├── .gitattributes
├── .gitmodules
├── LICENSE
├── README.md
├── deepwavetorch
├── layers
│ ├── backproj.py
│ └── graph_conv.py
├── models
│ └── deepwave.py
├── tests
│ ├── inference
│ │ └── mse_benchmark.py
│ └── simple_load
│ │ ├── grid.npy
│ │ └── load_model.py
└── utils
│ ├── activations.py
│ ├── laplacian.py
│ └── matrix_operations.py
├── figures
├── DeepWave_fields_comparison.png
└── task4_recording1.gif
├── notebooks
├── .ipynb_checkpoints
│ └── inference_benchmark-checkpoint.ipynb
├── DeepWave_training.ipynb
├── deepwave_sketches.ipynb
└── inference_benchmark.ipynb
├── requirements.txt
├── setup.cfg
├── setup.py
└── tracks
├── eigenmike_grid.npy
├── locata_task1_recording2.wav
├── pretrained_freq0_locata_weights.npz
└── task1_recording1.wav
/.gitattributes:
--------------------------------------------------------------------------------
1 | *.ipynb -linguist-detectable
2 |
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "ImoT_tools"]
2 | path = ImoT_tools
3 | url = git@github.com:imagingofthings/ImoT_tools.git
4 | [submodule "DeepWave"]
5 | path = DeepWave
6 | url = git@github.com:imagingofthings/DeepWave.git
7 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Attribution 4.0 International
2 |
3 | =======================================================================
4 |
5 | Creative Commons Corporation ("Creative Commons") is not a law firm and
6 | does not provide legal services or legal advice. Distribution of
7 | Creative Commons public licenses does not create a lawyer-client or
8 | other relationship. Creative Commons makes its licenses and related
9 | information available on an "as-is" basis. Creative Commons gives no
10 | warranties regarding its licenses, any material licensed under their
11 | terms and conditions, or any related information. Creative Commons
12 | disclaims all liability for damages resulting from their use to the
13 | fullest extent possible.
14 |
15 | Using Creative Commons Public Licenses
16 |
17 | Creative Commons public licenses provide a standard set of terms and
18 | conditions that creators and other rights holders may use to share
19 | original works of authorship and other material subject to copyright
20 | and certain other rights specified in the public license below. The
21 | following considerations are for informational purposes only, are not
22 | exhaustive, and do not form part of our licenses.
23 |
24 | Considerations for licensors: Our public licenses are
25 | intended for use by those authorized to give the public
26 | permission to use material in ways otherwise restricted by
27 | copyright and certain other rights. Our licenses are
28 | irrevocable. Licensors should read and understand the terms
29 | and conditions of the license they choose before applying it.
30 | Licensors should also secure all rights necessary before
31 | applying our licenses so that the public can reuse the
32 | material as expected. Licensors should clearly mark any
33 | material not subject to the license. This includes other CC-
34 | licensed material, or material used under an exception or
35 | limitation to copyright. More considerations for licensors:
36 | wiki.creativecommons.org/Considerations_for_licensors
37 |
38 | Considerations for the public: By using one of our public
39 | licenses, a licensor grants the public permission to use the
40 | licensed material under specified terms and conditions. If
41 | the licensor's permission is not necessary for any reason--for
42 | example, because of any applicable exception or limitation to
43 | copyright--then that use is not regulated by the license. Our
44 | licenses grant only permissions under copyright and certain
45 | other rights that a licensor has authority to grant. Use of
46 | the licensed material may still be restricted for other
47 | reasons, including because others have copyright or other
48 | rights in the material. A licensor may make special requests,
49 | such as asking that all changes be marked or described.
50 | Although not required by our licenses, you are encouraged to
51 | respect those requests where reasonable. More_considerations
52 | for the public:
53 | wiki.creativecommons.org/Considerations_for_licensees
54 |
55 | =======================================================================
56 |
57 | Creative Commons Attribution 4.0 International Public License
58 |
59 | By exercising the Licensed Rights (defined below), You accept and agree
60 | to be bound by the terms and conditions of this Creative Commons
61 | Attribution 4.0 International Public License ("Public License"). To the
62 | extent this Public License may be interpreted as a contract, You are
63 | granted the Licensed Rights in consideration of Your acceptance of
64 | these terms and conditions, and the Licensor grants You such rights in
65 | consideration of benefits the Licensor receives from making the
66 | Licensed Material available under these terms and conditions.
67 |
68 |
69 | Section 1 -- Definitions.
70 |
71 | a. Adapted Material means material subject to Copyright and Similar
72 | Rights that is derived from or based upon the Licensed Material
73 | and in which the Licensed Material is translated, altered,
74 | arranged, transformed, or otherwise modified in a manner requiring
75 | permission under the Copyright and Similar Rights held by the
76 | Licensor. For purposes of this Public License, where the Licensed
77 | Material is a musical work, performance, or sound recording,
78 | Adapted Material is always produced where the Licensed Material is
79 | synched in timed relation with a moving image.
80 |
81 | b. Adapter's License means the license You apply to Your Copyright
82 | and Similar Rights in Your contributions to Adapted Material in
83 | accordance with the terms and conditions of this Public License.
84 |
85 | c. Copyright and Similar Rights means copyright and/or similar rights
86 | closely related to copyright including, without limitation,
87 | performance, broadcast, sound recording, and Sui Generis Database
88 | Rights, without regard to how the rights are labeled or
89 | categorized. For purposes of this Public License, the rights
90 | specified in Section 2(b)(1)-(2) are not Copyright and Similar
91 | Rights.
92 |
93 | d. Effective Technological Measures means those measures that, in the
94 | absence of proper authority, may not be circumvented under laws
95 | fulfilling obligations under Article 11 of the WIPO Copyright
96 | Treaty adopted on December 20, 1996, and/or similar international
97 | agreements.
98 |
99 | e. Exceptions and Limitations means fair use, fair dealing, and/or
100 | any other exception or limitation to Copyright and Similar Rights
101 | that applies to Your use of the Licensed Material.
102 |
103 | f. Licensed Material means the artistic or literary work, database,
104 | or other material to which the Licensor applied this Public
105 | License.
106 |
107 | g. Licensed Rights means the rights granted to You subject to the
108 | terms and conditions of this Public License, which are limited to
109 | all Copyright and Similar Rights that apply to Your use of the
110 | Licensed Material and that the Licensor has authority to license.
111 |
112 | h. Licensor means the individual(s) or entity(ies) granting rights
113 | under this Public License.
114 |
115 | i. Share means to provide material to the public by any means or
116 | process that requires permission under the Licensed Rights, such
117 | as reproduction, public display, public performance, distribution,
118 | dissemination, communication, or importation, and to make material
119 | available to the public including in ways that members of the
120 | public may access the material from a place and at a time
121 | individually chosen by them.
122 |
123 | j. Sui Generis Database Rights means rights other than copyright
124 | resulting from Directive 96/9/EC of the European Parliament and of
125 | the Council of 11 March 1996 on the legal protection of databases,
126 | as amended and/or succeeded, as well as other essentially
127 | equivalent rights anywhere in the world.
128 |
129 | k. You means the individual or entity exercising the Licensed Rights
130 | under this Public License. Your has a corresponding meaning.
131 |
132 |
133 | Section 2 -- Scope.
134 |
135 | a. License grant.
136 |
137 | 1. Subject to the terms and conditions of this Public License,
138 | the Licensor hereby grants You a worldwide, royalty-free,
139 | non-sublicensable, non-exclusive, irrevocable license to
140 | exercise the Licensed Rights in the Licensed Material to:
141 |
142 | a. reproduce and Share the Licensed Material, in whole or
143 | in part; and
144 |
145 | b. produce, reproduce, and Share Adapted Material.
146 |
147 | 2. Exceptions and Limitations. For the avoidance of doubt, where
148 | Exceptions and Limitations apply to Your use, this Public
149 | License does not apply, and You do not need to comply with
150 | its terms and conditions.
151 |
152 | 3. Term. The term of this Public License is specified in Section
153 | 6(a).
154 |
155 | 4. Media and formats; technical modifications allowed. The
156 | Licensor authorizes You to exercise the Licensed Rights in
157 | all media and formats whether now known or hereafter created,
158 | and to make technical modifications necessary to do so. The
159 | Licensor waives and/or agrees not to assert any right or
160 | authority to forbid You from making technical modifications
161 | necessary to exercise the Licensed Rights, including
162 | technical modifications necessary to circumvent Effective
163 | Technological Measures. For purposes of this Public License,
164 | simply making modifications authorized by this Section 2(a)
165 | (4) never produces Adapted Material.
166 |
167 | 5. Downstream recipients.
168 |
169 | a. Offer from the Licensor -- Licensed Material. Every
170 | recipient of the Licensed Material automatically
171 | receives an offer from the Licensor to exercise the
172 | Licensed Rights under the terms and conditions of this
173 | Public License.
174 |
175 | b. No downstream restrictions. You may not offer or impose
176 | any additional or different terms or conditions on, or
177 | apply any Effective Technological Measures to, the
178 | Licensed Material if doing so restricts exercise of the
179 | Licensed Rights by any recipient of the Licensed
180 | Material.
181 |
182 | 6. No endorsement. Nothing in this Public License constitutes or
183 | may be construed as permission to assert or imply that You
184 | are, or that Your use of the Licensed Material is, connected
185 | with, or sponsored, endorsed, or granted official status by,
186 | the Licensor or others designated to receive attribution as
187 | provided in Section 3(a)(1)(A)(i).
188 |
189 | b. Other rights.
190 |
191 | 1. Moral rights, such as the right of integrity, are not
192 | licensed under this Public License, nor are publicity,
193 | privacy, and/or other similar personality rights; however, to
194 | the extent possible, the Licensor waives and/or agrees not to
195 | assert any such rights held by the Licensor to the limited
196 | extent necessary to allow You to exercise the Licensed
197 | Rights, but not otherwise.
198 |
199 | 2. Patent and trademark rights are not licensed under this
200 | Public License.
201 |
202 | 3. To the extent possible, the Licensor waives any right to
203 | collect royalties from You for the exercise of the Licensed
204 | Rights, whether directly or through a collecting society
205 | under any voluntary or waivable statutory or compulsory
206 | licensing scheme. In all other cases the Licensor expressly
207 | reserves any right to collect such royalties.
208 |
209 |
210 | Section 3 -- License Conditions.
211 |
212 | Your exercise of the Licensed Rights is expressly made subject to the
213 | following conditions.
214 |
215 | a. Attribution.
216 |
217 | 1. If You Share the Licensed Material (including in modified
218 | form), You must:
219 |
220 | a. retain the following if it is supplied by the Licensor
221 | with the Licensed Material:
222 |
223 | i. identification of the creator(s) of the Licensed
224 | Material and any others designated to receive
225 | attribution, in any reasonable manner requested by
226 | the Licensor (including by pseudonym if
227 | designated);
228 |
229 | ii. a copyright notice;
230 |
231 | iii. a notice that refers to this Public License;
232 |
233 | iv. a notice that refers to the disclaimer of
234 | warranties;
235 |
236 | v. a URI or hyperlink to the Licensed Material to the
237 | extent reasonably practicable;
238 |
239 | b. indicate if You modified the Licensed Material and
240 | retain an indication of any previous modifications; and
241 |
242 | c. indicate the Licensed Material is licensed under this
243 | Public License, and include the text of, or the URI or
244 | hyperlink to, this Public License.
245 |
246 | 2. You may satisfy the conditions in Section 3(a)(1) in any
247 | reasonable manner based on the medium, means, and context in
248 | which You Share the Licensed Material. For example, it may be
249 | reasonable to satisfy the conditions by providing a URI or
250 | hyperlink to a resource that includes the required
251 | information.
252 |
253 | 3. If requested by the Licensor, You must remove any of the
254 | information required by Section 3(a)(1)(A) to the extent
255 | reasonably practicable.
256 |
257 | 4. If You Share Adapted Material You produce, the Adapter's
258 | License You apply must not prevent recipients of the Adapted
259 | Material from complying with this Public License.
260 |
261 |
262 | Section 4 -- Sui Generis Database Rights.
263 |
264 | Where the Licensed Rights include Sui Generis Database Rights that
265 | apply to Your use of the Licensed Material:
266 |
267 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268 | to extract, reuse, reproduce, and Share all or a substantial
269 | portion of the contents of the database;
270 |
271 | b. if You include all or a substantial portion of the database
272 | contents in a database in which You have Sui Generis Database
273 | Rights, then the database in which You have Sui Generis Database
274 | Rights (but not its individual contents) is Adapted Material; and
275 |
276 | c. You must comply with the conditions in Section 3(a) if You Share
277 | all or a substantial portion of the contents of the database.
278 |
279 | For the avoidance of doubt, this Section 4 supplements and does not
280 | replace Your obligations under this Public License where the Licensed
281 | Rights include other Copyright and Similar Rights.
282 |
283 |
284 | Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285 |
286 | a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287 | EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288 | AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289 | ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290 | IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291 | WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292 | PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293 | ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294 | KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295 | ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296 |
297 | b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298 | TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299 | NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300 | INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301 | COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302 | USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303 | ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304 | DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305 | IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306 |
307 | c. The disclaimer of warranties and limitation of liability provided
308 | above shall be interpreted in a manner that, to the extent
309 | possible, most closely approximates an absolute disclaimer and
310 | waiver of all liability.
311 |
312 |
313 | Section 6 -- Term and Termination.
314 |
315 | a. This Public License applies for the term of the Copyright and
316 | Similar Rights licensed here. However, if You fail to comply with
317 | this Public License, then Your rights under this Public License
318 | terminate automatically.
319 |
320 | b. Where Your right to use the Licensed Material has terminated under
321 | Section 6(a), it reinstates:
322 |
323 | 1. automatically as of the date the violation is cured, provided
324 | it is cured within 30 days of Your discovery of the
325 | violation; or
326 |
327 | 2. upon express reinstatement by the Licensor.
328 |
329 | For the avoidance of doubt, this Section 6(b) does not affect any
330 | right the Licensor may have to seek remedies for Your violations
331 | of this Public License.
332 |
333 | c. For the avoidance of doubt, the Licensor may also offer the
334 | Licensed Material under separate terms or conditions or stop
335 | distributing the Licensed Material at any time; however, doing so
336 | will not terminate this Public License.
337 |
338 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339 | License.
340 |
341 |
342 | Section 7 -- Other Terms and Conditions.
343 |
344 | a. The Licensor shall not be bound by any additional or different
345 | terms or conditions communicated by You unless expressly agreed.
346 |
347 | b. Any arrangements, understandings, or agreements regarding the
348 | Licensed Material not stated herein are separate from and
349 | independent of the terms and conditions of this Public License.
350 |
351 |
352 | Section 8 -- Interpretation.
353 |
354 | a. For the avoidance of doubt, this Public License does not, and
355 | shall not be interpreted to, reduce, limit, restrict, or impose
356 | conditions on any use of the Licensed Material that could lawfully
357 | be made without permission under this Public License.
358 |
359 | b. To the extent possible, if any provision of this Public License is
360 | deemed unenforceable, it shall be automatically reformed to the
361 | minimum extent necessary to make it enforceable. If the provision
362 | cannot be reformed, it shall be severed from this Public License
363 | without affecting the enforceability of the remaining terms and
364 | conditions.
365 |
366 | c. No term or condition of this Public License will be waived and no
367 | failure to comply consented to unless expressly agreed to by the
368 | Licensor.
369 |
370 | d. Nothing in this Public License constitutes or may be interpreted
371 | as a limitation upon, or waiver of, any privileges and immunities
372 | that apply to the Licensor or You, including from the legal
373 | processes of any jurisdiction or authority.
374 |
375 |
376 | =======================================================================
377 |
378 | Creative Commons is not a party to its public
379 | licenses. Notwithstanding, Creative Commons may elect to apply one of
380 | its public licenses to material it publishes and in those instances
381 | will be considered the “Licensor.” The text of the Creative Commons
382 | public licenses is dedicated to the public domain under the CC0 Public
383 | Domain Dedication. Except for the limited purpose of indicating that
384 | material is shared under a Creative Commons public license or as
385 | otherwise permitted by the Creative Commons policies published at
386 | creativecommons.org/policies, Creative Commons does not authorize the
387 | use of the trademark "Creative Commons" or any other trademark or logo
388 | of Creative Commons without its prior written consent including,
389 | without limitation, in connection with any unauthorized modifications
390 | to any of its public licenses or any other arrangements,
391 | understandings, or agreements concerning use of licensed material. For
392 | the avoidance of doubt, this paragraph does not form part of the
393 | public licenses.
394 |
395 | Creative Commons may be contacted at creativecommons.org.
396 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging (PyTorch)
2 |
3 |
4 |
5 | This repository contains a PyTorch implementation of the DeepWave model originally published at NeurIPS 2019
6 |
7 | | [paper](https://proceedings.neurips.cc/paper/2019/file/e9bf14a419d77534105016f5ec122d62-Paper.pdf) | [original code](https://github.com/imagingofthings/DeepWave) |
8 |
9 | Get started with DeepWave (PyTorch) inference
10 |
11 | [](https://colab.research.google.com/drive/1BC72KmoAyeydS0X7Dti3fFxzLAxfbdWC?usp=sharing)
12 |
13 | ## Main building blocks:
14 |
15 | - SphericalChebConv: Spherical Chebyshev graph convolutions
16 | - BackProjLayer: project correlation matrix into image form (intensity map form)
17 | - ReTanh: Rectified hyperbolic tangent action function
18 | - DeepWave: the actual model architecture
19 |
20 | DeepWave (PyTorch) architecture:
21 | ```
22 | Deepwave: input=S (visibility matrix), trainable={mu, D, tau}
23 | y <- BackProjLayer(S)
24 | conv4 <- SphericalChebConv(I_init) + y
25 | conv4 <- ReTanh(conv4)
26 | conv3 <- SphericalChebConv(conv4) + y
27 | conv3 <- ReTanh(conv3)
28 | conv2 <- SphericalChebConv(conv3) + y
29 | conv2 <- ReTanh(conv2)
30 | conv1 <- SphericalChebConv(conv2) + y
31 | conv1 <- ReTanh(conv1)
32 | conv0 <- SphericalChebConv(conv1) + y
33 | I_out <- ReTanh(conv0)
34 | ```
35 |
36 | Many of the operations used in this implementation were borrowed from the repository [deepsphere-pytorch](https://github.com/deepsphere/deepsphere-pytorch).
37 |
38 | ## Installation
39 |
40 | #### First time setup
41 | Create a Python virtual environment
42 | ```
43 | python3 -m venv /path/to/your_new_venv
44 | ```
45 |
46 | Start `your_new_venv`
47 | ```
48 | source /path/to//bin/activate
49 | ```
50 |
51 | - Clone `DeepWaveTorch` (this repo!).
52 | ```
53 | git clone git@github.com:adrianSRoman/DeepWaveTorch.git
54 | ```
55 |
56 | - Initialize submodules
57 | ```
58 | git submodule init
59 | ```
60 |
61 | - Start `ImoT_tools`: plotting library used to nicely visualize DeepWave's output
62 | ```
63 | cd ImoT_tools
64 | pip install -r requirements.txt
65 | python3 setup.py develop
66 | ```
67 |
68 | - Start `DeepWave`: original DeepWave implementation. Used for benchmarking against the PyTorch implementation. Data loaders are also re-used from the original implementation.
69 | ```
70 | cd DeepWave
71 | python3 setup.py develop
72 | ```
73 |
74 | - Start `DeepWaveTorch`: new DeepWave PyTorch implementation.
75 | ```
76 | cd DeepWaveTorch
77 | pip install -r requirements.txt
78 | python3 setup.py develop
79 | ```
80 |
81 | ### Executing example `notebooks`
82 |
83 | - Start `your_new_venv`
84 | ```
85 | source /path/to//bin/activate
86 | ```
87 |
88 | - Create a Jupyter Kernel to contain your required packages (first time setup only)
89 | ```
90 | pip install ipykernel
91 | ipython kernel install --user --name=
92 | ```
93 |
94 | - Start Jupyter
95 |
96 | ```
97 | jupyter notebook
98 | ```
99 |
100 | - Select a given notebook you want to work with
101 | - Select `your_new_kernel_name` under: Kernel > Change kernel > `your_new_kernel_name`
102 |
103 | ## Extracting visibility matrices (DeepWave's input)
104 |
105 | Extracting visibility matrices `S` is perhaps the main aspect you will need because they are DeepWave's input! To save you some time we created a simple notebook that for a given audio track of M microphones and N samples (we use an eigenmike32), it generates a visibility matrix (MxM) over 100 msec audio frames. [](https://colab.research.google.com/drive/1BC72KmoAyeydS0X7Dti3fFxzLAxfbdWC?usp=sharing)
106 |
107 | Note: the data extraction for the experiments in this repo (including extracting visibility matrices) was done using the `run.sh` files from the original DeepWave code [see example run.sh](https://github.com/imagingofthings/DeepWave/blob/master/datasets/FRIDA/run.sh). The `run.sh` files perform three tasks:
108 |
109 | (1) Extract data from a mic array of N channels to generate visibility matrices `S` (this is what DeepWave takes as input). Extract a ground truth intensity field `I` which DeepWave learns how to generate. The script will then generate a `.npz` file.
110 |
111 | (2) Merge datasets in single `.npz` files for the 9 different extracted frequency bands across all tracks.
112 |
113 | (3) Train the original DeepWave model. After training is done, you will find `.npz` files containing the trained weights of the model for each frequency band.
114 |
115 | Overall, you can either use the colab notebook to extract visibility matrices, or execute the `run.sh` scripts from the original DeepWave repo (you choose).
116 |
117 | ## Qualitative and quantitative comparison against the original DeepWave implementation
118 |
119 | #### Qualitatively, the implementation from this repository generates the same intensity fields as the original DeepWave implementation.
120 |
121 | ##### Inferred intensity field for a single frequency band: DeepWave original Vs. DeepWave PyTorch
122 |
123 |
124 |
125 |
126 |
127 |
128 | ## YouTube presentation
129 |
130 | [](https://www.youtube.com/watch?v=ZO5jfqY_NwA)
131 |
132 |
133 | ## License
134 | Shield: [![CC BY 4.0][cc-by-shield]][cc-by]
135 |
136 | This work is licensed under a
137 | [Creative Commons Attribution 4.0 International License][cc-by].
138 |
139 | [![CC BY 4.0][cc-by-image]][cc-by]
140 |
141 | [cc-by]: http://creativecommons.org/licenses/by/4.0/
142 | [cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
143 | [cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg
144 |
--------------------------------------------------------------------------------
/deepwavetorch/layers/backproj.py:
--------------------------------------------------------------------------------
1 | """Back projection layer
2 | Project frequency domain mic correlation matrix into an image form of N pixels
3 | """
4 |
5 | import torch
6 | from torch import nn
7 |
8 | class BackProjLayer(torch.nn.Module):
9 | """Spherical Convolutional Neural Netork.
10 | """
11 |
12 | def __init__(self, Nch, Npx, tau=None, D=None):
13 | """Initialization.
14 | Args:
15 | Nch (int): number of channels in mic array
16 | Npx (int): number of pixels in Robinson projection
17 | """
18 | super().__init__()
19 | if tau is None or D is None:
20 | self.tau = torch.nn.Parameter(torch.empty((Npx), dtype=torch.float64))
21 | self.D = torch.nn.Parameter(torch.empty((Nch, Npx), dtype=torch.complex128))
22 | self.reset_parameters()
23 | else:
24 | self.tau = torch.nn.Parameter(tau)
25 | self.D = torch.nn.Parameter(D)
26 |
27 |
28 | def reset_parameters(self):
29 | std = 1e-5
30 | self.tau.data.normal_(0, std)
31 | self.D.data.normal_(0, std)
32 |
33 | def forward(self, S):
34 | """Forward Pass.
35 | Args:
36 | S (:obj:`torch.Tensor`): input to be forwarded. (N_sample, Npx)
37 | Returns:
38 | :obj:`torch.Tensor`: output: (N_sample, Npx)
39 | """
40 | N_sample, N_px = S.shape[0], self.tau.shape[0]
41 | y = torch.zeros((N_sample, N_px))
42 | for i in range(N_sample): # Loop to handle linalg.eigh: broadcasting can be slower
43 | Ds, Vs = torch.linalg.eigh(S[i]) # (Nch, Nch), (Nch, Nch)
44 | idx = Ds > 0 # To avoid np.sqrt() issues.
45 | Ds, Vs = Ds[idx], Vs[:, idx]
46 | y[i] = torch.linalg.norm(self.D.conj().T @ (Vs * torch.sqrt(Ds)), axis=1) ** 2 # (Npx, Nch) dot ((Nch, Nch) * (Nch, Nch))
47 | y -= self.tau
48 | return y
--------------------------------------------------------------------------------
/deepwavetorch/layers/graph_conv.py:
--------------------------------------------------------------------------------
1 | """Chebyshev convolution layer.
2 | PyTorch implementation inspired from: https://github.com/deepsphere/deepsphere-pytorch/blob/master/deepsphere/layers/chebyshev.py
3 | Based upon NumPy implementation from: https://github.com/imagingofthings/DeepWave
4 | """
5 |
6 | import math
7 |
8 | import torch
9 | from torch import nn
10 |
11 | def cheb_conv(laplacian, inputs, weight):
12 | """Chebyshev convolution.
13 | Args:
14 | laplacian (:obj:`torch.sparse.Tensor`): The laplacian corresponding to the current sampling of the sphere. (Npx, Npx)
15 | inputs (:obj:`torch.Tensor`): The current input data being forwarded. (Nsamps, Npx)
16 | weight (:obj:`torch.Tensor`): The weights of the current layer. (K,)
17 | Returns:
18 | :obj:`torch.Tensor`: Inputs after applying Chebyshev convolution. (Nsamps, Npx)
19 | """
20 | K = weight.shape[0]
21 | was_1d = (inputs.ndim == 1)
22 | if was_1d:
23 | inputs = inputs.unsqueeze(0)
24 | N_sample, Npx = inputs.shape[0], inputs.shape[1]
25 |
26 | x0 = inputs.T # (Nsamps, Npx).T -> (Npx, Nsamps)
27 | inputs = x0.T.unsqueeze(0) # (1, Npx, Nsamps)
28 | x1 = torch.sparse.mm(laplacian, x0) # (Npx, Npx) x (Npx, Nsamps) -> (Npx, Nsamps)
29 | inputs = torch.cat((inputs, x1.T.unsqueeze(0)), 0) # (1, Nsamps, Npx) + (1, Nsamps, Npx) = (2*Nsamps, Npx)
30 | for _ in range(1, K - 1):
31 | x2 = 2 * torch.sparse.mm(laplacian, x1) - x0 # (Npx, Npx) x (Npx, Nsamps) - (Npx, Nsamps) = (Npx, Nsamps)
32 | inputs = torch.cat((inputs, x2.T.unsqueeze(0)), 0) # (ki, Nsamps, Npx) + (1, Nsamps, Npx)
33 | x0, x1 = x1, x2 # (Npx, Nsamps), (Npx, Nsamps)
34 | inputs = inputs.permute(1, 2, 0).contiguous() # (K, Nsamps, Npx)
35 | inputs = inputs.view([N_sample*Npx, K]) # (Nsamps*Npx, K)
36 | inputs = inputs.matmul(weight) # (Nsamps*Npx, K) x (K,) -> (Nsamps*Npx,)
37 | inputs = inputs.view([N_sample, Npx]) # (Nsamps, Npx)
38 | return inputs
39 |
40 | class ChebConv(torch.nn.Module):
41 | """Graph convolutional layer.
42 | """
43 |
44 | def __init__(self, in_channels, out_channels, kernel_size, weight=None, bias=False, conv=cheb_conv):
45 | """Initialize the Chebyshev layer.
46 | Args:
47 | in_channels (int): Number of channels/features in the input graph.
48 | out_channels (int): Number of channels/features in the output graph.
49 | kernel_size (int): Number of trainable parameters per filter, which is also the size of the convolutional kernel.
50 | The order of the Chebyshev polynomials is kernel_size - 1.
51 | weight (torch.Tensor): pre-trained or intial state weight matrix (K,)
52 | bias (bool): Whether to add a bias term.
53 | conv (callable): Function which will perform the graph convolution.
54 | """
55 | super().__init__()
56 |
57 | self.in_channels = in_channels
58 | self.out_channels = out_channels
59 | self.kernel_size = kernel_size
60 | self._conv = conv
61 | if weight is None:
62 | shape = (kernel_size,)
63 | self.weight = torch.nn.Parameter(torch.DoubleTensor(*shape))
64 | std = math.sqrt(2 / (self.in_channels * self.kernel_size))
65 | self.weight.data.normal_(0, std)
66 | else:
67 | self.weight = torch.nn.Parameter(weight)
68 |
69 | if bias:
70 | self.bias = torch.nn.Parameter(torch.DoubleTensor(out_channels))
71 | else:
72 | self.register_parameter("bias", None)
73 |
74 | self.bias_initialization()
75 |
76 | def bias_initialization(self):
77 | """Initialize bias.
78 | """
79 | if self.bias is not None:
80 | self.bias.data.fill_(0.00001)
81 |
82 | def forward(self, laplacian, inputs):
83 | """Forward graph convolution.
84 | Args:
85 | laplacian (:obj:`torch.sparse.Tensor`): The laplacian corresponding to the current sampling of the sphere.
86 | inputs (:obj:`torch.Tensor`): The current input data being forwarded.
87 | Returns:
88 | :obj:`torch.Tensor`: The convoluted inputs.
89 | """
90 | outputs = self._conv(laplacian, inputs, self.weight)
91 | if self.bias is not None:
92 | outputs += self.bias
93 | return outputs
94 |
95 | class SphericalChebConv(torch.nn.Module):
96 | """Chebyshev Graph Convolution.
97 | """
98 |
99 | def __init__(self, in_channels, out_channels, lap, kernel_size, weight=None):
100 | """Initialization.
101 | Args:
102 | in_channels (int): initial number of channels
103 | out_channels (int): output number of channels
104 | lap (:obj:`torch.sparse.DoubleTensor`): laplacian
105 | kernel_size (int): order of polynomial filter K. Defaults to 3.
106 | weight (:obj:`torch.sparse.DoubleTensor`): weight convolutional matrix (K,)
107 | """
108 | super().__init__()
109 | self.register_buffer("laplacian", lap)
110 | self.chebconv = ChebConv(in_channels, out_channels, kernel_size, weight)
111 |
112 | def forward(self, x):
113 | """Forward pass.
114 | Args:
115 | x (:obj:`torch.tensor`): input [batch x vertices x channels/features]
116 | Returns:
117 | :obj:`torch.tensor`: output [batch x vertices x channels/features]
118 | """
119 | x = self.chebconv(self.laplacian, x)
120 | return x
--------------------------------------------------------------------------------
/deepwavetorch/models/deepwave.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 |
4 | from deepwavetorch.layers.backproj import BackProjLayer
5 | from deepwavetorch.layers.graph_conv import SphericalChebConv
6 | from deepwavetorch.utils.activations import ReTanh
7 | from deepwavetorch.utils.laplacian import laplacian_exp
8 |
9 | class DeepWave(torch.nn.Module):
10 | """DeepWave: real-time recurrent neural network for acoustic imaging.
11 | """
12 |
13 | def __init__(self, R, kernel_size, Nch, Npx, batch_size=1, depth=1, pretr_params=None):
14 | """Initialization.
15 | Args:
16 | R: Cartesian coordinates of point set (N,3)
17 | kernel_size (int): polynomial degree.
18 | Nch (int): number of channels in mic array
19 | Npx (int): number of pixels in Robinson projection
20 | """
21 | super().__init__()
22 |
23 | self.laps, self.rho = laplacian_exp(R, depth)
24 | if pretr_params: # use pre-trained parameters: tau, mu and D
25 | self.y_backproj = BackProjLayer(Nch, Npx, tau=pretr_params['tau'], D=pretr_params['D'])
26 | self.sconvl = SphericalChebConv(Nch, Npx, self.laps[0], kernel_size, weight=pretr_params['mu'])
27 | else:
28 | self.y_backproj = BackProjLayer(Nch, Npx)
29 | self.sconvl = SphericalChebConv(Nch, Npx, self.laps[0], kernel_size)
30 | self.retanh = ReTanh(alpha=1.000000)
31 |
32 | def reset_parameters(self):
33 | std = 1e-4
34 | self.I.data.random_(0, std)
35 |
36 | def forward(self, S, I_prev=None):
37 | """Forward Pass.
38 | Args:
39 | S (:obj:`torch.Tensor`): input (Nch, Nch)
40 | Returns:
41 | y_proj :obj: `torch.Tensor`: output (N_sample, Npx)
42 | x_conv* :obj: `torch.Tensor`: output (N_samle, Npx)
43 | """
44 | y_proj = self.y_backproj(S)
45 | if I_prev is None:
46 | I_prev = torch.zeros(y_proj.shape[1], dtype=torch.float64)
47 | x_conv4 = self.sconvl(I_prev)
48 | x_conv4 = x_conv4.add(y_proj)
49 | x_conv4 = self.retanh(x_conv4)
50 | x_conv3 = self.sconvl(x_conv4)
51 | x_conv3 = x_conv3.add(y_proj)
52 | x_conv3 = self.retanh(x_conv3)
53 | x_conv2 = self.sconvl(x_conv3)
54 | x_conv2 = x_conv2.add(y_proj)
55 | x_conv2 = self.retanh(x_conv2)
56 | x_conv1 = self.sconvl(x_conv2)
57 | x_conv1 = x_conv1.add(y_proj)
58 | x_conv1 = self.retanh(x_conv1)
59 | x_conv0 = self.sconvl(x_conv1)
60 | x_conv0 = x_conv0.add(y_proj)
61 | x_conv0 = self.retanh(x_conv0)
62 | out = x_conv0
63 |
64 | return out
65 |
--------------------------------------------------------------------------------
/deepwavetorch/tests/inference/mse_benchmark.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import deepwave.nn as nn
3 | import deepwave.tools.math.func as func
4 | import deepwave.tools.math.graph as graph
5 | import deepwave.nn.crnn as deepwave_numpy # NumPy DeepWave model library
6 |
7 | import torch
8 | from deepwavetorch.models.deepwave import DeepWave as deepwave_torch # PyTorch DeepWave model
9 |
10 | Df = nn.DataSet.from_file("/home/asroman/repos/DeepWave/datasets/FRIDA/dataset/D_1-5_freq0_cold.npz") # 0th frequency training data
11 | Pf = np.load("/home/asroman/repos/DeepWave/datasets/FRIDA/dataset/D_freq0_train.npz") # trained model parameters
12 | N_antenna = Df.XYZ.shape[1] # number of microphones in the array data
13 | N_px = Df.R.shape[1] # number of pixels in the intensity map
14 | K = int(Pf['K']) # Chev filter polynomial order
15 | print("Num antenna:", N_antenna)
16 | print("Num pixels:", N_px)
17 | print("Filter Kth:", K)
18 | parameter = deepwave_numpy.Parameter(N_antenna, N_px, K)
19 | sampler = Df.sampler()
20 | p_opt = Pf['p_opt'][np.argmin(Pf['v_loss'])]
21 |
22 | # We will use the 0th image to test DeepWave original VS. DeepWave Pytorch
23 | S, I, I_prev = sampler.decode(Df[0])
24 | N_layer = Pf['N_layer']
25 | print("Number of layers:", N_layer)
26 | p_mu, p_D, p_tau = parameter.decode(p_opt) # Load trained parameters
27 |
28 | # Load the DeepWave NumPy model
29 | Ln, _ = graph.laplacian_exp(Df.R, normalized=True)
30 | afunc = lambda _: func.retanh(Pf['tanh_lin_limit'], _)
31 | deepwavenumpy = deepwave_numpy.Evaluator(N_layer, parameter, p_opt, Ln, afunc)
32 |
33 | # Next we want to re-use the network parameters for the PyTorch DeepWave model
34 | # Save orinal DeepWave network's trained parameters
35 | pretr_params = {"mu": torch.from_numpy(p_mu),
36 | "tau": torch.from_numpy(p_tau),
37 | "D": torch.from_numpy(p_D)}
38 | # Load the DeepWave PyTorch model
39 | deepwavetorch = deepwave_torch(R=Df.R, kernel_size=K, Nch=N_antenna, Npx=N_px,
40 | batch_size=1, depth=1, pretr_params=pretr_params)
41 |
42 | # Comparison of NumPy Vs. PyTorch DeepWave model
43 | I_numpy = deepwavenumpy(S, I_prev)
44 | I_torch = deepwavetorch(torch.from_numpy(S).unsqueeze(0), torch.from_numpy(I_prev).double()).cpu().detach().numpy()
45 | print("Intensity fields MSE error (NumPy vs. PyTorch):")
46 | mse = np.square(np.subtract(I_numpy, I_torch)).mean()
47 | print(mse) # NOTE: we expect to see 1e-15 error, which is pretty close to machine epsilon
48 |
49 |
50 |
51 |
--------------------------------------------------------------------------------
/deepwavetorch/tests/simple_load/grid.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/deepwavetorch/tests/simple_load/grid.npy
--------------------------------------------------------------------------------
/deepwavetorch/tests/simple_load/load_model.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 | from deepwavetorch.models.deepwave import DeepWave
5 |
6 | N_px = 2234
7 | R = np.load("./grid.npy")
8 | K = 22
9 | N_antenna = 48
10 |
11 | deepwave_torch = DeepWave(R=R, kernel_size=K,
12 | Nch=N_antenna, Npx=N_px,
13 | batch_size=1, depth=1,
14 | pretr_params=None)
15 |
16 | print(deepwave_torch)
17 |
--------------------------------------------------------------------------------
/deepwavetorch/utils/activations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 |
4 | class ReTanh(torch.nn.Module):
5 | '''
6 | Rectified Hyperbolic Tangent
7 | '''
8 | def __init__(self, alpha=1.000000):
9 | super().__init__()
10 | self.alpha = alpha
11 |
12 | def forward(self, x):
13 | beta = self.alpha / torch.tanh(torch.ones(1, dtype=torch.float64))
14 | return torch.fmax(torch.zeros(x.shape, dtype=torch.float64), beta * torch.tanh(x))
--------------------------------------------------------------------------------
/deepwavetorch/utils/laplacian.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 |
4 | import scipy
5 | import scipy.sparse as sp
6 | import scipy.linalg as linalg
7 | import scipy.spatial as spatial
8 | import scipy.sparse.linalg as splinalg
9 | from scipy.sparse import coo_matrix
10 | from pygsp.graphs import Graph
11 |
12 | # Reference: https://github.com/deepsphere/deepsphere-pytorch/blob/master/deepsphere/utils/laplacian_funcs.py
13 | def scipy_csr_to_sparse_tensor(csr_mat):
14 | """Convert scipy csr to sparse pytorch tensor.
15 | Args:
16 | csr_mat (csr_matrix): The sparse scipy matrix.
17 | Returns:
18 | sparse_tensor :obj:`torch.sparse.DoubleTensor`: The sparse torch matrix.
19 | """
20 | coo = coo_matrix(csr_mat)
21 | values = coo.data
22 | indices = np.vstack((coo.row, coo.col))
23 | idx = torch.LongTensor(indices)
24 | vals = torch.DoubleTensor(values)
25 | shape = coo.shape
26 | sparse_tensor = torch.sparse.DoubleTensor(idx, vals, torch.Size(shape))
27 | sparse_tensor = sparse_tensor.coalesce()
28 | return sparse_tensor
29 |
30 |
31 | def prepare_laplacian(laplacian):
32 | """Prepare a graph Laplacian to be fed to a graph convolutional layer.
33 | """
34 | def estimate_lmax(laplacian, tol=5e-3):
35 | """Estimate the largest eigenvalue of an operator.
36 | """
37 | lmax = sp.linalg.eigsh(laplacian, k=1, tol=tol, ncv=min(laplacian.shape[0], 10), return_eigenvectors=False)
38 | lmax = lmax[0]
39 | lmax *= 1 + 2 * tol # Be robust to errors.
40 | return lmax
41 |
42 | def scale_operator(L, lmax, scale=1):
43 | """Scale the eigenvalues from [0, lmax] to [-scale, scale].
44 | """
45 | I = sp.identity(L.shape[0], format=L.format, dtype=L.dtype)
46 | L *= 2 * scale / lmax
47 | L -= I
48 | return L
49 |
50 | lmax = estimate_lmax(laplacian)
51 | laplacian = scale_operator(laplacian, lmax)
52 | laplacian = scipy_csr_to_sparse_tensor(laplacian)
53 | return laplacian
54 |
55 |
56 | def cvxhull_graph(R: np.ndarray, cheb_normalized: bool = True, compute_differential_operator: bool = True):
57 |
58 | r"""
59 | Build the convex hull graph of a point set in :math:`\mathbb{R}^3`.
60 | The graph edges have exponential-decay weighting.
61 | Definitions of the graph Laplacians:
62 |
63 | .. math::
64 |
65 | L = I - D^{-1/2} W D^{-1/2},\qquad L_{n} = (2 / \mu_{\max}) L - I
66 |
67 | Parameters
68 | ----------
69 | R : :py:class:`~numpy.ndarray`
70 | (N,3) Cartesian coordinates of point set with size N. All points must be **distinct**.
71 | cheb_normalized : bool
72 | Rescale Laplacian spectrum to [-1, 1].
73 | compute_differential_operator : bool
74 | Computes the graph gradient.
75 |
76 | Returns
77 | -------
78 | G : :py:class:`~pygsp.graphs.Graph`
79 | If ``cheb_normalized = True``, ``G.Ln`` is created (Chebyshev Laplacian :math:`L_{n}` above)
80 | If ``compute_differential_operator = True``, ``G.D`` is created and contains the gradient.
81 | rho : float
82 | Scale parameter :math:`\rho` corresponding to the average distance of a point
83 | on the graph to its nearest neighbors.
84 |
85 | Examples
86 | --------
87 |
88 | .. plot::
89 |
90 | import numpy as np
91 | from pycgsp.graph import cvxhull_graph
92 | from pygsp.plotting import plot_graph
93 | theta, phi = np.linspace(0,np.pi,6, endpoint=False)[1:], np.linspace(0,2*np.pi,9, endpoint=False)
94 | theta, phi = np.meshgrid(theta, phi)
95 | x,y,z = np.cos(phi)*np.sin(theta), np.sin(phi)*np.sin(theta), np.cos(theta)
96 | R = np.stack((x.flatten(), y.flatten(), z.flatten()), axis=-1)
97 | G, _ = cvxhull_graph(R)
98 | plot_graph(G)
99 |
100 | Warnings
101 | --------
102 | In the newest version of PyGSP (> 0.5.1) the convention is changed: ``Graph.D`` is the divergence operator and
103 | ``Graph.D.transpose()`` the gradient (see routine `Graph.compute_differential_operator `_). The code should be adapted when this new version is released.
104 |
105 | """
106 |
107 | # Form convex hull to extract nearest neighbors. Each row in
108 | # cvx_hull.simplices is a triangle of connected points.
109 | cvx_hull = spatial.ConvexHull(R.T)
110 | cols = np.roll(cvx_hull.simplices, shift=1, axis=-1).reshape(-1)
111 | rows = cvx_hull.simplices.reshape(-1)
112 |
113 | # Form sparse affinity matrix from extracted pairs
114 | W = sp.coo_matrix((cols * 0 + 1, (rows, cols)),
115 | shape=(cvx_hull.vertices.size, cvx_hull.vertices.size))
116 | # Symmetrize the matrix to obtain an undirected graph.
117 | extended_row = np.concatenate([W.row, W.col])
118 | extended_col = np.concatenate([W.col, W.row])
119 | W.row, W.col = extended_row, extended_col
120 | W.data = np.concatenate([W.data, W.data])
121 | W = W.tocsr().tocoo() # Delete potential duplicate pairs
122 |
123 | # Weight matrix elements according to the exponential kernel
124 | distance = linalg.norm(cvx_hull.points[W.row, :] -
125 | cvx_hull.points[W.col, :], axis=-1)
126 | rho = np.mean(distance)
127 | W.data = np.exp(- (distance / rho) ** 2)
128 | W = W.tocsc()
129 |
130 | G = _graph_laplacian(W, R, compute_differential_operator=compute_differential_operator,
131 | cheb_normalized=cheb_normalized)
132 | return G, rho
133 |
134 | def _graph_laplacian(W, R, compute_differential_operator=False, cheb_normalized=False):
135 | '''
136 | Form Graph Laplacian
137 | '''
138 | G = Graph(W, gtype='undirected', lap_type='normalized', coords=R)
139 | G.compute_laplacian(lap_type='normalized') # Stored in G.L, sparse matrix, csc ordering
140 | if compute_differential_operator is True:
141 | G.compute_differential_operator() # stored in G.D, also accessible via G.grad() or G.div() (for the adjoint).
142 | else:
143 | pass
144 |
145 | if cheb_normalized:
146 | D_max = splinalg.eigsh(G.L, k=1, return_eigenvectors=False)
147 | Ln = (2 / D_max[0]) * G.L - sp.identity(W.shape[0], dtype=np.float64, format='csc')
148 | G.Ln = Ln
149 | else:
150 | pass
151 | return G
152 |
153 | def laplacian_exp(R, depth):
154 | """Get the icosahedron laplacian list for a certain depth.
155 | Args:
156 | R : :py:class:`~numpy.ndarray`
157 | (N,3) Cartesian coordinates of point set with size N. All points must be **distinct**.
158 | Returns:
159 | laplacian: `torch.Tensor` laplacian
160 | rho: float: laplacian order
161 | """
162 | laps = []
163 | for i in range(depth):
164 | G, rho = cvxhull_graph(R)
165 | laplacian = prepare_laplacian(G.L)
166 | laps.append(laplacian)
167 | return laps[::-1], rho
168 |
--------------------------------------------------------------------------------
/deepwavetorch/utils/matrix_operations.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import scipy.linalg as linalg
3 | import scipy.sparse.linalg as splinalg
4 |
5 | def estimate_chevpol_order(XYZ, rho, wl, eps):
6 | r"""
7 | Compute order of polynomial filter to approximate asymptotic
8 | point-spread function on \cS^{2}.
9 |
10 | Parameters
11 | ----------
12 | XYZ : :py:class:`~numpy.ndarray`
13 | (3, N_antenna) Cartesian instrument coordinates.
14 | rho : float
15 | Scale parameter \rho corresponding to the average distance of a point
16 | on the graph to its nearest neighbor.
17 | Output of :py:func:`~deepwave.tools.math.graph.laplacian_exp`.
18 | wl : float
19 | Wavelength of observations [m].
20 | eps : float
21 | Ratio in (0, 1).
22 | Ensures all PSF magnitudes lower than `max(PSF)*eps` past the main
23 | lobe are clipped at 0.
24 |
25 | Returns
26 | -------
27 | K : int
28 | Order of polynomial filter.
29 | """
30 | XYZ = XYZ / wl
31 | XYZ_centroid = np.mean(XYZ, axis=1, keepdims=True)
32 | XYZ_radius = np.mean(linalg.norm(XYZ - XYZ_centroid, axis=0))
33 |
34 | theta = np.linspace(0, np.pi, 1000)
35 | f = 20 * np.log10(np.abs(np.sinc(theta / np.pi)))
36 | eps_dB = 10 * np.log10(eps)
37 | theta_max = np.max(theta[f >= eps_dB])
38 |
39 | beam_width = theta_max / (2 * np.pi * XYZ_radius)
40 | K = np.sqrt(2 - 2 * np.cos(beam_width)) / rho
41 | K = int(np.ceil(K))
42 | return K
43 |
44 | def steering_operator(XYZ, R, wl):
45 | '''
46 | XYZ : :py:class:`~numpy.ndarray`
47 | (3, N_antenna) Cartesian array geometry.
48 | R : :py:class:`~numpy.ndarray`
49 | (3, N_px) Cartesian grid points in :math:`\mathbb{S}^{2}`.
50 | wl : float
51 | Wavelength [m].
52 | return: steering matrix
53 | '''
54 | scale = 2 * np.pi / wl
55 | A = np.exp((-1j * scale * XYZ.T) @ R)
56 | return A
57 |
58 | def eighMax(A):
59 | r"""
60 | Evaluate :math:`\mu_{\max}(\bbB)` with
61 | :math:
62 | B = (\overline{\bbA} \circ \bbA)^{H} (\overline{\bbA} \circ \bbA)
63 | Uses a matrix-free formulation of the Lanczos algorithm.
64 | Parameters
65 | ----------
66 | A : :py:class:`~numpy.ndarray`
67 | (M, N) array.
68 |
69 | Returns
70 | -------
71 | D_max : float
72 | Leading eigenvalue of `B`.
73 | """
74 | if A.ndim != 2:
75 | raise ValueError('Parameter[A] has wrong dimensions.')
76 |
77 | def matvec(v):
78 | r"""
79 | Parameters
80 | ----------
81 | v : :py:class:`~numpy.ndarray`
82 | (N,) or (N, 1) array
83 |
84 | Returns
85 | -------
86 | w : :py:class:`~numpy.ndarray`
87 | (N,) array containing :math:`\bbB \bbv`
88 | """
89 | v = v.reshape(-1)
90 |
91 | C = (A * v) @ A.conj().T
92 | D = C @ A
93 | w = np.sum(A.conj() * D, axis=0).real
94 | return w
95 |
96 | M, N = A.shape
97 | B = splinalg.LinearOperator(shape=(N, N),
98 | matvec=matvec,
99 | dtype=np.float64)
100 | D_max = splinalg.eigsh(B, k=1, which='LM', return_eigenvectors=False)
101 | return D_max[0]
--------------------------------------------------------------------------------
/figures/DeepWave_fields_comparison.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/figures/DeepWave_fields_comparison.png
--------------------------------------------------------------------------------
/figures/task4_recording1.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/figures/task4_recording1.gif
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | astropy==5.2.1
2 | asttokens==2.2.1
3 | backcall==0.2.0
4 | basemap==1.3.6
5 | basemap-data==1.3.2
6 | comm==0.1.2
7 | contourpy==1.0.7
8 | cycler==0.11.0
9 | debugpy==1.6.5
10 | decorator==5.1.1
11 | entrypoints==0.4
12 | executing==1.2.0
13 | fonttools==4.38.0
14 | healpy==1.16.2
15 | ipykernel==6.20.2
16 | ipython==8.8.0
17 | jedi==0.18.2
18 | jupyter-client==7.4.9
19 | jupyter-core==5.1.3
20 | kiwisolver==1.4.4
21 | matplotlib==3.6.3
22 | matplotlib-inline==0.1.6
23 | nest-asyncio==1.5.6
24 | numpy==1.23.5
25 | packaging==23.0
26 | pandas==1.5.3
27 | parso==0.8.3
28 | pexpect==4.8.0
29 | pickleshare==0.7.5
30 | Pillow==9.4.0
31 | platformdirs==2.6.2
32 | prompt-toolkit==3.0.36
33 | psutil==5.9.4
34 | ptyprocess==0.7.0
35 | pure-eval==0.2.2
36 | pyerfa==2.0.0.1
37 | Pygments==2.14.0
38 | PyGSP==0.5.1
39 | pyparsing==3.0.9
40 | pyproj==1.9.6
41 | pyshp==2.3.1
42 | python-dateutil==2.8.2
43 | pytz==2022.7.1
44 | PyYAML==6.0
45 | pyzmq==25.0.0
46 | scipy==1.10.0
47 | six==1.16.0
48 | stack-data==0.6.2
49 | torch==1.11.0
50 | tornado==6.2
51 | tqdm==4.28.1
52 | traitlets==5.8.1
53 | typing-extensions==4.4.0
54 | wcwidth==0.2.6
55 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | # ############################################################################
2 | # setup.cfg
3 | # =========
4 | # Author : Adrian S. ROMAN [asroman@ucdavis.edu]
5 | # ############################################################################
6 |
7 | [metadata]
8 | name = deepwavetorch
9 | summary = DeepWave pytorch implementation. []
10 | long_description = file:README.md
11 | long_description_content_type = text/x-rst; charset=UTF-8
12 | keywords =
13 | array signal processing
14 | first-order convex optimization
15 | inverse problems
16 | neural networks
17 | graph neural networks
18 |
19 | author = Adrian S. ROMAN [ucdavis, usc]
20 | author_email = asroman@ucdavis.edu
21 | url = https://github.com/adrianSRoman/DeepWaveTorch
22 | download_url = git@github.com:adrianSRoman/DeepWaveTorch.git
23 |
24 | classifiers =
25 | Intended Audience :: Science/Research
26 | License :: OSI Approved :: GNU General Public License v3 (GPLv3)
27 | Operating System :: POSIX :: Linux
28 | Programming Language :: Python :: 3
29 | Programming Language :: Python :: Implementation :: pytorch
30 | Topic :: Scientific/Engineering
31 | license = GPLv3
32 |
33 | [options]
34 | include_package_data = True
35 | python_requires = >=3.6
36 | zip_safe = False
37 |
38 | [files]
39 | packages =
40 | deepwavetorch
41 | data_files =
42 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | # ############################################################################
4 | # setup.py
5 | # ========
6 | # Author : Adrian S ROMAN [asroman@ucdavis.edu]
7 | # ############################################################################
8 |
9 | """
10 | DeepWave setup script.
11 | """
12 |
13 | from setuptools import setup
14 |
15 | setup(setup_requires=['pbr'], pbr=True)
16 |
--------------------------------------------------------------------------------
/tracks/eigenmike_grid.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/tracks/eigenmike_grid.npy
--------------------------------------------------------------------------------
/tracks/locata_task1_recording2.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/tracks/locata_task1_recording2.wav
--------------------------------------------------------------------------------
/tracks/pretrained_freq0_locata_weights.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/tracks/pretrained_freq0_locata_weights.npz
--------------------------------------------------------------------------------
/tracks/task1_recording1.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/adrianSRoman/DeepWaveTorch/7897779076428e2a69f36d7420b067f827236f89/tracks/task1_recording1.wav
--------------------------------------------------------------------------------