├── .gitignore
├── LICENSE
├── README.md
├── create-local-switch.sh
├── dune
├── dune-project
├── melitte.opam
├── src
├── Core.ml
├── Core.mli
├── DeBruijn.ml
├── DeBruijn.mli
├── Elaborator.ml
├── Elaborator.mli
├── Error.ml
├── ExtPrint.ml
├── Lex.ml
├── Monad.ml
├── Monad.mli
├── Name.ml
├── Name.mli
├── Options.ml
├── Parse.mly
├── Position.ml
├── Position.mli
├── Raw.ml
├── Raw.mli
├── Semantics.ml
├── Semantics.mli
├── Sigs.ml
├── UnicodeSigil.ml
├── UnicodeSigil.mli
├── UniverseLevel.ml
├── UniverseLevel.mli
├── Var.ml
├── Var.mli
├── dune
└── melitte.ml
└── tests
├── dune
└── simple.t
├── run.t
├── simple.melitte
├── t1.melitte
├── t2.melitte
├── t3.melitte
├── t4.melitte
└── t5.melitte
/.gitignore:
--------------------------------------------------------------------------------
1 | *.annot
2 | *.cmo
3 | *.cma
4 | *.cmi
5 | *.a
6 | *.o
7 | *.cmx
8 | *.cmxs
9 | *.cmxa
10 |
11 | # ocamlbuild and dune working directory
12 | _build/
13 |
14 | # ocamlbuild and dune targets
15 | *.byte
16 | *.native
17 | *.exe
18 |
19 | # oasis generated files
20 | setup.data
21 | setup.log
22 |
23 | # Merlin configuring file for Vim and Emacs
24 | .merlin
25 |
26 | # Dune generated files
27 | *.install
28 |
29 | # Local OPAM switch
30 | _opam/
31 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Mélitte
2 |
3 | This is *Mélitte*, a toy implementation of Martin-Löf Type Theory (MLTT) written
4 | in the OCaml language.
5 |
6 | ## Compiling
7 |
8 | To compile Mélitte, you need a working OCaml development environment and some
9 | libraries. The easiest and cleanest way to install them is to create a local
10 | OPAM switch. The repository provides a script to do so.
11 |
12 | ```shell
13 | $ ./create-local-switch.sh
14 | $ dune build
15 | ```
16 |
17 | (The script also installs Tuareg and Merlin for developer convenience.)
18 |
19 | Some example programs to exercise the type-checker can be found in the
20 | [test](test/) directory. Run them using `dune test`.
21 |
22 | ## Inspirations
23 |
24 | Mélitte is strongly inspired from existing tutorial implementation of dependent
25 | type theory. Here are the ones I looked at:
26 |
27 | - Andràs Kovàcs' [elaboration
28 | zoo](https://github.com/AndrasKovacs/elaboration-zoo/).
29 |
30 | - Daniel Gratzer's [Normalization-by-Evaluation for
31 | MLTT](https://github.com/jozefg/nbe-for-mltt).
32 |
33 | - Jon Sterling's [DreamTT](https://github.com/jonsterling/dreamtt).
34 |
35 | ## Future Additions
36 |
37 | ### Foundations
38 |
39 | - inductive types (W-types, a universe of descriptions à la McBride-Dagand?)
40 | - universe of definitionally-irrelevant propositions
41 |
42 | ### Engineering
43 |
44 | - explicit telescopes as arguments of pi and sigma
45 |
46 | ### Usability
47 |
48 | - built-in non-dependent arrow and product types for better printing
49 | - basic module system
50 | - minimalistic Emacs mode with basic interaction facilities
51 |
52 | ### Refinement
53 |
54 | - unification facilities for metavariables and implicit arguments
55 |
--------------------------------------------------------------------------------
/create-local-switch.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 |
3 | set -e
4 |
5 | opam switch create --deps-only --with-doc --with-test -y .
6 | eval $(opam env)
7 | opam install -y tuareg merlin
8 |
--------------------------------------------------------------------------------
/dune:
--------------------------------------------------------------------------------
1 | (env
2 | (dev
3 | (flags (:standard -w -32 -w -37))))
4 |
--------------------------------------------------------------------------------
/dune-project:
--------------------------------------------------------------------------------
1 | (lang dune 3.2)
2 | (using menhir 2.0)
3 | (cram enable)
4 |
5 | (name melitte)
6 | (version 0.0.1)
7 |
8 | (generate_opam_files true)
9 |
10 | (source
11 | (github username/reponame))
12 |
13 | (authors "Adrien Guatto")
14 | (maintainers "Adrien Guatto")
15 |
16 | (license GPL-3.0-or-later)
17 |
18 | (package
19 | (name melitte)
20 | (synopsis "A toy implementation of Martin-Löf Type Theory")
21 | (description "")
22 | (depends (ocaml (> 4.14.0)) dune pprint menhir sedlex ppx_deriving sexplib
23 | ppx_sexp_conv))
24 |
--------------------------------------------------------------------------------
/melitte.opam:
--------------------------------------------------------------------------------
1 | # This file is generated by dune, edit dune-project instead
2 | opam-version: "2.0"
3 | version: "0.0.1"
4 | synopsis: "A toy implementation of Martin-Löf Type Theory"
5 | description: ""
6 | maintainer: ["Adrien Guatto"]
7 | authors: ["Adrien Guatto"]
8 | license: "GPL-3.0-or-later"
9 | homepage: "https://github.com/username/reponame"
10 | bug-reports: "https://github.com/username/reponame/issues"
11 | depends: [
12 | "ocaml" {> "4.14.0"}
13 | "dune" {>= "3.2"}
14 | "pprint"
15 | "menhir"
16 | "sedlex"
17 | "ppx_deriving"
18 | "sexplib"
19 | "ppx_sexp_conv"
20 | "odoc" {with-doc}
21 | ]
22 | build: [
23 | ["dune" "subst"] {dev}
24 | [
25 | "dune"
26 | "build"
27 | "-p"
28 | name
29 | "-j"
30 | jobs
31 | "@install"
32 | "@runtest" {with-test}
33 | "@doc" {with-doc}
34 | ]
35 | ]
36 | dev-repo: "git+https://github.com/username/reponame.git"
37 |
--------------------------------------------------------------------------------
/src/Core.ml:
--------------------------------------------------------------------------------
1 | open Sexplib.Std
2 |
3 | type cterm_desc =
4 | | Infer of iterm
5 | | Let of { def : cterm; ty : cterm; body : bound1; }
6 | | Pi of cterm * bound1
7 | | Lam of bound1
8 | | Sigma of cterm * bound1
9 | | Pair of cterm * cterm
10 | | Nat
11 | | Type of int
12 |
13 | and cterm =
14 | {
15 | c_desc : cterm_desc;
16 | c_loc : Position.t;
17 | [@equal fun _ _ -> true]
18 | [@sexp_drop_if fun _ -> true]
19 | }
20 |
21 | and iterm_desc =
22 | | Var of DeBruijn.Ix.t
23 | | App of iterm * cterm
24 | | Fst of iterm
25 | | Snd of iterm
26 | | Zero
27 | | Suc of cterm
28 | | Natelim of { scrut : cterm;
29 | motive : bound1;
30 | case_zero : cterm;
31 | case_suc : bound2; }
32 | | Annot of { tm : cterm; ty : cterm; }
33 |
34 | and iterm =
35 | {
36 | i_desc : iterm_desc;
37 | i_loc : Position.t;
38 | [@equal fun _ _ -> true]
39 | [@sexp_drop_if fun _ -> true]
40 | }
41 |
42 | and bound1 =
43 | Bound1 of {
44 | body : cterm;
45 | user : Name.t option;
46 | [@equal fun _ _ -> true]
47 | }
48 |
49 | and bound2 =
50 | Bound2 of {
51 | body : cterm;
52 | user1 : Name.t option;
53 | [@equal fun _ _ -> true]
54 | user2 : Name.t option;
55 | [@equal fun _ _ -> true]
56 | }
57 |
58 | and phrase_desc =
59 | | Val of { user : Name.t option; ty : cterm; def : cterm; }
60 | | Eval of { def : iterm; }
61 |
62 | and phrase =
63 | {
64 | ph_desc : phrase_desc;
65 | ph_loc : Position.t;
66 | [@equal fun _ _ -> true]
67 | [@sexp_drop_if fun _ -> true]
68 | }
69 |
70 | and t = phrase list [@@deriving sexp_of, eq]
71 |
72 | type ty = cterm
73 |
74 | type telescope = (Name.t option * ty) list
75 |
76 | module ToRaw = struct
77 | type env = Name.t DeBruijn.Env.t
78 |
79 | module M = Monad.Reader(struct type t = env end)
80 | open Monad.Notation(M)
81 |
82 | let lookup ix env = DeBruijn.Env.lookup env ix
83 |
84 | let (let$) p f env =
85 | let name =
86 | match p with
87 | | Some name -> name
88 | | None -> Name.internal @@ string_of_int @@ DeBruijn.Env.width env
89 | in
90 | f (Raw.Build.pvar ~name ()) (DeBruijn.Env.extend name env)
91 |
92 | let rec cterm { c_desc; c_loc; } =
93 | let* desc =
94 | match c_desc with
95 | | Infer tm ->
96 | let* tm = iterm tm in
97 | return @@ Position.value tm
98 | | Lam b ->
99 | let* b = bound1 b in
100 | return @@ Raw.Lam b
101 | | Pi (a, f) ->
102 | let* a = cterm a in
103 | let* f = bound1 f in
104 | return @@ Raw.Pi (a, f)
105 | | Sigma (a, f) ->
106 | let* a = cterm a in
107 | let* f = bound1 f in
108 | return @@ Raw.Sigma (a, f)
109 | | Pair (l, r) ->
110 | let* l = cterm l in
111 | let* r = cterm r in
112 | return @@ Raw.Pair (l, r)
113 | | Let { def; ty; body; } ->
114 | let* def = cterm def in
115 | let* ty = cterm ty in
116 | let* body = bound1 body in
117 | return @@ Raw.Let { def; ty; body; }
118 | | Type l ->
119 | return @@ Raw.Type l
120 | | Nat ->
121 | return Raw.Nat
122 | in
123 | return @@ Position.with_pos c_loc desc
124 |
125 | and iterm { i_desc; i_loc; } =
126 | let* desc =
127 | match i_desc with
128 | | Var ix ->
129 | let* x = DeBruijn.Env.lookup ix in
130 | return @@ Raw.Var x
131 | | App (t, u) ->
132 | let* t = iterm t in
133 | let* u = cterm u in
134 | return @@ Raw.App (t, u)
135 | | Fst m ->
136 | let* m = iterm m in
137 | return @@ Raw.Fst m
138 | | Snd m ->
139 | let* m = iterm m in
140 | return @@ Raw.Snd m
141 | | Zero ->
142 | return Raw.Zero
143 | | Suc t ->
144 | let* t = cterm t in
145 | return @@ Raw.Suc t
146 | | Natelim { scrut; motive; case_zero; case_suc; } ->
147 | let* scrut = cterm scrut in
148 | let* motive = bound1 motive in
149 | let* case_zero = cterm case_zero in
150 | let* case_suc = bound2 case_suc in
151 | return @@ Raw.Natelim { scrut; motive; case_zero; case_suc; }
152 | | Annot { tm; ty; } ->
153 | let* tm = cterm tm in
154 | let* ty = cterm ty in
155 | return @@ Raw.Annot { tm; ty; }
156 | in
157 | return @@ Position.with_pos i_loc desc
158 |
159 | and bound1 (Bound1 { body; user; }) =
160 | let$ pat = user in
161 | let* body = cterm body in
162 | return @@ Raw.Bound1 { pat; body; }
163 |
164 | and bound2 (Bound2 { body; user1; user2; }) =
165 | let$ pat1 = user1 in
166 | let$ pat2 = user2 in
167 | let* body = cterm body in
168 | return @@ Raw.Bound2 { pat1; pat2; body; }
169 | ;;
170 |
171 | let phrase { ph_desc; ph_loc; } =
172 | let* desc, env =
173 | match ph_desc with
174 | | Val { user; ty; def; } ->
175 | let name = Name.of_option user in
176 | let* ty = cterm ty in
177 | let* def = cterm def in
178 | let* env = M.get in
179 | return (Raw.Val { name; args = []; ty; def; },
180 | DeBruijn.Env.extend name env)
181 | | Eval { def; } ->
182 | let* def = iterm def in
183 | let* env = M.get in
184 | return (Raw.Eval { def; }, env)
185 | in
186 | return @@ (Position.with_pos ph_loc desc, env)
187 |
188 | let file file env =
189 | let file, _ =
190 | List.fold_left
191 | (fun (file, env) ph -> let ph, env = phrase ph env in ph :: file, env)
192 | ([], env)
193 | file
194 | in
195 | List.rev file
196 | end
197 |
198 | module Build = struct
199 | let cdesc ?loc c_desc =
200 | { c_desc; c_loc = Option.value ~default:Position.dummy loc; }
201 |
202 | let idesc ?loc i_desc =
203 | { i_desc; i_loc = Option.value ~default:Position.dummy loc; }
204 |
205 | let infer ?loc tm = cdesc ?loc @@ Infer tm
206 |
207 | let let_ ?loc ~def ~ty ~body () = cdesc ?loc @@ Let { def; ty; body; }
208 |
209 | let bind_n mk ?loc tele body =
210 | List.fold_right
211 | (fun (user, a) body -> mk ?loc a (Bound1 { body; user; }))
212 | tele
213 | body
214 |
215 | let pi ?loc a f = cdesc ?loc @@ Pi (a, f)
216 |
217 | let pi_n ?loc tele body = bind_n pi ?loc tele body
218 |
219 | let lam ?loc bound = cdesc ?loc @@ Lam bound
220 |
221 | let sigma ?loc a f = cdesc ?loc @@ Sigma (a, f)
222 |
223 | let sigma_n ?loc tele body = bind_n sigma ?loc tele body
224 |
225 | let pair ?loc left right = cdesc ?loc @@ Pair (left, right)
226 |
227 | let nat ?loc () = cdesc ?loc Nat
228 |
229 | let typ ?loc ~level () = cdesc ?loc @@ Type level
230 |
231 | let var ?loc ix = idesc ?loc @@ Var ix
232 |
233 | let app ?loc t u = idesc ?loc @@ App (t, u)
234 |
235 | let fst ?loc arg = idesc ?loc @@ Fst arg
236 |
237 | let snd ?loc arg = idesc ?loc @@ Snd arg
238 |
239 | let zero ?loc () = idesc ?loc Zero
240 |
241 | let suc ?loc t = idesc ?loc @@ Suc t
242 |
243 | let natelim ?loc ~scrut ~motive ~case_zero ~case_suc () =
244 | idesc ?loc @@ Natelim { scrut; motive; case_zero; case_suc; }
245 |
246 | let annot ?loc ~tm ~ty () =
247 | idesc ?loc @@ Annot { tm; ty; }
248 |
249 | let val_ ?(loc = Position.dummy) ?user ~ty ~def () =
250 | { ph_loc = loc; ph_desc = Val { user; ty; def; } }
251 |
252 | let eval ?(loc = Position.dummy) ~def () =
253 | { ph_loc = loc; ph_desc = Eval { def; } }
254 | end
255 |
256 | module PPrint = struct
257 | let file file = Raw.PPrint.file (ToRaw.file file DeBruijn.Env.empty)
258 | end
259 |
--------------------------------------------------------------------------------
/src/Core.mli:
--------------------------------------------------------------------------------
1 | (** {1 Core Syntax} *)
2 |
3 | (** This module defines well-typed syntax, as produced by the elaborator. Here
4 | variables are implemented by De Bruijn indices. *)
5 |
6 | (** The type of a checkable term, or [cterm], must be provided. *)
7 | type cterm_desc =
8 | | Infer of iterm
9 | | Let of { def : cterm; ty : cterm; body : bound1; }
10 | | Pi of cterm * bound1
11 | | Lam of bound1
12 | | Sigma of cterm * bound1
13 | | Pair of cterm * cterm
14 | | Nat
15 | | Type of int
16 |
17 | and cterm =
18 | {
19 | c_desc : cterm_desc;
20 | c_loc : Position.position;
21 | }
22 |
23 | (** The type of an inferrable term, or [cterm], can be computed from the term
24 | itself (in a given environment). *)
25 | and iterm_desc =
26 | | Var of DeBruijn.Ix.t
27 | | App of iterm * cterm
28 | | Fst of iterm
29 | | Snd of iterm
30 | | Zero
31 | | Suc of cterm
32 | | Natelim of { scrut : cterm;
33 | motive : bound1;
34 | case_zero : cterm;
35 | case_suc : bound2; }
36 | | Annot of { tm : cterm; ty : cterm; }
37 |
38 | and iterm =
39 | {
40 | i_desc : iterm_desc;
41 | i_loc : Position.position;
42 | }
43 |
44 | and bound1 =
45 | Bound1 of {
46 | body : cterm; (* cterm under binder *)
47 | user : Name.t option; (* for pretty-printing only *)
48 | }
49 |
50 | and bound2 =
51 | Bound2 of {
52 | body : cterm; (* cterm under binder *)
53 | user1 : Name.t option; (* for pretty-printing only *)
54 | user2 : Name.t option; (* for pretty-printing only *)
55 | }
56 |
57 | and phrase_desc =
58 | | Val of { user : Name.t option; ty : cterm; def : cterm; }
59 | | Eval of { def : iterm; }
60 |
61 | and phrase =
62 | {
63 | ph_desc : phrase_desc;
64 | ph_loc : Position.position;
65 | }
66 |
67 | and t = phrase list
68 |
69 | type ty = cterm
70 |
71 | and telescope = (Name.t option * ty) list
72 |
73 | val sexp_of_cterm : cterm -> Sexplib.Sexp.t
74 | val sexp_of_iterm : iterm -> Sexplib.Sexp.t
75 | val sexp_of_bound1 : bound1 -> Sexplib.Sexp.t
76 | val sexp_of_bound2 : bound2 -> Sexplib.Sexp.t
77 | val sexp_of_phrase : phrase -> Sexplib.Sexp.t
78 | val sexp_of_t : t -> Sexplib.Sexp.t
79 |
80 | val equal_cterm : cterm -> cterm -> bool
81 | val equal_iterm : iterm -> iterm -> bool
82 |
83 | module Build : sig
84 | val infer : ?loc:Position.t -> iterm -> cterm
85 | val let_ : ?loc:Position.t ->
86 | def:cterm ->
87 | ty:cterm ->
88 | body:bound1 ->
89 | unit ->
90 | cterm
91 | val pi : ?loc:Position.t -> cterm -> bound1 -> cterm
92 | val pi_n : ?loc:Position.t -> telescope -> cterm -> cterm
93 | val lam : ?loc:Position.t -> bound1 -> cterm
94 | val sigma : ?loc:Position.t -> cterm -> bound1 -> cterm
95 | val sigma_n : ?loc:Position.t -> telescope -> cterm -> cterm
96 | val pair : ?loc:Position.t -> cterm -> cterm -> cterm
97 | val nat : ?loc:Position.t -> unit -> cterm
98 | val var : ?loc:Position.t -> DeBruijn.Ix.t -> iterm
99 | val typ : ?loc:Position.t -> level:int -> unit -> cterm
100 |
101 | val app : ?loc:Position.t -> iterm -> cterm -> iterm
102 | val fst : ?loc:Position.t -> iterm -> iterm
103 | val snd : ?loc:Position.t -> iterm -> iterm
104 | val zero : ?loc:Position.t -> unit -> iterm
105 | val suc : ?loc:Position.t -> cterm -> iterm
106 | val natelim : ?loc:Position.t ->
107 | scrut:cterm ->
108 | motive:bound1 ->
109 | case_zero:cterm ->
110 | case_suc:bound2 ->
111 | unit -> iterm
112 | val annot : ?loc:Position.t -> tm:cterm -> ty:cterm -> unit -> iterm
113 |
114 | val val_ : ?loc:Position.t ->
115 | ?user:Name.t ->
116 | ty:cterm ->
117 | def:cterm ->
118 | unit ->
119 | phrase
120 | val eval : ?loc:Position.t ->
121 | def:iterm ->
122 | unit ->
123 | phrase
124 | end
125 |
126 | module ToRaw : sig
127 | type env = Name.t DeBruijn.Env.t
128 | module M : Monad.Plain with type 'a t = env -> 'a
129 | val cterm : cterm -> env -> Raw.term
130 | val iterm : iterm -> env -> Raw.term
131 | val bound1 : bound1 -> Raw.bound1 M.t
132 | val bound2 : bound2 -> Raw.bound2 M.t
133 | val phrase : phrase -> (Raw.phrase * env) M.t
134 | val file : t -> Raw.t M.t
135 | end
136 |
137 | module PPrint : sig
138 | val file : t -> PPrint.document
139 | end
140 |
--------------------------------------------------------------------------------
/src/DeBruijn.ml:
--------------------------------------------------------------------------------
1 | open Sexplib.Conv
2 |
3 | type width = int
4 |
5 | module type DB = sig
6 | type t
7 | val sexp_of_t : t -> Sexplib.Sexp.t
8 | val equal : t -> t -> bool
9 | val to_int : t -> int
10 | val fresh : free:width -> t
11 | end
12 |
13 | module Ix = struct
14 | type t = int [@@deriving eq, sexp_of]
15 | let to_int i = i
16 | let fresh ~free = ignore free; 0
17 | let shift n = n + 1
18 | end
19 |
20 | module Lv = struct
21 | type t = int [@@deriving eq, sexp_of]
22 | let to_int i = i
23 | let fresh ~free = free
24 | end
25 |
26 | let lv_of_ix ~free l =
27 | if l >= free then invalid_arg "lv_of_ix";
28 | free - l - 1
29 |
30 | let ix_of_lv ~free n =
31 | if n >= free then invalid_arg "ix_of_lv";
32 | free - n - 1
33 |
34 | module Env = struct
35 | type 'a t = { w : int; c : 'a list; } [@@deriving sexp_of]
36 |
37 | let width { w; _ } = w
38 |
39 | let well_scoped_lv { w; _ } lv =
40 | assert (lv >= 0);
41 | lv < w
42 |
43 | let empty = { w = 0; c = []; }
44 |
45 | let extend v env = { w = env.w + 1; c = v :: env.c; }
46 |
47 | let lookup ix env =
48 | if ix >= env.w then raise Not_found;
49 | List.nth env.c ix
50 |
51 | let find p { c; w; } =
52 | let rec loop ix = function
53 | | [] -> assert (ix = w); raise Not_found
54 | | x :: c -> if p x then ix, x else loop (ix + 1) c
55 | in
56 | loop 0 c
57 |
58 | let fold f { c; _ } acc =
59 | List.fold_right f c acc
60 |
61 | let rec fold_cons f env acc =
62 | match env.c with
63 | | [] ->
64 | acc
65 | | entry :: c ->
66 | let env' = { c; w = env.w - 1; } in
67 | f entry env @@ fold_cons f env' acc
68 |
69 | let map f { c; w; } =
70 | { c = List.map f c; w; }
71 |
72 | let to_seq { c; _ } =
73 | List.to_seq c
74 | end
75 |
--------------------------------------------------------------------------------
/src/DeBruijn.mli:
--------------------------------------------------------------------------------
1 | type width = int
2 |
3 | module type DB = sig
4 | type t
5 | val sexp_of_t : t -> Sexplib.Sexp.t
6 | val equal : t -> t -> bool
7 | val to_int : t -> int
8 | val fresh : free:width -> t
9 | end
10 |
11 | module Ix : sig
12 | include DB
13 | val shift : t -> t
14 | end
15 |
16 | module Lv : sig
17 | include DB
18 | end
19 |
20 | val lv_of_ix : free:width -> Ix.t -> Lv.t
21 |
22 | val ix_of_lv : free:width -> Lv.t -> Ix.t
23 |
24 | module Env : sig
25 | (** An environment, to be accessed in a last-in first-out fashion. *)
26 | type 'a t
27 |
28 | (** The number of entries in the environment. *)
29 | val width : 'a t -> width
30 |
31 | (** [well_scoped env lv] checks that the De Bruijn level [lv] is well-scoped
32 | in [env]. *)
33 | val well_scoped_lv : 'a t -> Lv.t -> bool
34 |
35 | (** The empty environment. *)
36 | val empty : 'a t
37 |
38 | (** Extend an environment with a new entry, considered as the latest one. *)
39 | val extend : 'a -> 'a t -> 'a t
40 |
41 | (** [lookup ix env] returns the value at De Bruijn index [ix] in [env]. It
42 | raises [Not_found] if [ix] is not well-scoped in [env]. *)
43 | val lookup : Ix.t -> 'a t -> 'a
44 |
45 | (** [find p env] returns the first value satisfying the predicate [p] in
46 | [env]. It raises [Not_found] in the absence of such a value. *)
47 | val find : ('a -> bool) -> 'a t -> Ix.t * 'a
48 |
49 | (** See {! List.map}. *)
50 | val map : ('a -> 'b) -> 'a t -> 'b t
51 |
52 | (** See {! List.fold_right}. *)
53 | val fold : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
54 |
55 | (** A variant of {! fold} providing easy access to the environment following
56 | each extension. *)
57 | val fold_cons : ('a -> 'a t -> 'b -> 'b) -> 'a t -> 'b -> 'b
58 |
59 | (** See {! List.to_seq}. *)
60 | val to_seq : 'a t -> 'a Seq.t
61 |
62 | val sexp_of_t : ('a -> Sexplib.Sexp.t) -> 'a t -> Sexplib.Sexp.t
63 | end
64 |
65 |
--------------------------------------------------------------------------------
/src/Elaborator.ml:
--------------------------------------------------------------------------------
1 | module R = Raw
2 | module C = Core
3 | module S = Semantics
4 | module L = UniverseLevel
5 |
6 | module Env = DeBruijn.Env
7 |
8 | (* {2 Utilities} *)
9 |
10 | let bound1_name R.(Bound1 { pat; _ }) =
11 | R.name_of_pattern pat
12 |
13 | let bound2_name_1 R.(Bound2 { pat1; _ }) =
14 | R.name_of_pattern pat1
15 |
16 | let bound2_name_2 R.(Bound2 { pat2; _ }) =
17 | R.name_of_pattern pat2
18 |
19 | (* {2 Type checking} *)
20 |
21 | type state =
22 | {
23 | env : S.env;
24 | on_check_pre : Semantics.env -> expected:S.ty -> R.term -> unit;
25 | on_infer_pre : Semantics.env -> Raw.term -> unit;
26 | on_conversion_pre : Semantics.env ->
27 | expected:Semantics.ty -> actual:Semantics.ty ->
28 | Position.t -> unit;
29 | on_check_post : Semantics.env -> expected:S.ty -> R.term -> unit;
30 | on_infer_post : Semantics.env -> Raw.term -> actual:S.ty -> unit;
31 | on_conversion_post : Semantics.env ->
32 | expected:Semantics.ty -> actual:Semantics.ty ->
33 | Position.t -> unit;
34 | }
35 |
36 | module M = struct
37 | include Monad.Reader(struct type t = state end)
38 | end
39 | open Monad.Notation(M)
40 |
41 | let run
42 | ?(on_check_pre = fun _ ~expected _ -> ignore expected)
43 | ?(on_infer_pre = fun _ _ -> ())
44 | ?(on_conversion_pre = fun _ ~expected ~actual _ ->
45 | ignore expected; ignore actual)
46 | ?(on_check_post = fun _ ~expected _ -> ignore expected)
47 | ?(on_infer_post = fun _ _ ~actual -> ignore actual)
48 | ?(on_conversion_post = fun _ ~expected ~actual _ ->
49 | ignore expected; ignore actual)
50 | x =
51 | x {
52 | env = Env.empty;
53 | on_check_pre;
54 | on_infer_pre;
55 | on_conversion_pre;
56 | on_check_post;
57 | on_infer_post;
58 | on_conversion_post;
59 | }
60 |
61 | let on_check_pre ~expected tm st =
62 | st.on_check_pre st.env ~expected tm
63 |
64 | let on_infer_pre tm st =
65 | st.on_infer_pre st.env tm
66 |
67 | let on_conversion_pre ~expected ~actual loc st =
68 | st.on_conversion_pre st.env ~expected ~actual loc
69 |
70 | let on_check_post ~expected tm st =
71 | st.on_check_post st.env ~expected tm
72 |
73 | let on_infer_post tm ~actual st =
74 | st.on_infer_post st.env tm ~actual
75 |
76 | let on_conversion_post ~expected ~actual loc st =
77 | st.on_conversion_post st.env ~expected ~actual loc
78 |
79 | let find loc x { env; _ } =
80 | try Env.find (fun en -> en.S.user = x) env
81 | with Not_found -> Error.unbound_identifier loc x
82 |
83 | let (let$) : S.entry M.t -> (S.value -> 'a M.t) -> 'a M.t =
84 | fun x k st ->
85 | let en = x st in
86 | k en.def { st with env = Env.extend en st.env; }
87 |
88 | let get_env { env; _ } = env
89 |
90 | let liftE : 'a S.Eval.M.t -> 'a M.t =
91 | fun x st -> x st.env
92 |
93 | let liftR : 'a C.ToRaw.M.t -> 'a M.t =
94 | fun x st -> x (Env.map (fun S.{ user; _ } -> user) st.env)
95 |
96 | let incompatible_types ~expected ~actual loc =
97 | let* expected = liftE @@ S.PPrint.value expected in
98 | let* actual = liftE @@ S.PPrint.value actual in
99 | Error.incompatible_types ~expected ~actual loc
100 |
101 | let unexpected_type ~expected loc =
102 | let* expected = liftE @@ S.PPrint.value expected in
103 | Error.unexpected_type ~expected loc
104 |
105 | let unexpected_head_constr ~expected ~actual loc =
106 | let* actual = liftE @@ S.PPrint.value actual in
107 | Error.unexpected_head_constr ~expected ~actual loc
108 |
109 | let quote_ty tysem =
110 | let open S.Quote in
111 | liftE @@ lift @@ typ tysem
112 |
113 | let fresh ?def ~ty user =
114 | let open S.Quote in
115 | liftE @@ lift @@ fresh ~user ?def ty
116 |
117 | let ceval tm = liftE @@ S.Eval.cterm tm
118 | let ieval tm = liftE @@ S.Eval.iterm tm
119 |
120 | let check_conv ~expected ~actual loc =
121 | let* () = on_conversion_pre ~expected ~actual loc in
122 | let* conv = liftE @@ S.Quote.lift @@ S.Conv.ty ~lo:actual ~hi:expected in
123 | if conv
124 | then on_conversion_post ~expected ~actual loc
125 | else incompatible_types ~expected ~actual loc
126 |
127 | let rec check : expected:S.ty -> R.term -> C.cterm M.t =
128 | fun ~expected (Position.{ value = r; position = loc; } as tm) ->
129 | let* () = on_check_pre ~expected tm in
130 | match r with
131 | | Let { def; ty; body; } ->
132 | check_def ~name:(bound1_name body) ~ty ~def
133 | (fun ~ty ~def ->
134 | let* body = check_bound1 ~expected body in
135 | return @@ C.Build.let_ ~loc ~def ~ty ~body ())
136 |
137 | | Pi (a, f) | Sigma (a, f) ->
138 | let binder =
139 | match r with
140 | | Pi _ -> C.Build.pi | Sigma _ -> C.Build.sigma
141 | | _ -> assert false (* absurd *)
142 | in
143 | begin match expected with
144 | | S.Type _ ->
145 | let* a = check ~expected a in
146 | let* f =
147 | let* asem = ceval a in
148 | let$ _ = fresh ~ty:asem (bound1_name f) in
149 | check_bound1 ~expected f
150 | in
151 | return @@ binder ~loc a f
152 |
153 | | actual ->
154 | unexpected_head_constr ~expected:`Univ ~actual loc
155 | end
156 |
157 | | Lam body ->
158 | begin match expected with
159 | | Pi (a, f) ->
160 | let$ x = fresh ~ty:a @@ bound1_name body in
161 | let* body = check_bound1 ~expected:(S.Eval.clo1 f x) body in
162 | return @@ C.Build.lam ~loc body
163 |
164 | | _ ->
165 | unexpected_type ~expected loc
166 | end
167 |
168 | | Pair (left, right) ->
169 | begin match expected with
170 | | Sigma (a, f) ->
171 | let* left = check ~expected:a left in
172 | let* right =
173 | let* leftsem = ceval left in
174 | check ~expected:(S.Eval.clo1 f leftsem) right
175 | in
176 | return @@ C.Build.pair ~loc left right
177 |
178 | | _ ->
179 | unexpected_type ~expected loc
180 | end
181 |
182 | | Nat ->
183 | begin match expected with
184 | | Type _ ->
185 | return @@ C.Build.nat ~loc ()
186 |
187 | | _ ->
188 | unexpected_type ~expected loc
189 | end
190 |
191 | | Type l_actual ->
192 | begin match expected with
193 | | Type l_expected ->
194 | if !Options.type_in_type || L.(fin l_actual <= l_expected)
195 | then return @@ C.Build.typ ~loc ~level:l_actual ()
196 | else Error.universe_inconsistency loc
197 |
198 | | _ ->
199 | unexpected_type ~expected loc
200 |
201 | end
202 |
203 | | Var _ | App _ | Zero | Suc _ | Natelim _ | Fst _ | Snd _ | Annot _ ->
204 | let* tm, actual = infer tm in
205 | let* () = check_conv ~expected ~actual loc in
206 | return @@ C.Build.infer ~loc tm
207 |
208 | and check_is_ty : R.ty -> C.ty M.t =
209 | fun tm -> check ~expected:S.limtype tm
210 |
211 | and infer : R.term -> (C.iterm * S.ty) M.t =
212 | fun (Position.{ value = r; position = loc; } as tm) ->
213 | let* () = on_infer_pre tm in
214 | let* tm', ty =
215 | match r with
216 | | Var x ->
217 | let* ix, { ty; _ } = find loc x in
218 | return @@ (C.Build.var ix, Option.get ty)
219 |
220 | | App (m, n) ->
221 | let* m, mty = infer m in
222 | begin match mty with
223 | | Pi (a, f) ->
224 | let* n = check ~expected:a n in
225 | let* nsem = ceval n in
226 | return @@ (C.Build.app ~loc m n, S.Eval.clo1 f nsem)
227 |
228 | | actual ->
229 | unexpected_head_constr ~expected:`Pi ~actual loc
230 | end
231 |
232 | | Fst m ->
233 | let* m, mty = infer m in
234 | begin match mty with
235 | | Sigma (a, _) ->
236 | return @@ (C.Build.fst ~loc m, a)
237 |
238 | | actual ->
239 | unexpected_head_constr ~expected:`Sigma ~actual m.C.i_loc
240 | end
241 |
242 | | Snd m ->
243 | let* m, mty = infer m in
244 | begin match mty with
245 | | Sigma (_, f) ->
246 | let* msem = ieval m in
247 | return @@ (C.Build.snd ~loc m, S.Eval.(clo1 f (fst msem)))
248 |
249 | | actual ->
250 | unexpected_head_constr ~expected:`Sigma ~actual m.C.i_loc
251 | end
252 |
253 | | Zero ->
254 | return @@ (C.Build.zero ~loc (), S.Nat)
255 |
256 | | Suc m ->
257 | let* m = check ~expected:S.Nat m in
258 | return @@ (C.Build.suc ~loc m, S.Nat)
259 |
260 | | Natelim { scrut; motive; case_zero; case_suc; } ->
261 | let* scrut = check ~expected:Nat scrut in
262 | let* motive =
263 | let$ _ = fresh ~ty:Nat @@ bound1_name motive in
264 | check_bound1_is_ty motive
265 | in
266 | let* motsem = liftE @@ S.close1 motive in
267 | let* case_zero = check ~expected:(S.Eval.clo1 motsem Zero) case_zero in
268 | let* case_suc =
269 | let$ x1 = fresh ~ty:Nat @@ bound2_name_1 case_suc in
270 | let$ _ = fresh ~ty:(S.Eval.clo1 motsem x1) @@ bound2_name_2 case_suc in
271 | check_bound2 ~expected:(S.Eval.clo1 motsem (Suc x1)) case_suc
272 | in
273 | let* resty =
274 | let* scrutsem = ceval scrut in
275 | return @@ S.Eval.clo1 motsem scrutsem
276 | in
277 | return @@ (C.Build.natelim ~loc ~scrut ~motive ~case_zero ~case_suc (),
278 | resty)
279 |
280 | | Annot { tm; ty; } ->
281 | let* ty = check_is_ty ty in
282 | let* expected = ceval ty in
283 | let* tm = check ~expected tm in
284 | return @@ (C.Build.annot ~loc ~ty ~tm (), expected)
285 |
286 | | Let _ | Pi _ | Sigma _ | Lam _ | Pair _ | Nat | Type _ ->
287 | Error.could_not_synthesize loc
288 | in
289 | let* () = on_infer_post ~actual:ty tm in
290 | return (tm', ty)
291 |
292 | and check_bound1_is_ty : R.bound1 -> C.bound1 M.t =
293 | fun (R.Bound1 { pat; body; }) ->
294 | let* body = check_is_ty body in
295 | return @@ C.Bound1 { user = Raw.name_option_of_pattern pat; body; }
296 |
297 | and check_bound1 : expected:S.ty -> R.bound1 -> C.bound1 M.t =
298 | fun ~expected (R.Bound1 { pat; body; }) ->
299 | let* body = check ~expected body in
300 | return @@ C.Bound1 { user = Raw.name_option_of_pattern pat; body; }
301 |
302 | and check_bound2 : expected:S.ty -> R.bound2 -> C.bound2 M.t =
303 | fun ~expected (R.Bound2 { pat1; pat2; body; }) ->
304 | let* body = check ~expected body in
305 | return @@ C.Bound2 { user1 = Raw.name_option_of_pattern pat1;
306 | user2 = Raw.name_option_of_pattern pat2;
307 | body; }
308 |
309 | and check_def : 'a. name:Name.t -> ?ty:R.ty -> def:R.term ->
310 | (ty:C.ty -> def:C.cterm -> 'a M.t) -> 'a M.t =
311 | fun ~name ?ty ~def k ->
312 | let* ty, tysem, def =
313 | match ty with
314 | | Some ty ->
315 | let* ty = check_is_ty ty in
316 | let* tysem = ceval ty in
317 | let* def = check ~expected:tysem def in
318 | return (ty, tysem, def)
319 | | None ->
320 | let* def, tysem = infer def in
321 | let* ty = quote_ty tysem in
322 | return (ty, tysem, C.Build.infer def)
323 | in
324 | let* defsem = ceval def in
325 | let$ _ = fresh ~def:defsem ~ty:tysem name in
326 | k ~ty ~def
327 |
328 | let phrase : R.phrase -> C.t M.t -> C.t M.t =
329 | fun Position.{ value; position = loc; } file ->
330 | match value with
331 | | Val { name; args; ty; def; } ->
332 | let ty = R.Build.pi_n ~loc ~params:args ~body:ty () in
333 | let def =
334 | R.Build.lam_n ~loc ~params:(R.patterns_of_telescope args) ~body:def ()
335 | in
336 | check_def ~name ~ty ~def
337 | (fun ~ty ~def ->
338 | let* file = file in
339 | return @@ C.Build.val_ ~loc ~user:name ~def ~ty () :: file)
340 | | Eval { def; } ->
341 | let* def, tysem = infer def in
342 | let* def = liftE @@ S.Conv.normalize ~ty:tysem ~tm:(C.Build.infer def) in
343 | let* ty = quote_ty tysem in
344 | let* file = file in
345 | return @@ C.Build.eval ~loc ~def:(C.Build.annot ~tm:def ~ty ()) () :: file
346 |
347 | let rec check = function
348 | | [] ->
349 | return []
350 | | ph :: file ->
351 | phrase ph (check file)
352 |
--------------------------------------------------------------------------------
/src/Elaborator.mli:
--------------------------------------------------------------------------------
1 | (** The elaborator performs type-checking and elaboration of source programs, as
2 | represented by module {! Raw}, into the core well-scoped and well-typed
3 | representation, as represented by module {! Core}. This process might
4 | freely raise the exceptions defined in {! Error}. *)
5 |
6 | module M : Monad.Plain
7 |
8 | val run :
9 | ?on_check_pre:(Semantics.env -> expected:Semantics.ty -> Raw.term -> unit) ->
10 | ?on_infer_pre:(Semantics.env -> Raw.term -> unit) ->
11 | ?on_conversion_pre:(Semantics.env ->
12 | expected:Semantics.ty -> actual:Semantics.ty ->
13 | Position.t -> unit) ->
14 | ?on_check_post:(Semantics.env -> expected:Semantics.ty -> Raw.term -> unit) ->
15 | ?on_infer_post:(Semantics.env -> Raw.term -> actual:Semantics.ty -> unit) ->
16 | ?on_conversion_post:(Semantics.env ->
17 | expected:Semantics.ty -> actual:Semantics.ty ->
18 | Position.t -> unit) ->
19 | 'a M.t ->
20 | 'a
21 |
22 | val check : Raw.t -> Core.t M.t
23 |
--------------------------------------------------------------------------------
/src/Error.ml:
--------------------------------------------------------------------------------
1 | type error =
2 | | Internal of string
3 | | Syntax of Position.t * string
4 | | Unbound_identifier of Position.t * Name.t
5 | | Could_not_synthesize of Position.t
6 | | Incompatible_types of { loc : Position.t;
7 | expected : PPrint.document;
8 | actual : PPrint.document; }
9 | | Unexpected_type of { loc : Position.t; expected : PPrint.document; }
10 | | Unexpected_head_constr of { loc : Position.t;
11 | expected : [`Pi | `Sigma | `Nat | `Univ];
12 | actual : PPrint.document; }
13 | | Universe_inconsistency of Position.t
14 |
15 | let print fmt = function
16 | | Internal message ->
17 | Format.fprintf fmt "internal error (%s), please open an issue at %s@\n%s"
18 | message
19 | "https://github.com/adrieng/melitte/issues"
20 | (Printexc.get_backtrace ())
21 | | Syntax (loc, s) ->
22 | Format.fprintf fmt "@[%s:@ %s@]" (Position.to_string loc) s
23 | | Unbound_identifier (loc, s) ->
24 | Format.fprintf fmt "@[%s:@ unbound identifier %a@]"
25 | (Position.to_string loc)
26 | (ExtPrint.to_fmt Name.pp) s
27 | | Could_not_synthesize loc ->
28 | Format.fprintf fmt "@[%s:@ could not synthesize type (add annotation)@]"
29 | (Position.to_string loc)
30 | | Incompatible_types { loc; expected; actual; } ->
31 | Format.fprintf fmt
32 | "@[%s:@ this expression has type @[%a@] but type @[%a@] was expected@]"
33 | (Position.to_string loc)
34 | ExtPrint.pp actual
35 | ExtPrint.pp expected
36 | | Unexpected_type { loc; expected; } ->
37 | Format.fprintf fmt
38 | "@[%s:@ this expression was expected to have type @[%a@]@]"
39 | (Position.to_string loc)
40 | ExtPrint.pp expected
41 | | Unexpected_head_constr { loc; expected; actual; } ->
42 | let open UnicodeSigil in
43 | let head_constr = function
44 | | `Pi -> PPrint.(doc forall ^^ space ^^ underscore)
45 | | `Sigma -> PPrint.(doc sigma ^^ space ^^ underscore)
46 | | `Nat -> doc nat
47 | | `Univ -> doc typ
48 | in
49 | Format.fprintf fmt
50 | "@[%s:@ this expression has type @[%a@] but a type of shape @[%a@] \
51 | was expected@]"
52 | (Position.to_string loc)
53 | ExtPrint.pp actual
54 | (ExtPrint.to_fmt head_constr) expected
55 | | Universe_inconsistency loc ->
56 | Format.fprintf fmt "@[%s:@ universe inconsistency@]"
57 | (Position.to_string loc)
58 |
59 | exception Error of error
60 |
61 | let internal message =
62 | raise (Error (Internal message))
63 |
64 | let syntax reason startp endp =
65 | raise (Error (Syntax (Position.lex_join startp endp, reason)))
66 |
67 | let unbound_identifier loc name =
68 | raise (Error (Unbound_identifier (loc, name)))
69 |
70 | let could_not_synthesize loc =
71 | raise (Error (Could_not_synthesize loc))
72 |
73 | let incompatible_types ~expected ~actual loc =
74 | raise (Error (Incompatible_types { loc; expected; actual; }))
75 |
76 | let unexpected_type ~expected loc =
77 | raise (Error (Unexpected_type { loc; expected; }))
78 |
79 | let unexpected_head_constr ~expected ~actual loc =
80 | raise (Error (Unexpected_head_constr { loc; expected; actual; }))
81 |
82 | let universe_inconsistency loc =
83 | raise (Error (Universe_inconsistency loc))
84 |
--------------------------------------------------------------------------------
/src/ExtPrint.ml:
--------------------------------------------------------------------------------
1 | type 'a printer = 'a -> PPrint.document
2 |
3 | let ribbon = 1.0
4 |
5 | let width = 80
6 |
7 | let int i = PPrint.string @@ string_of_int i
8 |
9 | let to_out ?(out = stdout) d =
10 | PPrint.ToChannel.pretty ribbon width out d
11 |
12 | let to_string d =
13 | let b = Buffer.create 100 in
14 | PPrint.ToBuffer.pretty ribbon width b d;
15 | Buffer.contents b
16 |
17 | let pp fmt doc = PPrint.ToFormatter.pretty ribbon width fmt doc
18 |
19 | let to_fmt to_doc fmt x = pp fmt (to_doc x)
20 |
21 |
--------------------------------------------------------------------------------
/src/Lex.ml:
--------------------------------------------------------------------------------
1 | open Parse
2 |
3 | (** {1 Utilities} *)
4 |
5 | let utf8_string_of_lexbuf lexbuf =
6 | Sigs.Unicode.utf8_string_of_uchar_array @@ Sedlexing.lexeme lexbuf
7 |
8 | let int_of_lexbuf lexbuf =
9 | int_of_string @@ utf8_string_of_lexbuf lexbuf
10 |
11 | let tabulate default table =
12 | let ht = Hashtbl.create 100 in
13 | List.iter (fun (ns, s) -> List.iter (fun n -> Hashtbl.add ht n s) ns) table;
14 | fun n -> try Hashtbl.find ht n with Not_found -> default n
15 |
16 | let keyword_or_ident =
17 | tabulate (fun n -> ID n)
18 | [
19 | ["forall"; "∀"], FORALL;
20 | ["sig"; "Σ"], SIGMA;
21 | ["let"], LET;
22 | ["in"], IN;
23 | ["Type"; "𝕌"], TYPE;
24 | ["Nat"; "ℕ"], NAT;
25 | ["zero"], ZERO;
26 | ["suc"], SUC;
27 | ["elim"], ELIM;
28 | ["with"], WITH;
29 | ["val"], VAL;
30 | ["eval"], EVAL;
31 | ["fst"; "π₁"], FST;
32 | ["snd"; "π₂"], SND;
33 | ["×"], TIMES;
34 | ]
35 |
36 | (** {1 Error handling} *)
37 |
38 | let error reason lexbuf =
39 | let startp, endp = Sedlexing.lexing_positions lexbuf in
40 | Error.syntax reason startp endp
41 |
42 | let invalid_character lexbuf =
43 | let reason =
44 | match Sedlexing.next lexbuf with
45 | | None -> "unknown character"
46 | | Some c ->
47 | let s = Sigs.Unicode.utf8_string_of_uchar_array [| c |] in
48 | Printf.sprintf "invalid character '%s'" s
49 | in
50 | error reason lexbuf
51 |
52 | (** {1 Lexing} *)
53 |
54 | let quark = [%sedlex.regexp? alphabetic | other_alphabetic
55 | | math | other_math | '_']
56 |
57 | let atom = [%sedlex.regexp? quark, Star (quark | ascii_hex_digit | '-')]
58 |
59 | let nat = [%sedlex.regexp? Plus ('0' .. '9')]
60 |
61 | let comment_start = [%sedlex.regexp? "{-"]
62 |
63 | let comment_stop = [%sedlex.regexp? "-}"]
64 |
65 | let rec token lexbuf = match%sedlex lexbuf with
66 | | white_space -> token lexbuf
67 |
68 | | comment_start -> comments 1 lexbuf
69 |
70 | | '(' -> LPAREN
71 | | ')' -> RPAREN
72 | | "{" -> LBRACE
73 | | '}' -> RBRACE
74 |
75 | | '=' -> EQ
76 | | "->" | 8594 -> ARR
77 | | "=>" | 8658 -> DARR
78 | | "_" -> UNDERSCORE
79 | | ":" -> COLON
80 | | "|" -> BAR
81 | | "," -> COMMA
82 | | "*" -> TIMES
83 | | '\\' | 955 -> LAM
84 |
85 | | nat -> INT (int_of_lexbuf lexbuf)
86 | | atom -> keyword_or_ident (utf8_string_of_lexbuf lexbuf)
87 |
88 | | eof -> EOF
89 |
90 | | _ -> invalid_character lexbuf
91 |
92 | and comments n lexbuf =
93 | if n <= 0 then token lexbuf
94 | else
95 | match%sedlex lexbuf with
96 | | comment_start -> comments (n + 1) lexbuf
97 | | comment_stop -> comments (n - 1) lexbuf
98 | | eof -> error "unterminated comment" lexbuf
99 | | any -> comments n lexbuf
100 | | _ -> error "bad token" lexbuf
101 |
--------------------------------------------------------------------------------
/src/Monad.ml:
--------------------------------------------------------------------------------
1 | module type Plain = sig
2 | type 'a t
3 | val return : 'a -> 'a t
4 | val bind : 'a t -> ('a -> 'b t) -> 'b t
5 | end
6 |
7 | module type Runnable = sig
8 | include Plain
9 | val run : 'a t -> 'a
10 | end
11 |
12 | module Notation (M : Plain) = struct
13 | let return = M.return
14 |
15 | let ( let* ) = M.bind
16 |
17 | let ( and* ) x y =
18 | let* z = x in
19 | let* m = y in
20 | M.return (z, m)
21 |
22 | let ( let+ ) x f =
23 | let* y = x in
24 | M.return (f y)
25 |
26 | let ( and+ ) = ( and* )
27 | end
28 |
29 | module type TYPE = sig
30 | type t
31 | end
32 |
33 | module Reader (M : sig type t end) = struct
34 | type 'a t = M.t -> 'a
35 | let return x _ = x
36 | let bind x f s = f (x s) s
37 | let get s = s
38 | let run s x = x s
39 | end
40 |
41 | module State(T : TYPE) = struct
42 | type 'a t = T.t -> 'a * T.t
43 |
44 | let return x = fun s -> x, s
45 |
46 | let bind (type a b) (x : a t) (f : a -> b t) : b t =
47 | fun s -> let y, s = x s in f y s
48 |
49 | let run s x = let y, _ = x s in y
50 |
51 | let get s = s, s
52 |
53 | let set s _ = (), s
54 | end
55 |
56 | module Error(T : TYPE) = struct
57 | type 'a t = ('a, T.t) Result.t
58 |
59 | let return x = Ok x
60 |
61 | let bind (type a b) (x : a t) (f : a -> b t) : b t =
62 | match x with
63 | | Ok x -> f x
64 | | Error err -> Error err
65 |
66 | let fail err = Error err
67 |
68 | let run x = x
69 | end
70 |
71 | module ErrorT(T : TYPE)(M : Plain) = struct
72 | type 'a t = ('a, T.t) Result.t M.t
73 |
74 | let return x = M.return (Ok x)
75 |
76 | let bind (type a b) (x : a t) (f : a -> b t) : b t =
77 | M.bind x
78 | (function
79 | | Ok x -> f x
80 | | Error err -> M.return (Error err))
81 |
82 | let fail err = M.return @@ Error err
83 |
84 | let lift x = M.bind x (fun v -> M.return @@ Ok v)
85 | end
86 |
87 |
--------------------------------------------------------------------------------
/src/Monad.mli:
--------------------------------------------------------------------------------
1 | module type Plain = sig
2 | type 'a t
3 | val return : 'a -> 'a t
4 | val bind : 'a t -> ('a -> 'b t) -> 'b t
5 | end
6 |
7 | module type Runnable = sig
8 | include Plain
9 | val run : 'a t -> 'a
10 | end
11 |
12 | module Notation (M : Plain) : sig
13 | val return : 'a -> 'a M.t
14 | val (let*) : 'a M.t -> ('a -> 'b M.t) -> 'b M.t
15 | val (and*) : 'a M.t -> 'b M.t -> ('a * 'b) M.t
16 | val (let+) : 'a M.t -> ('a -> 'b) -> 'b M.t
17 | val (and+) : 'a M.t -> 'b M.t -> ('a * 'b) M.t
18 | end
19 |
20 | module type TYPE = sig
21 | type t
22 | end
23 |
24 | module Reader (T : TYPE) : sig
25 | include Plain with type 'a t = T.t -> 'a
26 | val get : T.t t
27 | val run : T.t -> 'a t -> 'a
28 | end
29 |
30 | module State(T : TYPE) : sig
31 | include Plain with type 'a t = T.t -> 'a * T.t
32 | val get : T.t t
33 | val set : T.t -> unit t
34 | val run : T.t -> 'a t -> 'a
35 | end
36 |
37 | module Error(T : TYPE) : sig
38 | include Plain
39 | val fail : T.t -> 'a t
40 | val run : 'a t -> ('a, T.t) Result.t
41 | end
42 |
43 | module ErrorT(T : TYPE)(M : Plain) : sig
44 | include Plain with type 'a t = ('a, T.t) Result.t M.t
45 | val lift : 'a M.t -> 'a t
46 | val fail : T.t -> 'a t
47 | end
48 |
--------------------------------------------------------------------------------
/src/Name.ml:
--------------------------------------------------------------------------------
1 | (** Strings are represented as unique identifiers. *)
2 |
3 | type t = int
4 |
5 | let compare (x : t) y = Stdlib.compare x y
6 |
7 | let equal x y = x = y
8 |
9 | let fwd_table : (string, int) Hashtbl.t = Hashtbl.create 100
10 | let bwd_table : (int, string) Hashtbl.t = Hashtbl.create 100
11 | let free = ref 0
12 |
13 | let of_string =
14 | fun s ->
15 | try Hashtbl.find fwd_table s
16 | with Not_found ->
17 | let id = !free in
18 | Hashtbl.add fwd_table s id;
19 | Hashtbl.add bwd_table id s;
20 | incr free;
21 | id
22 |
23 | let to_string n = Hashtbl.find bwd_table n
24 |
25 | let sexp_of_t n = Sexplib.Conv.sexp_of_string (to_string n)
26 |
27 | let pp n = PPrint.utf8string (to_string n)
28 |
29 | let dummy_prefix = "_"
30 |
31 | let dummy = of_string dummy_prefix
32 |
33 | let of_option = Option.value ~default:dummy
34 |
35 | let internal s = of_string (dummy_prefix ^ s)
36 |
--------------------------------------------------------------------------------
/src/Name.mli:
--------------------------------------------------------------------------------
1 | (** An abstract type of name supporting constant-time equality testing,
2 | comparison, pretty-printing, and conversion to S-expressions. *)
3 | include Sigs.PrintableComparableType
4 |
5 | val sexp_of_t : t -> Sexplib.Sexp.t
6 |
7 | (** Names are isomorphic to strings. *)
8 |
9 | val of_string : string -> t
10 |
11 | val to_string : t -> string
12 |
13 | (** [dummy] is a name that can never appear in source code. *)
14 | val dummy : t
15 |
16 | (** [of_option name] sends [None] to [dummy] and [Some x] to [x]. *)
17 | val of_option : t option -> t
18 |
19 | (** [internal s] returns a name that is guaranteed never to appear in source
20 | code, due to lexing convention. This function is injective, but it differs
21 | from [of_string] in that [to_string (internal s)] is never equal to [s]. *)
22 | val internal : string -> t
23 |
--------------------------------------------------------------------------------
/src/Options.ml:
--------------------------------------------------------------------------------
1 | let use_unicode = ref true
2 |
3 | let type_in_type = ref false
4 |
5 | let debug = ref false
6 |
7 | let verbose = ref false
8 |
--------------------------------------------------------------------------------
/src/Parse.mly:
--------------------------------------------------------------------------------
1 | %{ (* -*- mode: tuareg -*- *)
2 | open Raw
3 |
4 | module B = Build
5 | %}
6 |
7 | %token ID
8 | %token INT
9 |
10 | %token LAM FORALL SIGMA LET IN TYPE NAT ZERO SUC ELIM WITH VAL EVAL FST SND
11 | %token LPAREN RPAREN LBRACE RBRACE
12 | %token EQ ARR DARR TIMES
13 | %token UNDERSCORE COLON BAR COMMA
14 | %token EOF
15 |
16 | %nonassoc IN DARR
17 | %right ARR
18 | %right TIMES
19 |
20 | %start whole_file
21 | %start whole_phrase
22 | %start whole_term
23 |
24 | %type hypothesis
25 | %type telescope
26 |
27 | %%
28 |
29 | %inline parens(X):
30 | | LPAREN x = X RPAREN { x }
31 |
32 | %inline located(X):
33 | | x = X { x ~loc:(Position.lex_join $startpos $endpos) () }
34 |
35 | %inline name:
36 | | id = ID { Name.of_string id }
37 |
38 | very_simple_term_:
39 | | name = name { B.var ~name }
40 | | TYPE level = INT { B.typ ~level }
41 | | NAT { B.nat }
42 | | k = INT { B.lit ~k }
43 | | ZERO { B.zero }
44 | | SUC t = very_simple_term { B.suc ~t }
45 | | FST arg = very_simple_term { B.fst ~arg }
46 | | SND arg = very_simple_term { B.snd ~arg }
47 | | te = parens(term_) { te }
48 |
49 | %inline very_simple_term:
50 | | located(very_simple_term_) { $1 }
51 |
52 | simple_term_:
53 | | te = very_simple_term_ { te }
54 | | func = simple_term arg = very_simple_term { B.app ~func ~arg }
55 |
56 | %inline simple_term:
57 | | located(simple_term_) { $1 }
58 |
59 | weakened_term(X):
60 | | b = hyp X te = term { (b, te) }
61 |
62 | motive:
63 | | WITH p = pattern DARR ty = ty { B.bound1 p ty }
64 |
65 | term_:
66 | | t = simple_term_
67 | { t }
68 | | LAM params = pattern+ DARR body = term
69 | { B.lam_n ~params ~body }
70 | | LET p = pattern COLON ty = ty EQ def = term IN body = term
71 | { B.let_ ~def ~ty ~body:(B.bound1 p body) }
72 | | FORALL params = telescope ARR body = ty
73 | { B.pi_n ~params ~body }
74 | | SIGMA params = telescope TIMES body = ty
75 | { B.sigma_n ~params ~body }
76 | | dom = term ARR cod = term
77 | { B.arrow ~dom ~cod }
78 | | left = term TIMES right = term
79 | { B.product ~left ~right }
80 | | ELIM scrut = term motive = motive
81 | LBRACE
82 | BAR? ZERO DARR case_zero = term
83 | BAR SUC case_suc = bind2(DARR)
84 | RBRACE
85 | { B.natelim ~scrut ~motive ~case_zero ~case_suc }
86 | | LPAREN left = term COMMA right = term RPAREN
87 | { B.pair ~left ~right }
88 | | LPAREN tm = term COLON ty = ty RPAREN
89 | { B.annot ~tm ~ty }
90 |
91 | %inline term:
92 | | located(term_) { $1 }
93 |
94 | %inline ty: term { $1 }
95 |
96 | bind1(SEP):
97 | | p = pattern SEP t = term { B.bound1 p t }
98 |
99 | bind2(SEP):
100 | | p1 = pattern COMMA p2 = pattern SEP t = term { B.bound2 p1 p2 t }
101 |
102 | pattern_:
103 | | UNDERSCORE { B.pwildcard }
104 | | name = name { B.pvar ~name }
105 |
106 | %inline pattern:
107 | | located(pattern_) { $1 }
108 |
109 | hyp:
110 | | p = pattern COLON ty = ty { (p, ty) }
111 |
112 | hypothesis_:
113 | | LPAREN pat = pattern COLON ty = ty RPAREN { B.hypothesis ~pat ~ty }
114 |
115 | (* Workaround for a bug in Menhir and/or Dune. TODO investigate *)
116 | %inline hypothesis:
117 | | h = hypothesis_ { h ~loc:(Position.lex_join $startpos $endpos) () }
118 |
119 | telescope:
120 | | hypothesis* { $1 }
121 |
122 | phrase_desc:
123 | | VAL name = name args = telescope COLON ty = ty EQ def = term
124 | { B.val_ ~name ~args ~ty ~def }
125 | | EVAL def = term
126 | { B.eval ~def }
127 |
128 | %inline phrase:
129 | | p = located(phrase_desc) { p }
130 |
131 | file:
132 | | phrase* { $1 }
133 |
134 | whole(X):
135 | | x = X EOF { x }
136 | | error { Error.syntax "syntax error" $startpos $endpos }
137 |
138 | whole_file:
139 | | whole(file) { $1 }
140 |
141 | whole_phrase:
142 | | whole(phrase) { $1 }
143 |
144 | whole_term:
145 | | whole(term) { $1 }
146 |
147 | %%
148 |
--------------------------------------------------------------------------------
/src/Position.ml:
--------------------------------------------------------------------------------
1 | open Lexing
2 |
3 | type lexing_position = Lexing.position
4 |
5 | (* let lexing_position_of_sexp p = *)
6 | (* [%of_sexp: string * int * int * int] p *)
7 | (* |> fun (pos_fname, pos_lnum, pos_bol, pos_cnum) -> *)
8 | (* { pos_fname; pos_lnum; pos_bol; pos_cnum } *)
9 |
10 | let sexp_of_lexing_position p =
11 | let open Sexplib.Std in
12 | [%sexp_of: string * int * int * int]
13 | (p.pos_fname, p.pos_lnum, p.pos_bol, p.pos_cnum)
14 |
15 | type t =
16 | {
17 | start_p : lexing_position;
18 | end_p : lexing_position;
19 | } [@@deriving sexp_of]
20 |
21 | type position = t
22 |
23 | type 'a located =
24 | {
25 | value : 'a;
26 | position : t;
27 | }
28 |
29 | let value { value = v; _ } =
30 | v
31 |
32 | let position { position = p; _ } =
33 | p
34 |
35 | let destruct p =
36 | (p.value, p.position)
37 |
38 | let located f x =
39 | f (value x)
40 |
41 | let with_pos p v =
42 | {
43 | value = v;
44 | position = p;
45 | }
46 |
47 | let with_poss p1 p2 v =
48 | with_pos { start_p = p1; end_p = p2 } v
49 |
50 | let map f v =
51 | {
52 | value = f v.value;
53 | position = v.position;
54 | }
55 |
56 | let iter f { value = v; _ } =
57 | f v
58 |
59 | let mapd f v =
60 | let w1, w2 = f v.value in
61 | let pos = v.position in
62 | ({ value = w1; position = pos }, { value = w2; position = pos })
63 |
64 | let dummy =
65 | {
66 | start_p = Lexing.dummy_pos;
67 | end_p = Lexing.dummy_pos
68 | }
69 |
70 | let unknown_pos v =
71 | {
72 | value = v;
73 | position = dummy
74 | }
75 |
76 | let pp_located pp fmt x =
77 | pp fmt x.value
78 |
79 | let start_of_position p = p.start_p
80 |
81 | let end_of_position p = p.end_p
82 |
83 | let filename_of_position p =
84 | p.start_p.Lexing.pos_fname
85 |
86 | let line p =
87 | p.pos_lnum
88 |
89 | let column p =
90 | p.pos_cnum - p.pos_bol
91 |
92 | let characters p1 p2 =
93 | (column p1, p2.pos_cnum - p1.pos_bol) (* intentionally [p1.pos_bol] *)
94 |
95 | let join x1 x2 =
96 | {
97 | start_p = if x1 = dummy then x2.start_p else x1.start_p;
98 | end_p = if x2 = dummy then x1.end_p else x2.end_p
99 | }
100 |
101 | let lex_join x1 x2 =
102 | {
103 | start_p = x1;
104 | end_p = x2
105 | }
106 |
107 | let join_located l1 l2 f =
108 | {
109 | value = f l1.value l2.value;
110 | position = join l1.position l2.position;
111 | }
112 |
113 | let string_of_lex_pos p =
114 | let c = p.pos_cnum - p.pos_bol in
115 | (string_of_int p.pos_lnum)^":"^(string_of_int c)
116 |
117 | let to_string p =
118 | let filename = filename_of_position p in
119 | let l = line p.start_p in
120 | let c1, c2 = characters p.start_p p.end_p in
121 | if filename = "" then
122 | Printf.sprintf "Line %d, characters %d-%d" l c1 c2
123 | else
124 | Printf.sprintf "File \"%s\", line %d, characters %d-%d" filename l c1 c2
125 |
126 | let pos_or_undef = function
127 | | None -> dummy
128 | | Some x -> x
129 |
130 | let cpos lexbuf =
131 | {
132 | start_p = Lexing.lexeme_start_p lexbuf;
133 | end_p = Lexing.lexeme_end_p lexbuf;
134 | }
135 |
136 | let with_cpos lexbuf v =
137 | with_pos (cpos lexbuf) v
138 |
139 | let string_of_cpos lexbuf =
140 | to_string (cpos lexbuf)
141 |
142 | let joinf f t1 t2 =
143 | join (f t1) (f t2)
144 |
145 | let ljoinf f =
146 | List.fold_left (fun p t -> join p (f t)) dummy
147 |
148 | let join_located_list ls f =
149 | {
150 | value = f (List.map (fun l -> l.value) ls);
151 | position = ljoinf (fun x -> x.position) ls
152 | }
153 |
--------------------------------------------------------------------------------
/src/Position.mli:
--------------------------------------------------------------------------------
1 | (** Extension of standard library's positions. *)
2 |
3 | (** {2 Extended lexing positions} *)
4 |
5 | (** Abstract type for pairs of positions in the lexing stream. *)
6 | type t
7 | type position = t
8 |
9 | (** Decoration of a value with a position. *)
10 | type 'a located =
11 | {
12 | value : 'a;
13 | position : t;
14 | }
15 |
16 | (** [value dv] returns the raw value that underlies the
17 | decorated value [dv]. *)
18 | val value: 'a located -> 'a
19 |
20 | (** [position dv] returns the position that decorates the
21 | decorated value [dv]. *)
22 | val position: 'a located -> t
23 |
24 | (** [destruct dv] returns the couple of position and value
25 | of a decorated value [dv]. *)
26 | val destruct: 'a located -> 'a * t
27 |
28 | (** [located f x] applies [f] to the value of [x]. *)
29 | val located : ('a -> 'b) -> 'a located -> 'b
30 |
31 | (** [with_pos p v] decorates [v] with a position [p]. *)
32 | val with_pos : t -> 'a -> 'a located
33 |
34 | (** [with_cpos p v] decorates [v] with a lexical position [p]. *)
35 | val with_cpos: Lexing.lexbuf -> 'a -> 'a located
36 |
37 | (** [with_poss start stop v] decorates [v] with a position [(start, stop)]. *)
38 | val with_poss : Lexing.position -> Lexing.position -> 'a -> 'a located
39 |
40 | (** [unknown_pos x] decorates [v] with an unknown position. *)
41 | val unknown_pos : 'a -> 'a located
42 |
43 | (** [pp_locate pp fmt x] pretty-prints [x] using [pp], discarding locations. *)
44 | val pp_located :
45 | (Format.formatter -> 'a -> unit) ->
46 | Format.formatter -> 'a located -> unit
47 |
48 | (** This value is used when an object does not come from a particular
49 | input location. *)
50 | val dummy: t
51 |
52 | (** [of_sexp s] converts from an S-expression. *)
53 | val sexp_of_t : t -> Sexplib.Sexp.t
54 |
55 | (** [map f v] extends the decoration from [v] to [f v]. *)
56 | val map: ('a -> 'b) -> 'a located -> 'b located
57 |
58 | (** [iter f dv] applies [f] to the value inside [dv]. *)
59 | val iter: ('a -> unit) -> 'a located -> unit
60 |
61 | (** [mapd f v] extends the decoration from [v] to both members of the pair
62 | [f v]. *)
63 | val mapd: ('a -> 'b1 * 'b2) -> 'a located -> 'b1 located * 'b2 located
64 |
65 | (** {2 Accessors} *)
66 |
67 | (** [column p] returns the number of characters from the
68 | beginning of the line of the Lexing.position [p]. *)
69 | val column : Lexing.position -> int
70 |
71 | (** [column p] returns the line number of to the Lexing.position [p]. *)
72 | val line : Lexing.position -> int
73 |
74 | (** [characters p1 p2] returns the character interval
75 | between [p1] and [p2] assuming they are located in the same
76 | line. *)
77 | val characters : Lexing.position -> Lexing.position -> int * int
78 |
79 | (** [start_of_position p] returns the beginning of a position [p]. *)
80 | val start_of_position: t -> Lexing.position
81 |
82 | (** [end_of_position p] returns the end of a position [p]. *)
83 | val end_of_position: t -> Lexing.position
84 |
85 | (** [filename_of_position p] returns the filename of a position [p]. *)
86 | val filename_of_position: t -> string
87 |
88 | (** {2 Position handling} *)
89 |
90 | (** [join p1 p2] returns a position that starts where [p1]
91 | starts and stops where [p2] stops. *)
92 | val join : t -> t -> t
93 |
94 | (** [lex_join l1 l2] returns a position that starts at [l1] and stops
95 | at [l2]. *)
96 | val lex_join : Lexing.position -> Lexing.position -> t
97 |
98 | (** [string_of_lex_pos p] returns a string representation for
99 | the lexing position [p]. *)
100 | val string_of_lex_pos : Lexing.position -> string
101 |
102 | (** [string_of_pos p] returns the standard (Emacs-like) representation
103 | of the position [p]. *)
104 | val to_string : t -> string
105 |
106 | (** [pos_or_undef po] is the identity function except if po = None,
107 | in that case, it returns [undefined_position]. *)
108 | val pos_or_undef : t option -> t
109 |
110 | (** {2 Interaction with the lexer runtime} *)
111 |
112 | (** [cpos lexbuf] returns the current position of the lexer. *)
113 | val cpos : Lexing.lexbuf -> t
114 |
115 | (** [string_of_cpos p] returns a string representation of
116 | the lexer's current position. *)
117 | val string_of_cpos : Lexing.lexbuf -> string
118 |
--------------------------------------------------------------------------------
/src/Raw.ml:
--------------------------------------------------------------------------------
1 | type pattern_desc =
2 | | PWildcard
3 | | PVar of Name.t
4 |
5 | and pattern = pattern_desc Position.located
6 |
7 | type term_desc =
8 | | Var of Name.t
9 | | Let of { def : term; ty : ty; body : bound1; }
10 | | Pi of ty * bound1
11 | | Lam of bound1
12 | | App of term * term
13 | | Sigma of ty * bound1
14 | | Pair of term * term
15 | | Fst of term
16 | | Snd of term
17 | | Nat
18 | | Zero
19 | | Suc of term
20 | | Natelim of { scrut : term;
21 | motive : bound1;
22 | case_zero : term;
23 | case_suc : bound2; }
24 | | Type of int
25 | | Annot of { tm : term; ty : term; }
26 |
27 | and term = term_desc Position.located
28 |
29 | and bound1 =
30 | Bound1 of {
31 | pat : pattern;
32 | body : term;
33 | }
34 |
35 | and bound2 =
36 | Bound2 of {
37 | pat1 : pattern;
38 | pat2 : pattern;
39 | body : term;
40 | }
41 |
42 | and ty = term
43 |
44 | and telescope = hypothesis list
45 |
46 | and hypothesis_desc = Hyp of { pat : pattern; ty : ty; }
47 |
48 | and hypothesis = hypothesis_desc Position.located
49 |
50 | type phrase_desc =
51 | | Val of { name : Name.t; args : telescope; ty : ty; def : term; }
52 | | Eval of { def : term; }
53 |
54 | and phrase = phrase_desc Position.located
55 |
56 | type t = phrase list
57 |
58 | module Build = struct
59 | let pvar ?(loc = Position.dummy) ~name () =
60 | Position.with_pos loc @@ PVar name
61 |
62 | let pwildcard ?(loc = Position.dummy) () =
63 | Position.with_pos loc @@ PWildcard
64 |
65 | let bound1 pat body =
66 | Bound1 { pat; body; }
67 |
68 | let bound2 pat1 pat2 body =
69 | Bound2 { pat1; pat2; body; }
70 |
71 | let var ?(loc = Position.dummy) ~name () =
72 | Position.with_pos loc @@ Var name
73 |
74 | let let_ ?(loc = Position.dummy) ~def ~ty ~body () =
75 | Position.with_pos loc @@ Let { def; ty; body; }
76 |
77 | let binder_n ?(loc = Position.dummy) ~binder ~params ~body () =
78 | Position.{
79 | (List.fold_right
80 | (fun { Position.value = Hyp { pat; ty = a; }; _ } b ->
81 | with_pos (join (join pat.position a.position) b.position)
82 | (binder a (bound1 pat b))) params body)
83 | with position = loc;
84 | }
85 |
86 | let pi ?(loc = Position.dummy) ~dom ~cod () =
87 | Position.with_pos loc @@ Pi (dom, cod)
88 |
89 | let pi_n =
90 | binder_n ~binder:(fun dom cod -> Pi (dom, cod))
91 |
92 | let arrow ?(loc = Position.dummy) ~dom ~cod () =
93 | pi ~loc ~dom ~cod:(bound1 (pwildcard ~loc ()) cod) ()
94 |
95 | let lam ?(loc = Position.dummy) ~param ~body () =
96 | Position.with_pos loc @@ Lam (bound1 param body)
97 |
98 | let lam_n ?(loc = Position.dummy) ~params ~body () =
99 | List.fold_right (fun param body -> lam ~loc ~param ~body ()) params body
100 |
101 | let app ?(loc = Position.dummy) ~func ~arg () =
102 | Position.with_pos loc @@ App (func, arg)
103 |
104 | let app_n ?(loc = Position.dummy) ~func ~args () =
105 | List.fold_left (fun func arg -> app ~loc ~func ~arg ()) func args
106 |
107 | let sigma ?(loc = Position.dummy) ~base ~total () =
108 | Position.with_pos loc @@ Sigma (base, total)
109 |
110 | let sigma_n =
111 | binder_n ~binder:(fun dom cod -> Sigma (dom, cod))
112 |
113 | let product ?(loc = Position.dummy) ~left ~right () =
114 | sigma ~loc ~base:left ~total:(bound1 (pwildcard ~loc ()) right) ()
115 |
116 | let pair ?(loc = Position.dummy) ~left ~right () =
117 | Position.with_pos loc @@ Pair (left, right)
118 |
119 | let fst ?(loc = Position.dummy) ~arg () =
120 | Position.with_pos loc @@ Fst arg
121 |
122 | let snd ?(loc = Position.dummy) ~arg () =
123 | Position.with_pos loc @@ Snd arg
124 |
125 | let nat ?(loc = Position.dummy) () =
126 | Position.with_pos loc @@ Nat
127 |
128 | let zero ?(loc = Position.dummy) () =
129 | Position.with_pos loc @@ Zero
130 |
131 | let suc ?(loc = Position.dummy) ~t () =
132 | Position.with_pos loc @@ Suc t
133 |
134 | let lit ?(loc = Position.dummy) ~k () =
135 | Sigs.Int.fold (fun t -> suc ~loc ~t ()) k (zero ~loc ())
136 |
137 | let natelim ?(loc = Position.dummy) ~scrut ~motive ~case_zero ~case_suc () =
138 | Position.with_pos loc @@ Natelim { scrut; motive; case_zero; case_suc; }
139 |
140 | let annot ?(loc = Position.dummy) ~tm ~ty () =
141 | Position.with_pos loc @@ Annot { tm; ty; }
142 |
143 | let hypothesis ?(loc = Position.dummy) ~pat ~ty () =
144 | Position.with_pos loc @@ Hyp { pat; ty; }
145 |
146 | let typ ?(loc = Position.dummy) ~level () =
147 | if level < 0 then invalid_arg "typ";
148 | Position.with_pos loc @@ Type level
149 |
150 | let val_ ?(loc = Position.dummy) ~name ~args ~ty ~def () =
151 | Position.with_pos loc @@ Val { name; args; ty; def; }
152 |
153 | let eval ?(loc = Position.dummy) ~def () =
154 | Position.with_pos loc @@ Eval { def; }
155 | end
156 |
157 | module PPrint = struct
158 | open PPrint
159 | module U = UnicodeSigil
160 |
161 | let name = Name.pp
162 |
163 | let pattern_desc = function
164 | | PWildcard -> !^ "_"
165 | | PVar x -> name x
166 |
167 | let pattern = Position.located pattern_desc
168 |
169 | let rec term_desc = function
170 | | (Var _ | Type _ | Nat | Zero | Suc _ | App _ | Fst _ | Snd _) as t ->
171 | group (simple_term_desc t)
172 |
173 | | Lam _ as t ->
174 | let rec lam = function
175 | | Lam (Bound1 { pat; body; }) ->
176 | let pats, body = lam body.Position.value in
177 | pattern pat :: pats, body
178 | | body ->
179 | [], body
180 | in
181 | let patterns, body = lam t in
182 | bindN
183 | U.(doc lambda)
184 | U.(doc drarrow)
185 | patterns
186 | (term_desc body)
187 |
188 | | Let { def; ty; body = Bound1 { pat; body; }; } ->
189 | group
190 | (
191 | (group (!^ "let" ^/^ hyp ~ty pat
192 | ^/^ !^ " =" ^/^ term def ^/^ !^ "in"))
193 | ^/^ term body
194 | )
195 |
196 | | Pi (_, Bound1 { pat = { Position.value = PVar _; _ }; _ }) as t ->
197 | let rec print_forall = function
198 | | Pi (a, Bound1 { pat = { Position.value = PVar _; _ } as pat;
199 | body; }) ->
200 | parens (hyp ~ty:a pat) ^/^ print_forall body.Position.value
201 | | t ->
202 | U.(doc srarrow) ^/^ typ_desc t
203 | in
204 | group (U.(doc forall) ^/^ print_forall t)
205 |
206 | | Pi (_, Bound1 { pat = { Position.value = PWildcard; _ }; _ }) as t ->
207 | let rec print_fun = function
208 | | Pi (a, Bound1 { pat = { Position.value = PWildcard; _ };
209 | body; }) ->
210 | typ a ^^ space ^^ U.(doc srarrow) ^/^ print_fun body.Position.value
211 | | t ->
212 | typ_desc t
213 | in
214 | group (print_fun t)
215 |
216 | | Sigma (_, Bound1 { pat = { Position.value = PVar _; _ }; _ }) as t ->
217 | let rec print_forall = function
218 | | Sigma (a, Bound1 { pat = { Position.value = PVar _; _ } as pat;
219 | body; }) ->
220 | parens (hyp ~ty:a pat) ^/^ print_forall body.Position.value
221 | | t ->
222 | dot ^/^ typ_desc t
223 | in
224 | group (U.(doc sigma) ^/^ print_forall t)
225 |
226 | | Sigma (_, Bound1 { pat = { Position.value = PWildcard; _ }; _ }) as t ->
227 | let rec print_prod = function
228 | | Sigma (a, Bound1 { pat = { Position.value = PWildcard; _ };
229 | body; }) ->
230 | typ a ^^ space ^^ U.(doc times) ^/^ print_prod body.Position.value
231 | | t ->
232 | typ_desc t
233 | in
234 | group (print_prod t)
235 |
236 | | Natelim { scrut; motive; case_zero; case_suc; } ->
237 | let m = bind1 (!^ " with") U.(doc drarrow) motive in
238 | prefix 2 1
239 | (group (!^ "elim" ^/^ term scrut ^^ m))
240 | (braces @@ separate (break 1 ^^ bar)
241 | [
242 | bind0 (!^ " zero") U.(doc drarrow) case_zero;
243 | bind2 (!^ " suc") U.(doc drarrow) case_suc;
244 | ] ^^ break 1)
245 |
246 | | Pair (left, right) ->
247 | parens @@ group @@ term left ^^ comma ^/^ term right
248 |
249 | | Annot { tm; ty; } ->
250 | (* TODO factor into some `hypothesis` function. *)
251 | parens @@ group @@ term tm ^^ space ^^ colon ^/^ term ty
252 |
253 | and simple_term_desc = function
254 | | (Var _ | Type _ | Nat | Zero | Suc _ | Fst _ | Snd _) as t ->
255 | very_simple_term_desc t
256 |
257 | | App (t, u) ->
258 | simple_term t ^/^ very_simple_term u
259 |
260 | | _ ->
261 | assert false
262 |
263 | and very_simple_term_desc = function
264 | | Var x ->
265 | name x
266 |
267 | | Type l ->
268 | U.(doc typ ^^ space ^^ if l = max_int then !^ "top" else ExtPrint.int l)
269 |
270 | | Nat ->
271 | U.(doc nat)
272 |
273 | | Zero ->
274 | !^ "0"
275 |
276 | | Suc t ->
277 | let rec loop = function
278 | | Zero ->
279 | 1, None
280 | | Suc t ->
281 | let k, r = loop t.Position.value in
282 | k + 1, r
283 | | r ->
284 | 1, Some r
285 | in
286 | let k, r = loop t.Position.value in
287 | begin match r with
288 | | None ->
289 | !^ (string_of_int k)
290 | | Some t ->
291 | Sigs.Int.fold (prefix 2 1 (!^ "suc")) k (simple_term_desc t)
292 | end
293 |
294 | | Fst t ->
295 | prefix 2 1 (!^ "fst") (very_simple_term t)
296 |
297 | | Snd t ->
298 | prefix 2 1 (!^ "snd") (very_simple_term t)
299 |
300 | | t ->
301 | parens (term_desc t)
302 |
303 | and term t : PPrint.document = Position.located term_desc t
304 |
305 | and simple_term t = Position.located simple_term_desc t
306 |
307 | and very_simple_term t = Position.located very_simple_term_desc t
308 |
309 | and typ ty = Position.located typ_desc ty
310 |
311 | and typ_desc tyd = term_desc tyd
312 |
313 | and bindN kw sep (heads : document list) body =
314 | prefix 2 1
315 | (prefix 2 1 kw (group @@ separate (break 1) (heads @ [sep])))
316 | body
317 |
318 | and bind0 kw sep body =
319 | bindN kw sep [] (term body)
320 |
321 | and bind1 kw sep (Bound1 { pat; body; }) =
322 | bindN kw sep [pattern pat] (term body)
323 |
324 | and bind2 kw sep (Bound2 { pat1; pat2; body; }) =
325 | bindN kw sep [pattern pat1 ^^ comma; pattern pat2] (term body)
326 |
327 | and bound1 (Bound1 { pat; body; }) =
328 | pattern pat ^^ dot ^^ term body
329 |
330 | and bound2 (Bound2 { pat1; pat2; body; }) =
331 | parens (group (pattern pat1 ^^ comma ^/^ pattern pat2)) ^^ dot ^^ term body
332 |
333 | and hyp ?ty (p : pattern) =
334 | match ty with
335 | | None -> pattern p
336 | | Some ty -> group @@ pattern p ^^ space ^^ colon ^/^ typ ty
337 |
338 | and hypothesis_desc (Hyp { pat; ty }) =
339 | group @@ pattern pat ^^ space ^^ colon ^/^ typ ty
340 |
341 | and hypothesis h = Position.located hypothesis_desc h
342 |
343 | and telescope tele =
344 | group @@ concat @@ List.map (fun h -> break 1 ^^ hypothesis h) tele
345 |
346 | and phrase_desc = function
347 | | Val { name = n; args; ty; def; } ->
348 | (* TODO rationalize *)
349 | prefix 2 1
350 | (group @@ !^ "val" ^^ space ^^ name n ^^ telescope args
351 | ^/^ colon ^^ space ^^ typ ty ^/^ !^ "=")
352 | (group @@ term def)
353 | | Eval { def; } ->
354 | prefix 2 1 (!^ "eval") (term def)
355 |
356 | and phrase p = Position.located phrase_desc p
357 |
358 | and file phrs = separate_map hardline phrase phrs
359 | end
360 |
361 | let name_option_of_pattern Position.{ value; _ } =
362 | match value with
363 | | PWildcard -> None
364 | | PVar x -> Some x
365 |
366 | let name_of_pattern p =
367 | Name.of_option @@ name_option_of_pattern p
368 |
369 | let patterns_of_telescope tele =
370 | List.map (fun { Position.value = Hyp { pat; _ }; _ } -> pat) tele
371 |
--------------------------------------------------------------------------------
/src/Raw.mli:
--------------------------------------------------------------------------------
1 | (** {1 Raw terms} *)
2 |
3 | (** This module defines raw terms, as produced by the parser. *)
4 |
5 | (** At this level, names are simply strings. The transformation from strings to
6 | DeBruijn indices happens during elaboration. *)
7 |
8 | type pattern_desc =
9 | | PWildcard
10 | | PVar of Name.t
11 |
12 | and pattern = pattern_desc Position.located
13 |
14 | type term_desc =
15 | | Var of Name.t
16 | (** Variable occurence *)
17 | | Let of { def : term;
18 | ty : ty;
19 | body : bound1; }
20 | (** Let statement, annotated with its type. *)
21 | | Pi of ty * bound1
22 | (** Dependent function type *)
23 | | Lam of bound1
24 | (** Anonymous (dependent) function *)
25 | | App of term * term
26 | (** Application *)
27 | | Sigma of ty * bound1
28 | (** Dependent sum type *)
29 | | Pair of term * term
30 | (** Sum constructor *)
31 | | Fst of term
32 | (** First projection *)
33 | | Snd of term
34 | (** Second projection *)
35 | | Nat
36 | (** Type of natural numbers. *)
37 | | Zero
38 | (** Nullary constructor of [Nat]. *)
39 | | Suc of term
40 | (** Unary constructor of [Nat]. *)
41 | | Natelim of { scrut : term;
42 | motive : bound1;
43 | case_zero : term;
44 | case_suc : bound2; }
45 | (** Dependent elimination form for natural numbers. *)
46 | | Type of int
47 | (** Universe hierarchy. *)
48 | | Annot of { tm : term; ty : term; }
49 | (** Type annotation. *)
50 |
51 | and term = term_desc Position.located
52 |
53 | and bound1 =
54 | Bound1 of {
55 | pat : pattern;
56 | body : term;
57 | }
58 |
59 | and bound2 =
60 | Bound2 of {
61 | pat1 : pattern;
62 | pat2 : pattern;
63 | body : term;
64 | }
65 |
66 | and ty = term
67 |
68 | and telescope = hypothesis list
69 |
70 | and hypothesis_desc = Hyp of { pat : pattern; ty : ty; }
71 |
72 | and hypothesis = hypothesis_desc Position.located
73 |
74 | type phrase_desc =
75 | | Val of { name : Name.t; args : telescope; ty : ty; def : term; }
76 | | Eval of { def : term; }
77 |
78 | and phrase = phrase_desc Position.located
79 |
80 | type t = phrase list
81 |
82 | module Build : sig
83 | (* The functions declared in this submodule have all their arguments labelled
84 | except for a trailing unit argument. This ensures that the optional [loc]
85 | argument is never erased, making it possible to deal with locations in a
86 | uniform way in {! Parse}. *)
87 |
88 | val pvar : ?loc:Position.t -> name:Name.t -> unit -> pattern
89 | val pwildcard : ?loc:Position.t -> unit -> pattern
90 | val var : ?loc:Position.t -> name:Name.t -> unit -> term
91 | val let_ : ?loc:Position.t -> def:term -> ty:ty -> body:bound1 -> unit -> term
92 | val pi : ?loc:Position.t -> dom:ty -> cod:bound1 -> unit -> ty
93 | val pi_n : ?loc:Position.t -> params:telescope -> body:ty ->
94 | unit -> ty
95 | val arrow : ?loc:Position.t -> dom:ty -> cod:ty -> unit -> ty
96 | val lam : ?loc:Position.t -> param:pattern -> body:term -> unit -> term
97 | val lam_n : ?loc:Position.t ->
98 | params:pattern list ->
99 | body:term ->
100 | unit -> term
101 | val app : ?loc:Position.t -> func:term -> arg:term -> unit -> term
102 | val app_n : ?loc:Position.t -> func:term -> args:term list -> unit -> term
103 | val sigma : ?loc:Position.t -> base:ty -> total:bound1 -> unit -> ty
104 | val sigma_n : ?loc:Position.t -> params:telescope -> body:ty ->
105 | unit -> ty
106 | val product : ?loc:Position.t -> left:ty -> right:ty -> unit -> ty
107 | val pair : ?loc:Position.t -> left:term -> right:term -> unit -> term
108 | val fst : ?loc:Position.t -> arg:term -> unit -> term
109 | val snd : ?loc:Position.t -> arg:term -> unit -> term
110 | val nat : ?loc:Position.t -> unit -> term
111 | val zero : ?loc:Position.t -> unit -> term
112 | val suc : ?loc:Position.t -> t:term -> unit -> term
113 | val lit : ?loc:Position.t -> k:int -> unit -> term
114 | val natelim : ?loc:Position.t ->
115 | scrut:term ->
116 | motive:bound1 ->
117 | case_zero:term ->
118 | case_suc:bound2 ->
119 | unit -> term
120 | val typ : ?loc:Position.t -> level:int -> unit -> term
121 | val annot : ?loc:Position.t -> tm:term -> ty:ty -> unit -> term
122 | val hypothesis : ?loc:Position.t -> pat:pattern -> ty:ty -> unit -> hypothesis
123 | val bound1 : pattern -> term -> bound1
124 | val bound2 : pattern -> pattern -> term -> bound2
125 | val val_ : ?loc:Position.t ->
126 | name:Name.t ->
127 | args:telescope ->
128 | ty:term ->
129 | def:term ->
130 | unit -> phrase
131 | val eval : ?loc:Position.t -> def:term -> unit -> phrase
132 | end
133 |
134 | module PPrint : sig
135 | val pattern_desc : pattern_desc -> PPrint.document
136 | val pattern : pattern -> PPrint.document
137 | val term_desc : term_desc -> PPrint.document
138 | val term : term -> PPrint.document
139 | val bound1 : bound1 -> PPrint.document
140 | val bound2 : bound2 -> PPrint.document
141 | val phrase : phrase -> PPrint.document
142 | val hypothesis : hypothesis -> PPrint.document
143 | val telescope : telescope -> PPrint.document
144 | val file : t -> PPrint.document
145 | end
146 |
147 | val name_option_of_pattern : pattern -> Name.t option
148 |
149 | (** [name_of_pattern p] sends [PWildcard] to [Name.dummy] and [PVar x] to
150 | [x]. *)
151 | val name_of_pattern : pattern -> Name.t
152 |
153 | val patterns_of_telescope : telescope -> pattern list
154 |
--------------------------------------------------------------------------------
/src/Semantics.ml:
--------------------------------------------------------------------------------
1 | open Sexplib.Conv
2 |
3 | module C = Core
4 | module E = DeBruijn.Env
5 | module L = UniverseLevel
6 |
7 | type value =
8 | | Reflect of { ty : value; tm : neutral; }
9 | | Lam of clo1
10 | | Pi of value * clo1
11 | | Sigma of value * clo1
12 | | Pair of value * value
13 | | Type of L.t
14 | | Nat
15 | | Zero
16 | | Suc of value
17 |
18 | and neutral =
19 | | Var of DeBruijn.Lv.t
20 | | App of neutral * normal
21 | | Natelim of neutral * clo1 * value * clo2
22 | | Fst of neutral
23 | | Snd of neutral
24 |
25 | and normal =
26 | | Reify of { ty : value; tm : value; }
27 |
28 | and clo1 = C1 of env * C.bound1
29 |
30 | and clo2 = C2 of env * C.bound2
31 |
32 | and entry =
33 | {
34 | def : value;
35 | ty : value option;
36 | user : Name.t;
37 | }
38 |
39 | and env = entry DeBruijn.Env.t [@@deriving sexp_of]
40 |
41 | type ty = value
42 |
43 | (* Utility functions *)
44 |
45 | let clo1_name (C1 (_, C.Bound1 { user; _ })) =
46 | Option.value ~default:Name.dummy user
47 |
48 | let close1 b1 env = C1 (env, b1)
49 |
50 | let close2 b2 env = C2 (env, b2)
51 |
52 | let limtype = Type UniverseLevel.inf
53 |
54 | module Eval = struct
55 | module M = Monad.Reader(struct type t = env end)
56 | open Monad.Notation(M)
57 |
58 | let extend_eval ?(user = Name.dummy) def env =
59 | DeBruijn.Env.extend { def; ty = None; user; } env
60 |
61 | let rec cterm : C.cterm -> value M.t =
62 | fun tm ->
63 | match tm.c_desc with
64 | | C.Infer tm ->
65 | iterm tm
66 |
67 | | C.Lam body ->
68 | let* body = close1 body in
69 | return @@ Lam body
70 |
71 | | C.Pi (dom, cod) ->
72 | let* dom = cterm dom in
73 | let* cod = close1 cod in
74 | return @@ Pi (dom, cod)
75 |
76 | | C.Sigma (dom, cod) ->
77 | let* dom = cterm dom in
78 | let* cod = close1 cod in
79 | return @@ Sigma (dom, cod)
80 |
81 | | C.Pair (left, right) ->
82 | let* left = cterm left in
83 | let* right = cterm right in
84 | return @@ Pair (left, right)
85 |
86 | | C.Let { def; body; _ } ->
87 | let* def = cterm def in
88 | let* body = close1 body in
89 | return @@ clo1 body def
90 |
91 | | C.Type l ->
92 | return @@ Type (UniverseLevel.fin l)
93 |
94 | | C.Nat ->
95 | return Nat
96 |
97 | and iterm : C.iterm -> value M.t =
98 | fun tm ->
99 | match tm.i_desc with
100 | | C.Var ix ->
101 | begin
102 | try
103 | let* entry = DeBruijn.Env.lookup ix in
104 | return entry.def
105 | with Not_found -> Error.internal "ill-scoped evaluation"
106 | end
107 |
108 | | C.App (t, u) ->
109 | let* t = iterm t in
110 | let* u = cterm u in
111 | return @@ app t u
112 |
113 | | C.Fst t ->
114 | let* t = iterm t in
115 | return @@ fst t
116 |
117 | | C.Snd t ->
118 | let* t = iterm t in
119 | return @@ snd t
120 |
121 | | C.Zero ->
122 | return Zero
123 |
124 | | C.Suc t ->
125 | let* t = cterm t in
126 | return @@ Suc t
127 |
128 | | C.Natelim { scrut; motive; case_zero; case_suc; } ->
129 | let* scrut = cterm scrut in
130 | let* motive = close1 motive in
131 | let* case_zero = cterm case_zero in (* probably suboptimal *)
132 | let* case_suc = close2 case_suc in
133 | return @@ nat_elim scrut motive case_zero case_suc
134 |
135 | | C.Annot { tm; _ } ->
136 | cterm tm
137 |
138 | and app v w =
139 | match v with
140 | | Lam c ->
141 | clo1 c w
142 | | Reflect { ty = Pi (a, b); tm; } ->
143 | Reflect { ty = clo1 b w; tm = App (tm, Reify { ty = a; tm = w; }); }
144 | | _ ->
145 | Error.internal "ill-typed evaluation"
146 |
147 | and fst = function
148 | | Pair (l, _) ->
149 | l
150 | | Reflect { ty = Sigma (a, _); tm; } ->
151 | Reflect { ty = a; tm = Fst tm; }
152 | | _ ->
153 | Error.internal "ill-typed evaluation"
154 |
155 | and snd = function
156 | | Pair (_, r) ->
157 | r
158 | | Reflect { ty = Sigma (_, f); tm; } as tot ->
159 | Reflect { ty = clo1 f (fst tot); tm = Snd tm; }
160 | | _ ->
161 | Error.internal "ill-typed evaluation"
162 |
163 | and nat_elim d m u0 uN =
164 | match d with
165 | | Zero ->
166 | u0
167 | | Suc n ->
168 | let vp = nat_elim n m u0 uN in
169 | clo2 uN n vp
170 | | Reflect { ty = Nat; tm; } ->
171 | Reflect { ty = Nat; tm = Natelim (tm, m, u0, uN); }
172 | | _ ->
173 | Error.internal "ill-typed evaluation"
174 |
175 | and clo1 (C1 (env, Bound1 { body; user; })) v =
176 | cterm body (extend_eval ?user v env)
177 |
178 | and clo2 (C2 (env, Bound2 { body; user1; user2; })) v1 v2 =
179 | cterm body (extend_eval ?user:user2 v2 (extend_eval ?user:user1 v1 env))
180 | end
181 |
182 | module Quote = struct
183 | type state = { eta : bool; free : int; }
184 | module M = Monad.Reader(struct type t = state end)
185 | open Monad.Notation(M)
186 |
187 | let run ~eta ~free x = x { eta; free; }
188 |
189 | let lift : 'a M.t -> 'a Eval.M.t =
190 | fun x env -> run ~eta:true ~free:(DeBruijn.Env.width env) x
191 |
192 | let fresh ?(user = Name.dummy) ?def ty { free; _ } =
193 | let def =
194 | Option.value
195 | ~default:(Reflect { ty; tm = Var DeBruijn.Lv.(fresh ~free); })
196 | def
197 | in
198 | { user; def; ty = Some ty; }
199 |
200 | let (let$) : entry M.t -> (value -> 'a M.t) -> 'a M.t =
201 | fun x k state ->
202 | let en = x state in
203 | k en.def { state with free = state.free + 1; }
204 |
205 | let weaken : 'a M.t -> 'a M.t =
206 | fun x { eta; free; } -> x { eta; free = free + 1; }
207 |
208 | let rec neutral ne =
209 | match ne with
210 | | Var lv ->
211 | let* { free; _ } = M.get in
212 | return (C.Build.var (DeBruijn.ix_of_lv ~free lv))
213 |
214 | | App (ne, nf) ->
215 | let* ne = neutral ne in
216 | let* nf = normal nf in
217 | return @@ C.Build.app ne nf
218 |
219 | | Fst ne ->
220 | let* ne = neutral ne in
221 | return @@ C.Build.fst ne
222 |
223 | | Snd ne ->
224 | let* ne = neutral ne in
225 | return @@ C.Build.snd ne
226 |
227 | | Natelim (scrut, motive, case_zero, case_succ) ->
228 | let user = clo1_name motive in
229 | let* scrut = neutral scrut in
230 | let* case_zero = normal_ ~ty:(Eval.clo1 motive Zero) ~tm:case_zero in
231 | let$ x1 = fresh ~user Nat in
232 | let* case_suc =
233 | let$ x2 = fresh ~user (Eval.clo1 motive x1) in
234 | normal_clo2 ~ty:(Eval.clo1 motive (Suc x1)) case_succ x1 x2
235 | in
236 | let* motive = normal_clo1 ~ty:(Type L.inf) motive x1 in
237 | return @@ C.Build.natelim
238 | ~scrut:(C.Build.infer scrut)
239 | ~motive ~case_zero ~case_suc ()
240 |
241 | and normal_eta ~ty ~tm =
242 | match ty, tm with
243 | | Reflect _, Reflect { tm; _ } ->
244 | let* tm = neutral tm in
245 | return @@ C.Build.infer tm
246 |
247 | | Type _, Type Inf ->
248 | Error.internal "limit universe quotation"
249 |
250 | | Type l1, Type (Fin level) ->
251 | if not !Options.type_in_type && L.(l1 <= fin level)
252 | then Error.internal "ill-typed normal quotation: universe level"
253 | else return @@ C.Build.typ ~level ()
254 |
255 | | Type _, Nat ->
256 | return @@ C.Build.nat ()
257 |
258 | | Type _, Pi (a, f) ->
259 | let user = clo1_name f in
260 | let* a' = typ a in
261 | let* f =
262 | let$ x_a = fresh ~user a in
263 | normal_clo1 ~ty f x_a
264 | in
265 | return @@ C.Build.pi a' f
266 |
267 | | Pi (a, f), _ ->
268 | let user = clo1_name f in
269 | let$ x = fresh ~user a in
270 | let* body = normal_ ~ty:(Eval.clo1 f x) ~tm:(Eval.app tm x) in
271 | return @@ C.Build.lam (Bound1 { body; user = None; })
272 |
273 | | Sigma (a, f), _ ->
274 | let base = Eval.fst tm in
275 | let* left = normal_ ~ty:a ~tm:base in
276 | let* right = normal_ ~ty:(Eval.clo1 f base) ~tm:(Eval.snd tm) in
277 | return @@ C.Build.pair left right
278 |
279 | | Nat, Zero ->
280 | return @@ C.Build.(infer @@ zero ())
281 |
282 | | Nat, Suc tm ->
283 | let* tm = normal_ ~ty ~tm in
284 | return @@ C.Build.(infer @@ suc tm)
285 |
286 | | _ ->
287 | Error.internal "ill-typed normal quotation"
288 |
289 | and normal_ ~ty ~tm =
290 | let* { eta; _ } = M.get in
291 | if eta then normal_eta ~ty ~tm else value tm
292 |
293 | and normal (Reify { ty; tm; }) =
294 | normal_ ~ty ~tm
295 |
296 | and typ tm =
297 | normal_ ~ty:limtype ~tm
298 |
299 | and normal_clo1 ~ty (C1 (_, Bound1 { user; _ }) as clo) x =
300 | let* body = normal_ ~ty ~tm:(Eval.clo1 clo x) in
301 | return @@ C.Bound1 { body; user; }
302 |
303 | and normal_clo2 ~ty (C2 (_, Bound2 { user1; user2; _ }) as clo) x1 x2 =
304 | let* body = normal_ ~ty ~tm:(Eval.clo2 clo x1 x2) in
305 | return @@ C.Bound2 { body; user1; user2; }
306 |
307 | (* This function avoids calling typ directly, since typ is type-directed and
308 | we might be acting on an ill-typed value here. *)
309 | and value = function
310 | | Reflect { tm; _ } ->
311 | let* tm = neutral tm in
312 | return @@ C.Build.infer tm
313 |
314 | | Lam (C1 (env, body)) ->
315 | (* This could be written in direct style, but for the sake of consistency
316 | uses monadic style. Having a generic monadic fold in DeBruijn.Env
317 | would remove the need for the explicit recurion here, but I believe
318 | that this is this is too unpleasant to write in current OCaml. *)
319 | let rec wrap_env envseq =
320 | match envseq () with
321 | | Seq.Nil -> return @@ C.Build.lam body
322 | | Seq.Cons ({ def; ty; user; }, envseq) ->
323 | let* def = value def in
324 | let* ty =
325 | match ty with
326 | | None -> return @@ C.Build.nat () (* dummy type *)
327 | | Some ty -> value ty
328 | in
329 | let* body = weaken @@ wrap_env envseq in
330 | return @@ C.Build.let_ ~def ~ty
331 | ~body:(C.Bound1 { user = Some user; body; }) ()
332 | in
333 | return @@ run ~eta:false ~free:0 @@ wrap_env (DeBruijn.Env.to_seq env)
334 |
335 | | (Pi (a, f) | Sigma (a, f) as s) ->
336 | let binder =
337 | (* TODO refactor *)
338 | match s with
339 | | Pi _ -> C.Build.pi | Sigma _ -> C.Build.sigma
340 | | _ -> assert false (* absurd *)
341 | in
342 | let user = clo1_name f in
343 | let* f = let$ x_a = fresh ~user a in normal_clo1 ~ty:limtype f x_a in
344 | let* a = normal_ ~ty:limtype ~tm:a in
345 | return @@ binder a f
346 |
347 | | Pair (left, right) ->
348 | let* left = value left in
349 | let* right = value right in
350 | return @@ C.Build.pair left right
351 |
352 | | Type (Fin level) ->
353 | return @@ C.Build.typ ~level ()
354 |
355 | | Type Inf ->
356 | (* /!\ This function should only ever be used for printing, in which case
357 | this clause is not problematic even if the returned quotation is
358 | nonsensical. /!\ *)
359 | return @@ C.Build.typ ~level:max_int ()
360 |
361 | | Nat ->
362 | return @@ C.Build.nat ()
363 |
364 | | Zero ->
365 | return @@ C.Build.(infer @@ zero ())
366 |
367 | | Suc tm ->
368 | let* tm = value tm in
369 | return @@ C.Build.(infer @@ suc tm)
370 | end
371 |
372 | module Conv = struct
373 | open Monad.Notation(Quote.M)
374 |
375 | (* TODO factor out somehow *)
376 | let (let$) = Quote.(let$)
377 |
378 | let (&&&) x y = let* b = x in if b then y else return false
379 |
380 | let level ~allow_subtype ~lo ~hi =
381 | let open UniverseLevel in
382 | return @@ if allow_subtype then lo <= hi else lo = hi
383 |
384 | let rec normal_ ~allow_subtype ~ty ~lo ~hi =
385 | match ty, lo, hi with
386 | | _,
387 | Reflect { tm = lo; _ },
388 | Reflect { tm = hi; _ } ->
389 | neutral ~allow_subtype ~lo ~hi
390 |
391 | | Type _,
392 | Nat,
393 | Nat ->
394 | return true
395 |
396 | | Type _,
397 | Type l_lo,
398 | Type l_hi ->
399 | level ~allow_subtype ~lo:l_lo ~hi:l_hi
400 |
401 | | Type _,
402 | Pi (lo_dom, lo_cod),
403 | Pi (hi_dom, hi_cod) ->
404 | binder1 ~allow_subtype ~ty ~lo_dom ~lo_cod ~hi_dom ~hi_cod
405 |
406 | | Type _,
407 | Sigma (lo_dom, lo_cod),
408 | Sigma (hi_dom, hi_cod) ->
409 | binder1 ~allow_subtype ~ty ~lo_dom ~lo_cod ~hi_dom ~hi_cod
410 |
411 | | Nat,
412 | Zero,
413 | Zero ->
414 | return true
415 |
416 | | Nat,
417 | Suc lo,
418 | Suc hi ->
419 | normal_ ~allow_subtype ~ty ~lo ~hi
420 |
421 | | Pi (dom, cod),
422 | _,
423 | _ ->
424 | let$ x = Quote.fresh ~user:(clo1_name cod) dom in
425 | normal_
426 | ~allow_subtype
427 | ~ty:(Eval.clo1 cod x)
428 | ~lo:(Eval.app lo x)
429 | ~hi:(Eval.app hi x)
430 |
431 | | Sigma (dom, cod),
432 | _,
433 | _ ->
434 | normal_ ~allow_subtype ~ty:dom ~lo:(Eval.fst lo) ~hi:(Eval.fst hi)
435 | &&& normal_ ~allow_subtype
436 | ~ty:(Eval.clo1 cod (Eval.fst lo))
437 | ~lo:(Eval.snd lo)
438 | ~hi:(Eval.snd hi)
439 |
440 | | _ ->
441 | return false
442 |
443 | and binder1 ~allow_subtype ~ty ~lo_dom ~lo_cod ~hi_dom ~hi_cod =
444 | normal_ ~allow_subtype ~ty ~lo:hi_dom ~hi:lo_dom
445 | &&&
446 | let$ x = Quote.fresh ~user:(clo1_name lo_cod) lo_dom in
447 | normal_ ~allow_subtype
448 | ~ty
449 | ~lo:(Eval.clo1 lo_cod x)
450 | ~hi:(Eval.clo1 hi_cod x)
451 |
452 | and normal ~allow_subtype ~lo ~hi =
453 | let Reify { tm = lo; ty = lo_ty; } = lo in
454 | let Reify { tm = hi; ty = hi_ty; } = hi in
455 | normal_ ~allow_subtype ~ty:limtype ~lo:lo_ty ~hi:hi_ty
456 | &&& normal_ ~allow_subtype ~ty:lo ~lo ~hi
457 |
458 | and neutral ~allow_subtype ~lo ~hi =
459 | match lo, hi with
460 | | Var lv1,
461 | Var lv2 ->
462 | return @@ DeBruijn.Lv.equal lv1 lv2
463 |
464 | | App (lo_ne, lo_nf),
465 | App (hi_ne, hi_nf) ->
466 | neutral ~allow_subtype ~lo:lo_ne ~hi:hi_ne
467 | &&& normal ~allow_subtype ~lo:lo_nf ~hi:hi_nf
468 |
469 | | Natelim (lo_scrut, lo_motive, lo_case_zero, lo_case_succ),
470 | Natelim (hi_scrut, hi_motive, hi_case_zero, hi_case_succ) ->
471 | neutral ~allow_subtype ~lo:lo_scrut ~hi:hi_scrut
472 | &&& (let$ x1 = Quote.fresh ~user:(clo1_name lo_motive) Nat in
473 | normal_clo1 ~allow_subtype
474 | ~ty:limtype ~lo:lo_motive ~hi:hi_motive x1)
475 | &&& normal_ ~allow_subtype
476 | ~ty:(Eval.clo1 lo_motive Zero) ~lo:lo_case_zero ~hi:hi_case_zero
477 | &&&
478 | let$ x1 = Quote.fresh ~user:(clo1_name lo_motive) Nat in
479 | let$ x2 =
480 | Quote.fresh ~user:(clo1_name lo_motive) (Eval.clo1 lo_motive x1)
481 | in
482 | normal_clo2
483 | ~allow_subtype
484 | ~ty:(Eval.clo1 lo_motive (Suc x1))
485 | ~lo:lo_case_succ ~hi:hi_case_succ x1 x2
486 |
487 | | _ ->
488 | return false
489 |
490 | and normal_clo1 ~allow_subtype ~ty ~lo ~hi arg =
491 | normal_ ~allow_subtype ~ty ~lo:(Eval.clo1 lo arg) ~hi:(Eval.clo1 hi arg)
492 |
493 | and normal_clo2 ~allow_subtype ~ty ~lo ~hi arg1 arg2 =
494 | normal_ ~allow_subtype ~ty
495 | ~lo:(Eval.clo2 lo arg1 arg2)
496 | ~hi:(Eval.clo2 hi arg1 arg2)
497 |
498 | let ty ~lo ~hi =
499 | normal_ ~allow_subtype:true ~ty:limtype ~lo ~hi
500 |
501 | let normalize ~ty ~tm =
502 | let open Monad.Notation(Eval.M) in
503 | let* tm = Eval.cterm tm in
504 | let* tm = Quote.(lift @@ normal @@ Reify { tm; ty; }) in
505 | return tm
506 | end
507 |
508 | module PPrint = struct
509 | let value tm env =
510 | let tm =
511 | Quote.(run ~eta:false ~free:(DeBruijn.Env.width env) @@ value tm)
512 | in
513 | Core.ToRaw.cterm tm (DeBruijn.Env.map (fun { user; _ } -> user) env)
514 | |> Raw.PPrint.term
515 |
516 | let entry { def; ty; user; } env doc =
517 | let open PPrint in
518 | let ty = match ty with
519 | | None -> empty
520 | | Some ty -> group @@ colon ^/^ value ty env ^^ space
521 | in
522 | group @@
523 | prefix 2 1
524 | (prefix 2 1 (Name.pp user) (ty ^^ equals))
525 | (value def env)
526 | ^^ (if DeBruijn.Env.width env > 1 then semi ^^ space else empty)
527 | ^^ doc
528 |
529 | let env env =
530 | DeBruijn.Env.fold_cons entry env PPrint.empty
531 |
532 | let clo1 (C1 (cenv, bound1)) =
533 | let doc =
534 | Core.ToRaw.bound1 bound1 (E.map (fun { user; _ } -> user) cenv)
535 | |> Raw.PPrint.bound1
536 | in
537 | PPrint.(doc ^^ braces (env cenv))
538 |
539 | let clo2 (C2 (cenv, bound2)) =
540 | let doc =
541 | Core.ToRaw.bound2 bound2 (E.map (fun { user; _ } -> user) cenv)
542 | |> Raw.PPrint.bound2
543 | in
544 | PPrint.(doc ^^ braces (env cenv))
545 | end
546 |
--------------------------------------------------------------------------------
/src/Semantics.mli:
--------------------------------------------------------------------------------
1 | (** {1 Semantics} *)
2 |
3 | (** This module handles the normalization-by-evaluation (NbE) algorithm for the
4 | language defined in {! Core}. This relies on three key notions: values,
5 | neutrals, and normals. NbE consists in two main steps:
6 |
7 | - evaluation, which turns a piece of source code into a semantic value, and
8 |
9 | - quotation, which maps a semantic value back to source code.
10 |
11 | In contrast with what happens in classical evaluators for non-dependent
12 | languages, here evaluation is extended to deal with open terms. The
13 | quotation process is type-directed and guaranteed to return η-long, β-short
14 | normal forms.
15 | *)
16 |
17 | (** {2 Type declarations} *)
18 |
19 | (** Values are results of evaluation. Since we evaluate open terms, they include
20 | neutrals, which are blocked computations. We use closures to represent
21 | not-yet-evaluated pieces of code. *)
22 | type value =
23 | | Reflect of { ty : value; tm : neutral; }
24 | | Lam of clo1
25 | | Pi of value * clo1
26 | | Sigma of value * clo1
27 | | Pair of value * value
28 | | Type of UniverseLevel.t
29 | | Nat
30 | | Zero
31 | | Suc of value
32 |
33 | (** Neutrals are left abstract. *)
34 | and neutral
35 |
36 | (** A normal form is a value "reified" at some type. *)
37 | and normal = Reify of { ty : value; tm : value; }
38 |
39 | and clo1 = C1 of env * Core.bound1
40 |
41 | and clo2 = C2 of env * Core.bound2
42 |
43 | and entry =
44 | {
45 | def : value; (** Not used during quotation. *)
46 | ty : value option; (** Only used during type-checking. *)
47 | user : Name.t; (** Only used during elaboration *)
48 | }
49 |
50 | and env = entry DeBruijn.Env.t
51 |
52 | type ty = value
53 |
54 | (** {2 Evaluation, from syntax to semantics} *)
55 |
56 | module Eval : sig
57 | module M : Monad.Plain with type 'a t = env -> 'a
58 |
59 | val cterm : Core.cterm -> value M.t
60 |
61 | val iterm : Core.iterm -> value M.t
62 |
63 | val clo1 : clo1 -> value -> value
64 |
65 | val clo2 : clo2 -> value -> value -> value
66 |
67 | val fst : value -> value
68 | end
69 |
70 | (** {2 Quotation, from semantics to syntax} *)
71 |
72 | module Quote : sig
73 | module M : Monad.Plain
74 |
75 | (** [run ~eta ~free] runs the quotation monad, with the parameters controling
76 | the number of free variables as well as whether to perform η-expansion. *)
77 | val run : eta:bool -> free:int -> 'a M.t -> 'a
78 |
79 | (** The quotation monad has access to strictly less information than the
80 | evaluation monad. *)
81 | val lift : 'a M.t -> 'a Eval.M.t
82 |
83 | (** [fresh ~user ~def ty] generates a fresh name in the current
84 | environment. The user-supplied name [user] is optional, and so is the
85 | definition [def], which is otherwise replaced with a fresh variable of
86 | type [ty]. *)
87 | val fresh : ?user:Name.t -> ?def:value -> ty -> entry M.t
88 |
89 | val normal : normal -> Core.cterm M.t
90 |
91 | val typ : value -> Core.cterm M.t
92 |
93 | val neutral : neutral -> Core.iterm M.t
94 |
95 | (** [value] does not perform η-expansion, hence it should not be used when
96 | checking convertibility or, more generally, when performing normalization
97 | by evaluation. Nonetheless, it is useful, as it does not rely on typing
98 | information and can be used to print error messages in case of
99 | ill-typed. *)
100 | val value : value -> Core.cterm M.t
101 | end
102 |
103 | (** {2 Convertibility and normalization} *)
104 |
105 | module Conv : sig
106 | (** The [normalize] function composes reflection and reification to obtain
107 | normal forms. *)
108 | val normalize : ty:ty -> tm:Core.cterm -> Core.cterm Eval.M.t
109 |
110 | (** The [ty ~lo ~hi] tests whether [lo] is a subtype to [hi] for the subtyping
111 | relation induced by universe levels. Conceptually, this works by comparing
112 | normal forms, but the algorithm here is more efficient. *)
113 | val ty : lo:value -> hi:value -> bool Quote.M.t
114 | end
115 |
116 | (** {2 Utility functions} *)
117 |
118 | val close1 : Core.bound1 -> env -> clo1
119 |
120 | val close2 : Core.bound2 -> env -> clo2
121 |
122 | (** [limtype] is the top of our universe hierarchy. It does not exist in the
123 | syntax but allows for a simpler formulation of the elaboration algorithm. *)
124 | val limtype : value
125 |
126 | (** {2 Printing} *)
127 |
128 | module PPrint : sig
129 | val value : value -> env -> PPrint.document
130 | val env : env -> PPrint.document
131 | val clo1 : clo1 -> PPrint.document
132 | val clo2 : clo2 -> PPrint.document
133 | end
134 |
--------------------------------------------------------------------------------
/src/Sigs.ml:
--------------------------------------------------------------------------------
1 | module type HashedOrderedType = sig
2 | type t
3 | include Hashtbl.HashedType with type t := t
4 | include Map.OrderedType with type t := t
5 | end
6 |
7 | module String = struct
8 | type t = string
9 | let hash (x : t) = Hashtbl.hash x
10 | let compare (x : t) (y : t) = Stdlib.compare x y
11 | let equal (x : t) (y : t) = x = y
12 | end
13 |
14 | type 'a cmp = 'a -> 'a -> int
15 |
16 | type 'a hash = 'a -> int
17 |
18 | module type Signature = sig
19 | type 'a t
20 | val map : ('a -> 'b) -> 'a t -> 'b t
21 | val compare : 'a cmp -> 'a t cmp
22 | val hash : 'a hash -> 'a t hash
23 | end
24 |
25 | module type PrintableType = sig
26 | type t
27 | val pp : t -> PPrint.document
28 | end
29 |
30 | module type PrintableComparableType = sig
31 | include PrintableType
32 | include Map.OrderedType with type t := t
33 | val equal : t -> t -> bool
34 | end
35 |
36 | module Formatter = struct
37 | type 'a t = Format.formatter -> 'a -> unit
38 | let pp_if enabled pp fmt x = if enabled then pp fmt x else ()
39 | end
40 |
41 | module Unicode = struct
42 | let utf8_string_of_uchar_array a =
43 | let b = Buffer.create (Array.length a) in
44 | Array.iter (Buffer.add_utf_8_uchar b) a;
45 | Buffer.contents b
46 | end
47 |
48 | module Int = struct
49 | let rec fold f n acc = if n = 0 then acc else f (fold f (n - 1) acc)
50 | end
51 |
--------------------------------------------------------------------------------
/src/UnicodeSigil.ml:
--------------------------------------------------------------------------------
1 | type encoding =
2 | | ASCII
3 | | UTF8
4 |
5 | let encoding_of_string = function
6 | | "ascii" -> Some ASCII
7 | | "utf8" -> Some UTF8
8 | | _ -> None
9 |
10 | let encoding = ref UTF8
11 |
12 | let set_encoding s = encoding := s
13 |
14 | type t =
15 | {
16 | utf8 : string;
17 | ascii : string;
18 | }
19 |
20 | let string s =
21 | match !encoding with
22 | | ASCII -> s.ascii
23 | | UTF8 -> s.utf8
24 |
25 | let doc s =
26 | match !encoding with
27 | | ASCII -> PPrint.string s.ascii
28 | | UTF8 -> PPrint.utf8string s.utf8
29 |
30 | let pp = ExtPrint.to_fmt doc
31 |
32 | let make codepoints ascii_fallback =
33 | { utf8 = Array.map Uchar.of_int codepoints
34 | |> Sigs.Unicode.utf8_string_of_uchar_array;
35 | ascii = ascii_fallback; }
36 |
37 | let lambda = make [| 955 |] "\\"
38 |
39 | let forall = make [| 8704 |] "forall"
40 |
41 | let srarrow = make [| 8594 |] "->"
42 |
43 | let drarrow = make [| 8658 |] "=>"
44 |
45 | let slarrow = make [| 8592 |] "<-"
46 |
47 | let dlarrow = make [| 8656 |] "<="
48 |
49 | let typ = make [| 120140 |] "Type"
50 |
51 | let nat = make [| 8469 |] "Nat"
52 |
53 | let tripleq = make [| 0x2261 |] "=="
54 |
55 | let checkmark = make [| 0x2713 |] "ok"
56 |
57 | let langle = make [| 0x27E8 |] "<"
58 |
59 | let rangle = make [| 0x27E9 |] ">"
60 |
61 | let omega = make [| 0x03C9 |] "omega"
62 |
63 | let times = make [| 0x00D7 |] "*"
64 |
65 | let sigma = make [| 0x03A3 |] "sigma"
66 |
--------------------------------------------------------------------------------
/src/UnicodeSigil.mli:
--------------------------------------------------------------------------------
1 | type encoding =
2 | | ASCII
3 | | UTF8
4 |
5 | val encoding_of_string : string -> encoding option
6 |
7 | val set_encoding : encoding -> unit
8 |
9 | type t
10 |
11 | val string : t -> string
12 |
13 | val doc : t -> PPrint.document
14 |
15 | val pp : Format.formatter -> t -> unit
16 |
17 | val lambda : t
18 |
19 | val forall : t
20 |
21 | val srarrow : t
22 |
23 | val drarrow : t
24 |
25 | val slarrow : t
26 |
27 | val dlarrow : t
28 |
29 | val typ : t
30 |
31 | val nat : t
32 |
33 | val tripleq : t
34 |
35 | val checkmark : t
36 |
37 | val langle : t
38 |
39 | val rangle : t
40 |
41 | val omega : t
42 |
43 | val times : t
44 |
45 | val sigma : t
46 |
--------------------------------------------------------------------------------
/src/UniverseLevel.ml:
--------------------------------------------------------------------------------
1 | open Sexplib.Conv
2 |
3 | type t =
4 | | Fin of int
5 | | Inf
6 | [@@deriving sexp_of]
7 |
8 | let fin l =
9 | if l < 0 then invalid_arg "finite";
10 | Fin l
11 |
12 | let inf = Inf
13 |
14 | let max l1 l2 =
15 | match l1, l2 with
16 | | _, Inf | Inf, _ -> Inf
17 | | Fin i, Fin j -> Fin (max i j)
18 |
19 | let ( = ) (l1 : t) l2 = l1 = l2
20 |
21 | let ( <= ) l1 l2 =
22 | match l1, l2 with
23 | | _, Inf -> true
24 | | Inf, _ -> false
25 | | Fin i, Fin j -> i <= j
26 |
27 | let ( < ) l1 l2 =
28 | match l1, l2 with
29 | | Fin _, Inf -> true
30 | | Inf, _ -> false
31 | | Fin i, Fin j -> i < j
32 |
33 | module PPrint = struct
34 | let level = function
35 | | Fin i -> PPrint.string @@ string_of_int i
36 | | Inf -> UnicodeSigil.(doc omega)
37 | end
38 |
--------------------------------------------------------------------------------
/src/UniverseLevel.mli:
--------------------------------------------------------------------------------
1 | type t = private
2 | | Fin of int
3 | | Inf
4 |
5 | val fin : int -> t
6 |
7 | val inf : t
8 |
9 | val max : t -> t -> t
10 |
11 | val ( = ) : t -> t -> bool
12 |
13 | val ( <= ) : t -> t -> bool
14 |
15 | val ( < ) : t -> t -> bool
16 |
17 | val sexp_of_t : t -> Sexplib.Sexp.t
18 |
19 | module PPrint : sig
20 | val level : t -> PPrint.document
21 | end
22 |
--------------------------------------------------------------------------------
/src/Var.ml:
--------------------------------------------------------------------------------
1 | module M = Symbol.Make()
2 | include M
3 |
--------------------------------------------------------------------------------
/src/Var.mli:
--------------------------------------------------------------------------------
1 | include Symbol.S
2 |
--------------------------------------------------------------------------------
/src/dune:
--------------------------------------------------------------------------------
1 | (executable
2 | (public_name melitte)
3 | (name melitte)
4 | (libraries menhirLib pprint sexplib)
5 | (preprocess (pps ppx_deriving.show ppx_deriving.eq ppx_deriving.ord sedlex.ppx
6 | ppx_sexp_conv))
7 | (promote (until-clean)))
8 |
9 | (menhir (modules Parse) (flags --explain --table))
10 |
--------------------------------------------------------------------------------
/src/melitte.ml:
--------------------------------------------------------------------------------
1 | let parse inp =
2 | let fname, ic =
3 | match inp with
4 | | `Stdin -> "*stdin*", stdin
5 | | `File fname -> fname, open_in fname
6 | in
7 | let lexbuf = Sedlexing.Utf8.from_channel ic in
8 | Sedlexing.set_filename lexbuf fname;
9 | let token = Sedlexing.with_tokenizer Lex.token lexbuf in
10 | let file =
11 | MenhirLib.Convert.Simplified.traditional2revised
12 | Parse.whole_file
13 | in
14 | let raw = file token in
15 | close_in ic;
16 | raw
17 |
18 | let pass banner pp f input =
19 | let output = f input in
20 | if !Options.verbose
21 | then
22 | begin
23 | Printf.printf "{- %s -}\n" banner;
24 | ExtPrint.to_out (pp output);
25 | print_newline (); flush stdout;
26 | end;
27 | output
28 |
29 | let pp_env fmt env =
30 | Format.fprintf fmt " in [@[%a@]]"
31 | (ExtPrint.to_fmt Semantics.PPrint.env) env
32 |
33 | let on_check_pre env ~expected tm =
34 | if !Options.debug
35 | then
36 | Format.eprintf "@[@[%a@]@ %a? @[%a@]@[%a@]@]@."
37 | (ExtPrint.to_fmt Raw.PPrint.term) tm
38 | UnicodeSigil.pp UnicodeSigil.dlarrow
39 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) expected
40 | (Sigs.Formatter.pp_if !Options.verbose pp_env) env
41 |
42 | let on_infer_pre env tm =
43 | if !Options.debug
44 | then
45 | Format.eprintf "@[@[%a@]@ %a?@[%a@]@]@."
46 | (ExtPrint.to_fmt Raw.PPrint.term) tm
47 | UnicodeSigil.pp UnicodeSigil.drarrow
48 | (Sigs.Formatter.pp_if !Options.verbose pp_env) env
49 |
50 | let on_conversion_pre env ~expected ~actual _loc =
51 | if !Options.debug
52 | then
53 | Format.eprintf "@[@[%a@]@ <:? @[%a@]@]@."
54 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) actual
55 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) expected
56 |
57 | let on_check_post env ~expected tm =
58 | if !Options.debug
59 | then
60 | Format.eprintf "@[@[%a@]@ %a%a @[%a@]@]@."
61 | (ExtPrint.to_fmt Raw.PPrint.term) tm
62 | UnicodeSigil.pp UnicodeSigil.dlarrow
63 | UnicodeSigil.pp UnicodeSigil.checkmark
64 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) expected
65 |
66 | let on_infer_post env tm ~actual =
67 | if !Options.debug
68 | then
69 | Format.eprintf "@[@[%a@]@ %a%a @[%a@]@]@."
70 | (ExtPrint.to_fmt Raw.PPrint.term) tm
71 | UnicodeSigil.pp UnicodeSigil.drarrow
72 | UnicodeSigil.pp UnicodeSigil.checkmark
73 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) actual
74 |
75 | let on_conversion_post env ~expected ~actual _loc =
76 | if !Options.debug
77 | then
78 | Format.eprintf "@[@[%a@]@ <:%a @[%a@]@]@."
79 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) actual
80 | UnicodeSigil.pp UnicodeSigil.checkmark
81 | (ExtPrint.to_fmt (fun v -> Semantics.PPrint.value v env)) expected
82 |
83 | let process inp =
84 | try
85 | pass "Raw code" Raw.PPrint.file parse inp
86 | |> pass
87 | "Elaborated code"
88 | Core.PPrint.file
89 | Elaborator.(fun x -> run
90 | ~on_check_pre
91 | ~on_infer_pre
92 | ~on_conversion_pre
93 | ~on_check_post
94 | ~on_infer_post
95 | ~on_conversion_post
96 | @@ check x)
97 | |> ignore
98 | with Error.Error err ->
99 | Format.eprintf "%a@." Error.print err;
100 | exit 1
101 |
102 | let () =
103 | let open Arg in
104 | let process_stdin = ref false in
105 | let inputs = ref [] in
106 | parse
107 | (align
108 | [
109 | "-stdin", Set process_stdin, " read standard input";
110 | "-encoding", Symbol (["utf8"; "ascii"],
111 | fun s -> UnicodeSigil.encoding_of_string s
112 | |> Option.get
113 | |> UnicodeSigil.set_encoding),
114 | " set output encoding";
115 | "-type-in-type", Set Options.type_in_type,
116 | " accept type-in-type (inconsistent)";
117 | "-d", Set Options.debug,
118 | " enable debugging features";
119 | "-v", Set Options.verbose,
120 | " print actions during elaboration";
121 | ]
122 | )
123 | (fun s -> inputs := `File s :: !inputs)
124 | (Printf.sprintf "Usage: %s [OPTIONS] file1.tt ... fileN.tt" Sys.argv.(0));
125 | Printexc.record_backtrace !Options.debug;
126 | if !process_stdin then inputs := !inputs @ [`Stdin];
127 | List.iter process !inputs
128 |
--------------------------------------------------------------------------------
/tests/dune:
--------------------------------------------------------------------------------
1 | (cram
2 | (deps %{bin:melitte}))
3 |
--------------------------------------------------------------------------------
/tests/simple.t/run.t:
--------------------------------------------------------------------------------
1 | $ melitte -v t1.melitte
2 | {- Raw code -}
3 | val id : ∀ (A : 𝕌 0) → A → A = λ A x ⇒ x
4 | {- Elaborated code -}
5 | val id : ∀ (A : 𝕌 0) (_1 : A) → A = λ A x ⇒ x
6 | $ melitte -v t2.melitte
7 | {- Raw code -}
8 | val c : ℕ → ℕ = λ n ⇒ n
9 | eval suc c 0
10 | val add : ℕ → ℕ → ℕ = λ n m ⇒ elim n with _ ⇒ ℕ { zero ⇒ m | suc _, r ⇒ suc r }
11 | eval add 2 5
12 | val mul : ℕ → ℕ → ℕ =
13 | λ n m ⇒ elim n with _ ⇒ ℕ { zero ⇒ 0 | suc _, r ⇒ add m r }
14 | eval mul 3 10
15 | {- Elaborated code -}
16 | val c : ∀ (_0 : ℕ) → ℕ = λ n ⇒ n
17 | eval (1 : ℕ)
18 | val add : ∀ (_1 : ℕ) (_2 : ℕ) → ℕ =
19 | λ n m ⇒ elim n with _3 ⇒ ℕ { zero ⇒ m | suc _3, r ⇒ suc r }
20 | eval (7 : ℕ)
21 | val mul : ∀ (_2 : ℕ) (_3 : ℕ) → ℕ =
22 | λ n m ⇒ elim n with _4 ⇒ ℕ { zero ⇒ 0 | suc _4, r ⇒ add m r }
23 | eval (30 : ℕ)
24 | $ melitte -v t3.melitte
25 | File "t3.melitte", line 1, characters 19-20: syntax error
26 | [1]
27 | $ melitte -v simple.melitte
28 | {- Raw code -}
29 | val x : 𝕌 0 = ℕ
30 | val three : x = 3
31 | val const : ℕ → ℕ = λ x ⇒ 0
32 | val id : ∀ (A : 𝕌 0) → A → A = λ A x ⇒ x
33 | val iter : ∀ (A : 𝕌 0) (f : A → A) → A → ℕ → A =
34 | λ A f z n ⇒ elim n with _ ⇒ A { zero ⇒ z | suc _, r ⇒ f r }
35 | val add : ℕ → ℕ → ℕ = iter ℕ (λ n ⇒ suc n)
36 | val mul : ℕ → ℕ → ℕ = λ n ⇒ iter ℕ (add n) 0
37 | val exp : ℕ → ℕ → ℕ = λ n ⇒ iter ℕ (mul n) 1
38 | {- Elaborated code -}
39 | val x : 𝕌 0 = ℕ
40 | val three : x = 3
41 | val const : ∀ (_2 : ℕ) → ℕ = λ x ⇒ 0
42 | val id : ∀ (A : 𝕌 0) (_4 : A) → A = λ A x ⇒ x
43 | val iter : ∀ (A : 𝕌 0) (f : ∀ (_5 : A) → A) (_6 : A) (_7 : ℕ) → A =
44 | λ A f z n ⇒ elim n with _8 ⇒ A { zero ⇒ z | suc _8, r ⇒ f r }
45 | val add : ∀ (_5 : ℕ) (_6 : ℕ) → ℕ = iter ℕ (λ n ⇒ suc n)
46 | val mul : ∀ (_6 : ℕ) (_7 : ℕ) → ℕ = λ n ⇒ iter ℕ (add n) 0
47 | val exp : ∀ (_7 : ℕ) (_8 : ℕ) → ℕ = λ n ⇒ iter ℕ (mul n) 1
48 |
49 | Melitte contains a hierarchy of universes.
50 |
51 | $ melitte t4.melitte
52 | File "t4.melitte", line 1, characters 23-26: universe inconsistency
53 | [1]
54 |
55 | Melitte contains Σ types.
56 |
57 | $ melitte t5.melitte
58 |
--------------------------------------------------------------------------------
/tests/simple.t/simple.melitte:
--------------------------------------------------------------------------------
1 | val x : 𝕌 0 = Nat
2 |
3 | val three : x = suc suc suc zero
4 |
5 | val const : ℕ → ℕ = λ x ⇒ zero
6 |
7 | val id : ∀ (A : 𝕌 0) → A → A = λ A x ⇒ x
8 |
9 | val iter : ∀ (A : 𝕌 0) (f : A → A) → A → ℕ → A =
10 | λ A f z n ⇒ elim n with _ ⇒ A { zero ⇒ z | suc _, r ⇒ f r }
11 |
12 | val add : ℕ → ℕ → ℕ = iter ℕ (λ n ⇒ suc n)
13 |
14 | val mul : ℕ → ℕ → ℕ = λ n ⇒ iter ℕ (add n) zero
15 |
16 | val exp : ℕ → ℕ → ℕ = λ n ⇒ iter ℕ (mul n) 1
17 |
18 | {-
19 | val exp_n : ℕ → 𝕌 =
20 | let exp_once : 𝕌 → 𝕌 = λ t ⇒ ℕ → t in
21 | iter 𝕌 exp_once n ℕ
22 | -}
23 |
--------------------------------------------------------------------------------
/tests/simple.t/t1.melitte:
--------------------------------------------------------------------------------
1 | {-val c1 : ℕ → ℕ = λ n ⇒ n-}
2 |
3 | val id : ∀ (A : 𝕌 0) → A → A = λ A x ⇒ x
4 |
5 | {-
6 | val abs : 𝕌 0 = ∀ (A : 𝕌 0) → A
7 |
8 | val c2 : ℕ → ℕ = id (ℕ → ℕ) (λ n ⇒ n)
9 | -}
10 |
--------------------------------------------------------------------------------
/tests/simple.t/t2.melitte:
--------------------------------------------------------------------------------
1 | val c : ℕ → ℕ = λ n ⇒ n
2 |
3 | eval suc (c 0)
4 |
5 | val add : ℕ → ℕ → ℕ =
6 | λ n m ⇒ elim n with _ ⇒ ℕ { zero ⇒ m | suc _, r ⇒ suc r }
7 |
8 | eval add 2 5
9 |
10 | val mul : ℕ → ℕ → ℕ =
11 | λ n m ⇒ elim n with _ ⇒ ℕ { zero ⇒ 0 | suc _, r ⇒ add m r }
12 |
13 | eval mul 3 10
14 |
--------------------------------------------------------------------------------
/tests/simple.t/t3.melitte:
--------------------------------------------------------------------------------
1 | val iter : ∀ (A : 𝕌) (f : A → A) → ℕ → A → A =
2 | λ A f n z ⇒ z
3 |
4 | val c : ℕ → ℕ → ℕ = iter ℕ (λ m ⇒ m)
5 |
--------------------------------------------------------------------------------
/tests/simple.t/t4.melitte:
--------------------------------------------------------------------------------
1 | val bad : 𝕌 0 = ∀ (A : 𝕌 1) → A
2 |
--------------------------------------------------------------------------------
/tests/simple.t/t5.melitte:
--------------------------------------------------------------------------------
1 | val MagmaStruct : 𝕌 0 → 𝕌 0 = λ A ⇒ A × (A → A → A)
2 |
3 | val Magma : 𝕌 1 = Σ(A : 𝕌 0) × MagmaStruct A
4 |
5 | val add : ℕ → ℕ → ℕ = λ n m ⇒ elim n with _ ⇒ ℕ { zero ⇒ 0 | suc _, r ⇒ suc r }
6 |
7 | val Magma-ℕ : Magma = (ℕ, (zero, add))
8 |
--------------------------------------------------------------------------------