_example.html
│ ├── Two_moons.html
│ ├── sample_bias.html
│ ├── sample_bias_2d.html
│ └── tradaboost_experiments.html
├── gallery
│ ├── ADDA.html
│ ├── BalancedWeighting.html
│ ├── CCSA.html
│ ├── CDAN.html
│ ├── CORAL.html
│ ├── DANN.html
│ ├── DeepCORAL.html
│ ├── FA.html
│ ├── FineTuning.html
│ ├── IWC.html
│ ├── IWN.html
│ ├── KLIEP.html
│ ├── KMM.html
│ ├── LDM.html
│ ├── LinInt.html
│ ├── MCD.html
│ ├── MDD.html
│ ├── NearestNeighborsWeighting.html
│ ├── PRED.html
│ ├── RULSIF.html
│ ├── RegularTransferLC.html
│ ├── RegularTransferLR.html
│ ├── RegularTransferNN.html
│ ├── SA.html
│ ├── TCA.html
│ ├── TrAdaBoost.html
│ ├── TrAdaBoostR2.html
│ ├── TransferForest.html
│ ├── TransferTreeClassifier.html
│ ├── TwoStageTrAdaBoostR2.html
│ ├── ULSIF.html
│ ├── WANN.html
│ ├── WDGRL.html
│ └── fMMD.html
├── generated
│ ├── adapt.feature_based.ADDA.html
│ ├── adapt.feature_based.CCSA.html
│ ├── adapt.feature_based.CDAN.html
│ ├── adapt.feature_based.CORAL.html
│ ├── adapt.feature_based.DANN.html
│ ├── adapt.feature_based.DeepCORAL.html
│ ├── adapt.feature_based.FA.html
│ ├── adapt.feature_based.FADA.html
│ ├── adapt.feature_based.FSDA.html
│ ├── adapt.feature_based.FSSP.html
│ ├── adapt.feature_based.JDA.html
│ ├── adapt.feature_based.MCD.html
│ ├── adapt.feature_based.MDD.html
│ ├── adapt.feature_based.MME.html
│ ├── adapt.feature_based.PRED.html
│ ├── adapt.feature_based.SA.html
│ ├── adapt.feature_based.SSDANN.html
│ ├── adapt.feature_based.TCA.html
│ ├── adapt.feature_based.WDGRL.html
│ ├── adapt.feature_based.fMMD.html
│ ├── adapt.instance_based.BalancedWeighting.html
│ ├── adapt.instance_based.GDM.html
│ ├── adapt.instance_based.IWC.html
│ ├── adapt.instance_based.IWN.html
│ ├── adapt.instance_based.KLIEP.html
│ ├── adapt.instance_based.KMM.html
│ ├── adapt.instance_based.LDM.html
│ ├── adapt.instance_based.NearestNeighborsWeighting.html
│ ├── adapt.instance_based.RULSIF.html
│ ├── adapt.instance_based.TrAdaBoost.html
│ ├── adapt.instance_based.TrAdaBoostR2.html
│ ├── adapt.instance_based.TwoStageTrAdaBoostR2.html
│ ├── adapt.instance_based.ULSIF.html
│ ├── adapt.instance_based.WANN.html
│ ├── adapt.metrics.cov_distance.html
│ ├── adapt.metrics.domain_classifier.html
│ ├── adapt.metrics.frechet_distance.html
│ ├── adapt.metrics.linear_discrepancy.html
│ ├── adapt.metrics.make_uda_scorer.html
│ ├── adapt.metrics.neg_j_score.html
│ ├── adapt.metrics.normalized_frechet_distance.html
│ ├── adapt.metrics.normalized_linear_discrepancy.html
│ ├── adapt.metrics.reverse_validation.html
│ ├── adapt.parameter_based.FineTuning.html
│ ├── adapt.parameter_based.LinInt.html
│ ├── adapt.parameter_based.NRC.html
│ ├── adapt.parameter_based.PRED.html
│ ├── adapt.parameter_based.RegularTransferGP.html
│ ├── adapt.parameter_based.RegularTransferLC.html
│ ├── adapt.parameter_based.RegularTransferLR.html
│ ├── adapt.parameter_based.RegularTransferNN.html
│ ├── adapt.parameter_based.SHOT.html
│ ├── adapt.parameter_based.TransferForestClassifier.html
│ ├── adapt.parameter_based.TransferForestSelector.html
│ ├── adapt.parameter_based.TransferTreeClassifier.html
│ ├── adapt.parameter_based.TransferTreeSelector.html
│ ├── adapt.utils.GradientHandler.html
│ ├── adapt.utils.UpdateLambda.html
│ ├── adapt.utils.accuracy.html
│ ├── adapt.utils.check_arrays.html
│ ├── adapt.utils.check_estimator.html
│ ├── adapt.utils.check_fitted_estimator.html
│ ├── adapt.utils.check_fitted_network.html
│ ├── adapt.utils.check_network.html
│ ├── adapt.utils.check_sample_weight.html
│ ├── adapt.utils.get_default_discriminator.html
│ ├── adapt.utils.get_default_encoder.html
│ ├── adapt.utils.get_default_task.html
│ ├── adapt.utils.make_classification_da.html
│ ├── adapt.utils.make_regression_da.html
│ └── adapt.utils.set_random_seed.html
├── genindex.html
├── index.html
├── install.html
├── map.html
├── modules
│ ├── feature_based.html
│ ├── instance_based.html
│ ├── parameter_based.html
│ └── utils.html
├── objects.inv
├── real_examples.html
├── search.html
├── searchindex.js
└── synthetic_examples.html
├── examples
└── transfertree.py
├── make.bat
├── requirements.txt
├── setup.cfg
├── setup.py
├── src_docs
├── _static
│ ├── css
│ │ ├── custom.css
│ │ └── custom_index.css
│ ├── images
│ │ ├── adda.png
│ │ ├── borelli.jpg
│ │ ├── carto4.png
│ │ ├── cdan.png
│ │ ├── classification_setup.png
│ │ ├── colab_logo_32px.png
│ │ ├── contribute.png
│ │ ├── dann.png
│ │ ├── deep_da.png
│ │ ├── deepcoral.png
│ │ ├── download_logo_32px.png
│ │ ├── feature_based.png
│ │ ├── finetuned.png
│ │ ├── flowers.jpg
│ │ ├── fork.png
│ │ ├── github_logo_32px.png
│ │ ├── idaml.jpg
│ │ ├── instance_based.png
│ │ ├── michelin.png
│ │ ├── multifidelity_setup.png
│ │ ├── office_item.png
│ │ ├── parameter_based.png
│ │ ├── regression_setup.png
│ │ ├── regulartransfer.png
│ │ ├── results_qs.png
│ │ ├── rotation_setup.png
│ │ ├── sample_bias_2d_setup.png
│ │ ├── sample_bias_corr_img.png
│ │ ├── sample_bias_img.png
│ │ ├── sample_bias_setup.png
│ │ ├── thumbnai_flowchart.PNG
│ │ ├── two_moons_setup.png
│ │ └── wdgrl.png
│ └── js
│ │ └── custom.js
├── _templates
│ ├── class.rst
│ ├── function.rst
│ ├── index.html
│ └── layout.html
├── carto.html
├── conf.py
├── contents.rst
├── docutils.conf
├── examples
│ ├── Classification.ipynb
│ ├── Developer_Guide.ipynb
│ ├── Flowers_example.ipynb
│ ├── Heart_Failure.ipynb
│ ├── Multi_fidelity.ipynb
│ ├── Office_example.ipynb
│ ├── Quick_start.ipynb
│ ├── Regression.ipynb
│ ├── Rotation.ipynb
│ ├── Sample_bias_example.ipynb
│ ├── Two_moons.ipynb
│ ├── sample_bias.ipynb
│ ├── sample_bias_2d.ipynb
│ └── tradaboost_experiments.ipynb
├── gallery
│ ├── ADDA.rst
│ ├── BalancedWeighting.rst
│ ├── CCSA.rst
│ ├── CDAN.rst
│ ├── CORAL.rst
│ ├── DANN.rst
│ ├── DeepCORAL.rst
│ ├── FA.rst
│ ├── FineTuning.rst
│ ├── IWC.rst
│ ├── IWN.rst
│ ├── KLIEP.rst
│ ├── KMM.rst
│ ├── LDM.rst
│ ├── LinInt.rst
│ ├── MCD.rst
│ ├── MDD.rst
│ ├── NearestNeighborsWeighting.rst
│ ├── PRED.rst
│ ├── RULSIF.rst
│ ├── RegularTransferLC.rst
│ ├── RegularTransferLR.rst
│ ├── RegularTransferNN.rst
│ ├── SA.rst
│ ├── TCA.rst
│ ├── TrAdaBoost.rst
│ ├── TrAdaBoostR2.rst
│ ├── TransferForest.rst
│ ├── TransferTreeClassifier.rst
│ ├── TwoStageTrAdaBoostR2.rst
│ ├── ULSIF.rst
│ ├── WANN.rst
│ ├── WDGRL.rst
│ └── fMMD.rst
├── generated
│ ├── adapt.feature_based.ADDA.rst
│ ├── adapt.feature_based.CCSA.rst
│ ├── adapt.feature_based.CDAN.rst
│ ├── adapt.feature_based.CORAL.rst
│ ├── adapt.feature_based.DANN.rst
│ ├── adapt.feature_based.DeepCORAL.rst
│ ├── adapt.feature_based.FA.rst
│ ├── adapt.feature_based.FADA.rst
│ ├── adapt.feature_based.FSDA.rst
│ ├── adapt.feature_based.FSSP.rst
│ ├── adapt.feature_based.JDA.rst
│ ├── adapt.feature_based.MCD.rst
│ ├── adapt.feature_based.MDD.rst
│ ├── adapt.feature_based.MME.rst
│ ├── adapt.feature_based.PRED.rst
│ ├── adapt.feature_based.SA.rst
│ ├── adapt.feature_based.SSDANN.rst
│ ├── adapt.feature_based.TCA.rst
│ ├── adapt.feature_based.WDGRL.rst
│ ├── adapt.feature_based.fMMD.rst
│ ├── adapt.instance_based.BalancedWeighting.rst
│ ├── adapt.instance_based.GDM.rst
│ ├── adapt.instance_based.IWC.rst
│ ├── adapt.instance_based.IWN.rst
│ ├── adapt.instance_based.KLIEP.rst
│ ├── adapt.instance_based.KMM.rst
│ ├── adapt.instance_based.LDM.rst
│ ├── adapt.instance_based.NearestNeighborsWeighting.rst
│ ├── adapt.instance_based.RULSIF.rst
│ ├── adapt.instance_based.TrAdaBoost.rst
│ ├── adapt.instance_based.TrAdaBoostR2.rst
│ ├── adapt.instance_based.TwoStageTrAdaBoostR2.rst
│ ├── adapt.instance_based.ULSIF.rst
│ ├── adapt.instance_based.WANN.rst
│ ├── adapt.metrics.cov_distance.rst
│ ├── adapt.metrics.domain_classifier.rst
│ ├── adapt.metrics.frechet_distance.rst
│ ├── adapt.metrics.linear_discrepancy.rst
│ ├── adapt.metrics.make_uda_scorer.rst
│ ├── adapt.metrics.neg_j_score.rst
│ ├── adapt.metrics.normalized_frechet_distance.rst
│ ├── adapt.metrics.normalized_linear_discrepancy.rst
│ ├── adapt.metrics.reverse_validation.rst
│ ├── adapt.parameter_based.FineTuning.rst
│ ├── adapt.parameter_based.LinInt.rst
│ ├── adapt.parameter_based.NRC.rst
│ ├── adapt.parameter_based.PRED.rst
│ ├── adapt.parameter_based.RegularTransferGP.rst
│ ├── adapt.parameter_based.RegularTransferLC.rst
│ ├── adapt.parameter_based.RegularTransferLR.rst
│ ├── adapt.parameter_based.RegularTransferNN.rst
│ ├── adapt.parameter_based.SHOT.rst
│ ├── adapt.parameter_based.TransferForestClassifier.rst
│ ├── adapt.parameter_based.TransferForestSelector.rst
│ ├── adapt.parameter_based.TransferTreeClassifier.rst
│ ├── adapt.parameter_based.TransferTreeSelector.rst
│ ├── adapt.utils.GradientHandler.rst
│ ├── adapt.utils.UpdateLambda.rst
│ ├── adapt.utils.accuracy.rst
│ ├── adapt.utils.check_arrays.rst
│ ├── adapt.utils.check_estimator.rst
│ ├── adapt.utils.check_fitted_estimator.rst
│ ├── adapt.utils.check_fitted_network.rst
│ ├── adapt.utils.check_network.rst
│ ├── adapt.utils.check_sample_weight.rst
│ ├── adapt.utils.get_default_discriminator.rst
│ ├── adapt.utils.get_default_encoder.rst
│ ├── adapt.utils.get_default_task.rst
│ ├── adapt.utils.make_classification_da.rst
│ ├── adapt.utils.make_regression_da.rst
│ └── adapt.utils.set_random_seed.rst
├── images
│ ├── all.gif
│ ├── coral.gif
│ ├── dann.gif
│ ├── kmm.gif
│ ├── regular.gif
│ ├── srcOnlyCla.gif
│ ├── srcOnlyReg.gif
│ ├── tgtOnly.gif
│ └── tradaboost.gif
├── index.rst
├── install.rst
├── map.rst
├── modules
│ ├── feature_based.rst
│ ├── instance_based.rst
│ ├── parameter_based.rst
│ └── utils.rst
├── real_examples.rst
└── synthetic_examples.rst
└── tests
├── __init__.py
├── test_adda.py
├── test_balancedweighting.py
├── test_base.py
├── test_ccsa.py
├── test_cdan.py
├── test_coral.py
├── test_dann.py
├── test_fa.py
├── test_finetuning.py
├── test_fmmd.py
├── test_iwc.py
├── test_iwn.py
├── test_kliep.py
├── test_kmm.py
├── test_ldm.py
├── test_linint.py
├── test_mcd.py
├── test_mdd.py
├── test_metrics.py
├── test_nnw.py
├── test_pred.py
├── test_regular.py
├── test_sa.py
├── test_tca.py
├── test_tradaboost.py
├── test_transfertree.py
├── test_treeutils.py
├── test_ulsif.py
├── test_utils.py
├── test_wann.py
└── test_wdgrl.py
/.gitattributes:
--------------------------------------------------------------------------------
1 | *.ipynb linguist-documentation
2 |
--------------------------------------------------------------------------------
/.github/labeler.yml:
--------------------------------------------------------------------------------
1 | # Config file for the labeler Github Action
2 | # https://hub.docker.com/r/jimschubert/labeler-action
3 | # labeler "full" schema
4 |
5 | # enable labeler on issues, prs, or both.
6 | enable:
7 | issues: true
8 | prs: true
9 |
10 | # comments object allows you to specify a different message for issues and prs
11 |
12 | # comments:
13 | # issues: |
14 | # Thanks for opening this issue!
15 | # I have applied any labels matching special text in your title and description.
16 |
17 | # Please review the labels and make any necessary changes.
18 | # prs: |
19 | # Thanks for the contribution!
20 | # I have applied any labels matching special text in your title and description.
21 |
22 | # Please review the labels and make any necessary changes.
23 |
24 | # Labels is an object where:
25 | # - keys are labels
26 | # - values are objects of { include: [ pattern ], exclude: [ pattern ] }
27 | # - pattern must be a valid regex, and is applied globally to
28 | # title + description of issues and/or prs (see enabled config above)
29 | # - 'include' patterns will associate a label if any of these patterns match
30 | # - 'exclude' patterns will ignore this label if any of these patterns match
31 | labels:
32 | 'Type: Fix':
33 | include:
34 | - '^(bug|fix)(\(.*\))?:(.*)'
35 | exclude: []
36 | 'Type: Feature':
37 | include:
38 | - '^feat(\(.*\))?:(.*)'
39 | exclude: []
40 | 'Type: Build':
41 | include:
42 | - '^build(\(.*\))?:(.*)'
43 | exclude: []
44 | 'Type: Documentation':
45 | include:
46 | - '^docs(\(.*\))?:(.*)'
47 | exclude: []
48 | 'Type: Refactoring':
49 | include:
50 | - '^(refactor|style)(\(.*\))?:(.*)'
51 | exclude: []
52 | 'Type: Testing':
53 | include:
54 | - '^test(\(.*\))?:(.*)'
55 | exclude: []
56 | 'Type: Maintenance':
57 | include:
58 | - '^(chore|mnt)(\(.*\))?:(.*)'
59 | exclude: []
60 | 'Type: CI':
61 | include:
62 | - '^ci(\(.*\))?:(.*)'
63 | exclude: []
64 | 'Type: Performance':
65 | include:
66 | - '^perf(\(.*\))?:(.*)'
67 | exclude: []
68 | 'Type: Revert':
69 | include:
70 | - '^revert(\(.*\))?:(.*)'
71 | exclude: []
72 | 'skip-changelog':
73 | include:
74 | - '^(chore: pre-commit autoupdate)'
75 | exclude: []
76 |
--------------------------------------------------------------------------------
/.github/release-drafter.yml:
--------------------------------------------------------------------------------
1 | name-template: '$RESOLVED_VERSION'
2 | tag-template: '$RESOLVED_VERSION'
3 | categories:
4 | - title: '🚀 Features'
5 | labels:
6 | - 'Type: Feature'
7 | - 'Type: Performance'
8 | - title: '🐛 Bug Fixes'
9 | labels:
10 | - 'Type: Fix'
11 | - title: '📚 Documentation'
12 | label: 'Type: Documentation'
13 | - title: '🧰 Maintenance'
14 | label:
15 | - 'Type: Maintenance'
16 | - 'Type: Build'
17 | - 'Type: Refactoring'
18 | - 'Type: CI'
19 | change-template: '- $TITLE @$AUTHOR (#$NUMBER)'
20 | change-title-escapes: '\<*_&' # You can add # and @ to disable mentions, and add ` to disable code blocks.
21 | version-resolver:
22 | major:
23 | labels:
24 | - 'major'
25 | minor:
26 | labels:
27 | - 'minor'
28 | patch:
29 | labels:
30 | - 'patch'
31 | default: patch
32 | exclude-labels:
33 | - 'skip-changelog'
34 | template: |
35 | ## Changes
36 |
37 | $CHANGES
38 |
--------------------------------------------------------------------------------
/.github/semantic.yml:
--------------------------------------------------------------------------------
1 | # Always validate the PR title, and ignore the commits
2 | titleOnly: true
3 |
4 | # By default types specified in commitizen/conventional-commit-types is used.
5 | # See: https://github.com/commitizen/conventional-commit-types/blob/v3.0.0/index.json
6 | # You can override the valid types
7 | types:
8 | - feat
9 | - fix
10 | - docs
11 | - style
12 | - refactor
13 | - perf
14 | - test
15 | - build
16 | - ci
17 | - chore
18 | - revert
19 |
--------------------------------------------------------------------------------
/.github/workflows/check-docs.yml:
--------------------------------------------------------------------------------
1 | name: "Check docs"
2 | on:
3 | push:
4 | branches: [ master ]
5 | pull_request:
6 | branches: [ master ]
7 |
8 | jobs:
9 | docs:
10 | runs-on: ubuntu-latest
11 | steps:
12 | - uses: actions/checkout@v2
13 | - name: Set up Python 3.8
14 | uses: actions/setup-python@v2
15 | with:
16 | python-version: '3.8'
17 | - name: Install doc dependencies
18 | run: |
19 | sudo apt install pandoc
20 | python -m pip install --upgrade pip
21 | pip install jinja2==3.0.3 sphinx==4.4.0 numpydoc==1.2 nbsphinx==0.8.8 sphinx_gallery==0.10.1 sphinx_rtd_theme==1.0.0 ipython==8.0.1
22 | - name: Install adapt dependencies
23 | run: |
24 | python -m pip install --upgrade pip
25 | pip install -r requirements.txt
26 | - name: Install adapt
27 | run: |
28 | pip install -e .
29 | - name: Build documentation
30 | run: |
31 | sudo rm -r -f docs/*
32 | make html
33 | sudo rm -r -f docs/doctrees
34 | sudo rm -r -f docs/html/_sources
35 | sudo rm -r -f docs/html/examples/*.ipynb
36 | mv -v docs/html/* docs/
37 | sudo rm -r -f docs/html
38 | touch .nojekyll
39 | - uses: actions/upload-artifact@v3
40 | with:
41 | name: DocumentationHTML
42 | path: docs/
43 |
--------------------------------------------------------------------------------
/.github/workflows/pr-labeler.yml:
--------------------------------------------------------------------------------
1 | name: Label PRs and issues
2 | on:
3 | issues:
4 | types: [opened, edited, milestoned]
5 | pull_request_target:
6 | types: [opened, edited]
7 |
8 | jobs:
9 |
10 | labeler:
11 | runs-on: ubuntu-latest
12 |
13 | steps:
14 | - name: Check Labels
15 | id: labeler
16 | uses: jimschubert/labeler-action@v2
17 | with:
18 | GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
19 |
--------------------------------------------------------------------------------
/.github/workflows/publish-doc-to-remote.yml:
--------------------------------------------------------------------------------
1 | name: "Publish docs online"
2 |
3 | on:
4 | release:
5 | types: [created]
6 | workflow_dispatch:
7 |
8 | jobs:
9 | docs:
10 | runs-on: ubuntu-latest
11 | steps:
12 | - uses: actions/checkout@v2
13 | - name: Set up Python 3.8
14 | uses: actions/setup-python@v2
15 | with:
16 | python-version: '3.8'
17 | - name: Install doc dependencies
18 | run: |
19 | sudo apt install pandoc
20 | python -m pip install --upgrade pip
21 | pip install jinja2==3.0.3 sphinx==4.4.0 numpydoc==1.2 nbsphinx==0.8.8 sphinx_gallery==0.10.1 sphinx_rtd_theme==1.0.0 ipython==8.0.1
22 | - name: Install adapt dependencies
23 | run: |
24 | python -m pip install --upgrade pip
25 | pip install -r requirements.txt
26 | - name: Install adapt
27 | run: |
28 | pip install -e .
29 | - name: Build documentation
30 | run: |
31 | sudo rm -r -f docs/*
32 | make html
33 | sudo rm -r -f docs/doctrees
34 | sudo rm -r -f docs/html/_sources
35 | sudo rm -r -f docs/html/examples/*.ipynb
36 | mv -v docs/html/* docs/
37 | sudo rm -r -f docs/html
38 | touch .nojekyll
39 | - name: Push changes to remote
40 | run: |
41 | git config --global user.name "github-actions[bot]"
42 | git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com"
43 | git add docs
44 | git commit -m "Update docs"
45 | git push
46 |
--------------------------------------------------------------------------------
/.github/workflows/release-drafter.yml:
--------------------------------------------------------------------------------
1 | name: Release drafter
2 |
3 | on:
4 | push:
5 | # branches to consider in the event; optional, defaults to all
6 | branches:
7 | - master
8 |
9 | jobs:
10 | update_release_draft:
11 | runs-on: ubuntu-latest
12 | steps:
13 | # Drafts your next Release notes as Pull Requests are merged into "master"
14 | - uses: release-drafter/release-drafter@v5
15 | # with:
16 | # (Optional) specify config name to use, relative to .github/. Default: release-drafter.yml
17 | # config-name: my-config.yml
18 | env:
19 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
--------------------------------------------------------------------------------
/.github/workflows/run-test-coverage.yml:
--------------------------------------------------------------------------------
1 | # This workflow will install Python dependencies, run tests, generate coverage
2 | # report and upload it to codecov.
3 | # For more information, see:
4 | # https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
5 |
6 | name: Run tests with coverage
7 |
8 | on:
9 | push:
10 | branches: [ master ]
11 | pull_request:
12 | branches: [ master ]
13 |
14 | jobs:
15 | coverage:
16 | runs-on: ubuntu-latest
17 | steps:
18 | - uses: actions/checkout@v2
19 | - name: Set up Python 3.11
20 | uses: actions/setup-python@v2
21 | with:
22 | python-version: '3.11'
23 | - name: Install dependencies
24 | run: |
25 | python -m pip install --upgrade pip
26 | pip install pytest pytest-cov codecov
27 | pip install -r requirements.txt
28 | - name: Install adapt
29 | run: |
30 | pip install -e .
31 | - name: Test with pytest
32 | run: |
33 | pytest -vv --cov=adapt
34 | - name: Upload codecov
35 | run: |
36 | codecov
37 |
--------------------------------------------------------------------------------
/.github/workflows/run-test.yml:
--------------------------------------------------------------------------------
1 | # This workflow will install Python dependencies, run tests and lint with a variety of Python versions
2 | # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3 |
4 | name: Run tests
5 |
6 | on:
7 | push:
8 | branches: [ master ]
9 | pull_request:
10 | branches: [ master ]
11 |
12 | jobs:
13 | build:
14 | strategy:
15 | matrix:
16 | python-version: ['3.9', '3.10', '3.11', '3.12']
17 | os: [ubuntu-latest, windows-latest, macos-latest]
18 | runs-on: ${{ matrix.os }}
19 | steps:
20 | - uses: actions/checkout@v2
21 | - name: Set up Python ${{ matrix.python-version }}
22 | uses: actions/setup-python@v2
23 | with:
24 | python-version: ${{ matrix.python-version }}
25 | - name: Install dependencies
26 | run: |
27 | python -m pip install --upgrade pip
28 | pip install pytest pytest-cov codecov
29 | pip install -r requirements.txt
30 | - name: Install adapt
31 | run: |
32 | pip install -e .
33 | - name: Test with pytest
34 | run: |
35 | python -m pytest --no-cov
--------------------------------------------------------------------------------
/.github/workflows/upload-to-pypi.yml:
--------------------------------------------------------------------------------
1 | name: Upload package to Pypi
2 |
3 | on:
4 | workflow_dispatch:
5 | inputs:
6 | overrideVersion:
7 | description: Manually force a version
8 |
9 | env:
10 | CIBW_BUILD_VERBOSITY: 1
11 | SETUPTOOLS_SCM_PRETEND_VERSION: ${{ github.event.inputs.overrideVersion }}
12 |
13 | jobs:
14 | make_sdist:
15 | name: Make SDist
16 | runs-on: ubuntu-latest
17 | steps:
18 | - uses: actions/checkout@v1
19 | - name: Setup Python
20 | uses: actions/setup-python@v2
21 | with:
22 | python-version: '3.8'
23 | - name: Install deps
24 | run: python -m pip install build twine
25 | - name: Build SDist
26 | run: python -m build --sdist
27 | - uses: actions/upload-artifact@v2
28 | with:
29 | path: dist/*.tar.gz
30 | - name: Check metadata
31 | run: twine check dist/*
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.ipynb_checkpoints
2 | __pycache__
3 |
4 | # Distribution / packaging
5 | .Python
6 | env/
7 | develop-eggs/
8 | dist/
9 | downloads/
10 | eggs/
11 | .eggs/
12 | lib/
13 | lib64/
14 | parts/
15 | sdist/
16 | var/
17 | *.egg-info/
18 | .installed.cfg
19 | *.egg
20 | docs_build/
21 | docs/html/
22 | docs/doctrees/
23 | adapt/datasets.py
24 | datasets/
25 | debug.ipynb
--------------------------------------------------------------------------------
/.pylintrc:
--------------------------------------------------------------------------------
1 | [REPORTS]
2 | output-format=colorized
3 |
4 | [FORMAT]
5 | good-names=X,Xs,Xt,y,ys,yt,i,j,k
6 |
7 | [MESSAGES CONTROL]
8 | disable=
9 | bad-continuation,
10 | logging-fstring-interpolation,
11 | too-few-public-methods,
12 | too-many-ancestors,
13 | too-many-arguments,
14 | too-many-instance-attributes,
15 | too-many-locals,
16 | too-many-public-methods,
17 | W0201,
18 | C0116
19 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | Copyright (c) 2020, Antoine de Mathelin
2 | All rights reserved.
3 |
4 | Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
5 |
6 | 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
7 |
8 | 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
9 |
10 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | # Minimal makefile for Sphinx documentation
2 | #
3 |
4 | # You can set these variables from the command line, and also
5 | # from the environment for the first two.
6 | SPHINXOPTS ?=
7 | SPHINXBUILD ?= sphinx-build
8 | SOURCEDIR = src_docs
9 | BUILDDIR = docs
10 |
11 | # Put it first so that "make" without argument is like "make help".
12 | help:
13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
14 |
15 | .PHONY: help Makefile
16 |
17 | # Catch-all target: route all unknown targets to Sphinx using the new
18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
19 | %: Makefile
20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
21 |
22 |
23 | #html-noplot:
24 | # $(SPHINXBUILD) -D plot_gallery=0 -b html $(ALLSPHINXOPTS) $(SOURCEDIR) $(BUILDDIR)/html
25 | # @echo
26 | # @echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
--------------------------------------------------------------------------------
/adapt/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | ADAPT: Awesome Domain Adaptation Package Toolbox
3 | """
4 |
5 | from adapt import feature_based
6 | from adapt import instance_based
7 | from adapt import parameter_based
8 | from adapt import utils
9 | from adapt import metrics
10 | from adapt import base
11 |
12 | __all__ = ["feature_based",
13 | "instance_based",
14 | "parameter_based",
15 | "utils",
16 | "metrics",
17 | "base"]
18 |
--------------------------------------------------------------------------------
/adapt/feature_based/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Feature-Based Methods Module
3 | """
4 |
5 | from ._fa import FA
6 | from ._coral import CORAL
7 | from ._dann import DANN
8 | from ._adda import ADDA
9 | from ._deepcoral import DeepCORAL
10 | from ._mcd import MCD
11 | from ._mdd import MDD
12 | from ._wdgrl import WDGRL
13 | from ._cdan import CDAN
14 | from ._sa import SA
15 | from ._fmmd import fMMD
16 | from ._ccsa import CCSA
17 | from ._tca import TCA
18 | from ._pred import PRED
19 |
20 | __all__ = ["FA", "CORAL", "DeepCORAL", "ADDA", "DANN",
21 | "MCD", "MDD", "WDGRL", "CDAN", "SA", "fMMD", "CCSA", "TCA", "PRED"]
22 |
--------------------------------------------------------------------------------
/adapt/instance_based/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Instance-Based Methods Module
3 | """
4 |
5 | from ._kliep import KLIEP
6 | from ._kmm import KMM
7 | from ._tradaboost import TrAdaBoost, TrAdaBoostR2, TwoStageTrAdaBoostR2
8 | from ._wann import WANN
9 | from ._ldm import LDM
10 | from ._nearestneighborsweighting import NearestNeighborsWeighting
11 | from ._balancedweighting import BalancedWeighting
12 | from ._iwn import IWN
13 | from ._ulsif import ULSIF
14 | from ._rulsif import RULSIF
15 | from ._iwc import IWC
16 |
17 | __all__ = ["LDM", "KLIEP", "KMM", "TrAdaBoost", "TrAdaBoostR2",
18 | "TwoStageTrAdaBoostR2", "WANN", "NearestNeighborsWeighting",
19 | "BalancedWeighting", "IWN", "ULSIF", "RULSIF", "IWC"]
--------------------------------------------------------------------------------
/adapt/parameter_based/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Parameter-Based Methods Module
3 | """
4 |
5 | from ._regular import RegularTransferLR, RegularTransferLC, RegularTransferNN, RegularTransferGP
6 | from ._finetuning import FineTuning
7 | from ._transfer_tree import TransferTreeClassifier
8 | from ._transfer_tree import TransferForestClassifier
9 | from ._transfer_tree import TransferTreeSelector
10 | from ._transfer_tree import TransferForestSelector
11 | from ._linint import LinInt
12 |
13 | __all__ = ["RegularTransferLR",
14 | "RegularTransferLC",
15 | "RegularTransferNN",
16 | "RegularTransferGP",
17 | "FineTuning",
18 | "TransferTreeClassifier",
19 | "TransferForestClassifier",
20 | "TransferTreeSelector",
21 | "TransferForestSelector",
22 | "LinInt"]
23 |
--------------------------------------------------------------------------------
/codecov.yml:
--------------------------------------------------------------------------------
1 | # Docs ref: https://docs.codecov.io/docs/codecovyml-reference
2 | # Validation check: $ curl --data-binary @codecov.yml https://codecov.io/validate
3 |
4 | codecov:
5 | token: ad499a8d-3f1a-44b1-9672-27164a1281ce
6 | bot: "codecov-io"
7 | strict_yaml_branch: "yaml-config"
8 | require_ci_to_pass: yes
9 | notify:
10 | wait_for_ci: yes
11 |
12 | coverage:
13 | precision: 2
14 | round: down
15 | range: "70...100"
16 |
--------------------------------------------------------------------------------
/docs/.nojekyll:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/docs/_images/adda.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/adda.png
--------------------------------------------------------------------------------
/docs/_images/all.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/all.gif
--------------------------------------------------------------------------------
/docs/_images/cdan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/cdan.png
--------------------------------------------------------------------------------
/docs/_images/colab_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/colab_logo_32px.png
--------------------------------------------------------------------------------
/docs/_images/contribute.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/contribute.png
--------------------------------------------------------------------------------
/docs/_images/coral.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/coral.gif
--------------------------------------------------------------------------------
/docs/_images/dann.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/dann.gif
--------------------------------------------------------------------------------
/docs/_images/dann.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/dann.png
--------------------------------------------------------------------------------
/docs/_images/deep_da.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/deep_da.png
--------------------------------------------------------------------------------
/docs/_images/deepcoral.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/deepcoral.png
--------------------------------------------------------------------------------
/docs/_images/examples_Classification_9_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Classification_9_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Developer_Guide_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Developer_Guide_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Developer_Guide_29_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Developer_Guide_29_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Flowers_example_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Flowers_example_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Flowers_example_23_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Flowers_example_23_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Flowers_example_29_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Flowers_example_29_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Flowers_example_5_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Flowers_example_5_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_13_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_13_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_18_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_18_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_21_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_21_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_22_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_22_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_25_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_25_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_26_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_26_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_29_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_29_1.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_30_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_30_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_33_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_33_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_34_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_34_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_37_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_37_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_38_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_38_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_41_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_41_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_42_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_42_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_45_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_45_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_46_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_46_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Heart_Failure_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Heart_Failure_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Multi_fidelity_11_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Multi_fidelity_11_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Multi_fidelity_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Multi_fidelity_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Multi_fidelity_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Multi_fidelity_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Multi_fidelity_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Multi_fidelity_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_24_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_24_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_26_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_26_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_34_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_34_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_36_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_36_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_5_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_5_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Office_example_5_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Office_example_5_1.png
--------------------------------------------------------------------------------
/docs/_images/examples_Quick_start_3_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Quick_start_3_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Regression_9_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Regression_9_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_11_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_11_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_12_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_12_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_15_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_15_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_16_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_16_1.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_4_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_4_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Rotation_8_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Rotation_8_1.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_13_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_13_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_16_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_16_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_19_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_19_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_27_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_27_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_31_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_31_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_39_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_39_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Sample_bias_example_50_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Sample_bias_example_50_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_12_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_12_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_19_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_19_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_22_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_22_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_24_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_24_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_27_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_27_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_29_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_29_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_32_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_32_1.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_34_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_34_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_37_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_37_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_39_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_39_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_42_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_42_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_44_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_44_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_47_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_47_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_49_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_49_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_53_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_53_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_55_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_55_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_Two_moons_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_Two_moons_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_12_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_12_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_15_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_15_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_2d_11_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_2d_11_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_2d_14_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_2d_14_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_2d_17_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_2d_17_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_2d_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_2d_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_6_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_6_0.png
--------------------------------------------------------------------------------
/docs/_images/examples_sample_bias_9_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/examples_sample_bias_9_0.png
--------------------------------------------------------------------------------
/docs/_images/feature_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/feature_based.png
--------------------------------------------------------------------------------
/docs/_images/flowers.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/flowers.jpg
--------------------------------------------------------------------------------
/docs/_images/fork.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/fork.png
--------------------------------------------------------------------------------
/docs/_images/github_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/github_logo_32px.png
--------------------------------------------------------------------------------
/docs/_images/instance_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/instance_based.png
--------------------------------------------------------------------------------
/docs/_images/kmm.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/kmm.gif
--------------------------------------------------------------------------------
/docs/_images/parameter_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/parameter_based.png
--------------------------------------------------------------------------------
/docs/_images/regular.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/regular.gif
--------------------------------------------------------------------------------
/docs/_images/regulartransfer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/regulartransfer.png
--------------------------------------------------------------------------------
/docs/_images/sample_bias_img.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/sample_bias_img.png
--------------------------------------------------------------------------------
/docs/_images/srcOnlyCla.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/srcOnlyCla.gif
--------------------------------------------------------------------------------
/docs/_images/srcOnlyReg.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/srcOnlyReg.gif
--------------------------------------------------------------------------------
/docs/_images/tgtOnly.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/tgtOnly.gif
--------------------------------------------------------------------------------
/docs/_images/tradaboost.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/tradaboost.gif
--------------------------------------------------------------------------------
/docs/_images/wdgrl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_images/wdgrl.png
--------------------------------------------------------------------------------
/docs/_static/binder_badge_logo.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/_static/broken_example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/broken_example.png
--------------------------------------------------------------------------------
/docs/_static/css/badge_only.css:
--------------------------------------------------------------------------------
1 | .fa:before{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}
--------------------------------------------------------------------------------
/docs/_static/css/fonts/Roboto-Slab-Bold.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/Roboto-Slab-Bold.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/Roboto-Slab-Bold.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/Roboto-Slab-Bold.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/Roboto-Slab-Regular.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/Roboto-Slab-Regular.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/Roboto-Slab-Regular.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/Roboto-Slab-Regular.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/fontawesome-webfont.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/fontawesome-webfont.eot
--------------------------------------------------------------------------------
/docs/_static/css/fonts/fontawesome-webfont.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/fontawesome-webfont.ttf
--------------------------------------------------------------------------------
/docs/_static/css/fonts/fontawesome-webfont.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/fontawesome-webfont.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/fontawesome-webfont.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/fontawesome-webfont.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-bold-italic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-bold-italic.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-bold-italic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-bold-italic.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-bold.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-bold.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-bold.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-bold.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-normal-italic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-normal-italic.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-normal-italic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-normal-italic.woff2
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-normal.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-normal.woff
--------------------------------------------------------------------------------
/docs/_static/css/fonts/lato-normal.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/css/fonts/lato-normal.woff2
--------------------------------------------------------------------------------
/docs/_static/documentation_options.js:
--------------------------------------------------------------------------------
1 | var DOCUMENTATION_OPTIONS = {
2 | URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
3 | VERSION: '0.1.0',
4 | LANGUAGE: 'None',
5 | COLLAPSE_INDEX: false,
6 | BUILDER: 'html',
7 | FILE_SUFFIX: '.html',
8 | LINK_SUFFIX: '.html',
9 | HAS_SOURCE: true,
10 | SOURCELINK_SUFFIX: '.txt',
11 | NAVIGATION_WITH_KEYS: false
12 | };
--------------------------------------------------------------------------------
/docs/_static/file.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/file.png
--------------------------------------------------------------------------------
/docs/_static/images/adda.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/adda.png
--------------------------------------------------------------------------------
/docs/_static/images/borelli.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/borelli.jpg
--------------------------------------------------------------------------------
/docs/_static/images/carto4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/carto4.png
--------------------------------------------------------------------------------
/docs/_static/images/cdan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/cdan.png
--------------------------------------------------------------------------------
/docs/_static/images/classification_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/classification_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/colab_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/colab_logo_32px.png
--------------------------------------------------------------------------------
/docs/_static/images/contribute.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/contribute.png
--------------------------------------------------------------------------------
/docs/_static/images/dann.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/dann.png
--------------------------------------------------------------------------------
/docs/_static/images/deep_da.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/deep_da.png
--------------------------------------------------------------------------------
/docs/_static/images/deepcoral.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/deepcoral.png
--------------------------------------------------------------------------------
/docs/_static/images/download_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/download_logo_32px.png
--------------------------------------------------------------------------------
/docs/_static/images/feature_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/feature_based.png
--------------------------------------------------------------------------------
/docs/_static/images/finetuned.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/finetuned.png
--------------------------------------------------------------------------------
/docs/_static/images/flowers.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/flowers.jpg
--------------------------------------------------------------------------------
/docs/_static/images/fork.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/fork.png
--------------------------------------------------------------------------------
/docs/_static/images/github_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/github_logo_32px.png
--------------------------------------------------------------------------------
/docs/_static/images/idaml.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/idaml.jpg
--------------------------------------------------------------------------------
/docs/_static/images/instance_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/instance_based.png
--------------------------------------------------------------------------------
/docs/_static/images/michelin.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/michelin.png
--------------------------------------------------------------------------------
/docs/_static/images/multifidelity_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/multifidelity_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/office_item.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/office_item.png
--------------------------------------------------------------------------------
/docs/_static/images/parameter_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/parameter_based.png
--------------------------------------------------------------------------------
/docs/_static/images/regression_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/regression_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/regulartransfer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/regulartransfer.png
--------------------------------------------------------------------------------
/docs/_static/images/results_qs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/results_qs.png
--------------------------------------------------------------------------------
/docs/_static/images/rotation_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/rotation_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/sample_bias_2d_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/sample_bias_2d_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/sample_bias_corr_img.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/sample_bias_corr_img.png
--------------------------------------------------------------------------------
/docs/_static/images/sample_bias_img.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/sample_bias_img.png
--------------------------------------------------------------------------------
/docs/_static/images/sample_bias_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/sample_bias_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/thumbnai_flowchart.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/thumbnai_flowchart.PNG
--------------------------------------------------------------------------------
/docs/_static/images/two_moons_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/two_moons_setup.png
--------------------------------------------------------------------------------
/docs/_static/images/wdgrl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/images/wdgrl.png
--------------------------------------------------------------------------------
/docs/_static/js/badge_only.js:
--------------------------------------------------------------------------------
1 | !function(e){var t={};function r(n){if(t[n])return t[n].exports;var o=t[n]={i:n,l:!1,exports:{}};return e[n].call(o.exports,o,o.exports,r),o.l=!0,o.exports}r.m=e,r.c=t,r.d=function(e,t,n){r.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:n})},r.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},r.t=function(e,t){if(1&t&&(e=r(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var n=Object.create(null);if(r.r(n),Object.defineProperty(n,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var o in e)r.d(n,o,function(t){return e[t]}.bind(null,o));return n},r.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return r.d(t,"a",t),t},r.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r.p="",r(r.s=4)}({4:function(e,t,r){}});
--------------------------------------------------------------------------------
/docs/_static/js/custom.js:
--------------------------------------------------------------------------------
1 | var docs = document.getElementsByClassName("field-list");
2 | var code = document.getElementsByClassName("highlight");
3 | var links = document.getElementsByClassName("wy-menu wy-menu-vertical");
4 |
5 |
6 |
7 | const ponctList = [",", ".", ";", ":"]
8 | //var tables = document.getElementsByClassName("longtable docutils align-default");
9 | //var className = document.getElementsByClassName("py class");
10 |
11 |
12 | function otherParams() {
13 |
14 | if (docs.length == 0) {
15 | docs = document.getElementsByClassName("field-list");
16 | setTimeout(attributes, 50);
17 | return;
18 | } else {
19 | for (var i = 0; i < docs[0].children.length; i++) {
20 | console.log(docs[0].children[i].innerHTML);
21 | if (docs[0].children[i].innerHTML == "Yields") {
22 | docs[0].children[i].innerHTML = "Other Parameters";
23 | };
24 | };
25 | };
26 | };
27 |
28 |
29 | function attributes() {
30 |
31 | if (docs.length == 0) {
32 | docs = document.getElementsByClassName("field-list");
33 | setTimeout(attributes, 50);
34 | return;
35 | } else {
36 | docs[0].appendChild(docs[1].children[0]);
37 | docs[0].appendChild(docs[1].children[0]);
38 | if (docs[0].children.length>2) {
39 | if (docs[0].children[2].innerHTML == "Yields") {
40 | docs[0].children[2].innerHTML = "Other Parameters";
41 | };
42 | };
43 | };
44 | };
45 |
46 |
47 | function changeLinks() {
48 |
49 | if (links.length == 0) {
50 | links = document.getElementsByClassName("wy-menu wy-menu-vertical");
51 | setTimeout(changeLinks, 50);
52 | return;
53 | } else {
54 | links[0].innerHTML = links[0].innerHTML.replace(/##/g, "#")
55 | };
56 | };
57 |
58 | function addLinks() {
59 |
60 | if (tables.length == 0 || className.length ==0) {
61 | tables = document.getElementsByClassName("longtable docutils align-default");
62 | className = document.getElementsByClassName("py class");
63 | setTimeout(addLinks, 50);
64 | return;
65 | } else {
66 | var tbody = tables[0].children[1];
67 | for (var i = 0; i < tbody.children.length; i++) {
68 | var splits = tbody.children[i].innerHTML.split("");
69 | splits[1] = splits[1].split("");
70 | console.log(splits);
71 | newInner = splits[0].concat("").concat(splits[1][0]).concat("").concat(splits[1][1]);
72 | tbody.children[i].innerHTML = newInner;
73 | console.log(newInner);
74 | };
75 | window.scrollTo(0,0);
76 | };
77 | };
78 |
79 | function changeColor() {
80 |
81 | if (code.length == 0) {
82 | code = document.getElementsByClassName("highlight");
83 | setTimeout(changeColor, 50);
84 | return;
85 | }
86 | else {
87 | for (var k = 0; k < code.length; k++) {
88 | var elements = code[k].children[0].children;
89 | var isPoint = false
90 | for (var i = 0; i < elements.length; i++) {
91 | var elem = elements[i]
92 |
93 | if (isPoint == true) {
94 | elem.style.color = "#0e84b5";
95 | }
96 |
97 | isPoint = false
98 |
99 | if (elem.className == "o" && ponctList.includes(elem.innerHTML)) {
100 | elem.style.color = "#212529";
101 | elem.style.fontWeight = "normal";
102 |
103 | if (elem.innerHTML == ".") {
104 | isPoint = true;
105 | }
106 |
107 | }
108 | }
109 | }
110 | }
111 | }
112 |
113 | changeColor();
114 | attributes();
115 | //otherParams();
116 | //changeLinks();
117 | //addLinks();
118 |
119 |
--------------------------------------------------------------------------------
/docs/_static/js/html5shiv.min.js:
--------------------------------------------------------------------------------
1 | /**
2 | * @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
3 | */
4 | !function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document);
--------------------------------------------------------------------------------
/docs/_static/minus.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/minus.png
--------------------------------------------------------------------------------
/docs/_static/no_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/no_image.png
--------------------------------------------------------------------------------
/docs/_static/plus.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/_static/plus.png
--------------------------------------------------------------------------------
/docs/_static/sg_gallery-binder.css:
--------------------------------------------------------------------------------
1 | /* CSS for binder integration */
2 |
3 | div.binder-badge {
4 | margin: 1em auto;
5 | vertical-align: middle;
6 | }
7 |
--------------------------------------------------------------------------------
/docs/_static/sg_gallery-dataframe.css:
--------------------------------------------------------------------------------
1 | /* Pandas dataframe css */
2 | /* Taken from: https://github.com/spatialaudio/nbsphinx/blob/fb3ba670fc1ba5f54d4c487573dbc1b4ecf7e9ff/src/nbsphinx.py#L587-L619 */
3 |
4 | table.dataframe {
5 | border: none !important;
6 | border-collapse: collapse;
7 | border-spacing: 0;
8 | border-color: transparent;
9 | color: black;
10 | font-size: 12px;
11 | table-layout: fixed;
12 | }
13 | table.dataframe thead {
14 | border-bottom: 1px solid black;
15 | vertical-align: bottom;
16 | }
17 | table.dataframe tr,
18 | table.dataframe th,
19 | table.dataframe td {
20 | text-align: right;
21 | vertical-align: middle;
22 | padding: 0.5em 0.5em;
23 | line-height: normal;
24 | white-space: normal;
25 | max-width: none;
26 | border: none;
27 | }
28 | table.dataframe th {
29 | font-weight: bold;
30 | }
31 | table.dataframe tbody tr:nth-child(odd) {
32 | background: #f5f5f5;
33 | }
34 | table.dataframe tbody tr:hover {
35 | background: rgba(66, 165, 245, 0.2);
36 | }
37 |
--------------------------------------------------------------------------------
/docs/objects.inv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/docs/objects.inv
--------------------------------------------------------------------------------
/make.bat:
--------------------------------------------------------------------------------
1 | @ECHO OFF
2 |
3 | pushd %~dp0
4 |
5 | REM Command file for Sphinx documentation
6 |
7 | if "%SPHINXBUILD%" == "" (
8 | set SPHINXBUILD=sphinx-build
9 | )
10 | set SOURCEDIR=src_docs
11 | set BUILDDIR=docs
12 |
13 | if "%1" == "" goto help
14 |
15 | %SPHINXBUILD% >NUL 2>NUL
16 | if errorlevel 9009 (
17 | echo.
18 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
19 | echo.installed, then set the SPHINXBUILD environment variable to point
20 | echo.to the full path of the 'sphinx-build' executable. Alternatively you
21 | echo.may add the Sphinx directory to PATH.
22 | echo.
23 | echo.If you don't have Sphinx installed, grab it from
24 | echo.http://sphinx-doc.org/
25 | exit /b 1
26 | )
27 |
28 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
29 | goto end
30 |
31 | :help
32 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
33 |
34 | :end
35 | popd
36 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy
2 | scipy
3 | tensorflow
4 | scikit-learn
5 | cvxopt
6 | scikeras
7 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | # Inside of setup.cfg
2 | [metadata]
3 | description-file = README.md
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import os
2 | from setuptools import setup, find_packages
3 |
4 | ROOT = os.path.abspath(os.path.dirname(__file__))
5 | with open(os.path.join(ROOT, 'README.md'), encoding="utf-8") as f:
6 | long_description = f.read()
7 |
8 | setup(
9 | name='adapt',
10 | version='0.4.4',
11 | description='Awesome Domain Adaptation Python Toolbox for Tensorflow and Scikit-learn',
12 | url='https://github.com/adapt-python/adapt.git',
13 | author='Antoine de Mathelin',
14 | author_email='antoine.demat@gmail.com',
15 | license='BSD-2',
16 | packages=find_packages(exclude=["tests"]),
17 | install_requires=["numpy", "scipy", "tensorflow", "scikit-learn", "cvxopt", "scikeras"],
18 | zip_safe=False,
19 | long_description=long_description,
20 | long_description_content_type='text/markdown'
21 | )
22 |
--------------------------------------------------------------------------------
/src_docs/_static/images/adda.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/adda.png
--------------------------------------------------------------------------------
/src_docs/_static/images/borelli.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/borelli.jpg
--------------------------------------------------------------------------------
/src_docs/_static/images/carto4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/carto4.png
--------------------------------------------------------------------------------
/src_docs/_static/images/cdan.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/cdan.png
--------------------------------------------------------------------------------
/src_docs/_static/images/classification_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/classification_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/colab_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/colab_logo_32px.png
--------------------------------------------------------------------------------
/src_docs/_static/images/contribute.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/contribute.png
--------------------------------------------------------------------------------
/src_docs/_static/images/dann.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/dann.png
--------------------------------------------------------------------------------
/src_docs/_static/images/deep_da.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/deep_da.png
--------------------------------------------------------------------------------
/src_docs/_static/images/deepcoral.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/deepcoral.png
--------------------------------------------------------------------------------
/src_docs/_static/images/download_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/download_logo_32px.png
--------------------------------------------------------------------------------
/src_docs/_static/images/feature_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/feature_based.png
--------------------------------------------------------------------------------
/src_docs/_static/images/finetuned.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/finetuned.png
--------------------------------------------------------------------------------
/src_docs/_static/images/flowers.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/flowers.jpg
--------------------------------------------------------------------------------
/src_docs/_static/images/fork.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/fork.png
--------------------------------------------------------------------------------
/src_docs/_static/images/github_logo_32px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/github_logo_32px.png
--------------------------------------------------------------------------------
/src_docs/_static/images/idaml.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/idaml.jpg
--------------------------------------------------------------------------------
/src_docs/_static/images/instance_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/instance_based.png
--------------------------------------------------------------------------------
/src_docs/_static/images/michelin.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/michelin.png
--------------------------------------------------------------------------------
/src_docs/_static/images/multifidelity_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/multifidelity_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/office_item.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/office_item.png
--------------------------------------------------------------------------------
/src_docs/_static/images/parameter_based.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/parameter_based.png
--------------------------------------------------------------------------------
/src_docs/_static/images/regression_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/regression_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/regulartransfer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/regulartransfer.png
--------------------------------------------------------------------------------
/src_docs/_static/images/results_qs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/results_qs.png
--------------------------------------------------------------------------------
/src_docs/_static/images/rotation_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/rotation_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/sample_bias_2d_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/sample_bias_2d_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/sample_bias_corr_img.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/sample_bias_corr_img.png
--------------------------------------------------------------------------------
/src_docs/_static/images/sample_bias_img.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/sample_bias_img.png
--------------------------------------------------------------------------------
/src_docs/_static/images/sample_bias_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/sample_bias_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/thumbnai_flowchart.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/thumbnai_flowchart.PNG
--------------------------------------------------------------------------------
/src_docs/_static/images/two_moons_setup.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/two_moons_setup.png
--------------------------------------------------------------------------------
/src_docs/_static/images/wdgrl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/_static/images/wdgrl.png
--------------------------------------------------------------------------------
/src_docs/_static/js/custom.js:
--------------------------------------------------------------------------------
1 | var docs = document.getElementsByClassName("field-list");
2 | var code = document.getElementsByClassName("highlight");
3 | var links = document.getElementsByClassName("wy-menu wy-menu-vertical");
4 |
5 |
6 |
7 | const ponctList = [",", ".", ";", ":"]
8 | //var tables = document.getElementsByClassName("longtable docutils align-default");
9 | //var className = document.getElementsByClassName("py class");
10 |
11 |
12 | function otherParams() {
13 |
14 | if (docs.length == 0) {
15 | docs = document.getElementsByClassName("field-list");
16 | setTimeout(attributes, 50);
17 | return;
18 | } else {
19 | for (var i = 0; i < docs[0].children.length; i++) {
20 | console.log(docs[0].children[i].innerHTML);
21 | if (docs[0].children[i].innerHTML == "Yields") {
22 | docs[0].children[i].innerHTML = "Other Parameters";
23 | };
24 | };
25 | };
26 | };
27 |
28 |
29 | function attributes() {
30 |
31 | if (docs.length == 0) {
32 | docs = document.getElementsByClassName("field-list");
33 | setTimeout(attributes, 50);
34 | return;
35 | } else {
36 | docs[0].appendChild(docs[1].children[0]);
37 | docs[0].appendChild(docs[1].children[0]);
38 | if (docs[0].children.length>2) {
39 | if (docs[0].children[2].innerHTML == "Yields") {
40 | docs[0].children[2].innerHTML = "Other Parameters";
41 | };
42 | };
43 | };
44 | };
45 |
46 |
47 | function changeLinks() {
48 |
49 | if (links.length == 0) {
50 | links = document.getElementsByClassName("wy-menu wy-menu-vertical");
51 | setTimeout(changeLinks, 50);
52 | return;
53 | } else {
54 | links[0].innerHTML = links[0].innerHTML.replace(/##/g, "#")
55 | };
56 | };
57 |
58 | function addLinks() {
59 |
60 | if (tables.length == 0 || className.length ==0) {
61 | tables = document.getElementsByClassName("longtable docutils align-default");
62 | className = document.getElementsByClassName("py class");
63 | setTimeout(addLinks, 50);
64 | return;
65 | } else {
66 | var tbody = tables[0].children[1];
67 | for (var i = 0; i < tbody.children.length; i++) {
68 | var splits = tbody.children[i].innerHTML.split("");
69 | splits[1] = splits[1].split("");
70 | console.log(splits);
71 | newInner = splits[0].concat("").concat(splits[1][0]).concat("").concat(splits[1][1]);
72 | tbody.children[i].innerHTML = newInner;
73 | console.log(newInner);
74 | };
75 | window.scrollTo(0,0);
76 | };
77 | };
78 |
79 | function changeColor() {
80 |
81 | if (code.length == 0) {
82 | code = document.getElementsByClassName("highlight");
83 | setTimeout(changeColor, 50);
84 | return;
85 | }
86 | else {
87 | for (var k = 0; k < code.length; k++) {
88 | var elements = code[k].children[0].children;
89 | var isPoint = false
90 | for (var i = 0; i < elements.length; i++) {
91 | var elem = elements[i]
92 |
93 | if (isPoint == true) {
94 | elem.style.color = "#0e84b5";
95 | }
96 |
97 | isPoint = false
98 |
99 | if (elem.className == "o" && ponctList.includes(elem.innerHTML)) {
100 | elem.style.color = "#212529";
101 | elem.style.fontWeight = "normal";
102 |
103 | if (elem.innerHTML == ".") {
104 | isPoint = true;
105 | }
106 |
107 | }
108 | }
109 | }
110 | }
111 | }
112 |
113 | changeColor();
114 | attributes();
115 | //otherParams();
116 | //changeLinks();
117 | //addLinks();
118 |
119 |
--------------------------------------------------------------------------------
/src_docs/_templates/class.rst:
--------------------------------------------------------------------------------
1 | :ref:`{{module}} <{{module}}>`.{{objname}}
2 | {{ underline }}====================================
3 |
4 | .. currentmodule:: {{module}}
5 |
6 | .. autoclass:: {{objname}}
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 | {% block methods %}
13 |
14 | {%- set excludedmethods = [
15 | 'compute_metrics',
16 | 'compute_loss',
17 | 'add_loss',
18 | 'add_metric',
19 | 'add_update',
20 | 'add_variable',
21 | 'add_weight',
22 | 'apply',
23 | 'build',
24 | 'build_from_config',
25 | 'call',
26 | 'compile_from_config',
27 | 'compute_mask',
28 | 'compute_output_shape',
29 | 'compute_output_signature',
30 | 'count_params',
31 | 'evaluate',
32 | 'evaluate_generator',
33 | 'export',
34 | 'finalize_state',
35 | 'fit_generator',
36 | 'from_config',
37 | 'get_build_config',
38 | 'get_compile_config',
39 | 'get_config',
40 | 'get_input_at',
41 | 'get_input_mask_at',
42 | 'get_input_shape_at',
43 | 'get_layer',
44 | 'get_losses_for',
45 | 'get_metrics_result',
46 | 'get_output_at',
47 | 'get_output_mask_at',
48 | 'get_output_shape_at',
49 | 'get_updates_for',
50 | 'get_weights',
51 | 'get_weight_paths',
52 | 'load_own_variables',
53 | 'make_predict_function',
54 | 'make_test_function',
55 | 'make_train_function',
56 | 'predict_generator',
57 | 'predict_on_batch',
58 | 'predict_step',
59 | 'reset_metrics',
60 | 'reset_states',
61 | 'save',
62 | 'save_spec',
63 | 'save_own_variables',
64 | 'set_weights',
65 | 'summary',
66 | 'test_on_batch',
67 | 'test_step',
68 | 'to_json',
69 | 'to_yaml',
70 | 'train_on_batch',
71 | 'train_step',
72 | 'with_name_scope']
73 | %}
74 |
75 | .. rubric:: Methods
76 |
77 | .. autosummary::
78 | {% for item in methods %}
79 | {%- if item not in excludedmethods %}
80 | ~{{objname}}.{{ item }}
81 | {%- endif %}
82 | {%- endfor %}
83 |
84 | {% for item in methods %}
85 | {%- if item not in excludedmethods %}
86 | .. automethod:: {{ item }}
87 | {%- endif %}
88 | {%- endfor %}
89 |
90 | {% endblock %}
91 |
92 |
93 | .. raw:: html
94 |
95 |
Examples
96 |
97 | .. include:: ../gallery/{{objname}}.rst
98 |
99 |
--------------------------------------------------------------------------------
/src_docs/_templates/function.rst:
--------------------------------------------------------------------------------
1 | :ref:`{{module}} <{{module}}>`.{{objname}}
2 | {{ underline }}====================================
3 |
4 | .. currentmodule:: {{ module }}
5 |
6 | .. autofunction:: {{ objname }}
7 |
8 |
9 |
--------------------------------------------------------------------------------
/src_docs/docutils.conf:
--------------------------------------------------------------------------------
1 | [parsers]
2 | tab_width: 4
--------------------------------------------------------------------------------
/src_docs/gallery/ADDA.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
5 | ../examples/Rotation
--------------------------------------------------------------------------------
/src_docs/gallery/BalancedWeighting.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/BalancedWeighting.rst
--------------------------------------------------------------------------------
/src_docs/gallery/CCSA.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/CCSA.rst
--------------------------------------------------------------------------------
/src_docs/gallery/CDAN.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
--------------------------------------------------------------------------------
/src_docs/gallery/CORAL.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
5 | ../examples/Rotation
6 | ../examples/Regression
--------------------------------------------------------------------------------
/src_docs/gallery/DANN.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
5 | ../examples/Classification
6 | ../examples/Rotation
--------------------------------------------------------------------------------
/src_docs/gallery/DeepCORAL.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
--------------------------------------------------------------------------------
/src_docs/gallery/FA.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/FA.rst
--------------------------------------------------------------------------------
/src_docs/gallery/FineTuning.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Flowers_example
5 | ../examples/Office_example
--------------------------------------------------------------------------------
/src_docs/gallery/IWC.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/IWC.rst
--------------------------------------------------------------------------------
/src_docs/gallery/IWN.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/IWN.rst
--------------------------------------------------------------------------------
/src_docs/gallery/KLIEP.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/sample_bias
5 | ../examples/sample_bias_2d
6 | ../examples/Sample_bias_example
--------------------------------------------------------------------------------
/src_docs/gallery/KMM.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/sample_bias
5 | ../examples/sample_bias_2d
6 | ../examples/Regression
7 | ../examples/Sample_bias_example
--------------------------------------------------------------------------------
/src_docs/gallery/LDM.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/LDM.rst
--------------------------------------------------------------------------------
/src_docs/gallery/LinInt.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/LinInt.rst
--------------------------------------------------------------------------------
/src_docs/gallery/MCD.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
--------------------------------------------------------------------------------
/src_docs/gallery/MDD.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
5 | ../examples/Office_example
--------------------------------------------------------------------------------
/src_docs/gallery/NearestNeighborsWeighting.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/NearestNeighborsWeighting.rst
--------------------------------------------------------------------------------
/src_docs/gallery/PRED.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/PRED.rst
--------------------------------------------------------------------------------
/src_docs/gallery/RULSIF.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/RULSIF.rst
--------------------------------------------------------------------------------
/src_docs/gallery/RegularTransferLC.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/RegularTransferLC.rst
--------------------------------------------------------------------------------
/src_docs/gallery/RegularTransferLR.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/RegularTransferLR.rst
--------------------------------------------------------------------------------
/src_docs/gallery/RegularTransferNN.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Multi_fidelity
5 | ../examples/Regression
--------------------------------------------------------------------------------
/src_docs/gallery/SA.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/SA.rst
--------------------------------------------------------------------------------
/src_docs/gallery/TCA.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/TCA.rst
--------------------------------------------------------------------------------
/src_docs/gallery/TrAdaBoost.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/tradaboost_experiments
--------------------------------------------------------------------------------
/src_docs/gallery/TrAdaBoostR2.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Regression
--------------------------------------------------------------------------------
/src_docs/gallery/TransferForest.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/TransferForest.rst
--------------------------------------------------------------------------------
/src_docs/gallery/TransferTreeClassifier.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/TransferTreeClassifier.rst
--------------------------------------------------------------------------------
/src_docs/gallery/TwoStageTrAdaBoostR2.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/TwoStageTrAdaBoostR2.rst
--------------------------------------------------------------------------------
/src_docs/gallery/ULSIF.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/ULSIF.rst
--------------------------------------------------------------------------------
/src_docs/gallery/WANN.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/WANN.rst
--------------------------------------------------------------------------------
/src_docs/gallery/WDGRL.rst:
--------------------------------------------------------------------------------
1 | .. nbgallery::
2 | :maxdepth: 1
3 |
4 | ../examples/Two_moons
--------------------------------------------------------------------------------
/src_docs/gallery/fMMD.rst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/gallery/fMMD.rst
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.ADDA.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.ADDA
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: ADDA
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~ADDA.__init__
19 | ~ADDA.compile
20 | ~ADDA.fit
21 | ~ADDA.get_params
22 | ~ADDA.predict
23 | ~ADDA.predict_disc
24 | ~ADDA.predict_task
25 | ~ADDA.pretrain_step
26 | ~ADDA.score
27 | ~ADDA.set_params
28 | ~ADDA.transform
29 | ~ADDA.unsupervised_score
30 |
31 |
32 | .. automethod:: __init__
33 | .. automethod:: compile
34 | .. automethod:: fit
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_disc
38 | .. automethod:: predict_task
39 | .. automethod:: pretrain_step
40 | .. automethod:: score
41 | .. automethod:: set_params
42 | .. automethod:: transform
43 | .. automethod:: unsupervised_score
44 |
45 |
46 |
47 |
48 | .. raw:: html
49 |
50 | Examples
51 |
52 | .. include:: ../gallery/ADDA.rst
53 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.CCSA.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.CCSA
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: CCSA
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~CCSA.__init__
19 | ~CCSA.compile
20 | ~CCSA.fit
21 | ~CCSA.get_params
22 | ~CCSA.predict
23 | ~CCSA.predict_disc
24 | ~CCSA.predict_task
25 | ~CCSA.score
26 | ~CCSA.set_params
27 | ~CCSA.transform
28 | ~CCSA.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/CCSA.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.CDAN.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.CDAN
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: CDAN
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~CDAN.__init__
19 | ~CDAN.compile
20 | ~CDAN.fit
21 | ~CDAN.get_params
22 | ~CDAN.predict
23 | ~CDAN.predict_disc
24 | ~CDAN.predict_task
25 | ~CDAN.score
26 | ~CDAN.set_params
27 | ~CDAN.transform
28 | ~CDAN.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/CDAN.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.CORAL.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.CORAL
2 | =============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: CORAL
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~CORAL.__init__
19 | ~CORAL.fit
20 | ~CORAL.fit_estimator
21 | ~CORAL.fit_transform
22 | ~CORAL.get_params
23 | ~CORAL.predict
24 | ~CORAL.predict_estimator
25 | ~CORAL.score
26 | ~CORAL.set_params
27 | ~CORAL.transform
28 | ~CORAL.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/CORAL.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.DANN.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.DANN
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: DANN
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~DANN.__init__
19 | ~DANN.compile
20 | ~DANN.fit
21 | ~DANN.get_params
22 | ~DANN.predict
23 | ~DANN.predict_disc
24 | ~DANN.predict_task
25 | ~DANN.score
26 | ~DANN.set_params
27 | ~DANN.transform
28 | ~DANN.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/DANN.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.DeepCORAL.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.DeepCORAL
2 | =================================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: DeepCORAL
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~DeepCORAL.__init__
19 | ~DeepCORAL.compile
20 | ~DeepCORAL.fit
21 | ~DeepCORAL.get_params
22 | ~DeepCORAL.predict
23 | ~DeepCORAL.predict_disc
24 | ~DeepCORAL.predict_task
25 | ~DeepCORAL.score
26 | ~DeepCORAL.set_params
27 | ~DeepCORAL.transform
28 | ~DeepCORAL.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/DeepCORAL.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.FA.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.FA
2 | ==========================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: FA
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~FA.__init__
19 | ~FA.fit
20 | ~FA.fit_estimator
21 | ~FA.fit_transform
22 | ~FA.get_params
23 | ~FA.predict
24 | ~FA.predict_estimator
25 | ~FA.score
26 | ~FA.set_params
27 | ~FA.transform
28 | ~FA.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/FA.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.FADA.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.FSDA.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.FSSP.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.JDA.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.MCD.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.MCD
2 | ===========================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: MCD
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~MCD.__init__
19 | ~MCD.compile
20 | ~MCD.fit
21 | ~MCD.get_params
22 | ~MCD.predict
23 | ~MCD.predict_avg
24 | ~MCD.predict_disc
25 | ~MCD.predict_task
26 | ~MCD.pretrain_step
27 | ~MCD.score
28 | ~MCD.set_params
29 | ~MCD.transform
30 | ~MCD.unsupervised_score
31 |
32 |
33 | .. automethod:: __init__
34 | .. automethod:: compile
35 | .. automethod:: fit
36 | .. automethod:: get_params
37 | .. automethod:: predict
38 | .. automethod:: predict_avg
39 | .. automethod:: predict_disc
40 | .. automethod:: predict_task
41 | .. automethod:: pretrain_step
42 | .. automethod:: score
43 | .. automethod:: set_params
44 | .. automethod:: transform
45 | .. automethod:: unsupervised_score
46 |
47 |
48 |
49 |
50 | .. raw:: html
51 |
52 | Examples
53 |
54 | .. include:: ../gallery/MCD.rst
55 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.MDD.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.MDD
2 | ===========================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: MDD
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~MDD.__init__
19 | ~MDD.compile
20 | ~MDD.fit
21 | ~MDD.get_params
22 | ~MDD.predict
23 | ~MDD.predict_disc
24 | ~MDD.predict_task
25 | ~MDD.score
26 | ~MDD.set_params
27 | ~MDD.transform
28 | ~MDD.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/MDD.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.MME.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.PRED.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.PRED
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: PRED
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~PRED.__init__
19 | ~PRED.fit
20 | ~PRED.fit_estimator
21 | ~PRED.fit_transform
22 | ~PRED.get_params
23 | ~PRED.predict
24 | ~PRED.predict_estimator
25 | ~PRED.score
26 | ~PRED.set_params
27 | ~PRED.transform
28 | ~PRED.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/PRED.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.SA.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.SA
2 | ==========================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: SA
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~SA.__init__
19 | ~SA.fit
20 | ~SA.fit_estimator
21 | ~SA.fit_transform
22 | ~SA.get_params
23 | ~SA.predict
24 | ~SA.predict_estimator
25 | ~SA.score
26 | ~SA.set_params
27 | ~SA.transform
28 | ~SA.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/SA.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.SSDANN.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.TCA.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.TCA
2 | ===========================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: TCA
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TCA.__init__
19 | ~TCA.fit
20 | ~TCA.fit_estimator
21 | ~TCA.fit_transform
22 | ~TCA.get_params
23 | ~TCA.predict
24 | ~TCA.predict_estimator
25 | ~TCA.score
26 | ~TCA.set_params
27 | ~TCA.transform
28 | ~TCA.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/TCA.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.WDGRL.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.WDGRL
2 | =============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: WDGRL
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~WDGRL.__init__
19 | ~WDGRL.compile
20 | ~WDGRL.fit
21 | ~WDGRL.get_params
22 | ~WDGRL.predict
23 | ~WDGRL.predict_disc
24 | ~WDGRL.predict_task
25 | ~WDGRL.score
26 | ~WDGRL.set_params
27 | ~WDGRL.transform
28 | ~WDGRL.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/WDGRL.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.feature_based.fMMD.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.feature_based `.fMMD
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.feature_based
5 |
6 | .. autoclass:: fMMD
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~fMMD.__init__
19 | ~fMMD.fit
20 | ~fMMD.fit_estimator
21 | ~fMMD.fit_transform
22 | ~fMMD.get_params
23 | ~fMMD.predict
24 | ~fMMD.predict_estimator
25 | ~fMMD.score
26 | ~fMMD.set_params
27 | ~fMMD.transform
28 | ~fMMD.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_transform
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/fMMD.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.BalancedWeighting.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.BalancedWeighting
2 | ==========================================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: BalancedWeighting
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~BalancedWeighting.__init__
19 | ~BalancedWeighting.fit
20 | ~BalancedWeighting.fit_estimator
21 | ~BalancedWeighting.fit_weights
22 | ~BalancedWeighting.get_params
23 | ~BalancedWeighting.predict
24 | ~BalancedWeighting.predict_estimator
25 | ~BalancedWeighting.predict_weights
26 | ~BalancedWeighting.score
27 | ~BalancedWeighting.set_params
28 | ~BalancedWeighting.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/BalancedWeighting.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.GDM.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.IWC.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.IWC
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: IWC
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~IWC.__init__
19 | ~IWC.fit
20 | ~IWC.fit_estimator
21 | ~IWC.fit_weights
22 | ~IWC.get_params
23 | ~IWC.predict
24 | ~IWC.predict_estimator
25 | ~IWC.predict_weights
26 | ~IWC.score
27 | ~IWC.set_params
28 | ~IWC.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/IWC.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.IWN.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.IWN
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: IWN
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~IWN.__init__
19 | ~IWN.compile
20 | ~IWN.fit
21 | ~IWN.fit_estimator
22 | ~IWN.fit_weights
23 | ~IWN.get_params
24 | ~IWN.predict
25 | ~IWN.predict_disc
26 | ~IWN.predict_task
27 | ~IWN.predict_weights
28 | ~IWN.pretrain_step
29 | ~IWN.score
30 | ~IWN.set_params
31 | ~IWN.transform
32 | ~IWN.unsupervised_score
33 |
34 |
35 | .. automethod:: __init__
36 | .. automethod:: compile
37 | .. automethod:: fit
38 | .. automethod:: fit_estimator
39 | .. automethod:: fit_weights
40 | .. automethod:: get_params
41 | .. automethod:: predict
42 | .. automethod:: predict_disc
43 | .. automethod:: predict_task
44 | .. automethod:: predict_weights
45 | .. automethod:: pretrain_step
46 | .. automethod:: score
47 | .. automethod:: set_params
48 | .. automethod:: transform
49 | .. automethod:: unsupervised_score
50 |
51 |
52 |
53 |
54 | .. raw:: html
55 |
56 | Examples
57 |
58 | .. include:: ../gallery/IWN.rst
59 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.KLIEP.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.KLIEP
2 | ==============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: KLIEP
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~KLIEP.__init__
19 | ~KLIEP.fit
20 | ~KLIEP.fit_estimator
21 | ~KLIEP.fit_weights
22 | ~KLIEP.get_params
23 | ~KLIEP.predict
24 | ~KLIEP.predict_estimator
25 | ~KLIEP.predict_weights
26 | ~KLIEP.score
27 | ~KLIEP.set_params
28 | ~KLIEP.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/KLIEP.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.KMM.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.KMM
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: KMM
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~KMM.__init__
19 | ~KMM.fit
20 | ~KMM.fit_estimator
21 | ~KMM.fit_weights
22 | ~KMM.get_params
23 | ~KMM.predict
24 | ~KMM.predict_estimator
25 | ~KMM.predict_weights
26 | ~KMM.score
27 | ~KMM.set_params
28 | ~KMM.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/KMM.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.LDM.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.LDM
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: LDM
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~LDM.__init__
19 | ~LDM.fit
20 | ~LDM.fit_estimator
21 | ~LDM.fit_weights
22 | ~LDM.get_params
23 | ~LDM.predict
24 | ~LDM.predict_estimator
25 | ~LDM.predict_weights
26 | ~LDM.score
27 | ~LDM.set_params
28 | ~LDM.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/LDM.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.NearestNeighborsWeighting.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.NearestNeighborsWeighting
2 | ==================================================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: NearestNeighborsWeighting
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~NearestNeighborsWeighting.__init__
19 | ~NearestNeighborsWeighting.fit
20 | ~NearestNeighborsWeighting.fit_estimator
21 | ~NearestNeighborsWeighting.fit_weights
22 | ~NearestNeighborsWeighting.get_params
23 | ~NearestNeighborsWeighting.predict
24 | ~NearestNeighborsWeighting.predict_estimator
25 | ~NearestNeighborsWeighting.predict_weights
26 | ~NearestNeighborsWeighting.score
27 | ~NearestNeighborsWeighting.set_params
28 | ~NearestNeighborsWeighting.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/NearestNeighborsWeighting.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.RULSIF.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.RULSIF
2 | ===============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: RULSIF
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~RULSIF.__init__
19 | ~RULSIF.fit
20 | ~RULSIF.fit_estimator
21 | ~RULSIF.fit_weights
22 | ~RULSIF.get_params
23 | ~RULSIF.predict
24 | ~RULSIF.predict_estimator
25 | ~RULSIF.predict_weights
26 | ~RULSIF.score
27 | ~RULSIF.set_params
28 | ~RULSIF.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/RULSIF.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.TrAdaBoost.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.TrAdaBoost
2 | ===================================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: TrAdaBoost
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TrAdaBoost.__init__
19 | ~TrAdaBoost.fit
20 | ~TrAdaBoost.fit_estimator
21 | ~TrAdaBoost.get_params
22 | ~TrAdaBoost.predict
23 | ~TrAdaBoost.predict_estimator
24 | ~TrAdaBoost.predict_weights
25 | ~TrAdaBoost.score
26 | ~TrAdaBoost.set_params
27 | ~TrAdaBoost.unsupervised_score
28 |
29 |
30 | .. automethod:: __init__
31 | .. automethod:: fit
32 | .. automethod:: fit_estimator
33 | .. automethod:: get_params
34 | .. automethod:: predict
35 | .. automethod:: predict_estimator
36 | .. automethod:: predict_weights
37 | .. automethod:: score
38 | .. automethod:: set_params
39 | .. automethod:: unsupervised_score
40 |
41 |
42 |
43 |
44 | .. raw:: html
45 |
46 | Examples
47 |
48 | .. include:: ../gallery/TrAdaBoost.rst
49 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.TrAdaBoostR2.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.TrAdaBoostR2
2 | =====================================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: TrAdaBoostR2
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TrAdaBoostR2.__init__
19 | ~TrAdaBoostR2.fit
20 | ~TrAdaBoostR2.fit_estimator
21 | ~TrAdaBoostR2.get_params
22 | ~TrAdaBoostR2.predict
23 | ~TrAdaBoostR2.predict_estimator
24 | ~TrAdaBoostR2.predict_weights
25 | ~TrAdaBoostR2.score
26 | ~TrAdaBoostR2.set_params
27 | ~TrAdaBoostR2.unsupervised_score
28 |
29 |
30 | .. automethod:: __init__
31 | .. automethod:: fit
32 | .. automethod:: fit_estimator
33 | .. automethod:: get_params
34 | .. automethod:: predict
35 | .. automethod:: predict_estimator
36 | .. automethod:: predict_weights
37 | .. automethod:: score
38 | .. automethod:: set_params
39 | .. automethod:: unsupervised_score
40 |
41 |
42 |
43 |
44 | .. raw:: html
45 |
46 | Examples
47 |
48 | .. include:: ../gallery/TrAdaBoostR2.rst
49 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.TwoStageTrAdaBoostR2.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.TwoStageTrAdaBoostR2
2 | =============================================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: TwoStageTrAdaBoostR2
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TwoStageTrAdaBoostR2.__init__
19 | ~TwoStageTrAdaBoostR2.fit
20 | ~TwoStageTrAdaBoostR2.fit_estimator
21 | ~TwoStageTrAdaBoostR2.get_params
22 | ~TwoStageTrAdaBoostR2.predict
23 | ~TwoStageTrAdaBoostR2.predict_estimator
24 | ~TwoStageTrAdaBoostR2.predict_weights
25 | ~TwoStageTrAdaBoostR2.score
26 | ~TwoStageTrAdaBoostR2.set_params
27 | ~TwoStageTrAdaBoostR2.unsupervised_score
28 |
29 |
30 | .. automethod:: __init__
31 | .. automethod:: fit
32 | .. automethod:: fit_estimator
33 | .. automethod:: get_params
34 | .. automethod:: predict
35 | .. automethod:: predict_estimator
36 | .. automethod:: predict_weights
37 | .. automethod:: score
38 | .. automethod:: set_params
39 | .. automethod:: unsupervised_score
40 |
41 |
42 |
43 |
44 | .. raw:: html
45 |
46 | Examples
47 |
48 | .. include:: ../gallery/TwoStageTrAdaBoostR2.rst
49 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.ULSIF.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.ULSIF
2 | ==============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: ULSIF
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~ULSIF.__init__
19 | ~ULSIF.fit
20 | ~ULSIF.fit_estimator
21 | ~ULSIF.fit_weights
22 | ~ULSIF.get_params
23 | ~ULSIF.predict
24 | ~ULSIF.predict_estimator
25 | ~ULSIF.predict_weights
26 | ~ULSIF.score
27 | ~ULSIF.set_params
28 | ~ULSIF.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: fit
33 | .. automethod:: fit_estimator
34 | .. automethod:: fit_weights
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_estimator
38 | .. automethod:: predict_weights
39 | .. automethod:: score
40 | .. automethod:: set_params
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/ULSIF.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.instance_based.WANN.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.instance_based `.WANN
2 | =============================================================
3 |
4 | .. currentmodule:: adapt.instance_based
5 |
6 | .. autoclass:: WANN
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~WANN.__init__
19 | ~WANN.compile
20 | ~WANN.fit
21 | ~WANN.get_params
22 | ~WANN.predict
23 | ~WANN.predict_disc
24 | ~WANN.predict_task
25 | ~WANN.predict_weights
26 | ~WANN.pretrain_step
27 | ~WANN.score
28 | ~WANN.set_params
29 | ~WANN.transform
30 | ~WANN.unsupervised_score
31 |
32 |
33 | .. automethod:: __init__
34 | .. automethod:: compile
35 | .. automethod:: fit
36 | .. automethod:: get_params
37 | .. automethod:: predict
38 | .. automethod:: predict_disc
39 | .. automethod:: predict_task
40 | .. automethod:: predict_weights
41 | .. automethod:: pretrain_step
42 | .. automethod:: score
43 | .. automethod:: set_params
44 | .. automethod:: transform
45 | .. automethod:: unsupervised_score
46 |
47 |
48 |
49 |
50 | .. raw:: html
51 |
52 | Examples
53 |
54 | .. include:: ../gallery/WANN.rst
55 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.cov_distance.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.cov_distance
2 | ==============================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: cov_distance
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.domain_classifier.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.domain_classifier
2 | ===================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: domain_classifier
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.frechet_distance.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.frechet_distance
2 | ==================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: frechet_distance
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.linear_discrepancy.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.linear_discrepancy
2 | ====================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: linear_discrepancy
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.make_uda_scorer.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.make_uda_scorer
2 | =================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: make_uda_scorer
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.neg_j_score.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.neg_j_score
2 | =============================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: neg_j_score
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.normalized_frechet_distance.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.normalized_frechet_distance
2 | =============================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: normalized_frechet_distance
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.normalized_linear_discrepancy.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.normalized_linear_discrepancy
2 | ===============================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: normalized_linear_discrepancy
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.metrics.reverse_validation.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.metrics `.reverse_validation
2 | ====================================================================
3 |
4 | .. currentmodule:: adapt.metrics
5 |
6 | .. autofunction:: reverse_validation
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.FineTuning.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.FineTuning
2 | ====================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: FineTuning
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~FineTuning.__init__
19 | ~FineTuning.compile
20 | ~FineTuning.fit
21 | ~FineTuning.get_params
22 | ~FineTuning.predict
23 | ~FineTuning.predict_disc
24 | ~FineTuning.predict_task
25 | ~FineTuning.pretrain_step
26 | ~FineTuning.score
27 | ~FineTuning.set_params
28 | ~FineTuning.transform
29 | ~FineTuning.unsupervised_score
30 |
31 |
32 | .. automethod:: __init__
33 | .. automethod:: compile
34 | .. automethod:: fit
35 | .. automethod:: get_params
36 | .. automethod:: predict
37 | .. automethod:: predict_disc
38 | .. automethod:: predict_task
39 | .. automethod:: pretrain_step
40 | .. automethod:: score
41 | .. automethod:: set_params
42 | .. automethod:: transform
43 | .. automethod:: unsupervised_score
44 |
45 |
46 |
47 |
48 | .. raw:: html
49 |
50 | Examples
51 |
52 | .. include:: ../gallery/FineTuning.rst
53 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.LinInt.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.LinInt
2 | ================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: LinInt
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~LinInt.__init__
19 | ~LinInt.fit
20 | ~LinInt.fit_estimator
21 | ~LinInt.get_params
22 | ~LinInt.predict
23 | ~LinInt.predict_estimator
24 | ~LinInt.score
25 | ~LinInt.set_params
26 | ~LinInt.unsupervised_score
27 |
28 |
29 | .. automethod:: __init__
30 | .. automethod:: fit
31 | .. automethod:: fit_estimator
32 | .. automethod:: get_params
33 | .. automethod:: predict
34 | .. automethod:: predict_estimator
35 | .. automethod:: score
36 | .. automethod:: set_params
37 | .. automethod:: unsupervised_score
38 |
39 |
40 |
41 |
42 | .. raw:: html
43 |
44 | Examples
45 |
46 | .. include:: ../gallery/LinInt.rst
47 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.NRC.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.PRED.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.RegularTransferGP.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.RegularTransferGP
2 | ===========================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: RegularTransferGP
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~RegularTransferGP.__init__
19 | ~RegularTransferGP.fit
20 | ~RegularTransferGP.fit_estimator
21 | ~RegularTransferGP.get_params
22 | ~RegularTransferGP.predict
23 | ~RegularTransferGP.predict_estimator
24 | ~RegularTransferGP.score
25 | ~RegularTransferGP.set_params
26 | ~RegularTransferGP.unsupervised_score
27 |
28 |
29 | .. automethod:: __init__
30 | .. automethod:: fit
31 | .. automethod:: fit_estimator
32 | .. automethod:: get_params
33 | .. automethod:: predict
34 | .. automethod:: predict_estimator
35 | .. automethod:: score
36 | .. automethod:: set_params
37 | .. automethod:: unsupervised_score
38 |
39 |
40 |
41 |
42 | .. raw:: html
43 |
44 | Examples
45 |
46 | .. include:: ../gallery/RegularTransferGP.rst
47 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.RegularTransferLC.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.RegularTransferLC
2 | ===========================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: RegularTransferLC
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~RegularTransferLC.__init__
19 | ~RegularTransferLC.fit
20 | ~RegularTransferLC.fit_estimator
21 | ~RegularTransferLC.get_params
22 | ~RegularTransferLC.predict
23 | ~RegularTransferLC.predict_estimator
24 | ~RegularTransferLC.score
25 | ~RegularTransferLC.set_params
26 | ~RegularTransferLC.unsupervised_score
27 |
28 |
29 | .. automethod:: __init__
30 | .. automethod:: fit
31 | .. automethod:: fit_estimator
32 | .. automethod:: get_params
33 | .. automethod:: predict
34 | .. automethod:: predict_estimator
35 | .. automethod:: score
36 | .. automethod:: set_params
37 | .. automethod:: unsupervised_score
38 |
39 |
40 |
41 |
42 | .. raw:: html
43 |
44 | Examples
45 |
46 | .. include:: ../gallery/RegularTransferLC.rst
47 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.RegularTransferLR.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.RegularTransferLR
2 | ===========================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: RegularTransferLR
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~RegularTransferLR.__init__
19 | ~RegularTransferLR.fit
20 | ~RegularTransferLR.fit_estimator
21 | ~RegularTransferLR.get_params
22 | ~RegularTransferLR.predict
23 | ~RegularTransferLR.predict_estimator
24 | ~RegularTransferLR.score
25 | ~RegularTransferLR.set_params
26 | ~RegularTransferLR.unsupervised_score
27 |
28 |
29 | .. automethod:: __init__
30 | .. automethod:: fit
31 | .. automethod:: fit_estimator
32 | .. automethod:: get_params
33 | .. automethod:: predict
34 | .. automethod:: predict_estimator
35 | .. automethod:: score
36 | .. automethod:: set_params
37 | .. automethod:: unsupervised_score
38 |
39 |
40 |
41 |
42 | .. raw:: html
43 |
44 | Examples
45 |
46 | .. include:: ../gallery/RegularTransferLR.rst
47 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.RegularTransferNN.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.RegularTransferNN
2 | ===========================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: RegularTransferNN
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~RegularTransferNN.__init__
19 | ~RegularTransferNN.compile
20 | ~RegularTransferNN.fit
21 | ~RegularTransferNN.get_params
22 | ~RegularTransferNN.predict
23 | ~RegularTransferNN.predict_disc
24 | ~RegularTransferNN.predict_task
25 | ~RegularTransferNN.score
26 | ~RegularTransferNN.set_params
27 | ~RegularTransferNN.transform
28 | ~RegularTransferNN.unsupervised_score
29 |
30 |
31 | .. automethod:: __init__
32 | .. automethod:: compile
33 | .. automethod:: fit
34 | .. automethod:: get_params
35 | .. automethod:: predict
36 | .. automethod:: predict_disc
37 | .. automethod:: predict_task
38 | .. automethod:: score
39 | .. automethod:: set_params
40 | .. automethod:: transform
41 | .. automethod:: unsupervised_score
42 |
43 |
44 |
45 |
46 | .. raw:: html
47 |
48 | Examples
49 |
50 | .. include:: ../gallery/RegularTransferNN.rst
51 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.SHOT.rst:
--------------------------------------------------------------------------------
1 | Not Implemented
2 | ===============
3 |
4 | This algorithm is not implemented yet. If you are interested by its implementation, please open an Issue on GitHub: https://github.com/adapt-python/adapt/issues
5 |
6 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.TransferForestClassifier.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.TransferForestClassifier
2 | ==================================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: TransferForestClassifier
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TransferForestClassifier.__init__
19 | ~TransferForestClassifier.fit
20 | ~TransferForestClassifier.fit_estimator
21 | ~TransferForestClassifier.get_params
22 | ~TransferForestClassifier.predict
23 | ~TransferForestClassifier.predict_estimator
24 | ~TransferForestClassifier.score
25 | ~TransferForestClassifier.set_params
26 | ~TransferForestClassifier.unsupervised_score
27 |
28 |
29 | .. automethod:: __init__
30 | .. automethod:: fit
31 | .. automethod:: fit_estimator
32 | .. automethod:: get_params
33 | .. automethod:: predict
34 | .. automethod:: predict_estimator
35 | .. automethod:: score
36 | .. automethod:: set_params
37 | .. automethod:: unsupervised_score
38 |
39 |
40 |
41 |
42 | .. raw:: html
43 |
44 | Examples
45 |
46 | .. include:: ../gallery/TransferForestClassifier.rst
47 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.TransferForestSelector.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.TransferForestSelector
2 | ================================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: TransferForestSelector
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TransferForestSelector.__init__
19 | ~TransferForestSelector.fit
20 | ~TransferForestSelector.fit_estimator
21 | ~TransferForestSelector.get_params
22 | ~TransferForestSelector.model_selection
23 | ~TransferForestSelector.predict
24 | ~TransferForestSelector.predict_estimator
25 | ~TransferForestSelector.score
26 | ~TransferForestSelector.set_params
27 | ~TransferForestSelector.unsupervised_score
28 |
29 |
30 | .. automethod:: __init__
31 | .. automethod:: fit
32 | .. automethod:: fit_estimator
33 | .. automethod:: get_params
34 | .. automethod:: model_selection
35 | .. automethod:: predict
36 | .. automethod:: predict_estimator
37 | .. automethod:: score
38 | .. automethod:: set_params
39 | .. automethod:: unsupervised_score
40 |
41 |
42 |
43 |
44 | .. raw:: html
45 |
46 | Examples
47 |
48 | .. include:: ../gallery/TransferForestSelector.rst
49 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.TransferTreeClassifier.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.TransferTreeClassifier
2 | ================================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: TransferTreeClassifier
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TransferTreeClassifier.__init__
19 | ~TransferTreeClassifier.extend
20 | ~TransferTreeClassifier.fit
21 | ~TransferTreeClassifier.fit_estimator
22 | ~TransferTreeClassifier.get_params
23 | ~TransferTreeClassifier.predict
24 | ~TransferTreeClassifier.predict_estimator
25 | ~TransferTreeClassifier.prune
26 | ~TransferTreeClassifier.score
27 | ~TransferTreeClassifier.set_params
28 | ~TransferTreeClassifier.swap_subtrees
29 | ~TransferTreeClassifier.unsupervised_score
30 | ~TransferTreeClassifier.updateSplit
31 | ~TransferTreeClassifier.updateValue
32 |
33 |
34 | .. automethod:: __init__
35 | .. automethod:: extend
36 | .. automethod:: fit
37 | .. automethod:: fit_estimator
38 | .. automethod:: get_params
39 | .. automethod:: predict
40 | .. automethod:: predict_estimator
41 | .. automethod:: prune
42 | .. automethod:: score
43 | .. automethod:: set_params
44 | .. automethod:: swap_subtrees
45 | .. automethod:: unsupervised_score
46 | .. automethod:: updateSplit
47 | .. automethod:: updateValue
48 |
49 |
50 |
51 |
52 | .. raw:: html
53 |
54 | Examples
55 |
56 | .. include:: ../gallery/TransferTreeClassifier.rst
57 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.parameter_based.TransferTreeSelector.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.parameter_based `.TransferTreeSelector
2 | ==============================================================================
3 |
4 | .. currentmodule:: adapt.parameter_based
5 |
6 | .. autoclass:: TransferTreeSelector
7 | :no-members:
8 | :no-inherited-members:
9 | :no-special-members:
10 |
11 |
12 |
13 |
14 | .. rubric:: Methods
15 |
16 | .. autosummary::
17 |
18 | ~TransferTreeSelector.__init__
19 | ~TransferTreeSelector.fit
20 | ~TransferTreeSelector.fit_estimator
21 | ~TransferTreeSelector.get_params
22 | ~TransferTreeSelector.predict
23 | ~TransferTreeSelector.predict_estimator
24 | ~TransferTreeSelector.score
25 | ~TransferTreeSelector.select
26 | ~TransferTreeSelector.set_params
27 | ~TransferTreeSelector.unsupervised_score
28 |
29 |
30 | .. automethod:: __init__
31 | .. automethod:: fit
32 | .. automethod:: fit_estimator
33 | .. automethod:: get_params
34 | .. automethod:: predict
35 | .. automethod:: predict_estimator
36 | .. automethod:: score
37 | .. automethod:: select
38 | .. automethod:: set_params
39 | .. automethod:: unsupervised_score
40 |
41 |
42 |
43 |
44 | .. raw:: html
45 |
46 | Examples
47 |
48 | .. include:: ../gallery/TransferTreeSelector.rst
49 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.GradientHandler.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.GradientHandler
2 | ===============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: GradientHandler
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.UpdateLambda.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.UpdateLambda
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: UpdateLambda
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.accuracy.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.accuracy
2 | ========================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: accuracy
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_arrays.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_arrays
2 | ============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_arrays
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_estimator.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_estimator
2 | ===============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_estimator
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_fitted_estimator.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_fitted_estimator
2 | ======================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_fitted_estimator
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_fitted_network.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_fitted_network
2 | ====================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_fitted_network
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_network.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_network
2 | =============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_network
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.check_sample_weight.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.check_sample_weight
2 | ===================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: check_sample_weight
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.get_default_discriminator.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.get_default_discriminator
2 | =========================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: get_default_discriminator
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.get_default_encoder.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.get_default_encoder
2 | ===================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: get_default_encoder
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.get_default_task.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.get_default_task
2 | ================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: get_default_task
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.make_classification_da.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.make_classification_da
2 | ======================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: make_classification_da
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.make_regression_da.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.make_regression_da
2 | ==================================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: make_regression_da
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/generated/adapt.utils.set_random_seed.rst:
--------------------------------------------------------------------------------
1 | :ref:`adapt.utils `.set_random_seed
2 | ===============================================================
3 |
4 | .. currentmodule:: adapt.utils
5 |
6 | .. autofunction:: set_random_seed
7 |
8 |
--------------------------------------------------------------------------------
/src_docs/images/all.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/all.gif
--------------------------------------------------------------------------------
/src_docs/images/coral.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/coral.gif
--------------------------------------------------------------------------------
/src_docs/images/dann.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/dann.gif
--------------------------------------------------------------------------------
/src_docs/images/kmm.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/kmm.gif
--------------------------------------------------------------------------------
/src_docs/images/regular.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/regular.gif
--------------------------------------------------------------------------------
/src_docs/images/srcOnlyCla.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/srcOnlyCla.gif
--------------------------------------------------------------------------------
/src_docs/images/srcOnlyReg.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/srcOnlyReg.gif
--------------------------------------------------------------------------------
/src_docs/images/tgtOnly.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/tgtOnly.gif
--------------------------------------------------------------------------------
/src_docs/images/tradaboost.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adapt-python/adapt/c7c8dccbcd41ad0674ae28f263685af8dbb94f27/src_docs/images/tradaboost.gif
--------------------------------------------------------------------------------
/src_docs/index.rst:
--------------------------------------------------------------------------------
1 | .. _index:
--------------------------------------------------------------------------------
/src_docs/install.rst:
--------------------------------------------------------------------------------
1 | .. _install:
2 |
3 | Installation
4 | ============
5 |
6 | Reference
7 | ---------
8 |
9 | If you use this library in your research, please cite ADAPT using the following reference:
10 |
11 | .. code-block::
12 |
13 | @article{de2021adapt,
14 | title={ADAPT: Awesome Domain Adaptation Python Toolbox},
15 | author={de Mathelin, Antoine and Deheeger, Fran{\c{c}}ois and Richard, Guillaume and Mougeot, Mathilde and Vayatis, Nicolas},
16 | journal={arXiv preprint arXiv:2107.03049},
17 | year={2021}
18 | }
19 |
20 | Pypi Installation
21 | -----------------
22 |
23 | This package is available on `Pypi `_. It has been tested on Linux, MacOSX and Windows
24 | for Python versions: 3.6, 3.7, 3.8 and 3.9. It can be installed with the following command line:
25 |
26 | .. code-block:: python
27 |
28 | pip install adapt
29 |
30 | The following dependencies are required and will be installed with the library:
31 |
32 | - numpy
33 | - scipy
34 | - tensorflow (>= 2.0)
35 | - scikit-learn
36 | - cvxopt
37 |
38 | If for some reason, these packages failed to install, you can do it manually with:
39 |
40 | .. code-block:: python
41 |
42 | pip install numpy scipy tensorflow scikit-learn cvxopt
43 |
44 | Finally import the module in your python scripts with:
45 |
46 | .. code-block:: python
47 |
48 | import adapt
--------------------------------------------------------------------------------
/src_docs/map.rst:
--------------------------------------------------------------------------------
1 | Selecting the right domain adaptation model
2 | ===========================================
3 |
4 | When facing a new domain adaptation problem, it can be particularly difficult to choose the appropriate transfer learning algorithm.
5 |
6 | The flowchart below has been designed to help the user to quickly identify which type of algorithm
7 | could be used in a specific case. The choice of transfer method is driven by practical characteristics
8 | derived from the available datasets.
9 |
10 | Click on any algorithm in the diagram below to see its documentation.
11 |
12 |
13 | .. raw:: html
14 | :file: carto.html
15 |
--------------------------------------------------------------------------------
/src_docs/modules/feature_based.rst:
--------------------------------------------------------------------------------
1 | Feature-based
2 | ---------------
3 |
4 | .. toctree::
5 | :maxdepth: 2
6 |
7 | ../generated/adapt.feature_based.FE
8 | ../generated/adapt.feature_based.CORAL
9 | ../generated/adapt.feature_based.DeepCORAL
10 | ../generated/adapt.feature_based.DANN
11 | ../generated/adapt.feature_based.ADDA
12 | ../generated/adapt.feature_based.WDGRL
13 | ../generated/adapt.feature_based.CDAN
14 | ../generated/adapt.feature_based.MCD
15 | ../generated/adapt.feature_based.MDD
--------------------------------------------------------------------------------
/src_docs/modules/instance_based.rst:
--------------------------------------------------------------------------------
1 | Instance-based
2 | ---------------
3 |
4 | .. toctree::
5 | :maxdepth: 2
6 |
7 | ../generated/adapt.instance_based.KLIEP
8 | ../generated/adapt.instance_based.KMM
9 | ../generated/adapt.instance_based.TrAdaBoost
10 | ../generated/adapt.instance_based.TrAdaBoostR2
11 | ../generated/adapt.instance_based.TwoStageTrAdaBoostR2
12 | ../generated/adapt.instance_based.WANN
--------------------------------------------------------------------------------
/src_docs/modules/parameter_based.rst:
--------------------------------------------------------------------------------
1 | Parameter-based
2 | ---------------
3 |
4 | .. toctree::
5 | :maxdepth: 2
6 |
7 | ../generated/adapt.parameter_based.RegularTransferLR
8 | ../generated/adapt.parameter_based.RegularTransferLC
9 | ../generated/adapt.parameter_based.RegularTransferNN
--------------------------------------------------------------------------------
/src_docs/modules/utils.rst:
--------------------------------------------------------------------------------
1 | Utility Functions
2 | -----------------
3 |
4 | .. toctree::
5 | :maxdepth: 2
6 |
7 | ../generated/adapt.utils.check_arrays
8 | ../generated/adapt.utils.check_estimator
9 | ../generated/adapt.utils.check_network
10 | ../generated/adapt.utils.get_default_encoder
11 | ../generated/adapt.utils.get_default_task
12 | ../generated/adapt.utils.get_default_discriminator
13 | ../generated/adapt.utils.GradientHandler
14 | ../generated/adapt.utils.make_classification_da
15 | ../generated/adapt.utils.make_regression_da
16 | ../generated/adapt.utils.check_sample_weight
17 | ../generated/adapt.utils.set_random_seed
--------------------------------------------------------------------------------
/src_docs/real_examples.rst:
--------------------------------------------------------------------------------
1 | Real Examples
2 | =============
3 |
4 | .. nbgallery::
5 | :maxdepth: 1
6 |
7 | examples/Sample_bias_example
8 | examples/Flowers_example
9 | examples/Office_example
10 | examples/tradaboost_experiments
11 | examples/Heart_Failure
--------------------------------------------------------------------------------
/src_docs/synthetic_examples.rst:
--------------------------------------------------------------------------------
1 | .. _gallery:
2 |
3 | Synthetic Examples
4 | ==================
5 |
6 | .. nbgallery::
7 | :maxdepth: 1
8 |
9 | examples/Quick_start
10 | examples/Classification
11 | examples/Two_moons
12 | examples/Rotation
13 | examples/Regression
14 | examples/sample_bias
15 | examples/sample_bias_2d
16 | examples/Multi_fidelity
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Tests for adapt package.
3 | """
4 |
--------------------------------------------------------------------------------
/tests/test_adda.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for adda module.
3 | """
4 |
5 |
6 | import numpy as np
7 | import tensorflow as tf
8 | from tensorflow.keras import Sequential, Model
9 | from tensorflow.keras.layers import Dense, Input
10 | from tensorflow.keras.initializers import GlorotUniform
11 | from tensorflow.keras.optimizers import Adam
12 |
13 | from adapt.feature_based import ADDA
14 |
15 | Xs = np.concatenate((
16 | np.linspace(0, 1, 100).reshape(-1, 1),
17 | np.zeros((100, 1))
18 | ), axis=1)
19 | Xt = np.concatenate((
20 | np.linspace(0, 1, 100).reshape(-1, 1),
21 | np.ones((100, 1))
22 | ), axis=1)
23 | ys = 0.2 * Xs[:, 0].ravel()
24 | yt = 0.2 * Xt[:, 0].ravel()
25 |
26 |
27 | def _get_encoder(input_shape=Xs.shape[1:]):
28 | model = Sequential()
29 | model.add(Input(shape=input_shape))
30 | model.add(Dense(1,
31 | kernel_initializer="ones",
32 | use_bias=False))
33 | model.compile(loss="mse", optimizer="adam")
34 | return model
35 |
36 |
37 | def _get_discriminator(input_shape=(1,)):
38 | model = Sequential()
39 | model.add(Input(shape=input_shape))
40 | model.add(Dense(10,
41 | kernel_initializer=GlorotUniform(seed=0),
42 | activation="elu"))
43 | model.add(Dense(1,
44 | kernel_initializer=GlorotUniform(seed=0),
45 | activation="sigmoid"))
46 | model.compile(loss="mse", optimizer="adam")
47 | return model
48 |
49 |
50 | def _get_task(input_shape=(1,), output_shape=(1,)):
51 | model = Sequential()
52 | model.add(Input(shape=input_shape))
53 | model.add(Dense(np.prod(output_shape),
54 | use_bias=False,
55 | kernel_initializer=GlorotUniform(seed=0)))
56 | model.compile(loss="mse", optimizer=Adam(0.1))
57 | return model
58 |
59 |
60 | def test_fit():
61 | model = ADDA(_get_encoder(),
62 | _get_task(), _get_discriminator(), pretrain__epochs=100,
63 | loss="mse", optimizer_enc=Adam(0.005), optimizer_disc=Adam(0.01),
64 | metrics=["mae"], random_state=0)
65 | model.fit(Xs, ys, Xt, yt,
66 | epochs=100, batch_size=34, verbose=0)
67 | assert isinstance(model, Model)
68 | assert np.abs(model.encoder_.get_weights()[0][1][0]) < 0.2
69 | assert np.sum(np.abs(np.ravel(model.predict_task(Xs, domain="src")) - ys)) < 13
70 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 25
71 |
72 |
73 | def test_nopretrain():
74 | tf.random.set_seed(0)
75 | np.random.seed(0)
76 | encoder = _get_encoder()
77 | task = _get_task()
78 |
79 | src_model = Sequential()
80 | src_model.add(encoder)
81 | src_model.add(task)
82 | src_model.compile(loss="mse", optimizer=Adam(0.01))
83 |
84 | src_model.fit(Xs, ys, epochs=100, batch_size=34, verbose=0)
85 |
86 | Xs_enc = src_model.predict(Xs, verbose=0)
87 |
88 | model = ADDA(encoder, task, _get_discriminator(), pretrain=False,
89 | loss="mse", optimizer_enc=Adam(0.005), optimizer_disc=Adam(0.01),
90 | metrics=["mae"], random_state=0)
91 | model.fit(Xs_enc, ys, Xt, epochs=100, batch_size=34, verbose=0)
92 | assert np.abs(model.encoder_.get_weights()[0][1][0]) < 0.2
93 | assert np.sum(np.abs(np.ravel(model.predict(Xs)) - ys)) < 25
94 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 25
--------------------------------------------------------------------------------
/tests/test_balancedweighting.py:
--------------------------------------------------------------------------------
1 | from sklearn.linear_model import RidgeClassifier
2 | from adapt.utils import make_classification_da
3 | from adapt.instance_based import BalancedWeighting
4 |
5 | Xs, ys, Xt, yt = make_classification_da()
6 |
7 | def test_good_ratio():
8 | model = BalancedWeighting(RidgeClassifier(), gamma=0.5, Xt=Xt[:3], yt=yt[:3],
9 | verbose=0, random_state=0)
10 | model.fit(Xs, ys)
11 | model.predict(Xt)
12 | assert model.score(Xt, yt) > 0.9
13 |
14 |
15 | def test_bad_ratio():
16 | model = BalancedWeighting(RidgeClassifier(), gamma=0.99, Xt=Xt[:3], yt=yt[:3],
17 | verbose=0, random_state=0)
18 | model.fit(Xs, ys)
19 | assert model.score(Xt, yt) < 0.7
20 |
21 | model = BalancedWeighting(RidgeClassifier(), gamma=0.01, Xt=Xt[:3], yt=yt[:3],
22 | verbose=0, random_state=0)
23 | model.fit(Xs, ys)
24 | assert model.score(Xt, yt) < 0.9
--------------------------------------------------------------------------------
/tests/test_ccsa.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import tensorflow as tf
3 |
4 | from adapt.utils import make_classification_da
5 | from adapt.feature_based import CCSA
6 | from tensorflow.keras.initializers import GlorotUniform
7 | from tensorflow.keras.optimizers import Adam
8 |
9 | np.random.seed(0)
10 | tf.random.set_seed(0)
11 |
12 | task = tf.keras.Sequential()
13 | task.add(tf.keras.layers.Dense(50, activation="relu", kernel_initializer=GlorotUniform(seed=0)))
14 | task.add(tf.keras.layers.Dense(2, activation="softmax", kernel_initializer=GlorotUniform(seed=0)))
15 |
16 | ind = np.random.choice(100, 10)
17 | Xs, ys, Xt, yt = make_classification_da()
18 |
19 |
20 | def test_ccsa():
21 | ccsa = CCSA(task=task, loss="categorical_crossentropy",
22 | optimizer=Adam(), metrics=["acc"], gamma=0.1, random_state=0)
23 | ccsa.fit(Xs, tf.one_hot(ys, 2).numpy(), Xt=Xt[ind],
24 | yt=tf.one_hot(yt, 2).numpy()[ind], epochs=100, verbose=0)
25 | assert np.mean(ccsa.predict(Xt).argmax(1) == yt) > 0.8
26 |
27 | ccsa = CCSA(task=task, loss="categorical_crossentropy",
28 | optimizer=Adam(), metrics=["acc"], gamma=1., random_state=0)
29 | ccsa.fit(Xs, tf.one_hot(ys, 2).numpy(), Xt=Xt[ind],
30 | yt=tf.one_hot(yt, 2).numpy()[ind], epochs=100, verbose=0)
31 |
32 | assert np.mean(ccsa.predict(Xt).argmax(1) == yt) < 0.9
--------------------------------------------------------------------------------
/tests/test_coral.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for coral module.
3 | """
4 |
5 | import numpy as np
6 | from sklearn.linear_model import LogisticRegression
7 | from scipy import linalg
8 | import tensorflow as tf
9 | from tensorflow.keras import Sequential, Model
10 | from tensorflow.keras.layers import Dense
11 | from tensorflow.keras.initializers import GlorotUniform
12 |
13 | from adapt.feature_based import CORAL, DeepCORAL
14 |
15 |
16 | np.random.seed(0)
17 | Xs = np.random.multivariate_normal(
18 | np.array([0, 0]),
19 | np.array([[0.001, 0], [0, 1]]),
20 | 1000)
21 | Xt = np.random.multivariate_normal(
22 | np.array([0, 0]),
23 | np.array([[0.1, 0.2], [0.2, 0.5]]),
24 | 1000)
25 | ys = np.zeros(1000)
26 | yt = np.zeros(1000)
27 |
28 | ys[Xs[:, 1]>0] = 1
29 | yt[(Xt[:, 1]-0.5*Xt[:, 0])>0] = 1
30 |
31 |
32 | def _get_encoder(input_shape=Xs.shape[1:]):
33 | model = Sequential()
34 | model.add(Dense(2, input_shape=input_shape,
35 | kernel_initializer=GlorotUniform(seed=0),
36 | use_bias=False))
37 | model.compile(loss="mse", optimizer="adam")
38 | return model
39 |
40 |
41 | def _get_task(input_shape=(2,), output_shape=(1,)):
42 | model = Sequential()
43 | model.add(Dense(np.prod(output_shape),
44 | kernel_initializer=GlorotUniform(seed=0),
45 | input_shape=input_shape,
46 | use_bias=False,
47 | activation="sigmoid"))
48 | model.compile(loss="mse", optimizer="adam")
49 | return model
50 |
51 |
52 | def test_setup():
53 | model = LogisticRegression()
54 | model.fit(Xs, ys)
55 | assert model.coef_[0][0] < 0.1 * model.coef_[0][1]
56 | assert (model.predict(Xs) == ys).sum() / len(Xs) >= 0.99
57 | assert (model.predict(Xt) == yt).sum() / len(Xt) < 0.97
58 |
59 |
60 | def test_fit_coral():
61 | np.random.seed(0)
62 | model = CORAL(LogisticRegression(), lambda_=0.)
63 | model.fit(Xs, ys, Xt=Xt)
64 | assert isinstance(model.estimator_, LogisticRegression)
65 | assert len(model.estimator_.coef_[0]) == Xs.shape[1]
66 | assert (model.predict(Xt) == yt).sum() / len(Xt) >= 0.99
67 |
68 |
69 | def test_fit_coral_complex():
70 | np.random.seed(0)
71 | model = CORAL(LogisticRegression(), lambda_=0.)
72 | Xs_ = np.random.randn(10, 100)
73 | Xt_ = np.random.randn(10, 100)
74 | model.fit(Xs_, ys[:10], Xt=Xt_)
75 | assert np.iscomplexobj(linalg.inv(linalg.sqrtm(model.Cs_)))
76 | assert np.iscomplexobj(linalg.sqrtm(model.Ct_))
77 | model.predict(Xs_, domain="src")
78 |
79 |
80 | def test_fit_deepcoral():
81 | tf.random.set_seed(0)
82 | np.random.seed(0)
83 | model = DeepCORAL(_get_encoder(), _get_task(), metrics=["mse"])
84 | model.fit(Xs, ys, Xt,
85 | epochs=100, batch_size=64, verbose=0)
86 | assert isinstance(model.encoder_, Model)
87 | assert isinstance(model.task_, Model)
88 | assert len(model.encoder_.get_weights()[0]) == Xs.shape[1]
89 | assert np.abs(np.cov(Xs, rowvar=False) -
90 | np.cov(Xt, rowvar=False)).sum() > 0.5
91 | assert np.abs(np.cov(model.encoder_.predict(Xs), rowvar=False) -
92 | np.cov(model.encoder_.predict(Xt), rowvar=False)).sum() < 0.3
93 | assert (np.abs(model.predict(Xt) - yt) < 0.5).sum() / len(Xt) >= 0.99
--------------------------------------------------------------------------------
/tests/test_fa.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for fe module.
3 | """
4 |
5 |
6 | import numpy as np
7 | import pytest
8 | from sklearn.linear_model import Ridge, LinearRegression
9 |
10 | from adapt.feature_based import FA
11 |
12 |
13 | Xs = np.ones((75, 10))
14 | Xt = np.ones((25, 10))
15 | ys = np.ones(75)
16 | yt = np.zeros(25)
17 | domains = np.concatenate((np.ones(25)*0, np.ones(25), np.ones(25)*2))
18 |
19 |
20 | def test_fit():
21 | model = FA(Ridge(fit_intercept=False))
22 | model.fit(Xs, ys, Xt, yt)
23 | assert isinstance(model.estimator_, Ridge)
24 | assert len(model.estimator_.coef_) == 30
25 | assert np.abs(model.estimator_.coef_[20:].sum() +
26 | model.estimator_.coef_[:10].sum() - 1) < 0.01
27 | assert np.abs(model.estimator_.coef_[20:].sum() +
28 | model.estimator_.coef_[10:20].sum()) < 0.01
29 |
30 |
31 | def test_fit_default():
32 | model = FA()
33 | model.fit(Xs, ys, Xt, yt)
34 | assert isinstance(model.estimator_, LinearRegression)
35 |
36 |
37 | def test_fit_params():
38 | model = FA(Ridge(alpha=123))
39 | model.fit(Xs, ys, Xt, yt)
40 | assert model.estimator_.alpha == 123
41 |
42 |
43 | def test_predict():
44 | model = FA(Ridge())
45 | model.fit(Xs, ys, Xt, yt)
46 | y_pred = model.predict(Xt)
47 | assert np.all(y_pred < 0.01)
48 | y_pred = model.predict(Xt, domain="target")
49 | assert np.all(y_pred < 0.01)
50 | y_pred = model.predict(Xs, domain="source")
51 | assert np.all(y_pred - 1 < 0.01)
52 | with pytest.raises(ValueError):
53 | model.predict(Xs, domain="tirelipimpon")
54 |
55 |
56 | def test_multisource():
57 | model = FA(Ridge(fit_intercept=False))
58 | model.fit(Xs, ys, Xt, yt, domains=domains)
59 | assert isinstance(model.estimator_, Ridge)
60 | assert len(model.estimator_.coef_) == 50
61 | y_pred = model.predict(Xt)
62 | assert np.all(y_pred < 0.01)
63 | y_pred = model.predict(Xs, domain="src_1")
64 | assert np.all(y_pred - 1 < 0.01)
65 |
--------------------------------------------------------------------------------
/tests/test_finetuning.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import tensorflow as tf
3 | from sklearn.base import clone
4 |
5 | from adapt.utils import make_classification_da
6 | from adapt.parameter_based import FineTuning
7 | from tensorflow.keras.initializers import GlorotUniform
8 | from tensorflow.keras.optimizers import Adam
9 |
10 | np.random.seed(0)
11 | tf.random.set_seed(0)
12 |
13 | encoder = tf.keras.Sequential()
14 | encoder.add(tf.keras.layers.Dense(50, activation="relu", kernel_initializer=GlorotUniform(seed=0)))
15 | encoder.add(tf.keras.layers.Dense(50, activation="relu", kernel_initializer=GlorotUniform(seed=0)))
16 |
17 | task = tf.keras.Sequential()
18 | task.add(tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=GlorotUniform(seed=0)))
19 |
20 | ind = np.random.choice(100, 10)
21 | Xs, ys, Xt, yt = make_classification_da()
22 |
23 |
24 | def test_finetune():
25 | model = FineTuning(encoder=encoder, task=task, loss="bce", optimizer=Adam(), random_state=0)
26 | model.fit(Xs, ys, epochs=100, verbose=0)
27 |
28 | assert np.mean((model.predict(Xt).ravel()>0.5) == yt) < 0.7
29 |
30 | fine_tuned = FineTuning(encoder=model.encoder_, task=model.task_,
31 | training=False,
32 | loss="bce", optimizer=Adam(), random_state=0)
33 | fine_tuned.fit(Xt[ind], yt[ind], epochs=100, verbose=0)
34 |
35 | assert np.abs(fine_tuned.encoder_.get_weights()[0] - model.encoder_.get_weights()[0]).sum() == 0.
36 | assert np.mean((fine_tuned.predict(Xt).ravel()>0.5) == yt) > 0.6
37 | assert np.mean((fine_tuned.predict(Xt).ravel()>0.5) == yt) < 0.8
38 |
39 | fine_tuned = FineTuning(encoder=model.encoder_, task=model.task_,
40 | training=True,
41 | loss="bce", optimizer=Adam(), random_state=0)
42 | fine_tuned.fit(Xt[ind], yt[ind], epochs=100, verbose=0)
43 |
44 | assert np.abs(fine_tuned.encoder_.get_weights()[0] - model.encoder_.get_weights()[0]).sum() > 0.5
45 | assert np.mean((fine_tuned.predict(Xt).ravel()>0.5) == yt) > 0.9
46 |
47 | fine_tuned = FineTuning(encoder=model.encoder_, task=model.task_,
48 | training=[True, False],
49 | loss="bce", optimizer=Adam(), random_state=0)
50 | fine_tuned.fit(Xt[ind], yt[ind], epochs=100, verbose=0)
51 |
52 | assert np.abs(fine_tuned.encoder_.get_weights()[0] - model.encoder_.get_weights()[0]).sum() == 0.
53 | assert np.abs(fine_tuned.encoder_.get_weights()[-1] - model.encoder_.get_weights()[-1]).sum() > .5
54 |
55 | fine_tuned = FineTuning(encoder=model.encoder_, task=model.task_,
56 | training=[False],
57 | loss="bce", optimizer=Adam(), random_state=0)
58 | fine_tuned.fit(Xt[ind], yt[ind], epochs=100, verbose=0)
59 |
60 | assert np.abs(fine_tuned.encoder_.get_weights()[0] - model.encoder_.get_weights()[0]).sum() == 0.
61 | assert np.abs(fine_tuned.encoder_.get_weights()[-1] - model.encoder_.get_weights()[-1]).sum() == 0
62 |
63 |
64 | def test_finetune_pretrain():
65 | model = FineTuning(encoder=encoder, task=task, pretrain=True, pretrain__epochs=2,
66 | loss="bce", optimizer=Adam(), random_state=0)
67 | model.fit(Xs, ys, epochs=1, verbose=0)
68 |
69 |
70 | def test_clone():
71 | model = FineTuning(encoder=encoder, task=task,
72 | loss="bce", optimizer=Adam(), random_state=0)
73 | model.fit(Xs, ys, epochs=1, verbose=0)
74 |
75 | new_model = clone(model)
76 | new_model.fit(Xs, ys, epochs=1, verbose=0)
77 | new_model.predict(Xs);
78 | assert model is not new_model
79 |
--------------------------------------------------------------------------------
/tests/test_fmmd.py:
--------------------------------------------------------------------------------
1 | import pytest
2 | import numpy as np
3 | import tensorflow as tf
4 |
5 | from adapt.feature_based import fMMD
6 | from adapt.feature_based._fmmd import _get_optim_function
7 |
8 | np.random.seed(0)
9 | n = 50
10 | m = 50
11 | p = 6
12 |
13 | Xs = np.random.randn(m, p)*0.1 + np.array([0.]*(p-2) + [2., 2.])
14 | Xt = np.random.randn(n, p)*0.1
15 |
16 |
17 | def test_fmmd():
18 | fmmd = fMMD()
19 | fmmd.fit_transform(Xs, Xt);
20 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
21 | assert np.all(fmmd.selected_features_ == [True]*4 + [False]*2)
22 | assert np.abs(fmmd.transform(Xs) - Xs[:, :4]).sum() == 0.
23 |
24 | fmmd.set_params(kernel="rbf")
25 | fmmd.fit_transform(Xs, Xt);
26 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
27 |
28 | fmmd.set_params(kernel="poly", degree=2, gamma=0.1)
29 | fmmd.fit_transform(Xs, Xt);
30 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
31 |
32 |
33 | def test_fmmd_diff_size():
34 | fmmd = fMMD()
35 | fmmd.fit_transform(Xs, Xt[:40]);
36 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
37 | assert np.all(fmmd.selected_features_ == [True]*4 + [False]*2)
38 | assert np.abs(fmmd.transform(Xs) - Xs[:, :4]).sum() == 0.
39 |
40 | fmmd.set_params(kernel="rbf")
41 | fmmd.fit_transform(Xs, Xt[:40]);
42 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
43 |
44 | fmmd.set_params(kernel="poly", degree=2, gamma=0.1)
45 | fmmd.fit_transform(Xs, Xt[:40]);
46 | assert fmmd.features_scores_[-2:].sum() > 10 * fmmd.features_scores_[:-2].sum()
47 |
48 |
49 | def test_kernel_fct():
50 | tf.config.experimental_run_functions_eagerly(True)
51 | fct = _get_optim_function(Xs, Xt, kernel="linear")
52 | with pytest.raises(Exception) as excinfo:
53 | fct(tf.identity(np.ones(6)))
54 |
55 | fct = _get_optim_function(Xs, Xt, kernel="rbf")
56 | with pytest.raises(Exception) as excinfo:
57 | fct(tf.identity(np.ones(6)))
58 |
59 | fct = _get_optim_function(Xs, Xt, kernel="poly")
60 | with pytest.raises(Exception) as excinfo:
61 | fct(tf.identity(np.ones(6)))
62 |
63 |
--------------------------------------------------------------------------------
/tests/test_iwc.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for iwn module.
3 | """
4 |
5 | import numpy as np
6 | from sklearn.linear_model import RidgeClassifier
7 | from adapt.utils import make_classification_da
8 | from adapt.instance_based import IWC
9 | from adapt.utils import get_default_discriminator
10 | from tensorflow.keras.optimizers import Adam
11 |
12 | Xs, ys, Xt, yt = make_classification_da()
13 |
14 | def test_iwn():
15 | model = IWC(RidgeClassifier(0.), classifier=RidgeClassifier(0.),
16 | Xt=Xt, random_state=0)
17 | model.fit(Xs, ys);
18 | model.predict(Xt)
19 | model.score(Xt, yt)
20 | w1 = model.predict_weights()
21 | w2 = model.predict_weights(Xs)
22 | assert np.abs(w1-w2).sum() < 10**-5
23 |
24 |
25 | def test_default_classif():
26 | model = IWC(RidgeClassifier(0.), classifier=None,
27 | Xt=Xt, random_state=0)
28 | model.fit(Xs, ys);
29 | model.predict(Xt)
30 | model.score(Xt, yt)
31 | w1 = model.predict_weights()
32 | w2 = model.predict_weights(Xs)
33 | assert np.abs(w1-w2).sum() < 10**-5
34 |
35 |
36 | def test_nn_classif():
37 | model = IWC(RidgeClassifier(0.), classifier=get_default_discriminator(),
38 | cl_params=dict(epochs=10, optimizer=Adam(), loss="bce", verbose=0),
39 | Xt=Xt, random_state=0)
40 | model.fit(Xs, ys);
41 | model.predict(Xt)
42 | model.score(Xt, yt)
43 | w1 = model.predict_weights()
44 | w2 = model.predict_weights(Xs)
45 | assert np.abs(w1-w2).sum() < 10**-5
46 |
47 |
--------------------------------------------------------------------------------
/tests/test_iwn.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for iwn module.
3 | """
4 |
5 | from sklearn.linear_model import RidgeClassifier
6 | from adapt.utils import make_classification_da
7 | from adapt.instance_based import IWN
8 | from adapt.utils import get_default_task
9 | from sklearn.neighbors import KNeighborsClassifier
10 | from tensorflow.keras.optimizers import Adam
11 |
12 | Xs, ys, Xt, yt = make_classification_da()
13 |
14 | def test_iwn():
15 | model = IWN(RidgeClassifier(0.), Xt=Xt, sigma_init=0.1, random_state=0,
16 | pretrain=True, pretrain__epochs=100, pretrain__verbose=0)
17 | model.fit(Xs, ys, epochs=100, batch_size=256, verbose=0)
18 | model.score(Xt, yt)
19 | model.predict(Xs)
20 | model.predict_weights(Xs)
21 |
22 |
23 | def test_iwn_fit_estim():
24 | task = get_default_task()
25 | task.compile(optimizer=Adam(), loss="mse", metrics=["mae"])
26 | model = IWN(task, Xt=Xt, sigma_init=0.1, random_state=0,
27 | pretrain=True, pretrain__epochs=100, pretrain__verbose=0)
28 | model.fit(Xs, ys)
29 | model.score(Xt, yt)
30 | model.predict(Xs)
31 | model.predict_weights(Xs)
32 |
33 | model = IWN(KNeighborsClassifier(), Xt=Xt, sigma_init=0.1, random_state=0,
34 | pretrain=True, pretrain__epochs=100, pretrain__verbose=0)
35 | model.fit(Xs, ys)
36 | model.score(Xt, yt)
37 | model.predict(Xs)
38 | model.predict_weights(Xs)
39 |
--------------------------------------------------------------------------------
/tests/test_kmm.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for kmm module.
3 | """
4 |
5 | import os
6 | import numpy as np
7 | from sklearn.linear_model import LinearRegression
8 |
9 | from adapt.instance_based import KMM
10 |
11 | np.random.seed(0)
12 | Xs = np.concatenate((
13 | np.random.randn(50)*0.1,
14 | np.random.randn(50)*0.1 + 1.,
15 | )).reshape(-1, 1)
16 | Xt = (np.random.randn(100) * 0.1).reshape(-1, 1)
17 | ys = np.array([0.2 * x if x<0.5
18 | else 10 for x in Xs.ravel()]).reshape(-1, 1)
19 | yt = np.array([0.2 * x if x<0.5
20 | else 10 for x in Xt.ravel()]).reshape(-1, 1)
21 |
22 |
23 | def test_setup():
24 | lr = LinearRegression(fit_intercept=False)
25 | lr.fit(Xs, ys)
26 | assert np.abs(lr.coef_[0][0] - 10) < 1
27 |
28 | # Bug with windows latest
29 | def test_fit():
30 | if os.name != 'nt':
31 | np.random.seed(0)
32 | model = KMM(LinearRegression(fit_intercept=False), gamma=1.)
33 | model.fit(Xs, ys, Xt=Xt)
34 | assert np.abs(model.estimator_.coef_[0][0] - 0.2) < 1
35 | assert model.weights_[:50].sum() > 50
36 | assert model.weights_[50:].sum() < 0.1
37 | assert np.abs(model.predict(Xt) - yt).sum() < 10
38 | assert np.all(model.weights_ == model.predict_weights())
39 |
40 |
41 | def test_tol():
42 | if os.name != 'nt':
43 | np.random.seed(0)
44 | model = KMM(LinearRegression(fit_intercept=False), gamma=1., tol=0.1)
45 | model.fit(Xs, ys, Xt=Xt)
46 | assert np.abs(model.estimator_.coef_[0][0] - 0.2) > 5
47 |
48 |
49 | def test_batch():
50 | np.random.seed(0)
51 | model = KMM(LinearRegression(fit_intercept=False), gamma=1.,
52 | max_size=35)
53 | model.fit(Xs, ys, Xt=Xt)
54 | assert np.abs(model.estimator_.coef_[0][0] - 0.2) < 1
55 | assert model.weights_[:50].sum() > 50
56 | assert model.weights_[50:].sum() < 0.1
57 | assert np.abs(model.predict(Xt) - yt).sum() < 10
58 | assert np.all(model.weights_ == model.predict_weights())
59 |
60 |
61 | def test_kernel_param():
62 | if os.name != 'nt':
63 | model = KMM(LinearRegression(fit_intercept=False),
64 | kernel="poly",
65 | coef0=2,
66 | gamma=0.1,
67 | degree=3)
68 | model.fit(Xs, ys, Xt=Xt)
69 |
70 | model = KMM(LinearRegression(fit_intercept=False),
71 | kernel="sigmoid",
72 | coef0=2.,
73 | gamma=1.)
74 | model.fit(Xs, ys, Xt=Xt)
--------------------------------------------------------------------------------
/tests/test_ldm.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import os
3 |
4 | from adapt.instance_based import LDM
5 |
6 | np.random.seed(0)
7 | n = 50
8 | m = 50
9 | p = 6
10 |
11 | Xs = np.concatenate((np.random.randn(int(m/2), p)*0.1,
12 | 2+np.random.randn(int(m/2), p)*0.1))
13 | Xt = np.random.randn(n, p)*0.1
14 | ys = Xs[:,0]
15 | ys[Xs[:,0]>1] = 2.
16 | yt = Xt[:,0]
17 |
18 |
19 | def test_ldm():
20 | if os.name != 'nt':
21 | ldm = LDM()
22 | weights = ldm.fit_weights(Xs, Xt)
23 | ldm.fit(Xs, ys, Xt)
24 | yp = ldm.predict(Xt)
25 | assert ldm.score(Xt, yt) > 0.9
26 | assert weights[:25].mean() > 10 * weights[25:].mean()
27 |
28 |
29 | def test_ldm_diff_size():
30 | if os.name != 'nt':
31 | ldm = LDM()
32 | weights = ldm.fit_weights(Xs, Xt[:40])
33 | assert weights[:25].mean() > 10 * weights[25:].mean()
--------------------------------------------------------------------------------
/tests/test_linint.py:
--------------------------------------------------------------------------------
1 | from sklearn.linear_model import Ridge
2 | from adapt.utils import make_regression_da
3 | from adapt.parameter_based import LinInt
4 |
5 | Xs, ys, Xt, yt = make_regression_da()
6 |
7 | def test_linint():
8 | model = LinInt(Ridge(), Xt=Xt[:6], yt=yt[:6],
9 | verbose=0, random_state=0)
10 | model.fit(Xs, ys)
11 | model.fit(Xs, ys, Xt[:6], yt[:6])
12 | model.predict(Xt)
13 | model.score(Xt, yt)
--------------------------------------------------------------------------------
/tests/test_mcd.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for dann module.
3 | """
4 |
5 | import numpy as np
6 | import tensorflow as tf
7 | from tensorflow.keras import Sequential, Model
8 | from tensorflow.keras.layers import Dense, Input
9 | from tensorflow.keras.optimizers import Adam
10 | from tensorflow.keras.initializers import GlorotUniform
11 |
12 | from adapt.feature_based import MCD
13 |
14 | Xs = np.concatenate((
15 | np.linspace(0, 1, 100).reshape(-1, 1),
16 | np.zeros((100, 1))
17 | ), axis=1)
18 | Xt = np.concatenate((
19 | np.linspace(0, 1, 100).reshape(-1, 1),
20 | np.ones((100, 1))
21 | ), axis=1)
22 | ys = 0.2 * Xs[:, 0].ravel()
23 | yt = 0.2 * Xt[:, 0].ravel()
24 |
25 |
26 | def _get_encoder(input_shape=Xs.shape[1:]):
27 | model = Sequential()
28 | model.add(Input(shape=input_shape))
29 | model.add(Dense(1,
30 | kernel_initializer="ones",
31 | use_bias=False))
32 | model.compile(loss="mse", optimizer="adam")
33 | return model
34 |
35 |
36 | def _get_discriminator(input_shape=(1,)):
37 | model = Sequential()
38 | model.add(Input(shape=input_shape))
39 | model.add(Dense(10,
40 | kernel_initializer=GlorotUniform(seed=0),
41 | activation="relu"))
42 | model.add(Dense(1,
43 | kernel_initializer=GlorotUniform(seed=0),
44 | activation="sigmoid"))
45 | model.compile(loss="mse", optimizer="adam")
46 | return model
47 |
48 |
49 | def _get_task(input_shape=(1,), output_shape=(1,)):
50 | model = Sequential()
51 | model.add(Input(shape=input_shape))
52 | model.add(Dense(np.prod(output_shape),
53 | kernel_initializer=GlorotUniform(seed=0),
54 | use_bias=False))
55 | model.compile(loss="mse", optimizer=Adam(0.1))
56 | return model
57 |
58 |
59 | def test_fit():
60 | tf.random.set_seed(0)
61 | np.random.seed(0)
62 | model = MCD(_get_encoder(), _get_task(),
63 | loss="mse", optimizer=Adam(0.01), metrics=["mse"])
64 | model.fit(Xs, ys, Xt, yt,
65 | epochs=50, batch_size=34, verbose=0)
66 | assert isinstance(model, Model)
67 | assert np.abs(model.encoder_.get_weights()[0][1][0]) < 0.2
68 | assert np.sum(np.abs(model.predict(Xs).ravel() - ys)) > 5
69 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 11
70 |
71 | yp_avg = model.predict_avg(Xt)
72 | ypt = model.predict(Xt)
73 | ypd = model.predict_disc(Xt)
74 | assert np.all(yp_avg == 0.5 * (ypt+ypd))
75 |
76 |
77 | def test_n_steps():
78 | tf.random.set_seed(0)
79 | np.random.seed(0)
80 | model = MCD(_get_encoder(), _get_task(), n_steps=4,
81 | loss="mse", optimizer=Adam(0.01), metrics=["mse"])
82 | model.fit(Xs, ys, Xt, yt,
83 | epochs=50, batch_size=34, verbose=0)
84 | assert isinstance(model, Model)
85 | assert np.abs(model.encoder_.get_weights()[0][1][0]) < 0.1
86 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 11
87 |
--------------------------------------------------------------------------------
/tests/test_metrics.py:
--------------------------------------------------------------------------------
1 | """
2 | Test base
3 | """
4 |
5 | import os
6 | from sklearn.linear_model import LogisticRegression, LinearRegression
7 | from sklearn.model_selection import GridSearchCV
8 | from adapt.base import BaseAdaptDeep, BaseAdaptEstimator
9 | from adapt.metrics import *
10 | from adapt.instance_based import KMM
11 | from adapt.feature_based import CORAL
12 |
13 | Xs = np.random.randn(100, 2)
14 | Xt = np.random.randn(100, 2)+1.
15 | ys = np.random.randn(100)
16 |
17 | base_est = BaseAdaptEstimator(Xt=Xt)
18 | base_deep = BaseAdaptDeep(Xt=Xt)
19 |
20 | base_est.fit(Xs, ys)
21 | base_deep.fit(Xs, ys)
22 |
23 |
24 | def test_all_metrics():
25 | cov_distance(Xs, Xt)
26 | frechet_distance(Xs, Xt)
27 | linear_discrepancy(Xs, Xt)
28 | normalized_linear_discrepancy(Xs, Xt)
29 | normalized_frechet_distance(Xs, Xt)
30 | neg_j_score(Xs, Xt)
31 | domain_classifier(Xs, Xt)
32 | domain_classifier(Xs, Xt, LogisticRegression())
33 | reverse_validation(base_est, Xs, ys, Xt)
34 | reverse_validation(base_deep, Xs, ys, Xt)
35 |
36 |
37 | def test_adapt_scorer():
38 | if os.name != 'nt':
39 | scorer = make_uda_scorer(neg_j_score, Xs, Xt)
40 | adapt_model = KMM(LinearRegression(), Xt=Xt, kernel="rbf", gamma=0.)
41 | gs = GridSearchCV(adapt_model, {"gamma": [1000, 1e-5]},
42 | scoring=scorer, return_train_score=True,
43 | cv=3, verbose=0, refit=False)
44 | gs.fit(Xs, ys)
45 | assert gs.cv_results_['mean_train_score'].argmax() == 0
46 |
47 | scorer = make_uda_scorer(cov_distance, Xs, Xt)
48 | adapt_model = CORAL(LinearRegression(), Xt=Xt, lambda_=1.)
49 | gs = GridSearchCV(adapt_model, {"lambda_": [1e-5, 10000.]},
50 | scoring=scorer, return_train_score=True,
51 | cv=3, verbose=0, refit=False)
52 | gs.fit(Xs, ys)
53 | assert gs.cv_results_['mean_train_score'].argmax() == 0
54 | assert gs.cv_results_['mean_test_score'].argmax() == 0
--------------------------------------------------------------------------------
/tests/test_nnw.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from adapt.instance_based import NearestNeighborsWeighting
4 |
5 | np.random.seed(0)
6 | n = 50
7 | m = 50
8 | p = 6
9 |
10 | Xs = np.concatenate((np.random.randn(int(m/2), p)*0.1,
11 | 2+np.random.randn(int(m/2), p)*0.1))
12 | Xt = np.random.randn(n, p)*0.1
13 |
14 |
15 | def test_nnw():
16 | nnw = NearestNeighborsWeighting(n_neighbors=5)
17 | weights = nnw.fit_weights(Xs, Xt)
18 | assert weights[:25].mean() > 10 * weights[25:].mean()
19 |
20 | nnw = NearestNeighborsWeighting(n_neighbors=45)
21 | weights = nnw.fit_weights(Xs, Xt)
22 | assert np.abs(weights[:25].mean() / weights[25:].mean()) < 1.5
--------------------------------------------------------------------------------
/tests/test_pred.py:
--------------------------------------------------------------------------------
1 | from sklearn.linear_model import RidgeClassifier
2 | from adapt.utils import make_classification_da
3 | from adapt.feature_based import PRED
4 |
5 | Xs, ys, Xt, yt = make_classification_da()
6 |
7 | def test_pred():
8 | model = PRED(RidgeClassifier(), pretrain=True, Xt=Xt[:3], yt=yt[:3],
9 | verbose=0, random_state=0)
10 | model.fit(Xs, ys)
11 | model.predict(Xt)
12 | model.predict(Xt, "src")
13 | model.score(Xt, yt, domain="src")
14 | model.score(Xt, yt, domain="tgt")
15 |
16 | model = PRED(RidgeClassifier().fit(Xs, ys),
17 | pretrain=False, Xt=Xt[:3], yt=yt[:3],
18 | verbose=0, random_state=0)
19 | model.fit(Xs, ys)
20 | model.predict(Xt)
21 | model.predict(Xt, "src")
22 | model.score(Xt, yt, domain="src")
23 | model.score(Xt, yt, domain="tgt")
--------------------------------------------------------------------------------
/tests/test_sa.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from adapt.metrics import normalized_linear_discrepancy
4 | from adapt.feature_based import SA
5 |
6 | np.random.seed(0)
7 | n = 50
8 | m = 50
9 | p = 6
10 |
11 | Xs = np.random.randn(m, p)*0.1 + np.array([0.]*(p-2) + [2., 2.])
12 | Xt = np.random.randn(n, p)*0.1
13 |
14 |
15 | def test_sa():
16 | sa = SA(n_components=2)
17 | Xst = sa.fit_transform(Xs, Xt)
18 | assert np.abs(Xst - sa.transform(Xs, "src")).sum() == 0.
19 | assert Xst.shape[1] == 2
20 | assert (normalized_linear_discrepancy(Xs, Xt) >
21 | 2 * normalized_linear_discrepancy(Xst, sa.transform(Xt)))
--------------------------------------------------------------------------------
/tests/test_tca.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from adapt.metrics import normalized_linear_discrepancy
4 | from adapt.feature_based import TCA
5 |
6 | np.random.seed(0)
7 | n = 50
8 | m = 50
9 | p = 6
10 |
11 | Xs = np.random.randn(m, p)*0.1 + np.array([0.]*(p-2) + [2., 2.])
12 | Xt = np.random.randn(n, p)*0.1
13 |
14 |
15 | def test_tca():
16 | tca = TCA(n_components=2, kernel="rbf", gamma=0.01, random_state=0)
17 | Xst = tca.fit_transform(Xs, Xt)
18 | assert np.abs(Xst - tca.transform(Xs, "src")).sum() < 10**-8
19 | assert Xst.shape[1] == 2
20 | assert (normalized_linear_discrepancy(Xs, Xt) >
21 | 2 * normalized_linear_discrepancy(Xst, tca.transform(Xt)))
--------------------------------------------------------------------------------
/tests/test_ulsif.py:
--------------------------------------------------------------------------------
1 | from sklearn.linear_model import RidgeClassifier
2 | from adapt.utils import make_classification_da
3 | from adapt.instance_based import ULSIF, RULSIF
4 |
5 | Xs, ys, Xt, yt = make_classification_da()
6 |
7 |
8 | def test_ulsif():
9 | model = ULSIF(RidgeClassifier(0.), Xt=Xt[:73], kernel="rbf",
10 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
11 | model.fit(Xs, ys);
12 | model.predict(Xs)
13 | model.score(Xt, yt)
14 | model.predict_weights()
15 | model.predict_weights(Xs)
16 |
17 | model = ULSIF(RidgeClassifier(0.), Xt=Xt, kernel="rbf",
18 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
19 | model.fit(Xs, ys);
20 |
21 | model = ULSIF(RidgeClassifier(0.), Xt=Xt, kernel="rbf",
22 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
23 | model.fit(Xs[:73], ys[:73]);
24 |
25 |
26 | def test_rulsif():
27 | model = RULSIF(RidgeClassifier(0.), Xt=Xt, kernel="rbf", alpha=0.1,
28 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
29 | model.fit(Xs[:73], ys[:73]);
30 | model.predict(Xs)
31 | model.score(Xt, yt)
32 | model.predict_weights()
33 | model.predict_weights(Xs)
34 |
35 | model = RULSIF(RidgeClassifier(0.), Xt=Xt, kernel="rbf", alpha=0.1,
36 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
37 | model.fit(Xs, ys);
38 |
39 | model = RULSIF(RidgeClassifier(0.), Xt=Xt[:73], kernel="rbf", alpha=0.1,
40 | lambdas=[0.1, 1., 10.], gamma=[0.1, 1., 10.], random_state=0)
41 | model.fit(Xs, ys);
--------------------------------------------------------------------------------
/tests/test_wann.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for wann module.
3 | """
4 |
5 | import numpy as np
6 | from sklearn.linear_model import LinearRegression
7 | from tensorflow.keras.optimizers import Adam
8 | import tensorflow as tf
9 | from adapt.instance_based import WANN
10 |
11 | np.random.seed(0)
12 | Xs = np.concatenate((
13 | np.random.randn(50)*0.1,
14 | np.random.randn(50)*0.1 + 1.,
15 | )).reshape(-1, 1)
16 | Xt = (np.random.randn(100) * 0.1).reshape(-1, 1)
17 | ys = np.array([0.2 * x if x<0.5
18 | else 10 for x in Xs.ravel()]).reshape(-1, 1)
19 | yt = np.array([0.2 * x if x<0.5
20 | else 10 for x in Xt.ravel()]).reshape(-1, 1)
21 |
22 | def test_fit():
23 | np.random.seed(0)
24 | tf.random.set_seed(0)
25 | model = WANN(random_state=0, optimizer=Adam(0.01))
26 | model.fit(Xs, ys, Xt, yt, epochs=200, verbose=0)
27 | assert np.abs(model.predict(Xt) - yt).sum() < 10
28 |
--------------------------------------------------------------------------------
/tests/test_wdgrl.py:
--------------------------------------------------------------------------------
1 | """
2 | Test functions for wdgrl module.
3 | """
4 |
5 | import numpy as np
6 | import tensorflow as tf
7 | from tensorflow.keras import Sequential, Model
8 | from tensorflow.keras.layers import Dense
9 | from tensorflow.keras.optimizers import Adam
10 | from tensorflow.keras.initializers import GlorotUniform
11 |
12 | from adapt.feature_based import WDGRL
13 |
14 | Xs = np.concatenate((
15 | np.linspace(0, 1, 100).reshape(-1, 1),
16 | np.zeros((100, 1))
17 | ), axis=1)
18 | Xt = np.concatenate((
19 | np.linspace(0, 1, 100).reshape(-1, 1),
20 | np.ones((100, 1))
21 | ), axis=1)
22 | ys = 0.2 * Xs[:, 0].ravel()
23 | yt = 0.2 * Xt[:, 0].ravel()
24 |
25 |
26 | def _get_encoder(input_shape=Xs.shape[1:]):
27 | model = Sequential()
28 | model.add(Dense(1, input_shape=input_shape,
29 | kernel_initializer="ones",
30 | use_bias=False))
31 | model.compile(loss="mse", optimizer="adam")
32 | return model
33 |
34 |
35 | def _get_discriminator(input_shape=(1,)):
36 | model = Sequential()
37 | model.add(Dense(10,
38 | input_shape=input_shape,
39 | kernel_initializer=GlorotUniform(seed=0),
40 | activation="elu"))
41 | model.add(Dense(1,
42 | kernel_initializer=GlorotUniform(seed=0),
43 | activation=None))
44 | model.compile(loss="mse", optimizer="adam")
45 | return model
46 |
47 |
48 | def _get_task(input_shape=(1,), output_shape=(1,)):
49 | model = Sequential()
50 | model.add(Dense(np.prod(output_shape),
51 | kernel_initializer=GlorotUniform(seed=0),
52 | use_bias=False,
53 | input_shape=input_shape))
54 | model.compile(loss="mse", optimizer=Adam(0.1))
55 | return model
56 |
57 |
58 | def test_fit_lambda_zero():
59 | tf.random.set_seed(1)
60 | np.random.seed(1)
61 | model = WDGRL(_get_encoder(), _get_task(), _get_discriminator(),
62 | lambda_=0, loss="mse", optimizer=Adam(0.01), metrics=["mse"],
63 | random_state=0)
64 | model.fit(Xs, ys, Xt, yt,
65 | epochs=300, verbose=0)
66 | assert isinstance(model, Model)
67 | assert model.encoder_.get_weights()[0][1][0] == 1.0
68 | assert np.sum(np.abs(model.predict(Xs).ravel() - ys)) < 0.01
69 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) > 10
70 |
71 |
72 | def test_fit_lambda_one():
73 | tf.random.set_seed(1)
74 | np.random.seed(1)
75 | model = WDGRL(_get_encoder(), _get_task(), _get_discriminator(),
76 | lambda_=1, gamma=0, loss="mse", optimizer=Adam(0.01),
77 | metrics=["mse"], random_state=0)
78 | model.fit(Xs, ys, Xt, yt,
79 | epochs=300, verbose=0)
80 | assert isinstance(model, Model)
81 | assert np.abs(model.encoder_.get_weights()[0][1][0] /
82 | model.encoder_.get_weights()[0][0][0]) < 0.3
83 | assert np.sum(np.abs(model.predict(Xs).ravel() - ys)) < 2
84 | assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 5
85 |
--------------------------------------------------------------------------------