├── .eslintrc ├── .gitignore ├── .vscode ├── iis-e-settings.json ├── launch.json └── settings.json ├── README-JP.md ├── README.md ├── package.json ├── sample ├── particleEdit.html ├── particleStarTest.html ├── particleTest.html └── particleTest2.html ├── three.js ├── three.min.js ├── threeJenParticle.js └── threeJenParticleStar.js /.eslintrc: -------------------------------------------------------------------------------- 1 | { 2 | "extends": "eslint:recommended", 3 | "env": { 4 | "browser": true, 5 | "es6": true 6 | }, 7 | "rules": { 8 | "arrow-body-style": "error", 9 | "arrow-parens": "error", 10 | "arrow-spacing": "error", 11 | "generator-star-spacing": "error", 12 | "no-duplicate-imports": "error", 13 | "no-useless-computed-key": "error", 14 | "no-useless-constructor": "error", 15 | "no-useless-rename": "error", 16 | "no-var": "error", 17 | "object-shorthand": "error", 18 | "prefer-arrow-callback": "error", 19 | "prefer-const": "error", 20 | "prefer-rest-params": "error", 21 | "prefer-spread": "error", 22 | "prefer-template": "error", 23 | "rest-spread-spacing": "error", 24 | "template-curly-spacing": "error", 25 | "yield-star-spacing": "error" 26 | }, 27 | "parserOptions": { 28 | "sourceType": "module" 29 | } 30 | } -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | node_modules 2 | tmp 3 | /lib/* 4 | /build/* 5 | -------------------------------------------------------------------------------- /.vscode/iis-e-settings.json: -------------------------------------------------------------------------------- 1 | {"Port":11117,"RunningFolder":"h:\\gitProject\\threeXfileLoader","Architecture":0,"IISPath":"C:\\Program Files (x86)\\IIS Express\\iisexpress.exe","Browser":0,"Protocol":0} -------------------------------------------------------------------------------- /.vscode/launch.json: -------------------------------------------------------------------------------- 1 | { 2 | "version": "0.2.0", 3 | "configurations": [ 4 | { 5 | "type": "chrome", 6 | "request": "launch", 7 | "name": "Launch Chrome against localhost", 8 | // "url": "http://localhost:8080", 9 | "url": "http://localhost:11117/sample/xfileTest.html", 10 | "webRoot": "${workspaceRoot}", 11 | "sourceMaps": true, 12 | 13 | "runtimeArgs" : ["--incognito", " --disable-web-security --user-data-dir"] 14 | }, 15 | { 16 | "type": "chrome", 17 | "request": "launch", 18 | "name": "Launch Chrome against localhost", 19 | // "url": "http://localhost:8080", 20 | "file": "${workspaceRoot}/sample/xfileTest.html", 21 | "webRoot": "${workspaceRoot}", 22 | "sourceMaps": true, 23 | 24 | "runtimeArgs" : ["--incognito", " --disable-web-security --user-data-dir"] 25 | }, 26 | ] 27 | } -------------------------------------------------------------------------------- /.vscode/settings.json: -------------------------------------------------------------------------------- 1 | // 既定の設定とユーザー設定を上書きするには、このファイル内に設定を挿入します 2 | { 3 | // ファイルブラウザに表示しない 4 | "files.exclude": { 5 | "**/.git": true, 6 | "**/.svn": true, 7 | "**/.DS_Store": true, 8 | "lib/": true 9 | }, 10 | 11 | // ファイルブラウザには表示するが、検索から除外する 12 | "search.exclude": { 13 | "**/node_modules": true, 14 | "**/bower_components": true, 15 | // 例えばキャッシュディレクトリを追加すると、検索で余計なファイルが出てこなくて便利 16 | "**/tmp/cache": true, 17 | "node_modules": true, 18 | "XLoader.js": true, 19 | "**/sample/**": true 20 | } 21 | } -------------------------------------------------------------------------------- /README-JP.md: -------------------------------------------------------------------------------- 1 | # Three.jenParticle 2 | 3 | ==== 4 | 5 | # Overview これは何? 6 | Three.jsで超!楽にパーティクルを表示するためのアドオンクラスです。 7 | 最小で4行をソースに追加するだけで、GPUを利用したパーティクルを表示することができます。 8 | また、多様なパラメータにより、出現するパーティクルの見た目を自由に変更することができます。 9 | 10 | ## Demo 11 | 12 | * [demo](http://adrs2002.sakura.ne.jp/particle/sample/particleTest.html) 13 | * [demo2](http://adrs2002.sakura.ne.jp/particle/sample/particleTest2.html) 14 | 15 | * [demo3 編集GUI](http://adrs2002.sakura.ne.jp/particle/sample/particleEdit.html) 16 | 17 | ## Requirement 必要なもの 18 | * [THREE.js](https://github.com/mrdoob/three.js/) 19 | 20 | -------- 21 | 22 | ## how to use 使い方的な。 23 | 24 | ### 0. 'three.js(three.min.js)' と 'threeJenParticle.js' の2つのjsファイルを読み込む文を追加する。 25 | ( ・・・この説明は必要ないよね?) 26 | 27 | ### 1. 後でパーティクルオブジェクトになるものを、前もって定義する。 28 |  これは、後々アクセスできるようにするため。 29 | 30 | var jenP = null; 31 | 32 | 33 | ### 2. パーティクルを初期化し、シーンに追加します 34 | 35 | // after scene =new THREE.Scene... 36 | 37 | jenP = new jenParticle(); 38 | scene.add(jenP); 39 | 40 | 41 | ### 3. シーンに対して、パーティクルを出現させます。 42 | 43 | jenP.appearsParticle(1); 44 | 45 | 46 | ## toEdit.. 編集のために 47 | 48 | 編集を容易にするため、プレビュー&コード生成用のデモがあります 49 | 50 | * [demo3 編集GUI](http://adrs2002.sakura.ne.jp/particle/sample/particleEdit.html) 51 | 52 | 気に入った形になったら、画面下の「Generate」を押し、下のテキストボックスから生成されたテキストをコピーし、 53 | 適切な場所に張り付けてください。 54 | 以下、各種オプションの説明です。 55 | 56 | 57 | ### 定義時オプション ( basicOption ) 58 | 59 | プロパティ名| 型 | デフォルト値 | 説明 60 | --- | --- | --- | --- 61 | | **isAlphaAdd** | `boolean` | *true* | 加算透明か、アルファ合成かを指定します。 | 62 | | **isTextured** | `boolean` | *true* | ノイズテクスチャを適用するかどうかを指定します。 | 63 | | **colors** | `Color[3]` | [ *THREE.Color(1.0, 1.0, 0.5)*, *THREE.Color(0.8, 0.4, 0.0)*, *THREE.Color(0.2, 0.0, 0.0)* ] | パーティクルの色を指定します。 [0]中央の色になります。 [1]一番外側の色になります。 [2]時間経過による変化後の色になります。 よくあるパターンでは、[0]を一番明るい色に、[2]を一番暗い色に、[1]はその中間色(または補色)を指定するとよいでしょう | 64 | | **gravity** | `Vector3` | *THREE.Vector3(0.0, 0.17, 0.0)* | パーティクルに必ず掛かる移動量を指定します。重力や風のようなものだと思えばよいでしょう | 65 | | **blurPower** | `float` | *0.07* | 移動量によるパーティクルの形状変化量を指定します。ゼロなら移動量による形状変化を行いません。丸のまま移動します。1.0を指定すると、移動後と移動の原点がつながった形状で表示されます。 | 66 | ------------- 67 | 68 | #### 出現時オプション ( appearsOption ) 69 | 70 | appearsParticle(addFrameCount, _option = {} ); 71 | 72 | プロパティ名| 型 | デフォルト値 | 説明 73 | --- | --- | --- | --- 74 | | **addFrameCount** | `int` | !MUST! | 1度に出現させる【粒】の量を指定します。このパラメータは必須であり、省略できません。 | 75 | | | | | 以下はオプション構造体の中身になります | 76 | | **basePos** | `Vector3` | *THREE.Vector3(0.0, 0.0, 0.0)* | パーティクルの出現位置を指定します。 | 77 | | **scale** | `float` | *1.0* | 基本となる1粒の大きさを指定します。 | 78 | | **scaleRandom** | `float` | *0.2* | 1粒毎のパーティクルの大きさのランダム加算値を指定します。ゼロなら粒は全て同じ大きさになります。 | 79 | | **vect** | `Vector3` | *Random* | 基本となる、粒の移動方向を指定します。ゼロなら、「基本的には」移動しません(後述) | 80 | | **col** | `Color` | *White(1.0,1.0,1.0)* | 1粒毎に色を変化させたい場合、その指定色に使用します。 | 81 | | **speed** | `float` | *0.2* | 1粒毎のパーティクルの移動速度です。0ならその場に停滞します。 | 82 | | **explose** | `float` | *0.5* | 移動方向(**vect**)に対し、ランダムで移動方向を設定する強さを指定します。0なら**vect**の指定通りに粒は移動し、1.0を指定すると、**vect**の値を無視してパーティクルは移動します。 | 83 | | **viscosity** | `float` | *0.9* | 速度に対して、時間経過によって掛かる値を指定します。この値が1.0なら、パーティクルはずっと同じ速度で移動し、1.0より小さい値を指定すると粒はブレーキがかかるように次第に遅くなります。逆に1.0より大きい値を指定すると粒は徐々に加速します。 | 84 | | **lifeTimeFactor** | `float` | *Random*(0.5~1.5) | パーティクルの寿命を指定します。通常(1.0)であれば、パーティクルは1秒で消滅します。この値は1秒に対しての倍率として働き、パーティクルの表示時間を変化させることができます。値を小さくすると、パーティクルはより短い時間で消滅します。 | 85 | ------------- 86 | 87 | 88 | --------------------------------- 89 | 90 | 91 | ## LICENCE 92 | MIT. 93 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | [日本語ReadMe](https://github.com/adrs2002/Three.JenParticle/blob/master/README-JP.md) 2 | 3 | # Three.jenParticle 4 | 5 | ==== 6 | 7 | # Overview 8 | Very Easy Particle System for Three.js 9 | 10 | ## Demo 11 | 12 | * [demo](http://adrs2002.sakura.ne.jp/particle/sample//particleTest.html) 13 | * [demo2](http://adrs2002.sakura.ne.jp/particle/sample/particleTest2.html) 14 | 15 | * [demo3 Edit GUI](http://adrs2002.sakura.ne.jp/particle/sample/particleEdit.html) 16 | 17 | ## Requirement 18 | * [THREE.js](https://github.com/mrdoob/three.js/) 19 | 20 | -------- 21 | 22 | ## how to use  23 | 24 | ### 0. read 2 .js file , 'three.js(three.min.js)', and 'threeJenParticle.js' your HTML file. 25 | 26 | ### 1. Declaration Objecty for Particle by NULL 27 | 28 | var jenP = null; 29 | 30 | 31 | ### 2. Initialize Particle  32 | 33 | // after scene =new THREE.Scene... 34 | 35 | jenP = new jenParticle(); 36 | scene.add(jenP); 37 | 38 | 39 | ### 3. adding Particle to Scene  40 | 41 | jenP.appearsParticle(1); 42 | 43 | 44 | ## toEdit.. 45 | 46 | There is a demo for preview & code generation to make editing easier 47 | 48 | * [demo3 Edit GUI](http://adrs2002.sakura.ne.jp/particle/sample/particleEdit.html) 49 | 50 | When you like it, press "Generate" at the bottom of the screen, copy the text from the text box below, 51 | Please stick it to the appropriate place. 52 | 53 | 54 | ### Definition option ( basicOption ) 55 | 56 | PropertyName | type | defaultValue | description 57 | --- | --- | --- | --- 58 | | **isAlphaAdd** | `boolean` | *true* | Specify whether addition transparent or alpha synthesis. | 59 | | **isTextured** | `boolean` | *true* | Specify whether to apply noise texture. | 60 | | **colors** | `Color[3]` | [ *THREE.Color(1.0, 1.0, 0.5)*, *THREE.Color(0.8, 0.4, 0.0)*, *THREE.Color(0.2, 0.0, 0.0)* ] | Specify the color of the particle. [0] It will be the color of the center. [1] It will be the outermost color. [2] It will be the color after the change over time. For common patterns, it would be better to specify [0] the brightest color, [2] the darkest color, and [1] its intermediate color (or complementary color). | 61 | | **gravity** | `Vector3` | *THREE.Vector3(0.0, 0.17, 0.0)* | Specify the amount of movement required for particles. You should think that it is like gravity or wind. | 62 | | **blurPower** | `float` | *0.07* | Specify the shape change amount of the particle by moving amount. If it is zero, it will not change shape due to the movement amount. I will move with the circle. When 1.0 is specified, the origin is displayed in a connected shape after movement. | 63 | ------------- 64 | 65 | #### Appearance option ( appearsOption ) 66 | 67 | appearsParticle(addFrameCount, _option = {} ); 68 | 69 | PropertyName | type | defaultValue | description 70 | --- | --- | --- | --- 71 | | **addFrameCount** | `int` | ! MUST ! | Specify the amount of [particle] to appear at once. This parameter is mandatory and can not be omitted. | 72 | | | | | Below is the contents of option structure | 73 | | **basePos** | `Vector3` | *THREE.Vector3(0.0, 0.0, 0.0)* | Specify the appearance position of particles. | 74 | | **scale** | `float` | *1.0* | Specify the size of one basic particle. | 75 | | **scaleRandom** | `float` | *0.2* | Specify the random addition value of the size for each particle. If it is zero, all the particle will be the same size. | 76 | | **vect** | `Vector3` | *Random* | Specify the basic movement direction of the particle. If it is zero, "basically" will not move (see below) | 77 | | **col** | `Color` | *White(1.0,1.0,1.0)* | If you want to change the color for each particle, use it for the specified color. | 78 | | **speed** | `float` | *0.2* | It is the moving speed of particle. 0 will stagnate on the spot. | 79 | | **explose** | `float` | *0.5* | Specify the strength to set the movement direction at random with respect to the movement direction (**vect**). If 0, particles move as specified by **vect** and if 1.0 is specified, particles will be moved ignoring the value of **vect**. | 80 | | **viscosity** | `float` | *0.9* | For the speed, specify the value that takes over time. If this value is 1.0, the particles will move at the same speed all the time and if you specify a value less than 1.0 the grain will gradually slow down so that the brakes will apply. Conversely, if you specify a value larger than 1.0, the particles will gradually accelerate. | 81 | | **lifeTimeFactor** | `float` | *Random*(0.5~1.5) | Specify the life of the particle. If it is normal (1.0), particles will disappear in 1 second. This value works as magnification for 1 second, and you can change the particle display time. If you decrease the value, particles will disappear in a shorter time.| 82 | ------------- 83 | 84 | ## LICENCE 85 | MIT. 86 | -------------------------------------------------------------------------------- /package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "three_npmtest", 3 | "version": "0.7.0", 4 | "description": "", 5 | "main": "threeXfileLoader.js", 6 | "devDependencies": { 7 | "babel-cli": "^6.23.0", 8 | "babel-core": "^6.23.1", 9 | "babel-loader": "^6.3.2", 10 | "babel-preset-es2015": "^6.22.0", 11 | "babel-preset-es2015-rollup": "^3.0.0", 12 | "babel-preset-power-assert": "^1.0.0", 13 | "babel-preset-react": "^6.23.0", 14 | "babel-register": "^6.23.0", 15 | "power-assert": "^1.4.2", 16 | "rollup": "^0.41.4", 17 | "rollup-plugin-babel": "^2.7.1", 18 | "rollup-plugin-buble": "^0.15.0", 19 | "rollup-plugin-cleanup": "^1.0.0", 20 | "rollup-plugin-commonjs": "^7.0.0", 21 | "rollup-plugin-json": "^2.1.0", 22 | "rollup-plugin-node-resolve": "^2.0.0", 23 | "three": "^0.84.0", 24 | "webpack": "^2.2.1" 25 | }, 26 | "scripts": { 27 | "build": "rollup -c rollup.config.js", 28 | "build2": "babel src -d lib" 29 | }, 30 | "author": "adrs2002", 31 | "license": "ISC", 32 | "private": true 33 | } 34 | -------------------------------------------------------------------------------- /sample/particleEdit.html: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | three.js webgl - Particle Plugin Editor 6 | 7 | 8 | 9 | 48 | 49 | 50 | 51 | 52 |
53 | three.js Particle Effect Test
54 | create by Jey-en : Repo 55 |
56 | 57 |
58 |
59 | 60 |
61 | 62 |
63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 421 | 422 | 423 | 424 | -------------------------------------------------------------------------------- /sample/particleStarTest.html: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | three.js webgl - Particle Plugin Sample 6 | 7 | 8 | 9 | 36 | 37 | 38 | 39 |
40 | three.js Particle Effect Test
41 | create by Jey-en : Repo 42 |
43 |
44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 144 | 145 | 146 | 147 | -------------------------------------------------------------------------------- /sample/particleTest.html: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | three.js webgl - Particle Plugin Sample 6 | 7 | 8 | 9 | 36 | 37 | 38 | 39 |
40 | three.js Particle Effect Test
41 | create by Jey-en : Repo 42 |
43 |
44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 144 | 145 | 146 | 147 | -------------------------------------------------------------------------------- /sample/particleTest2.html: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | three.js webgl - Particle Plugin Sample 2 6 | 7 | 8 | 9 | 36 | 37 | 38 | 39 |
40 | three.js Particle Effect Test
41 | create by Jey-en : Repo 42 |
43 |
44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 185 | 186 | 187 | 188 | -------------------------------------------------------------------------------- /threeJenParticle.js: -------------------------------------------------------------------------------- 1 | "use strict"; 2 | 3 | // import THREE from 'three' 4 | 5 | /** 6 | * @author Jey-en https://github.com/adrs2002 7 | * 8 | * this repo -> https://github.com/adrs2002/Three.JenParticle 9 | * 10 | */ 11 | 12 | /** 13 | * @constructor 14 | * @extends THREE.Object3D 15 | */ 16 | class jenParticle extends THREE.Object3D { 17 | // コンストラクタ 18 | constructor(_option = {}) { 19 | super(); 20 | 21 | const { 22 | isAlphaAdd = true, 23 | isTextured = true, 24 | colors = [new THREE.Color(1.0, 1.0, 0.5), new THREE.Color(0.8, 0.4, 0.0), new THREE.Color(0.2, 0.0, 0.0)], 25 | gravity = new THREE.Vector3(0.0, 0.01, 0.0), 26 | blurPower = 1.0, 27 | makeCount = 1024 //これがパーティクルの作成最大数。多すぎると死ぬ 28 | } = _option; 29 | 30 | this.particleCount = makeCount; 31 | this.clock = new THREE.Clock(); 32 | 33 | this.geo = new THREE.InstancedBufferGeometry(); 34 | this.geo.copy(new THREE.CircleBufferGeometry(1, 8)); 35 | 36 | //入れ物を初期化していく 37 | //シェーダに渡すには明確に【型】が決まってる必要があるため、こういうことを行う 38 | this.translateArray = new Float32Array(this.particleCount * 3); 39 | this.colArray = new Float32Array(this.particleCount * 3); 40 | this.vectArray = new Float32Array(this.particleCount * 4); 41 | this.scaleArray = new Float32Array(this.particleCount * 1); 42 | this.timeArray = new Float32Array(this.particleCount * 1); 43 | this.uvEArray = new Float32Array(this.particleCount * 2); 44 | 45 | //↓こいつらはシェーダーにはいかない 46 | this.SpeedArray = new Float32Array(this.particleCount * 1); 47 | this.viscosityArray = new Float32Array(this.particleCount * 1); 48 | this.lifeTimeArray = new Float32Array(this.particleCount * 1); 49 | //カウンタでぶん回してガンガン初期化 50 | for (let i = 0; i < this.particleCount; i++) { 51 | //いわば、パーティクルの初期位置に該当。どうせ書き換わるから気にするな 52 | this.translateArray[i * 3 + 0] = 0.0; 53 | this.translateArray[i * 3 + 1] = 0.0; 54 | this.translateArray[i * 3 + 2] = 0.0; 55 | 56 | //パーティクルの大きさをセットする入れ物。どうせ 57 | this.scaleArray[i] = 0.0; 58 | 59 | //【色】を管理する入れ物 60 | this.colArray[i * 3 + 0] = 0.0; 61 | this.colArray[i * 3 + 1] = 0.0; 62 | this.colArray[i * 3 + 2] = 0.0; 63 | 64 | //出現してからの時間管理の入れ物 65 | this.timeArray[i] = 0.0; 66 | //移動後の値を計算するための値を保持する。 67 | this.SpeedArray[i] = 1.0; 68 | this.viscosityArray[i] = 1.0; 69 | 70 | this.lifeTimeArray[i] = 1.0; 71 | 72 | //UVを乱すための配列 73 | this.uvEArray[i * 2 + 0] = Math.random() * 0.5; 74 | this.uvEArray[i * 2 + 1] = Math.random() * 0.5; 75 | } 76 | 77 | //generate Noize 78 | this.BaseArray = null; 79 | 80 | const noiseSize = 256; 81 | //this.noiseTexture = new THREE.DataTexture(this.createNoizeTexture(4, 10, 0.65, noiseSize), noiseSize, noiseSize, THREE.RGBAFormat); 82 | const noizeImage = this.createNozieFrom64() 83 | this.noiseTexture = new THREE.Texture(); 84 | this.noiseTexture.image = noizeImage; 85 | noizeImage.onload = () => { 86 | this.noiseTexture.wrapS = THREE.MirroredRepeatWrapping; 87 | this.noiseTexture.wrapT = THREE.MirroredRepeatWrapping; 88 | this.noiseTexture.repeat.set(2, 2); 89 | this.noiseTexture.needsUpdate = true; 90 | }; 91 | 92 | 93 | this.dummyTexture = new THREE.DataTexture(this.createWhiteTexture(2), 2, 2, THREE.RGBAFormat); 94 | this.dummyTexture.wrapS = THREE.MirroredRepeatWrapping; 95 | this.dummyTexture.wrapT = THREE.MirroredRepeatWrapping; 96 | this.dummyTexture.repeat.set(1, 1); 97 | this.dummyTexture.needsUpdate = true; 98 | 99 | this.material = new THREE.RawShaderMaterial({ 100 | uniforms: { 101 | map: { value: isTextured ? this.noiseTexture : this.dummyTexture }, 102 | time: { value: 0.0 }, 103 | colors: { type: "v3v", value: colors }, 104 | gravity: { type: "v3", value: gravity }, 105 | blurPower: { value: blurPower } 106 | }, 107 | vertexShader: this.getVshader(), 108 | fragmentShader: this.getFshader(), 109 | depthTest: true, 110 | depthWrite: false, 111 | transparent: true, 112 | // side: THREE.DoubleSide, 113 | depthFunc: THREE.NeverDepth, 114 | blending: isAlphaAdd ? THREE.AdditiveBlending : THREE.NormalBlending 115 | }); 116 | 117 | this.geo.addAttribute("translate", new THREE.InstancedBufferAttribute(this.translateArray, 3, 1)); 118 | this.geo.addAttribute("col", new THREE.InstancedBufferAttribute(this.colArray, 3, 1)); 119 | this.geo.addAttribute("movevect", new THREE.InstancedBufferAttribute(this.vectArray, 4, 1)); 120 | this.geo.addAttribute("scale", new THREE.InstancedBufferAttribute(this.scaleArray, 1, 1)); 121 | this.geo.addAttribute("speed", new THREE.InstancedBufferAttribute(this.SpeedArray, 1, 1)); 122 | this.geo.addAttribute("time", new THREE.InstancedBufferAttribute(this.timeArray, 1, 1)); 123 | this.geo.addAttribute("uve", new THREE.InstancedBufferAttribute(this.uvEArray, 2, 1)); 124 | 125 | const mesh = new THREE.Mesh(this.geo, this.material); 126 | mesh.frustumCulled = false; 127 | mesh.scale.set(1, 1, 1); 128 | this.add(mesh); 129 | 130 | this.updateMatrixWorld = this.updater; 131 | 132 | return this; 133 | } 134 | 135 | /** this is Main logic for your Particle ADD. 136 | * 137 | * @param {Number} _cnt - number of adding Particle Count. 追加するパーティクル数 138 | * @param {Object} [_option = {} ] - optional object 139 | * 140 | * @param {THREE.Vector3} _option.basePos - 141 | */ 142 | appearsParticle(_cnt, _option = {}) { 143 | 144 | const { 145 | basePos = new THREE.Vector3(0, 0, 0), 146 | scale = 1.0, 147 | scaleRandom = 0.2, 148 | vect = new THREE.Vector3(Math.random() - 0.5, Math.random() - 0.5, Math.random() - 0.5).normalize(), 149 | col = new THREE.Vector3(1.0, 1.0, 1.0), 150 | speed = 0.5, 151 | explose = 0.5, 152 | viscosity = 0.9, 153 | lifeTimeFactor = (Math.random() - 0.5) * 0.5 + 1.0 154 | } = _option; 155 | 156 | let pops = 0; 157 | for (let i = 0; i < this.particleCount; i++) { 158 | if (this.timeArray[i] == 0.0) { 159 | this.timeArray[i] = 1.0; 160 | 161 | this.translateArray[i * 3 + 0] = basePos.x; 162 | this.translateArray[i * 3 + 1] = basePos.y; 163 | this.translateArray[i * 3 + 2] = basePos.z; 164 | 165 | //初期サイズと移動方向を決める 166 | this.scaleArray[i] = scale + (Math.random() - 0.5) * scaleRandom; 167 | if (explose > 0.0) { 168 | const addV = new THREE.Vector3(Math.random() - 0.5, Math.random() - 0.5, Math.random() - 0.5).normalize(); 169 | vect.lerp(addV, explose); 170 | } 171 | this.vectArray[i * 4 + 0] = vect.x; 172 | this.vectArray[i * 4 + 1] = vect.y; 173 | this.vectArray[i * 4 + 2] = vect.z; 174 | this.vectArray[i * 4 + 3] = 0; 175 | this.SpeedArray[i] = speed; 176 | this.viscosityArray[i] = viscosity; 177 | this.lifeTimeArray[i] = lifeTimeFactor; 178 | 179 | this.colArray[i * 3 + 0] = col.x; 180 | this.colArray[i * 3 + 1] = col.y; 181 | this.colArray[i * 3 + 2] = col.z; 182 | 183 | pops++; 184 | if (_cnt <= pops) { break; } 185 | } 186 | } 187 | } 188 | 189 | 190 | /** 191 | * this logic is Update Particles. call from Three.js Scene, auto. you don't need call this. 192 | */ 193 | updater() { 194 | // 1粒毎のアップデート 195 | const delta = this.clock.getDelta(); 196 | let onCount = 0; 197 | for (let i = 0; i < this.particleCount; i++) { 198 | if (this.timeArray[i] > 0.0) { 199 | onCount++; 200 | this.timeArray[i] += delta * this.lifeTimeArray[i]; 201 | this.SpeedArray[i] *= this.viscosityArray[i]; 202 | this.vectArray[i * 4 + 3] += this.SpeedArray[i]; 203 | if (this.timeArray[i] > 2.0) { 204 | //1秒経過していたら、消滅させる。 205 | this.timeArray[i] = 0.0; 206 | this.scaleArray[i] = 0.0; 207 | } 208 | } 209 | } 210 | 211 | this.geo.attributes.translate.needsUpdate = true; 212 | this.geo.attributes.col.needsUpdate = true; 213 | this.geo.attributes.movevect.needsUpdate = true; 214 | this.geo.attributes.scale.needsUpdate = true; 215 | this.geo.attributes.time.needsUpdate = true; 216 | super.updateMatrixWorld.call(this); 217 | 218 | } 219 | 220 | ////////////////////////// 221 | 222 | createWhiteTexture(width = 2) { 223 | const data = new Uint8Array(4 * width * width); 224 | for (let i = 0; i < width; i++) { 225 | for (let j = 0; j < width; j++) { 226 | for (let m = 0; m < 4; m++) { 227 | data[i * width * 4 + j * 4 + m] = 255; 228 | } 229 | data[i * width * 4 + j * 4 + 3] = 255; 230 | } 231 | } 232 | return data; 233 | } 234 | 235 | createNoizeTexture_base(oct, ofs, per, width) { 236 | const param = { 237 | octave: oct, 238 | offset: ofs, 239 | persistence: per, 240 | seed: 1 241 | }; 242 | 243 | function setSeed(seed) { 244 | param.seed = seed; 245 | } 246 | 247 | function interpolate(a, b, t) { 248 | return a * t + b * (1.0 - t); 249 | } 250 | 251 | function rnd(x, y) { 252 | const a = 123456789; 253 | const b = a ^ (a << 11); 254 | const c = param.seed + x + param.seed * y; 255 | const d = c ^ (c >> 19) ^ (b ^ (b >> 8)); 256 | let e = d % 0x1000000 / 0x1000000; 257 | e *= 10000000.0; 258 | return e - Math.floor(e); 259 | } 260 | 261 | function srnd(x, y) { 262 | const corners = (rnd(x - 1, y - 1) 263 | + rnd(x + 1, y - 1) 264 | + rnd(x - 1, y + 1) 265 | + rnd(x + 1, y + 1)) * 0.03125; 266 | const sides = (rnd(x - 1, y) 267 | + rnd(x + 1, y) 268 | + rnd(x, y - 1) 269 | + rnd(x, y + 1)) * 0.0625; 270 | const center = rnd(x, y) * 0.625; 271 | return corners + sides + center; 272 | } 273 | 274 | 275 | function irnd(x, y) { 276 | const ix = Math.floor(x); 277 | const iy = Math.floor(y); 278 | const fx = x - ix; 279 | const fy = y - iy; 280 | const a = srnd(ix, iy); 281 | const b = srnd(ix + 1, iy); 282 | const c = srnd(ix, iy + 1); 283 | const d = srnd(ix + 1, iy + 1); 284 | const e = interpolate(b, a, fx); 285 | const f = interpolate(d, c, fx); 286 | return interpolate(f, e, fy); 287 | } 288 | 289 | function noise(x, y) { 290 | let t = 0; 291 | const o = param.octave + param.offset; 292 | const w = Math.pow(2, o); 293 | for (let i = param.offset; i < o; i++) { 294 | const f = Math.pow(2, i); 295 | const p = Math.pow(param.persistence, i - param.offset + 1); 296 | const b = w / f; 297 | t += irnd(x / b, y / b) * p; 298 | } 299 | return t; 300 | } 301 | 302 | function snoise(x, y, w) { 303 | const u = x / w; 304 | const v = y / w; 305 | return noise(x, y) * u * v 306 | + noise(x, y + w) * u * (1.0 - v) 307 | + noise(x + w, y) * (1.0 - u) * v 308 | + noise(x + w, y + w) * (1.0 - u) * (1.0 - v); 309 | } 310 | 311 | // create noize texture 312 | setSeed(new Date().getTime()); 313 | const noiseColor = new Array(width * width); 314 | const data = new Uint8Array(4 * width * width); 315 | for (let i = 0; i < width; i++) { 316 | for (let j = 0; j < width; j++) { 317 | noiseColor[i * width + j] = snoise(i, j, width); 318 | noiseColor[i * width + j] *= noiseColor[i * width + j]; 319 | noiseColor[i * width + j] *= 255; 320 | for (let m = 0; m < 3; m++) { 321 | data[i * width * 4 + j * 4 + m] = noiseColor[i * width + j]; 322 | } 323 | data[i * width * 4 + j * 4 + 3] = 255; 324 | } 325 | } 326 | this.BaseArray = noiseColor; 327 | return data; 328 | } 329 | 330 | // ノイズの生成計算が遅い?ならば予め生成すればよかろう。 331 | createNoizeTexture() { 332 | const width = 256; 333 | const data = new Uint8Array(4 * width * width); 334 | 335 | for (let i = 0; i < width; i++) { 336 | for (let j = 0; j < width; j++) { 337 | for (let m = 0; m < 3; m++) { 338 | data[i * width * 4 + j * 4 + m] = base[i * width + j]; 339 | } 340 | data[i * width * 4 + j * 4 + 3] = 255; 341 | } 342 | } 343 | // this.BaseArray = base; 344 | return data; 345 | } 346 | 347 | ////////////////////// 348 | 349 | getVshader() { 350 | return ` 351 | 352 | precision highp float; 353 | uniform mat4 modelViewMatrix; 354 | uniform mat4 projectionMatrix; 355 | uniform vec3 gravity; 356 | uniform float blurPower; 357 | 358 | attribute vec3 position; 359 | attribute vec2 uv; 360 | attribute vec3 translate; 361 | attribute vec4 movevect; 362 | attribute vec3 col; 363 | attribute float scale; 364 | attribute float speed; 365 | attribute float time; 366 | attribute vec2 uve; 367 | 368 | varying vec2 vUv; 369 | varying vec2 vUv2; 370 | varying float vScale; 371 | varying vec3 vCol; 372 | varying float vTime; 373 | 374 | void main() { 375 | float timeF = floor((time - 1.0) * 60.0); 376 | 377 | vec3 movePow = vec3(movevect.xyz * movevect.w); 378 | vec4 mvPosition = modelViewMatrix * vec4( translate + movePow + (gravity.xyz * timeF), 1.0 ); 379 | 380 | vec3 vertexPos = position * (scale * time ); 381 | vec4 mvVector = vec4(mvPosition.xyz + vertexPos, 1.0); 382 | 383 | vec4 noVectPos = modelViewMatrix * vec4( translate + (gravity.xyz * timeF), 1.0 ); 384 | 385 | vec4 pass1Pos = projectionMatrix * mvPosition; // P 386 | vec4 pass2Pos = projectionMatrix * mvVector; // B 387 | vec4 pass0Pos = projectionMatrix * noVectPos; // A 388 | 389 | vec3 BA = pass2Pos.xyz - pass0Pos.xyz; 390 | vec3 PA = pass1Pos.xyz - pass0Pos.xyz; 391 | vec3 Badd = pass2Pos.xyz - pass1Pos.xyz; 392 | float f = max(0.0, length(BA) - length(PA)); 393 | f = mix(1.0,f,blurPower); 394 | 395 | gl_Position = vec4(mix(pass0Pos.x,pass2Pos.x + Badd.x, f), mix(pass0Pos.y,pass2Pos.y+ Badd.y, f), mix(pass0Pos.z,pass2Pos.z+ Badd.z, f), mix(pass0Pos.w,pass2Pos.w, f)); 396 | 397 | vUv = uv * 0.5 + uve; 398 | vUv2 = uv; 399 | vCol = col; 400 | vScale = scale; 401 | vTime = time - 1.0; 402 | } 403 | 404 | `; 405 | } 406 | 407 | getFshader() { 408 | return ` 409 | precision highp float; 410 | uniform sampler2D map; 411 | uniform vec3 colors[3]; 412 | 413 | varying vec2 vUv; 414 | varying vec2 vUv2; 415 | varying float vScale; 416 | varying vec3 vCol; 417 | varying float vTime; 418 | 419 | void main() { 420 | vec4 texColor = texture2D( map, vUv ); 421 | float f = (texColor.x - 0.4) * 1.0 / (1.0 - 0.4 * 2.0); 422 | texColor = vec4(f,f,f,f); 423 | 424 | float uvDist = length(vec2(vUv2.x - 0.5, vUv2.y - 0.5)) * 2.5; 425 | 426 | vec4 diffuseColor = vec4(texColor.xyz * mix( mix(colors[0],colors[2], vTime) , mix(colors[1],colors[2], vTime), uvDist).xyz, max((1.0 - uvDist), 0.0) * ( 1.0 - vTime) * texColor.x); 427 | diffuseColor.rgb *= vCol.rgb; 428 | gl_FragColor = diffuseColor; 429 | 430 | } 431 | 432 | `; 433 | } 434 | 435 | createNozieFrom64() { 436 | const image = new Image(); 437 | image.src = ''; 438 | return image; 439 | } 440 | } 441 | 442 | -------------------------------------------------------------------------------- /threeJenParticleStar.js: -------------------------------------------------------------------------------- 1 | "use strict"; 2 | 3 | // import THREE from 'three' 4 | 5 | /** 6 | * @author Jey-en https://github.com/adrs2002 7 | * 8 | * this repo -> https://github.com/adrs2002/Three.JenParticle 9 | * 10 | */ 11 | 12 | /** 13 | * @constructor 14 | * @extends THREE.Object3D 15 | */ 16 | class jenParticleStar extends THREE.Object3D { 17 | // コンストラクタ 18 | constructor(_option = {}) { 19 | super(); 20 | 21 | const { 22 | isAlphaAdd = true, 23 | isTextured = false, 24 | colors = [new THREE.Color(1.0, 1.0, 0.5), new THREE.Color(0.8, 0.4, 0.0), new THREE.Color(0.2, 0.0, 0.0)], 25 | gravity = new THREE.Vector3(0.0, 0.01, 0.0), 26 | blurPower = 0.0 27 | } = _option; 28 | 29 | this.particleCount = 8191; //これがパーティクルの作成最大数。多すぎると死ぬ 30 | this.clock = new THREE.Clock(); 31 | 32 | this.geo = new THREE.InstancedBufferGeometry(); 33 | this.geo.copy(this.makeStar()); 34 | 35 | //入れ物を初期化していく 36 | //シェーダに渡すには明確に【型】が決まってる必要があるため、こういうことを行う 37 | this.translateArray = new Float32Array(this.particleCount * 3); 38 | this.colArray = new Float32Array(this.particleCount * 3); 39 | this.vectArray = new Float32Array(this.particleCount * 4); 40 | this.scaleArray = new Float32Array(this.particleCount * 1); 41 | this.timeArray = new Float32Array(this.particleCount * 1); 42 | this.uvEArray = new Float32Array(this.particleCount * 2); 43 | 44 | //↓こいつらはシェーダーにはいかない 45 | this.SpeedArray = new Float32Array(this.particleCount * 1); 46 | this.viscosityArray = new Float32Array(this.particleCount * 1); 47 | this.lifeTimeArray = new Float32Array(this.particleCount * 1); 48 | //カウンタでぶん回してガンガン初期化 49 | for (let i = 0; i < this.particleCount; i++) { 50 | //いわば、パーティクルの初期位置に該当。どうせ書き換わるから気にするな 51 | this.translateArray[i * 3 + 0] = 0.0; 52 | this.translateArray[i * 3 + 1] = 0.0; 53 | this.translateArray[i * 3 + 2] = 0.0; 54 | 55 | //パーティクルの大きさをセットする入れ物。どうせ 56 | this.scaleArray[i] = 0.0; 57 | 58 | //【色】を管理する入れ物 59 | this.colArray[i * 3 + 0] = 0.0; 60 | this.colArray[i * 3 + 1] = 0.0; 61 | this.colArray[i * 3 + 2] = 0.0; 62 | 63 | //出現してからの時間管理の入れ物 64 | this.timeArray[i] = 0.0; 65 | //移動後の値を計算するための値を保持する。 66 | this.SpeedArray[i] = 1.0; 67 | this.viscosityArray[i] = 1.0; 68 | 69 | this.lifeTimeArray[i] = 1.0; 70 | 71 | //UVを乱すための配列 72 | this.uvEArray[i * 2 + 0] = Math.random() * 0.5; 73 | this.uvEArray[i * 2 + 1] = Math.random() * 0.5; 74 | } 75 | 76 | //generate Noize 77 | this.BaseArray = null; 78 | 79 | this.dummyTexture = new THREE.DataTexture(this.createWhiteTexture(2), 2, 2, THREE.RGBAFormat); 80 | this.dummyTexture.wrapS = THREE.MirroredRepeatWrapping; 81 | this.dummyTexture.wrapT = THREE.MirroredRepeatWrapping; 82 | this.dummyTexture.repeat.set(1, 1); 83 | this.dummyTexture.needsUpdate = true; 84 | 85 | 86 | this.material = new THREE.RawShaderMaterial({ 87 | uniforms: { 88 | map: { value: this.dummyTexture }, 89 | time: { value: 0.0 }, 90 | colors: { type: "v3v", value: colors }, 91 | gravity: { type: "v3", value: gravity }, 92 | blurPower: { value: blurPower } 93 | }, 94 | vertexShader: this.getVshader(), 95 | fragmentShader: this.getFshader(), 96 | depthTest: true, 97 | depthWrite: false, 98 | alphaTest:0.001, 99 | transparent: true, 100 | // side: THREE.DoubleSide, 101 | depthFunc: THREE.NeverDepth, 102 | blending: isAlphaAdd ? THREE.AdditiveBlending : THREE.NormalBlending 103 | }); 104 | 105 | this.geo.addAttribute("translate", new THREE.InstancedBufferAttribute(this.translateArray, 3, 1)); 106 | this.geo.addAttribute("col", new THREE.InstancedBufferAttribute(this.colArray, 3, 1)); 107 | this.geo.addAttribute("movevect", new THREE.InstancedBufferAttribute(this.vectArray, 4, 1)); 108 | this.geo.addAttribute("scale", new THREE.InstancedBufferAttribute(this.scaleArray, 1, 1)); 109 | this.geo.addAttribute("speed", new THREE.InstancedBufferAttribute(this.SpeedArray, 1, 1)); 110 | this.geo.addAttribute("time", new THREE.InstancedBufferAttribute(this.timeArray, 1, 1)); 111 | this.geo.addAttribute("uve", new THREE.InstancedBufferAttribute(this.uvEArray, 2, 1)); 112 | 113 | const mesh = new THREE.Mesh(this.geo, this.material); 114 | mesh.frustumCulled = false; 115 | mesh.scale.set(1, 1, 1); 116 | this.add(mesh); 117 | 118 | this.updateMatrixWorld = this.updater; 119 | 120 | return this; 121 | } 122 | 123 | makeStar() { 124 | // 円に10個ポイントを打つ 125 | const tmpGeo = new THREE.Geometry(); 126 | const parPi = Math.PI * 2.0 * 0.1; // 1週=2PIを10で割るので、0.1掛け 127 | for (let i = 0; i < 10; i++) { 128 | const factor = i % 2 === 0 ? 1.0 : 0.5; 129 | const v3 = new THREE.Vector3(); 130 | v3.x = (1.0 * Math.cos(parPi * i) - 0.0 * Math.sin(parPi * i)) * factor; 131 | v3.y = (1.0 * Math.sin(parPi * i) + 0.0 * Math.cos(parPi * i)) * factor; 132 | v3.z = 0; 133 | tmpGeo.vertices.push(v3); 134 | } 135 | 136 | tmpGeo.faces.push(new THREE.Face3(9, 0, 1, new THREE.Color(0xffffff), 0)); 137 | tmpGeo.faces.push(new THREE.Face3(1, 2, 3, new THREE.Color(0xffffff), 0)); 138 | tmpGeo.faces.push(new THREE.Face3(3, 4, 5, new THREE.Color(0xffffff), 0)); 139 | tmpGeo.faces.push(new THREE.Face3(5, 6, 7, new THREE.Color(0xffffff), 0)); 140 | tmpGeo.faces.push(new THREE.Face3(7, 8, 9, new THREE.Color(0xffffff), 0)); 141 | 142 | tmpGeo.faces.push(new THREE.Face3(9, 1, 7, new THREE.Color(0xffffff), 0)); 143 | tmpGeo.faces.push(new THREE.Face3(1, 3, 7, new THREE.Color(0xffffff), 0)); 144 | tmpGeo.faces.push(new THREE.Face3(3, 5, 7, new THREE.Color(0xffffff), 0)); 145 | 146 | for (let i = 0; i < tmpGeo.faces.length; i++) { 147 | // uvは手抜きで全部同値 148 | tmpGeo.faceVertexUvs[0][i] = []; 149 | for (let m = 0; m < 3; m++) { 150 | tmpGeo.faceVertexUvs[0][i].push(new THREE.Vector2(0.5, 0.5)); 151 | } 152 | } 153 | 154 | tmpGeo.computeBoundingBox(); 155 | tmpGeo.computeBoundingSphere(); 156 | tmpGeo.verticesNeedUpdate = true; 157 | tmpGeo.normalsNeedUpdate = true; 158 | tmpGeo.uvsNeedUpdate = true; 159 | const bufferGeometry = new THREE.BufferGeometry().fromGeometry(tmpGeo); 160 | return bufferGeometry; 161 | } 162 | 163 | /** this is Main logic for your Particle ADD. 164 | * 165 | * @param {Number} _cnt - number of adding Particle Count. 追加するパーティクル数 166 | * @param {Object} [_option = {} ] - optional object 167 | * 168 | * @param {THREE.Vector3} _option.basePos - 169 | */ 170 | appearsParticle(_cnt, _option = {}) { 171 | 172 | const { 173 | basePos = new THREE.Vector3(0, 0, 0), 174 | scale = 1.0, 175 | scaleRandom = 0.2, 176 | vect = new THREE.Vector3(Math.random() - 0.5, Math.random() - 0.5, Math.random() - 0.5).normalize(), 177 | col = new THREE.Vector3(1.0, 1.0, 1.0), 178 | speed = 0.5, 179 | explose = 2.0, 180 | viscosity = 0.95, 181 | lifeTimeFactor = (Math.random() - 0.5) * 0.5 + 1.0 182 | } = _option; 183 | 184 | let pops = 0; 185 | for (let i = 0; i < this.particleCount; i++) { 186 | if (this.timeArray[i] == 0.0) { 187 | this.timeArray[i] = 1.0; 188 | 189 | this.translateArray[i * 3 + 0] = basePos.x; 190 | this.translateArray[i * 3 + 1] = basePos.y; 191 | this.translateArray[i * 3 + 2] = basePos.z; 192 | 193 | //初期サイズと移動方向を決める 194 | this.scaleArray[i] = scale + (Math.random() - 0.5) * scaleRandom; 195 | if (explose > 0.0) { 196 | const addV = new THREE.Vector3(Math.random() - 0.5, Math.random() - 0.5, Math.random() - 0.5).normalize(); 197 | vect.lerp(addV, explose); 198 | } 199 | this.vectArray[i * 4 + 0] = vect.x; 200 | this.vectArray[i * 4 + 1] = vect.y; 201 | this.vectArray[i * 4 + 2] = vect.z; 202 | this.vectArray[i * 4 + 3] = 0; 203 | this.SpeedArray[i] = speed; 204 | this.viscosityArray[i] = viscosity; 205 | this.lifeTimeArray[i] = lifeTimeFactor; 206 | 207 | this.colArray[i * 3 + 0] = col.x; 208 | this.colArray[i * 3 + 1] = col.y; 209 | this.colArray[i * 3 + 2] = col.z; 210 | 211 | pops++; 212 | if (_cnt <= pops) { break; } 213 | } 214 | } 215 | } 216 | 217 | 218 | /** 219 | * this logic is Update Particles. call from Three.js Scene, auto. you don't need call this. 220 | */ 221 | updater() { 222 | // 1粒毎のアップデート 223 | const delta = this.clock.getDelta(); 224 | let onCount = 0; 225 | for (let i = 0; i < this.particleCount; i++) { 226 | if (this.timeArray[i] > 0.0) { 227 | onCount++; 228 | this.timeArray[i] += delta * this.lifeTimeArray[i]; 229 | this.SpeedArray[i] *= this.viscosityArray[i]; 230 | this.vectArray[i * 4 + 3] += this.SpeedArray[i]; 231 | if (this.timeArray[i] > 2.0) { 232 | //1秒経過していたら、消滅させる。 233 | this.timeArray[i] = 0.0; 234 | this.scaleArray[i] = 0.0; 235 | } 236 | } 237 | } 238 | 239 | this.geo.attributes.translate.needsUpdate = true; 240 | this.geo.attributes.col.needsUpdate = true; 241 | this.geo.attributes.movevect.needsUpdate = true; 242 | this.geo.attributes.scale.needsUpdate = true; 243 | this.geo.attributes.time.needsUpdate = true; 244 | super.updateMatrixWorld.call(this); 245 | 246 | } 247 | 248 | ////////////////////////// 249 | 250 | createWhiteTexture(width = 2) { 251 | const data = new Uint8Array(4 * width * width); 252 | for (let i = 0; i < width; i++) { 253 | for (let j = 0; j < width; j++) { 254 | for (let m = 0; m < 4; m++) { 255 | data[i * width * 4 + j * 4 + m] = 255; 256 | } 257 | data[i * width * 4 + j * 4 + 3] = 255; 258 | } 259 | } 260 | return data; 261 | } 262 | 263 | ////////////////////// 264 | 265 | getVshader() { 266 | return ` 267 | 268 | precision highp float; 269 | uniform mat4 modelViewMatrix; 270 | uniform mat4 projectionMatrix; 271 | uniform vec3 gravity; 272 | uniform float blurPower; 273 | 274 | attribute vec3 position; 275 | attribute vec2 uv; 276 | attribute vec3 translate; 277 | attribute vec4 movevect; 278 | attribute vec3 col; 279 | attribute float scale; 280 | attribute float speed; 281 | attribute float time; 282 | attribute vec2 uve; 283 | 284 | varying vec2 vUv; 285 | varying vec2 vUv2; 286 | varying float vScale; 287 | varying vec3 vCol; 288 | varying float vTime; 289 | 290 | void main() { 291 | float timeF = floor((time - 1.0) * 60.0); 292 | vTime = time - 1.0; 293 | 294 | vec3 movePow = vec3(movevect.xyz * movevect.w); 295 | vec4 mvPosition = modelViewMatrix * vec4( translate + movePow + (gravity.xyz * timeF), 1.0 ); 296 | 297 | mat2 m2 = mat2(cos(vTime), -sin(vTime), sin(vTime), cos(vTime)); 298 | vec2 v2 = m2 * vec2(position.x,position.y); 299 | vec3 vertexPos = vec3(v2.x, v2.y, 0.0) * (scale * time ); 300 | vec4 mvVector = vec4(mvPosition.xyz + vertexPos, 1.0); 301 | 302 | vec4 noVectPos = modelViewMatrix * vec4( translate + (gravity.xyz * timeF), 1.0 ); 303 | 304 | vec4 pass1Pos = projectionMatrix * mvPosition; // P 305 | vec4 pass2Pos = projectionMatrix * mvVector; // B 306 | vec4 pass0Pos = projectionMatrix * noVectPos; // A 307 | 308 | vec3 BA = pass2Pos.xyz - pass0Pos.xyz; 309 | vec3 PA = pass1Pos.xyz - pass0Pos.xyz; 310 | vec3 Badd = pass2Pos.xyz - pass1Pos.xyz; 311 | float f = max(0.0, length(BA) - length(PA)); 312 | f = mix(1.0,f,blurPower); 313 | 314 | gl_Position = vec4(mix(pass0Pos.x,pass2Pos.x + Badd.x, f), mix(pass0Pos.y,pass2Pos.y+ Badd.y, f), mix(pass0Pos.z,pass2Pos.z+ Badd.z, f), mix(pass0Pos.w,pass2Pos.w, f)); 315 | 316 | vUv = uv * 0.5 + uve; 317 | vUv2 = uv; 318 | vCol = col; 319 | vScale = scale; 320 | 321 | } 322 | 323 | `; 324 | } 325 | 326 | getFshader() { 327 | return ` 328 | precision highp float; 329 | uniform sampler2D map; 330 | uniform vec3 colors[3]; 331 | 332 | varying vec2 vUv; 333 | varying vec2 vUv2; 334 | varying float vScale; 335 | varying vec3 vCol; 336 | varying float vTime; 337 | 338 | void main() { 339 | vec4 texColor = texture2D( map, vUv ); 340 | float f = (texColor.x - 0.4) * 1.0 / (1.0 - 0.4 * 2.0); 341 | texColor = vec4(f,f,f,f); 342 | // texColor = vec4( 1.0 ,1.0 ,1.0 ,1.0 ); 343 | float uvDist = length(vec2(vUv2.x - 0.5, vUv2.y - 0.5)) * 2.5; 344 | 345 | vec4 diffuseColor = vec4(texColor.xyz * mix( mix(colors[0],colors[2], vTime) , mix(colors[1],colors[2], vTime), uvDist).xyz, max((1.0 - uvDist), 0.0) * ( 1.0 - vTime) * texColor.x); 346 | diffuseColor.rgb *= vCol.rgb; 347 | gl_FragColor = diffuseColor; 348 | 349 | } 350 | 351 | `; 352 | } 353 | } 354 | 355 | --------------------------------------------------------------------------------