├── README.md ├── Read_Me_KCT_MTSA.txt ├── anno ├── Basketball.txt ├── Biker.txt ├── Bird1.txt ├── Bird2.txt ├── BlurBody.txt ├── BlurCar1.txt ├── BlurCar2.txt ├── BlurCar3.txt ├── BlurCar4.txt ├── BlurFace.txt ├── BlurOwl.txt ├── Board.txt ├── Bolt.txt ├── Bolt2.txt ├── Box.txt ├── Boy.txt ├── Car1.txt ├── Car2.txt ├── Car24.txt ├── Car4.txt ├── CarDark.txt ├── CarScale.txt ├── ClifBar.txt ├── Coke.txt ├── Couple.txt ├── Coupon.txt ├── Crossing.txt ├── Crowds.txt ├── Dancer.txt ├── Dancer2.txt ├── David.txt ├── David2.txt ├── David3.txt ├── Deer.txt ├── Diving.txt ├── Dog.txt ├── Dog1.txt ├── Doll.txt ├── DragonBaby.txt ├── Dudek.txt ├── FaceOcc1.txt ├── FaceOcc2.txt ├── Fish.txt ├── FleetFace.txt ├── Football.txt ├── Football1.txt ├── Freeman1.txt ├── Freeman3.txt ├── Freeman4.txt ├── Girl.txt ├── Girl2.txt ├── Gym.txt ├── Human2.txt ├── Human3.txt ├── Human4.2.txt ├── Human5.txt ├── Human6.txt ├── Human7.txt ├── Human8.txt ├── Human9.txt ├── Ironman.txt ├── Jogging-1.txt ├── Jogging-2.txt ├── Jump.txt ├── Jumping.txt ├── KiteSurf.txt ├── Lemming.txt ├── Liquor.txt ├── Man.txt ├── Matrix.txt ├── Mhyang.txt ├── MotorRolling.txt ├── MountainBike.txt ├── Panda.txt ├── RedTeam.txt ├── Rubik.txt ├── Shaking.txt ├── Singer1.txt ├── Singer2.txt ├── Skater.txt ├── Skater2.txt ├── Skating1.txt ├── Skating2.1.txt ├── Skating2.2.txt ├── Skiing.txt ├── Soccer.txt ├── Subway.txt ├── Surfer.txt ├── Suv.txt ├── Sylvester.txt ├── Tiger1.txt ├── Tiger2.txt ├── Toy.txt ├── Trans.txt ├── Trellis.txt ├── Twinnings.txt ├── Vase.txt ├── Walking.txt ├── Walking2.txt ├── Woman.txt ├── att │ ├── Bolt.txt │ ├── basketball.txt │ ├── boat_1.txt │ ├── boat_2.txt │ ├── boat_3.txt │ ├── boat_4.txt │ ├── boat_5.txt │ ├── boy.txt │ ├── car1_1.txt │ ├── car1_2.txt │ ├── car1_3.txt │ ├── car1_4.txt │ ├── car1_5.txt │ ├── car1_6.txt │ ├── car2_1.txt │ ├── car2_2.txt │ ├── car2_3.txt │ ├── car2_4.txt │ ├── car2_5.txt │ ├── car2_6.txt │ ├── car3_1.txt │ ├── car3_2.txt │ ├── car3_3.txt │ ├── car3_4.txt │ ├── car3_5.txt │ ├── car4.txt │ ├── carDark.txt │ ├── carScale.txt │ ├── coke.txt │ ├── couple.txt │ ├── crossing.txt │ ├── david.txt │ ├── david2.txt │ ├── david3.txt │ ├── deer.txt │ ├── dog1.txt │ ├── doll.txt │ ├── dudek.txt │ ├── faceocc1.txt │ ├── faceocc2.txt │ ├── fish.txt │ ├── fleetface.txt │ ├── football.txt │ ├── football1.txt │ ├── freeman1.txt │ ├── freeman3.txt │ ├── freeman4.txt │ ├── girl.txt │ ├── group1_1.txt │ ├── group1_2.txt │ ├── group1_3.txt │ ├── group1_4.txt │ ├── group2_1.txt │ ├── group2_2.txt │ ├── group2_3.txt │ ├── group3_1.txt │ ├── group3_2.txt │ ├── group3_3.txt │ ├── group3_4.txt │ ├── ironman.txt │ ├── jogging-1.txt │ ├── jogging-2.txt │ ├── jumping.txt │ ├── lemming.txt │ ├── liquor.txt │ ├── matrix.txt │ ├── mhyang.txt │ ├── motorRolling.txt │ ├── mountainBike.txt │ ├── person1_1.txt │ ├── person1_2.txt │ ├── person1_3.txt │ ├── person2_1.txt │ ├── person2_2.txt │ ├── person2_3.txt │ ├── person3_1.txt │ ├── person3_2.txt │ ├── person3_3.txt │ ├── person4_1.txt │ ├── person4_2.txt │ ├── person5_1.txt │ ├── person5_2.txt │ ├── person5_3.txt │ ├── person5_4.txt │ ├── person5_5.txt │ ├── person6_1.txt │ ├── person6_2.txt │ ├── person6_3.txt │ ├── person7_1.txt │ ├── person7_2.txt │ ├── person7_3.txt │ ├── person8_1.txt │ ├── person8_2.txt │ ├── person8_3.txt │ ├── person8_4.txt │ ├── person9_1.txt │ ├── person9_2.txt │ ├── person9_3.txt │ ├── person9_4.txt │ ├── person9_5.txt │ ├── shaking.txt │ ├── singer1.txt │ ├── singer2.txt │ ├── skating1.txt │ ├── skiing.txt │ ├── soccer.txt │ ├── subway.txt │ ├── suv.txt │ ├── sylvester.txt │ ├── tiger1.txt │ ├── tiger2.txt │ ├── trellis.txt │ ├── walking.txt │ ├── walking2.txt │ └── woman.txt ├── boat_1.txt ├── boat_2.txt ├── boat_3.txt ├── boat_4.txt ├── boat_5.txt ├── car1_1.txt ├── car1_2.txt ├── car1_3.txt ├── car1_4.txt ├── car1_5.txt ├── car1_6.txt ├── car2_1.txt ├── car2_2.txt ├── car2_3.txt ├── car2_4.txt ├── car2_5.txt ├── car2_6.txt ├── car3_1.txt ├── car3_2.txt ├── car3_3.txt ├── car3_4.txt ├── car3_5.txt ├── group1_1.txt ├── group1_2.txt ├── group1_3.txt ├── group1_4.txt ├── group2_1.txt ├── group2_2.txt ├── group2_3.txt ├── group3_1.txt ├── group3_2.txt ├── group3_3.txt ├── group3_4.txt ├── person1_1.txt ├── person1_2.txt ├── person1_3.txt ├── person2_1.txt ├── person2_2.txt ├── person2_3.txt ├── person3_1.txt ├── person3_2.txt ├── person3_3.txt ├── person4_1.txt ├── person4_2.txt ├── person5_1.txt ├── person5_2.txt ├── person5_3.txt ├── person5_4.txt ├── person5_5.txt ├── person6_1.txt ├── person6_2.txt ├── person6_3.txt ├── person7_1.txt ├── person7_2.txt ├── person7_3.txt ├── person8_1.txt ├── person8_2.txt ├── person8_3.txt ├── person8_4.txt ├── person9_1.txt ├── person9_2.txt ├── person9_3.txt ├── person9_4.txt └── person9_5.txt ├── batch_grid_search ├── calcRectInt.m ├── calcSeqErrRobust.m ├── choose_video.m ├── download_videos.m ├── external.txt ├── fhog.m ├── gaussian_correlation.m ├── gaussian_shaped_labels.m ├── get_features.m ├── get_subwindow.m ├── gradientMex.mexa64 ├── gradientMex.mexw64 ├── grid_search.m ├── linear_correlation.m ├── load_video_info.m ├── polynomial_correlation.m ├── precision_plot.m ├── readme_old.txt ├── retrain_fixed_pt_method.m ├── run_KCF_MTSA.m ├── run_tracker.m ├── show_video.m ├── tracker.m ├── tracker_multi_KCF.m ├── videofig.m └── videos └── Crossing ├── groundtruth_rect.txt └── img ├── 0001.jpg ├── 0002.jpg ├── 0003.jpg ├── 0004.jpg ├── 0005.jpg ├── 0006.jpg ├── 0007.jpg ├── 0008.jpg ├── 0009.jpg ├── 0010.jpg ├── 0011.jpg ├── 0012.jpg ├── 0013.jpg ├── 0014.jpg ├── 0015.jpg ├── 0016.jpg ├── 0017.jpg ├── 0018.jpg ├── 0019.jpg ├── 0020.jpg ├── 0021.jpg ├── 0022.jpg ├── 0023.jpg ├── 0024.jpg ├── 0025.jpg ├── 0026.jpg ├── 0027.jpg ├── 0028.jpg ├── 0029.jpg ├── 0030.jpg ├── 0031.jpg ├── 0032.jpg ├── 0033.jpg ├── 0034.jpg ├── 0035.jpg ├── 0036.jpg ├── 0037.jpg ├── 0038.jpg ├── 0039.jpg ├── 0040.jpg ├── 0041.jpg ├── 0042.jpg ├── 0043.jpg ├── 0044.jpg ├── 0045.jpg ├── 0046.jpg ├── 0047.jpg ├── 0048.jpg ├── 0049.jpg ├── 0050.jpg ├── 0051.jpg ├── 0052.jpg ├── 0053.jpg ├── 0054.jpg ├── 0055.jpg ├── 0056.jpg ├── 0057.jpg ├── 0058.jpg ├── 0059.jpg ├── 0060.jpg ├── 0061.jpg ├── 0062.jpg ├── 0063.jpg ├── 0064.jpg ├── 0065.jpg ├── 0066.jpg ├── 0067.jpg ├── 0068.jpg ├── 0069.jpg ├── 0070.jpg ├── 0071.jpg ├── 0072.jpg ├── 0073.jpg ├── 0074.jpg ├── 0075.jpg ├── 0076.jpg ├── 0077.jpg ├── 0078.jpg ├── 0079.jpg ├── 0080.jpg ├── 0081.jpg ├── 0082.jpg ├── 0083.jpg ├── 0084.jpg ├── 0085.jpg ├── 0086.jpg ├── 0087.jpg ├── 0088.jpg ├── 0089.jpg ├── 0090.jpg ├── 0091.jpg ├── 0092.jpg ├── 0093.jpg ├── 0094.jpg ├── 0095.jpg ├── 0096.jpg ├── 0097.jpg ├── 0098.jpg ├── 0099.jpg ├── 0100.jpg ├── 0101.jpg ├── 0102.jpg ├── 0103.jpg ├── 0104.jpg ├── 0105.jpg ├── 0106.jpg ├── 0107.jpg ├── 0108.jpg ├── 0109.jpg ├── 0110.jpg ├── 0111.jpg ├── 0112.jpg ├── 0113.jpg ├── 0114.jpg ├── 0115.jpg ├── 0116.jpg ├── 0117.jpg ├── 0118.jpg ├── 0119.jpg └── 0120.jpg /README.md: -------------------------------------------------------------------------------- 1 | "Multi-Template Scale-Adaptive Kernelized Correlation Filters" ICCVW2015 2 | 3 | Authors: Adel Bibi and Bernard Ghanem. 4 | 5 | Visit our group's website: 6 | https://ivul.kaust.edu.sa/Pages/Home.aspx 7 | 8 | Adel Bibi's website: 9 | www.adelbibi.com 10 | 11 | Email: 12 | 13 | adel.bibi [AT] kaust.edu.sa bibiadel93 [AT] gmail.com 14 | 15 | Bernard Ghanem's website: 16 | http://www.bernardghanem.com/ 17 | 18 | Email: 19 | 20 | Bernard.Ghanem [AT] kaust.edu.sa 21 | 22 | ************************************************** 23 | This MATLAB code implements a simple tracking pipeline based on the multi template scale 24 | adpative kernelized correlation fitler (KCF_MTS). 25 | 26 | It is free for research use. If you find it useful, please acknowledge the paper 27 | above with a reference. 28 | 29 | ************************************************** 30 | For implementation details, please check (Read_Me_KCT_MTSA.txt). 31 | -------------------------------------------------------------------------------- /Read_Me_KCT_MTSA.txt: -------------------------------------------------------------------------------- 1 | "Multi-Template Scale-Adaptive Kernelized Correlation Filters" ICCVW2015 2 | 3 | Authors: Adel Bibi and Bernard Ghanem. 4 | 5 | Visit our group's website: 6 | https://ivul.kaust.edu.sa/Pages/Home.aspx 7 | 8 | Adel Bibi's website: 9 | www.adelbibi.com 10 | 11 | Email: adel.bibi@kaust.edu.sa 12 | bibiadel93@gmail.com 13 | 14 | 15 | Bernard Ghanem's website: 16 | http://www.bernardghanem.com/ 17 | 18 | Email: Bernard.Ghanem@kaust.edu.sa 19 | 20 | ************************************************** 21 | This MATLAB code implements a simple tracking pipeline based on the multi template scale 22 | adpative kernelized correlation fitler (KCF_MTS). 23 | 24 | It is free for research use. If you find it useful, please acknowledge the paper 25 | above with a reference. 26 | ************************************************** 27 | 28 | 29 | To run over 1 single video: 30 | 31 | 1- Open ('run_tracker.m'). 32 | 2- Change line line 49 video = 'choose'. 33 | 3- Dump any video of OTB100/OTB50 into the the directory (videos). 34 | 4- Run the tracker. 35 | 36 | The annotation files and the attributes for all the videos of OTB100 are avilable in 37 | the directory (anno). 38 | 39 | 40 | To run over the complete dataset: 41 | 42 | 1- Open ('run_tracker.m'). 43 | 2- Change line line 49 video = 'all'. 44 | 3- Dump all the OTB100 or OTB50 videos into the the directory (videos). 45 | 4- Run the tracker. 46 | 5- The detailed results will be stored in (results) directory. (Make sure to create a directory named results inthe current path) 47 | 48 | 49 | The code is also completey integratable with the OTB100 and OTB50 evaulation benchmarks. 50 | To do so: 51 | 52 | 1- Move the complete traker directory to the (Trackers directory in the OTB evulation code). 53 | The function is called (configTrackers.m) in the OTB evaulation code. It can be found here: 54 | [1] http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html 55 | [2] https://sites.google.com/site/trackerbenchmark/benchmarks/v10 56 | 57 | 2- Add the following line to the list of trackers to be evualted over: 58 | struct('name','KCF_MTSA','namePaper','KCF_MTSA') 59 | Note: The code that will be run is through the evaulation is (run_KCF_MTSA.m). 60 | It's the same exact code with the same parameters but has been changed to the standard format. 61 | 62 | 63 | ************************************************** 64 | 65 | Referrences: 66 | [1] Henriques, João F., et al. "High-speed tracking with kernelized correlation filters." Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.3 (2015): 583-596. 67 | [2] Henriques, Joao F., et al. "Exploiting the circulant structure of tracking-by-detection with kernels." Computer Vision–ECCV 2012. Springer Berlin Heidelberg, 2012. 702-715. 68 | [3] Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. "Online object tracking: A benchmark." Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. 69 | 70 | A complete list of references can be found in the paper, which can be found here 71 | 72 | https://ivul.kaust.edu.sa/Pages/Pub-Adaptive-Kernelized-Correlation-Filters.aspx 73 | http://www.adelbibi.com/papers/ICCVW2015/paper.pdf 74 | 75 | 76 | -------------------------------------------------------------------------------- /anno/Biker.txt: -------------------------------------------------------------------------------- 1 | 262,94,16,26 2 | 262,94,16,26 3 | 261,93,16,26 4 | 260,92,16,26 5 | 259,92,16,26 6 | 258,91,16,26 7 | 255,89,16,26 8 | 253,88,16,26 9 | 253,86,16,26 10 | 252,82,16,26 11 | 250,79,17,28 12 | 250,79,17,28 13 | 248,76,17,28 14 | 246,75,17,28 15 | 244,74,19,29 16 | 242,73,19,29 17 | 241,71,19,29 18 | 240,69,19,29 19 | 238,67,19,29 20 | 237,66,19,29 21 | 234,64,19,29 22 | 232,63,19,29 23 | 231,61,19,29 24 | 229,59,20,33 25 | 228,57,20,33 26 | 228,57,20,33 27 | 227,55,20,33 28 | 227,52,20,33 29 | 225,50,21,34 30 | 225,48,21,34 31 | 223,45,22,37 32 | 222,43,22,37 33 | 220,41,22,37 34 | 218,40,22,37 35 | 216,38,22,37 36 | 215,36,22,37 37 | 215,33,24,39 38 | 213,30,24,39 39 | 211,29,24,39 40 | 208,27,24,39 41 | 206,25,24,42 42 | 205,24,24,42 43 | 203,24,24,42 44 | 203,23,24,42 45 | 202,21,26,44 46 | 202,19,26,44 47 | 203,19,26,44 48 | 205,19,26,44 49 | 206,19,26,44 50 | 206,19,26,44 51 | 207,20,26,44 52 | 207,17,29,48 53 | 207,17,29,48 54 | 207,17,29,48 55 | 209,17,29,48 56 | 210,16,29,48 57 | 211,15,29,48 58 | 213,15,29,48 59 | 216,15,29,48 60 | 219,13,29,48 61 | 220,13,29,48 62 | 222,14,29,48 63 | 225,20,29,48 64 | 234,50,29,48 65 | 238,59,29,48 66 | 247,70,29,48 67 | 270,70,29,45 68 | 275,58,29,45 69 | 281,48,29,45 70 | 300,7,29,45 71 | 309,1,32,38 72 | 319,-3,32,35 73 | 328,-5,32,35 74 | 341,-8,32,35 75 | 348,-10,32,35 76 | 352,-10,32,35 77 | 357,-9,32,35 78 | 364,0,28,29 79 | 374,13,28,29 80 | 376,15,28,29 81 | 377,22,28,29 82 | 377,52,28,29 83 | 378,66,26,24 84 | 379,72,26,24 85 | 381,75,26,24 86 | 387,71,26,24 87 | 390,67,26,24 88 | 396,60,26,24 89 | 396,56,26,24 90 | 399,53,26,24 91 | 401,51,26,24 92 | 405,49,26,24 93 | 407,49,26,24 94 | 407,49,26,24 95 | 407,49,26,24 96 | 409,51,26,24 97 | 409,51,26,24 98 | 409,51,26,24 99 | 409,51,26,24 100 | 407,51,26,24 101 | 404,49,26,24 102 | 404,49,26,24 103 | 405,51,26,24 104 | 405,51,26,24 105 | 404,51,26,24 106 | 399,54,26,24 107 | 398,55,26,24 108 | 398,55,26,24 109 | 398,55,26,24 110 | 398,57,26,24 111 | 398,61,26,24 112 | 399,62,26,24 113 | 399,64,26,24 114 | 398,66,26,24 115 | 398,67,26,24 116 | 397,69,26,24 117 | 396,69,26,24 118 | 396,69,22,23 119 | 396,69,22,23 120 | 394,71,22,23 121 | 392,71,22,23 122 | 388,72,22,23 123 | 388,72,22,23 124 | 386,73,22,23 125 | 386,73,22,23 126 | 386,74,22,23 127 | 386,74,22,23 128 | 385,75,22,23 129 | 385,77,22,23 130 | 385,77,20,20 131 | 384,78,20,20 132 | 383,79,20,20 133 | 382,79,20,20 134 | 379,79,20,20 135 | 379,81,20,20 136 | 377,82,20,20 137 | 377,82,17,19 138 | 376,83,17,19 139 | 374,83,17,19 140 | 374,84,17,19 141 | 374,84,17,19 142 | 374,84,17,19 143 | -------------------------------------------------------------------------------- /anno/Bird2.txt: -------------------------------------------------------------------------------- 1 | 82,218,69,73 2 | 86,216,69,73 3 | 90,219,69,73 4 | 93,220,69,73 5 | 100,220,69,73 6 | 103,221,69,73 7 | 108,221,69,73 8 | 112,220,69,73 9 | 116,216,69,73 10 | 120,223,69,73 11 | 128,221,69,73 12 | 128,225,69,73 13 | 133,224,69,73 14 | 137,225,69,73 15 | 142,228,69,73 16 | 148,231,69,73 17 | 150,233,69,73 18 | 153,234,69,73 19 | 160,234,69,73 20 | 166,234,69,73 21 | 170,234,69,73 22 | 175,234,69,73 23 | 176,234,69,73 24 | 182,234,69,73 25 | 186,236,69,73 26 | 190,240,69,73 27 | 193,240,69,73 28 | 202,241,69,73 29 | 201,243,69,73 30 | 207,243,69,73 31 | 210,240,69,73 32 | 212,240,69,73 33 | 218,240,69,73 34 | 222,241,69,73 35 | 221,243,69,73 36 | 227,241,69,73 37 | 231,240,69,73 38 | 235,240,69,73 39 | 240,236,69,73 40 | 242,239,69,73 41 | 245,238,69,73 42 | 248,238,69,73 43 | 250,239,69,73 44 | 252,241,69,73 45 | 256,240,69,73 46 | 258,241,69,73 47 | 268,241,69,73 48 | 278,238,69,73 49 | 283,241,69,73 50 | 285,236,69,73 51 | 282,236,69,73 52 | 277,234,69,73 53 | 273,234,69,73 54 | 268,233,69,73 55 | 266,233,69,73 56 | 260,233,69,73 57 | 253,233,69,73 58 | 243,230,69,73 59 | 246,231,69,73 60 | 240,233,69,73 61 | 235,226,69,73 62 | 228,228,69,73 63 | 225,226,69,73 64 | 220,229,69,73 65 | 213,225,69,73 66 | 211,224,69,73 67 | 208,225,69,73 68 | 202,224,69,73 69 | 198,225,69,73 70 | 192,219,69,73 71 | 185,218,69,73 72 | 180,215,69,73 73 | 175,215,69,73 74 | 168,215,69,73 75 | 163,216,69,73 76 | 160,215,69,73 77 | 157,215,69,73 78 | 152,215,69,73 79 | 148,218,69,73 80 | 143,216,69,73 81 | 141,213,69,73 82 | 138,214,69,73 83 | 135,211,69,73 84 | 130,213,69,73 85 | 130,214,69,73 86 | 130,214,69,73 87 | 125,213,69,73 88 | 123,213,69,73 89 | 122,213,69,73 90 | 121,215,69,73 91 | 118,219,69,73 92 | 121,218,69,73 93 | 121,218,69,73 94 | 112,218,69,73 95 | 108,216,69,73 96 | 93,218,69,73 97 | 90,218,69,73 98 | 111,209,69,73 99 | 147,175,69,73 100 | -------------------------------------------------------------------------------- /anno/CarScale.txt: -------------------------------------------------------------------------------- 1 | 6,166,42,26 2 | 7,168,42,23 3 | 10,168,43,23 4 | 12,166,41,25 5 | 12,167,44,23 6 | 13,169,44,22 7 | 15,168,44,25 8 | 16,168,44,26 9 | 20,169,43,23 10 | 19,169,45,24 11 | 20,168,45,24 12 | 21,168,45,25 13 | 23,169,43,23 14 | 25,170,45,23 15 | 24,170,46,22 16 | 26,169,44,25 17 | 28,170,43,23 18 | 29,170,44,25 19 | 30,171,45,25 20 | 31,168,47,27 21 | 33,170,45,25 22 | 37,171,43,24 23 | 36,171,48,24 24 | 40,173,44,21 25 | 42,172,44,23 26 | 42,171,46,25 27 | 44,172,46,25 28 | 45,171,44,24 29 | 46,172,44,25 30 | 46,173,47,23 31 | 47,173,46,24 32 | 47,173,48,25 33 | 49,173,46,24 34 | 51,172,45,26 35 | 52,172,45,25 36 | 52,171,46,27 37 | 52,172,46,26 38 | 54,171,46,27 39 | 54,172,47,27 40 | 55,173,49,24 41 | 56,172,47,26 42 | 57,172,46,27 43 | 59,172,48,24 44 | 61,173,46,25 45 | 64,173,43,24 46 | 62,171,48,26 47 | 64,173,47,24 48 | 65,173,48,24 49 | 67,172,45,24 50 | 68,170,49,28 51 | 70,171,47,26 52 | 71,170,47,27 53 | 72,171,47,25 54 | 73,172,48,26 55 | 72,171,50,26 56 | 73,172,50,25 57 | 76,171,47,25 58 | 76,171,48,26 59 | 78,170,50,26 60 | 79,170,49,27 61 | 79,171,50,27 62 | 78,172,53,28 63 | 80,172,50,27 64 | 80,172,51,26 65 | 81,171,52,27 66 | 81,170,51,29 67 | 82,172,50,27 68 | 81,173,51,26 69 | 80,172,54,28 70 | 81,172,52,27 71 | 81,175,52,23 72 | 79,173,55,26 73 | 81,175,53,25 74 | 83,174,51,24 75 | 81,174,53,25 76 | 81,174,55,26 77 | 80,174,55,25 78 | 81,175,55,25 79 | 83,174,52,28 80 | 81,176,54,24 81 | 81,174,56,27 82 | 81,174,54,27 83 | 81,174,55,27 84 | 81,174,55,28 85 | 81,174,56,30 86 | 80,175,57,28 87 | 81,175,57,29 88 | 80,174,57,31 89 | 81,176,57,28 90 | 79,175,59,29 91 | 79,175,59,31 92 | 78,174,59,33 93 | 79,175,58,30 94 | 79,175,58,31 95 | 80,176,57,29 96 | 81,176,57,29 97 | 79,175,59,32 98 | 79,175,60,32 99 | 79,176,60,30 100 | 82,175,57,30 101 | 80,176,60,31 102 | 81,175,58,32 103 | 80,175,61,31 104 | 80,175,60,31 105 | 81,174,60,33 106 | 81,175,60,33 107 | 79,174,63,32 108 | 80,175,62,32 109 | 81,175,63,35 110 | 81,173,63,36 111 | 81,173,65,36 112 | 83,174,64,35 113 | 83,174,63,34 114 | 86,174,62,31 115 | 85,175,64,34 116 | 86,173,62,35 117 | 84,173,64,37 118 | 85,173,64,38 119 | 87,173,63,34 120 | 86,174,65,34 121 | 86,173,65,35 122 | 87,174,66,36 123 | 87,172,68,38 124 | 89,172,67,37 125 | 91,172,65,38 126 | 88,170,69,39 127 | 90,170,69,39 128 | 92,171,66,37 129 | 92,172,69,37 130 | 94,170,67,39 131 | 92,170,72,40 132 | 94,168,72,43 133 | 96,168,71,44 134 | 94,169,75,43 135 | 98,169,72,44 136 | 96,168,75,45 137 | 97,167,75,46 138 | 99,167,75,44 139 | 101,167,74,44 140 | 101,169,76,44 141 | 103,168,74,44 142 | 102,170,79,42 143 | 100,166,83,46 144 | 103,168,82,45 145 | 104,167,82,46 146 | 106,167,84,46 147 | 107,166,84,46 148 | 110,169,82,43 149 | 109,168,85,44 150 | 113,167,84,49 151 | 113,166,86,46 152 | 113,166,88,49 153 | 115,164,88,50 154 | 115,165,90,48 155 | 116,163,88,50 156 | 117,162,90,52 157 | 118,165,92,50 158 | 119,163,95,53 159 | 119,160,99,54 160 | 120,164,96,52 161 | 124,163,97,50 162 | 121,162,102,55 163 | 124,164,102,51 164 | 125,161,105,56 165 | 123,165,108,51 166 | 124,161,109,57 167 | 124,163,105,50 168 | 126,161,105,54 169 | 122,163,111,51 170 | 123,162,115,56 171 | 119,163,120,57 172 | 127,162,114,55 173 | 121,161,124,56 174 | 123,160,124,59 175 | 127,161,123,59 176 | 127,160,125,60 177 | 124,160,128,58 178 | 123,159,129,61 179 | 121,159,133,61 180 | 120,158,137,62 181 | 112,155,144,65 182 | 116,158,145,63 183 | 114,154,150,68 184 | 113,154,151,69 185 | 110,153,155,72 186 | 112,154,154,71 187 | 114,152,158,74 188 | 115,152,163,73 189 | 115,152,169,75 190 | 120,151,168,76 191 | 123,149,172,76 192 | 129,147,175,79 193 | 130,148,180,81 194 | 129,145,186,81 195 | 131,149,185,75 196 | 128,144,189,82 197 | 129,138,194,90 198 | 126,141,198,82 199 | 124,138,197,91 200 | 119,137,202,87 201 | 113,137,210,92 202 | 111,135,210,89 203 | 102,135,215,91 204 | 97,133,226,88 205 | 85,131,225,98 206 | 78,135,227,93 207 | 65,131,237,94 208 | 60,129,241,98 209 | 60,130,239,94 210 | 56,130,245,89 211 | 50,127,258,100 212 | 51,129,262,98 213 | 62,122,255,97 214 | 60,123,266,97 215 | 64,123,270,100 216 | 66,121,275,106 217 | 69,116,280,118 218 | 72,117,285,106 219 | 84,117,275,108 220 | 83,119,283,106 221 | 90,115,283,109 222 | 92,113,289,113 223 | 96,110,291,118 224 | 102,112,293,114 225 | 104,112,293,114 226 | 110,110,296,113 227 | 116,110,295,114 228 | 113,108,302,112 229 | 119,110,300,110 230 | 129,108,295,111 231 | 132,102,296,119 232 | 132,100,306,123 233 | 141,102,292,114 234 | 138,106,303,109 235 | 147,99,300,117 236 | 148,101,302,115 237 | 151,102,300,114 238 | 161,103,293,111 239 | 164,103,297,112 240 | 165,103,299,109 241 | 179,101,287,107 242 | 178,99,293,110 243 | 188,98,288,113 244 | 193,99,288,109 245 | 205,100,282,109 246 | 219,97,278,104 247 | 232,98,276,106 248 | 246,101,280,105 249 | 258,101,281,101 250 | 286,100,269,101 251 | 304,100,270,102 252 | 327,100,270,102 253 | -------------------------------------------------------------------------------- /anno/Couple.txt: -------------------------------------------------------------------------------- 1 | 51,47,25,62 2 | 47,42,24,62 3 | 34,36,24,65 4 | 33,41,24,67 5 | 39,37,26,66 6 | 30,38,25,66 7 | 31,41,28,62 8 | 37,43,23,62 9 | 40,38,29,64 10 | 40,33,28,66 11 | 44,29,26,70 12 | 45,33,26,66 13 | 60,37,26,67 14 | 65,32,26,68 15 | 64,28,26,69 16 | 86,29,26,65 17 | 99,34,27,66 18 | 89,27,26,66 19 | 80,25,28,67 20 | 87,23,27,68 21 | 84,24,26,70 22 | 79,27,30,69 23 | 83,33,27,67 24 | 88,38,29,68 25 | 75,42,27,69 26 | 73,39,29,69 27 | 79,30,28,67 28 | 79,21,23,71 29 | 71,13,26,72 30 | 61,13,27,69 31 | 62,13,28,70 32 | 74,18,26,72 33 | 84,20,26,72 34 | 89,19,26,75 35 | 105,18,27,73 36 | 119,23,27,73 37 | 113,17,27,78 38 | 112,18,28,73 39 | 130,22,30,72 40 | 141,25,25,74 41 | 149,28,26,71 42 | 149,30,29,71 43 | 151,29,28,74 44 | 150,25,24,77 45 | 153,21,25,77 46 | 153,27,25,75 47 | 124,28,26,76 48 | 103,27,28,78 49 | 101,29,28,74 50 | 102,30,27,77 51 | 107,22,25,74 52 | 108,9,25,76 53 | 109,7,24,80 54 | 116,14,29,79 55 | 121,13,26,81 56 | 119,20,26,84 57 | 109,24,28,79 58 | 110,26,27,82 59 | 101,22,28,82 60 | 101,17,26,81 61 | 126,11,25,84 62 | 137,11,24,82 63 | 130,13,24,84 64 | 132,21,25,87 65 | 128,29,26,80 66 | 129,33,26,81 67 | 134,38,23,84 68 | 144,47,23,85 69 | 143,51,22,88 70 | 122,52,24,84 71 | 127,43,23,84 72 | 124,42,21,85 73 | 110,48,24,86 74 | 103,34,22,86 75 | 95,40,24,88 76 | 108,47,22,87 77 | 116,58,24,86 78 | 122,63,26,85 79 | 136,58,22,86 80 | 150,65,19,87 81 | 134,55,23,89 82 | 143,55,26,83 83 | 159,50,21,82 84 | 166,46,22,86 85 | 169,47,26,83 86 | 178,46,27,90 87 | 178,50,25,87 88 | 176,48,21,87 89 | 176,51,20,89 90 | 175,44,25,86 91 | 135,53,20,84 92 | 120,37,24,85 93 | 134,33,21,86 94 | 135,34,21,86 95 | 134,25,24,90 96 | 134,25,27,91 97 | 136,36,24,88 98 | 149,40,23,83 99 | 151,43,27,84 100 | 139,44,29,90 101 | 140,40,27,90 102 | 146,39,24,93 103 | 142,29,22,89 104 | 135,16,25,87 105 | 173,15,23,89 106 | 181,21,26,86 107 | 182,19,22,88 108 | 182,21,27,89 109 | 188,30,27,89 110 | 171,30,25,94 111 | 174,31,26,93 112 | 167,36,30,89 113 | 159,39,31,87 114 | 135,41,29,87 115 | 127,37,31,87 116 | 122,44,25,92 117 | 122,41,27,92 118 | 118,41,30,90 119 | 115,43,31,94 120 | 123,42,28,91 121 | 137,43,33,91 122 | 143,46,34,87 123 | 142,41,32,88 124 | 138,41,32,89 125 | 138,25,35,88 126 | 142,18,30,92 127 | 167,17,34,92 128 | 171,20,33,91 129 | 171,27,35,92 130 | 168,33,34,88 131 | 166,30,33,91 132 | 158,32,35,94 133 | 162,33,35,92 134 | 151,30,33,89 135 | 133,28,33,89 136 | 121,26,37,88 137 | 137,15,36,88 138 | 123,19,40,87 139 | 131,17,38,86 140 | 130,25,39,90 141 | -------------------------------------------------------------------------------- /anno/Crossing.txt: -------------------------------------------------------------------------------- 1 | 205,151,17,50 2 | 202,150,19,49 3 | 201,150,18,49 4 | 199,150,18,47 5 | 196,149,20,49 6 | 199,150,17,46 7 | 195,149,19,47 8 | 193,147,19,50 9 | 191,148,20,46 10 | 191,147,20,48 11 | 190,145,19,49 12 | 190,145,17,48 13 | 188,145,17,48 14 | 187,143,19,49 15 | 185,144,16,49 16 | 183,143,18,50 17 | 183,143,20,50 18 | 182,142,18,50 19 | 182,141,17,51 20 | 181,141,17,48 21 | 180,139,17,49 22 | 178,139,16,47 23 | 177,138,16,45 24 | 176,138,16,46 25 | 175,138,18,46 26 | 174,138,17,45 27 | 172,139,19,47 28 | 170,137,19,47 29 | 171,134,19,49 30 | 168,133,20,49 31 | 168,132,19,49 32 | 167,133,19,47 33 | 167,131,20,49 34 | 167,131,19,49 35 | 164,132,20,47 36 | 165,128,19,53 37 | 164,129,20,49 38 | 164,130,20,49 39 | 162,128,20,50 40 | 161,128,22,50 41 | 163,129,20,45 42 | 161,127,21,44 43 | 161,126,19,44 44 | 160,126,19,45 45 | 158,124,21,48 46 | 160,125,17,45 47 | 159,127,17,45 48 | 158,127,18,43 49 | 156,125,18,41 50 | 157,124,14,42 51 | 155,123,16,44 52 | 154,122,15,46 53 | 151,122,17,43 54 | 150,120,16,46 55 | 149,122,17,44 56 | 149,121,16,41 57 | 148,121,15,45 58 | 147,122,14,41 59 | 146,121,16,41 60 | 143,122,16,40 61 | 141,122,16,41 62 | 139,120,16,42 63 | 138,119,14,43 64 | 136,119,15,42 65 | 134,119,15,41 66 | 134,118,15,42 67 | 132,118,17,42 68 | 131,118,17,43 69 | 128,117,17,40 70 | 126,115,16,40 71 | 125,114,16,40 72 | 123,113,18,40 73 | 122,112,17,43 74 | 122,112,16,42 75 | 120,112,17,42 76 | 120,112,17,42 77 | 118,111,16,42 78 | 117,110,18,45 79 | 116,110,16,42 80 | 114,110,17,41 81 | 113,109,16,41 82 | 112,107,14,40 83 | 112,108,15,41 84 | 109,108,16,38 85 | 108,108,16,35 86 | 105,108,15,35 87 | 104,108,15,35 88 | 103,107,15,35 89 | 102,105,15,37 90 | 101,104,15,36 91 | 98,104,16,37 92 | 97,103,16,38 93 | 94,103,17,38 94 | 92,103,16,38 95 | 91,103,15,38 96 | 90,103,16,34 97 | 88,103,16,35 98 | 88,102,15,37 99 | 84,99,16,37 100 | 83,101,16,37 101 | 80,99,16,37 102 | 79,99,16,36 103 | 79,100,17,33 104 | 78,99,14,33 105 | 77,100,14,33 106 | 75,100,14,34 107 | 74,99,14,33 108 | 72,98,13,34 109 | 71,97,14,35 110 | 69,97,13,34 111 | 68,98,14,34 112 | 67,97,15,35 113 | 65,98,15,34 114 | 65,99,15,31 115 | 63,97,15,32 116 | 61,96,13,32 117 | 60,95,14,33 118 | 58,94,14,34 119 | 58,95,13,31 120 | 56,93,14,36 121 | -------------------------------------------------------------------------------- /anno/Dancer.txt: -------------------------------------------------------------------------------- 1 | 176,75,47,102 2 | 176,75,47,102 3 | 177,78,41,97 4 | 174,79,45,98 5 | 174,82,43,95 6 | 173,85,45,93 7 | 170,86,49,94 8 | 167,86,52,93 9 | 165,85,48,95 10 | 162,82,51,98 11 | 157,78,45,100 12 | 152,77,50,97 13 | 149,75,49,100 14 | 147,76,42,98 15 | 141,68,47,103 16 | 138,63,49,104 17 | 139,60,47,104 18 | 138,60,46,102 19 | 134,57,45,98 20 | 136,56,47,98 21 | 134,57,49,98 22 | 134,55,50,105 23 | 134,61,47,99 24 | 133,66,43,102 25 | 135,70,40,100 26 | 133,74,44,101 27 | 136,76,46,102 28 | 134,69,46,111 29 | 137,59,46,111 30 | 140,53,47,110 31 | 137,46,48,104 32 | 139,47,39,96 33 | 138,45,40,96 34 | 135,47,44,95 35 | 137,50,45,91 36 | 136,49,44,92 37 | 136,52,46,93 38 | 139,55,44,89 39 | 139,59,40,93 40 | 140,60,40,94 41 | 139,63,45,96 42 | 138,64,42,96 43 | 137,70,43,99 44 | 136,68,44,104 45 | 135,70,43,108 46 | 136,69,47,108 47 | 135,68,51,105 48 | 134,64,45,107 49 | 133,62,44,107 50 | 129,63,45,104 51 | 125,64,48,104 52 | 124,66,48,106 53 | 123,68,45,105 54 | 122,67,46,113 55 | 120,66,47,109 56 | 124,66,46,114 57 | 121,66,47,111 58 | 122,62,48,113 59 | 127,58,50,119 60 | 128,58,56,121 61 | 127,58,60,124 62 | 131,58,58,120 63 | 138,46,60,125 64 | 140,45,71,121 65 | 142,38,68,128 66 | 145,43,66,124 67 | 151,38,64,124 68 | 149,36,69,125 69 | 156,35,62,130 70 | 157,36,62,124 71 | 162,35,65,129 72 | 166,35,60,125 73 | 169,28,59,136 74 | 171,34,57,127 75 | 173,34,57,136 76 | 174,36,55,131 77 | 175,40,55,130 78 | 173,45,60,128 79 | 176,51,59,131 80 | 176,50,59,127 81 | 175,48,57,130 82 | 178,44,58,132 83 | 181,38,52,135 84 | 178,39,57,132 85 | 180,38,53,127 86 | 180,39,56,120 87 | 178,37,59,124 88 | 178,37,53,122 89 | 175,37,55,120 90 | 174,38,54,116 91 | 175,37,52,121 92 | 174,35,56,121 93 | 173,32,57,117 94 | 171,35,56,117 95 | 172,33,51,120 96 | 173,36,53,118 97 | 173,38,56,113 98 | 168,39,60,115 99 | 172,44,52,114 100 | 169,47,62,112 101 | 168,52,64,112 102 | 166,56,51,109 103 | 164,56,57,107 104 | 164,57,63,107 105 | 161,54,59,110 106 | 158,51,65,112 107 | 149,40,64,112 108 | 145,34,59,117 109 | 140,30,64,116 110 | 143,30,58,114 111 | 137,26,59,124 112 | 135,28,58,118 113 | 133,30,60,121 114 | 134,32,59,119 115 | 136,41,59,120 116 | 134,47,60,121 117 | 136,54,57,120 118 | 135,51,66,130 119 | 138,45,60,127 120 | 139,35,63,128 121 | 143,24,57,132 122 | 141,20,62,125 123 | 138,19,59,120 124 | 140,19,50,123 125 | 139,23,54,116 126 | 137,30,53,109 127 | 139,34,52,104 128 | 139,38,51,101 129 | 139,38,53,99 130 | 138,39,58,105 131 | 136,44,56,114 132 | 138,46,57,118 133 | 138,48,54,131 134 | 135,50,55,130 135 | 134,51,58,133 136 | 134,49,56,139 137 | 134,49,59,133 138 | 133,48,58,137 139 | 136,45,58,137 140 | 133,43,59,139 141 | 133,44,63,134 142 | 130,48,63,127 143 | 141,54,55,125 144 | 139,54,60,128 145 | 147,56,52,127 146 | 147,57,55,132 147 | 146,55,54,134 148 | 147,56,61,123 149 | 152,51,66,134 150 | 151,49,65,136 151 | 151,43,70,144 152 | 154,42,64,143 153 | 159,41,61,149 154 | 158,38,67,150 155 | 165,28,71,156 156 | 163,24,76,159 157 | 167,21,72,158 158 | 171,15,72,161 159 | 176,18,68,153 160 | 174,17,70,156 161 | 173,17,72,152 162 | 178,16,68,156 163 | 177,15,69,155 164 | 178,15,66,153 165 | 176,14,70,155 166 | 177,15,71,157 167 | 178,19,66,151 168 | 177,25,68,151 169 | 186,31,74,144 170 | 185,35,71,148 171 | 181,33,69,148 172 | 184,31,65,140 173 | 187,28,66,141 174 | 185,24,59,145 175 | 182,26,64,142 176 | 180,26,63,142 177 | 180,26,60,145 178 | 176,26,65,141 179 | 177,29,63,135 180 | 178,28,67,138 181 | 174,29,66,133 182 | 177,29,63,131 183 | 178,28,62,128 184 | 179,29,58,132 185 | 178,27,64,135 186 | 179,29,60,131 187 | 176,31,64,128 188 | 179,33,58,127 189 | 174,36,68,128 190 | 176,43,69,121 191 | 176,48,61,119 192 | 172,50,63,119 193 | 173,53,62,122 194 | 169,51,59,120 195 | 162,44,68,123 196 | 161,42,61,121 197 | 157,35,64,128 198 | 151,32,74,125 199 | 144,28,70,123 200 | 142,25,68,129 201 | 142,26,63,126 202 | 138,28,69,124 203 | 138,35,61,120 204 | 135,41,65,119 205 | 138,47,63,123 206 | 137,48,64,126 207 | 135,52,68,133 208 | 141,44,61,132 209 | 145,35,68,132 210 | 145,28,64,131 211 | 150,21,59,132 212 | 148,14,67,138 213 | 146,16,57,125 214 | 149,22,55,123 215 | 146,29,69,116 216 | 142,28,73,118 217 | 143,34,71,114 218 | 145,38,67,111 219 | 143,40,67,119 220 | 142,44,66,115 221 | 142,44,67,128 222 | 142,51,71,123 223 | 139,51,67,128 224 | 140,50,64,133 225 | 136,49,65,128 226 | -------------------------------------------------------------------------------- /anno/Dancer2.txt: -------------------------------------------------------------------------------- 1 | 150,53,40,148 2 | 149,52,40,148 3 | 146,53,42,148 4 | 144,49,43,150 5 | 140,54,46,147 6 | 136,52,46,145 7 | 134,55,47,147 8 | 133,60,46,147 9 | 133,63,46,141 10 | 129,61,45,144 11 | 127,61,48,145 12 | 127,67,46,140 13 | 126,65,44,143 14 | 125,64,46,145 15 | 127,72,42,134 16 | 124,66,43,142 17 | 122,65,44,143 18 | 120,66,46,143 19 | 119,62,47,144 20 | 118,57,44,149 21 | 118,57,45,146 22 | 115,61,49,142 23 | 115,61,49,146 24 | 116,61,45,145 25 | 119,64,44,145 26 | 117,64,46,144 27 | 116,67,47,144 28 | 118,70,43,141 29 | 120,71,45,138 30 | 121,73,48,140 31 | 121,73,48,142 32 | 125,73,48,139 33 | 123,68,50,144 34 | 128,64,46,145 35 | 131,56,45,150 36 | 130,55,50,155 37 | 133,51,51,158 38 | 138,48,47,158 39 | 138,46,46,159 40 | 142,48,45,160 41 | 144,49,47,156 42 | 145,53,46,154 43 | 146,47,46,160 44 | 148,50,53,155 45 | 150,56,50,145 46 | 151,57,57,150 47 | 152,58,58,148 48 | 155,64,50,142 49 | 159,57,57,150 50 | 160,59,51,144 51 | 164,61,50,144 52 | 169,65,45,136 53 | 166,66,51,134 54 | 169,67,48,132 55 | 168,59,50,141 56 | 171,62,45,138 57 | 169,64,46,135 58 | 169,61,50,141 59 | 171,59,45,141 60 | 171,58,45,145 61 | 170,59,47,143 62 | 170,60,47,138 63 | 170,64,45,134 64 | 170,65,47,136 65 | 175,64,42,134 66 | 172,66,43,136 67 | 172,69,44,131 68 | 172,63,45,141 69 | 173,65,43,137 70 | 173,65,42,136 71 | 172,62,43,142 72 | 170,63,45,142 73 | 170,60,45,143 74 | 167,57,45,147 75 | 165,51,46,151 76 | 165,52,43,153 77 | 161,49,48,156 78 | 159,47,44,155 79 | 157,46,43,159 80 | 156,51,43,157 81 | 154,48,45,159 82 | 150,51,43,153 83 | 146,48,47,156 84 | 150,55,42,143 85 | 145,59,45,146 86 | 142,61,44,144 87 | 141,67,43,135 88 | 138,61,44,141 89 | 136,67,41,136 90 | 136,68,37,136 91 | 134,66,40,137 92 | 133,67,42,137 93 | 133,69,41,140 94 | 131,66,43,139 95 | 132,66,39,137 96 | 129,62,43,141 97 | 128,58,42,145 98 | 128,59,39,142 99 | 126,57,40,144 100 | 125,60,42,142 101 | 125,54,38,150 102 | 123,57,40,144 103 | 122,59,40,141 104 | 123,64,42,136 105 | 125,65,40,139 106 | 127,62,39,141 107 | 125,62,47,145 108 | 127,61,45,144 109 | 126,61,48,141 110 | 131,57,45,148 111 | 131,57,50,149 112 | 133,59,50,146 113 | 136,58,49,149 114 | 138,56,48,146 115 | 140,51,50,154 116 | 139,51,53,153 117 | 140,54,52,149 118 | 140,55,52,147 119 | 145,61,48,142 120 | 144,61,54,143 121 | 146,69,47,133 122 | 146,72,53,129 123 | 149,76,49,120 124 | 149,81,51,118 125 | 150,83,47,122 126 | 152,83,51,120 127 | 150,85,55,121 128 | 152,88,51,116 129 | 153,87,52,122 130 | 154,86,50,115 131 | 156,82,55,122 132 | 158,79,48,124 133 | 159,76,48,134 134 | 160,74,46,131 135 | 161,70,49,132 136 | 162,69,42,133 137 | 163,64,45,136 138 | 162,60,44,138 139 | 164,57,43,144 140 | 165,56,42,143 141 | 167,66,40,150 142 | 167,64,44,150 143 | 168,65,37,148 144 | 167,66,41,144 145 | 165,65,42,146 146 | 166,63,41,150 147 | 164,61,43,150 148 | 165,64,43,148 149 | 166,63,40,148 150 | 166,63,42,152 151 | -------------------------------------------------------------------------------- /anno/David3.txt: -------------------------------------------------------------------------------- 1 | 83,200,35,131 2 | 84,199,35,130 3 | 86,197,35,130 4 | 89,197,35,130 5 | 95,199,35,131 6 | 100,199,36,131 7 | 103,199,36,133 8 | 105,198,36,134 9 | 108,199,36,134 10 | 110,199,36,135 11 | 113,199,36,136 12 | 115,199,36,135 13 | 117,198,37,137 14 | 119,200,36,134 15 | 123,202,36,133 16 | 126,201,36,134 17 | 131,202,35,133 18 | 137,202,35,132 19 | 141,199,36,134 20 | 144,198,36,135 21 | 147,198,36,135 22 | 149,198,36,136 23 | 153,197,36,136 24 | 158,198,37,137 25 | 160,196,36,138 26 | 163,196,36,137 27 | 166,195,37,137 28 | 171,197,36,135 29 | 173,195,37,136 30 | 177,194,36,136 31 | 179,195,36,133 32 | 181,193,36,135 33 | 185,192,36,136 34 | 187,190,37,138 35 | 189,192,38,140 36 | 192,190,38,142 37 | 197,191,38,142 38 | 203,192,38,143 39 | 208,190,38,143 40 | 214,190,38,144 41 | 218,189,39,145 42 | 222,188,38,144 43 | 225,187,39,144 44 | 229,186,38,142 45 | 232,188,37,139 46 | 236,187,37,139 47 | 239,187,37,137 48 | 245,189,37,138 49 | 249,187,37,140 50 | 255,186,38,141 51 | 260,187,37,140 52 | 265,188,37,139 53 | 269,190,37,138 54 | 274,188,38,140 55 | 280,190,37,139 56 | 284,189,38,141 57 | 288,189,38,141 58 | 293,189,38,142 59 | 298,189,38,143 60 | 304,190,37,140 61 | 309,191,37,139 62 | 313,188,36,137 63 | 318,188,36,137 64 | 322,187,36,138 65 | 326,188,36,137 66 | 331,190,37,139 67 | 334,190,37,140 68 | 339,191,38,141 69 | 345,191,37,141 70 | 349,193,38,141 71 | 355,194,37,140 72 | 358,194,37,140 73 | 362,194,37,140 74 | 365,194,37,141 75 | 369,192,37,143 76 | 373,193,37,142 77 | 376,193,37,143 78 | 381,194,38,144 79 | 384,195,38,144 80 | 388,193,39,147 81 | 390,188,40,149 82 | 393,189,40,149 83 | 393,189,40,149 84 | 393,189,40,149 85 | 393,189,40,149 86 | 393,189,40,149 87 | 393,189,40,149 88 | 389,189,40,149 89 | 387,190,40,149 90 | 387,190,40,149 91 | 381,194,40,149 92 | 381,194,40,149 93 | 375,194,40,149 94 | 375,194,40,149 95 | 367,195,40,149 96 | 367,195,40,149 97 | 367,195,40,149 98 | 367,195,40,149 99 | 367,197,40,149 100 | 367,197,40,149 101 | 367,197,40,149 102 | 367,197,40,149 103 | 367,197,40,149 104 | 367,197,40,149 105 | 367,197,40,149 106 | 367,197,40,149 107 | 367,197,40,149 108 | 368,202,40,149 109 | 368,202,40,149 110 | 369,205,40,149 111 | 369,205,40,149 112 | 369,205,40,149 113 | 369,205,40,149 114 | 369,205,40,149 115 | 369,205,40,149 116 | 369,205,40,149 117 | 369,205,40,149 118 | 369,205,40,149 119 | 372,205,40,149 120 | 372,205,40,149 121 | 375,205,40,149 122 | 375,205,40,149 123 | 377,205,40,149 124 | 382,206,40,149 125 | 385,209,40,149 126 | 389,209,40,146 127 | 395,207,40,146 128 | 403,207,40,146 129 | 412,207,40,146 130 | 422,207,40,146 131 | 432,209,40,146 132 | 440,207,40,146 133 | 449,209,40,146 134 | 457,207,40,146 135 | 463,207,40,146 136 | 469,207,40,141 137 | 473,206,40,141 138 | 477,206,40,141 139 | 480,206,40,141 140 | 480,206,40,141 141 | 484,209,40,141 142 | 487,210,40,141 143 | 491,210,40,141 144 | 495,210,40,141 145 | 501,210,40,141 146 | 510,210,31,141 147 | 515,210,31,141 148 | 521,210,31,141 149 | 524,209,31,141 150 | 527,209,31,141 151 | 527,209,31,141 152 | 527,209,31,141 153 | 525,209,31,141 154 | 520,209,31,141 155 | 512,207,31,141 156 | 504,207,31,141 157 | 493,206,31,141 158 | 483,206,31,141 159 | 475,206,31,141 160 | 469,207,31,141 161 | 462,206,31,141 162 | 459,206,31,141 163 | 455,205,31,141 164 | 455,205,31,141 165 | 455,205,31,141 166 | 455,205,31,141 167 | 455,205,31,141 168 | 455,205,31,141 169 | 453,202,31,141 170 | 452,202,31,141 171 | 452,202,31,141 172 | 446,203,31,141 173 | 446,198,31,141 174 | 446,198,31,141 175 | 443,195,31,141 176 | 443,195,31,144 177 | 443,195,31,144 178 | 439,195,31,144 179 | 433,194,31,144 180 | 431,193,31,150 181 | 427,193,31,150 182 | 427,193,31,150 183 | 424,193,31,150 184 | 421,193,31,150 185 | 416,194,31,150 186 | 414,194,31,150 187 | 413,194,31,150 188 | 408,194,31,150 189 | 408,193,31,150 190 | 405,191,31,150 191 | 400,194,31,150 192 | 400,194,31,150 193 | 395,191,31,150 194 | 392,190,31,150 195 | 389,189,31,150 196 | 389,189,31,150 197 | 384,189,31,150 198 | 382,191,31,150 199 | 381,193,31,150 200 | 377,195,31,150 201 | 375,195,31,150 202 | 375,195,31,150 203 | 375,195,31,150 204 | 372,191,31,150 205 | 372,191,31,147 206 | 369,191,31,147 207 | 369,191,31,147 208 | 366,193,31,147 209 | 366,193,31,147 210 | 364,198,31,147 211 | 364,198,31,147 212 | 364,198,31,147 213 | 364,198,31,147 214 | 364,198,29,141 215 | 361,196,29,141 216 | 360,195,29,141 217 | 360,195,29,141 218 | 356,195,29,141 219 | 356,195,29,141 220 | 356,195,29,141 221 | 351,194,29,141 222 | 351,194,29,141 223 | 347,193,29,141 224 | 347,193,29,141 225 | 344,191,29,141 226 | 344,191,29,141 227 | 341,191,29,141 228 | 341,191,29,141 229 | 336,191,29,141 230 | 336,191,29,141 231 | 332,194,29,141 232 | 332,194,29,141 233 | 332,194,29,141 234 | 328,190,29,141 235 | 328,190,29,141 236 | 325,189,29,141 237 | 325,189,29,141 238 | 320,188,29,141 239 | 320,188,29,141 240 | 319,188,29,141 241 | 319,188,29,141 242 | 316,186,29,141 243 | 312,185,29,134 244 | 310,180,29,134 245 | 305,180,29,134 246 | 305,180,29,134 247 | 302,181,29,134 248 | 297,181,29,134 249 | 292,183,29,134 250 | 287,184,29,134 251 | 284,185,29,134 252 | 278,184,30,134 253 | -------------------------------------------------------------------------------- /anno/Deer.txt: -------------------------------------------------------------------------------- 1 | 306,5,95,65 2 | 313,15,98,70 3 | 318,40,95,66 4 | 326,74,96,58 5 | 330,105,100,64 6 | 335,135,90,66 7 | 330,153,94,59 8 | 321,146,99,60 9 | 317,124,93,55 10 | 319,96,89,62 11 | 306,75,85,56 12 | 278,55,90,56 13 | 253,44,91,63 14 | 236,38,81,59 15 | 221,35,79,58 16 | 212,33,82,60 17 | 204,39,88,60 18 | 206,54,88,56 19 | 216,65,94,64 20 | 224,92,93,62 21 | 236,115,89,63 22 | 252,138,94,58 23 | 259,143,89,51 24 | 267,114,86,53 25 | 279,85,82,51 26 | 289,66,83,52 27 | 285,48,84,49 28 | 269,32,89,52 29 | 246,26,86,54 30 | 241,24,87,54 31 | 238,24,86,54 32 | 243,26,85,60 33 | 253,34,85,58 34 | 271,49,85,56 35 | 285,69,84,60 36 | 312,101,81,55 37 | 338,127,85,59 38 | 354,158,87,54 39 | 380,179,81,53 40 | 392,182,91,54 41 | 419,172,86,51 42 | 433,151,81,56 43 | 434,130,84,58 44 | 410,116,76,60 45 | 372,110,79,58 46 | 351,111,79,58 47 | 335,103,90,59 48 | 327,102,90,55 49 | 319,95,88,60 50 | 318,95,90,62 51 | 319,103,86,57 52 | 330,117,81,53 53 | 341,129,85,53 54 | 347,152,86,53 55 | 345,167,92,53 56 | 353,164,80,54 57 | 360,147,84,50 58 | 379,125,79,51 59 | 400,107,76,47 60 | 401,77,74,56 61 | 401,52,84,53 62 | 384,30,87,52 63 | 362,15,79,52 64 | 356,9,71,50 65 | 352,6,75,48 66 | 353,4,72,49 67 | 347,6,76,52 68 | 347,9,74,56 69 | 350,22,78,55 70 | 360,37,72,54 71 | 371,58,80,50 72 | -------------------------------------------------------------------------------- /anno/Diving.txt: -------------------------------------------------------------------------------- 1 | 177,51,21,129 2 | 178,51,21,129 3 | 180,52,19,129 4 | 179,52,20,130 5 | 177,52,22,129 6 | 176,53,23,127 7 | 177,52,23,132 8 | 176,52,24,128 9 | 177,52,22,130 10 | 178,53,21,130 11 | 178,53,21,129 12 | 176,53,24,130 13 | 177,54,21,125 14 | 176,53,23,129 15 | 177,54,21,129 16 | 176,55,20,127 17 | 174,55,24,128 18 | 175,55,23,129 19 | 176,56,20,129 20 | 174,56,22,128 21 | 174,57,23,127 22 | 174,58,22,126 23 | 174,57,21,127 24 | 174,57,23,128 25 | 173,58,24,127 26 | 174,58,21,127 27 | 174,59,19,126 28 | 172,60,20,125 29 | 172,64,19,120 30 | 170,67,22,121 31 | 167,69,25,119 32 | 169,70,23,118 33 | 170,72,23,116 34 | 168,72,23,116 35 | 165,76,26,114 36 | 165,71,31,119 37 | 166,74,26,113 38 | 165,70,28,118 39 | 164,75,27,109 40 | 161,73,37,111 41 | 160,70,45,116 42 | 159,72,46,112 43 | 159,74,48,112 44 | 159,74,48,110 45 | 158,77,46,106 46 | 158,78,46,105 47 | 157,80,47,102 48 | 157,82,47,101 49 | 156,83,47,100 50 | 157,85,46,100 51 | 157,84,46,103 52 | 157,87,45,102 53 | 157,88,44,104 54 | 157,90,45,106 55 | 157,92,44,105 56 | 158,92,43,110 57 | 157,92,44,111 58 | 159,92,43,115 59 | 156,93,50,115 60 | 158,96,47,113 61 | 161,95,42,115 62 | 161,95,42,115 63 | 160,95,44,117 64 | 159,94,45,115 65 | 157,92,43,120 66 | 157,92,45,122 67 | 159,91,46,122 68 | 159,89,45,122 69 | 160,87,46,123 70 | 160,86,46,123 71 | 159,84,50,122 72 | 163,83,44,121 73 | 162,81,47,122 74 | 162,78,49,120 75 | 162,77,51,120 76 | 163,75,54,118 77 | 165,74,52,115 78 | 166,74,56,112 79 | 167,72,57,110 80 | 165,73,61,106 81 | 165,72,63,101 82 | 165,74,67,95 83 | 164,76,69,89 84 | 164,79,72,85 85 | 164,78,73,81 86 | 164,73,73,85 87 | 162,70,75,82 88 | 162,70,71,80 89 | 160,66,71,79 90 | 157,65,68,78 91 | 154,66,64,67 92 | 150,64,62,66 93 | 152,63,57,68 94 | 149,64,64,68 95 | 146,65,67,65 96 | 147,67,67,62 97 | 142,68,72,60 98 | 143,72,76,47 99 | 143,69,75,49 100 | 150,64,69,47 101 | 154,63,67,49 102 | 151,58,67,53 103 | 152,48,66,65 104 | 151,52,65,63 105 | 153,45,61,68 106 | 153,41,58,72 107 | 155,40,52,75 108 | 158,39,49,77 109 | 161,40,55,75 110 | 165,45,58,72 111 | 165,50,63,64 112 | 164,51,70,63 113 | 164,52,73,61 114 | 163,54,76,56 115 | 161,56,77,49 116 | 161,61,78,41 117 | 159,62,77,42 118 | 158,65,75,44 119 | 159,64,67,50 120 | 159,62,65,56 121 | 160,61,56,60 122 | 162,58,52,67 123 | 166,57,47,76 124 | 166,56,44,72 125 | 170,55,35,72 126 | 167,54,38,69 127 | 164,53,41,68 128 | 159,54,50,62 129 | 151,55,58,62 130 | 153,57,55,55 131 | 146,59,65,53 132 | 143,61,70,49 133 | 141,64,73,44 134 | 138,62,77,45 135 | 143,54,72,52 136 | 146,47,70,56 137 | 150,40,66,65 138 | 151,35,63,72 139 | 151,34,59,73 140 | 152,31,56,76 141 | 153,32,51,77 142 | 157,35,46,77 143 | 163,35,43,78 144 | 166,40,46,73 145 | 166,43,52,75 146 | 164,51,61,65 147 | 163,52,67,64 148 | 161,60,70,52 149 | 161,61,72,49 150 | 159,66,74,39 151 | 159,71,75,35 152 | 157,71,77,40 153 | 158,71,74,47 154 | 158,71,66,55 155 | 161,71,59,57 156 | 164,70,51,65 157 | 166,69,46,66 158 | 168,70,39,61 159 | 166,70,44,63 160 | 164,71,45,65 161 | 164,73,39,63 162 | 166,72,42,65 163 | 159,78,50,58 164 | 161,79,49,53 165 | 162,85,52,46 166 | 156,89,59,38 167 | 153,93,64,34 168 | 156,91,62,38 169 | 154,92,64,39 170 | 153,90,62,43 171 | 154,83,60,52 172 | 159,77,51,60 173 | 160,74,47,66 174 | 163,77,43,68 175 | 162,77,43,68 176 | 163,74,44,74 177 | 164,78,44,70 178 | 163,87,37,64 179 | 161,88,56,60 180 | 161,92,52,54 181 | 158,95,63,50 182 | 157,98,57,43 183 | 155,99,63,42 184 | 155,100,60,45 185 | 155,101,59,51 186 | 154,101,63,58 187 | 154,102,64,70 188 | 156,103,60,74 189 | 154,102,66,78 190 | 157,100,64,79 191 | 158,101,66,82 192 | 157,101,66,81 193 | 148,103,77,76 194 | 141,103,88,73 195 | 135,102,91,70 196 | 127,104,103,61 197 | 122,105,106,56 198 | 117,105,112,49 199 | 114,105,115,46 200 | 112,107,117,40 201 | 107,107,122,42 202 | 107,108,121,42 203 | 108,107,121,46 204 | 111,103,117,50 205 | 111,97,115,60 206 | 114,91,113,67 207 | 115,88,108,73 208 | 117,83,106,79 209 | 121,81,100,82 210 | 126,78,95,87 211 | 129,75,90,94 212 | 131,73,85,98 213 | 135,72,81,103 214 | 138,70,76,107 215 | 142,69,70,109 216 | -------------------------------------------------------------------------------- /anno/Dog.txt: -------------------------------------------------------------------------------- 1 | 74,86,56,48 2 | 74,88,55,43 3 | 76,91,52,39 4 | 71,91,54,39 5 | 73,91,49,35 6 | 74,93,49,32 7 | 75,93,47,34 8 | 76,93,45,32 9 | 74,96,42,31 10 | 74,96,44,36 11 | 75,97,41,36 12 | 73,98,39,38 13 | 73,98,36,35 14 | 72,98,39,37 15 | 70,97,41,37 16 | 68,97,42,36 17 | 66,96,42,35 18 | 63,96,44,35 19 | 63,96,45,32 20 | 62,95,45,35 21 | 61,97,45,34 22 | 58,99,46,29 23 | 60,96,44,31 24 | 58,97,46,33 25 | 59,99,43,33 26 | 62,98,42,33 27 | 60,99,45,33 28 | 61,100,43,31 29 | 59,97,44,34 30 | 62,98,41,32 31 | 58,99,42,29 32 | 60,100,44,30 33 | 62,100,40,31 34 | 62,103,36,30 35 | 62,101,38,35 36 | 61,104,39,33 37 | 61,104,38,34 38 | 62,106,38,32 39 | 64,105,36,32 40 | 65,105,35,31 41 | 66,105,36,34 42 | 67,106,35,30 43 | 68,106,32,27 44 | 67,108,36,26 45 | 69,108,34,27 46 | 68,107,37,29 47 | 71,108,35,27 48 | 73,108,36,31 49 | 75,108,34,28 50 | 75,109,35,27 51 | 76,107,35,30 52 | 77,106,38,30 53 | 81,106,36,29 54 | 84,106,32,27 55 | 85,109,33,25 56 | 86,109,33,25 57 | 88,108,29,26 58 | 90,110,30,25 59 | 92,110,30,26 60 | 95,111,29,25 61 | 96,113,30,24 62 | 98,113,29,26 63 | 98,112,30,27 64 | 102,113,29,24 65 | 102,113,32,25 66 | 106,113,32,24 67 | 109,112,30,27 68 | 112,115,29,24 69 | 111,113,29,25 70 | 117,114,27,22 71 | 119,116,27,21 72 | 121,116,28,19 73 | 126,113,26,23 74 | 126,114,28,23 75 | 128,114,27,22 76 | 134,112,22,25 77 | 139,113,20,24 78 | 140,114,22,24 79 | 144,113,20,25 80 | 143,113,24,24 81 | 145,113,23,24 82 | 147,112,24,23 83 | 148,112,26,24 84 | 152,112,27,23 85 | 154,113,26,23 86 | 155,113,27,27 87 | 154,111,28,25 88 | 160,110,25,25 89 | 165,108,25,27 90 | 166,107,26,27 91 | 169,104,28,30 92 | 172,104,26,29 93 | 173,106,27,27 94 | 178,105,28,28 95 | 180,104,29,25 96 | 183,104,29,28 97 | 185,102,32,32 98 | 186,104,32,29 99 | 189,103,30,31 100 | 195,104,32,24 101 | 200,103,27,25 102 | 203,102,24,26 103 | 206,101,23,28 104 | 208,103,23,28 105 | 211,102,24,29 106 | 209,104,27,26 107 | 214,103,24,28 108 | 217,105,27,26 109 | 219,105,27,26 110 | 221,106,24,24 111 | 222,106,25,24 112 | 223,106,24,27 113 | 227,106,27,26 114 | 231,107,28,25 115 | 231,107,31,27 116 | 236,106,27,27 117 | 237,107,30,25 118 | 237,109,32,25 119 | 241,109,33,26 120 | 245,110,31,25 121 | 249,111,30,25 122 | 251,111,30,26 123 | 255,111,30,26 124 | 262,111,24,27 125 | 264,110,26,22 126 | 269,111,25,22 127 | 272,110,23,23 128 | -------------------------------------------------------------------------------- /anno/DragonBaby.txt: -------------------------------------------------------------------------------- 1 | 160,83,56,65 2 | 166,84,55,65 3 | 173,78,56,65 4 | 175,75,55,65 5 | 179,76,56,67 6 | 188,67,59,65 7 | 183,53,65,73 8 | 162,37,65,58 9 | 156,39,65,57 10 | 152,41,65,71 11 | 145,59,65,71 12 | 143,67,65,65 13 | 143,72,65,65 14 | 143,78,62,65 15 | 144,88,65,65 16 | 149,91,65,65 17 | 162,89,65,65 18 | 188,89,65,65 19 | 192,92,65,65 20 | 189,83,65,65 21 | 184,84,65,65 22 | 177,85,65,65 23 | 166,82,65,65 24 | 157,82,65,65 25 | 135,88,65,65 26 | 143,93,65,65 27 | 162,83,73,65 28 | 190,80,65,65 29 | 194,78,65,65 30 | 215,95,72,65 31 | 212,93,73,75 32 | 204,86,73,75 33 | 203,75,71,78 34 | 216,66,71,84 35 | 223,66,72,81 36 | 226,70,72,80 37 | 221,84,68,72 38 | 229,88,64,72 39 | 222,92,65,65 40 | 219,84,65,65 41 | 190,55,65,65 42 | 136,40,71,55 43 | 110,41,65,56 44 | 51,39,65,65 45 | 13,41,80,71 46 | 20,137,73,65 47 | 79,89,71,65 48 | 104,51,70,65 49 | 131,39,61,59 50 | 164,38,56,49 51 | 173,38,60,49 52 | 181,43,62,52 53 | 199,56,65,65 54 | 191,71,65,58 55 | 198,78,58,62 56 | 204,77,54,70 57 | 228,63,55,65 58 | 240,59,58,65 59 | 246,65,60,66 60 | 246,71,59,64 61 | 231,66,65,65 62 | 191,85,65,71 63 | 181,102,65,76 64 | 173,138,65,76 65 | 167,148,65,74 66 | 158,117,65,84 67 | 154,106,65,76 68 | 135,74,65,87 69 | 122,54,70,80 70 | 121,51,67,88 71 | 139,64,68,86 72 | 154,74,65,82 73 | 153,72,65,89 74 | 158,65,65,76 75 | 166,49,57,84 76 | 182,45,65,65 77 | 199,60,58,66 78 | 202,73,57,65 79 | 201,76,62,65 80 | 107,129,108,125 81 | 117,164,96,129 82 | 109,198,94,118 83 | 95,183,88,116 84 | 97,143,86,114 85 | 100,116,78,119 86 | 115,117,81,122 87 | 157,124,82,111 88 | 168,115,74,114 89 | 193,96,82,108 90 | 173,58,87,106 91 | 154,48,89,94 92 | 125,41,83,74 93 | 109,39,82,65 94 | 111,43,81,65 95 | 119,48,72,71 96 | 123,60,72,74 97 | 128,82,63,68 98 | 133,89,59,65 99 | 142,76,65,65 100 | 157,53,65,73 101 | 171,57,59,65 102 | 186,57,49,69 103 | 180,61,55,65 104 | 170,74,59,63 105 | 166,76,55,71 106 | 159,84,58,64 107 | 157,91,57,64 108 | 157,89,52,71 109 | 159,87,52,71 110 | 175,79,54,74 111 | 197,80,55,71 112 | 234,79,52,67 113 | 237,78,62,67 114 | -------------------------------------------------------------------------------- /anno/Football1.txt: -------------------------------------------------------------------------------- 1 | 153,105,26,43 2 | 153,98,26,43 3 | 153,93,26,43 4 | 152,87,26,43 5 | 152,80,26,43 6 | 152,75,26,43 7 | 151,72,26,43 8 | 149,70,26,43 9 | 145,69,26,43 10 | 141,68,26,43 11 | 136,67,26,43 12 | 130,65,26,43 13 | 123,64,26,43 14 | 116,63,26,43 15 | 110,62,26,43 16 | 109,61,29,43 17 | 110,60,29,43 18 | 110,58,32,43 19 | 108,55,31,43 20 | 104,52,30,43 21 | 99,50,29,43 22 | 93,47,30,43 23 | 87,44,31,43 24 | 82,42,31,43 25 | 77,40,33,43 26 | 74,39,35,43 27 | 77,40,29,43 28 | 79,39,29,43 29 | 81,40,30,43 30 | 85,41,29,43 31 | 90,43,26,43 32 | 93,47,26,43 33 | 96,51,26,43 34 | 99,57,26,43 35 | 102,62,26,43 36 | 106,68,26,43 37 | 110,71,26,43 38 | 115,72,26,43 39 | 121,71,26,43 40 | 123,66,26,43 41 | 127,59,30,43 42 | 131,53,31,43 43 | 137,48,31,43 44 | 143,46,29,43 45 | 149,44,26,43 46 | 153,42,27,43 47 | 156,43,29,43 48 | 160,42,29,43 49 | 162,42,29,43 50 | 164,42,29,43 51 | 166,43,28,43 52 | 169,40,27,43 53 | 173,41,26,43 54 | 180,43,26,43 55 | 188,46,26,43 56 | 197,50,26,43 57 | 206,54,26,43 58 | 211,57,26,43 59 | 219,66,26,43 60 | 225,69,28,43 61 | 230,77,30,42 62 | 236,80,31,43 63 | 241,86,31,40 64 | 247,90,29,40 65 | 252,94,29,40 66 | 255,96,32,43 67 | 257,97,31,43 68 | 257,99,32,43 69 | 258,101,31,43 70 | 258,106,31,43 71 | 255,110,30,43 72 | 244,117,28,43 73 | 227,126,31,43 74 | 212,136,31,43 75 | -------------------------------------------------------------------------------- /anno/Human7.txt: -------------------------------------------------------------------------------- 1 | 110,111,37,116 2 | 110,112,37,116 3 | 111,112,37,115 4 | 111,112,37,115 5 | 112,113,37,114 6 | 112,113,37,114 7 | 113,113,36,113 8 | 113,113,36,113 9 | 114,113,36,112 10 | 115,113,36,111 11 | 116,113,36,111 12 | 118,116,35,110 13 | 119,119,34,109 14 | 121,119,34,108 15 | 123,118,35,107 16 | 124,118,35,106 17 | 123,118,35,105 18 | 121,119,35,104 19 | 118,120,35,103 20 | 115,122,34,102 21 | 112,122,34,101 22 | 110,123,34,100 23 | 108,124,34,99 24 | 105,125,33,98 25 | 103,125,33,97 26 | 102,125,33,96 27 | 102,125,32,96 28 | 101,124,32,95 29 | 101,121,32,94 30 | 100,118,31,93 31 | 99,115,31,92 32 | 99,114,31,92 33 | 98,113,31,91 34 | 94,114,30,90 35 | 95,112,30,89 36 | 97,110,30,89 37 | 96,109,30,88 38 | 96,105,30,87 39 | 94,102,29,86 40 | 93,103,29,86 41 | 85,106,29,85 42 | 78,105,29,85 43 | 73,104,29,84 44 | 72,103,29,84 45 | 72,108,29,83 46 | 71,114,29,83 47 | 59,115,29,82 48 | 70,112,29,82 49 | 70,101,29,82 50 | 71,89,29,81 51 | 71,84,29,81 52 | 73,84,29,81 53 | 77,94,29,81 54 | 83,111,29,81 55 | 97,129,29,81 56 | 104,137,29,81 57 | 104,133,29,81 58 | 113,123,29,81 59 | 123,102,29,81 60 | 131,98,29,81 61 | 130,105,29,81 62 | 127,121,29,81 63 | 130,133,28,81 64 | 118,148,28,81 65 | 97,152,28,81 66 | 102,132,28,81 67 | 93,111,28,81 68 | 91,107,27,81 69 | 90,110,27,80 70 | 86,119,27,80 71 | 90,128,27,80 72 | 105,133,27,80 73 | 107,123,27,80 74 | 121,105,27,80 75 | 132,95,27,80 76 | 138,85,27,80 77 | 135,87,27,80 78 | 132,99,27,80 79 | 128,116,27,80 80 | 120,122,27,80 81 | 96,124,27,80 82 | 97,109,27,80 83 | 86,97,27,80 84 | 87,102,27,80 85 | 91,113,27,80 86 | 92,118,27,80 87 | 108,127,27,80 88 | 120,126,27,80 89 | 121,115,27,80 90 | 131,105,27,80 91 | 138,104,27,80 92 | 137,105,27,80 93 | 136,112,27,80 94 | 139,126,27,80 95 | 133,134,27,80 96 | 120,126,27,80 97 | 121,116,27,80 98 | 117,111,27,80 99 | 115,113,27,80 100 | 110,116,27,80 101 | 112,119,27,80 102 | 115,121,27,80 103 | 120,125,27,80 104 | 118,129,27,79 105 | 114,125,27,78 106 | 113,111,27,78 107 | 116,111,26,77 108 | 113,112,26,76 109 | 112,115,26,76 110 | 115,123,26,75 111 | 106,126,26,75 112 | 89,114,26,75 113 | 95,97,26,75 114 | 75,83,26,75 115 | 69,82,26,75 116 | 66,84,26,75 117 | 66,95,26,75 118 | 75,103,26,75 119 | 106,115,26,75 120 | 118,116,26,75 121 | 130,109,26,75 122 | 160,96,26,75 123 | 180,102,26,75 124 | 181,113,26,75 125 | 186,125,26,75 126 | 182,132,26,75 127 | 177,136,26,75 128 | 147,140,26,75 129 | 140,126,26,75 130 | 129,116,26,75 131 | 123,117,26,75 132 | 117,119,26,75 133 | 114,119,26,75 134 | 117,125,26,74 135 | 125,134,26,74 136 | 127,131,25,74 137 | 136,115,25,73 138 | 135,102,25,73 139 | 149,91,25,73 140 | 150,88,24,73 141 | 150,92,24,73 142 | 147,103,24,73 143 | 132,114,24,73 144 | 115,113,24,73 145 | 112,106,24,73 146 | 112,93,24,73 147 | 108,88,24,73 148 | 118,91,24,73 149 | 122,99,24,73 150 | 128,103,24,73 151 | 137,111,24,73 152 | 142,116,24,73 153 | 146,119,24,73 154 | 154,103,24,73 155 | 160,95,23,73 156 | 156,95,23,73 157 | 150,101,23,73 158 | 145,112,24,73 159 | 133,122,24,73 160 | 115,125,24,73 161 | 114,111,24,72 162 | 106,104,24,72 163 | 105,95,24,72 164 | 117,96,24,72 165 | 125,104,24,72 166 | 142,113,24,71 167 | 150,115,24,71 168 | 158,122,24,70 169 | 167,111,24,70 170 | 181,93,24,70 171 | 188,88,24,70 172 | 178,94,24,70 173 | 176,98,24,70 174 | 173,108,24,70 175 | 149,112,24,70 176 | 145,114,24,70 177 | 128,102,24,70 178 | 114,93,24,70 179 | 115,93,24,70 180 | 114,98,24,70 181 | 120,105,24,70 182 | 132,115,24,70 183 | 150,123,24,70 184 | 161,114,24,70 185 | 168,105,24,70 186 | 183,95,24,70 187 | 178,98,24,70 188 | 172,103,24,70 189 | 168,109,24,70 190 | 157,120,24,70 191 | 138,123,24,70 192 | 123,118,24,70 193 | 106,99,24,70 194 | 96,91,24,70 195 | 97,90,24,70 196 | 99,92,24,70 197 | 104,94,24,70 198 | 114,104,24,70 199 | 125,99,24,70 200 | 138,86,24,70 201 | 148,71,24,70 202 | 156,70,24,70 203 | 156,69,24,70 204 | 152,73,24,70 205 | 144,87,24,70 206 | 127,104,24,70 207 | 104,114,24,70 208 | 102,111,24,70 209 | 86,102,24,70 210 | 72,99,24,70 211 | 77,102,24,70 212 | 76,104,24,70 213 | 89,109,24,69 214 | 93,109,24,69 215 | 100,109,24,68 216 | 115,95,24,68 217 | 135,74,24,68 218 | 149,70,24,67 219 | 146,78,24,67 220 | 148,86,23,67 221 | 138,102,23,67 222 | 114,103,23,67 223 | 103,102,23,67 224 | 83,89,23,67 225 | 74,86,23,67 226 | 64,86,22,67 227 | 65,91,22,67 228 | 69,100,22,67 229 | 87,107,22,67 230 | 98,99,22,67 231 | 105,100,24,67 232 | 127,89,23,66 233 | 148,78,22,66 234 | 153,76,21,66 235 | 146,90,20,65 236 | 134,106,20,65 237 | 123,114,20,65 238 | 97,118,20,65 239 | 95,115,16,64 240 | 83,105,19,64 241 | 80,99,19,64 242 | 88,96,19,64 243 | 95,96,18,64 244 | 101,101,17,64 245 | 119,104,17,64 246 | 120,94,17,64 247 | 125,91,16,64 248 | 137,81,16,65 249 | 142,75,15,65 250 | 144,72,15,65 251 | -------------------------------------------------------------------------------- /anno/Human8.txt: -------------------------------------------------------------------------------- 1 | 110,101,30,91 2 | 111,100,30,90 3 | 112,99,30,90 4 | 113,99,30,90 5 | 114,99,30,89 6 | 115,101,30,89 7 | 116,104,30,88 8 | 117,106,30,88 9 | 118,106,30,88 10 | 119,105,30,87 11 | 122,104,29,87 12 | 125,104,28,86 13 | 127,103,27,86 14 | 128,104,27,85 15 | 130,104,26,85 16 | 130,105,26,84 17 | 130,104,26,83 18 | 130,102,26,82 19 | 130,101,27,82 20 | 130,101,27,81 21 | 131,101,27,80 22 | 133,102,28,79 23 | 135,102,28,78 24 | 137,102,28,78 25 | 139,102,29,77 26 | 141,103,28,76 27 | 142,104,26,76 28 | 144,104,25,75 29 | 145,104,25,75 30 | 147,103,25,74 31 | 148,102,25,74 32 | 150,101,25,74 33 | 151,101,25,73 34 | 152,100,24,72 35 | 153,99,24,71 36 | 154,99,23,71 37 | 155,98,22,70 38 | 155,98,22,69 39 | 154,99,21,68 40 | 154,99,20,68 41 | 154,100,20,68 42 | 155,100,20,68 43 | 155,102,20,68 44 | 156,103,20,68 45 | 157,105,20,68 46 | 158,106,20,68 47 | 160,105,20,68 48 | 162,104,20,68 49 | 164,104,20,68 50 | 166,104,20,67 51 | 168,105,20,67 52 | 170,106,20,66 53 | 171,105,20,66 54 | 172,104,20,65 55 | 173,103,20,64 56 | 174,102,20,64 57 | 175,102,20,63 58 | 177,102,20,63 59 | 178,102,20,63 60 | 180,102,20,63 61 | 181,103,20,63 62 | 183,103,20,63 63 | 184,103,20,63 64 | 185,104,20,63 65 | 185,104,20,63 66 | 185,104,20,63 67 | 185,104,20,62 68 | 185,105,20,62 69 | 184,105,20,61 70 | 184,105,20,60 71 | 185,104,20,59 72 | 187,104,20,59 73 | 188,103,20,58 74 | 189,104,20,58 75 | 190,104,20,58 76 | 191,104,20,58 77 | 191,104,20,58 78 | 191,103,20,58 79 | 192,103,20,58 80 | 192,103,20,58 81 | 192,102,20,58 82 | 193,103,20,58 83 | 194,104,20,58 84 | 195,106,20,58 85 | 196,107,20,57 86 | 197,107,20,57 87 | 198,107,20,57 88 | 199,107,20,56 89 | 200,106,20,56 90 | 198,106,20,56 91 | 197,106,20,56 92 | 199,106,20,55 93 | 200,106,20,55 94 | 201,105,19,55 95 | 202,105,19,55 96 | 203,105,19,55 97 | 203,105,18,55 98 | 203,105,18,54 99 | 202,106,18,54 100 | 202,106,18,53 101 | 201,106,17,53 102 | 202,106,17,52 103 | 203,106,17,52 104 | 204,106,17,51 105 | 205,106,17,51 106 | 207,107,17,51 107 | 208,107,17,51 108 | 209,108,17,51 109 | 211,108,17,51 110 | 211,108,17,51 111 | 211,108,17,51 112 | 209,106,17,51 113 | 208,105,17,51 114 | 208,105,17,51 115 | 208,104,17,50 116 | 207,104,17,50 117 | 207,103,17,49 118 | 207,103,17,48 119 | 207,103,17,47 120 | 206,103,17,46 121 | 206,102,17,46 122 | 207,103,17,46 123 | 207,103,17,46 124 | 208,103,17,46 125 | 210,103,17,46 126 | 211,103,17,46 127 | 213,104,17,46 128 | 215,104,17,46 129 | -------------------------------------------------------------------------------- /anno/Ironman.txt: -------------------------------------------------------------------------------- 1 | 206,85,49,57 2 | 201,92,47,53 3 | 204,94,45,53 4 | 206,94,43,55 5 | 207,90,47,50 6 | 216,85,43,47 7 | 218,80,38,44 8 | 216,76,37,43 9 | 210,71,39,46 10 | 212,75,33,43 11 | 215,76,35,46 12 | 219,82,37,45 13 | 220,84,36,44 14 | 220,88,36,50 15 | 221,91,34,49 16 | 218,87,39,49 17 | 212,81,43,51 18 | 215,79,41,47 19 | 217,71,41,47 20 | 216,66,42,50 21 | 205,64,43,49 22 | 204,64,45,44 23 | 200,60,42,43 24 | 199,52,43,52 25 | 197,51,42,47 26 | 198,44,42,47 27 | 189,37,53,57 28 | 186,33,47,55 29 | 176,28,50,53 30 | 170,25,47,55 31 | 170,26,48,53 32 | 172,31,52,57 33 | 170,35,50,50 34 | 171,40,50,55 35 | 171,39,48,51 36 | 178,37,44,49 37 | 176,36,53,52 38 | 192,35,48,64 39 | 199,37,54,56 40 | 207,46,44,63 41 | 208,54,48,51 42 | 213,66,45,38 43 | 211,69,48,40 44 | 219,69,40,40 45 | 219,70,45,41 46 | 219,69,42,38 47 | 222,60,42,39 48 | 227,52,35,41 49 | 223,55,36,30 50 | 229,50,34,32 51 | 236,53,41,33 52 | 253,50,37,35 53 | 269,44,40,46 54 | 279,43,42,49 55 | 283,41,45,51 56 | 290,42,43,43 57 | 302,41,43,43 58 | 309,33,41,45 59 | 317,38,36,40 60 | 319,31,47,47 61 | 310,22,48,56 62 | 307,20,46,56 63 | 331,23,43,52 64 | 324,18,57,48 65 | 336,15,43,52 66 | 341,18,43,44 67 | 346,21,41,47 68 | 346,24,48,51 69 | 348,28,48,52 70 | 354,32,43,49 71 | 354,35,45,52 72 | 354,35,41,54 73 | 357,38,44,55 74 | 345,38,38,51 75 | 338,42,46,53 76 | 339,42,48,52 77 | 338,47,44,46 78 | 335,48,42,42 79 | 335,46,42,47 80 | 339,42,39,50 81 | 338,44,41,45 82 | 339,42,38,43 83 | 337,47,46,47 84 | 338,48,40,45 85 | 337,52,45,43 86 | 342,49,44,47 87 | 343,46,44,46 88 | 345,46,42,39 89 | 345,43,40,42 90 | 345,44,42,42 91 | 347,44,41,47 92 | 351,41,42,45 93 | 352,44,43,49 94 | 350,43,50,46 95 | 349,44,47,52 96 | 339,50,51,46 97 | 340,46,48,47 98 | 336,49,51,49 99 | 337,50,52,49 100 | 347,55,48,51 101 | 359,66,42,37 102 | 366,71,42,37 103 | 368,80,42,37 104 | 369,86,42,37 105 | 370,97,42,37 106 | 368,106,42,37 107 | 361,117,42,37 108 | 356,125,42,37 109 | 351,139,42,37 110 | 339,140,42,37 111 | 311,130,42,37 112 | 299,120,42,37 113 | 287,102,42,37 114 | 271,61,42,37 115 | 296,12,42,46 116 | 298,13,42,48 117 | 302,14,42,48 118 | 306,19,42,48 119 | 307,27,46,51 120 | 303,41,46,54 121 | 293,54,46,54 122 | 263,79,46,57 123 | 258,95,46,68 124 | 249,107,46,68 125 | 233,103,46,68 126 | 215,93,46,68 127 | 202,81,50,68 128 | 194,66,50,68 129 | 190,48,50,68 130 | 190,39,50,68 131 | 194,28,50,68 132 | 200,25,50,68 133 | 204,19,50,68 134 | 194,12,57,68 135 | 191,4,57,68 136 | 198,1,57,62 137 | 206,3,57,62 138 | 197,3,57,62 139 | 194,3,57,62 140 | 194,3,57,62 141 | 197,9,57,62 142 | 206,22,51,62 143 | 227,36,54,55 144 | 254,52,64,50 145 | 306,52,64,54 146 | 341,44,64,59 147 | 364,32,64,71 148 | 383,25,64,80 149 | 387,21,75,80 150 | 397,18,75,80 151 | 407,18,76,80 152 | 416,21,76,80 153 | 406,18,76,80 154 | 374,12,76,80 155 | 347,5,76,80 156 | 321,5,76,86 157 | 302,4,76,86 158 | 280,4,76,86 159 | 263,1,76,76 160 | 258,1,68,63 161 | 258,1,68,53 162 | 261,1,68,53 163 | 261,1,68,53 164 | 270,3,68,53 165 | 275,1,68,82 166 | 276,22,68,82 167 | -------------------------------------------------------------------------------- /anno/Jump.txt: -------------------------------------------------------------------------------- 1 | 136,35,52,182 2 | 128,36,54,182 3 | 116,34,63,182 4 | 116,38,62,167 5 | 118,38,60,162 6 | 115,42,55,152 7 | 112,46,56,148 8 | 112,46,55,145 9 | 112,46,56,136 10 | 112,46,58,117 11 | 117,46,53,103 12 | 120,46,60,103 13 | 121,47,60,89 14 | 122,53,61,81 15 | 125,53,61,81 16 | 127,57,60,76 17 | 134,62,54,70 18 | 139,63,52,66 19 | 144,62,48,63 20 | 148,65,44,59 21 | 152,63,41,59 22 | 154,62,39,58 23 | 157,54,38,62 24 | 159,49,37,64 25 | 160,47,37,65 26 | 160,45,37,65 27 | 160,45,37,65 28 | 163,42,37,65 29 | 164,42,37,65 30 | 164,26,37,79 31 | 164,26,37,79 32 | 168,21,37,79 33 | 168,30,40,70 34 | 169,28,40,70 35 | 156,32,57,63 36 | 156,36,57,55 37 | 156,39,59,48 38 | 156,42,62,40 39 | 159,44,59,36 40 | 161,46,59,35 41 | 161,46,59,35 42 | 162,46,59,35 43 | 162,46,59,37 44 | 162,46,59,44 45 | 166,46,54,46 46 | 172,46,51,51 47 | 172,44,51,55 48 | 172,44,53,59 49 | 175,44,50,59 50 | 175,44,50,64 51 | 178,44,47,68 52 | 179,45,47,68 53 | 181,48,45,68 54 | 184,52,43,68 55 | 185,58,42,68 56 | 187,54,36,77 57 | 187,63,32,72 58 | 188,75,30,65 59 | 188,85,30,62 60 | 187,96,26,55 61 | 185,105,26,55 62 | 182,110,33,55 63 | 180,120,39,50 64 | 177,127,54,45 65 | 175,134,56,41 66 | 175,142,56,35 67 | 176,148,56,31 68 | 178,156,56,31 69 | 179,163,56,31 70 | 184,167,48,38 71 | 189,170,41,38 72 | 194,178,32,31 73 | 196,180,32,31 74 | 199,180,32,31 75 | 201,177,32,31 76 | 203,173,32,31 77 | 205,170,32,31 78 | 207,166,32,31 79 | 209,160,38,31 80 | 210,154,41,31 81 | 212,151,41,28 82 | 214,146,41,28 83 | 215,145,49,25 84 | 217,142,49,25 85 | 217,138,49,25 86 | 217,135,49,25 87 | 219,132,49,25 88 | 218,131,49,25 89 | 211,127,55,25 90 | 211,127,55,25 91 | 211,126,55,25 92 | 211,125,58,27 93 | 211,122,63,34 94 | 211,117,63,39 95 | 211,117,63,39 96 | 211,113,63,43 97 | 211,108,63,48 98 | 211,108,63,48 99 | 211,105,63,50 100 | 211,101,63,55 101 | 226,97,48,64 102 | 226,94,48,67 103 | 226,92,48,69 104 | 230,89,44,72 105 | 230,89,44,72 106 | 230,89,44,72 107 | 230,84,44,76 108 | 230,84,44,76 109 | 230,84,44,76 110 | 230,81,44,80 111 | 230,81,44,80 112 | 230,79,44,82 113 | 230,79,44,82 114 | 230,79,44,82 115 | 230,79,44,82 116 | 230,79,48,87 117 | 230,79,48,87 118 | 230,79,48,87 119 | 230,79,48,87 120 | 230,79,48,87 121 | 230,79,52,87 122 | 230,79,53,91 123 | -------------------------------------------------------------------------------- /anno/KiteSurf.txt: -------------------------------------------------------------------------------- 1 | 204,41,23,30 2 | 204,41,23,30 3 | 204,41,23,30 4 | 201,40,23,30 5 | 201,40,23,30 6 | 200,42,23,30 7 | 201,45,23,30 8 | 195,48,23,30 9 | 194,53,23,30 10 | 191,58,23,30 11 | 190,63,23,30 12 | 188,67,23,30 13 | 186,73,23,30 14 | 186,79,23,30 15 | 186,85,23,30 16 | 188,87,23,30 17 | 188,92,23,30 18 | 188,95,23,30 19 | 190,98,23,30 20 | 191,100,23,30 21 | 191,100,23,30 22 | 189,98,23,30 23 | 188,94,23,30 24 | 186,87,23,28 25 | 183,77,23,28 26 | 180,66,23,28 27 | 174,52,23,28 28 | 167,43,23,28 29 | 163,36,23,28 30 | 158,30,23,28 31 | 154,25,23,26 32 | 150,22,23,25 33 | 145,18,23,25 34 | 140,15,23,25 35 | 136,14,23,25 36 | 133,13,23,25 37 | 127,14,23,25 38 | 126,20,23,24 39 | 129,29,23,24 40 | 137,44,23,22 41 | 144,58,23,22 42 | 148,67,23,22 43 | 154,74,23,22 44 | 159,77,23,22 45 | 167,81,23,22 46 | 174,82,23,22 47 | 178,84,23,22 48 | 181,85,23,22 49 | 182,86,23,22 50 | 186,88,23,22 51 | 192,90,23,22 52 | 197,91,23,22 53 | 201,91,23,22 54 | 206,91,21,22 55 | 210,88,21,22 56 | 215,84,19,22 57 | 221,84,19,22 58 | 225,85,19,22 59 | 229,88,19,24 60 | 232,92,19,24 61 | 235,98,19,24 62 | 234,104,19,24 63 | 233,105,19,24 64 | 230,108,19,24 65 | 226,111,19,24 66 | 224,114,19,24 67 | 223,115,19,24 68 | 223,115,19,24 69 | 224,114,19,24 70 | 224,112,19,24 71 | 223,110,19,24 72 | 222,105,19,24 73 | 222,102,19,24 74 | 223,98,19,24 75 | 223,94,19,24 76 | 222,93,19,24 77 | 221,88,19,24 78 | 223,86,19,24 79 | 226,81,19,24 80 | 227,80,19,24 81 | 227,81,19,24 82 | 223,82,19,24 83 | 222,82,19,24 84 | 222,84,19,24 85 | -------------------------------------------------------------------------------- /anno/Man.txt: -------------------------------------------------------------------------------- 1 | 69,48,26,39 2 | 70,50,26,39 3 | 71,50,26,39 4 | 71,50,26,39 5 | 71,50,26,39 6 | 71,50,26,39 7 | 71,50,26,39 8 | 71,50,26,39 9 | 71,50,26,39 10 | 71,50,26,39 11 | 71,50,26,39 12 | 73,50,26,39 13 | 73,50,26,39 14 | 73,50,26,39 15 | 74,50,26,39 16 | 76,50,26,39 17 | 78,50,26,39 18 | 77,50,26,39 19 | 80,50,26,39 20 | 81,52,26,39 21 | 83,52,26,39 22 | 87,52,26,39 23 | 90,52,26,39 24 | 91,52,26,39 25 | 95,54,26,39 26 | 99,54,26,39 27 | 104,55,26,39 28 | 109,56,26,39 29 | 114,56,26,39 30 | 115,56,26,39 31 | 117,56,26,39 32 | 121,56,26,39 33 | 126,57,26,39 34 | 128,57,26,39 35 | 131,54,26,39 36 | 131,54,26,39 37 | 134,54,26,39 38 | 136,55,26,39 39 | 137,55,26,39 40 | 137,54,26,39 41 | 139,54,26,39 42 | 140,54,26,39 43 | 139,54,26,39 44 | 139,54,26,39 45 | 139,54,26,39 46 | 139,54,26,39 47 | 139,54,26,39 48 | 139,54,26,39 49 | 139,54,26,39 50 | 139,54,26,39 51 | 139,54,26,39 52 | 139,54,26,39 53 | 139,54,26,39 54 | 139,54,26,39 55 | 139,54,26,39 56 | 139,54,26,39 57 | 139,54,26,39 58 | 139,54,26,39 59 | 139,54,26,39 60 | 139,54,26,39 61 | 139,54,26,39 62 | 139,54,26,39 63 | 139,54,26,39 64 | 139,54,26,39 65 | 139,54,26,39 66 | 139,54,26,39 67 | 139,54,26,39 68 | 139,54,26,39 69 | 140,54,26,39 70 | 141,54,26,39 71 | 141,54,26,39 72 | 141,54,26,39 73 | 141,54,26,39 74 | 141,54,26,39 75 | 141,55,26,39 76 | 142,54,26,39 77 | 142,55,26,39 78 | 141,54,26,39 79 | 141,55,26,39 80 | 143,56,26,39 81 | 142,55,26,39 82 | 141,57,26,39 83 | 142,55,26,39 84 | 142,57,26,39 85 | 140,56,26,39 86 | 139,56,26,39 87 | 139,55,26,39 88 | 137,55,26,39 89 | 135,55,26,39 90 | 136,55,26,39 91 | 134,54,26,39 92 | 132,54,26,39 93 | 128,54,26,39 94 | 126,53,26,39 95 | 124,54,26,39 96 | 124,55,26,39 97 | 120,55,26,39 98 | 115,55,26,39 99 | 111,55,26,39 100 | 107,55,26,39 101 | 103,55,26,39 102 | 102,55,26,39 103 | 98,55,26,39 104 | 93,54,26,39 105 | 89,54,26,39 106 | 86,52,26,39 107 | 81,51,26,39 108 | 81,51,26,39 109 | 78,51,26,39 110 | 75,51,26,39 111 | 74,51,26,39 112 | 72,51,26,39 113 | 71,51,26,39 114 | 70,51,26,39 115 | 70,51,26,39 116 | 68,51,26,39 117 | 67,51,26,39 118 | 67,51,26,39 119 | 67,51,26,39 120 | 67,51,26,39 121 | 67,51,26,39 122 | 68,51,26,39 123 | 69,51,26,39 124 | 69,51,26,39 125 | 70,51,26,39 126 | 70,51,26,39 127 | 70,50,26,39 128 | 70,51,26,39 129 | 70,51,26,39 130 | 70,50,26,39 131 | 71,51,26,39 132 | 70,51,26,39 133 | 71,51,26,39 134 | 71,50,26,39 135 | -------------------------------------------------------------------------------- /anno/Matrix.txt: -------------------------------------------------------------------------------- 1 | 331,39,38,42 2 | 336,30,32,40 3 | 336,20,32,42 4 | 334,16,35,39 5 | 336,13,40,41 6 | 341,14,40,42 7 | 351,20,35,42 8 | 352,27,43,40 9 | 359,35,34,37 10 | 365,46,33,35 11 | 369,50,37,45 12 | 372,60,35,41 13 | 370,61,33,39 14 | 366,58,35,38 15 | 358,51,34,41 16 | 344,43,41,41 17 | 339,33,37,43 18 | 333,27,36,41 19 | 323,23,39,41 20 | 323,18,36,40 21 | 320,17,39,40 22 | 324,19,35,40 23 | 323,22,36,45 24 | 325,26,37,47 25 | 329,30,37,48 26 | 336,32,37,46 27 | 340,33,36,46 28 | 341,30,36,42 29 | 336,24,45,47 30 | 338,19,44,42 31 | 347,18,42,44 32 | 357,22,40,43 33 | 369,30,40,45 34 | 381,43,42,43 35 | 395,66,36,39 36 | 397,82,38,39 37 | 400,97,39,32 38 | 403,105,38,36 39 | 404,110,41,34 40 | 400,111,41,38 41 | 395,115,47,48 42 | 394,114,44,48 43 | 395,106,45,54 44 | 390,95,42,49 45 | 378,71,43,55 46 | 368,48,41,53 47 | 353,25,45,56 48 | 336,13,44,55 49 | 322,10,42,51 50 | 308,11,43,53 51 | 304,16,43,49 52 | 299,20,47,54 53 | 302,26,47,53 54 | 309,28,45,53 55 | 312,27,46,53 56 | 308,24,46,54 57 | 302,19,50,52 58 | 303,12,48,59 59 | 296,6,53,59 60 | 294,5,48,62 61 | 291,9,52,58 62 | 299,11,48,54 63 | 307,5,56,60 64 | 320,2,56,62 65 | 333,2,51,60 66 | 329,2,53,62 67 | 321,7,54,61 68 | 323,9,55,59 69 | 323,8,58,62 70 | 317,2,63,67 71 | 313,3,64,58 72 | 314,2,62,58 73 | 307,3,69,53 74 | 301,3,64,58 75 | 288,6,64,72 76 | 276,22,70,88 77 | 288,59,67,92 78 | 310,103,65,90 79 | 324,138,70,94 80 | 337,158,68,90 81 | 344,162,61,90 82 | 336,173,61,79 83 | 328,169,61,79 84 | 320,164,61,79 85 | 300,149,61,79 86 | 281,128,61,79 87 | 251,102,79,79 88 | 241,81,74,79 89 | 228,54,80,89 90 | 220,26,80,99 91 | 204,6,81,99 92 | 187,3,86,99 93 | 158,4,93,99 94 | 150,5,81,104 95 | 150,5,83,107 96 | 150,15,83,107 97 | 154,21,83,107 98 | 160,25,87,117 99 | 167,22,91,129 100 | 167,12,100,129 101 | -------------------------------------------------------------------------------- /anno/MotorRolling.txt: -------------------------------------------------------------------------------- 1 | 117,68,122,125 2 | 110,63,122,125 3 | 106,59,122,125 4 | 103,47,122,117 5 | 102,38,122,117 6 | 99,31,122,117 7 | 101,24,122,122 8 | 107,18,122,122 9 | 114,13,122,122 10 | 119,10,122,122 11 | 126,7,117,122 12 | 134,7,114,114 13 | 139,6,114,114 14 | 152,13,110,106 15 | 160,16,110,106 16 | 166,23,110,106 17 | 172,30,110,106 18 | 179,39,110,106 19 | 182,48,110,106 20 | 194,55,105,106 21 | 195,62,105,106 22 | 198,70,105,106 23 | 200,76,105,106 24 | 200,80,105,106 25 | 200,90,105,106 26 | 198,91,105,106 27 | 193,101,109,101 28 | 192,101,109,101 29 | 191,108,104,101 30 | 185,108,102,101 31 | 184,108,98,104 32 | 184,108,89,104 33 | 184,114,85,98 34 | 184,114,81,101 35 | 179,114,86,101 36 | 179,118,83,96 37 | 182,120,81,94 38 | 182,122,81,93 39 | 185,126,78,88 40 | 185,128,73,88 41 | 184,138,73,85 42 | 184,140,73,79 43 | 188,138,69,74 44 | 188,138,69,74 45 | 188,138,69,74 46 | 190,141,69,74 47 | 190,148,69,74 48 | 191,157,69,74 49 | 192,167,69,74 50 | 194,173,69,74 51 | 198,181,69,74 52 | 201,190,69,74 53 | 204,197,69,74 54 | 210,202,69,74 55 | 214,208,69,74 56 | 219,218,69,74 57 | 228,226,69,71 58 | 233,231,69,69 59 | 239,237,69,69 60 | 248,240,69,69 61 | 255,240,75,69 62 | 263,240,78,69 63 | 272,236,81,78 64 | 280,229,85,82 65 | 287,220,86,89 66 | 298,211,86,89 67 | 309,199,86,91 68 | 315,188,86,91 69 | 321,176,93,88 70 | 326,162,98,88 71 | 329,143,105,88 72 | 337,117,105,96 73 | 343,87,104,113 74 | 345,69,104,113 75 | 346,53,104,113 76 | 355,42,110,113 77 | 365,26,114,113 78 | 367,11,129,121 79 | 374,4,129,121 80 | 381,4,135,119 81 | 385,4,138,119 82 | 389,3,138,119 83 | 393,3,131,115 84 | 387,3,126,107 85 | 377,3,126,114 86 | 367,3,126,120 87 | 357,4,126,120 88 | 347,4,120,122 89 | 335,5,120,122 90 | 323,7,118,128 91 | 311,12,118,128 92 | 298,18,118,128 93 | 285,23,118,128 94 | 267,30,118,128 95 | 256,34,118,128 96 | 248,38,114,123 97 | 241,39,114,123 98 | 234,40,118,120 99 | 226,38,122,118 100 | 222,39,122,111 101 | 217,38,122,106 102 | 213,39,126,103 103 | 206,39,126,103 104 | 203,39,129,103 105 | 199,40,129,103 106 | 194,43,129,103 107 | 191,42,127,107 108 | 182,44,127,109 109 | 171,48,127,109 110 | 161,48,127,111 111 | 152,56,130,111 112 | 142,63,134,111 113 | 128,68,134,111 114 | 117,75,134,111 115 | 105,85,134,111 116 | 97,93,134,111 117 | 88,99,134,111 118 | 79,104,130,111 119 | 69,111,130,111 120 | 59,115,128,114 121 | 54,120,122,114 122 | 50,128,117,114 123 | 50,139,113,114 124 | 53,148,112,106 125 | 55,155,111,99 126 | 63,155,102,90 127 | 69,155,96,81 128 | 75,150,96,74 129 | 85,134,91,82 130 | 94,124,91,82 131 | 106,117,91,82 132 | 125,107,80,82 133 | 137,102,75,82 134 | 149,94,75,82 135 | 161,92,75,82 136 | 176,92,64,78 137 | 186,90,64,78 138 | 194,92,64,78 139 | 197,95,64,78 140 | 197,102,64,78 141 | 198,107,64,78 142 | 202,118,61,70 143 | 209,128,56,64 144 | 214,134,56,64 145 | 213,142,55,58 146 | 209,143,55,58 147 | 209,146,51,58 148 | 209,151,51,58 149 | 208,157,51,58 150 | 209,158,53,63 151 | 213,164,53,63 152 | 216,170,53,63 153 | 215,173,53,63 154 | 214,179,53,63 155 | 214,179,53,63 156 | 214,179,53,63 157 | 215,181,53,63 158 | 221,184,53,63 159 | 224,187,53,63 160 | 225,188,53,63 161 | 225,188,53,59 162 | 225,188,53,59 163 | 225,188,57,56 164 | 229,187,57,56 165 | -------------------------------------------------------------------------------- /anno/MountainBike.txt: -------------------------------------------------------------------------------- 1 | 319,185,67,56 2 | 316,183,67,56 3 | 315,182,66,56 4 | 313,181,66,56 5 | 311,181,66,55 6 | 310,180,66,55 7 | 308,178,66,56 8 | 307,178,66,55 9 | 305,177,66,55 10 | 304,176,66,55 11 | 302,175,66,55 12 | 301,174,65,55 13 | 299,173,65,55 14 | 298,171,65,56 15 | 296,170,66,56 16 | 295,169,65,55 17 | 294,167,65,55 18 | 292,165,66,56 19 | 290,164,65,56 20 | 287,161,63,59 21 | 288,161,65,56 22 | 286,159,66,57 23 | 284,157,66,58 24 | 283,155,66,58 25 | 281,153,61,61 26 | 279,152,64,60 27 | 278,149,64,60 28 | 277,147,64,61 29 | 277,145,64,61 30 | 277,143,62,63 31 | 273,140,65,66 32 | 272,139,68,62 33 | 270,136,67,66 34 | 271,133,68,68 35 | 268,131,68,66 36 | 268,129,68,66 37 | 268,128,68,67 38 | 267,126,67,65 39 | 266,124,67,62 40 | 267,122,69,60 41 | 267,120,69,60 42 | 267,118,69,60 43 | 268,116,69,60 44 | 266,115,68,61 45 | 267,114,69,61 46 | 268,111,69,61 47 | 267,111,69,60 48 | 268,109,69,60 49 | 267,108,72,62 50 | 268,108,70,60 51 | 268,106,69,60 52 | 269,105,69,60 53 | 270,105,69,59 54 | 272,105,68,58 55 | 272,104,69,59 56 | 272,103,68,59 57 | 276,103,68,59 58 | 275,102,69,59 59 | 274,102,68,59 60 | 274,101,68,59 61 | 277,100,68,59 62 | 280,101,68,59 63 | 280,101,68,58 64 | 281,100,68,59 65 | 281,101,68,57 66 | 282,100,68,58 67 | 283,100,67,57 68 | 284,100,67,57 69 | 285,99,66,57 70 | 285,96,67,60 71 | 286,93,67,63 72 | 287,93,67,62 73 | 288,91,67,64 74 | 289,92,67,63 75 | 290,92,67,62 76 | 291,92,66,62 77 | 292,90,66,63 78 | 294,89,66,59 79 | 295,89,66,59 80 | 295,90,66,58 81 | 296,89,65,61 82 | 297,86,65,63 83 | 298,86,65,63 84 | 298,85,65,63 85 | 299,83,65,64 86 | 299,84,65,62 87 | 301,85,63,60 88 | 300,82,65,64 89 | 300,81,65,64 90 | 301,81,64,63 91 | 301,80,65,64 92 | 306,81,60,63 93 | 307,80,59,63 94 | 308,82,59,61 95 | 305,81,62,61 96 | 305,81,62,60 97 | 308,79,59,62 98 | 303,77,64,63 99 | 304,78,63,62 100 | 304,77,62,62 101 | 304,77,63,62 102 | 304,77,63,61 103 | 303,77,62,62 104 | 303,77,63,61 105 | 303,77,63,61 106 | 303,77,63,61 107 | 303,76,63,63 108 | 303,78,63,61 109 | 303,77,63,61 110 | 304,75,62,64 111 | 303,78,63,61 112 | 303,77,63,62 113 | 304,79,63,63 114 | 305,82,61,61 115 | 303,80,63,65 116 | 304,78,63,65 117 | 304,78,63,66 118 | 304,80,63,68 119 | 304,80,63,67 120 | 304,79,62,66 121 | 304,78,62,70 122 | 303,80,63,67 123 | 305,81,61,69 124 | 302,79,64,73 125 | 302,83,63,70 126 | 306,83,60,70 127 | 302,83,63,73 128 | 302,86,63,70 129 | 302,85,63,71 130 | 300,85,63,72 131 | 303,88,63,70 132 | 301,87,66,72 133 | 300,89,67,71 134 | 299,89,70,72 135 | 299,90,70,71 136 | 299,92,69,71 137 | 298,91,71,75 138 | 297,91,72,75 139 | 297,90,73,77 140 | 297,93,74,74 141 | 296,93,74,76 142 | 296,94,77,76 143 | 296,92,76,77 144 | 295,93,74,75 145 | 295,92,77,79 146 | 295,94,76,77 147 | 294,91,76,79 148 | 294,93,76,78 149 | 293,94,76,76 150 | 292,95,78,77 151 | 292,94,80,77 152 | 292,96,76,74 153 | 292,95,75,77 154 | 291,97,75,74 155 | 291,100,77,73 156 | 290,98,76,75 157 | 285,100,83,73 158 | 285,100,84,74 159 | 284,102,82,72 160 | 284,104,80,69 161 | 286,101,79,73 162 | 286,102,82,74 163 | 285,105,83,73 164 | 286,106,79,71 165 | 284,104,81,75 166 | 282,106,82,71 167 | 283,106,83,74 168 | 279,112,87,67 169 | 285,114,82,67 170 | 284,113,78,67 171 | 281,115,83,67 172 | 282,115,79,67 173 | 280,113,82,71 174 | 280,114,82,71 175 | 277,117,83,71 176 | 278,117,84,70 177 | 278,117,81,72 178 | 276,119,84,71 179 | 278,120,82,73 180 | 279,122,78,71 181 | 278,120,78,74 182 | 277,121,81,74 183 | 278,121,81,74 184 | 276,124,81,76 185 | 277,124,81,73 186 | 274,122,80,74 187 | 274,126,81,73 188 | 274,127,78,73 189 | 275,130,77,73 190 | 272,127,81,79 191 | 271,127,80,76 192 | 274,131,75,77 193 | 271,132,81,74 194 | 270,133,81,76 195 | 269,133,83,76 196 | 271,135,75,75 197 | 273,138,73,76 198 | 270,140,82,78 199 | 271,139,77,81 200 | 268,143,81,79 201 | 268,145,77,81 202 | 270,146,76,79 203 | 269,149,76,79 204 | 271,152,73,75 205 | 270,154,74,75 206 | 268,157,76,71 207 | 269,155,73,73 208 | 268,157,73,72 209 | 263,160,80,70 210 | 263,162,79,69 211 | 262,164,78,67 212 | 263,168,76,64 213 | 262,168,75,65 214 | 260,171,77,61 215 | 261,171,74,62 216 | 258,170,73,64 217 | 258,173,76,61 218 | 256,175,78,61 219 | 255,175,79,62 220 | 255,176,78,58 221 | 254,177,79,59 222 | 254,177,78,59 223 | 254,177,78,60 224 | 253,177,80,61 225 | 252,177,81,62 226 | 253,178,79,61 227 | 252,178,79,61 228 | 251,177,80,63 229 | -------------------------------------------------------------------------------- /anno/Skater.txt: -------------------------------------------------------------------------------- 1 | 138,57,39,137 2 | 138,57,39,137 3 | 139,56,39,142 4 | 139,54,39,147 5 | 137,56,42,145 6 | 137,56,41,142 7 | 135,58,46,138 8 | 135,61,46,143 9 | 135,64,45,134 10 | 136,67,46,126 11 | 136,72,49,126 12 | 135,72,45,137 13 | 138,78,47,122 14 | 139,82,46,121 15 | 138,85,50,117 16 | 137,90,51,114 17 | 138,92,49,123 18 | 138,92,47,120 19 | 140,94,44,125 20 | 142,94,45,120 21 | 141,93,44,127 22 | 142,93,45,126 23 | 141,92,44,128 24 | 142,95,45,121 25 | 141,91,44,134 26 | 145,89,42,122 27 | 147,89,43,124 28 | 145,88,45,125 29 | 148,88,43,125 30 | 148,87,46,128 31 | 147,87,46,120 32 | 147,86,51,124 33 | 148,84,51,131 34 | 149,79,50,133 35 | 148,81,55,125 36 | 146,83,56,122 37 | 148,80,58,121 38 | 147,78,58,129 39 | 150,73,56,126 40 | 148,76,57,118 41 | 148,71,61,128 42 | 146,72,57,126 43 | 148,69,60,124 44 | 147,70,58,122 45 | 143,70,58,125 46 | 146,65,52,129 47 | 142,70,55,126 48 | 146,70,51,120 49 | 137,68,57,118 50 | 137,68,53,125 51 | 133,69,58,118 52 | 128,68,61,122 53 | 124,68,61,120 54 | 125,66,60,124 55 | 122,67,58,120 56 | 120,66,56,126 57 | 120,64,55,125 58 | 116,63,54,128 59 | 114,62,56,131 60 | 114,63,54,129 61 | 115,63,51,125 62 | 115,61,49,125 63 | 111,62,50,121 64 | 104,60,54,119 65 | 99,64,61,117 66 | 97,64,67,121 67 | 92,66,67,121 68 | 87,69,77,116 69 | 89,72,76,115 70 | 92,75,75,108 71 | 97,79,71,106 72 | 96,77,78,110 73 | 107,80,73,110 74 | 114,81,71,107 75 | 122,81,73,110 76 | 131,79,66,113 77 | 136,85,63,107 78 | 135,84,63,109 79 | 139,82,67,113 80 | 139,79,66,113 81 | 139,78,71,113 82 | 139,73,70,115 83 | 135,69,70,115 84 | 137,68,68,117 85 | 137,69,66,116 86 | 134,67,63,119 87 | 130,65,62,120 88 | 124,64,67,121 89 | 119,62,65,118 90 | 115,64,68,123 91 | 114,64,67,123 92 | 109,62,66,124 93 | 105,65,63,119 94 | 101,65,56,118 95 | 103,65,56,119 96 | 98,65,60,123 97 | 98,64,56,117 98 | 95,63,57,117 99 | 93,61,53,120 100 | 91,60,53,127 101 | 89,56,55,123 102 | 90,61,54,128 103 | 90,58,53,130 104 | 87,57,56,133 105 | 87,52,52,133 106 | 85,48,55,143 107 | 84,45,52,147 108 | 82,43,55,146 109 | 82,43,51,142 110 | 83,42,50,140 111 | 82,41,54,144 112 | 85,40,55,148 113 | 90,41,47,143 114 | 97,42,47,148 115 | 95,42,51,147 116 | 99,42,49,140 117 | 101,44,53,139 118 | 108,43,53,141 119 | 108,43,50,137 120 | 116,44,47,135 121 | 112,45,55,134 122 | 114,44,49,133 123 | 112,44,53,133 124 | 113,44,56,137 125 | 111,43,60,138 126 | 112,39,53,143 127 | 109,46,62,135 128 | 109,37,59,142 129 | 108,40,64,138 130 | 110,40,61,144 131 | 114,41,58,140 132 | 114,41,57,133 133 | 118,40,53,138 134 | 115,34,59,151 135 | 113,31,57,146 136 | 108,22,61,155 137 | 111,33,66,147 138 | 110,35,67,141 139 | 107,36,75,144 140 | 118,34,62,138 141 | 116,31,66,144 142 | 116,33,77,147 143 | 122,33,73,144 144 | 120,32,66,150 145 | 123,34,64,150 146 | 124,34,66,146 147 | 126,34,66,150 148 | 125,35,67,148 149 | 129,35,67,156 150 | 130,35,74,151 151 | 131,35,66,145 152 | 131,36,69,150 153 | 131,38,71,157 154 | 128,41,74,155 155 | 136,42,71,153 156 | 138,43,65,153 157 | 140,40,69,159 158 | 141,46,69,155 159 | 143,50,69,149 160 | 142,52,71,147 161 | -------------------------------------------------------------------------------- /anno/Skiing.txt: -------------------------------------------------------------------------------- 1 | 446,181,29,26 2 | 442,173,29,24 3 | 440,169,29,24 4 | 437,165,29,24 5 | 436,162,29,24 6 | 434,160,29,24 7 | 432,154,29,24 8 | 432,152,29,24 9 | 430,152,29,24 10 | 430,148,29,24 11 | 432,143,29,24 12 | 431,131,29,24 13 | 430,129,29,25 14 | 430,126,29,25 15 | 429,123,29,25 16 | 425,118,29,25 17 | 427,109,36,30 18 | 426,106,36,30 19 | 423,104,35,30 20 | 420,100,31,32 21 | 419,96,31,32 22 | 413,92,31,32 23 | 412,91,31,32 24 | 406,91,32,29 25 | 399,89,35,32 26 | 394,88,35,32 27 | 381,83,38,40 28 | 375,81,38,40 29 | 369,82,38,40 30 | 360,84,38,40 31 | 356,89,37,38 32 | 341,103,35,32 33 | 336,105,35,32 34 | 329,110,35,32 35 | 321,113,35,34 36 | 316,118,32,37 37 | 304,129,32,37 38 | 300,137,32,33 39 | 295,142,32,33 40 | 289,149,32,33 41 | 287,154,32,33 42 | 281,168,30,30 43 | 277,172,30,30 44 | 274,176,30,30 45 | 271,181,30,30 46 | 269,185,29,33 47 | 270,194,22,31 48 | 267,199,22,31 49 | 267,204,20,28 50 | 265,210,19,32 51 | 262,218,19,32 52 | 257,227,19,32 53 | 256,232,19,32 54 | 253,237,19,32 55 | 252,240,19,32 56 | 250,245,16,32 57 | 248,253,16,32 58 | 247,258,16,32 59 | 246,262,13,32 60 | 245,265,13,32 61 | 242,269,12,28 62 | 238,275,12,23 63 | 234,278,12,19 64 | 234,280,9,17 65 | 232,280,9,17 66 | 230,281,9,17 67 | 225,282,9,15 68 | 224,282,9,15 69 | 222,282,9,15 70 | 220,282,9,13 71 | 217,282,9,13 72 | 214,281,9,13 73 | 212,280,9,13 74 | 210,279,9,13 75 | 209,278,9,13 76 | 208,277,9,13 77 | 206,275,9,13 78 | 204,274,9,13 79 | 203,273,9,13 80 | 203,272,9,13 81 | 202,271,9,13 82 | -------------------------------------------------------------------------------- /anno/Subway.txt: -------------------------------------------------------------------------------- 1 | 16,88,19,51 2 | 16,89,19,51 3 | 19,86,19,51 4 | 20,88,19,51 5 | 19,90,19,51 6 | 21,90,19,51 7 | 25,89,19,51 8 | 26,89,19,51 9 | 26,88,19,51 10 | 27,90,19,51 11 | 31,90,19,51 12 | 31,90,19,51 13 | 32,90,19,51 14 | 36,91,19,51 15 | 38,91,19,51 16 | 38,90,19,51 17 | 39,93,19,51 18 | 42,91,19,51 19 | 43,92,19,51 20 | 46,91,19,51 21 | 46,91,19,51 22 | 47,91,19,51 23 | 48,89,18,55 24 | 49,90,20,52 25 | 52,91,19,50 26 | 54,92,20,49 27 | 55,91,19,50 28 | 57,92,18,49 29 | 59,91,19,51 30 | 63,91,18,50 31 | 63,92,19,50 32 | 66,91,17,50 33 | 65,88,19,54 34 | 69,92,16,49 35 | 70,92,17,51 36 | 73,91,15,50 37 | 75,90,16,49 38 | 74,89,19,52 39 | 76,89,16,53 40 | 78,91,17,50 41 | 79,91,21,52 42 | 81,90,19,52 43 | 82,92,20,49 44 | 83,91,19,49 45 | 83,90,20,51 46 | 87,90,17,51 47 | 90,89,17,54 48 | 90,90,18,52 49 | 92,89,19,53 50 | 93,89,19,53 51 | 92,90,22,53 52 | 95,90,24,53 53 | 99,88,20,55 54 | 100,90,22,56 55 | 102,90,22,51 56 | 104,88,20,54 57 | 108,89,18,52 58 | 109,89,18,51 59 | 110,89,18,52 60 | 112,88,18,53 61 | 114,88,18,52 62 | 116,87,16,55 63 | 117,87,19,53 64 | 118,87,18,53 65 | 121,89,19,51 66 | 123,89,19,51 67 | 123,89,17,50 68 | 124,91,20,51 69 | 126,90,19,49 70 | 128,90,18,49 71 | 130,90,19,49 72 | 130,90,18,49 73 | 133,90,18,47 74 | 134,89,18,50 75 | 137,89,17,51 76 | 137,87,18,55 77 | 140,87,19,58 78 | 141,89,18,54 79 | 142,89,18,54 80 | 143,88,21,53 81 | 146,88,20,52 82 | 148,89,21,50 83 | 150,88,21,51 84 | 152,88,20,54 85 | 154,87,20,53 86 | 157,89,18,53 87 | 156,88,20,51 88 | 158,88,21,52 89 | 161,89,20,52 90 | 162,88,19,51 91 | 165,89,18,49 92 | 166,88,18,51 93 | 168,89,18,50 94 | 168,89,21,51 95 | 170,89,20,49 96 | 172,90,18,48 97 | 173,90,19,49 98 | 176,87,17,52 99 | 178,88,17,53 100 | 179,89,17,51 101 | 180,90,16,52 102 | 182,90,17,51 103 | 183,87,20,52 104 | 185,88,19,53 105 | 184,88,21,52 106 | 188,88,21,52 107 | 191,87,20,55 108 | 193,88,19,51 109 | 193,89,20,50 110 | 196,87,20,52 111 | 197,86,21,54 112 | 199,88,19,50 113 | 200,88,17,51 114 | 200,88,21,51 115 | 202,90,19,48 116 | 205,89,19,48 117 | 208,88,16,48 118 | 206,90,19,50 119 | 208,91,20,49 120 | 208,90,20,47 121 | 211,88,20,50 122 | 212,87,20,50 123 | 216,88,18,49 124 | 219,88,18,50 125 | 219,86,19,53 126 | 221,88,19,51 127 | 221,87,20,52 128 | 223,86,18,54 129 | 225,87,20,53 130 | 227,85,21,55 131 | 230,86,18,54 132 | 230,86,19,52 133 | 232,85,23,53 134 | 235,88,21,48 135 | 234,88,20,50 136 | 234,88,22,49 137 | 238,88,21,48 138 | 240,87,20,50 139 | 244,85,19,49 140 | 245,85,18,52 141 | 247,85,18,52 142 | 248,84,19,53 143 | 250,85,18,51 144 | 251,86,20,50 145 | 252,86,19,53 146 | 255,85,18,52 147 | 257,86,20,51 148 | 259,86,19,53 149 | 261,85,21,53 150 | 263,85,19,51 151 | 266,85,18,53 152 | 266,84,18,53 153 | 266,86,18,51 154 | 269,85,19,52 155 | 272,83,18,56 156 | 274,83,17,54 157 | 274,83,18,57 158 | 276,84,18,56 159 | 276,86,20,53 160 | 277,83,22,54 161 | 279,85,23,51 162 | 282,83,22,56 163 | 284,85,19,53 164 | 287,86,19,53 165 | 289,85,17,53 166 | 290,84,17,54 167 | 291,86,18,53 168 | 293,86,19,51 169 | 295,86,18,51 170 | 297,85,19,53 171 | 298,86,19,53 172 | 299,86,20,53 173 | 300,87,22,50 174 | 301,86,22,50 175 | 303,85,22,51 176 | -------------------------------------------------------------------------------- /anno/Toy.txt: -------------------------------------------------------------------------------- 1 | 152,102,40,67 2 | 152,102,40,67 3 | 153,106,39,67 4 | 155,107,37,65 5 | 157,109,37,66 6 | 157,107,38,68 7 | 157,106,36,69 8 | 153,112,38,68 9 | 150,112,40,67 10 | 148,117,31,60 11 | 140,117,39,64 12 | 139,114,36,64 13 | 136,109,34,65 14 | 135,111,39,66 15 | 137,109,39,66 16 | 139,109,39,69 17 | 142,103,44,70 18 | 156,102,36,70 19 | 156,105,46,76 20 | 160,106,46,78 21 | 172,108,43,82 22 | 178,114,47,86 23 | 185,111,45,84 24 | 185,111,51,79 25 | 183,111,51,81 26 | 190,110,47,82 27 | 190,112,46,80 28 | 180,107,53,84 29 | 183,105,50,83 30 | 180,104,52,90 31 | 175,102,56,86 32 | 169,92,59,98 33 | 159,88,60,95 34 | 153,89,62,95 35 | 147,85,65,101 36 | 140,82,62,97 37 | 131,81,69,102 38 | 124,79,73,103 39 | 113,77,76,101 40 | 114,80,64,100 41 | 109,85,58,96 42 | 105,91,58,94 43 | 100,91,66,96 44 | 95,93,69,98 45 | 97,95,63,95 46 | 98,98,64,98 47 | 99,97,67,102 48 | 94,99,72,105 49 | 90,102,74,103 50 | 89,101,77,104 51 | 86,93,79,115 52 | 88,90,73,103 53 | 90,88,72,104 54 | 97,88,69,110 55 | 95,87,70,102 56 | 96,89,70,102 57 | 96,90,69,96 58 | 99,94,73,99 59 | 102,91,80,108 60 | 107,92,82,107 61 | 124,90,78,101 62 | 133,90,75,103 63 | 131,86,79,97 64 | 129,84,78,102 65 | 134,83,77,107 66 | 135,89,80,102 67 | 139,94,76,106 68 | 141,101,80,96 69 | 157,106,72,101 70 | 157,114,79,103 71 | 164,117,79,95 72 | 173,116,86,98 73 | 177,115,89,97 74 | 191,114,80,102 75 | 200,110,84,112 76 | 203,108,83,114 77 | 208,114,87,100 78 | 211,110,92,115 79 | 205,111,95,111 80 | 207,111,81,105 81 | 204,110,81,106 82 | 208,105,71,98 83 | 202,104,70,94 84 | 199,104,71,98 85 | 196,103,67,90 86 | 196,102,65,90 87 | 196,104,59,81 88 | 190,98,57,78 89 | 184,92,58,77 90 | 180,91,51,70 91 | 171,85,54,76 92 | 163,85,50,67 93 | 156,78,49,73 94 | 147,80,49,66 95 | 137,80,51,70 96 | 132,80,46,69 97 | 130,80,44,70 98 | 125,79,44,69 99 | 120,79,46,69 100 | 115,78,39,67 101 | 109,80,40,68 102 | 105,77,43,70 103 | 97,74,44,66 104 | 88,71,45,67 105 | 81,67,46,64 106 | 73,62,46,68 107 | 71,59,45,65 108 | 69,57,45,64 109 | 66,54,46,65 110 | 63,51,47,70 111 | 62,51,47,64 112 | 59,50,50,63 113 | 56,48,55,69 114 | 59,50,56,62 115 | 64,52,54,67 116 | 66,54,54,64 117 | 66,54,60,63 118 | 78,57,55,62 119 | 89,56,51,63 120 | 91,52,52,65 121 | 98,54,55,63 122 | 105,56,58,66 123 | 113,58,59,64 124 | 125,58,57,63 125 | 134,60,57,63 126 | 142,59,60,64 127 | 147,61,62,66 128 | 160,60,61,72 129 | 171,59,57,73 130 | 179,65,53,64 131 | 183,57,55,77 132 | 189,59,53,84 133 | 187,54,51,80 134 | 180,47,55,78 135 | 172,40,53,77 136 | 161,27,54,81 137 | 153,19,55,86 138 | 141,19,59,87 139 | 138,27,58,79 140 | 135,31,58,81 141 | 133,36,59,86 142 | 127,39,63,83 143 | 122,39,63,87 144 | 117,43,61,81 145 | 110,45,61,81 146 | 98,46,65,80 147 | 91,44,67,77 148 | 86,41,66,75 149 | 75,34,66,79 150 | 72,35,67,75 151 | 65,32,68,84 152 | 57,35,63,77 153 | 50,33,65,77 154 | 44,36,63,76 155 | 41,34,60,78 156 | 36,31,60,78 157 | 31,27,61,80 158 | 34,24,53,79 159 | 38,18,58,81 160 | 43,17,58,80 161 | 47,15,60,83 162 | 49,15,62,84 163 | 53,14,63,82 164 | 64,18,59,81 165 | 80,22,54,81 166 | 87,21,51,75 167 | 92,21,52,78 168 | 92,27,59,80 169 | 101,32,59,90 170 | 98,35,70,97 171 | 101,37,70,93 172 | 100,43,78,95 173 | 114,51,80,92 174 | 133,60,74,94 175 | 136,64,75,98 176 | 136,76,82,82 177 | 132,83,91,83 178 | 123,89,104,77 179 | 111,87,125,83 180 | 121,90,123,91 181 | 121,89,123,101 182 | 123,93,125,112 183 | 150,102,102,116 184 | 145,104,120,130 185 | 158,113,110,112 186 | 157,110,112,123 187 | 155,108,114,129 188 | 156,105,105,131 189 | 156,103,104,130 190 | 151,107,99,119 191 | 150,108,85,130 192 | 145,111,85,126 193 | 127,109,87,130 194 | 111,101,85,123 195 | 105,99,81,121 196 | 94,94,86,124 197 | 90,92,84,119 198 | 88,90,86,118 199 | 90,91,77,107 200 | 86,93,79,110 201 | 88,97,67,106 202 | 82,102,63,92 203 | 79,104,63,92 204 | 77,105,57,89 205 | 70,107,60,87 206 | 76,107,53,86 207 | 87,108,51,87 208 | 89,108,58,98 209 | 95,110,63,99 210 | 104,110,68,107 211 | 114,111,75,107 212 | 119,112,85,106 213 | 121,114,93,108 214 | 123,114,99,98 215 | 130,110,104,112 216 | 157,110,105,112 217 | 174,112,99,119 218 | 183,103,109,113 219 | 208,97,96,117 220 | 228,88,87,128 221 | 228,86,89,116 222 | 229,82,89,125 223 | 219,81,85,122 224 | 215,78,83,120 225 | 209,78,79,123 226 | 194,80,79,120 227 | 169,77,81,122 228 | 157,83,81,128 229 | 148,87,75,116 230 | 129,84,82,117 231 | 122,87,75,115 232 | 109,83,80,127 233 | 99,88,76,119 234 | 86,84,79,129 235 | 70,86,76,125 236 | 54,87,83,128 237 | 50,85,83,132 238 | 47,83,89,130 239 | 63,88,93,130 240 | 67,90,99,128 241 | 65,94,117,123 242 | 89,98,103,126 243 | 103,105,104,110 244 | 115,111,103,113 245 | 124,122,112,104 246 | 138,127,116,98 247 | 156,126,118,109 248 | 176,128,114,107 249 | 191,130,109,103 250 | 207,126,101,104 251 | 214,115,94,112 252 | 215,102,89,120 253 | 213,104,79,116 254 | 200,109,72,107 255 | 192,118,73,100 256 | 186,116,63,92 257 | 171,113,60,98 258 | 159,116,59,88 259 | 149,112,66,91 260 | 135,109,60,76 261 | 123,102,62,86 262 | 113,98,57,87 263 | 96,87,63,94 264 | 83,82,64,95 265 | 74,81,61,91 266 | 66,76,62,93 267 | 61,74,64,96 268 | 60,70,69,92 269 | 66,73,67,88 270 | 60,71,74,94 271 | 60,71,74,94 272 | -------------------------------------------------------------------------------- /anno/Trans.txt: -------------------------------------------------------------------------------- 1 | 196,51,139,194 2 | 192,46,145,202 3 | 196,46,140,193 4 | 195,48,140,199 5 | 190,46,146,199 6 | 192,44,146,204 7 | 189,44,150,200 8 | 188,45,147,199 9 | 191,43,144,202 10 | 195,43,142,202 11 | 189,43,145,207 12 | 192,41,139,199 13 | 186,39,143,207 14 | 187,39,139,204 15 | 185,37,140,207 16 | 182,35,143,210 17 | 176,32,147,206 18 | 171,31,148,209 19 | 165,30,150,218 20 | 170,31,142,214 21 | 169,31,140,205 22 | 171,30,134,210 23 | 168,31,134,215 24 | 161,31,139,213 25 | 160,30,137,223 26 | 162,31,137,208 27 | 163,31,139,210 28 | 158,31,143,204 29 | 160,30,147,211 30 | 156,31,156,195 31 | 156,31,158,193 32 | 156,31,165,190 33 | 161,31,170,190 34 | 161,31,181,188 35 | 165,31,183,202 36 | 169,30,188,192 37 | 175,31,193,198 38 | 177,31,201,190 39 | 188,31,203,201 40 | 189,31,222,206 41 | 195,31,225,216 42 | 201,31,230,212 43 | 205,31,235,206 44 | 216,31,239,220 45 | 225,31,240,225 46 | 237,31,241,215 47 | 237,31,236,217 48 | 241,31,232,231 49 | 244,31,230,228 50 | 249,31,227,230 51 | 257,31,227,232 52 | 265,43,219,224 53 | 268,49,216,221 54 | 254,57,231,216 55 | 256,62,227,206 56 | 257,67,226,202 57 | 256,70,230,198 58 | 255,71,235,197 59 | 256,73,233,192 60 | 259,75,232,191 61 | 261,73,235,191 62 | 265,73,231,194 63 | 269,78,227,190 64 | 267,82,233,190 65 | 267,79,237,195 66 | 269,81,239,188 67 | 267,93,242,178 68 | 268,92,245,180 69 | 259,95,259,176 70 | 251,97,269,172 71 | 257,98,266,177 72 | 251,103,275,168 73 | 250,105,276,166 74 | 256,111,269,164 75 | 249,113,277,159 76 | 257,108,269,167 77 | 242,116,284,157 78 | 243,115,285,156 79 | 253,123,279,153 80 | 249,132,286,142 81 | 251,136,292,139 82 | 254,133,292,143 83 | 253,130,297,144 84 | 262,146,294,127 85 | 261,142,295,133 86 | 258,143,301,131 87 | 260,136,302,137 88 | 261,139,299,135 89 | 260,144,299,129 90 | 259,145,298,129 91 | 257,141,301,129 92 | 260,142,299,129 93 | 257,128,299,142 94 | 259,142,302,126 95 | 257,140,303,127 96 | 256,149,310,113 97 | 256,153,314,115 98 | 258,143,326,125 99 | 256,151,319,122 100 | 260,150,305,124 101 | 260,161,315,111 102 | 263,169,313,102 103 | 263,174,308,97 104 | 265,173,309,96 105 | 265,175,311,96 106 | 267,181,307,92 107 | 266,181,308,92 108 | 268,179,305,94 109 | 269,180,307,91 110 | 264,179,313,95 111 | 265,182,308,92 112 | 267,180,309,94 113 | 265,182,310,91 114 | 267,182,311,92 115 | 264,182,310,91 116 | 264,181,312,92 117 | 267,181,306,92 118 | 269,182,305,91 119 | 269,180,307,93 120 | 273,182,297,89 121 | 270,180,300,91 122 | 272,180,298,90 123 | 270,180,299,91 124 | 273,179,301,92 125 | -------------------------------------------------------------------------------- /anno/att/Bolt.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,1,1,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/basketball.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,1,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/boat_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/boat_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/boat_3.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,1,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/boat_4.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,0,1,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/boat_5.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,1,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/boy.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,1,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car1_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car1_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,1,0,1,1,1 2 | -------------------------------------------------------------------------------- /anno/att/car1_3.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,0,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car1_4.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,1,1,0,1,0,1,1,1 2 | -------------------------------------------------------------------------------- /anno/att/car1_5.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,1,0,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/car1_6.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_3.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_4.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_5.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,0,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car2_6.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car3_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,0,0,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car3_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/car3_3.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car3_4.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,0,1,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/car3_5.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,0,0,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/car4.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,0,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/carDark.txt: -------------------------------------------------------------------------------- 1 | 1,0,0,0,0,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/carScale.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,0,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/coke.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,1,0,0,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/couple.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/crossing.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/david.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,1,1,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/david2.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/david3.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,1,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/deer.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,1,1,1,0,1,1 2 | -------------------------------------------------------------------------------- /anno/att/dog1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/doll.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/dudek.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,1,1,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/faceocc1.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,1,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/faceocc2.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,1,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/fish.txt: -------------------------------------------------------------------------------- 1 | 1,0,0,0,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/fleetface.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,1,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/football.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,1,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/football1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/freeman1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/freeman3.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/freeman4.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/girl.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/group1_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/group1_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/group1_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/group1_4.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,0,0,0,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/group2_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,1,1,1,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/group2_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,0,1,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/group2_3.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,1,1,1,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/group3_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,0,1,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/group3_2.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,1,0,0,1,1,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/group3_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,1,1,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/group3_4.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,1,0,1,1,1,1,0,1 2 | -------------------------------------------------------------------------------- /anno/att/ironman.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,1,1,1,1,1,1 2 | -------------------------------------------------------------------------------- /anno/att/jogging-1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,1,1,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/jogging-2.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,1,1,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/jumping.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,1,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/lemming.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,0,1,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/liquor.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,1,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/matrix.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,0,1,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/mhyang.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/motorRolling.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,0,0,1,1,1,0,1,1 2 | -------------------------------------------------------------------------------- /anno/att/mountainBike.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person1_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person1_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person1_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person2_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person2_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person2_3.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person3_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,0,0,0,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person3_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person3_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person4_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,1,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person4_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,1,1,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person5_1.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person5_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,1,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person5_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,1,1,1,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person5_4.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,1,1,1,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person5_5.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,1,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person6_1.txt: -------------------------------------------------------------------------------- 1 | 1,0,0,0,0,0,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person6_2.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,1,0,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person6_3.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,0,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person7_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,1,0,1,1,0,0,0,1 2 | -------------------------------------------------------------------------------- /anno/att/person7_2.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,0,0,1,1,0,0,1,1 2 | -------------------------------------------------------------------------------- /anno/att/person7_3.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,1,1,1,0,0,1,1 2 | -------------------------------------------------------------------------------- /anno/att/person8_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,0,0,0,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person8_2.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,1,0,0,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person8_3.txt: -------------------------------------------------------------------------------- 1 | 1,0,1,1,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person8_4.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,0,0,1,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person9_1.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,0,1,0,1,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person9_2.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person9_3.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,1,0,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/person9_4.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,1,1,0,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/person9_5.txt: -------------------------------------------------------------------------------- 1 | 0,1,1,0,1,0,1,0,1,1,0 2 | -------------------------------------------------------------------------------- /anno/att/shaking.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,0,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/singer1.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/singer2.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,1,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/skating1.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/skiing.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,0,1,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/soccer.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,0,1,1,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/subway.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,1,1,0,0,0,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/suv.txt: -------------------------------------------------------------------------------- 1 | 0,0,0,1,0,0,0,1,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/sylvester.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,0,0,0,0,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/tiger1.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,1,1,1,1,1,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/tiger2.txt: -------------------------------------------------------------------------------- 1 | 1,1,0,1,1,1,1,1,1,0,0 2 | -------------------------------------------------------------------------------- /anno/att/trellis.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,0,0,0,0,1,0,1,0 2 | -------------------------------------------------------------------------------- /anno/att/walking.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,1,1,0,0,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/att/walking2.txt: -------------------------------------------------------------------------------- 1 | 0,0,1,1,0,0,0,0,0,0,1 2 | -------------------------------------------------------------------------------- /anno/att/woman.txt: -------------------------------------------------------------------------------- 1 | 1,1,1,1,1,1,1,0,0,0,0 2 | -------------------------------------------------------------------------------- /anno/boat_4.txt: -------------------------------------------------------------------------------- 1 | 629,441,95,82 2 | 629,441,95,82 3 | 629,441,95,82 4 | 626,435,98,89 5 | 621,433,102,92 6 | 624,435,102,92 7 | 624,435,102,92 8 | 624,435,102,92 9 | 624,435,102,92 10 | 624,435,102,92 11 | 624,435,102,92 12 | 624,435,102,92 13 | 624,435,110,100 14 | 621,435,110,100 15 | 616,435,110,99 16 | 616,438,115,95 17 | 616,438,118,95 18 | 616,438,118,95 19 | 616,438,118,95 20 | 611,438,118,95 21 | 611,438,118,95 22 | 608,438,122,102 23 | 608,438,122,102 24 | 608,440,122,102 25 | 608,440,122,102 26 | 603,440,122,102 27 | 603,440,122,102 28 | 603,440,122,102 29 | 599,440,122,102 30 | 596,438,123,102 31 | 596,441,123,99 32 | 594,441,123,99 33 | 586,441,128,99 34 | 579,441,135,99 35 | 574,441,135,99 36 | 568,441,137,99 37 | 568,441,140,99 38 | 568,441,138,99 39 | 563,445,138,95 40 | 563,445,138,95 41 | 563,445,138,95 42 | 559,445,138,95 43 | 553,445,145,95 44 | 548,445,145,95 45 | 548,445,145,95 46 | 548,446,145,95 47 | 548,446,145,95 48 | 546,446,147,95 49 | 543,445,150,97 50 | 543,445,155,100 51 | 543,445,155,100 52 | 543,445,155,100 53 | 543,448,155,97 54 | 543,448,155,97 55 | 543,448,158,100 56 | 543,448,163,100 57 | 543,448,163,100 58 | 543,448,163,100 59 | 543,448,163,100 60 | 543,448,163,100 61 | 543,448,163,100 62 | 539,448,163,100 63 | 536,448,163,100 64 | 536,448,163,100 65 | 536,448,168,100 66 | 536,448,168,100 67 | 541,448,163,92 68 | 541,448,168,94 69 | 541,448,168,94 70 | 541,448,168,94 71 | 541,448,168,94 72 | 541,448,168,94 73 | 539,445,168,94 74 | 539,441,168,94 75 | 534,438,173,100 76 | 534,438,173,100 77 | 534,435,173,100 78 | 533,435,175,100 79 | 533,435,175,100 80 | 533,430,175,100 81 | 531,426,177,104 82 | 528,426,182,104 83 | 528,426,182,104 84 | 528,426,182,104 85 | 528,426,182,104 86 | 528,426,182,104 87 | 528,426,182,104 88 | 528,426,182,99 89 | 528,421,182,104 90 | 528,421,165,92 91 | 523,421,178,92 92 | 521,423,178,92 93 | 518,423,182,92 94 | 518,418,182,97 95 | 518,418,182,97 96 | 518,418,182,97 97 | 513,418,187,97 98 | 513,418,187,97 99 | 513,418,187,97 100 | 513,418,187,92 101 | 511,411,188,99 102 | 511,410,188,100 103 | 511,410,188,97 104 | 511,410,188,97 105 | 511,410,188,97 106 | 511,410,188,97 107 | 511,406,188,100 108 | 511,406,188,100 109 | 514,406,193,100 110 | 514,406,193,90 111 | 514,406,195,90 112 | 519,406,195,90 113 | 519,403,195,90 114 | 519,403,195,90 115 | 519,403,195,90 116 | 519,403,195,90 117 | 519,403,195,90 118 | 519,403,195,90 119 | 519,403,195,90 120 | 526,396,195,90 121 | 526,398,195,90 122 | 526,398,195,90 123 | 526,398,195,90 124 | 526,398,195,90 125 | 526,398,195,90 126 | 529,398,195,90 127 | 529,398,198,90 128 | 529,398,202,90 129 | 529,398,202,84 130 | 533,398,205,84 131 | 533,398,205,84 132 | 536,398,205,84 133 | 536,398,205,84 134 | 543,393,205,84 135 | 541,393,207,84 136 | 541,393,207,84 137 | 544,393,207,84 138 | 544,393,207,84 139 | 544,393,200,84 140 | 544,385,200,87 141 | 544,385,200,80 142 | 544,385,200,80 143 | 544,385,200,80 144 | 544,385,208,80 145 | 544,385,208,80 146 | 544,378,208,87 147 | 548,378,205,87 148 | 548,378,210,87 149 | 551,378,210,87 150 | 551,378,210,87 151 | 551,378,210,87 152 | 551,378,210,87 153 | 551,375,210,87 154 | 553,378,210,82 155 | 553,378,210,82 156 | 553,378,210,82 157 | 553,378,210,82 158 | 544,378,215,82 159 | 539,378,215,82 160 | 543,378,215,82 161 | 543,378,215,82 162 | 543,378,220,82 163 | 543,378,220,80 164 | 543,373,220,85 165 | 543,373,220,82 166 | 544,373,220,82 167 | 544,373,220,82 168 | 544,373,220,82 169 | 544,373,220,82 170 | 543,378,222,82 171 | 541,378,223,82 172 | 541,378,223,82 173 | 541,378,223,82 174 | 533,378,235,82 175 | 533,378,235,82 176 | 533,380,235,82 177 | 533,380,235,82 178 | 533,383,228,82 179 | 529,383,232,82 180 | 528,383,233,82 181 | 523,383,238,85 182 | 523,385,238,84 183 | 519,385,242,85 184 | 519,385,238,85 185 | 513,385,245,85 186 | -------------------------------------------------------------------------------- /anno/boat_5.txt: -------------------------------------------------------------------------------- 1 | 541,296,188,130 2 | 546,301,177,120 3 | 543,298,178,120 4 | 543,298,178,120 5 | 543,296,178,122 6 | 543,296,170,122 7 | 543,296,170,122 8 | 543,296,170,117 9 | 543,295,160,120 10 | 543,295,160,120 11 | 543,291,160,120 12 | 543,291,150,120 13 | 539,290,150,122 14 | 539,290,145,122 15 | 539,288,143,120 16 | 539,288,143,120 17 | 539,288,137,120 18 | 539,288,135,120 19 | 539,288,135,117 20 | 539,288,133,115 21 | 543,286,130,117 22 | 543,286,128,114 23 | 546,286,128,114 24 | 546,286,127,114 25 | 549,286,122,114 26 | 549,286,122,114 27 | 553,288,118,112 28 | 553,288,118,112 29 | 556,291,117,109 30 | 556,291,117,109 31 | 558,291,113,109 32 | 559,295,110,105 33 | 564,298,103,104 34 | 564,300,103,102 35 | 564,303,103,105 36 | 564,305,103,105 37 | 564,308,100,104 38 | 568,310,97,104 39 | 568,311,97,104 40 | 568,315,97,104 41 | 568,315,97,104 42 | 566,316,97,104 43 | 566,316,97,104 44 | 564,316,95,104 45 | 564,316,95,104 46 | 563,316,95,104 47 | 563,316,95,104 48 | 561,316,92,102 49 | 561,316,92,102 50 | 561,318,90,102 51 | 561,320,90,102 52 | 561,321,87,102 53 | 561,321,87,107 54 | 561,323,83,105 55 | 561,325,83,104 56 | 561,325,83,104 57 | 561,328,83,104 58 | 561,328,83,104 59 | 561,326,83,104 60 | 564,326,80,104 61 | 568,326,77,104 62 | 571,326,73,104 63 | 571,326,73,104 64 | 576,326,68,104 65 | 576,326,68,104 66 | 583,326,68,104 67 | 584,326,68,104 68 | 591,330,60,100 69 | 596,330,60,100 70 | 596,330,60,100 71 | 601,330,60,105 72 | 603,328,58,102 73 | 606,328,58,102 74 | 606,328,63,102 75 | 609,328,62,102 76 | 609,331,62,102 77 | 611,331,62,102 78 | 609,333,63,100 79 | 608,333,68,102 80 | 608,336,68,100 81 | 608,338,72,100 82 | 608,340,72,100 83 | 608,341,73,100 84 | 608,345,73,100 85 | 604,348,75,100 86 | 604,353,75,97 87 | 604,355,75,97 88 | 604,360,75,97 89 | 599,361,75,97 90 | 593,365,82,94 91 | 593,365,82,94 92 | 584,365,87,94 93 | 584,368,87,94 94 | 584,371,87,94 95 | 579,371,87,94 96 | 576,371,87,94 97 | 574,371,87,94 98 | 568,370,93,95 99 | 563,370,93,95 100 | 559,370,93,95 101 | 556,370,93,95 102 | 553,371,93,95 103 | 549,373,93,95 104 | 543,373,93,95 105 | 536,373,100,95 106 | 533,375,100,94 107 | 528,376,100,94 108 | 523,376,100,94 109 | 521,376,100,94 110 | 521,375,100,94 111 | 516,375,100,94 112 | 516,375,100,94 113 | 513,378,100,94 114 | 513,378,100,94 115 | 509,380,100,94 116 | 509,380,103,94 117 | 509,380,103,94 118 | 509,380,103,94 119 | 506,380,107,94 120 | 506,380,107,94 121 | 501,380,107,94 122 | 498,385,107,94 123 | 493,383,107,94 124 | 489,383,107,92 125 | 484,386,112,89 126 | 484,386,112,89 127 | 476,386,112,89 128 | 476,386,112,89 129 | 473,386,112,89 130 | 469,386,118,89 131 | 469,386,118,89 132 | 461,391,118,89 133 | 461,391,118,89 134 | 456,391,118,89 135 | 456,391,118,89 136 | 449,395,118,89 137 | 444,395,127,89 138 | 444,395,127,89 139 | 441,398,127,89 140 | 436,398,127,89 141 | 431,401,127,89 142 | 428,401,127,89 143 | 424,401,127,89 144 | 423,406,127,89 145 | 418,406,132,89 146 | 418,408,132,89 147 | 411,410,132,89 148 | 411,410,132,89 149 | 406,410,135,89 150 | 401,410,138,89 151 | 401,413,138,89 152 | 393,413,138,89 153 | 393,413,138,89 154 | 393,413,138,89 155 | 384,416,148,89 156 | 384,416,148,89 157 | 384,416,143,92 158 | 384,420,143,92 159 | 378,420,150,92 160 | 378,420,150,92 161 | 378,423,150,92 162 | 373,423,155,94 163 | 373,425,155,94 164 | 373,426,155,94 165 | 369,430,158,94 166 | 369,430,158,94 167 | 368,431,160,94 168 | 364,435,168,94 169 | 364,435,168,95 170 | -------------------------------------------------------------------------------- /anno/car1_1.txt: -------------------------------------------------------------------------------- 1 | 623,476,69,89 2 | 622,476,69,89 3 | 620,476,69,89 4 | 617,476,69,88 5 | 617,475,69,88 6 | 615,475,71,88 7 | 614,475,70,88 8 | 613,473,70,88 9 | 612,473,70,88 10 | 609,473,71,86 11 | 608,473,71,84 12 | 607,472,70,82 13 | 606,471,69,83 14 | 604,470,70,82 15 | 604,470,69,81 16 | 601,469,70,81 17 | 601,467,69,80 18 | 601,466,67,80 19 | 599,465,68,80 20 | 597,463,69,80 21 | 596,462,69,79 22 | 595,460,69,80 23 | 594,459,67,79 24 | 594,457,67,78 25 | 592,456,67,78 26 | 592,455,67,77 27 | 590,453,66,77 28 | 590,451,66,77 29 | 591,450,66,76 30 | 592,448,66,76 31 | 592,447,66,74 32 | 592,445,66,74 33 | 592,443,64,74 34 | 592,442,63,71 35 | 591,441,64,71 36 | 590,437,64,72 37 | 590,436,63,71 38 | 590,434,63,71 39 | 590,432,63,70 40 | 589,430,62,69 41 | 588,427,62,69 42 | 589,426,60,67 43 | 588,423,61,66 44 | 588,421,60,66 45 | 588,419,60,66 46 | 589,417,59,64 47 | 589,416,59,62 48 | 588,412,59,62 49 | 587,410,59,62 50 | 586,409,59,61 51 | 586,406,57,60 52 | 586,405,56,60 53 | 585,402,57,59 54 | 585,400,56,58 55 | 583,398,56,58 56 | 583,395,57,58 57 | 583,394,55,57 58 | 581,391,55,57 59 | 580,389,56,56 60 | 580,387,55,55 61 | 580,386,53,55 62 | 578,384,55,55 63 | 577,382,53,54 64 | 577,381,52,53 65 | 577,379,52,53 66 | 575,378,52,53 67 | 573,377,52,52 68 | 573,376,52,51 69 | 571,375,52,51 70 | 571,375,51,50 71 | 569,374,52,50 72 | 569,373,51,49 73 | 570,372,51,49 74 | 572,371,51,49 75 | 574,371,49,48 76 | 576,370,48,48 77 | 577,369,48,48 78 | 577,369,48,48 79 | 577,368,48,47 80 | 578,368,48,47 81 | 584,368,47,46 82 | 590,366,48,46 83 | 596,366,48,46 84 | 600,365,48,46 85 | 604,365,48,46 86 | 605,364,48,46 87 | 606,364,46,45 88 | 605,364,47,45 89 | 605,364,45,45 90 | 605,364,45,45 91 | 604,364,45,44 92 | 604,364,45,44 93 | 603,364,45,44 94 | 603,365,45,44 95 | 602,365,45,44 96 | 601,366,45,43 97 | 600,367,45,42 98 | 600,367,45,43 99 | 600,368,44,43 100 | 600,369,44,42 101 | 600,370,43,42 102 | 600,370,42,43 103 | 599,371,43,43 104 | 599,371,43,42 105 | 598,371,43,42 106 | 598,372,43,42 107 | 598,373,42,42 108 | 597,374,43,42 109 | 597,375,43,42 110 | 597,376,44,41 111 | 597,376,43,42 112 | 596,377,42,41 113 | 596,378,42,42 114 | 596,379,41,41 115 | 596,380,41,42 116 | 596,381,41,42 117 | 595,382,41,41 118 | 595,383,41,41 119 | 594,384,41,41 120 | 593,384,41,42 121 | 593,385,41,42 122 | 593,385,41,44 123 | 593,386,41,43 124 | 592,387,41,42 125 | 592,388,41,42 126 | 591,389,41,42 127 | 592,390,41,41 128 | 598,390,41,41 129 | 614,390,41,42 130 | 632,392,40,41 131 | 647,391,39,42 132 | 654,392,39,42 133 | 657,392,39,42 134 | 657,393,39,42 135 | 657,394,39,41 136 | 656,394,39,41 137 | 656,394,39,41 138 | 656,396,39,40 139 | 656,396,39,40 140 | 656,396,39,40 141 | 656,397,39,40 142 | 656,397,39,41 143 | 656,398,39,40 144 | 656,398,39,41 145 | 656,399,38,40 146 | 656,399,38,39 147 | 656,399,38,39 148 | 656,400,38,39 149 | 656,401,37,39 150 | 656,401,37,39 151 | 656,401,37,39 152 | 656,401,37,39 153 | 656,402,36,37 154 | 655,402,36,38 155 | 655,402,36,38 156 | 655,403,36,38 157 | 655,403,35,38 158 | 655,403,35,39 159 | 654,404,36,38 160 | 654,405,35,37 161 | 653,405,36,37 162 | 654,406,35,37 163 | 653,406,36,37 164 | 653,406,36,36 165 | 653,406,36,37 166 | 653,407,36,37 167 | 653,407,35,36 168 | 653,408,35,36 169 | 652,408,35,37 170 | 652,408,35,37 171 | 652,408,34,37 172 | 652,409,34,36 173 | 652,409,34,36 174 | 652,409,34,36 175 | 652,410,34,35 176 | 652,410,34,35 177 | 652,411,34,35 178 | 652,411,33,35 179 | 652,411,33,36 180 | 651,412,34,35 181 | 651,412,34,35 182 | 651,412,33,36 183 | 651,412,33,36 184 | 651,413,33,35 185 | 651,414,33,35 186 | 651,414,32,35 187 | 651,414,32,35 188 | 651,415,32,34 189 | 651,416,32,33 190 | 650,416,32,33 191 | 650,416,31,33 192 | 650,416,31,34 193 | 649,417,32,34 194 | 649,417,31,34 195 | 649,417,31,35 196 | 649,419,31,34 197 | 649,419,31,34 198 | 649,419,31,34 199 | 649,420,31,34 200 | 649,421,31,34 201 | 649,421,31,34 202 | 649,422,31,33 203 | 649,422,31,34 204 | 649,423,31,34 205 | 649,424,31,34 206 | 649,425,31,33 207 | 649,425,31,34 208 | 649,426,31,32 209 | 649,426,31,34 210 | 649,427,31,33 211 | 649,428,31,34 212 | 650,429,30,33 213 | 650,431,30,33 214 | 651,431,29,34 215 | 652,432,29,32 216 | 652,432,29,34 217 | 652,433,29,32 218 | 653,434,29,34 219 | 653,436,28,32 220 | 653,436,28,32 221 | 653,436,29,33 222 | 653,437,29,33 223 | 653,438,29,32 224 | 654,438,29,32 225 | 655,438,29,33 226 | 655,439,29,32 227 | 655,439,28,32 228 | 656,439,28,32 229 | 658,440,26,32 230 | 658,440,27,32 231 | 658,440,26,31 232 | 657,440,28,32 233 | 657,440,28,32 234 | 657,440,28,32 235 | 657,440,28,32 236 | 657,440,28,32 237 | 657,440,28,32 238 | 658,440,29,32 239 | 659,440,28,32 240 | 660,440,27,32 241 | 660,440,29,32 242 | 660,440,29,31 243 | 660,439,29,31 244 | 660,438,29,31 245 | 660,436,29,31 246 | 660,436,29,31 247 | 660,434,29,31 248 | 660,433,29,31 249 | 661,431,28,31 250 | 661,428,28,31 251 | 661,426,28,31 252 | -------------------------------------------------------------------------------- /anno/car2_2.txt: -------------------------------------------------------------------------------- 1 | 509,184,135,98 2 | 509,184,135,98 3 | 509,184,135,98 4 | 507,184,135,98 5 | 507,184,135,98 6 | 506,183,135,98 7 | 504,183,135,100 8 | 503,183,135,100 9 | 503,183,135,100 10 | 500,183,138,101 11 | 500,183,138,101 12 | 498,183,140,101 13 | 498,183,140,101 14 | 498,183,140,103 15 | 497,183,141,103 16 | 496,185,142,103 17 | 496,185,142,103 18 | 494,185,144,103 19 | 493,185,146,103 20 | 493,185,146,103 21 | 493,185,146,104 22 | 493,186,149,103 23 | 493,186,149,103 24 | 493,186,151,103 25 | 493,186,152,103 26 | 493,186,153,105 27 | 493,186,153,106 28 | 494,186,153,106 29 | 494,186,154,107 30 | 495,186,154,107 31 | 497,186,156,107 32 | 497,186,158,108 33 | 497,186,158,108 34 | 499,186,158,108 35 | 501,186,158,108 36 | 503,186,158,109 37 | 504,188,158,109 38 | 504,188,160,109 39 | 507,188,160,109 40 | 508,189,160,109 41 | 510,189,160,109 42 | 513,189,160,109 43 | 514,189,160,110 44 | 516,189,160,110 45 | 518,189,160,110 46 | 520,189,160,112 47 | 522,189,160,113 48 | 523,189,160,113 49 | 524,189,160,114 50 | 527,190,160,114 51 | 528,191,160,114 52 | 530,193,160,114 53 | 532,193,161,116 54 | 534,193,161,117 55 | 534,194,161,118 56 | 537,196,162,119 57 | 539,198,162,119 58 | 542,198,160,120 59 | 542,202,160,120 60 | 543,205,160,120 61 | 544,208,160,120 62 | 548,211,160,120 63 | 547,213,160,122 64 | 548,216,160,123 65 | 551,219,160,125 66 | 552,223,160,125 67 | 553,228,160,126 68 | 553,233,162,128 69 | 555,237,162,128 70 | 556,239,162,131 71 | 558,244,162,131 72 | 559,248,162,131 73 | 562,253,162,131 74 | 562,254,162,134 75 | 563,258,162,134 76 | 568,261,158,136 77 | 568,263,158,138 78 | 568,267,158,138 79 | 569,270,158,138 80 | 571,273,158,138 81 | 573,275,158,138 82 | 573,278,158,139 83 | 575,281,158,139 84 | 577,284,158,139 85 | 579,287,158,141 86 | 583,288,155,143 87 | 584,291,155,143 88 | 589,294,153,143 89 | 591,298,153,143 90 | 592,298,153,145 91 | 597,300,152,147 92 | 597,303,153,147 93 | 599,303,153,148 94 | 603,306,153,148 95 | 604,307,153,148 96 | 606,308,153,149 97 | 608,309,153,149 98 | 608,310,153,149 99 | 608,312,157,151 100 | 608,313,157,151 101 | 609,314,157,152 102 | 611,316,157,152 103 | 611,318,157,153 104 | 611,318,157,155 105 | 611,319,158,157 106 | 611,321,158,158 107 | 612,324,161,158 108 | 612,324,162,160 109 | 614,327,162,161 110 | 616,328,162,161 111 | 616,331,163,161 112 | 618,333,165,164 113 | 619,333,165,167 114 | 622,337,165,167 115 | 624,339,165,168 116 | 627,343,165,168 117 | 628,343,168,172 118 | 631,345,168,173 119 | 633,348,171,175 120 | 635,350,171,175 121 | 638,353,171,176 122 | 640,354,173,178 123 | 643,358,173,178 124 | 645,359,175,181 125 | 648,361,175,181 126 | 649,363,178,183 127 | 653,368,179,184 128 | 653,368,182,187 129 | 658,368,182,191 130 | 659,370,182,192 131 | 662,371,183,194 132 | 662,371,187,198 133 | 666,373,187,198 134 | 667,376,188,200 135 | 667,376,192,203 136 | 670,377,192,206 137 | 673,378,192,209 138 | 673,378,195,210 139 | 676,378,195,213 140 | 676,379,198,213 141 | 677,381,198,213 142 | 681,381,198,216 143 | 681,384,200,216 144 | 683,385,200,216 145 | 683,385,200,217 146 | 686,385,203,218 147 | 687,385,203,218 148 | 688,385,203,218 149 | 688,385,204,218 150 | 689,384,204,218 151 | 689,382,204,221 152 | 691,382,204,221 153 | 691,382,204,221 154 | 693,378,204,221 155 | 693,378,204,221 156 | 693,373,204,221 157 | 693,373,204,218 158 | 694,371,204,218 159 | 694,369,204,215 160 | 696,367,204,215 161 | 697,367,202,210 162 | 697,367,202,210 163 | 696,360,202,210 164 | -------------------------------------------------------------------------------- /anno/person2_1.txt: -------------------------------------------------------------------------------- 1 | 623,177,49,101 2 | 618,178,48,102 3 | 616,179,43,106 4 | 609,183,48,108 5 | 605,185,41,108 6 | 598,187,48,105 7 | 587,188,47,102 8 | 587,191,42,109 9 | 577,194,50,109 10 | 570,194,48,109 11 | 566,198,52,119 12 | 560,197,46,117 13 | 555,202,43,105 14 | 553,197,39,111 15 | 547,204,39,111 16 | 547,206,39,111 17 | 553,206,39,111 18 | 565,206,44,111 19 | 583,205,43,111 20 | 603,207,43,105 21 | 631,211,43,105 22 | 660,211,43,112 23 | 685,212,46,117 24 | 703,215,46,114 25 | 712,214,46,108 26 | 719,216,42,104 27 | 711,221,50,110 28 | 703,224,50,118 29 | 701,227,46,118 30 | 697,227,43,116 31 | 688,227,47,108 32 | 674,232,53,108 33 | 670,237,56,111 34 | 664,237,56,119 35 | 661,237,57,121 36 | 659,237,52,121 37 | 653,239,52,109 38 | 653,239,44,109 39 | 648,244,44,109 40 | 639,245,44,109 41 | 634,248,48,110 42 | 629,248,48,110 43 | 622,248,48,101 44 | 612,247,52,104 45 | 603,249,56,107 46 | 599,251,53,110 47 | 592,251,56,111 48 | 588,251,52,111 49 | 587,247,44,108 50 | 581,245,39,103 51 | 572,246,41,106 52 | 563,249,49,106 53 | 561,248,49,109 54 | 551,247,52,109 55 | 541,247,52,100 56 | 541,247,42,97 57 | 539,249,42,100 58 | 532,252,42,100 59 | 531,249,40,104 60 | 531,247,37,100 61 | 531,247,37,93 62 | 538,247,37,93 63 | 544,249,37,93 64 | 554,248,39,93 65 | 569,249,38,93 66 | 585,246,38,93 67 | 601,245,38,93 68 | 612,246,38,93 69 | 618,247,38,93 70 | 621,247,38,93 71 | 622,247,38,93 72 | 624,245,38,93 73 | 623,243,38,91 74 | 623,243,33,91 75 | 618,246,34,91 76 | 612,247,34,91 77 | 610,248,34,91 78 | 604,247,34,91 79 | 601,248,34,83 80 | 595,249,34,83 81 | 595,255,34,83 82 | 590,253,34,83 83 | 587,254,34,83 84 | 584,254,34,83 85 | 582,256,34,83 86 | 580,258,34,83 87 | 579,262,34,83 88 | 575,266,34,83 89 | 572,268,34,83 90 | 569,269,34,83 91 | 567,271,34,83 92 | 563,276,34,83 93 | 561,278,34,83 94 | 561,278,34,83 95 | 559,279,34,89 96 | 554,279,34,89 97 | 551,278,34,87 98 | 548,283,34,82 99 | 545,284,33,82 100 | 541,287,33,82 101 | 538,293,33,82 102 | 533,291,33,82 103 | 529,294,33,82 104 | 526,292,33,82 105 | 522,300,33,82 106 | 521,301,33,82 107 | 521,301,33,89 108 | 533,300,33,89 109 | 550,300,33,82 110 | 577,298,33,82 111 | 610,300,33,82 112 | 646,304,33,82 113 | 680,306,33,82 114 | 705,305,33,88 115 | 717,308,33,81 116 | 720,313,33,81 117 | 717,313,33,86 118 | 715,318,33,86 119 | 708,320,33,91 120 | 705,320,33,91 121 | 700,320,33,86 122 | 695,323,33,80 123 | 694,326,33,84 124 | 688,326,33,84 125 | 684,328,33,84 126 | 678,330,33,84 127 | 675,327,33,84 128 | 671,332,33,80 129 | 669,334,33,80 130 | 666,334,33,83 131 | 663,332,33,83 132 | 659,331,33,83 133 | 656,331,33,80 134 | 653,332,33,77 135 | 649,332,33,77 136 | 645,332,33,77 137 | 639,332,33,77 138 | 634,330,33,80 139 | 631,330,33,73 140 | 629,330,33,73 141 | 624,330,33,77 142 | 621,330,33,77 143 | 618,328,33,77 144 | 616,326,33,78 145 | 612,325,33,72 146 | 610,323,33,72 147 | 607,327,32,68 148 | 604,326,32,73 149 | 600,325,32,73 150 | 597,324,32,73 151 | 594,325,32,73 152 | 592,325,29,69 153 | 590,326,29,69 154 | 587,327,29,69 155 | 587,327,29,69 156 | 583,327,29,69 157 | 580,326,29,69 158 | 577,330,29,66 159 | 574,331,29,66 160 | 570,333,29,72 161 | 567,333,27,72 162 | 567,333,27,72 163 | 562,334,27,68 164 | 562,334,31,68 165 | 572,337,31,68 166 | 584,337,31,72 167 | 599,336,31,72 168 | 621,335,31,72 169 | 646,339,31,68 170 | 671,340,31,68 171 | 689,342,31,68 172 | 700,345,31,68 173 | 706,345,31,74 174 | 707,345,28,74 175 | 701,344,28,69 176 | 698,344,28,69 177 | 695,346,28,69 178 | 689,347,28,69 179 | 689,347,28,69 180 | 685,347,28,69 181 | 680,346,28,69 182 | 676,343,28,69 183 | 673,345,28,69 184 | 670,345,28,69 185 | 666,347,28,69 186 | 661,345,28,69 187 | 658,347,28,69 188 | 655,347,28,62 189 | 650,350,28,67 190 | 648,349,28,67 191 | 645,349,28,70 192 | 640,349,28,70 193 | 637,346,28,70 194 | 634,346,28,64 195 | 632,347,27,64 196 | 629,347,27,64 197 | 624,351,27,64 198 | 620,350,27,64 199 | 617,346,27,64 200 | 612,346,27,64 201 | 611,350,27,64 202 | 608,350,27,64 203 | 603,350,27,64 204 | 603,350,27,64 205 | 599,350,27,64 206 | 599,350,27,64 207 | 593,349,27,64 208 | 591,351,27,64 209 | 589,352,27,64 210 | 585,352,27,64 211 | 582,352,27,64 212 | 580,355,27,64 213 | 577,355,27,64 214 | 573,356,27,64 215 | 572,359,27,71 216 | -------------------------------------------------------------------------------- /anno/person5_2.txt: -------------------------------------------------------------------------------- 1 | 564,29,80,201 2 | 580,37,75,195 3 | 603,45,72,201 4 | 610,53,83,209 5 | 614,63,96,214 6 | 622,72,96,223 7 | 642,77,80,222 8 | 662,86,71,205 9 | 674,98,72,209 10 | 681,111,75,210 11 | 691,124,81,208 12 | 705,133,84,192 13 | 730,141,73,203 14 | 749,155,73,205 15 | 758,166,86,218 16 | 767,179,105,226 17 | 784,184,119,227 18 | 800,187,119,210 19 | 819,194,111,225 20 | 834,206,105,231 21 | 848,215,99,240 22 | 861,225,101,237 23 | 870,225,110,224 24 | 879,229,116,202 25 | 889,239,121,210 26 | 898,250,126,217 27 | 909,258,136,228 28 | 935,261,135,233 29 | 955,254,143,230 30 | 963,255,155,213 31 | 964,260,170,196 32 | 964,260,179,209 33 | 968,257,183,219 34 | 978,250,178,224 35 | 996,233,161,219 36 | 990,221,164,235 37 | 981,215,161,248 38 | 999,206,137,252 39 | 1008,195,121,248 40 | 1005,186,125,220 41 | 1002,165,145,239 42 | 1006,145,145,244 43 | 1017,134,135,230 44 | 1028,125,124,220 45 | 1037,102,119,235 46 | 1052,87,106,241 47 | 1055,85,101,219 48 | 1052,76,107,204 49 | 1052,56,125,219 50 | 1048,43,130,221 51 | 1040,40,130,210 52 | 1048,36,112,200 53 | 1042,20,105,212 54 | 1035,5,102,219 55 | 1025,1,95,205 56 | 1015,1,92,194 57 | 1007,1,100,189 58 | 1003,1,100,189 59 | 1004,1,90,170 60 | 997,1,90,168 61 | 998,1,90,171 62 | 1003,1,87,167 63 | 1000,1,85,148 64 | 996,1,80,130 65 | 991,1,85,130 66 | 984,1,85,128 67 | 977,1,82,120 68 | 965,1,67,108 69 | 957,1,58,106 70 | 943,1,58,108 71 | 931,1,58,100 72 | 922,1,55,100 73 | 919,1,48,104 74 | 909,1,51,112 75 | 900,1,47,115 76 | 888,1,53,111 77 | 880,1,54,119 78 | 866,1,58,125 79 | 860,1,52,120 80 | 857,1,52,125 81 | 853,1,57,133 82 | 841,1,61,142 83 | 830,1,61,142 84 | 825,1,55,145 85 | 810,1,65,157 86 | 799,1,72,166 87 | 795,1,70,170 88 | 795,7,64,160 89 | 790,11,64,172 90 | 783,10,64,181 91 | 780,16,58,172 92 | 773,25,55,155 93 | 766,22,52,168 94 | 749,16,62,181 95 | 737,25,62,170 96 | 734,37,58,150 97 | 725,37,60,162 98 | 715,32,64,175 99 | 710,36,62,169 100 | 707,46,55,150 101 | 703,51,50,155 102 | 694,46,50,168 103 | 675,48,64,167 104 | 669,60,61,148 105 | 663,67,65,151 106 | 658,62,64,167 107 | 655,68,58,165 108 | 650,79,53,151 109 | 648,84,47,152 110 | 644,83,44,162 111 | 633,89,57,163 112 | 633,107,52,138 113 | 625,110,61,152 114 | 623,110,66,164 115 | 627,117,61,164 116 | 638,131,57,151 117 | 654,141,49,149 118 | 659,143,53,162 119 | 663,150,61,163 120 | 673,168,53,142 121 | 674,178,64,143 122 | 679,181,67,161 123 | 688,190,64,163 124 | 698,207,61,150 125 | 709,220,56,143 126 | 716,224,57,158 127 | 716,232,68,166 128 | 727,249,66,149 129 | 739,262,63,141 130 | 746,268,71,158 131 | 755,273,69,164 132 | 763,287,64,155 133 | 771,298,60,139 134 | 768,302,68,155 135 | 773,306,71,163 136 | 773,315,71,152 137 | 781,323,68,134 138 | 786,323,73,151 139 | 791,324,73,162 140 | 796,331,68,153 141 | 798,337,59,135 142 | 797,337,65,146 143 | 802,340,65,153 144 | 805,348,67,153 145 | 813,365,64,121 146 | 816,371,77,124 147 | 820,381,81,126 148 | 828,394,85,128 149 | 835,418,85,110 150 | 850,435,78,94 151 | 868,450,71,103 152 | -------------------------------------------------------------------------------- /anno/person5_3.txt: -------------------------------------------------------------------------------- 1 | 799,638,62,82 2 | 841,636,60,85 3 | 863,631,76,89 4 | 892,628,85,92 5 | 933,628,83,92 6 | 960,628,88,92 7 | 988,625,98,96 8 | 1027,616,94,105 9 | 1059,615,94,106 10 | 1098,617,85,103 11 | 1091,615,128,106 12 | 1133,613,130,107 13 | 1169,616,112,105 14 | 1167,616,113,105 15 | 1215,628,65,92 16 | 1230,673,51,47 17 | NaN,NaN,NaN,NaN 18 | NaN,NaN,NaN,NaN 19 | NaN,NaN,NaN,NaN 20 | NaN,NaN,NaN,NaN 21 | NaN,NaN,NaN,NaN 22 | NaN,NaN,NaN,NaN 23 | NaN,NaN,NaN,NaN 24 | NaN,NaN,NaN,NaN 25 | NaN,NaN,NaN,NaN 26 | NaN,NaN,NaN,NaN 27 | NaN,NaN,NaN,NaN 28 | NaN,NaN,NaN,NaN 29 | 1212,467,68,114 30 | 1193,452,87,123 31 | 1171,442,82,123 32 | 1142,433,82,123 33 | 1115,422,82,111 34 | 1086,414,79,94 35 | 1058,404,80,105 36 | 1035,399,75,106 37 | 1009,394,73,112 38 | 986,392,68,110 39 | 962,387,65,92 40 | 934,386,65,94 41 | 899,388,71,96 42 | 874,388,67,96 43 | 849,391,62,94 44 | 825,394,56,101 45 | 804,400,50,101 46 | 775,405,50,108 47 | 749,410,47,113 48 | 722,417,47,111 49 | 696,422,47,101 50 | 671,429,53,94 51 | 642,435,63,97 52 | 622,446,62,98 53 | 604,452,60,98 54 | 584,458,57,98 55 | 564,464,54,102 56 | 541,472,53,108 57 | 515,478,63,114 58 | 489,486,63,109 59 | 468,492,60,109 60 | 455,493,57,100 61 | 443,496,57,92 62 | 435,496,61,92 63 | 425,495,61,99 64 | 417,495,66,115 65 | 411,491,66,126 66 | 405,489,66,112 67 | 399,487,68,94 68 | 392,488,68,87 69 | 381,488,64,84 70 | 374,488,60,84 71 | 369,483,60,89 72 | 364,478,70,98 73 | 360,474,70,101 74 | 356,471,70,107 75 | 353,464,70,116 76 | 352,456,68,124 77 | 352,451,68,130 78 | 352,444,68,130 79 | 352,440,58,118 80 | 351,435,51,105 81 | 350,434,51,110 82 | 350,434,49,116 83 | 345,435,55,108 84 | 347,432,50,103 85 | 347,428,46,114 86 | 349,426,46,121 87 | 353,422,41,130 88 | 359,417,39,123 89 | 363,413,43,108 90 | 367,411,49,111 91 | 372,412,53,116 92 | 375,412,61,116 93 | 383,410,53,112 94 | 395,406,44,98 95 | 406,404,46,105 96 | 412,403,57,110 97 | 416,401,64,111 98 | 432,400,67,112 99 | 457,398,58,98 100 | 461,392,61,105 101 | 469,389,69,106 102 | 491,392,63,87 103 | 507,394,64,93 104 | 525,391,61,101 105 | 535,387,64,106 106 | 552,389,60,106 107 | 579,392,48,99 108 | 593,392,56,99 109 | 603,390,67,101 110 | 619,395,71,91 111 | 642,401,66,88 112 | 671,400,54,96 113 | 680,392,57,103 114 | 684,391,60,103 115 | 699,392,50,95 116 | 703,389,50,95 117 | 699,384,60,95 118 | 694,378,70,98 119 | 702,374,67,95 120 | 714,368,62,105 121 | 714,361,64,111 122 | 722,357,64,110 123 | 743,352,48,105 124 | 747,346,55,105 125 | 751,339,65,105 126 | 760,337,68,98 127 | 773,338,60,91 128 | 791,332,52,101 129 | 799,320,52,112 130 | 803,314,52,112 131 | 813,311,45,105 132 | 817,304,43,101 133 | 815,296,49,108 134 | 815,289,51,108 135 | 815,289,50,91 136 | 818,282,50,100 137 | 820,271,50,108 138 | 821,263,50,108 139 | 823,261,46,103 140 | 823,259,46,94 141 | 822,250,49,99 142 | 824,244,51,101 143 | 826,244,49,98 144 | 828,244,46,90 145 | 829,236,48,100 146 | 831,233,44,101 147 | 831,233,43,101 148 | 831,230,43,91 149 | 835,226,43,98 150 | 842,225,44,103 151 | 849,228,46,105 152 | 865,228,40,99 153 | 877,227,40,94 154 | 892,229,38,94 155 | 904,236,38,86 156 | 916,242,38,88 157 | 930,242,39,94 158 | 941,243,43,94 159 | 953,245,46,94 160 | 959,243,48,94 161 | 957,243,50,84 162 | 951,246,54,81 163 | 945,247,56,80 164 | 941,249,57,77 165 | 937,248,60,77 166 | 933,244,60,77 167 | 928,243,61,81 168 | 928,240,57,87 169 | 922,239,54,87 170 | 913,237,54,91 171 | 906,236,52,93 172 | 899,233,48,96 173 | 892,230,46,98 174 | 886,229,43,94 175 | 878,230,43,86 176 | 870,229,45,88 177 | 863,231,45,88 178 | 854,230,43,94 179 | 842,232,43,94 180 | 829,233,43,96 181 | 814,233,44,94 182 | 800,234,46,88 183 | 785,235,51,85 184 | 767,236,53,85 185 | 753,237,53,89 186 | 742,240,50,92 187 | 738,244,41,91 188 | 737,247,36,90 189 | 735,251,36,88 190 | 735,257,36,88 191 | 736,265,39,90 192 | 736,272,41,90 193 | 735,278,41,88 194 | 732,282,44,87 195 | 725,289,50,89 196 | 723,293,48,91 197 | 719,299,42,91 198 | 709,304,39,93 199 | 695,307,39,93 200 | 678,311,42,93 201 | 662,315,43,94 202 | 648,321,45,93 203 | 636,327,45,94 204 | 624,335,48,94 205 | 610,344,49,93 206 | 596,354,47,88 207 | 578,364,46,84 208 | 563,373,46,82 209 | 550,382,46,81 210 | 535,394,49,94 211 | 524,406,50,91 212 | 512,417,50,87 213 | 503,430,50,83 214 | 493,445,52,79 215 | 484,461,52,87 216 | 473,478,57,84 217 | 465,492,57,84 218 | 466,505,53,82 219 | 475,521,46,82 220 | 473,539,54,96 221 | 470,560,65,96 222 | -------------------------------------------------------------------------------- /anno/person5_5.txt: -------------------------------------------------------------------------------- 1 | 551,233,41,82 2 | 543,236,40,82 3 | 532,239,40,79 4 | 525,241,39,79 5 | 518,243,39,79 6 | 513,243,39,83 7 | 513,243,39,83 8 | 519,240,39,82 9 | 529,240,39,82 10 | 540,236,39,82 11 | 553,234,39,82 12 | 565,232,39,82 13 | 575,230,39,82 14 | 584,228,39,83 15 | 590,226,38,84 16 | 593,225,38,84 17 | 593,224,38,86 18 | 589,222,38,86 19 | 584,221,38,86 20 | 578,221,38,86 21 | 575,220,38,86 22 | 570,218,38,86 23 | 564,218,38,86 24 | 558,217,38,86 25 | 551,214,38,86 26 | 547,212,36,86 27 | 541,211,36,86 28 | 536,208,36,86 29 | 532,206,36,86 30 | 525,203,36,86 31 | 521,200,36,86 32 | 515,197,36,87 33 | 512,192,36,91 34 | 509,189,36,86 35 | 505,186,36,86 36 | 501,181,36,87 37 | 501,179,36,87 38 | 500,175,36,87 39 | 500,170,36,88 40 | 504,165,33,88 41 | 510,161,31,88 42 | 515,158,31,88 43 | 518,154,33,90 44 | 521,151,33,90 45 | 525,148,30,90 46 | 529,147,30,87 47 | 531,144,30,87 48 | 534,142,30,87 49 | 536,140,30,87 50 | 536,138,30,87 51 | 536,138,30,87 52 | 535,136,30,87 53 | 535,136,30,87 54 | 535,136,30,87 55 | 535,133,30,87 56 | 537,133,30,87 57 | 539,133,30,87 58 | 543,133,30,87 59 | 546,133,28,87 60 | 546,133,28,87 61 | 542,133,28,87 62 | 542,133,28,62 63 | 542,133,28,57 64 | 542,133,28,52 65 | 538,136,28,52 66 | 536,136,28,44 67 | 533,139,28,45 68 | 532,139,33,49 69 | 529,141,33,49 70 | 530,141,33,49 71 | 532,139,34,52 72 | 538,137,34,56 73 | 544,134,34,63 74 | 553,133,34,66 75 | 563,135,34,66 76 | 577,135,29,66 77 | 588,137,26,73 78 | 597,139,25,77 79 | 606,140,25,84 80 | 607,142,25,90 81 | 607,144,25,90 82 | 607,148,26,90 83 | 610,151,26,90 84 | 614,157,28,86 85 | 617,162,30,86 86 | 624,165,30,86 87 | 632,172,30,92 88 | 637,177,30,92 89 | 643,183,28,92 90 | 651,189,28,92 91 | 659,197,26,92 92 | 667,204,26,91 93 | 676,209,30,91 94 | 686,219,29,91 95 | 695,228,29,91 96 | 703,236,29,91 97 | 712,246,29,91 98 | 719,254,30,91 99 | 728,264,30,91 100 | 733,275,30,91 101 | 734,283,30,91 102 | 736,291,35,91 103 | 745,300,33,82 104 | 753,309,33,87 105 | 760,316,37,87 106 | 767,323,40,86 107 | 773,328,40,86 108 | 777,336,40,91 109 | 782,341,40,91 110 | 783,346,42,94 111 | 781,350,46,94 112 | 780,351,46,94 113 | 780,352,44,94 114 | 770,354,48,90 115 | 760,358,54,84 116 | 756,359,54,75 117 | 752,357,54,75 118 | 749,355,56,76 119 | 755,348,49,76 120 | 758,342,48,76 121 | 760,339,48,76 122 | 774,341,41,76 123 | 793,339,38,76 124 | 813,339,43,78 125 | 841,344,45,78 126 | 870,354,45,73 127 | 893,360,53,73 128 | 907,365,70,71 129 | 926,374,74,71 130 | 951,384,66,67 131 | 963,389,66,67 132 | 964,391,73,74 133 | 964,396,76,74 134 | 976,406,66,65 135 | 984,411,62,62 136 | 977,414,72,67 137 | 971,419,87,69 138 | 978,430,80,69 139 | 991,440,66,60 140 | 984,446,71,75 141 | 975,457,76,82 142 | 976,468,70,78 143 | 985,479,55,69 144 | 978,486,55,65 145 | 963,493,65,75 146 | 953,500,66,80 147 | 948,510,63,76 148 | 949,517,53,69 149 | 939,524,57,81 150 | 927,535,62,90 151 | 916,544,65,90 152 | 912,553,60,83 153 | 911,557,52,79 154 | 909,561,46,77 155 | 896,565,50,74 156 | 884,567,52,74 157 | 874,568,52,74 158 | 863,567,53,76 159 | 855,567,53,76 160 | 847,567,53,76 161 | 835,567,55,77 162 | 824,567,55,77 163 | 811,567,55,77 164 | 806,567,50,80 165 | 801,563,47,83 166 | 795,560,41,78 167 | 788,556,39,71 168 | 777,551,41,77 169 | 763,545,43,83 170 | 754,540,43,92 171 | 745,535,41,98 172 | 743,531,43,98 173 | 748,528,46,93 174 | 758,529,41,74 175 | 763,529,46,74 176 | 772,528,46,83 177 | 781,531,46,83 178 | 795,531,44,89 179 | 812,531,44,89 180 | 820,528,48,75 181 | 827,529,47,73 182 | 831,528,47,78 183 | 826,527,53,80 184 | 827,527,52,80 185 | 827,525,54,84 186 | 828,521,52,75 187 | 828,519,49,72 188 | 827,518,48,75 189 | 826,516,44,80 190 | 825,512,40,87 191 | 824,510,33,86 192 | 820,504,31,86 193 | 815,502,33,76 194 | 805,503,44,73 195 | 794,504,55,73 196 | 785,504,57,70 197 | 772,503,52,63 198 | 760,499,41,69 199 | 748,489,37,73 200 | 735,481,34,64 201 | 721,478,30,64 202 | 706,474,34,64 203 | 688,470,40,64 204 | 670,467,40,56 205 | 657,470,46,53 206 | 641,468,37,56 207 | 622,463,40,59 208 | 600,460,48,55 209 | 588,461,52,58 210 | 571,461,44,58 211 | 555,459,49,62 212 | 538,460,53,60 213 | 522,464,47,56 214 | 507,465,43,58 215 | 489,464,47,55 216 | 470,465,53,55 217 | 457,467,53,57 218 | 440,469,43,57 219 | 422,467,55,62 220 | 406,467,62,62 221 | 391,471,50,61 222 | 374,473,50,59 223 | 354,471,47,56 224 | 338,474,44,56 225 | 322,478,42,56 226 | 304,481,62,59 227 | 286,482,66,61 228 | 268,487,70,61 229 | 251,493,60,59 230 | 230,496,62,52 231 | 209,497,77,57 232 | 190,502,80,55 233 | 173,510,70,54 234 | 152,515,73,53 235 | 132,519,83,56 236 | 112,526,84,59 237 | 92,535,75,51 238 | 70,535,81,52 239 | 45,536,92,56 240 | 27,545,92,56 241 | 9,557,81,51 242 | -------------------------------------------------------------------------------- /anno/person6_1.txt: -------------------------------------------------------------------------------- 1 | 490,235,34,85 2 | 487,234,35,89 3 | 483,234,34,95 4 | 480,237,37,98 5 | 477,240,38,97 6 | 473,241,39,97 7 | 467,242,40,97 8 | 461,246,39,88 9 | 457,244,39,97 10 | 450,245,39,91 11 | 441,244,39,86 12 | 432,244,39,84 13 | 428,240,39,91 14 | 420,239,39,91 15 | 411,238,39,91 16 | 404,236,39,91 17 | 398,240,39,91 18 | 387,239,39,91 19 | 381,240,39,91 20 | 370,239,39,91 21 | 361,239,39,91 22 | 358,239,35,91 23 | 347,241,39,84 24 | 340,240,39,87 25 | 332,239,39,91 26 | 322,236,39,91 27 | 316,235,39,91 28 | 307,238,49,91 29 | 297,241,49,91 30 | 287,244,39,91 31 | 280,244,39,91 32 | 271,244,43,91 33 | 265,243,44,91 34 | 255,245,39,91 35 | 245,246,39,91 36 | 248,243,39,91 37 | 262,238,39,91 38 | 279,228,39,91 39 | 305,218,39,91 40 | 337,209,39,91 41 | 359,197,39,91 42 | 389,191,39,91 43 | 414,181,39,91 44 | 436,180,39,91 45 | 454,176,39,91 46 | 460,169,39,91 47 | 466,166,39,91 48 | 465,164,41,81 49 | 467,157,39,91 50 | 464,155,39,91 51 | 461,151,39,91 52 | 455,152,39,91 53 | 455,153,39,80 54 | 451,151,39,82 55 | 448,145,39,91 56 | 445,143,39,91 57 | 441,144,39,91 58 | 441,147,39,91 59 | 435,140,39,91 60 | 428,143,39,91 61 | 427,143,39,88 62 | 421,148,39,91 63 | 411,150,39,91 64 | 406,157,39,91 65 | 402,158,37,90 66 | 402,158,37,90 67 | 402,158,37,90 68 | 402,158,37,90 69 | 403,162,37,90 70 | 411,164,37,90 71 | 420,163,37,90 72 | 424,162,37,90 73 | 434,165,37,90 74 | 437,171,37,90 75 | 434,173,37,90 76 | 430,176,37,90 77 | 432,179,37,90 78 | 426,182,37,90 79 | 416,184,37,90 80 | 406,188,37,90 81 | 399,191,37,90 82 | 390,194,37,90 83 | 383,197,37,90 84 | 379,197,37,90 85 | 381,201,37,90 86 | 387,201,37,90 87 | 395,198,37,90 88 | 405,196,37,90 89 | 421,200,38,90 90 | 429,197,37,90 91 | 440,200,37,90 92 | 446,198,37,100 93 | 450,197,37,90 94 | 452,196,37,90 95 | 452,198,37,90 96 | 456,201,37,90 97 | 457,203,37,90 98 | 459,204,37,90 99 | 466,203,37,90 100 | 475,206,37,90 101 | 483,205,37,90 102 | 492,205,37,90 103 | 500,203,37,90 104 | 507,200,37,90 105 | 508,198,37,90 106 | 514,200,37,90 107 | 515,202,37,90 108 | 515,202,37,90 109 | 515,202,37,90 110 | 515,202,37,90 111 | 506,204,37,90 112 | 505,205,37,90 113 | 500,206,37,90 114 | 495,205,37,90 115 | 489,205,37,90 116 | 483,205,37,90 117 | 486,207,31,84 118 | 479,210,37,85 119 | 480,210,37,85 120 | 478,210,37,85 121 | 485,210,43,85 122 | 490,210,40,85 123 | 499,211,37,85 124 | 509,210,37,85 125 | 517,203,37,85 126 | 520,202,37,85 127 | 530,195,37,85 128 | 532,196,37,85 129 | 539,192,37,85 130 | 544,187,37,85 131 | 550,187,37,85 132 | 554,184,37,85 133 | 560,183,37,85 134 | 563,176,37,85 135 | 568,175,37,85 136 | 571,172,37,85 137 | 580,169,37,85 138 | 584,163,37,85 139 | 591,161,37,85 140 | 600,162,37,85 141 | 609,161,37,85 142 | 616,155,37,85 143 | 627,152,37,85 144 | 633,148,37,85 145 | 639,146,37,85 146 | 646,145,37,85 147 | 648,143,37,85 148 | 651,137,37,85 149 | 658,136,37,85 150 | 662,137,37,85 151 | 662,137,37,85 152 | 662,135,37,85 153 | 662,137,37,85 154 | 658,137,37,85 155 | 652,128,37,85 156 | 652,128,37,85 157 | 652,128,37,85 158 | 652,128,37,85 159 | 661,128,37,85 160 | 671,127,37,85 161 | 679,127,37,85 162 | 693,126,37,85 163 | 701,127,37,85 164 | 711,126,37,85 165 | 717,125,37,85 166 | 723,126,38,85 167 | 727,124,37,85 168 | 729,124,37,85 169 | 727,122,37,85 170 | 727,126,37,85 171 | 727,122,37,85 172 | 723,124,37,85 173 | 720,126,37,85 174 | 712,125,37,85 175 | 702,126,37,85 176 | 698,123,37,85 177 | 695,124,37,85 178 | 691,123,37,85 179 | 691,122,37,85 180 | 695,123,37,85 181 | 700,123,37,85 182 | 707,125,37,85 183 | 713,128,37,85 184 | 720,128,37,85 185 | 723,127,37,85 186 | 721,128,37,85 187 | 722,126,37,85 188 | 724,132,37,85 189 | 723,128,37,85 190 | 718,127,37,85 191 | 714,130,37,85 192 | 712,128,37,85 193 | 707,132,37,85 194 | 698,130,37,85 195 | 694,132,37,85 196 | 687,129,37,85 197 | 682,133,37,85 198 | 676,136,37,85 199 | 673,135,37,85 200 | 668,138,37,85 201 | 662,140,37,85 202 | -------------------------------------------------------------------------------- /batch_grid_search: -------------------------------------------------------------------------------- 1 | #!/bin/bash -l 2 | #SBATCH --array=0-1439%150 3 | #SBATCH --time=0-48:00 4 | #SBATCH --job-name=KCF_MT_Mod_Matt 5 | #SBATCH --error=logs/job.%J.err 6 | #SBATCH --output=logs/job.%J.out 7 | #SBATCH --partition=defaultq 8 | 9 | 10 | module load matlab/R2015b 11 | matlab -nodesktop -nosplash -r "grid_search(${SLURM_ARRAY_TASK_ID});quit;" 12 | -------------------------------------------------------------------------------- /calcRectInt.m: -------------------------------------------------------------------------------- 1 | function overlap = calcRectInt(A,B) 2 | % 3 | %each row is a rectangle. 4 | % A(i,:) = [x y w h] 5 | % B(j,:) = [x y w h] 6 | % overlap(i,j) = area of intersection 7 | % normoverlap(i,j) = overlap(i,j) / (area(i)+area(j)-overlap) 8 | % 9 | % Same as built-in rectint, but faster and uses less memory (since avoids repmat). 10 | 11 | 12 | leftA = A(:,1); 13 | bottomA = A(:,2); 14 | rightA = leftA + A(:,3) - 1; 15 | topA = bottomA + A(:,4) - 1; 16 | 17 | leftB = B(:,1); 18 | bottomB = B(:,2); 19 | rightB = leftB + B(:,3) - 1; 20 | topB = bottomB + B(:,4) - 1; 21 | 22 | tmp = (max(0, min(rightA, rightB) - max(leftA, leftB)+1 )) .* (max(0, min(topA, topB) - max(bottomA, bottomB)+1 )); 23 | areaA = A(:,3) .* A(:,4); 24 | areaB = B(:,3) .* B(:,4); 25 | overlap = tmp./(areaA+areaB-tmp); 26 | % if tmp > 0 27 | % 28 | % overlap = tmp; 29 | % 30 | % areaA = A(3) .* A(4); 31 | % areaB = B(3) .* B(4); 32 | % overlap = tmp./(areaA+areaB-tmp); 33 | % else 34 | % overlap = 0; 35 | % end -------------------------------------------------------------------------------- /calcSeqErrRobust.m: -------------------------------------------------------------------------------- 1 | function [aveErrCoverage, aveErrCenter,errCoverage, errCenter] = calcSeqErrRobust(rects, rect_anno) 2 | 3 | % LineWidth = 2; 4 | % LineStyle = '-';%':';%':' '.-' 5 | 6 | % lostCount = zeros(length(seqs), length(trks)); 7 | % thred = 0.33; 8 | % 9 | % errCenterAll=[]; 10 | % errCoverageAll=[]; 11 | 12 | seq_length = min(size(rects,1), size(rect_anno,1)); 13 | 14 | if size(rects,1) ~= size(rect_anno,1), 15 | fprintf('%12s - Number of ground truth frames does not match number of tracked frames.\n', title) 16 | %just ignore any extra frames, in either results or ground truth 17 | seq_length = min(size(rects,1), size(rect_anno,1)); 18 | rects(seq_length+1:end,:) = []; 19 | rect_anno(seq_length+1:end,:) = []; 20 | end 21 | 22 | 23 | for i = 2:seq_length 24 | r = rects(i,:); 25 | r_anno = rect_anno(i,:); 26 | if (isnan(r) | r(3)<=0 | r(4)<=0)&(~isnan(r_anno)) 27 | results.res(i,:)=results.res(i-1,:); 28 | % results.res(i,:) = [1,1,1,1]; 29 | end 30 | end 31 | 32 | centerGT = [rect_anno(:,1)+(rect_anno(:,3)-1)/2 rect_anno(:,2)+(rect_anno(:,4)-1)/2]; 33 | 34 | rectMat = rects; 35 | rectMat(1,:) = rect_anno(1,:); 36 | 37 | % center = [rectMat(:,1)+(rectMat(:,3)-1)/2 rectMat(:,2)+(rectMat(:,4)-1)/2]; 38 | % errCenter = sqrt(sum(((center(1:seq_length,:) - centerGT(1:seq_length,:)).^2),2)); 39 | % 40 | % index = rect_anno>0; 41 | % idx=(sum(index,2)==4); 42 | % % errCoverage = calcRectInt(rectMat(1:seq_length,:),rect_anno(1:seq_length,:)); 43 | % tmp = calcRectInt(rectMat(idx,:),rect_anno(idx,:)); 44 | % 45 | % errCoverage=-ones(length(idx),1); 46 | % errCoverage(idx) = tmp; 47 | % errCenter(~idx)=-1; 48 | % 49 | % aveErrCoverage = sum(errCoverage(idx))/length(idx); 50 | % aveErrCenter = sum(errCenter(idx))/length(idx); 51 | 52 | center = [rectMat(:,1)+(rectMat(:,3)-1)/2 rectMat(:,2)+(rectMat(:,4)-1)/2]; 53 | errCenter = sqrt(sum(((center(1:seq_length,:) - centerGT(1:seq_length,:)).^2),2)); 54 | errCoverage = calcRectInt(rectMat(1:seq_length,:),rect_anno(1:seq_length,:)); 55 | aveErrCoverage = sum(errCoverage)/seq_length; 56 | aveErrCenter = sum(errCenter)/seq_length; 57 | 58 | 59 | -------------------------------------------------------------------------------- /choose_video.m: -------------------------------------------------------------------------------- 1 | function video_name = choose_video(base_path) 2 | %CHOOSE_VIDEO 3 | % Allows the user to choose a video (sub-folder in the given path). 4 | % 5 | % Joao F. Henriques, 2014 6 | % http://www.isr.uc.pt/~henriques/ 7 | 8 | %process path to make sure it's uniform 9 | if ispc(), base_path = strrep(base_path, '\', '/'); end 10 | if base_path(end) ~= '/', base_path(end+1) = '/'; end 11 | 12 | %list all sub-folders 13 | contents = dir(base_path); 14 | names = {}; 15 | for k = 1:numel(contents), 16 | name = contents(k).name; 17 | if isdir([base_path name]) && ~any(strcmp(name, {'.', '..'})), 18 | names{end+1} = name; %#ok 19 | end 20 | end 21 | 22 | %no sub-folders found 23 | if isempty(names), video_name = []; return; end 24 | 25 | %choice GUI 26 | choice = listdlg('ListString',names, 'Name','Choose video', 'SelectionMode','single'); 27 | 28 | if isempty(choice), %user cancelled 29 | video_name = []; 30 | else 31 | video_name = names{choice}; 32 | end 33 | 34 | end 35 | 36 | -------------------------------------------------------------------------------- /download_videos.m: -------------------------------------------------------------------------------- 1 | 2 | % This script downloads and extracts all videos to the path specified 3 | % below. 4 | % 5 | % Joao F. Henriques, 2014 6 | % http://www.isr.uc.pt/~henriques/ 7 | 8 | 9 | %local path where the videos will be located. 10 | %note that if you change it here, you must also change it in RUN_TRACKER. 11 | base_path = './data/Benchmark/'; 12 | 13 | 14 | %list of videos to download 15 | videos = {'basketball', 'bolt', 'boy', 'car4', 'carDark', 'carScale', ... 16 | 'coke', 'couple', 'crossing', 'david2', 'david3', 'david', 'deer', ... 17 | 'dog1', 'doll', 'dudek', 'faceocc1', 'faceocc2', 'fish', 'fleetface', ... 18 | 'football', 'football1', 'freeman1', 'freeman3', 'freeman4', 'girl', ... 19 | 'ironman', 'jogging', 'jumping', 'lemming', 'liquor', 'matrix', ... 20 | 'mhyang', 'motorRolling', 'mountainBike', 'shaking', 'singer1', ... 21 | 'singer2', 'skating1', 'skiing', 'soccer', 'subway', 'suv', 'sylvester', ... 22 | 'tiger1', 'tiger2', 'trellis', 'walking', 'walking2', 'woman'}; 23 | 24 | 25 | if ~exist(base_path, 'dir'), %create if it doesn't exist already 26 | mkdir(base_path); 27 | end 28 | 29 | if ~exist('matlabpool', 'file'), 30 | %no parallel toolbox, use a simple 'for' to iterate 31 | disp('Downloading videos one by one, this may take a while.') 32 | disp(' ') 33 | 34 | for k = 1:numel(videos), 35 | disp(['Downloading and extracting ' videos{k} '...']); 36 | unzip(['http://cvlab.hanyang.ac.kr/tracker_benchmark/seq/' videos{k} '.zip'], base_path); 37 | end 38 | 39 | else 40 | %download all videos in parallel 41 | disp('Downloading videos in parallel, this may take a while.') 42 | disp(' ') 43 | 44 | if matlabpool('size') == 0, 45 | matlabpool open; 46 | end 47 | parfor k = 1:numel(videos), 48 | disp(['Downloading and extracting ' videos{k} '...']); 49 | unzip(['http://cvlab.hanyang.ac.kr/tracker_benchmark/seq/' videos{k} '.zip'], base_path); 50 | end 51 | end 52 | 53 | -------------------------------------------------------------------------------- /external.txt: -------------------------------------------------------------------------------- 1 | 2 | NOTE: The following files are part of Piotr's Toolbox, and are provided for 3 | convenience only: 4 | 5 | fhog.m 6 | gradientMex.mexa64 7 | gradientMex.mexw64 8 | 9 | You are encouraged to get the full version of this excellent library, at which 10 | point they can be safely deleted. 11 | 12 | Piotr's Toolbox (3.25) -- http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html 13 | 14 | 15 | _______________________________________________________________________________ 16 | 17 | Copyright (c) 2012, Piotr Dollar 18 | All rights reserved. 19 | 20 | Redistribution and use in source and binary forms, with or without 21 | modification, are permitted provided that the following conditions are met: 22 | 23 | 1. Redistributions of source code must retain the above copyright notice, this 24 | list of conditions and the following disclaimer. 25 | 2. Redistributions in binary form must reproduce the above copyright notice, 26 | this list of conditions and the following disclaimer in the documentation 27 | and/or other materials provided with the distribution. 28 | 29 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 30 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 31 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 32 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 33 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 34 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 35 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 36 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 38 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 | 40 | The views and conclusions contained in the software and documentation are those 41 | of the authors and should not be interpreted as representing official policies, 42 | either expressed or implied, of the FreeBSD Project. 43 | 44 | -------------------------------------------------------------------------------- /fhog.m: -------------------------------------------------------------------------------- 1 | function H = fhog( I, binSize, nOrients, clip, crop ) 2 | % Efficiently compute Felzenszwalb's HOG (FHOG) features. 3 | % 4 | % A fast implementation of the HOG variant used by Felzenszwalb et al. 5 | % in their work on discriminatively trained deformable part models. 6 | % http://www.cs.berkeley.edu/~rbg/latent/index.html 7 | % Gives nearly identical results to features.cc in code release version 5 8 | % but runs 4x faster (over 125 fps on VGA color images). 9 | % 10 | % The computed HOG features are 3*nOrients+5 dimensional. There are 11 | % 2*nOrients contrast sensitive orientation channels, nOrients contrast 12 | % insensitive orientation channels, 4 texture channels and 1 all zeros 13 | % channel (used as a 'truncation' feature). Using the standard value of 14 | % nOrients=9 gives a 32 dimensional feature vector at each cell. This 15 | % variant of HOG, refered to as FHOG, has been shown to achieve superior 16 | % performance to the original HOG features. For details please refer to 17 | % work by Felzenszwalb et al. (see link above). 18 | % 19 | % This function is essentially a wrapper for calls to gradientMag() 20 | % and gradientHist(). Specifically, it is equivalent to the following: 21 | % [M,O] = gradientMag( I,0,0,0,1 ); softBin = -1; useHog = 2; 22 | % H = gradientHist(M,O,binSize,nOrients,softBin,useHog,clip); 23 | % See gradientHist() for more general usage. 24 | % 25 | % This code requires SSE2 to compile and run (most modern Intel and AMD 26 | % processors support SSE2). Please see: http://en.wikipedia.org/wiki/SSE2. 27 | % 28 | % USAGE 29 | % H = fhog( I, [binSize], [nOrients], [clip], [crop] ) 30 | % 31 | % INPUTS 32 | % I - [hxw] color or grayscale input image (must have type single) 33 | % binSize - [8] spatial bin size 34 | % nOrients - [9] number of orientation bins 35 | % clip - [.2] value at which to clip histogram bins 36 | % crop - [0] if true crop boundaries 37 | % 38 | % OUTPUTS 39 | % H - [h/binSize w/binSize nOrients*3+5] computed hog features 40 | % 41 | % EXAMPLE 42 | % I=imResample(single(imread('peppers.png'))/255,[480 640]); 43 | % tic, for i=1:100, H=fhog(I,8,9); end; disp(100/toc) % >125 fps 44 | % figure(1); im(I); V=hogDraw(H,25,1); figure(2); im(V) 45 | % 46 | % EXAMPLE 47 | % % comparison to features.cc (requires DPM code release version 5) 48 | % I=imResample(single(imread('peppers.png'))/255,[480 640]); Id=double(I); 49 | % tic, for i=1:100, H1=features(Id,8); end; disp(100/toc) 50 | % tic, for i=1:100, H2=fhog(I,8,9,.2,1); end; disp(100/toc) 51 | % figure(1); montage2(H1); figure(2); montage2(H2); 52 | % D=abs(H1-H2); mean(D(:)) 53 | % 54 | % See also hog, hogDraw, gradientHist 55 | % 56 | % Piotr's Image&Video Toolbox Version 3.23 57 | % Copyright 2013 Piotr Dollar. [pdollar-at-caltech.edu] 58 | % Please email me if you find bugs, or have suggestions or questions! 59 | % Licensed under the Simplified BSD License [see external/bsd.txt] 60 | 61 | %Note: modified to be more self-contained 62 | 63 | if( nargin<2 ), binSize=8; end 64 | if( nargin<3 ), nOrients=9; end 65 | if( nargin<4 ), clip=.2; end 66 | if( nargin<5 ), crop=0; end 67 | 68 | softBin = -1; useHog = 2; b = binSize; 69 | 70 | [M,O]=gradientMex('gradientMag',I,0,1); 71 | 72 | H = gradientMex('gradientHist',M,O,binSize,nOrients,softBin,useHog,clip); 73 | 74 | if( crop ), e=mod(size(I),b) size(im,2)) = size(im,2); 24 | ys(ys > size(im,1)) = size(im,1); 25 | 26 | %extract image 27 | out = im(ys, xs, :); 28 | 29 | end 30 | 31 | -------------------------------------------------------------------------------- /gradientMex.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/gradientMex.mexa64 -------------------------------------------------------------------------------- /gradientMex.mexw64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/gradientMex.mexw64 -------------------------------------------------------------------------------- /grid_search.m: -------------------------------------------------------------------------------- 1 | function grid_search (task_id) 2 | 3 | dataset = 'OTB100'; %OTB100, UAV 4 | kernel_type = 'gaussian'; 5 | feature_type = 'hog'; 6 | 7 | padding = [1.5 1.7 1.8 2]; 8 | lambda = [1e-2 1e-3 1e-4 1e-5]; 9 | output_sigma_factor = [0.1]; 10 | interp_factor = [0.01 0.02 0.1]; 11 | kernel_sigma = [0.5]; 12 | cell_size = [4]; 13 | hog_orientations = [9]; 14 | mu = [1e-4 1e-5 1e-6]; 15 | maxitr = [30]; 16 | mu_inc = [1 2]; 17 | step_sc = [0.01 0.02 0.03 0.2 0.1]; 18 | 19 | parameters = combvec(padding,lambda,output_sigma_factor,interp_factor,kernel_sigma, cell_size, hog_orientations,mu,maxitr,mu_inc,step_sc); 20 | 21 | 22 | 23 | 24 | tracker_attempts = 2; 25 | for tracker_counter = 1:tracker_attempts 26 | try 27 | run_tracker(dataset,'all', kernel_type,feature_type,0, 0,... 28 | parameters(1,task_id+1),parameters(2,task_id+1),parameters(3,task_id+1),parameters(4,task_id+1),... 29 | parameters(5,task_id+1),parameters(6,task_id+1),parameters(7,task_id+1),parameters(8,task_id+1),parameters(9,task_id+1),parameters(10,task_id+1),parameters(11,task_id+1)); 30 | break; 31 | 32 | catch 33 | if (tracker_counter < tracker_attempts) 34 | fprintf('Tracker failed! (Attempt [%u]).\n', tracker_counter); 35 | else 36 | fprintf('Tracker failed! (Last Attempt [%u]).\n', tracker_counter); 37 | run_tracker(dataset,'all', kernel_type,feature_type,0, 0,... 38 | parameters(1,task_id+1),parameters(2,task_id+1),parameters(3,task_id+1),parameters(4,task_id+1),... 39 | parameters(5,task_id+1),parameters(6,task_id+1),parameters(7,task_id+1),parameters(8,task_id+1),parameters(9,task_id+1),parameters(10,task_id+1),parameters(11,task_id+1)); 40 | end 41 | end 42 | end 43 | 44 | 45 | 46 | end 47 | -------------------------------------------------------------------------------- /linear_correlation.m: -------------------------------------------------------------------------------- 1 | function kf = linear_correlation(xf, yf) 2 | %LINEAR_CORRELATION Linear Kernel at all shifts, i.e. correlation. 3 | % Computes the dot-product for all relative shifts between input images 4 | % X and Y, which must both be MxN. They must also be periodic (ie., 5 | % pre-processed with a cosine window). The result is an MxN map of 6 | % responses. 7 | % 8 | % Inputs and output are all in the Fourier domain. 9 | % 10 | % Joao F. Henriques, 2014 11 | % http://www.isr.uc.pt/~henriques/ 12 | 13 | %cross-correlation term in Fourier domain 14 | kf = sum(xf .* conj(yf), 3) / numel(xf); 15 | 16 | end 17 | 18 | -------------------------------------------------------------------------------- /load_video_info.m: -------------------------------------------------------------------------------- 1 | function [img_files, pos, target_sz, ground_truth, video_path] = load_video_info(base_path, dataset, video) 2 | %LOAD_VIDEO_INFO 3 | % Loads all the relevant information for the video in the given path: 4 | % the list of image files (cell array of strings), initial position 5 | % (1x2), target size (1x2), the ground truth information for precision 6 | % calculations (Nx2, for N frames), and the path where the images are 7 | % located. The ordering of coordinates and sizes is always [y, x]. 8 | % 9 | % Joao F. Henriques, 2014 10 | % http://www.isr.uc.pt/~henriques/ 11 | 12 | 13 | %see if there's a suffix, specifying one of multiple targets, for 14 | %example the dot and number in 'Jogging.1' or 'Jogging.2'. 15 | if numel(video) >= 2 && video(end-1) == '-' && ~isnan(str2double(video(end))), 16 | suffixdash = video(end-1:end); %remember the suffix 17 | video = video(1:end-2); %remove it from the video name 18 | else 19 | suffixdash = ''; 20 | end 21 | if numel(video) >= 2 && video(end-1) == '.' && ~isnan(str2double(video(end))), 22 | suffixdot = video(end-1:end); %remember the suffix 23 | video = video(1:end-2); %remove it from the video name 24 | else 25 | suffixdot = ''; 26 | end 27 | 28 | %full path to the video's files 29 | % if base_path(end) ~= '/' && base_path(end) ~= '\', 30 | % base_path(end+1) = '\'; 31 | % end 32 | anno_path = [base_path 'anno/' video]; 33 | video_path = [base_path dataset '/' video]; 34 | 35 | %try to load ground truth from text file (Benchmark's format) 36 | filename = [anno_path suffixdash suffixdot '.txt']; 37 | f = fopen(filename); 38 | assert(f ~= -1, ['No initial position or ground truth to load ("' filename '").']) 39 | 40 | %the format is [x, y, width, height] 41 | try 42 | ground_truth = textscan(f, '%f,%f,%f,%f', 'ReturnOnError',false); 43 | catch %#ok, try different format (no commas) 44 | frewind(f); 45 | ground_truth = textscan(f, '%f %f %f %f'); 46 | end 47 | ground_truth = cat(2, ground_truth{:}); 48 | fclose(f); 49 | 50 | %set initial position and size 51 | target_sz = [ground_truth(1,4), ground_truth(1,3)]; 52 | pos = [ground_truth(1,2), ground_truth(1,1)] + floor(target_sz/2); 53 | 54 | if size(ground_truth,1) == 1, 55 | %we have ground truth for the first frame only (initial position) 56 | ground_truth = []; 57 | % else 58 | % %store positions instead of boxes 59 | % ground_truth = ground_truth(:,[2,1]) + ground_truth(:,[4,3]) / 2; 60 | end 61 | 62 | 63 | %from now on, work in the subfolder where all the images are 64 | if (strcmp(dataset, 'UAV')) 65 | video_path = [video_path '/']; 66 | else 67 | video_path = [video_path '/img/']; 68 | end 69 | 70 | %for these sequences, we must limit ourselves to a range of frames. 71 | %for all others, we just load all png/jpg files in the folder. 72 | frames = {'David', 300, 770; 73 | 'Football1', 1, 74; 74 | 'Freeman3', 1, 460; 75 | 'Freeman4', 1, 283; 76 | 'Diving', 1, 215}; 77 | 78 | idx = find(strcmpi(video, frames(:,1))); 79 | 80 | if isempty(idx), 81 | %general case, just list all images 82 | img_files = dir([video_path '*.png']); 83 | if isempty(img_files), 84 | img_files = dir([video_path '*.jpg']); 85 | assert(~isempty(img_files), 'No image files to load.') 86 | end 87 | img_files = sort({img_files.name}); 88 | else 89 | %list specified frames. try png first, then jpg. 90 | if exist(sprintf('%s%04i.png', video_path, frames{idx,2}), 'file'), 91 | img_files = num2str((frames{idx,2} : frames{idx,3})', '%04i.png'); 92 | 93 | elseif exist(sprintf('%s%04i.jpg', video_path, frames{idx,2}), 'file'), 94 | img_files = num2str((frames{idx,2} : frames{idx,3})', '%04i.jpg'); 95 | 96 | else 97 | error('No image files to load.') 98 | end 99 | 100 | img_files = cellstr(img_files); 101 | end 102 | 103 | end 104 | 105 | -------------------------------------------------------------------------------- /polynomial_correlation.m: -------------------------------------------------------------------------------- 1 | function kf = polynomial_correlation(xf, yf, a, b) 2 | %POLYNOMIAL_CORRELATION Polynomial Kernel at all shifts, i.e. kernel correlation. 3 | % Evaluates a polynomial kernel with constant A and exponent B, for all 4 | % relative shifts between input images XF and YF, which must both be MxN. 5 | % They must also be periodic (ie., pre-processed with a cosine window). 6 | % The result is an MxN map of responses. 7 | % 8 | % Inputs and output are all in the Fourier domain. 9 | % 10 | % Joao F. Henriques, 2014 11 | % http://www.isr.uc.pt/~henriques/ 12 | 13 | %cross-correlation term in Fourier domain 14 | xyf = xf .* conj(yf); 15 | xy = sum(real(ifft2(xyf)), 3); %to spatial domain 16 | 17 | %calculate polynomial response for all positions, then go back to the 18 | %Fourier domain 19 | kf = fft2((xy / numel(xf) + a) .^ b); 20 | 21 | end 22 | 23 | -------------------------------------------------------------------------------- /precision_plot.m: -------------------------------------------------------------------------------- 1 | function precisions = precision_plot(positions, ground_truth, title, show) 2 | %PRECISION_PLOT 3 | % Calculates precision for a series of distance thresholds (percentage of 4 | % frames where the distance to the ground truth is within the threshold). 5 | % The results are shown in a new figure if SHOW is true. 6 | % 7 | % Accepts positions and ground truth as Nx2 matrices (for N frames), and 8 | % a title string. 9 | % 10 | % Joao F. Henriques, 2014 11 | % http://www.isr.uc.pt/~henriques/ 12 | 13 | 14 | max_threshold = 50; %used for graphs in the paper 15 | 16 | %store positions instead of boxes 17 | ground_truth = ground_truth(:,[2,1]) + ground_truth(:,[4,3]) / 2; 18 | 19 | precisions = zeros(max_threshold, 1); 20 | 21 | if size(positions,1) ~= size(ground_truth,1), 22 | fprintf('%12s - Number of ground truth frames does not match number of tracked frames.\n', title) 23 | %just ignore any extra frames, in either results or ground truth 24 | n = min(size(positions,1), size(ground_truth,1)); 25 | positions(n+1:end,:) = []; 26 | ground_truth(n+1:end,:) = []; 27 | end 28 | 29 | %calculate distances to ground truth over all frames 30 | distances = sqrt((positions(:,1) - ground_truth(:,1)).^2 + ... 31 | (positions(:,2) - ground_truth(:,2)).^2); 32 | 33 | if nnz(isnan(distances))>0 34 | fprintf('%12s - NaN distances were removed.\n', title) 35 | distances(isnan(distances)) = []; 36 | end 37 | 38 | 39 | %compute precisions 40 | for p = 1:max_threshold, 41 | precisions(p) = nnz(distances <= p) / numel(distances); 42 | end 43 | 44 | %plot the precisions 45 | if show == 1, 46 | figure('NumberTitle','off', 'Name',['Precisions - ' title]) 47 | plot(precisions, 'k-', 'LineWidth',2) 48 | xlabel('Threshold'), ylabel('Precision') 49 | end 50 | 51 | end 52 | 53 | -------------------------------------------------------------------------------- /readme_old.txt: -------------------------------------------------------------------------------- 1 | 2 | High-Speed Tracking with Kernelized Correlation Filters 3 | 4 | J. F. Henriques R. Caseiro P. Martins J. Batista 5 | TPAMI 2014 6 | 7 | ________________ 8 | To be published. 9 | arXiv pre-print: http://arxiv.org/abs/1404.7584 10 | Project webpage: http://www.isr.uc.pt/~henriques/circulant/ 11 | 12 | This MATLAB code implements a simple tracking pipeline based on the Kernelized 13 | Correlation Filter (KCF), and Dual Correlation Filter (DCF). 14 | 15 | It is free for research use. If you find it useful, please acknowledge the paper 16 | above with a reference. 17 | 18 | 19 | __________ 20 | Quickstart 21 | 22 | 1. Extract code somewhere. 23 | 24 | 2. The tracker is prepared to run on any of the 50 videos of the Visual Tracking 25 | Benchmark [3]. For that, it must know where they are/will be located. You can 26 | change the default location 'base_path' in 'download_videos.m' and 'run_tracker.m'. 27 | 28 | 3. If you don't have the videos already, run 'download_videos.m' (may take some time). 29 | 30 | 4. Execute 'run_tracker' without parameters to choose a video and test the KCF on it. 31 | 32 | 33 | Note: The tracker uses the 'fhog'/'gradientMex' functions from Piotr's Toolbox. 34 | Some pre-compiled MEX files are provided for convenience. If they do not work for your 35 | system, just get the toolbox from http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html 36 | 37 | 38 | __________ 39 | 40 | The main interface function is 'run_tracker'. You can test several configurations (KCF, 41 | DCF, MOSSE) by calling it with different commands: 42 | 43 | 44 | run_tracker 45 | Without any parameters, will ask you to choose a video, track using 46 | the Gaussian KCF on HOG, and show the results in an interactive 47 | figure. Press 'Esc' to stop the tracker early. You can navigate the 48 | video using the scrollbar at the bottom. 49 | 50 | run_tracker VIDEO 51 | Allows you to select a VIDEO by its name. 'all' will run all videos 52 | and show average statistics. 'choose' will select one interactively. 53 | 54 | run_tracker VIDEO KERNEL 55 | Choose a KERNEL. 'gaussian'/'polynomial' to run KCF, 'linear' for DCF. 56 | 57 | run_tracker VIDEO KERNEL FEATURE 58 | Choose a FEATURE type, either 'hog' or 'gray' (raw pixels). 59 | 60 | run_tracker(VIDEO, KERNEL, FEATURE, SHOW_VISUALIZATION, SHOW_PLOTS) 61 | Decide whether to show the scrollable figure, and the precision plot. 62 | 63 | Useful combinations: 64 | >> run_tracker choose gaussian hog %Kernelized Correlation Filter (KCF) 65 | >> run_tracker choose linear hog %Dual Correlation Filter (DCF) 66 | >> run_tracker choose gaussian gray %Single-channel KCF (ECCV'12 paper) 67 | >> run_tracker choose linear gray %MOSSE filter (single channel) 68 | 69 | 70 | For the actual tracking code, check out the 'tracker' function. 71 | 72 | 73 | Though it's not required, the code will make use of the MATLAB Parallel Computing 74 | Toolbox automatically if available. 75 | 76 | 77 | __________ 78 | References 79 | 80 | [1] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, "High-Speed Tracking with 81 | Kernelized Correlation Filters", TPAMI 2014 (to be published). 82 | 83 | [2] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, "Exploiting the Circulant 84 | Structure of Tracking-by-detection with Kernels", ECCV 2012. 85 | 86 | [3] Y. Wu, J. Lim, M.-H. Yang, "Online Object Tracking: A Benchmark", CVPR 2013. 87 | Website: http://visual-tracking.net/ 88 | 89 | [4] P. Dollar, "Piotr's Image and Video Matlab Toolbox (PMT)". 90 | Website: http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html 91 | 92 | [5] P. Dollar, S. Belongie, P. Perona, "The Fastest Pedestrian Detector in the 93 | West", BMVC 2010. 94 | 95 | 96 | _____________________________________ 97 | Copyright (c) 2014, Joao F. Henriques 98 | 99 | Permission to use, copy, modify, and distribute this software for research 100 | purposes with or without fee is hereby granted, provided that the above 101 | copyright notice and this permission notice appear in all copies. 102 | 103 | THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 104 | WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 105 | MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 106 | ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 107 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 108 | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 109 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 110 | 111 | -------------------------------------------------------------------------------- /retrain_fixed_pt_method.m: -------------------------------------------------------------------------------- 1 | function [alphaf_1_new,alphaf_2_new] = retrain_fixed_pt_method(xf_1,alphaf_1,xf_2,alphaf_2,y,kernel,lambda,mu,maxitr,mu_inc) 2 | 3 | k=mu/(lambda + mu); 4 | c = lambda*k + mu*(k-1); 5 | yf = fft2(y); 6 | 7 | switch kernel.type 8 | case 'gaussian', 9 | kf_1_1 = gaussian_correlation(xf_1, xf_1, kernel.sigma); 10 | kf_2_2 = gaussian_correlation(xf_2, xf_2, kernel.sigma); 11 | kf_2_1 = gaussian_correlation(xf_1, xf_2, kernel.sigma); 12 | kf_1_2 = gaussian_correlation(xf_2, xf_1, kernel.sigma); 13 | case 'polynomial', 14 | kf_1_1 = polynomial_correlation(xf_1, xf_1, kernel.poly_a, kernel.poly_b); 15 | kf_2_2 = polynomial_correlation(xf_2, xf_2, kernel.poly_a, kernel.poly_b); 16 | kf_2_1 = polynomial_correlation(xf_1, xf_2, kernel.poly_a, kernel.poly_b); 17 | kf_1_2 = polynomial_correlation(xf_2, xf_1, kernel.poly_a, kernel.poly_b); 18 | 19 | case 'linear', 20 | kf_1_1 = linear_correlation(xf_1, xf_1); 21 | kf_2_2 = linear_correlation(xf_2, xf_2); 22 | kf_2_1 = linear_correlation(xf_1, xf_2); 23 | kf_1_2 = linear_correlation(xf_2, xf_1); 24 | end 25 | 26 | i=1; 27 | while(true) 28 | %Force filter of second training example to look similar to first one 29 | %% new (Update Filter2) 30 | num = conj(yf) - ( ((c./(kf_2_2+eps)) + k) .* conj(kf_1_2 .* alphaf_1) ); 31 | den = kf_2_2 + (lambda+mu); 32 | alphaf_2_new = conj(num ./ den); 33 | %% new (Update Filter1) 34 | num = conj(yf) - ( ((c./(kf_1_1+eps)) + k) .* conj(kf_2_1 .* alphaf_2) ); 35 | den = kf_1_1 + (lambda+mu); 36 | alphaf_1_new = conj(num ./ den); 37 | %% Both Filter Update 38 | alphaf_1 = alphaf_1_new; 39 | alphaf_2 = alphaf_2_new; 40 | %% Stopping Crieterion 41 | data_cost(i,:) = real(sum(sum(fft2((kf_2_2 .* conj(alphaf_2_new)) - conj(yf)).^2))); 42 | if(i>5) 43 | if(std(data_cost(i:-1:i-4,:)) <=10^-5 || i>maxitr) 44 | break; 45 | end 46 | end 47 | i=i+1; 48 | mu = mu * mu_inc; 49 | end 50 | end -------------------------------------------------------------------------------- /run_KCF_MTSA.m: -------------------------------------------------------------------------------- 1 | function results = run_KCF_MTSA(seq, res_path, bSaveImage) 2 | 3 | %default settings 4 | video = 'benchmark'; 5 | kernel_type = 'gaussian'; 6 | feature_type = 'hog'; 7 | 8 | %parameters according to the paper. at this point we can override 9 | %parameters based on the chosen kernel or feature type 10 | kernel.type = kernel_type; 11 | 12 | features.gray = false; 13 | features.hog = false; 14 | features.hogcolor = false; 15 | mu = 1e-6; 16 | maxitr = 10; 17 | mu_inc = 2; 18 | step_sc = 1e-2; 19 | 20 | padding = 1.7; %extra area surrounding the target 21 | lambda = 1e-3; %regularization 22 | output_sigma_factor = 0.1; %spatial bandwidth (proportional to target) 23 | 24 | switch feature_type 25 | case 'gray', 26 | interp_factor = 0.075; %linear interpolation factor for adaptation 27 | 28 | kernel.sigma = 0.2; %gaussian kernel bandwidth 29 | 30 | kernel.poly_a = 1; %polynomial kernel additive term 31 | kernel.poly_b = 7; %polynomial kernel exponent 32 | 33 | features.gray = true; 34 | cell_size = 1; 35 | 36 | case 'hog', 37 | interp_factor = 0.01;%0.02 38 | 39 | kernel.sigma = 0.5; 40 | 41 | kernel.poly_a = 1; 42 | kernel.poly_b = 9; 43 | 44 | features.hog = true; 45 | features.hog_orientations = 9; 46 | cell_size = 4; 47 | case 'hogcolor', 48 | interp_factor = 0.01; 49 | 50 | kernel.sigma = 0.5; 51 | 52 | kernel.poly_a = 1; 53 | kernel.poly_b = 9; 54 | 55 | features.hogcolor = true; 56 | features.hog_orientations = 12; 57 | cell_size = 4; 58 | cell_factor = 25; 59 | otherwise 60 | error('Unknown feature.') 61 | end 62 | %running in benchmark mode - this is meant to interface easily 63 | %with the benchmark's code. 64 | 65 | %get information (image file names, initial position, etc) from 66 | %the benchmark's workspace variables 67 | seq = evalin('base', 'subS'); 68 | target_sz = seq.init_rect(1,[4,3]); 69 | pos = seq.init_rect(1,[2,1]) + floor(target_sz/2); 70 | img_files = seq.s_frames; 71 | video_path = []; 72 | 73 | 74 | %call tracker function with all the relevant parameters 75 | [positions, rect_results, t] = tracker(video_path, img_files, pos, target_sz, ... 76 | padding, kernel, lambda, output_sigma_factor, interp_factor, cell_size, ... 77 | features, 0,mu, maxitr, mu_inc, step_sc); 78 | %return results to benchmark, in a workspace variable 79 | rects =rect_results; 80 | % [positions(:,2) - target_sz(2)/2, positions(:,1) - target_sz(1)/2]; 81 | % rects(:,3) = target_sz(2); 82 | % rects(:,4) = target_sz(1); 83 | results.type = 'rect'; 84 | results.res = rects; 85 | fps = numel(img_files) /t; 86 | results.fps = fps; 87 | disp(['fps: ' num2str(fps)]) 88 | end -------------------------------------------------------------------------------- /show_video.m: -------------------------------------------------------------------------------- 1 | function update_visualization_func = show_video(img_files, video_path, resize_image) 2 | %SHOW_VIDEO 3 | % Visualizes a tracker in an interactive figure, given a cell array of 4 | % image file names, their path, and whether to resize the images to 5 | % half size or not. 6 | % 7 | % This function returns an UPDATE_VISUALIZATION function handle, that 8 | % can be called with a frame number and a bounding box [x, y, width, 9 | % height], as soon as the results for a new frame have been calculated. 10 | % This way, your results are shown in real-time, but they are also 11 | % remembered so you can navigate and inspect the video afterwards. 12 | % Press 'Esc' to send a stop signal (returned by UPDATE_VISUALIZATION). 13 | % 14 | % Joao F. Henriques, 2014 15 | % http://www.isr.uc.pt/~henriques/ 16 | 17 | 18 | %store one instance per frame 19 | num_frames = numel(img_files); 20 | boxes = cell(num_frames,1); 21 | 22 | %create window 23 | [fig_h, axes_h, unused, scroll] = videofig(num_frames, @redraw, [], [], @on_key_press); %#ok, unused outputs 24 | % set(fig_h, 'Number','off', 'Name', ['Tracker - ' video_path]) 25 | % axis off; 26 | 27 | %image and rectangle handles start empty, they are initialized later 28 | im_h = []; 29 | rect_h = []; 30 | 31 | update_visualization_func = @update_visualization; 32 | stop_tracker = false; 33 | 34 | 35 | function stop = update_visualization(frame, box) 36 | %store the tracker instance for one frame, and show it. returns 37 | %true if processing should stop (user pressed 'Esc'). 38 | boxes{frame} = box; 39 | scroll(frame); 40 | stop = stop_tracker; 41 | end 42 | 43 | function redraw(frame) 44 | %render main image 45 | im = imread([video_path img_files{frame}]); 46 | if size(im,3) > 1, 47 | im = rgb2gray(im); 48 | end 49 | if resize_image, 50 | im = imresize(im, 0.5); 51 | end 52 | 53 | if isempty(im_h), %create image 54 | im_h = imshow(im, 'Border','tight', 'InitialMag',200, 'Parent',axes_h); 55 | else %just update it 56 | set(im_h, 'CData', im) 57 | end 58 | 59 | %render target bounding box for this frame 60 | if isempty(rect_h), %create it for the first time 61 | rect_h = rectangle('Position',[0,0,1,1], 'EdgeColor','g', 'Parent',axes_h); 62 | end 63 | if ~isempty(boxes{frame}), 64 | set(rect_h, 'Visible', 'on', 'Position', boxes{frame}); 65 | else 66 | set(rect_h, 'Visible', 'off'); 67 | end 68 | end 69 | 70 | function on_key_press(key) 71 | if strcmp(key, 'escape'), %stop on 'Esc' 72 | stop_tracker = true; 73 | end 74 | end 75 | 76 | end 77 | 78 | -------------------------------------------------------------------------------- /tracker_multi_KCF.m: -------------------------------------------------------------------------------- 1 | function [best_scale, pos,response] = tracker_multi_KCF(im, pos,kernel,cell_size, ... 2 | features,window_sz,... 3 | cos_window,model_xf,model_alphaf,num_scale,scales,scale_weights) 4 | 5 | size_ver = size(cos_window,1); 6 | size_hor = size(cos_window,2); 7 | response_all = zeros(size_ver*size_hor,num_scale); 8 | 9 | for j=1:num_scale 10 | patch = get_subwindow(im,pos,window_sz*scales(j)); 11 | patch = imresize(patch,window_sz,'nearest'); 12 | zf = fft2(get_features(patch, features, cell_size, cos_window)); 13 | %calculate response of the classifier at all shifts 14 | switch kernel.type 15 | case 'gaussian', 16 | kzf = gaussian_correlation(zf, model_xf, kernel.sigma); 17 | case 'polynomial', 18 | kzf = polynomial_correlation(zf, model_xf, kernel.poly_a, kernel.poly_b); 19 | case 'linear', 20 | kzf = linear_correlation(zf, model_xf); 21 | end 22 | response = real(ifft2(model_alphaf .* kzf)*numel(kzf)); %equation for fast detection 23 | response_all(:,j) = response(:); 24 | end 25 | 26 | weighted_scales = max(response_all).*scale_weights; %weighted filters 27 | [~ , scale_ind] =max(weighted_scales); 28 | best_scale = scales(scale_ind) ; 29 | response = reshape(response_all(:,scale_ind),[size_ver size_hor]); 30 | 31 | end 32 | 33 | 34 | 35 | 36 | -------------------------------------------------------------------------------- /videofig.m: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videofig.m -------------------------------------------------------------------------------- /videos/Crossing/groundtruth_rect.txt: -------------------------------------------------------------------------------- 1 | 205 151 17 50 2 | 202 150 19 49 3 | 201 150 18 49 4 | 199 150 18 47 5 | 196 149 20 49 6 | 199 150 17 46 7 | 195 149 19 47 8 | 193 147 19 50 9 | 191 148 20 46 10 | 191 147 20 48 11 | 190 145 19 49 12 | 190 145 17 48 13 | 188 145 17 48 14 | 187 143 19 49 15 | 185 144 16 49 16 | 183 143 18 50 17 | 183 143 20 50 18 | 182 142 18 50 19 | 182 141 17 51 20 | 181 141 17 48 21 | 180 139 17 49 22 | 178 139 16 47 23 | 177 138 16 45 24 | 176 138 16 46 25 | 175 138 18 46 26 | 174 138 17 45 27 | 172 139 19 47 28 | 170 137 19 47 29 | 171 134 19 49 30 | 168 133 20 49 31 | 168 132 19 49 32 | 167 133 19 47 33 | 167 131 20 49 34 | 167 131 19 49 35 | 164 132 20 47 36 | 165 128 19 53 37 | 164 129 20 49 38 | 164 130 20 49 39 | 162 128 20 50 40 | 161 128 22 50 41 | 163 129 20 45 42 | 161 127 21 44 43 | 161 126 19 44 44 | 160 126 19 45 45 | 158 124 21 48 46 | 160 125 17 45 47 | 159 127 17 45 48 | 158 127 18 43 49 | 156 125 18 41 50 | 157 124 14 42 51 | 155 123 16 44 52 | 154 122 15 46 53 | 151 122 17 43 54 | 150 120 16 46 55 | 149 122 17 44 56 | 149 121 16 41 57 | 148 121 15 45 58 | 147 122 14 41 59 | 146 121 16 41 60 | 143 122 16 40 61 | 141 122 16 41 62 | 139 120 16 42 63 | 138 119 14 43 64 | 136 119 15 42 65 | 134 119 15 41 66 | 134 118 15 42 67 | 132 118 17 42 68 | 131 118 17 43 69 | 128 117 17 40 70 | 126 115 16 40 71 | 125 114 16 40 72 | 123 113 18 40 73 | 122 112 17 43 74 | 122 112 16 42 75 | 120 112 17 42 76 | 120 112 17 42 77 | 118 111 16 42 78 | 117 110 18 45 79 | 116 110 16 42 80 | 114 110 17 41 81 | 113 109 16 41 82 | 112 107 14 40 83 | 112 108 15 41 84 | 109 108 16 38 85 | 108 108 16 35 86 | 105 108 15 35 87 | 104 108 15 35 88 | 103 107 15 35 89 | 102 105 15 37 90 | 101 104 15 36 91 | 98 104 16 37 92 | 97 103 16 38 93 | 94 103 17 38 94 | 92 103 16 38 95 | 91 103 15 38 96 | 90 103 16 34 97 | 88 103 16 35 98 | 88 102 15 37 99 | 84 99 16 37 100 | 83 101 16 37 101 | 80 99 16 37 102 | 79 99 16 36 103 | 79 100 17 33 104 | 78 99 14 33 105 | 77 100 14 33 106 | 75 100 14 34 107 | 74 99 14 33 108 | 72 98 13 34 109 | 71 97 14 35 110 | 69 97 13 34 111 | 68 98 14 34 112 | 67 97 15 35 113 | 65 98 15 34 114 | 65 99 15 31 115 | 63 97 15 32 116 | 61 96 13 32 117 | 60 95 14 33 118 | 58 94 14 34 119 | 58 95 13 31 120 | 56 93 14 36 121 | -------------------------------------------------------------------------------- /videos/Crossing/img/0001.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0001.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0002.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0002.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0003.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0003.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0004.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0004.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0005.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0005.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0006.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0006.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0007.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0007.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0008.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0008.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0009.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0009.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0010.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0010.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0011.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0011.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0012.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0012.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0013.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0013.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0014.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0014.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0015.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0015.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0016.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0016.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0017.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0017.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0018.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0018.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0019.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0019.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0020.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0020.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0021.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0021.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0022.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0023.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0023.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0024.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0024.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0025.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0025.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0026.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0026.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0027.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0027.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0028.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0028.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0029.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0029.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0030.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0030.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0031.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0031.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0032.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0032.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0033.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0033.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0034.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0034.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0035.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0035.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0036.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0036.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0037.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0037.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0038.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0038.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0039.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0039.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0040.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0040.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0041.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0041.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0042.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0042.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0043.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0043.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0044.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0044.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0045.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0045.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0046.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0046.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0047.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0047.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0048.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0048.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0049.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0049.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0050.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0050.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0051.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0051.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0052.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0052.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0053.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0053.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0054.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0054.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0055.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0055.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0056.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0056.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0057.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0057.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0058.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0058.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0059.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0059.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0060.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0060.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0061.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0061.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0062.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0062.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0063.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0063.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0064.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0064.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0065.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0065.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0066.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0066.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0067.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0067.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0068.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0068.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0069.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0069.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0070.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0070.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0071.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0071.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0072.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0072.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0073.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0073.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0074.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0074.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0075.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0075.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0076.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0076.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0077.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0077.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0078.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0078.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0079.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0079.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0080.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0080.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0081.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0081.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0082.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0082.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0083.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0083.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0084.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0084.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0085.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0085.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0086.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0086.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0087.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0087.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0088.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0088.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0089.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0089.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0090.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0090.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0091.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0091.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0092.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0092.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0093.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0093.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0094.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0094.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0095.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0095.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0096.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0096.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0097.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0097.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0098.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0098.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0099.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0099.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0100.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0100.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0101.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0101.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0102.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0102.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0103.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0103.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0104.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0104.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0105.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0105.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0106.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0106.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0107.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0107.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0108.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0108.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0109.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0109.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0110.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0110.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0111.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0112.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0112.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0113.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0113.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0114.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0114.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0115.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0115.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0116.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0116.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0117.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0117.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0118.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0118.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0119.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0119.jpg -------------------------------------------------------------------------------- /videos/Crossing/img/0120.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/adelbibi/Multi-Template-Scale-Adaptive-Kernelized-Correlation-Filters/bc14331d512fb680cda779560de125f1841ab8cf/videos/Crossing/img/0120.jpg --------------------------------------------------------------------------------