├── LICENSE
├── README.md
├── hms2
├── __init__.py
├── core
│ ├── __init__.py
│ ├── builder.py
│ ├── custom_modules.py
│ ├── loader_modules.py
│ └── model.py
└── pipeline
│ ├── __init__.cpython-37m-x86_64-linux-gnu.so
│ ├── __init__.cpython-38-x86_64-linux-gnu.so
│ ├── __init__.cpython-39-x86_64-linux-gnu.so
│ ├── callbacks.cpython-37m-x86_64-linux-gnu.so
│ ├── callbacks.cpython-38-x86_64-linux-gnu.so
│ ├── callbacks.cpython-39-x86_64-linux-gnu.so
│ ├── dataset.cpython-37m-x86_64-linux-gnu.so
│ ├── dataset.cpython-38-x86_64-linux-gnu.so
│ ├── dataset.cpython-39-x86_64-linux-gnu.so
│ ├── losses.cpython-37m-x86_64-linux-gnu.so
│ ├── losses.cpython-38-x86_64-linux-gnu.so
│ ├── losses.cpython-39-x86_64-linux-gnu.so
│ ├── main.cpython-37m-x86_64-linux-gnu.so
│ ├── main.cpython-38-x86_64-linux-gnu.so
│ ├── main.cpython-39-x86_64-linux-gnu.so
│ ├── metrics.cpython-37m-x86_64-linux-gnu.so
│ ├── metrics.cpython-38-x86_64-linux-gnu.so
│ ├── metrics.cpython-39-x86_64-linux-gnu.so
│ ├── official_openslide.cpython-37m-x86_64-linux-gnu.so
│ ├── official_openslide.cpython-38-x86_64-linux-gnu.so
│ ├── official_openslide.cpython-39-x86_64-linux-gnu.so
│ ├── test.py
│ ├── train.py
│ ├── utils.cpython-37m-x86_64-linux-gnu.so
│ ├── utils.cpython-38-x86_64-linux-gnu.so
│ ├── utils.cpython-39-x86_64-linux-gnu.so
│ └── visualize.py
├── misc
├── camelyon_10x_hms2.png
└── demo.gif
├── poetry.lock
├── projects
└── Camelyon16
│ ├── configs
│ ├── config_10x.yaml
│ ├── config_2.5x.yaml
│ └── config_5x.yaml
│ └── datalists
│ ├── test.csv
│ ├── train.csv
│ └── val.csv
├── pyproject.toml
└── tests
└── core
├── test_builder.py
├── test_custom_modules.py
└── test_model.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Attribution-NonCommercial-ShareAlike 4.0 International
2 |
3 | =======================================================================
4 |
5 | Creative Commons Corporation ("Creative Commons") is not a law firm and
6 | does not provide legal services or legal advice. Distribution of
7 | Creative Commons public licenses does not create a lawyer-client or
8 | other relationship. Creative Commons makes its licenses and related
9 | information available on an "as-is" basis. Creative Commons gives no
10 | warranties regarding its licenses, any material licensed under their
11 | terms and conditions, or any related information. Creative Commons
12 | disclaims all liability for damages resulting from their use to the
13 | fullest extent possible.
14 |
15 | Using Creative Commons Public Licenses
16 |
17 | Creative Commons public licenses provide a standard set of terms and
18 | conditions that creators and other rights holders may use to share
19 | original works of authorship and other material subject to copyright
20 | and certain other rights specified in the public license below. The
21 | following considerations are for informational purposes only, are not
22 | exhaustive, and do not form part of our licenses.
23 |
24 | Considerations for licensors: Our public licenses are
25 | intended for use by those authorized to give the public
26 | permission to use material in ways otherwise restricted by
27 | copyright and certain other rights. Our licenses are
28 | irrevocable. Licensors should read and understand the terms
29 | and conditions of the license they choose before applying it.
30 | Licensors should also secure all rights necessary before
31 | applying our licenses so that the public can reuse the
32 | material as expected. Licensors should clearly mark any
33 | material not subject to the license. This includes other CC-
34 | licensed material, or material used under an exception or
35 | limitation to copyright. More considerations for licensors:
36 | wiki.creativecommons.org/Considerations_for_licensors
37 |
38 | Considerations for the public: By using one of our public
39 | licenses, a licensor grants the public permission to use the
40 | licensed material under specified terms and conditions. If
41 | the licensor's permission is not necessary for any reason--for
42 | example, because of any applicable exception or limitation to
43 | copyright--then that use is not regulated by the license. Our
44 | licenses grant only permissions under copyright and certain
45 | other rights that a licensor has authority to grant. Use of
46 | the licensed material may still be restricted for other
47 | reasons, including because others have copyright or other
48 | rights in the material. A licensor may make special requests,
49 | such as asking that all changes be marked or described.
50 | Although not required by our licenses, you are encouraged to
51 | respect those requests where reasonable. More_considerations
52 | for the public:
53 | wiki.creativecommons.org/Considerations_for_licensees
54 |
55 | =======================================================================
56 |
57 | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
58 | Public License
59 |
60 | By exercising the Licensed Rights (defined below), You accept and agree
61 | to be bound by the terms and conditions of this Creative Commons
62 | Attribution-NonCommercial-ShareAlike 4.0 International Public License
63 | ("Public License"). To the extent this Public License may be
64 | interpreted as a contract, You are granted the Licensed Rights in
65 | consideration of Your acceptance of these terms and conditions, and the
66 | Licensor grants You such rights in consideration of benefits the
67 | Licensor receives from making the Licensed Material available under
68 | these terms and conditions.
69 |
70 |
71 | Section 1 -- Definitions.
72 |
73 | a. Adapted Material means material subject to Copyright and Similar
74 | Rights that is derived from or based upon the Licensed Material
75 | and in which the Licensed Material is translated, altered,
76 | arranged, transformed, or otherwise modified in a manner requiring
77 | permission under the Copyright and Similar Rights held by the
78 | Licensor. For purposes of this Public License, where the Licensed
79 | Material is a musical work, performance, or sound recording,
80 | Adapted Material is always produced where the Licensed Material is
81 | synched in timed relation with a moving image.
82 |
83 | b. Adapter's License means the license You apply to Your Copyright
84 | and Similar Rights in Your contributions to Adapted Material in
85 | accordance with the terms and conditions of this Public License.
86 |
87 | c. BY-NC-SA Compatible License means a license listed at
88 | creativecommons.org/compatiblelicenses, approved by Creative
89 | Commons as essentially the equivalent of this Public License.
90 |
91 | d. Copyright and Similar Rights means copyright and/or similar rights
92 | closely related to copyright including, without limitation,
93 | performance, broadcast, sound recording, and Sui Generis Database
94 | Rights, without regard to how the rights are labeled or
95 | categorized. For purposes of this Public License, the rights
96 | specified in Section 2(b)(1)-(2) are not Copyright and Similar
97 | Rights.
98 |
99 | e. Effective Technological Measures means those measures that, in the
100 | absence of proper authority, may not be circumvented under laws
101 | fulfilling obligations under Article 11 of the WIPO Copyright
102 | Treaty adopted on December 20, 1996, and/or similar international
103 | agreements.
104 |
105 | f. Exceptions and Limitations means fair use, fair dealing, and/or
106 | any other exception or limitation to Copyright and Similar Rights
107 | that applies to Your use of the Licensed Material.
108 |
109 | g. License Elements means the license attributes listed in the name
110 | of a Creative Commons Public License. The License Elements of this
111 | Public License are Attribution, NonCommercial, and ShareAlike.
112 |
113 | h. Licensed Material means the artistic or literary work, database,
114 | or other material to which the Licensor applied this Public
115 | License.
116 |
117 | i. Licensed Rights means the rights granted to You subject to the
118 | terms and conditions of this Public License, which are limited to
119 | all Copyright and Similar Rights that apply to Your use of the
120 | Licensed Material and that the Licensor has authority to license.
121 |
122 | j. Licensor means the individual(s) or entity(ies) granting rights
123 | under this Public License.
124 |
125 | k. NonCommercial means not primarily intended for or directed towards
126 | commercial advantage or monetary compensation. For purposes of
127 | this Public License, the exchange of the Licensed Material for
128 | other material subject to Copyright and Similar Rights by digital
129 | file-sharing or similar means is NonCommercial provided there is
130 | no payment of monetary compensation in connection with the
131 | exchange.
132 |
133 | l. Share means to provide material to the public by any means or
134 | process that requires permission under the Licensed Rights, such
135 | as reproduction, public display, public performance, distribution,
136 | dissemination, communication, or importation, and to make material
137 | available to the public including in ways that members of the
138 | public may access the material from a place and at a time
139 | individually chosen by them.
140 |
141 | m. Sui Generis Database Rights means rights other than copyright
142 | resulting from Directive 96/9/EC of the European Parliament and of
143 | the Council of 11 March 1996 on the legal protection of databases,
144 | as amended and/or succeeded, as well as other essentially
145 | equivalent rights anywhere in the world.
146 |
147 | n. You means the individual or entity exercising the Licensed Rights
148 | under this Public License. Your has a corresponding meaning.
149 |
150 |
151 | Section 2 -- Scope.
152 |
153 | a. License grant.
154 |
155 | 1. Subject to the terms and conditions of this Public License,
156 | the Licensor hereby grants You a worldwide, royalty-free,
157 | non-sublicensable, non-exclusive, irrevocable license to
158 | exercise the Licensed Rights in the Licensed Material to:
159 |
160 | a. reproduce and Share the Licensed Material, in whole or
161 | in part, for NonCommercial purposes only; and
162 |
163 | b. produce, reproduce, and Share Adapted Material for
164 | NonCommercial purposes only.
165 |
166 | 2. Exceptions and Limitations. For the avoidance of doubt, where
167 | Exceptions and Limitations apply to Your use, this Public
168 | License does not apply, and You do not need to comply with
169 | its terms and conditions.
170 |
171 | 3. Term. The term of this Public License is specified in Section
172 | 6(a).
173 |
174 | 4. Media and formats; technical modifications allowed. The
175 | Licensor authorizes You to exercise the Licensed Rights in
176 | all media and formats whether now known or hereafter created,
177 | and to make technical modifications necessary to do so. The
178 | Licensor waives and/or agrees not to assert any right or
179 | authority to forbid You from making technical modifications
180 | necessary to exercise the Licensed Rights, including
181 | technical modifications necessary to circumvent Effective
182 | Technological Measures. For purposes of this Public License,
183 | simply making modifications authorized by this Section 2(a)
184 | (4) never produces Adapted Material.
185 |
186 | 5. Downstream recipients.
187 |
188 | a. Offer from the Licensor -- Licensed Material. Every
189 | recipient of the Licensed Material automatically
190 | receives an offer from the Licensor to exercise the
191 | Licensed Rights under the terms and conditions of this
192 | Public License.
193 |
194 | b. Additional offer from the Licensor -- Adapted Material.
195 | Every recipient of Adapted Material from You
196 | automatically receives an offer from the Licensor to
197 | exercise the Licensed Rights in the Adapted Material
198 | under the conditions of the Adapter's License You apply.
199 |
200 | c. No downstream restrictions. You may not offer or impose
201 | any additional or different terms or conditions on, or
202 | apply any Effective Technological Measures to, the
203 | Licensed Material if doing so restricts exercise of the
204 | Licensed Rights by any recipient of the Licensed
205 | Material.
206 |
207 | 6. No endorsement. Nothing in this Public License constitutes or
208 | may be construed as permission to assert or imply that You
209 | are, or that Your use of the Licensed Material is, connected
210 | with, or sponsored, endorsed, or granted official status by,
211 | the Licensor or others designated to receive attribution as
212 | provided in Section 3(a)(1)(A)(i).
213 |
214 | b. Other rights.
215 |
216 | 1. Moral rights, such as the right of integrity, are not
217 | licensed under this Public License, nor are publicity,
218 | privacy, and/or other similar personality rights; however, to
219 | the extent possible, the Licensor waives and/or agrees not to
220 | assert any such rights held by the Licensor to the limited
221 | extent necessary to allow You to exercise the Licensed
222 | Rights, but not otherwise.
223 |
224 | 2. Patent and trademark rights are not licensed under this
225 | Public License.
226 |
227 | 3. To the extent possible, the Licensor waives any right to
228 | collect royalties from You for the exercise of the Licensed
229 | Rights, whether directly or through a collecting society
230 | under any voluntary or waivable statutory or compulsory
231 | licensing scheme. In all other cases the Licensor expressly
232 | reserves any right to collect such royalties, including when
233 | the Licensed Material is used other than for NonCommercial
234 | purposes.
235 |
236 |
237 | Section 3 -- License Conditions.
238 |
239 | Your exercise of the Licensed Rights is expressly made subject to the
240 | following conditions.
241 |
242 | a. Attribution.
243 |
244 | 1. If You Share the Licensed Material (including in modified
245 | form), You must:
246 |
247 | a. retain the following if it is supplied by the Licensor
248 | with the Licensed Material:
249 |
250 | i. identification of the creator(s) of the Licensed
251 | Material and any others designated to receive
252 | attribution, in any reasonable manner requested by
253 | the Licensor (including by pseudonym if
254 | designated);
255 |
256 | ii. a copyright notice;
257 |
258 | iii. a notice that refers to this Public License;
259 |
260 | iv. a notice that refers to the disclaimer of
261 | warranties;
262 |
263 | v. a URI or hyperlink to the Licensed Material to the
264 | extent reasonably practicable;
265 |
266 | b. indicate if You modified the Licensed Material and
267 | retain an indication of any previous modifications; and
268 |
269 | c. indicate the Licensed Material is licensed under this
270 | Public License, and include the text of, or the URI or
271 | hyperlink to, this Public License.
272 |
273 | 2. You may satisfy the conditions in Section 3(a)(1) in any
274 | reasonable manner based on the medium, means, and context in
275 | which You Share the Licensed Material. For example, it may be
276 | reasonable to satisfy the conditions by providing a URI or
277 | hyperlink to a resource that includes the required
278 | information.
279 | 3. If requested by the Licensor, You must remove any of the
280 | information required by Section 3(a)(1)(A) to the extent
281 | reasonably practicable.
282 |
283 | b. ShareAlike.
284 |
285 | In addition to the conditions in Section 3(a), if You Share
286 | Adapted Material You produce, the following conditions also apply.
287 |
288 | 1. The Adapter's License You apply must be a Creative Commons
289 | license with the same License Elements, this version or
290 | later, or a BY-NC-SA Compatible License.
291 |
292 | 2. You must include the text of, or the URI or hyperlink to, the
293 | Adapter's License You apply. You may satisfy this condition
294 | in any reasonable manner based on the medium, means, and
295 | context in which You Share Adapted Material.
296 |
297 | 3. You may not offer or impose any additional or different terms
298 | or conditions on, or apply any Effective Technological
299 | Measures to, Adapted Material that restrict exercise of the
300 | rights granted under the Adapter's License You apply.
301 |
302 |
303 | Section 4 -- Sui Generis Database Rights.
304 |
305 | Where the Licensed Rights include Sui Generis Database Rights that
306 | apply to Your use of the Licensed Material:
307 |
308 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right
309 | to extract, reuse, reproduce, and Share all or a substantial
310 | portion of the contents of the database for NonCommercial purposes
311 | only;
312 |
313 | b. if You include all or a substantial portion of the database
314 | contents in a database in which You have Sui Generis Database
315 | Rights, then the database in which You have Sui Generis Database
316 | Rights (but not its individual contents) is Adapted Material,
317 | including for purposes of Section 3(b); and
318 |
319 | c. You must comply with the conditions in Section 3(a) if You Share
320 | all or a substantial portion of the contents of the database.
321 |
322 | For the avoidance of doubt, this Section 4 supplements and does not
323 | replace Your obligations under this Public License where the Licensed
324 | Rights include other Copyright and Similar Rights.
325 |
326 |
327 | Section 5 -- Disclaimer of Warranties and Limitation of Liability.
328 |
329 | a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
330 | EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
331 | AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
332 | ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
333 | IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
334 | WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
335 | PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
336 | ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
337 | KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
338 | ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
339 |
340 | b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
341 | TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
342 | NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
343 | INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
344 | COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
345 | USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
346 | ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
347 | DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
348 | IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
349 |
350 | c. The disclaimer of warranties and limitation of liability provided
351 | above shall be interpreted in a manner that, to the extent
352 | possible, most closely approximates an absolute disclaimer and
353 | waiver of all liability.
354 |
355 |
356 | Section 6 -- Term and Termination.
357 |
358 | a. This Public License applies for the term of the Copyright and
359 | Similar Rights licensed here. However, if You fail to comply with
360 | this Public License, then Your rights under this Public License
361 | terminate automatically.
362 |
363 | b. Where Your right to use the Licensed Material has terminated under
364 | Section 6(a), it reinstates:
365 |
366 | 1. automatically as of the date the violation is cured, provided
367 | it is cured within 30 days of Your discovery of the
368 | violation; or
369 |
370 | 2. upon express reinstatement by the Licensor.
371 |
372 | For the avoidance of doubt, this Section 6(b) does not affect any
373 | right the Licensor may have to seek remedies for Your violations
374 | of this Public License.
375 |
376 | c. For the avoidance of doubt, the Licensor may also offer the
377 | Licensed Material under separate terms or conditions or stop
378 | distributing the Licensed Material at any time; however, doing so
379 | will not terminate this Public License.
380 |
381 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
382 | License.
383 |
384 |
385 | Section 7 -- Other Terms and Conditions.
386 |
387 | a. The Licensor shall not be bound by any additional or different
388 | terms or conditions communicated by You unless expressly agreed.
389 |
390 | b. Any arrangements, understandings, or agreements regarding the
391 | Licensed Material not stated herein are separate from and
392 | independent of the terms and conditions of this Public License.
393 |
394 |
395 | Section 8 -- Interpretation.
396 |
397 | a. For the avoidance of doubt, this Public License does not, and
398 | shall not be interpreted to, reduce, limit, restrict, or impose
399 | conditions on any use of the Licensed Material that could lawfully
400 | be made without permission under this Public License.
401 |
402 | b. To the extent possible, if any provision of this Public License is
403 | deemed unenforceable, it shall be automatically reformed to the
404 | minimum extent necessary to make it enforceable. If the provision
405 | cannot be reformed, it shall be severed from this Public License
406 | without affecting the enforceability of the remaining terms and
407 | conditions.
408 |
409 | c. No term or condition of this Public License will be waived and no
410 | failure to comply consented to unless expressly agreed to by the
411 | Licensor.
412 |
413 | d. Nothing in this Public License constitutes or may be interpreted
414 | as a limitation upon, or waiver of, any privileges and immunities
415 | that apply to the Licensor or You, including from the legal
416 | processes of any jurisdiction or authority.
417 |
418 | =======================================================================
419 |
420 | Creative Commons is not a party to its public
421 | licenses. Notwithstanding, Creative Commons may elect to apply one of
422 | its public licenses to material it publishes and in those instances
423 | will be considered the “Licensor.” The text of the Creative Commons
424 | public licenses is dedicated to the public domain under the CC0 Public
425 | Domain Dedication. Except for the limited purpose of indicating that
426 | material is shared under a Creative Commons public license or as
427 | otherwise permitted by the Creative Commons policies published at
428 | creativecommons.org/policies, Creative Commons does not authorize the
429 | use of the trademark "Creative Commons" or any other trademark or logo
430 | of Creative Commons without its prior written consent including,
431 | without limitation, in connection with any unauthorized modifications
432 | to any of its public licenses or any other arrangements,
433 | understandings, or agreements concerning use of licensed material. For
434 | the avoidance of doubt, this paragraph does not form part of the
435 | public licenses.
436 |
437 | Creative Commons may be contacted at creativecommons.org.
438 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # HMS2
2 |
3 | Another annotation-free whole-slide training approach to pathological classification.
4 | This repository provides scripts to reproduce the results in the paper "Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings", including model training, inference, visualization, and statistics calculation, etc.
5 |
6 | [>> **Demo Video** <<](https://youtu.be/Kcx_d5nEUQ8) | [**Journal Link**](https://doi.org/10.1038/s41467-022-30746-1) | [**Our Website**](https://www.aetherai.com/)
7 |
8 | [
](https://youtu.be/Kcx_d5nEUQ8)
9 |
10 | ## Publications
11 |
12 | Huang, SC., Chen, CC., Lan, J. et al. Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nat Commun 13, 3347 (2022). https://doi.org/10.1038/s41467-022-30746-1
13 |
14 | ## License
15 |
16 | Copyright (C) 2021 aetherAI Co., Ltd. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
17 |
18 | ## Requirements
19 |
20 | ### Hardware Requirements
21 |
22 | Make sure the system contains adequate amount of main memory space (minimal: 32 GB) to prevent out-of-memory error.
23 |
24 | ### Software Stacks
25 |
26 | Although Poetry can set up most Python packages automatically, you should install the following native libraries manually in advance.
27 |
28 | - CUDA 10.2+ (Recommended: 11.3)
29 |
30 | CUDA is essential for PyTorch to enable GPU-accelerated deep neural network training. See https://docs.nvidia.com/cuda/cuda-installation-guide-linux/ .
31 |
32 | - OpenMPI 3+
33 |
34 | OpenMPI is required for multi-GPU distributed training. If `sudo` is available, you can simply install this by,
35 | ```
36 | sudo apt install libopenmpi-dev
37 | ```
38 |
39 | - Python 3.7+
40 |
41 | The development kit should be installed.
42 | ```
43 | sudo apt install python3-dev
44 | ```
45 |
46 | - OpenSlide
47 |
48 | OpenSlide is a library to read slides. See the installation guide in https://github.com/openslide/openslide .
49 |
50 | ### Python Packages
51 |
52 | We use Poetry to manage Python packages. The environment can be automatically set up by,
53 | ```
54 | cd [HMS2 folder]
55 | python3 -m pip install poetry
56 | python3 -m poetry install
57 | python3 -m poetry run poe install-cu113 # change this to "install-cu102" for CUDA 10.x.
58 | ```
59 |
60 | ## Usage
61 |
62 | Before initiating a training task, you should prepare several configuration files with the following step-by-step instructions. Refer to `projects/Camelyon16` as an example for training an HMS model on the CAMELYON16(https://camelyon16.grand-challenge.org/) dataset.
63 |
64 | ### 0. (Optional) Try a pre-trained CAMELYON16
65 |
66 | If you would like to try training HMS models using CAMELYON16 or evaluating pre-trained ones, here we provided contour description files and pre-trained weights trained at 2.5x, 5x, and 10x magnifications, which is available at https://drive.google.com/file/d/12Fv-OhAze_t2_bCX7l1S5iMCgQgOvHGF/view?usp=sharing .
67 |
68 | After the ZIP file is downloaded, unzip it to the project folder:
69 | ```
70 | unzip -o hms2_camelyon16.zip -d /path/to/hms2
71 | ```
72 |
73 | Besides, you should prepare the slides of CAMELYON16 from https://camelyon16.grand-challenge.org/ into `projects/Camelyon16/slides`. Then follow the instructions below.
74 |
75 | | Pre-trained model | AUC (95% CI)
76 | | ----------------- | ----------------------------------
77 | | Camelyon16_2.5x | 0.6015 (0.5022-0.7008)
78 | | Camelyon16_5x | 0.6242 (0.5194-0.7291)
79 | | Camelyon16_10x | 0.9135 (0.8490-0.9781)
80 |
81 | 
82 |
83 | ### 1. Create a Project Folder
84 |
85 | As a convention, create a project folder in `projects` with four sub-folders, `datalists`, `slides`, `contours`, and `configs`.
86 |
87 | ### 2. Define Datasets
88 |
89 | 3 CSV files defining training, validation and testing datasets, respectively, should be placed in `projects/YOUR_PROJECT/datalists`. See `projects/Camelyon16/datalists` for example.
90 |
91 | These CSV files should follow the format if your datasets were annotated in slide level:
92 | ```
93 | [slide_1_basename],[slide_1_class]
94 | [slide_2_basename],[slide_2_class]
95 | ...
96 | ```
97 | , where [slide\_name\_\*] specify the filename **without extension** of a slide image and [class\_id\_\*] is an integer indicating a slide-level label (e.g. 0 for normal, 1 for cancerous).
98 |
99 | Given contour-level (e.g. LN-level) labels, construct the CSV files in:
100 | ```
101 | [slide_1_contour_1],[slide_1_contour_1_class]
102 | [slide_1_contour_2],[slide_1_contour_2_class]
103 | ...
104 | ```
105 | You can name each contour whatever you want.
106 |
107 | #### (Optional) Contour Description Files
108 |
109 | For each contour, a contour description file in JSON should be composed with content like:
110 | ```
111 | {"slide\_name": "slide\_1\_basename", "contours": contours}
112 | ```
113 | , where `contours` is a list of contour. Each contour is a list of coordinates in (x, y). See `projects/Camelyon16/contours` for example. Save these files in `projects/YOUR_PROJECT/contours`.
114 |
115 | ### 3. Prepare Slide Files
116 |
117 | Place the slides files in `projects/YOUR_PROJECT/slides`. Soft links (`ln -s`) work fine.
118 |
119 | ### 4. Set Up Training Configurations
120 |
121 | Model hyper-parameters are set up in a YAML file. You can copy `projects/Camelyon16/configs/config_2.5x.yaml` and modify it for your own preference.
122 |
123 | The following table describes each field in a config.
124 |
125 | | Field | Description
126 | | -------------------------- | ---------------------------------------------------------------------------------------------
127 | | RESULT_DIR | Directory to store output stuffs, including model weights, testing results, etc.
128 | | MODEL_PATH | Path to store the model weight. (default: `${RESULT_DIR}/model.h5`)
129 | | OPTIMIZER_STATE_PATH | Path to store the state of optimizer. (default: `${RESULT_DIR}/opt_state.pt`)
130 | | STATES_PATH | Path to store the states for resuming. (default: `${RESULT_DIR}/states.pt`)
131 | | CONFIG_RECORD_PATH | Path to back up this config file. (default: `${RESULT_DIR}/config.yaml`)
132 | | USE_MIXED_PRECISION | Whether to enable mixed precision training.
133 | | USE_HMS2 | Whether to enable HMS2.
134 | | TRAIN_CSV_PATH | CSV file defining the training dataset.
135 | | VAL_CSV_PATH | CSV file defining the validation dataset.
136 | | TEST_CSV_PATH | CSV file defining the testing dataset.
137 | | CONTOUR_DIR | Directory containing contour description files. Set NULL when using slide-level labels.
138 | | SLIDE_DIR | Directory containing all the slide image files (can be soft links).
139 | | SLIDE_FILE_EXTENSION | File extension. (e.g. ".ndpi", ".svs")
140 | | SLIDE_READER | Library to read slides. (default: `openslide`)
141 | | RESIZE_RATIO | Resize ratio for downsampling slide images.
142 | | INPUT_SIZE | Size of model inputs in [height, width, channels]. Resized images are padded or cropped to the size. Try decreasing this field when main memory are limited.
143 | | GPU_AUGMENTS | Augmentations to do on GPU with patch-based affine transformation. (defaults: ["flip", "rigid", "hed_perturb"])
144 | | AUGMENTS | Augmentations to do on CPU.
145 | | MODEL | Model architecture to use. One of `fixup_resnet50`.
146 | | POOL_USE | Global pooling method in ResNet. One of `gmp`, `gap`, and `lse`.
147 | | NUM_CLASSES | Number of classes.
148 | | BATCH_SIZE | Number of slides processed in each training iteration for each MPI worker. (default: 1)
149 | | EPOCHS | Maximal number of training epochs.
150 | | LOSS | Loss to use. One of `ce`.
151 | | METRIC_LIST | A list of metrics.
152 | | OPTIMIZER | Optimizer for model updating.
153 | | INIT_LEARNING_RATE | Initial learning rate for Adam optimizer.
154 | | REDUCE_LR_FACTOR | The learning rate will be decreased by this factor upon no validation loss improvement in consequent epochs.
155 | | REDUCE_LR_PATIENCE | Number of consequent epochs to reduce learning rate.
156 | | TIME_RECORD_PATH | Path to store a CSV file recording per-iteration training time.
157 | | TEST_TIME_RECORD_PATH | Path to store a CSV file recording per-iteration inference time.
158 | | TEST_RESULT_PATH | Path to store the model predictions after testing in a JSON format. (default: `${RESULT_DIR}/test_result.json`)
159 | | VIZ_RESIZE_RATIO | The resized ratio of the prediction maps.
160 | | VIZ_FOLDER | Folder to store prediction maps. (default: `${RESULT_DIR}/viz`)
161 | | VIZ_RAW_FOLDER | Folder to store raw prediction maps. (default: `${RESULT_DIR}/viz_raw`)
162 |
163 | ### 5. Train a Model
164 |
165 | To train a model, simply run
166 | ```
167 | python3 -m poetry run python -m hms2.pipeline.train --config YOUR_TRAIN_CONFIG.YAML [--continue_mode]
168 | ```
169 | , where `--continue_mode` is optional that makes the training process begin after loading the model weights.
170 |
171 | To enable multi-node, multi-GPU distributed training, simply add `mpirun` in front of the above command, e.g.
172 | ```
173 | mpirun -np 4 -x CUDA_VISIBLE_DEVICES="0,1,2,3" python3 -m poetry run python -m hms2.pipeline.train --config YOUR_TRAIN_CONFIG.YAML
174 | ```
175 |
176 | Typically, this step takes days to complete, depending on the computing power, while you can trace the progress in real time from program output.
177 |
178 | ### 6. Evaluate the Model
179 |
180 | To evaluate the model, call
181 | ```
182 | [mpirun ...] python3 -m poetry run python -m hms2.pipeline.test --config YOUR_TRAIN_CONFIG.YAML
183 | ```
184 |
185 | This command will generate a JSON file in the result directory named `test_result.json` by default.
186 | The file contains the model predictions for each testing slide.
187 |
188 | ### 7. Visualize the Model
189 |
190 | To generate the CAM heatmap of the model, call
191 | ```
192 | [mpirun ...] python3 -m poetry run python -m hms2.pipeline.visualize --config YOUR_TRAIN_CONFIG.YAML
193 | ```
194 |
195 | `${VIZ_FOLDER}` will store the overlaied previews of inferred test slides. The raw data of heatmaps will be available in `${VIZ_RAW_FOLDER}` in the format of `.npy`.
196 |
--------------------------------------------------------------------------------
/hms2/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/__init__.py
--------------------------------------------------------------------------------
/hms2/core/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/core/__init__.py
--------------------------------------------------------------------------------
/hms2/core/builder.py:
--------------------------------------------------------------------------------
1 | """
2 | This module provides a model building tool.
3 | """
4 | from collections import namedtuple
5 | from typing import Callable, Optional, Sequence, Union
6 |
7 | import torch
8 | import torch.nn as nn
9 | import torchvision
10 |
11 | from .custom_modules import (
12 | FrozenBatchNorm2d,
13 | HEDPerturbAugmentorModule,
14 | LogSumExpPool2d,
15 | PermuteLayer,
16 | ScaleAndShift,
17 | ToDevice,
18 | )
19 | from .loader_modules import (
20 | GPUAugmentationLoaderModule,
21 | NoLoaderModule,
22 | PlainLoaderModule,
23 | )
24 | from .model import Hms2Model
25 |
26 |
27 | class Hms2ModelBuilder:
28 | def __init__(self):
29 | self.Augmentation = namedtuple(
30 | "Augmentation",
31 | ["build_func"],
32 | )
33 | self.Backbone = namedtuple(
34 | "Backbone",
35 | ["build_func", "output_channels", "get_hms2_parameters"],
36 | )
37 | self.Pooling = namedtuple(
38 | "Pooling",
39 | ["local_pooling_build_func", "pooling_build_func"],
40 | )
41 | self.CustomDense = namedtuple(
42 | "CustomDense",
43 | ["custom_dense_build_func"],
44 | )
45 |
46 | self.augmentation_registry = {}
47 | self.backbone_registry = {}
48 | self.pooling_registry = {}
49 | self.custom_dense_registry = {}
50 |
51 | self._register_builtins()
52 |
53 | def build(
54 | self,
55 | n_classes: int,
56 | augmentation_list: Optional[Sequence[str]] = None,
57 | backbone: str = "resnet50_frozenbn",
58 | pretrained: bool = True,
59 | pooling: str = "gmp",
60 | custom_dense: Optional[str] = None,
61 | use_hms2: bool = True,
62 | device: Optional[Union[torch.device, str, int]] = None,
63 | use_cpu_for_dense: bool = False,
64 | gpu_memory_budget: float = 32.0,
65 | ) -> nn.Module:
66 | """
67 | Build a model given parameters.
68 |
69 | Args:
70 | n_classes (int): The number of classes.
71 | augmentation_list (list or NoneType):
72 | A list of str, each of which specify an augmentation process, including
73 | "flip", "rigid", and "hed_perturb". The default is None that disables
74 | GPU augmentations.
75 | backbone (str):
76 | Specify the backbone structure. One of "resnet50_frozenbn" (default).
77 | pretrained (bool):
78 | Whether to load pretrained weights for the backbone (default: True).
79 | pooling (str or NoneType):
80 | Specify the pooling function. One of "gmp", "gmp_scaled", "gap", "lse",
81 | "cam", and "no".
82 | custom_dense (Optional[str]):
83 | Specify the module after pooling if not using the standard single dense
84 | layer. One of "no".
85 | use_hms2 (bool): Whether to enable HMS2. The default is True.
86 | device (torch.device):
87 | The device to place modules. If None (default), it calls
88 | torch.cuda.current_device() to get the device.
89 | use_cpu_for_dense: Whether to compute dense layers using CPU.
90 | gpu_memory_budget (float):
91 | The GPU memory capacity to let the builder determine the parameters of
92 | HMS2.
93 | """
94 | # Default arguments
95 | if augmentation_list is None:
96 | augmentation_list = []
97 | if device is None:
98 | device = torch.cuda.current_device()
99 |
100 | # Build components
101 | loader_module = self._build_loader_module(
102 | use_hms2=use_hms2,
103 | augmentation_list=augmentation_list,
104 | device=device,
105 | )
106 | backbone_module = self._build_backbone_module(
107 | backbone=backbone,
108 | pretrained=pretrained,
109 | device=device,
110 | )
111 | local_pooling_module = self._build_local_pooling_module(
112 | pooling=pooling,
113 | device=device,
114 | use_cpu_for_dense=use_cpu_for_dense,
115 | )
116 | dense_module = self._build_dense_module(
117 | backbone=backbone,
118 | pooling=pooling,
119 | custom_dense=custom_dense,
120 | n_classes=n_classes,
121 | device=device,
122 | use_cpu_for_dense=use_cpu_for_dense,
123 | )
124 |
125 | # Build the model
126 | model: nn.Module
127 | if use_hms2:
128 | hms2_parameters = self.backbone_registry[backbone].get_hms2_parameters(
129 | gpu_memory_budget=gpu_memory_budget,
130 | )
131 |
132 | model = Hms2Model(
133 | loader_module=loader_module,
134 | conv_module=backbone_module,
135 | dense_module=dense_module,
136 | local_pooling_module=local_pooling_module,
137 | **hms2_parameters,
138 | )
139 | else:
140 | model = _PlainModel(
141 | loader_module=loader_module,
142 | conv_module=backbone_module,
143 | dense_module=dense_module,
144 | local_pooling_module=local_pooling_module,
145 | )
146 |
147 | return model
148 |
149 | def register_augmentation(
150 | self,
151 | signature: str,
152 | build_func: Callable,
153 | ) -> None:
154 | """Register an augmentation.
155 |
156 | Args:
157 | signature: The name of the augmentation.
158 | build_func: Calling build_func() will yield an nn.Module.
159 | """
160 | self.augmentation_registry[signature] = self.Augmentation(
161 | build_func=build_func,
162 | )
163 |
164 | def register_backbone(
165 | self,
166 | signature: str,
167 | build_func: Callable,
168 | output_channels: int,
169 | get_hms2_parameters: Callable,
170 | ) -> None:
171 | """Register a backbone.
172 |
173 | Args:
174 | signature: The name of the backbone.
175 | build_func:
176 | Calling build_func(pretrained=xxx) will yield an nn.Module.
177 | "pretrained: bool" must be included as an argument.
178 | output_channels: The number of the output channels.
179 | get_hms2_parameters:
180 | A callable with a parameter `gpu_memory_budget`. It returns a dict
181 | with the keys "tile_size", "emb_crop_size", and "emb_stride_size".
182 | """
183 | self.backbone_registry[signature] = self.Backbone(
184 | build_func=build_func,
185 | output_channels=output_channels,
186 | get_hms2_parameters=get_hms2_parameters,
187 | )
188 |
189 | def register_pooling(
190 | self,
191 | signature: str,
192 | local_pooling_build_func: Optional[Callable],
193 | pooling_build_func: Callable,
194 | ) -> None:
195 | """Register a pooling.
196 |
197 | Args:
198 | signature: The name of the pooling.
199 | local_pooling_build_func:
200 | Calling local_pooling_build_func() will yield an nn.Module. This
201 | pooling will be applied before HMS2 aggregation.
202 | pooling_build_func:
203 | Calling pooling_build_func() will yield an nn.Module. This pooling will
204 | be applied before linear layers.
205 | """
206 | self.pooling_registry[signature] = self.Pooling(
207 | local_pooling_build_func=local_pooling_build_func,
208 | pooling_build_func=pooling_build_func,
209 | )
210 |
211 | def register_custom_dense(
212 | self,
213 | signature: str,
214 | custom_dense_build_func: Callable[[int], nn.Module],
215 | ) -> None:
216 | """Register a custom dense.
217 |
218 | Args:
219 | signature: The name of the custom dense.
220 | custom_dense_build_func:
221 | Calling custom_dense_build_func(num_classes) will yeild an nn.Module.
222 | """
223 | self.custom_dense_registry[signature] = self.CustomDense(
224 | custom_dense_build_func=custom_dense_build_func,
225 | )
226 |
227 | def _register_builtins(self):
228 | # Augmentations
229 | self.register_augmentation("hed_perturb", HEDPerturbAugmentorModule)
230 |
231 | # Backbones: ResNet50 with frozen BN layers.
232 | def resnet50_frozenbn_build_func(pretrained: bool) -> nn.Module:
233 | module = torchvision.models.resnet50(pretrained=pretrained)
234 | module = FrozenBatchNorm2d.convert_frozen_batchnorm(module)
235 | module = nn.Sequential(*list(module.children())[:-2])
236 | return module
237 |
238 | def resnet50_frozenbn_get_hms2_parameters(gpu_memory_budget: float) -> dict:
239 | if gpu_memory_budget >= 32:
240 | parameters = {
241 | "tile_size": 3072,
242 | "emb_crop_size": 7,
243 | "emb_stride_size": 32,
244 | }
245 | else:
246 | parameters = {
247 | "tile_size": 2048,
248 | "emb_crop_size": 7,
249 | "emb_stride_size": 32,
250 | }
251 | return parameters
252 |
253 | self.register_backbone(
254 | signature="resnet50_frozenbn",
255 | build_func=resnet50_frozenbn_build_func,
256 | output_channels=2048,
257 | get_hms2_parameters=resnet50_frozenbn_get_hms2_parameters,
258 | )
259 |
260 | # Poolings
261 | self.register_pooling(
262 | "gmp",
263 | local_pooling_build_func=(lambda: nn.AdaptiveMaxPool2d((1, 1))),
264 | pooling_build_func=(
265 | lambda: nn.Sequential(
266 | nn.AdaptiveMaxPool2d((1, 1)),
267 | nn.Flatten(),
268 | )
269 | ),
270 | )
271 | self.register_pooling(
272 | "gmp_scaled",
273 | local_pooling_build_func=(
274 | lambda: nn.Sequential(
275 | ScaleAndShift(scale=3.79, bias=(-17.7)),
276 | nn.AdaptiveMaxPool2d((1, 1)),
277 | )
278 | ),
279 | pooling_build_func=(
280 | lambda: nn.Sequential(
281 | nn.AdaptiveMaxPool2d((1, 1)),
282 | nn.Flatten(),
283 | )
284 | ),
285 | )
286 | self.register_pooling(
287 | "gmp_scaled_1k",
288 | local_pooling_build_func=(
289 | lambda: nn.Sequential(
290 | ScaleAndShift(scale=3.933, bias=(-19.14)),
291 | nn.AdaptiveMaxPool2d((1, 1)),
292 | )
293 | ),
294 | pooling_build_func=(
295 | lambda: nn.Sequential(
296 | nn.AdaptiveMaxPool2d((1, 1)),
297 | nn.Flatten(),
298 | )
299 | ),
300 | )
301 | self.register_pooling(
302 | "gmp_scaled_2k",
303 | local_pooling_build_func=(
304 | lambda: nn.Sequential(
305 | ScaleAndShift(scale=4.135, bias=(-21.23)),
306 | nn.AdaptiveMaxPool2d((1, 1)),
307 | )
308 | ),
309 | pooling_build_func=(
310 | lambda: nn.Sequential(
311 | nn.AdaptiveMaxPool2d((1, 1)),
312 | nn.Flatten(),
313 | )
314 | ),
315 | )
316 | self.register_pooling(
317 | "gap",
318 | local_pooling_build_func=(lambda: nn.AdaptiveAvgPool2d((1, 1))),
319 | pooling_build_func=(
320 | lambda: nn.Sequential(
321 | nn.AdaptiveAvgPool2d((1, 1)),
322 | nn.Flatten(),
323 | )
324 | ),
325 | )
326 | self.register_pooling(
327 | "lse",
328 | local_pooling_build_func=(lambda: LogSumExpPool2d(factor=1.0)),
329 | pooling_build_func=(
330 | lambda: nn.Sequential(
331 | LogSumExpPool2d(factor=1.0),
332 | nn.Flatten(),
333 | )
334 | ),
335 | )
336 | self.register_pooling(
337 | "cam",
338 | local_pooling_build_func=None,
339 | pooling_build_func=(lambda: PermuteLayer(dims=(0, 2, 3, 1))),
340 | )
341 | self.register_pooling(
342 | "no",
343 | local_pooling_build_func=None,
344 | pooling_build_func=(lambda: nn.Identity()),
345 | )
346 |
347 | # Custom Dense
348 | self.register_custom_dense(
349 | "no",
350 | custom_dense_build_func=(lambda: nn.Identity()),
351 | )
352 |
353 | def _build_loader_module(
354 | self,
355 | use_hms2: bool,
356 | augmentation_list: Sequence[str],
357 | device: Union[torch.device, str, int],
358 | ) -> nn.Module:
359 | # Translate the augmentation_list
360 | augmentation_modules = []
361 | for augmentation in augmentation_list:
362 | if use_hms2 and augmentation in ["flip", "rigid"]:
363 | # "flip" and "rigid" are built-in of HMS2 to enable patch-based
364 | # affine transformation. Skip initiating a module.
365 | pass
366 | elif augmentation in self.augmentation_registry:
367 | module = self.augmentation_registry[augmentation].build_func()
368 | augmentation_modules.append(module)
369 |
370 | else:
371 | raise RuntimeError(
372 | f"{augmentation} has not yet been registered as an augmentation."
373 | )
374 |
375 | # Build the loader module
376 | loader_module: nn.Module
377 | if use_hms2:
378 | if augmentation_list is None:
379 | loader_module = PlainLoaderModule()
380 | else:
381 | random_rotation = "rigid" in augmentation_list
382 | random_translation = (
383 | (-32.0, 32.0) if "rigid" in augmentation_list else None
384 | )
385 | random_flip = "flip" in augmentation_list
386 |
387 | loader_module = GPUAugmentationLoaderModule(
388 | random_rotation=random_rotation,
389 | random_translation=random_translation,
390 | random_flip=random_flip,
391 | other_augmentations=augmentation_modules,
392 | )
393 | else:
394 | loader_module = NoLoaderModule(augmentations=augmentation_modules)
395 |
396 | loader_module = loader_module.to(device)
397 | return loader_module
398 |
399 | def _build_backbone_module(
400 | self,
401 | backbone: str,
402 | pretrained: bool,
403 | device: Union[torch.device, str, int],
404 | ) -> nn.Module:
405 | if backbone not in self.backbone_registry:
406 | raise RuntimeError(f"{backbone} has not yet registered as a backbone.")
407 |
408 | backbone_module = self.backbone_registry[backbone].build_func(
409 | pretrained=pretrained
410 | )
411 | backbone_module = backbone_module.to(device)
412 | return backbone_module
413 |
414 | def _build_local_pooling_module(
415 | self,
416 | pooling: str,
417 | device: Union[torch.device, str, int],
418 | use_cpu_for_dense: bool,
419 | ) -> Optional[nn.Module]:
420 | if pooling not in self.pooling_registry:
421 | raise RuntimeError(f"{pooling} has not yet registered as a pooling.")
422 |
423 | local_pooling_build_func = self.pooling_registry[
424 | pooling
425 | ].local_pooling_build_func
426 | if local_pooling_build_func is None:
427 | if use_cpu_for_dense:
428 | return ToDevice("cpu")
429 | else:
430 | return None
431 |
432 | local_pooling_module = local_pooling_build_func()
433 | if use_cpu_for_dense:
434 | local_pooling_module = nn.Sequential(
435 | ToDevice("cpu"),
436 | local_pooling_module,
437 | )
438 | else:
439 | local_pooling_module = local_pooling_module.to(device)
440 |
441 | return local_pooling_module
442 |
443 | def _build_dense_module(
444 | self,
445 | backbone: str,
446 | pooling: str,
447 | custom_dense: Optional[str],
448 | n_classes: int,
449 | device: Union[torch.device, str, int],
450 | use_cpu_for_dense: bool,
451 | ) -> nn.Module:
452 | if backbone not in self.backbone_registry:
453 | raise RuntimeError(f"{backbone} has not yet registered as a backbone.")
454 |
455 | output_channels = self.backbone_registry[backbone].output_channels
456 |
457 | if pooling not in self.pooling_registry:
458 | raise RuntimeError(f"{pooling} has not yet registered as a pooling.")
459 |
460 | pooling_module = self.pooling_registry[pooling].pooling_build_func()
461 |
462 | if custom_dense is None:
463 | dense_layer = nn.Linear(output_channels, n_classes, bias=True)
464 | with torch.no_grad():
465 | dense_layer.weight.div_(10.0)
466 | dense_layer.bias.div_(10.0)
467 | else:
468 | dense_layer = self.custom_dense_registry[
469 | custom_dense
470 | ].custom_dense_build_func()
471 |
472 | dense_module = nn.Sequential(
473 | pooling_module,
474 | dense_layer,
475 | )
476 | if not use_cpu_for_dense:
477 | dense_module = dense_module.to(device)
478 |
479 | return dense_module
480 |
481 |
482 | class _PlainModel(nn.Module):
483 | """
484 | Plain model with a similar interface as Hms2Model.
485 |
486 | Args:
487 | See the descriptions in `Hms2Model`.
488 | """
489 |
490 | def __init__(
491 | self,
492 | loader_module: nn.Module,
493 | conv_module: nn.Module,
494 | dense_module: nn.Module,
495 | local_pooling_module: Optional[nn.Module] = None,
496 | ):
497 | super().__init__()
498 |
499 | self.loader_module = loader_module
500 | self.conv_module = conv_module
501 | self.dense_module = dense_module
502 | self.local_pooling_module = local_pooling_module
503 |
504 | def forward(self, img_batch: torch.Tensor) -> torch.Tensor:
505 | """
506 | Implementation of a plain model.
507 | """
508 | if isinstance(img_batch, torch.Tensor):
509 | if len(img_batch.size()) != 4:
510 | raise ValueError("img_batch should have 4 dimensions")
511 | else:
512 | raise ValueError("img_batch should be torch.Tensor")
513 |
514 | loaded = self.loader_module(img_batch)
515 | conved = self.conv_module(loaded)
516 | if self.local_pooling_module is not None:
517 | local_pooled = self.local_pooling_module(conved)
518 | else:
519 | local_pooled = conved
520 | output = self.dense_module(local_pooled)
521 |
522 | return output
523 |
--------------------------------------------------------------------------------
/hms2/core/custom_modules.py:
--------------------------------------------------------------------------------
1 | """
2 | This module contains custom modules..
3 | """
4 | import abc
5 | from typing import Sequence, Tuple, Type, Union
6 |
7 | import cv2
8 | import numpy as np
9 | import scipy.linalg
10 | import torch
11 | import torch.nn as nn
12 |
13 |
14 | class BaseAugmentorModule(nn.Module, metaclass=abc.ABCMeta):
15 | @abc.abstractmethod
16 | def randomize(self) -> None:
17 | pass
18 |
19 |
20 | class HEDPerturbAugmentorModule(BaseAugmentorModule):
21 | """
22 | An image augmentor that implements HED perturbing.
23 |
24 | Args:
25 | stain_angle (float): The maximal angle applied on perturbing the stain matrix.
26 | concentration_multiplier (tuple-like):
27 | A two-element tuple defining the scaling range of concentration perturbing.
28 | skip_background (bool):
29 | Skip this augmentation on background since it's unneccesary.
30 | """
31 |
32 | def __init__(
33 | self,
34 | stain_angle: float = 10.0,
35 | concentration_multiplier: Tuple[float, float] = (0.5, 1.5),
36 | skip_background: bool = True,
37 | ):
38 | super().__init__()
39 | self.stain_angle = stain_angle
40 | self.concentration_multiplier = concentration_multiplier
41 | self.skip_background = skip_background
42 |
43 | self.eps = 1e-6
44 | rgb_from_hed = np.array(
45 | [
46 | [0.65, 0.70, 0.29],
47 | [0.07, 0.99, 0.11],
48 | [0.27, 0.57, 0.78],
49 | ]
50 | )
51 | self.hed_from_rgb = scipy.linalg.inv(rgb_from_hed)
52 | self.postfix = None
53 |
54 | def randomize(self) -> None:
55 | stain_angle_rad = np.radians(self.stain_angle)
56 | hed_from_rgb_aug = []
57 | for stain_idx in range(self.hed_from_rgb.shape[1]):
58 | stain = self.hed_from_rgb[:, stain_idx]
59 | stain_rotation_vector = np.random.uniform(
60 | -stain_angle_rad, stain_angle_rad, size=(3,)
61 | )
62 | stain_rotation_matrix, _ = cv2.Rodrigues(np.array([stain_rotation_vector]))
63 | stain_aug = np.matmul(stain_rotation_matrix, stain[:, np.newaxis])
64 | hed_from_rgb_aug.append(stain_aug)
65 | hed_from_rgb_aug = np.concatenate(hed_from_rgb_aug, axis=1)
66 | rgb_from_hed_aug = scipy.linalg.inv(hed_from_rgb_aug)
67 |
68 | concentration_aug_matrix = np.diag(
69 | np.random.uniform(*self.concentration_multiplier, size=(3,)),
70 | )
71 |
72 | # image_od_aug = image_od . hed_from_rgb . concentration_aug_matrix .
73 | # rgb_from_hed_aug
74 | postfix = np.matmul(concentration_aug_matrix, rgb_from_hed_aug)
75 | postfix = np.matmul(self.hed_from_rgb, postfix)
76 | self.postfix = postfix
77 |
78 | @torch.no_grad()
79 | def forward(self, image_batch: torch.Tensor) -> torch.Tensor:
80 | if self.postfix is None:
81 | raise RuntimeError("randomize() should be called before forward().")
82 |
83 | # When the image is all white, this augmentation will not make any change, so
84 | # skip it.
85 | if self.skip_background and torch.all(image_batch == 1.0).item():
86 | return image_batch
87 |
88 | image_batch = torch.clamp(image_batch, min=self.eps)
89 | image_batch_od = torch.log(image_batch) / np.log(self.eps)
90 | image_batch_od = image_batch_od.permute(0, 2, 3, 1).contiguous()
91 | postfix = torch.tensor(self.postfix, dtype=torch.float32).to(
92 | image_batch_od.device
93 | )
94 | image_batch_od_aug = torch.matmul(image_batch_od, postfix)
95 | image_batch_od_aug = image_batch_od_aug.permute(0, 3, 1, 2).contiguous()
96 | image_batch_od_aug = torch.clamp(image_batch_od_aug, min=0.0)
97 | image_batch_aug = torch.exp(image_batch_od_aug * np.log(self.eps))
98 | image_batch_aug = torch.ceil(image_batch_aug * 255.0) / 255.0
99 |
100 | return image_batch_aug
101 |
102 |
103 | class FrozenBatchNorm2d(nn.BatchNorm2d):
104 | """
105 | Batch normalization for 2D tensors with a frozen running mean and variance. Use the
106 | classmethod `convert_frozen_batchnorm` to rapidly convert a module containing batch
107 | normalization layers.
108 |
109 | Args:
110 | Refer to the descriptions in `torch.nn.BatchNorm2d`.
111 | """
112 |
113 | _version = 1
114 |
115 | def __init__(
116 | self,
117 | num_features: int,
118 | eps: float = 1e-5,
119 | affine: bool = True,
120 | track_running_stats: bool = True,
121 | ):
122 | super().__init__(
123 | num_features=num_features,
124 | eps=eps,
125 | affine=affine,
126 | track_running_stats=track_running_stats,
127 | )
128 |
129 | def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
130 | """
131 | Forward operations. Mean and variance calculations are removed.
132 | """
133 | self._check_input_dim(input_tensor)
134 |
135 | output = nn.functional.batch_norm(
136 | input=input_tensor,
137 | running_mean=self.running_mean,
138 | running_var=self.running_var,
139 | weight=self.weight,
140 | bias=self.bias,
141 | training=False,
142 | eps=self.eps,
143 | )
144 |
145 | return output
146 |
147 | @classmethod
148 | def convert_frozen_batchnorm(
149 | cls: Type["FrozenBatchNorm2d"], module: nn.Module
150 | ) -> nn.Module:
151 | """
152 | Convert a module with batch normalization layers to frozen one.
153 | """
154 | bn_module = (
155 | nn.modules.batchnorm.BatchNorm2d,
156 | nn.modules.batchnorm.SyncBatchNorm,
157 | )
158 | if isinstance(module, bn_module):
159 | frozen_bn = cls(
160 | num_features=module.num_features,
161 | eps=module.eps,
162 | affine=module.affine,
163 | track_running_stats=module.track_running_stats,
164 | ).to(device=next(module.parameters()).device)
165 | if module.affine:
166 | with torch.no_grad():
167 | frozen_bn.weight.copy_(module.weight)
168 | frozen_bn.bias.copy_(module.bias)
169 | if module.track_running_stats:
170 | with torch.no_grad():
171 | frozen_bn.running_mean.copy_(module.running_mean)
172 | frozen_bn.running_var.copy_(module.running_var)
173 | frozen_bn.num_batches_tracked.copy_(module.num_batches_tracked)
174 | module = frozen_bn
175 | else:
176 | for name, child in module.named_children():
177 | new_child = cls.convert_frozen_batchnorm(child)
178 | if new_child is not child:
179 | module.add_module(name, new_child)
180 |
181 | return module
182 |
183 |
184 | class LogSumExpPool2d(nn.Module):
185 | def __init__(self, factor: float = 1.0):
186 | super().__init__()
187 | self.factor = factor
188 |
189 | def forward(self, inputs: torch.Tensor) -> torch.Tensor:
190 | _, _, height, width = inputs.shape
191 |
192 | max_pool = nn.functional.adaptive_max_pool2d(inputs, output_size=(1, 1))
193 | exp = torch.exp(self.factor * (inputs - max_pool))
194 | sumexp = torch.sum(exp, dim=(2, 3), keepdim=True) / (height * width)
195 | logsumexp = max_pool + torch.log(sumexp) / self.factor
196 |
197 | return logsumexp
198 |
199 |
200 | class PermuteLayer(nn.Module):
201 | def __init__(self, dims: Sequence[int]):
202 | super().__init__()
203 | self.dims = dims
204 |
205 | def forward(self, inputs: torch.Tensor) -> torch.Tensor:
206 | output = inputs.permute(*self.dims)
207 | return output
208 |
209 |
210 | class ScaleAndShift(nn.Module):
211 | __constants__ = ["scale", "bias"]
212 |
213 | def __init__(self, scale=1.0, bias=0.0):
214 | super().__init__()
215 | self.scale = scale
216 | self.bias = bias
217 |
218 | def forward(self, inputs):
219 | return inputs * self.scale + self.bias
220 |
221 | def extra_repr(self):
222 | return "scale={}, bias={}".format(self.scale, self.bias)
223 |
224 |
225 | class ToDevice(nn.Module):
226 | def __init__(self, device: Union[torch.device, str]):
227 | super().__init__()
228 | self.device = device
229 |
230 | def forward(self, input: torch.Tensor) -> torch.Tensor:
231 | output = input.to(self.device)
232 | return output
233 |
--------------------------------------------------------------------------------
/hms2/core/loader_modules.py:
--------------------------------------------------------------------------------
1 | import abc
2 | import concurrent.futures
3 | from typing import Optional, Sequence, Tuple, Union
4 |
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torchvision.transforms as transforms
9 | from PIL import Image
10 |
11 | from .custom_modules import BaseAugmentorModule
12 |
13 |
14 | class BaseLoaderModule(nn.Module, metaclass=abc.ABCMeta):
15 | """
16 | An abstract loader module, handling region reading, augmentation, and CPU-GPU
17 | transfer. It accepts a torch.Tensor with NHWC format and uint8 type as an input
18 | image batch. The module returns a torch.Tensor on CUDA with the FP32 type and NCHW
19 | shape. For image augmentation, all the random variables should be kept as data
20 | members and get re-randomized upon `randomize` is called.
21 | """
22 |
23 | @abc.abstractmethod
24 | def forward(
25 | self,
26 | image_batch: torch.Tensor,
27 | coord: Tuple[int, int],
28 | size: Tuple[int, int],
29 | ) -> torch.Tensor:
30 | """
31 | Define the forward function to read a region from an image.
32 |
33 | Args:
34 | image_batch (torch.Tensor): A tensor with NHWC format and uint8 type.
35 | coord (Tuple[int, int]): A 2-element tuple defining (x, y).
36 | size (Tuple[int, int]): A 2-element tuple defining (width, height).
37 |
38 | Returns:
39 | region (torch.Tensor): A tensor in NCHW and FP32.
40 | """
41 |
42 | @abc.abstractmethod
43 | def randomize(self) -> None:
44 | """
45 | Randomize all the variables for augmentations.
46 | """
47 |
48 | def hint_future_accesses(
49 | self,
50 | image_batch: torch.Tensor,
51 | coords: Sequence[Tuple[int, int]],
52 | sizes: Sequence[Tuple[int, int]],
53 | ) -> None:
54 | """
55 | Hint the loader module the requesting regions of future accesses and their
56 | order. The order will be (image_batch[0], coords[0], sizes[0]) ->
57 | (image_batch[1], coords[0], sizes[0]) -> ... -> (image_batch[N - 1],
58 | coords[0], sizes[0]) -> (image_batch[0], coords[1], sizes[1]) -> ...
59 |
60 | Args:
61 | image_batch (torch.Tensor):
62 | The format is defined in each derived class.
63 | coords (list):
64 | A list of tuples, each of which is a 2-element tuple defining (x, y).
65 | sizes (list):
66 | A list of tuples, each of which is a 2-element tuple definiing (w, h).
67 | """
68 |
69 | def prefetch_next(self) -> None:
70 | """
71 | Available when `hint_future_accesses` is called. Let the loader module to
72 | prefetch the next region. This method should be called before the next region
73 | is requested by `forward`, or an error will be raised.
74 | """
75 |
76 | @abc.abstractmethod
77 | def record_snapshot(self) -> None:
78 | """
79 | Start recording the snapshot for debugging.
80 | """
81 |
82 | @abc.abstractmethod
83 | def get_snapshot(self) -> np.ndarray:
84 | """
85 | Stop recording the snapshot and return it.
86 |
87 | Returns:
88 | snapshots:
89 | A batch of snapshots with the shape [B, H, W, 3], RGB uint8 format.
90 | """
91 |
92 |
93 | class PlainLoaderModule(BaseLoaderModule):
94 | """
95 | A plain loader module that simply does region reading, CPU-GPU data transfer, and
96 | normalization. If needed, augmentation should be done before an image is fed into
97 | this module.
98 | """
99 |
100 | def __init__(self):
101 | super().__init__()
102 |
103 | self.register_buffer("device_indicator", torch.empty(0))
104 |
105 | self.prefetch_idx = 0
106 | self.prefetch_image_batch = None
107 | self.prefetch_coords = None
108 | self.prefetch_sizes = None
109 | self.prefetch_thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
110 | self.prefetch_task = None
111 |
112 | self.snapshot_enabled = False
113 | self.snapshots = []
114 |
115 | def forward(
116 | self,
117 | image_batch: torch.Tensor,
118 | coord: Tuple[int, int],
119 | size: Tuple[int, int],
120 | ) -> torch.Tensor:
121 | """
122 | See the description in `BaseLoaderModule.forward`.
123 | """
124 | if self.prefetch_task is not None:
125 | # If hint_future_accesses was called.
126 | if (
127 | coord != self.prefetch_coords[self.prefetch_idx]
128 | or size != self.prefetch_sizes[self.prefetch_idx]
129 | or image_batch is not self.prefetch_image_batch
130 | ):
131 | raise ValueError(
132 | "The arguments of hint_future_accesses does not consist with those"
133 | " of forward."
134 | )
135 | patch = self.prefetch_task.result()
136 |
137 | self.prefetch_next()
138 | else:
139 | # If hint_future_accesses was not called.
140 | patch = self._read_region(
141 | image_batch,
142 | coord,
143 | size,
144 | self.device_indicator.device,
145 | )
146 |
147 | return patch
148 |
149 | def randomize(self) -> None:
150 | """
151 | Do nothing since no random variable exist in this loader module.
152 | """
153 |
154 | def hint_future_accesses(
155 | self,
156 | image_batch: torch.Tensor,
157 | coords: Sequence[Tuple[int, int]],
158 | sizes: Sequence[Tuple[int, int]],
159 | ) -> None:
160 | """
161 | See the description in `BaseLoaderModule.hint_future_accesses`.
162 | """
163 | self.prefetch_idx = -1
164 | self.prefetch_image_batch = image_batch
165 | self.prefetch_coords = coords
166 | self.prefetch_sizes = sizes
167 |
168 | self.prefetch_next()
169 |
170 | def prefetch_next(self) -> None:
171 | """
172 | See the description in `BaseLoaderModule.prefetch_next`.
173 | """
174 | self.prefetch_idx += 1
175 | if self.prefetch_idx < len(self.prefetch_coords):
176 | next_coord = self.prefetch_coords[self.prefetch_idx]
177 | next_size = self.prefetch_sizes[self.prefetch_idx]
178 |
179 | if self.prefetch_task is not None:
180 | self.prefetch_task.cancel()
181 | self.prefetch_task = self.prefetch_thread_pool.submit(
182 | self._read_region,
183 | self.prefetch_image_batch,
184 | next_coord,
185 | next_size,
186 | self.device_indicator.device,
187 | )
188 | else:
189 | self.prefetch_task = None
190 |
191 | def record_snapshot(self) -> None:
192 | """
193 | See the description in `BaseLoaderModule.record_snapshot`.
194 | """
195 | self.snapshot_enabled = True
196 |
197 | def get_snapshot(self) -> np.ndarray:
198 | """
199 | See the description in `BaseLoaderModule.get_snapshot`.
200 | """
201 | width = max(
202 | [snapshot["coord"][0] + snapshot["size"][0] for snapshot in self.snapshots]
203 | )
204 | height = max(
205 | [snapshot["coord"][1] + snapshot["size"][1] for snapshot in self.snapshots]
206 | )
207 |
208 | batch_size = 0
209 | for snapshot in self.snapshots:
210 | batch_size_this = int(snapshot["patch_batch"].shape[0])
211 | if batch_size == 0:
212 | batch_size = batch_size_this
213 | elif batch_size != batch_size_this:
214 | raise RuntimeError("Batch sizes are not consistent in the snapshots.")
215 |
216 | canvases = []
217 | for idx in range(batch_size):
218 | canvas = Image.new(
219 | mode="RGB",
220 | size=(width, height),
221 | color=(0, 255, 0),
222 | )
223 | for snapshot in self.snapshots:
224 | patch = Image.fromarray(snapshot["patch_batch"][idx])
225 | box = (
226 | snapshot["coord"][0],
227 | snapshot["coord"][1],
228 | snapshot["coord"][0] + snapshot["size"][0],
229 | snapshot["coord"][1] + snapshot["size"][1],
230 | )
231 | canvas.paste(patch, box=box)
232 | canvas = np.array(canvas)
233 | canvases.append(canvas)
234 | canvases_array = np.array(canvases)
235 |
236 | self.snapshot_enabled = False
237 | self.snapshots = []
238 |
239 | return canvases_array
240 |
241 | def __del__(self) -> None:
242 | self.prefetch_thread_pool.shutdown()
243 |
244 | @torch.no_grad()
245 | def _read_region(
246 | self,
247 | image_batch: torch.Tensor,
248 | coord: Tuple[int, int],
249 | size: Tuple[int, int],
250 | device: Union[torch.device, str, None],
251 | ) -> torch.Tensor:
252 | patch = image_batch[
253 | :,
254 | coord[1] : coord[1] + size[1],
255 | coord[0] : coord[0] + size[0],
256 | :,
257 | ]
258 | patch = patch.to(device=device) # To GPU
259 | patch = patch.permute(0, 3, 1, 2).contiguous() # To NCHW
260 | patch = patch.float().div(255.0) # To FP32
261 |
262 | if self.snapshot_enabled:
263 | patch_snapshot = (
264 | (patch * 255.0)
265 | .to(torch.uint8)
266 | .permute(0, 2, 3, 1)
267 | .contiguous()
268 | .cpu()
269 | .numpy()
270 | )
271 | self.snapshots.append(
272 | {
273 | "coord": coord,
274 | "size": size,
275 | "patch_batch": patch_snapshot,
276 | }
277 | )
278 |
279 | patch = transforms.functional.normalize(
280 | tensor=patch,
281 | mean=[0.485, 0.456, 0.406],
282 | std=[0.229, 0.224, 0.225],
283 | )
284 | return patch
285 |
286 |
287 | class GPUAugmentationLoaderModule(PlainLoaderModule):
288 | """
289 | A loader module that does region reading, CPU-GPU data transfer, on-GPU
290 | augmentation, and normalization.
291 |
292 | Args:
293 | random_rotation (bool): Enable random rotation. Default is True.
294 | random_translation (tuple or NoneType):
295 | A tuple with 2 elements (x, y). Set None to disalbe the augmentation.
296 | Default is (-32.0, 32.0).
297 | random_flip (bool): Enable random flipping. Default is True.
298 | other_augmentations (sequence or NoneType):
299 | A list of torch.nn.Module. Each consumes a torch.Tensor as an input image
300 | batch with NCHW, FP32, [0.0, 1.0] formats, and produces a torch.Tensor
301 | with the same shape and format. Both tensors are on GPU. These modeuls
302 | should implement a randomize() method. Set None (default) to indicate no
303 | further augmentations to apply.
304 | skip_background_tile_aug (bool):
305 | Skip unnecessary augmentations, including rotation, translation, and
306 | flipping, for background tiles.
307 | """
308 |
309 | def __init__(
310 | self,
311 | random_rotation: bool = True,
312 | random_translation: Optional[Tuple[float, float]] = (-32.0, 32.0),
313 | random_flip: bool = True,
314 | other_augmentations: Optional[Sequence[BaseAugmentorModule]] = None,
315 | skip_background_tile_aug: bool = True,
316 | ):
317 | super().__init__()
318 | self.random_rotation = random_rotation
319 | self.random_translation = random_translation
320 | self.random_flip = random_flip
321 | self.other_augmentations = (
322 | other_augmentations if other_augmentations is not None else []
323 | )
324 | self.skip_background_tile_aug = skip_background_tile_aug
325 |
326 | self.rotation_angle = 0.0
327 | self.translation_pixels = np.zeros(shape=[2])
328 | self.do_flip = False
329 | self.affine_matrix = np.identity(3)
330 |
331 | def randomize(self) -> None:
332 | if self.random_rotation:
333 | self.rotation_angle = np.random.uniform(-180.0, 180.0)
334 | if self.random_translation:
335 | self.translation_pixels = np.random.uniform(
336 | self.random_translation[0],
337 | self.random_translation[1],
338 | size=(2,),
339 | )
340 | if self.random_flip:
341 | self.do_flip = np.random.rand() > 0.5
342 | for module in self.other_augmentations:
343 | module.randomize()
344 |
345 | self.affine_matrix = self._calculate_affine_matrix()
346 |
347 | def _calculate_affine_matrix(self) -> np.ndarray:
348 | """
349 | The order of the augmentations is rotate -> translate -> flip.
350 | Calculating affine_matrix should be in the reverse way.
351 | """
352 | affine_matrix = np.identity(3)
353 |
354 | if self.do_flip:
355 | transform = np.array(
356 | [
357 | [-1.0, 0.0, 0.0],
358 | [0.0, 1.0, 0.0],
359 | [0.0, 0.0, 1.0],
360 | ],
361 | )
362 | affine_matrix = np.matmul(transform, affine_matrix)
363 |
364 | if self.random_translation:
365 | transform = np.array(
366 | [
367 | [1.0, 0.0, -self.translation_pixels[0]],
368 | [0.0, 1.0, -self.translation_pixels[1]],
369 | [0.0, 0.0, 1.0],
370 | ]
371 | )
372 | affine_matrix = np.matmul(transform, affine_matrix)
373 |
374 | if self.random_rotation:
375 | angle_in_rad = np.radians(self.rotation_angle)
376 | transform = np.array(
377 | [
378 | [np.cos(angle_in_rad), -np.sin(angle_in_rad), 0.0],
379 | [np.sin(angle_in_rad), np.cos(angle_in_rad), 0.0],
380 | [0.0, 0.0, 1.0],
381 | ],
382 | )
383 | affine_matrix = np.matmul(transform, affine_matrix)
384 |
385 | return affine_matrix
386 |
387 | @torch.no_grad()
388 | def _read_region(
389 | self,
390 | image_batch: torch.Tensor,
391 | coord: Tuple[int, int],
392 | size: Tuple[int, int],
393 | device: Union[torch.device, str, None],
394 | ):
395 | # If in evaluation mode, disable the augmentations.
396 | if not self.training:
397 | return super()._read_region(image_batch, coord, size, device)
398 |
399 | # Calculate the region center regarding the image center
400 | batch_size, height, width, channels = image_batch.shape
401 | coord = np.array(coord)
402 | size = np.array(size)
403 | image_center = np.array([width, height]) / 2.0
404 | region_center = coord + size / 2.0
405 | norm_region_center = region_center - image_center
406 |
407 | # Get the new region center after an affine transformation
408 | new_norm_region_center = np.matmul(
409 | self.affine_matrix,
410 | np.array([norm_region_center[0], norm_region_center[1], 1.0]),
411 | )[:2]
412 | new_region_center = new_norm_region_center + image_center
413 |
414 | # Calculate the coordinates of the region to read
415 | min_read_size = np.max(size * np.sqrt(2.0))
416 | read_l = np.floor(new_region_center[0] - min_read_size / 2.0).astype(np.int32)
417 | read_r = np.ceil(new_region_center[0] + min_read_size / 2.0).astype(np.int32)
418 | read_t = np.floor(new_region_center[1] - min_read_size / 2.0).astype(np.int32)
419 | read_b = np.ceil(new_region_center[1] + min_read_size / 2.0).astype(np.int32)
420 | new_region_center_patch = new_region_center - np.array([read_l, read_t])
421 |
422 | is_background_tile = None
423 | if read_l > width or read_r < 0 or read_t > height or read_b < 0:
424 | # When the reading region is totally out-of-range, just create a blank
425 | # tesnor on GPU.
426 | is_background_tile = True
427 | patch = torch.full(
428 | size=(
429 | batch_size,
430 | channels,
431 | read_b - read_t,
432 | read_r - read_l,
433 | ),
434 | fill_value=1.0,
435 | device=device,
436 | )
437 | else:
438 | # When the reading region is contentful or partially out-of-range, crop
439 | # valid region, send it to GPU, and pad blank.
440 |
441 | # Deal with partially out-of-range issue
442 | patch_width = read_r - read_l
443 | patch_height = read_b - read_t
444 | pad_l = np.maximum(0, -read_l)
445 | read_l = np.maximum(0, read_l)
446 | pad_r = np.maximum(0, read_r - width)
447 | read_r = np.minimum(width, read_r)
448 | pad_t = np.maximum(0, -read_t)
449 | read_t = np.maximum(0, read_t)
450 | pad_b = np.maximum(0, read_b - height)
451 | read_b = np.minimum(height, read_b)
452 |
453 | # Read the region
454 | patch = image_batch[
455 | :,
456 | read_t:read_b,
457 | read_l:read_r,
458 | :,
459 | ]
460 |
461 | # Determine if patch is blank.
462 | if patch.nelement() == 0 or torch.min(patch) == 255:
463 | # If so, just create a blank tesnor on GPU.
464 | is_background_tile = True
465 | patch = torch.full(
466 | size=(
467 | batch_size,
468 | channels,
469 | patch_height,
470 | patch_width,
471 | ),
472 | fill_value=1.0,
473 | device=device,
474 | )
475 | else:
476 | # Send the patch to GPU.
477 | is_background_tile = False
478 | patch = patch.to(device=device) # To GPU
479 | patch = patch.permute(0, 3, 1, 2).contiguous() # To NCHW
480 | patch = patch.float().div(255.0) # To FP32
481 |
482 | # Pad white color for out-of-range region reading
483 | patch = nn.functional.pad(
484 | patch,
485 | pad=(pad_l, pad_r, pad_t, pad_b),
486 | mode="constant",
487 | value=1.0,
488 | )
489 |
490 | # Rotate the patch if needed
491 | if self.random_rotation and not is_background_tile:
492 | patch = transforms.functional.rotate(
493 | img=patch,
494 | angle=self.rotation_angle,
495 | interpolation=transforms.InterpolationMode.BILINEAR,
496 | center=list(new_region_center_patch),
497 | fill=1.0,
498 | )
499 |
500 | # Translate the patch
501 | if not is_background_tile:
502 | translate = size / 2.0 - new_region_center_patch
503 | patch = transforms.functional.affine(
504 | patch,
505 | angle=0.0,
506 | translate=list(translate),
507 | scale=1.0,
508 | shear=0.0,
509 | interpolation=transforms.InterpolationMode.BILINEAR,
510 | fill=1.0,
511 | )
512 |
513 | # Crop out the real region
514 | patch = patch[:, :, : size[1], : size[0]]
515 |
516 | # Flip the patch if needed
517 | if self.do_flip and not is_background_tile:
518 | patch = torch.flip(patch, dims=(3,))
519 |
520 | # Apply other augmentations
521 | for module in self.other_augmentations:
522 | patch = module(patch)
523 |
524 | if self.snapshot_enabled:
525 | patch_snapshot = (
526 | (patch * 255.0)
527 | .to(torch.uint8)
528 | .permute(0, 2, 3, 1)
529 | .contiguous()
530 | .cpu()
531 | .numpy()
532 | )
533 | self.snapshots.append(
534 | {
535 | "coord": coord,
536 | "size": size,
537 | "patch_batch": patch_snapshot,
538 | }
539 | )
540 |
541 | # Normalize the patch
542 | patch = transforms.functional.normalize(
543 | tensor=patch,
544 | mean=[0.485, 0.456, 0.406],
545 | std=[0.229, 0.224, 0.225],
546 | )
547 |
548 | return patch
549 |
550 |
551 | class NoLoaderModule(BaseLoaderModule):
552 | """
553 | A loader module that simply does normalization.
554 | """
555 |
556 | def __init__(self, augmentations: Optional[Sequence[nn.Module]] = None):
557 | super().__init__()
558 |
559 | self.augmentations = nn.ModuleList(
560 | augmentations if augmentations is not None else []
561 | )
562 |
563 | self.register_buffer("device_indicator", torch.empty(0))
564 |
565 | def randomize(self):
566 | """
567 | Do nothing since no random variable exist in this loader module.
568 | """
569 |
570 | @torch.no_grad()
571 | def forward(
572 | self,
573 | image_batch: torch.Tensor,
574 | ) -> torch.Tensor:
575 | """
576 | See the description in `BaseLoaderModule.forward`.
577 | """
578 | # Do augmentations
579 | for augmentation in self.augmentations:
580 | image_batch = augmentation(image_batch)
581 |
582 | # Do normalization
583 | image_batch = image_batch.permute(0, 3, 1, 2).contiguous() # To NCHW
584 | image_batch = image_batch.float().div(255.0) # To FP32
585 | image_batch = image_batch - torch.tensor(
586 | [0.485, 0.456, 0.406],
587 | device=image_batch.device,
588 | ).view(-1, 1, 1)
589 | image_batch = image_batch / torch.tensor(
590 | [0.229, 0.224, 0.225],
591 | device=image_batch.device,
592 | ).view(-1, 1, 1)
593 | return image_batch
594 |
595 | def record_snapshot(self) -> None:
596 | """
597 | See the description in `BaseLoaderModule.record_snapshot`.
598 | """
599 | raise NotImplementedError()
600 |
601 | def get_snapshot(self) -> np.ndarray:
602 | """
603 | See the description in `BaseLoaderModule.get_snapshot`.
604 | """
605 | raise NotImplementedError()
606 |
--------------------------------------------------------------------------------
/hms2/core/model.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import Any, Optional, Sequence, Tuple
3 |
4 | import numpy as np
5 | import torch
6 | from torch import nn
7 |
8 | from .loader_modules import BaseLoaderModule
9 |
10 |
11 | class Hms2Model(nn.Module):
12 | """
13 | A torch module implementing HMS2.
14 |
15 | Args:
16 | loader_module (BaseLoaderModule):
17 | A module handling region reading, augmentation, and CPU-GPU transfer.
18 | Please refer to the description in BaseLoaderModule.
19 | conv_module (torch.nn.Module):
20 | A module implements the convolutional part of the model. It should be on
21 | CUDA.
22 | dense_module (torch.nn.Module):
23 | A module implements the dense part of the model. It should be on CUDA.
24 | local_pooling_module (torch.nn.Module):
25 | A module applies a pooling operation right after each tile of the embedding
26 | feature map is produced. The default value None disables local pooling. It
27 | should be on CUDA.
28 | tile_size (int):
29 | The tile size for HMS2. Decrease this value if GPU OOM happens.
30 | emb_crop_size (int):
31 | The cropping size for embedding. The default value 7 is for ResNet 50.
32 | emb_stride_size (int):
33 | The striding size of the receptive fields of two neighboring embedding
34 | vectors. The default value 32 is for ResNet 50.
35 | skip_no_grad (bool):
36 | Skip backward computations of a tile when the gradients w.r.t. the tile
37 | are zero. The default is True.
38 | cache_background_forward (bool):
39 | Cache forward results of background tiles to skip re-computations. The
40 | default is True.
41 | cache_background_backward (bool):
42 | Cache backward results of background tiles to skip re-computations.
43 | The default is True.
44 | """
45 |
46 | def __init__(
47 | self,
48 | loader_module: nn.Module,
49 | conv_module: nn.Module,
50 | dense_module: nn.Module,
51 | local_pooling_module: Optional[nn.Module] = None,
52 | tile_size: int = 4096,
53 | emb_crop_size: int = 7,
54 | emb_stride_size: int = 32,
55 | skip_no_grad: bool = True,
56 | cache_background_forward: bool = True,
57 | cache_background_backward: bool = True,
58 | ):
59 | super().__init__()
60 |
61 | if not isinstance(loader_module, BaseLoaderModule):
62 | raise ValueError("loader_module should be an instance of BaseLoaderModule.")
63 |
64 | self.loader_module = loader_module
65 | self.conv_module = conv_module
66 | self.dense_module = dense_module
67 | self.local_pooling_module = local_pooling_module
68 | self.tile_size = tile_size
69 | self.emb_crop_size = emb_crop_size
70 | self.emb_stride_size = emb_stride_size
71 | self.skip_no_grad = skip_no_grad
72 | self.cache_background_forward = cache_background_forward
73 | self.cache_background_backward = cache_background_backward
74 |
75 | def forward(self, image_batch: torch.Tensor) -> torch.Tensor:
76 | """
77 | Implement how tensors flow in a HMS2 model.
78 |
79 | Args:
80 | image_batch (torch.Tensor): An image batch in NHWC and uint8 dtype.
81 |
82 | Returns:
83 | output (torch.Tensor): The output of dense_module.
84 | """
85 | self.loader_module.randomize()
86 | conv_output = _Hms2Convolutional.apply(
87 | image_batch,
88 | _Hms2ConvolutionalArguments(
89 | loader_module=self.loader_module,
90 | conv_module=self.conv_module,
91 | local_pooling_module=self.local_pooling_module,
92 | tile_size=self.tile_size,
93 | emb_crop_size=self.emb_crop_size,
94 | emb_stride_size=self.emb_stride_size,
95 | skip_no_grad=self.skip_no_grad,
96 | cache_background_forward=self.cache_background_forward,
97 | cache_background_backward=self.cache_background_backward,
98 | ),
99 | *self.conv_module.parameters(),
100 | )
101 | output = self.dense_module(conv_output)
102 |
103 | return output
104 |
105 |
106 | @dataclass
107 | class _Hms2ConvolutionalArguments:
108 | """
109 | Arguments for `_Hms2Convolutional`.
110 |
111 | Args:
112 | See descriptions in `Hms2Model`.
113 | """
114 |
115 | loader_module: BaseLoaderModule
116 | conv_module: nn.Module
117 | local_pooling_module: Optional[nn.Module]
118 | tile_size: int
119 | emb_crop_size: int
120 | emb_stride_size: int
121 | skip_no_grad: bool
122 | cache_background_forward: bool
123 | cache_background_backward: bool
124 |
125 |
126 | class _Hms2Convolutional(torch.autograd.Function):
127 | """
128 | The core part of HMS2 that implements tiling in the convolutional part and backward
129 | re-computations. Using torch.autograd.Function instead of torch.nn.Module is
130 | because only torch.autograd.Function can rewrite custom backward operations.
131 | """
132 |
133 | @staticmethod
134 | def forward(
135 | ctx: Any,
136 | image_batch: torch.Tensor,
137 | arguments: _Hms2ConvolutionalArguments,
138 | *conv_parameters: torch.Tensor,
139 | ) -> torch.Tensor:
140 | """
141 | HMS2 forward-convolutional.
142 |
143 | Args:
144 | ctx (Any):
145 | See PyTorch documentations.
146 | image_batch (torch.Tensor): An image batch in NHWC and uint8 dtype.
147 | arguments (_Hms2ConvolutionalArguments):
148 | See descriptions in `_Hms2ConvolutionalArguments`.
149 | conv_parameters (list of torch.Tensor):
150 | A list retrieved by calling `conv_module.parameters()`.
151 |
152 | Returns:
153 | emb (torch.Tensor): The resulting embedding feature map.
154 | """
155 | # Save parameters
156 | ctx.image_batch = image_batch
157 | ctx.arguments = arguments
158 | ctx.conv_parameters = conv_parameters
159 |
160 | # Load arguments
161 | loader_module = arguments.loader_module
162 |
163 | # Create a background tile cache if required
164 | if arguments.cache_background_forward:
165 | background_tile_cache_forward = _BackgroundTileCache()
166 |
167 | # Calculate the tile number
168 | tile_dimensions = _Hms2Convolutional._compute_tile_dimensions(
169 | image_batch,
170 | arguments,
171 | )
172 |
173 | # Hint loader module the future accesses.
174 | _Hms2Convolutional._hint_loader_module(
175 | image_batch,
176 | tile_dimensions,
177 | arguments,
178 | )
179 |
180 | # Forward convolutional
181 | with torch.no_grad(): # Do no store any feature maps
182 | # Iterate tiles
183 | emb_tiles = []
184 | for tile_y in range(tile_dimensions[1]):
185 | emb_tiles_row = []
186 | for tile_x in range(tile_dimensions[0]):
187 | # Load image tile
188 | (
189 | tile_coord,
190 | tile_size,
191 | ) = _Hms2Convolutional._compute_image_tile_coord(
192 | image_batch,
193 | arguments,
194 | (tile_x, tile_y),
195 | )
196 | image_tile_batch = loader_module(
197 | image_batch,
198 | tile_coord,
199 | tile_size,
200 | )
201 |
202 | # Do forward
203 | emb_tile = _Hms2Convolutional._forward_tile(
204 | image_tile_batch,
205 | arguments,
206 | (tile_x, tile_y),
207 | tile_dimensions,
208 | background_tile_cache_forward=(
209 | background_tile_cache_forward
210 | if arguments.cache_background_forward
211 | else None
212 | ),
213 | )
214 | emb_tiles_row.append(emb_tile)
215 | emb_tiles.append(emb_tiles_row)
216 |
217 | # Compute the look-up table for the coordinates of embedding tiles
218 | emb_tile_coord_lut = _Hms2Convolutional._compute_emb_tile_coord_lut(
219 | emb_tiles
220 | )
221 |
222 | # Concatenate tiles to get the embedding feature map
223 | emb_rows = [torch.cat(emb_tiles_row, dim=3) for emb_tiles_row in emb_tiles]
224 | emb = torch.cat(emb_rows, dim=2)
225 |
226 | # Save the look-up table
227 | ctx.emb_tile_coord_lut = emb_tile_coord_lut
228 |
229 | return emb
230 |
231 | @staticmethod
232 | def backward(
233 | ctx: Any,
234 | grad_emb: torch.Tensor,
235 | ) -> Sequence[Optional[torch.Tensor]]:
236 | """
237 | HMS2 backward-convolutional.
238 |
239 | Args:
240 | ctx (Any):
241 | See PyTorch documentations.
242 | grad_emb (torch.Tensor): The gradients w.r.t. the embedding feature map.
243 |
244 | Returns:
245 | grad_image_batch (NoneType): Remain None.
246 | grad_arguments (NoneType): Remain None.
247 | grad_conv_parameters (tuple):
248 | A tuple of the gradients w.r.t. parameters in the convolutional module.
249 | """
250 | # Load saved parameters
251 | image_batch = ctx.image_batch
252 | arguments = ctx.arguments
253 | conv_parameters = ctx.conv_parameters
254 | emb_tile_coord_lut = ctx.emb_tile_coord_lut
255 |
256 | # Load arguments
257 | loader_module = arguments.loader_module
258 | cache_background_backward = arguments.cache_background_backward
259 |
260 | # Create a background tile cache if required
261 | if arguments.cache_background_backward:
262 | background_tile_cache_backward = _BackgroundTileCache()
263 |
264 | # Calculate the tile number
265 | tile_dimensions = _Hms2Convolutional._compute_tile_dimensions(
266 | image_batch,
267 | arguments,
268 | )
269 |
270 | # Hint loader module the future accesses.
271 | _Hms2Convolutional._hint_loader_module(
272 | image_batch,
273 | tile_dimensions,
274 | arguments,
275 | )
276 |
277 | # Iterate tiles
278 | grad_conv_parameters = [
279 | torch.zeros_like(parameter, device=parameter.device)
280 | for parameter in ctx.conv_parameters
281 | ]
282 | for tile_y in range(tile_dimensions[1]):
283 | for tile_x in range(tile_dimensions[0]):
284 | with torch.enable_grad():
285 | # Get the gradients w.r.t. the embedding tile
286 | (
287 | grad_emb_tile_coord,
288 | grad_emb_tile_size,
289 | ) = _Hms2Convolutional._use_emb_tile_coord_lut(
290 | emb_tile_coord_lut,
291 | (tile_x, tile_y),
292 | )
293 | grad_emb_tile = grad_emb[
294 | :,
295 | :,
296 | grad_emb_tile_coord[1] : grad_emb_tile_coord[1]
297 | + grad_emb_tile_size[1],
298 | grad_emb_tile_coord[0] : grad_emb_tile_coord[0]
299 | + grad_emb_tile_size[0],
300 | ]
301 |
302 | # Skip this tile if all the gradients are 0
303 | if (
304 | arguments.skip_no_grad
305 | and torch.count_nonzero(grad_emb_tile).item() == 0
306 | ):
307 | _Hms2Convolutional._prefetch_next(arguments)
308 | continue
309 |
310 | # Load image tile
311 | (
312 | tile_coord,
313 | tile_size,
314 | ) = _Hms2Convolutional._compute_image_tile_coord(
315 | image_batch,
316 | arguments,
317 | (tile_x, tile_y),
318 | )
319 | image_tile_batch = loader_module(
320 | image_batch,
321 | tile_coord,
322 | tile_size,
323 | )
324 |
325 | # If caching is enabled and the tile is not on the
326 | # edge, look up background_tile_cache_backward to get gradients.
327 | # If not found, return None.
328 | partial_grad_conv_parameters = None
329 | if (
330 | cache_background_backward
331 | and tile_y not in [0, tile_dimensions[1] - 1]
332 | and tile_x not in [0, tile_dimensions[0] - 1]
333 | ):
334 | partial_grad_conv_parameters = background_tile_cache_backward[
335 | image_tile_batch
336 | ]
337 |
338 | if partial_grad_conv_parameters is None:
339 | # Re-compute forward convolutional. Background tile cache
340 | # should be always disabled because we need gradients.
341 | emb_tile = _Hms2Convolutional._forward_tile(
342 | image_tile_batch,
343 | arguments,
344 | (tile_x, tile_y),
345 | tile_dimensions,
346 | background_tile_cache_forward=None,
347 | )
348 |
349 | # Compute the partial gradients w.r.t. the parameters in the
350 | # convolutional module
351 | partial_grad_conv_parameters = torch.autograd.grad(
352 | [emb_tile],
353 | conv_parameters,
354 | [grad_emb_tile],
355 | )
356 |
357 | # Update the cache
358 | if (
359 | cache_background_backward
360 | and tile_y not in [0, tile_dimensions[1] - 1]
361 | and tile_x not in [0, tile_dimensions[0] - 1]
362 | ):
363 | background_tile_cache_backward[
364 | image_tile_batch
365 | ] = partial_grad_conv_parameters
366 |
367 | with torch.no_grad():
368 | # Accumulate partial gradients
369 | for idx, partial_grad_conv_parameter in enumerate(
370 | partial_grad_conv_parameters
371 | ):
372 | grad_conv_parameters[idx] += partial_grad_conv_parameter
373 |
374 | return (None, None) + tuple(grad_conv_parameters)
375 |
376 | @staticmethod
377 | def _forward_tile(
378 | image_tile_batch: torch.Tensor,
379 | arguments: _Hms2ConvolutionalArguments,
380 | tile_indices: Tuple[int, int],
381 | tile_dimensions: Tuple[int, int],
382 | background_tile_cache_forward: Optional["_BackgroundTileCache"] = None,
383 | ) -> torch.Tensor:
384 | # Get arguments
385 | conv_module = arguments.conv_module
386 | local_pooling_module = arguments.local_pooling_module
387 | emb_crop_size = arguments.emb_crop_size
388 |
389 | # Look up background_tile_cache_forward to get emb_tile. If not found, return
390 | # None.
391 | emb_tile = None
392 | if background_tile_cache_forward is not None:
393 | emb_tile = background_tile_cache_forward[image_tile_batch]
394 |
395 | # Do convolutions when cache miss
396 | if emb_tile is None:
397 | emb_tile = conv_module(image_tile_batch)
398 | if background_tile_cache_forward is not None:
399 | background_tile_cache_forward[image_tile_batch] = emb_tile
400 |
401 | # Crop invalid borders
402 | tile_x, tile_y = tile_indices
403 | _, _, emb_tile_height, emb_tile_width = emb_tile.shape
404 | left = emb_crop_size if tile_x != 0 else 0
405 | right = -emb_crop_size if tile_x != tile_dimensions[0] - 1 else emb_tile_width
406 | top = emb_crop_size if tile_y != 0 else 0
407 | bottom = -emb_crop_size if tile_y != tile_dimensions[1] - 1 else emb_tile_height
408 | emb_tile = emb_tile[
409 | :,
410 | :,
411 | top:bottom,
412 | left:right,
413 | ]
414 |
415 | # Local pooling
416 | if local_pooling_module is not None:
417 | emb_tile = local_pooling_module(emb_tile)
418 |
419 | return emb_tile
420 |
421 | @staticmethod
422 | def _compute_tile_dimensions(
423 | image_batch: torch.Tensor,
424 | arguments: _Hms2ConvolutionalArguments,
425 | ) -> Tuple[int, int]:
426 | # Get arguments
427 | tile_size = arguments.tile_size
428 | emb_crop_size = arguments.emb_crop_size
429 | emb_stride_size = arguments.emb_stride_size
430 |
431 | # Compute tile dimensions
432 | _, height, width, _ = image_batch.shape
433 | overlapping_size = emb_crop_size * emb_stride_size * 2
434 | tile_width = (
435 | max(0, int(np.ceil((width - tile_size) / (tile_size - overlapping_size))))
436 | + 1
437 | )
438 | tile_height = (
439 | max(0, int(np.ceil((height - tile_size) / (tile_size - overlapping_size))))
440 | + 1
441 | )
442 |
443 | return (tile_width, tile_height)
444 |
445 | @staticmethod
446 | def _hint_loader_module(
447 | image_batch: torch.Tensor,
448 | tile_dimensions: Tuple[int, int],
449 | arguments: _Hms2ConvolutionalArguments,
450 | ) -> None:
451 | # Get arguments
452 | loader_module = arguments.loader_module
453 |
454 | # Calculate tile coordinates and sizes that will be accessed, and hint the
455 | # loader.
456 | tile_coords = []
457 | tile_sizes = []
458 | for tile_y in range(tile_dimensions[1]):
459 | for tile_x in range(tile_dimensions[0]):
460 | tile_coord, tile_size = _Hms2Convolutional._compute_image_tile_coord(
461 | image_batch,
462 | arguments,
463 | (tile_x, tile_y),
464 | )
465 | tile_coords.append(tile_coord)
466 | tile_sizes.append(tile_size)
467 |
468 | loader_module.hint_future_accesses(image_batch, tile_coords, tile_sizes)
469 |
470 | @staticmethod
471 | def _prefetch_next(arguments: _Hms2ConvolutionalArguments) -> None:
472 | loader_module = arguments.loader_module
473 | loader_module.prefetch_next()
474 |
475 | @staticmethod
476 | def _compute_image_tile_coord(
477 | image_batch: torch.Tensor,
478 | arguments: _Hms2ConvolutionalArguments,
479 | tile_indices: Tuple[int, int],
480 | ) -> Tuple[Tuple[int, int], Tuple[int, int]]:
481 | # Get arguments
482 | tile_size = arguments.tile_size
483 | emb_crop_size = arguments.emb_crop_size
484 | emb_stride_size = arguments.emb_stride_size
485 |
486 | # Compute coord and size
487 | _, height, width, _ = image_batch.shape
488 | overlapping_size = emb_crop_size * emb_stride_size * 2
489 | tile_x, tile_y = tile_indices
490 | coord_x = tile_x * (tile_size - overlapping_size)
491 | coord_y = tile_y * (tile_size - overlapping_size)
492 | size_x = min(tile_size, width - coord_x)
493 | size_y = min(tile_size, height - coord_y)
494 |
495 | return (coord_x, coord_y), (size_x, size_y)
496 |
497 | @staticmethod
498 | def _compute_emb_tile_coord_lut(
499 | emb_tiles: Sequence[Sequence[torch.Tensor]],
500 | ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
501 | widths = np.array([emb_tile.shape[3] for emb_tile in emb_tiles[0]])
502 | cum_widths = np.cumsum(widths)
503 |
504 | heights = np.array([row_emb_tiles[0].shape[2] for row_emb_tiles in emb_tiles])
505 | cum_heights = np.cumsum(heights)
506 |
507 | return widths, cum_widths, heights, cum_heights
508 |
509 | @staticmethod
510 | def _use_emb_tile_coord_lut(
511 | lut: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
512 | tile_indices: Tuple[int, int],
513 | ) -> Tuple[Tuple[int, int], Tuple[int, int]]:
514 | widths, cum_widths, heights, cum_heights = lut
515 | tile_x, tile_y = tile_indices
516 |
517 | coord_x = cum_widths[tile_x] - widths[tile_x]
518 | coord_y = cum_heights[tile_y] - heights[tile_y]
519 | size_x = widths[tile_x]
520 | size_y = heights[tile_y]
521 |
522 | return (coord_x, coord_y), (size_x, size_y)
523 |
524 |
525 | class _BackgroundTileCache:
526 | def __init__(self):
527 | self.cache = []
528 |
529 | def __getitem__(
530 | self,
531 | tile: torch.Tensor,
532 | ) -> Any:
533 | # Get basic info of the tile.
534 | shape = tuple(tile.shape)
535 | pixel_values = tuple(tile[0, :, 0, 0].cpu().numpy())
536 |
537 | # Look for the cache entry.
538 | result = None
539 | for item in self.cache:
540 | if item["shape"] == shape and item["pixel_values"] == pixel_values:
541 | result = item["result"]
542 |
543 | # If cache miss, just return.
544 | if result is None:
545 | return None
546 |
547 | # Check if the tile is background tile. If not, return.
548 | if (
549 | torch.count_nonzero(
550 | tile - tile[0, :, 0, 0][np.newaxis, :, np.newaxis, np.newaxis]
551 | )
552 | != 0
553 | ):
554 | return None
555 |
556 | return result
557 |
558 | def __setitem__(
559 | self,
560 | tile: torch.Tensor,
561 | result: Any,
562 | ) -> None:
563 | # Get basic info of the tile.
564 | shape = tuple(tile.shape)
565 | pixel_values = tuple(tile[0, :, 0, 0].cpu().numpy())
566 |
567 | # Check if the tile is background tile. If not, return.
568 | if (
569 | torch.count_nonzero(
570 | tile - tile[0, :, 0, 0][np.newaxis, :, np.newaxis, np.newaxis]
571 | )
572 | != 0
573 | ):
574 | return
575 |
576 | # Raise error if there is the same entry.
577 | for item in self.cache:
578 | if item["shape"] == shape and item["pixel_values"] == pixel_values:
579 | raise ValueError(
580 | "The _BackgroundTileCache already stores the same entry."
581 | )
582 |
583 | # Append the cache entry
584 | self.cache.append(
585 | {
586 | "pixel_values": pixel_values,
587 | "shape": shape,
588 | "result": result,
589 | }
590 | )
591 |
--------------------------------------------------------------------------------
/hms2/pipeline/__init__.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/__init__.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/__init__.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/__init__.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/__init__.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/__init__.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/callbacks.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/callbacks.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/callbacks.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/callbacks.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/callbacks.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/callbacks.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/dataset.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/dataset.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/dataset.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/dataset.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/dataset.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/dataset.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/losses.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/losses.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/losses.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/losses.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/losses.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/losses.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/main.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/main.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/main.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/main.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/main.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/main.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/metrics.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/metrics.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/metrics.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/metrics.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/metrics.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/metrics.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/official_openslide.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/official_openslide.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/official_openslide.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/official_openslide.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/official_openslide.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/official_openslide.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/test.py:
--------------------------------------------------------------------------------
1 | from .main import test_main
2 |
3 | if __name__ == "__main__":
4 | test_main()
5 |
--------------------------------------------------------------------------------
/hms2/pipeline/train.py:
--------------------------------------------------------------------------------
1 | from .main import train_main
2 |
3 | if __name__ == "__main__":
4 | train_main()
5 |
--------------------------------------------------------------------------------
/hms2/pipeline/utils.cpython-37m-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/utils.cpython-37m-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/utils.cpython-38-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/utils.cpython-38-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/utils.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/hms2/pipeline/utils.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/hms2/pipeline/visualize.py:
--------------------------------------------------------------------------------
1 | from .main import visualize_main
2 |
3 | if __name__ == "__main__":
4 | visualize_main()
5 |
--------------------------------------------------------------------------------
/misc/camelyon_10x_hms2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/misc/camelyon_10x_hms2.png
--------------------------------------------------------------------------------
/misc/demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aetherAI/hms2/86ce2490263e43baf78261ab46c2828ffc150bf6/misc/demo.gif
--------------------------------------------------------------------------------
/projects/Camelyon16/configs/config_10x.yaml:
--------------------------------------------------------------------------------
1 | RESULT_DIR: "results/result_Camelyon16_10x"
2 | MODEL_PATH: "${RESULT_DIR}/model.pt"
3 | OPTIMIZER_STATE_PATH: "${RESULT_DIR}/opt_state.pt"
4 | STATES_PATH: "${RESULT_DIR}/states.pt"
5 | LOAD_MODEL_BEFORE_TRAIN: False
6 | CONFIG_RECORD_PATH: "${RESULT_DIR}/config.yaml"
7 |
8 | USE_MIXED_PRECISION: False
9 | USE_HMS2: True
10 |
11 | TRAIN_CSV_PATH: "projects/Camelyon16/datalists/train.csv"
12 | VAL_CSV_PATH: "projects/Camelyon16/datalists/val.csv"
13 | TEST_CSV_PATH: "projects/Camelyon16/datalists/test.csv"
14 | CONTOUR_DIR: "projects/Camelyon16/contours"
15 | SLIDE_DIR: "projects/Camelyon16/slides"
16 | SLIDE_FILE_EXTENSION: ".tif"
17 | SLIDE_READER: "openslide"
18 | RESIZE_RATIO: 0.25
19 | INPUT_SIZE: [80000, 80000, 3]
20 | GPU_AUGMENTS: ["flip", "rigid", "hed_perturb"]
21 | AUGMENTS: []
22 |
23 | MODEL: "resnet50_frozenbn"
24 | POOL_USE: "gmp_scaled_2k"
25 | NUM_CLASSES: 2
26 | BATCH_SIZE: 1
27 | EPOCHS: 200
28 | LOSS: "ce"
29 | METRIC_LIST: ["accuracy"]
30 | OPTIMIZER: "adamw"
31 | INIT_LEARNING_RATE: 0.00001
32 | REDUCE_LR_FACTOR: 0.1
33 | REDUCE_LR_PATIENCE: 8
34 | TIME_RECORD_PATH: "${RESULT_DIR}/time_record.csv"
35 | TEST_TIME_RECORD_PATH: "${RESULT_DIR}/test_time_record.csv"
36 |
37 | TEST_RESULT_PATH: "${RESULT_DIR}/test_result.json"
38 | ENABLE_VIZ: True
39 | VIZ_RESIZE_RATIO: 0.01
40 | VIZ_FOLDER: "${RESULT_DIR}/viz"
41 | VIZ_RAW_FOLDER: "${RESULT_DIR}/viz_raw"
42 |
43 | DEBUG_PATH: NULL
44 |
--------------------------------------------------------------------------------
/projects/Camelyon16/configs/config_2.5x.yaml:
--------------------------------------------------------------------------------
1 | RESULT_DIR: "results/result_Camelyon16_2.5x"
2 | MODEL_PATH: "${RESULT_DIR}/model.pt"
3 | OPTIMIZER_STATE_PATH: "${RESULT_DIR}/opt_state.pt"
4 | STATES_PATH: "${RESULT_DIR}/states.pt"
5 | LOAD_MODEL_BEFORE_TRAIN: False
6 | CONFIG_RECORD_PATH: "${RESULT_DIR}/config.yaml"
7 |
8 | USE_MIXED_PRECISION: False
9 | USE_HMS2: True
10 |
11 | TRAIN_CSV_PATH: "projects/Camelyon16/datalists/train.csv"
12 | VAL_CSV_PATH: "projects/Camelyon16/datalists/val.csv"
13 | TEST_CSV_PATH: "projects/Camelyon16/datalists/test.csv"
14 | CONTOUR_DIR: "projects/Camelyon16/contours"
15 | SLIDE_DIR: "projects/Camelyon16/slides"
16 | SLIDE_FILE_EXTENSION: ".tif"
17 | SLIDE_READER: "openslide"
18 | RESIZE_RATIO: 0.0625
19 | INPUT_SIZE: [20000, 20000, 3]
20 | GPU_AUGMENTS: ["flip", "rigid", "hed_perturb"]
21 | AUGMENTS: []
22 |
23 | MODEL: "resnet50_frozenbn"
24 | POOL_USE: "gmp_scaled_2k"
25 | NUM_CLASSES: 2
26 | BATCH_SIZE: 1
27 | EPOCHS: 200
28 | LOSS: "ce"
29 | METRIC_LIST: ["accuracy"]
30 | OPTIMIZER: "adamw"
31 | INIT_LEARNING_RATE: 0.00001
32 | REDUCE_LR_FACTOR: 0.1
33 | REDUCE_LR_PATIENCE: 8
34 | TIME_RECORD_PATH: "${RESULT_DIR}/time_record.csv"
35 | TEST_TIME_RECORD_PATH: "${RESULT_DIR}/test_time_record.csv"
36 |
37 | TEST_RESULT_PATH: "${RESULT_DIR}/test_result.json"
38 | ENABLE_VIZ: True
39 | VIZ_RESIZE_RATIO: 0.01
40 | VIZ_FOLDER: "${RESULT_DIR}/viz"
41 | VIZ_RAW_FOLDER: "${RESULT_DIR}/viz_raw"
42 |
43 | DEBUG_PATH: NULL
44 |
--------------------------------------------------------------------------------
/projects/Camelyon16/configs/config_5x.yaml:
--------------------------------------------------------------------------------
1 | RESULT_DIR: "results/result_Camelyon16_5x"
2 | MODEL_PATH: "${RESULT_DIR}/model.pt"
3 | OPTIMIZER_STATE_PATH: "${RESULT_DIR}/opt_state.pt"
4 | STATES_PATH: "${RESULT_DIR}/states.pt"
5 | LOAD_MODEL_BEFORE_TRAIN: False
6 | CONFIG_RECORD_PATH: "${RESULT_DIR}/config.yaml"
7 |
8 | USE_MIXED_PRECISION: False
9 | USE_HMS2: True
10 |
11 | TRAIN_CSV_PATH: "projects/Camelyon16/datalists/train.csv"
12 | VAL_CSV_PATH: "projects/Camelyon16/datalists/val.csv"
13 | TEST_CSV_PATH: "projects/Camelyon16/datalists/test.csv"
14 | CONTOUR_DIR: "projects/Camelyon16/contours"
15 | SLIDE_DIR: "projects/Camelyon16/slides"
16 | SLIDE_FILE_EXTENSION: ".tif"
17 | SLIDE_READER: "openslide"
18 | RESIZE_RATIO: 0.125
19 | INPUT_SIZE: [40000, 40000, 3]
20 | GPU_AUGMENTS: ["flip", "rigid", "hed_perturb"]
21 | AUGMENTS: []
22 |
23 | MODEL: "resnet50_frozenbn"
24 | POOL_USE: "gmp_scaled_2k"
25 | NUM_CLASSES: 2
26 | BATCH_SIZE: 1
27 | EPOCHS: 200
28 | LOSS: "ce"
29 | METRIC_LIST: ["accuracy"]
30 | OPTIMIZER: "adamw"
31 | INIT_LEARNING_RATE: 0.00001
32 | REDUCE_LR_FACTOR: 0.1
33 | REDUCE_LR_PATIENCE: 8
34 | TIME_RECORD_PATH: "${RESULT_DIR}/time_record.csv"
35 | TEST_TIME_RECORD_PATH: "${RESULT_DIR}/test_time_record.csv"
36 |
37 | TEST_RESULT_PATH: "${RESULT_DIR}/test_result.json"
38 | ENABLE_VIZ: True
39 | VIZ_RESIZE_RATIO: 0.01
40 | VIZ_FOLDER: "${RESULT_DIR}/viz"
41 | VIZ_RAW_FOLDER: "${RESULT_DIR}/viz_raw"
42 |
43 | DEBUG_PATH: NULL
44 |
--------------------------------------------------------------------------------
/projects/Camelyon16/datalists/test.csv:
--------------------------------------------------------------------------------
1 | test_001,1
2 | test_002,1
3 | test_003,0
4 | test_004,1
5 | test_005,0
6 | test_006,0
7 | test_007,0
8 | test_008,1
9 | test_009,0
10 | test_010,1
11 | test_011,1
12 | test_012,0
13 | test_013,1
14 | test_014,0
15 | test_015,0
16 | test_016,1
17 | test_017,0
18 | test_018,0
19 | test_019,0
20 | test_020,0
21 | test_021,1
22 | test_022,0
23 | test_023,0
24 | test_024,0
25 | test_025,0
26 | test_026,1
27 | test_027,1
28 | test_028,0
29 | test_029,1
30 | test_030,1
31 | test_031,0
32 | test_032,0
33 | test_033,1
34 | test_034,0
35 | test_035,0
36 | test_036,0
37 | test_037,0
38 | test_038,1
39 | test_039,0
40 | test_040,1
41 | test_041,0
42 | test_042,0
43 | test_043,0
44 | test_044,0
45 | test_045,0
46 | test_046,1
47 | test_047,0
48 | test_048,1
49 | test_050,0
50 | test_051,1
51 | test_052,1
52 | test_053,0
53 | test_054,0
54 | test_055,0
55 | test_056,0
56 | test_057,0
57 | test_058,0
58 | test_059,0
59 | test_060,0
60 | test_061,1
61 | test_062,0
62 | test_063,0
63 | test_064,1
64 | test_065,1
65 | test_066,1
66 | test_067,0
67 | test_068,1
68 | test_069,1
69 | test_070,0
70 | test_071,1
71 | test_072,0
72 | test_073,1
73 | test_074,1
74 | test_075,1
75 | test_076,0
76 | test_077,0
77 | test_078,0
78 | test_079,1
79 | test_080,0
80 | test_081,0
81 | test_082,1
82 | test_083,0
83 | test_084,1
84 | test_085,0
85 | test_086,0
86 | test_087,0
87 | test_088,0
88 | test_089,0
89 | test_090,1
90 | test_091,0
91 | test_092,1
92 | test_093,0
93 | test_094,1
94 | test_095,0
95 | test_096,0
96 | test_097,1
97 | test_098,0
98 | test_099,1
99 | test_100,0
100 | test_101,0
101 | test_102,1
102 | test_103,0
103 | test_104,1
104 | test_105,1
105 | test_106,0
106 | test_107,0
107 | test_108,1
108 | test_109,0
109 | test_110,1
110 | test_111,0
111 | test_112,0
112 | test_113,1
113 | test_114,1
114 | test_115,0
115 | test_116,1
116 | test_117,1
117 | test_118,0
118 | test_119,0
119 | test_120,0
120 | test_121,1
121 | test_122,1
122 | test_123,0
123 | test_124,0
124 | test_125,0
125 | test_126,0
126 | test_127,0
127 | test_128,0
128 | test_129,0
129 | test_130,0
130 |
--------------------------------------------------------------------------------
/projects/Camelyon16/datalists/train.csv:
--------------------------------------------------------------------------------
1 | normal_058,0
2 | normal_133,0
3 | tumor_020,1
4 | normal_016,0
5 | tumor_013,1
6 | tumor_002,1
7 | normal_136,0
8 | tumor_061,1
9 | normal_068,0
10 | normal_152,0
11 | normal_070,0
12 | normal_095,0
13 | normal_151,0
14 | normal_064,0
15 | tumor_111,1
16 | tumor_012,1
17 | tumor_078,1
18 | tumor_041,1
19 | normal_153,0
20 | normal_072,0
21 | tumor_037,1
22 | normal_114,0
23 | normal_073,0
24 | normal_071,0
25 | tumor_053,1
26 | tumor_051,1
27 | normal_126,0
28 | normal_018,0
29 | normal_012,0
30 | normal_132,0
31 | tumor_010,1
32 | normal_004,0
33 | normal_156,0
34 | normal_005,0
35 | normal_091,0
36 | normal_007,0
37 | tumor_029,1
38 | normal_059,0
39 | normal_148,0
40 | tumor_009,1
41 | normal_043,0
42 | normal_121,0
43 | normal_116,0
44 | tumor_073,1
45 | normal_036,0
46 | normal_067,0
47 | normal_027,0
48 | tumor_035,1
49 | tumor_058,1
50 | normal_124,0
51 | tumor_060,1
52 | normal_061,0
53 | tumor_082,1
54 | normal_149,0
55 | normal_077,0
56 | normal_020,0
57 | normal_117,0
58 | normal_063,0
59 | tumor_069,1
60 | tumor_026,1
61 | tumor_014,1
62 | normal_008,0
63 | normal_146,0
64 | tumor_023,1
65 | normal_075,0
66 | normal_131,0
67 | normal_128,0
68 | normal_102,0
69 | tumor_045,1
70 | tumor_080,1
71 | normal_087,0
72 | normal_118,0
73 | tumor_030,1
74 | normal_001,0
75 | tumor_001,1
76 | normal_026,0
77 | tumor_076,1
78 | normal_083,0
79 | tumor_021,1
80 | normal_103,0
81 | tumor_031,1
82 | normal_078,0
83 | normal_049,0
84 | tumor_034,1
85 | tumor_110,1
86 | normal_079,0
87 | tumor_027,1
88 | tumor_066,1
89 | tumor_107,1
90 | normal_142,0
91 | tumor_091,1
92 | normal_017,0
93 | tumor_070,1
94 | normal_062,0
95 | tumor_100,1
96 | normal_089,0
97 | normal_107,0
98 | normal_065,0
99 | normal_009,0
100 | tumor_077,1
101 | tumor_008,1
102 | normal_159,0
103 | tumor_071,1
104 | tumor_102,1
105 | normal_057,0
106 | normal_158,0
107 | normal_050,0
108 | tumor_006,1
109 | tumor_097,1
110 | normal_139,0
111 | tumor_056,1
112 | tumor_089,1
113 | tumor_028,1
114 | normal_028,0
115 | normal_041,0
116 | tumor_074,1
117 | normal_090,0
118 | normal_113,0
119 | tumor_098,1
120 | normal_127,0
121 | normal_150,0
122 | normal_125,0
123 | tumor_042,1
124 | normal_084,0
125 | normal_111,0
126 | normal_040,0
127 | normal_030,0
128 | tumor_019,1
129 | tumor_064,1
130 | tumor_093,1
131 | tumor_094,1
132 | normal_047,0
133 | normal_024,0
134 | normal_096,0
135 | normal_108,0
136 | normal_100,0
137 | normal_140,0
138 | normal_143,0
139 | tumor_099,1
140 | normal_098,0
141 | tumor_054,1
142 | tumor_081,1
143 | normal_013,0
144 | normal_003,0
145 | normal_074,0
146 | tumor_046,1
147 | normal_019,0
148 | normal_048,0
149 | tumor_065,1
150 | tumor_004,1
151 | tumor_018,1
152 | normal_060,0
153 | tumor_106,1
154 | normal_082,0
155 | normal_145,0
156 | normal_054,0
157 | normal_038,0
158 | tumor_007,1
159 | tumor_050,1
160 | tumor_104,1
161 | normal_076,0
162 | tumor_032,1
163 | normal_031,0
164 | normal_025,0
165 | normal_032,0
166 | normal_106,0
167 | tumor_083,1
168 | tumor_087,1
169 | normal_155,0
170 | tumor_055,1
171 | tumor_022,1
172 | tumor_039,1
173 | normal_092,0
174 | normal_033,0
175 | tumor_024,1
176 | normal_141,0
177 | normal_066,0
178 | tumor_049,1
179 | tumor_088,1
180 | tumor_005,1
181 | normal_015,0
182 | normal_052,0
183 | tumor_095,1
184 | normal_135,0
185 | normal_035,0
186 | normal_085,0
187 | normal_099,0
188 | tumor_068,1
189 | normal_160,0
190 | normal_080,0
191 | normal_037,0
192 | tumor_075,1
193 | tumor_003,1
194 | tumor_067,1
195 | tumor_063,1
196 | normal_109,0
197 | tumor_017,1
198 | normal_123,0
199 | normal_044,0
200 | normal_006,0
201 | normal_029,0
202 | normal_010,0
203 | tumor_047,1
204 | tumor_085,1
205 | tumor_103,1
206 | tumor_084,1
207 | normal_154,0
208 | normal_115,0
209 | tumor_096,1
210 | tumor_033,1
211 | normal_042,0
212 | tumor_079,1
213 | normal_056,0
214 | normal_034,0
215 | tumor_108,1
216 | normal_014,0
217 | tumor_090,1
218 | normal_157,0
219 | normal_051,0
220 | normal_134,0
221 |
--------------------------------------------------------------------------------
/projects/Camelyon16/datalists/val.csv:
--------------------------------------------------------------------------------
1 | tumor_086,1
2 | normal_021,0
3 | normal_138,0
4 | normal_094,0
5 | normal_053,0
6 | normal_110,0
7 | normal_002,0
8 | normal_144,0
9 | tumor_105,1
10 | normal_011,0
11 | normal_105,0
12 | normal_081,0
13 | normal_122,0
14 | normal_023,0
15 | tumor_040,1
16 | tumor_015,1
17 | normal_137,0
18 | tumor_025,1
19 | normal_022,0
20 | normal_088,0
21 | normal_147,0
22 | tumor_059,1
23 | tumor_101,1
24 | tumor_011,1
25 | normal_120,0
26 | normal_039,0
27 | normal_055,0
28 | tumor_016,1
29 | tumor_062,1
30 | normal_101,0
31 | tumor_052,1
32 | normal_097,0
33 | tumor_043,1
34 | tumor_072,1
35 | tumor_044,1
36 | normal_112,0
37 | tumor_057,1
38 | tumor_109,1
39 | tumor_092,1
40 | normal_046,0
41 | tumor_038,1
42 | normal_130,0
43 | normal_045,0
44 | normal_069,0
45 | normal_129,0
46 | normal_119,0
47 | normal_093,0
48 | normal_104,0
49 | tumor_036,1
50 | tumor_048,1
51 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = [ "poetry-core>=1.0.0",]
3 | build-backend = "poetry.core.masonry.api"
4 |
5 | [tool.poetry]
6 | name = "hms2"
7 | version = "1.3.1r"
8 | description = "Another annotation-free whole-slide training approach to pathological classification."
9 | license = "CC BY-NC-SA 4.0"
10 | authors = [ "Chi-Chung Chen ",]
11 |
12 | [tool.poetry.dependencies]
13 | python = ">=3.7, <3.11"
14 | numpy = "^1.21.6"
15 | opencv-python = "^4.5.5.64"
16 | scipy = "^1.7"
17 | Pillow = "^9.1.0"
18 | scikit-image = "^0.19.2"
19 | requests = "^2.27.1"
20 | scikit-learn = "^1.0.2"
21 | tqdm = "^4.64.0"
22 | mpi4py = "^3.1.3"
23 | PyYAML = "^6.0"
24 | pandas = ">=1.3.5, <1.4"
25 | lifelines = "^0.27.0"
26 | pycryptodome = "^3.14.1"
27 | scikit-build = "^0.14.1"
28 | openslide-python = "^1.1.2"
29 |
30 | [tool.poetry.dev-dependencies]
31 | black = "^22.3.0"
32 | flake8 = "^4.0.1"
33 | pytest = "^7.1.1"
34 | isort = "^5.10.1"
35 | mypy = "^0.942"
36 | poethepoet = "^0.13.1"
37 | types-PyYAML = "^6.0.5"
38 | onnxruntime-gpu = "^1.10.0"
39 | cython = "^0.29.28"
40 | toml = "^0.10.2"
41 |
42 | [tool.poe.tasks]
43 | install-torch-cu113 = "python -m pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113"
44 | install-torch-cu102 = "python -m pip install torch torchvision"
45 | install-cu113 = [ "install-torch-cu113", "install-horovod",]
46 | install-cu102 = [ "install-torch-cu102", "install-horovod",]
47 |
48 | [tool.poe.tasks.install-horovod]
49 | cmd = "python -m pip install horovod --no-cache-dir"
50 |
51 | [tool.poe.tasks.install-horovod.env]
52 | HOROVOD_WITH_PYTORCH = "1"
53 |
--------------------------------------------------------------------------------
/tests/core/test_builder.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | import numpy as np
4 | import pytest
5 | import torch
6 |
7 | from hms2.core.builder import Hms2ModelBuilder
8 |
9 |
10 | @pytest.fixture(autouse=True, scope="session")
11 | def set_up():
12 | os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
13 | torch.backends.cudnn.deterministic = True
14 |
15 |
16 | @pytest.fixture(scope="session")
17 | def n_classes():
18 | return 10
19 |
20 |
21 | @pytest.fixture(scope="session", params=["resnet50_frozenbn"])
22 | def backbone(request):
23 | return request.param
24 |
25 |
26 | @pytest.fixture(scope="session", params=["gmp", "gap"])
27 | def pooling(request):
28 | return request.param
29 |
30 |
31 | @pytest.fixture(scope="session", params=[False, True])
32 | def use_hms2(request):
33 | return request.param
34 |
35 |
36 | @pytest.fixture(scope="session", params=[None, ["flip", "rigid", "hed_perturb"]])
37 | def augmentation_list(request):
38 | return request.param
39 |
40 |
41 | def test_hms2_model_builder_with_dry_run(
42 | n_classes,
43 | backbone,
44 | pooling,
45 | use_hms2,
46 | augmentation_list,
47 | ):
48 | # Skip the situation that use_hms2 == False and augmentation_list is not None
49 | if not use_hms2 and augmentation_list is not None:
50 | return
51 |
52 | # Set larger image size for HMS2
53 | if use_hms2:
54 | image_size = (5000, 5000)
55 | else:
56 | image_size = (2000, 2000)
57 |
58 | # Build a model
59 | model = Hms2ModelBuilder().build(
60 | n_classes=n_classes,
61 | backbone=backbone,
62 | pooling=pooling,
63 | use_hms2=use_hms2,
64 | augmentation_list=augmentation_list,
65 | )
66 |
67 | # Dry-run backpropagation
68 | optimizer = torch.optim.AdamW(model.parameters())
69 | loss = torch.nn.CrossEntropyLoss()
70 |
71 | for _ in range(2):
72 | input_batch = np.random.randint(
73 | low=0, high=255, size=((1,) + image_size + (3,)), dtype=np.uint8
74 | )
75 | y_true_batch = np.random.randint(0, n_classes - 1, size=(1,), dtype=np.int64)
76 | input_batch = torch.tensor(input_batch)
77 | if not use_hms2:
78 | # If HMS2 is disabled, the input should be manually moved to GPU.
79 | input_batch = input_batch.cuda()
80 |
81 | y_pred_batch = model(input_batch)
82 | assert y_pred_batch.size() == (1, n_classes)
83 |
84 | y_true_batch = torch.tensor(y_true_batch).cuda()
85 | loss_batch = loss(y_pred_batch, y_true_batch)
86 | loss_batch.backward()
87 | optimizer.step()
88 | optimizer.zero_grad()
89 |
90 |
91 | def test_hms2_model_builder_with_use_less_gpu_memory_budget(
92 | n_classes,
93 | backbone,
94 | ):
95 | image_size = (5000, 5000)
96 |
97 | # Build two models with different GPU memory budgets
98 | model_rich = Hms2ModelBuilder().build(
99 | n_classes=n_classes,
100 | backbone=backbone,
101 | pooling="gap",
102 | use_hms2=True,
103 | gpu_memory_budget=32.0,
104 | )
105 | model_poor = Hms2ModelBuilder().build(
106 | n_classes=n_classes,
107 | backbone=backbone,
108 | pooling="gap",
109 | use_hms2=True,
110 | gpu_memory_budget=16.0,
111 | )
112 |
113 | # Run forward
114 | input_batch = np.random.randint(
115 | low=0, high=255, size=((1,) + image_size + (3,)), dtype=np.uint8
116 | )
117 | input_batch = torch.tensor(input_batch)
118 |
119 | y_pred_batch_rich = model_rich(input_batch)
120 | y_pred_batch_poor = model_poor(input_batch)
121 |
122 | assert y_pred_batch_poor.detach().cpu().numpy() == pytest.approx(
123 | y_pred_batch_rich.detach().cpu().numpy(), abs=1.0
124 | )
125 |
126 |
127 | def test_hms2_model_builder_with_cam(
128 | n_classes,
129 | backbone,
130 | use_hms2,
131 | ):
132 | # Set larger image size for HMS2
133 | if use_hms2:
134 | image_size = (5000, 5000)
135 | else:
136 | image_size = (2000, 2000)
137 |
138 | # Build a model
139 | model = Hms2ModelBuilder().build(
140 | n_classes=n_classes,
141 | backbone=backbone,
142 | pooling="cam",
143 | use_hms2=use_hms2,
144 | )
145 |
146 | # Dry-run
147 | for _ in range(2):
148 | input_batch = np.random.randint(
149 | low=0, high=255, size=((1,) + image_size + (3,)), dtype=np.uint8
150 | )
151 | input_batch = torch.tensor(input_batch)
152 | if not use_hms2:
153 | # If HMS2 is disabled, the input should be manually moved to GPU.
154 | input_batch = input_batch.cuda()
155 |
156 | cam = model(input_batch)
157 | assert cam.size()[0] == 1
158 | assert cam.size()[1] > 1
159 | assert cam.size()[2] > 1
160 | assert cam.size()[3] == n_classes
161 |
162 |
163 | def test_hms2_model_builder_with_emb(
164 | n_classes,
165 | backbone,
166 | use_hms2,
167 | ):
168 | # Set larger image size for HMS2
169 | if use_hms2:
170 | image_size = (5000, 5000)
171 | else:
172 | image_size = (2000, 2000)
173 |
174 | # Build a model
175 | model = Hms2ModelBuilder().build(
176 | n_classes=n_classes,
177 | backbone=backbone,
178 | pooling="no",
179 | custom_dense="no",
180 | use_hms2=use_hms2,
181 | )
182 |
183 | # Dry-run
184 | for _ in range(2):
185 | input_batch = np.random.randint(
186 | low=0, high=255, size=((1,) + image_size + (3,)), dtype=np.uint8
187 | )
188 | input_batch = torch.tensor(input_batch)
189 | if not use_hms2:
190 | # If HMS2 is disabled, the input should be manually moved to GPU.
191 | input_batch = input_batch.cuda()
192 |
193 | emb = model(input_batch)
194 | assert emb.size()[0] == 1
195 | assert emb.size()[1] == 2048
196 | assert emb.size()[2] > 1
197 | assert emb.size()[3] > 1
198 |
--------------------------------------------------------------------------------
/tests/core/test_custom_modules.py:
--------------------------------------------------------------------------------
1 | from io import BytesIO
2 |
3 | import numpy as np
4 | import pytest
5 | import requests
6 | import torch
7 | import torchvision
8 | from PIL import Image
9 |
10 | from hms2.core.custom_modules import FrozenBatchNorm2d
11 |
12 |
13 | @pytest.fixture(scope="session")
14 | def image():
15 | url = "https://upload.wikimedia.org/wikipedia/zh/3/34/Lenna.jpg"
16 | with requests.get(url) as req:
17 | buff = BytesIO(req.content)
18 | image = Image.open(buff)
19 |
20 | width = 224
21 | height = 224
22 | image = image.resize([width, height])
23 |
24 | image = np.array(image)
25 | return image
26 |
27 |
28 | def test_frozen_batch_norm_2d(image):
29 | original_model = torchvision.models.resnet50(pretrained=True).cuda().eval()
30 | image = torchvision.transforms.ToTensor()(image)
31 | image = torchvision.transforms.Normalize(
32 | (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
33 | )(image)
34 | image_batch = image[np.newaxis, :, :, :].cuda()
35 | label_batch = torch.zeros([1], dtype=torch.int64).cuda()
36 |
37 | original_output = original_model(image_batch)
38 | loss = torch.nn.CrossEntropyLoss()(original_output, label_batch)
39 | loss.backward()
40 | original_grads = [
41 | parameter.grad.cpu().numpy() for parameter in original_model.parameters()
42 | ]
43 | original_model.zero_grad()
44 |
45 | frozen_bn_model = FrozenBatchNorm2d.convert_frozen_batchnorm(original_model)
46 | frozen_bn_model.train()
47 | frozen_bn_output = frozen_bn_model(image_batch)
48 | loss = torch.nn.CrossEntropyLoss()(frozen_bn_output, label_batch)
49 | loss.backward()
50 | frozen_bn_grads = [
51 | parameter.grad.cpu().numpy() for parameter in frozen_bn_model.parameters()
52 | ]
53 | frozen_bn_model.zero_grad()
54 |
55 | # Check the integrity of parameters
56 | original_parameters = [
57 | parameter.detach().cpu().numpy() for parameter in original_model.parameters()
58 | ]
59 | frozen_bn_parameters = [
60 | parameter.detach().cpu().numpy() for parameter in frozen_bn_model.parameters()
61 | ]
62 | assert len(original_parameters) == len(frozen_bn_parameters)
63 | for idx, _ in enumerate(original_parameters):
64 | assert original_parameters[idx] == pytest.approx(frozen_bn_parameters[idx])
65 |
66 | # Check the integrities of outputs and gradients
67 | assert original_output.detach().cpu().numpy() == pytest.approx(
68 | frozen_bn_output.detach().cpu().numpy()
69 | )
70 | for idx, _ in enumerate(original_grads):
71 | assert original_grads[idx] == pytest.approx(frozen_bn_grads[idx], abs=1e-4)
72 |
--------------------------------------------------------------------------------
/tests/core/test_model.py:
--------------------------------------------------------------------------------
1 | import os
2 | from io import BytesIO
3 | from time import time
4 |
5 | import numpy as np
6 | import pytest
7 | import requests
8 | import torch
9 | import torch.nn as nn
10 | import torchvision
11 | import torchvision.transforms as transforms
12 | from PIL import Image
13 | from skimage.metrics import structural_similarity
14 |
15 | from hms2.core.loader_modules import (
16 | GPUAugmentationLoaderModule,
17 | NoLoaderModule,
18 | PlainLoaderModule,
19 | )
20 | from hms2.core.model import Hms2Model
21 |
22 |
23 | @pytest.fixture(autouse=True, scope="session")
24 | def set_up():
25 | os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
26 | torch.backends.cudnn.deterministic = True
27 |
28 |
29 | @pytest.fixture(scope="session")
30 | def image():
31 | url = "https://upload.wikimedia.org/wikipedia/zh/3/34/Lenna.jpg"
32 | with requests.get(url) as req:
33 | buff = BytesIO(req.content)
34 | image = Image.open(buff)
35 |
36 | width = 2000
37 | height = 3000
38 | image = image.resize([width, height])
39 |
40 | image = np.array(image)
41 | return image
42 |
43 |
44 | @pytest.fixture(scope="session")
45 | def image_batch(image):
46 | image_batch = torch.tensor(image, dtype=torch.uint8)
47 | image_batch = image_batch[np.newaxis, :, :, :]
48 |
49 | return image_batch
50 |
51 |
52 | @pytest.mark.parametrize("do_hint", [True, False])
53 | @pytest.mark.parametrize("loader_module_use", ["plain", "gpu_aug_disable_aug", "no"])
54 | def test_loader_module_forward_with_no_aug(
55 | image, image_batch, do_hint, loader_module_use
56 | ):
57 | if loader_module_use == "plain":
58 | loader_module = PlainLoaderModule()
59 | elif loader_module_use == "gpu_aug_disable_aug":
60 | loader_module = GPUAugmentationLoaderModule(
61 | random_flip=False,
62 | random_rotation=False,
63 | random_translation=None,
64 | )
65 | elif loader_module_use == "no":
66 | loader_module = NoLoaderModule()
67 | else:
68 | assert False
69 |
70 | loader_module = loader_module.cuda()
71 |
72 | coord = (0, 1000)
73 | size = (1000, 2000)
74 | if loader_module_use in ["plain", "gpu_aug_disable_aug"]:
75 | if do_hint:
76 | loader_module.hint_future_accesses(image_batch, [coord], [size])
77 | output = loader_module(image_batch, coord, size)
78 | assert isinstance(output, torch.Tensor)
79 | assert output.is_cuda
80 | elif loader_module_use == "no":
81 | partial_image_batch = image_batch[
82 | :,
83 | coord[1] : coord[1] + size[1],
84 | coord[0] : coord[0] + size[0],
85 | :,
86 | ]
87 | output = loader_module(partial_image_batch)
88 | assert isinstance(output, torch.Tensor)
89 | else:
90 | assert False
91 |
92 | output = output.cpu().numpy()
93 | output = output[0, ...]
94 | output = np.transpose(output, [1, 2, 0])
95 | output *= np.float32([0.229, 0.224, 0.225])
96 | output += np.float32([0.485, 0.456, 0.406])
97 | output = np.minimum(np.maximum(output * 255.0, 0.0), 255.0).astype(np.uint8)
98 |
99 | ground_truth = image[
100 | coord[1] : coord[1] + size[1],
101 | coord[0] : coord[0] + size[0],
102 | :,
103 | ]
104 | ssim = structural_similarity(output, ground_truth, channel_axis=-1)
105 | assert ssim > 0.99
106 |
107 |
108 | def test_gpu_augmentation_loader_module_forward_with_aug(image, image_batch):
109 | # Augmentation arguments
110 | rotation_angle = 8.7
111 | translation_pixels = [9, -8]
112 | do_flip = True
113 |
114 | class AddBias(nn.Module):
115 | def __init__(self, bias):
116 | super().__init__()
117 | self.bias = bias
118 |
119 | def randomize(self):
120 | pass
121 |
122 | def forward(self, inputs):
123 | return inputs + self.bias
124 |
125 | other_augmentations = [AddBias(0.1)]
126 |
127 | # Get the loader module
128 | loader_module = GPUAugmentationLoaderModule(other_augmentations=other_augmentations)
129 | loader_module = loader_module.cuda()
130 | loader_module.do_flip = do_flip
131 | loader_module.rotation_angle = rotation_angle
132 | loader_module.translation_pixels = translation_pixels
133 | loader_module.affine_matrix = loader_module._calculate_affine_matrix()
134 |
135 | # Do forward
136 | coord = (0, 1000)
137 | size = (1000, 2000)
138 | output = loader_module(image_batch, coord, size)
139 | assert isinstance(output, torch.Tensor)
140 | assert output.is_cuda
141 |
142 | output = output.cpu().numpy()
143 | output = output[0, ...]
144 | output = np.transpose(output, [1, 2, 0])
145 | output *= np.float32([0.229, 0.224, 0.225])
146 | output += np.float32([0.485, 0.456, 0.406])
147 | output -= 0.1 # Inverse of AddBias(0.1)
148 | output = np.minimum(np.maximum(output * 255.0, 0.0), 255.0).astype(np.uint8)
149 |
150 | # Get ground truth
151 | img_aug = Image.fromarray(image)
152 | img_aug = img_aug.rotate(
153 | angle=rotation_angle,
154 | resample=Image.BILINEAR,
155 | translate=translation_pixels,
156 | fillcolor=(255, 255, 255),
157 | )
158 | if do_flip:
159 | img_aug = img_aug.transpose(method=Image.FLIP_LEFT_RIGHT)
160 | ground_truth = np.array(img_aug)[
161 | coord[1] : coord[1] + size[1],
162 | coord[0] : coord[0] + size[0],
163 | :,
164 | ]
165 | ssim = structural_similarity(output, ground_truth, channel_axis=-1)
166 | assert np.min(ground_truth) < 128 # The selected tile should be meaningful
167 | assert ssim > 0.99
168 |
169 |
170 | def test_gpu_augmentation_loader_module_forward_with_randomness(image_batch):
171 | # Augmentation arguments
172 | class AddBias(nn.Module):
173 | def __init__(self, bias):
174 | super().__init__()
175 | self.bias = bias
176 |
177 | def randomize(self):
178 | pass
179 |
180 | def forward(self, inputs):
181 | return inputs + self.bias
182 |
183 | other_augmentations = [AddBias(0.1)]
184 |
185 | # Get the loader module
186 | loader_module = GPUAugmentationLoaderModule(other_augmentations=other_augmentations)
187 | loader_module = loader_module.cuda()
188 |
189 | # Do two forward operations in training model
190 | coord = (0, 1000)
191 | size = (1000, 2000)
192 |
193 | loader_module.train()
194 | loader_module.randomize()
195 | output_0 = loader_module(image_batch, coord, size)
196 | loader_module.randomize()
197 | output_1 = loader_module(image_batch, coord, size)
198 | assert torch.any(output_0 != output_1).item()
199 |
200 | # Do two forward operations in evaluation model
201 | loader_module.eval()
202 | loader_module.randomize()
203 | output_0 = loader_module(image_batch, coord, size)
204 | loader_module.randomize()
205 | output_1 = loader_module(image_batch, coord, size)
206 | assert torch.all(output_0 == output_1).item()
207 |
208 |
209 | @pytest.fixture(scope="session")
210 | def conv_module():
211 | resnet50 = torchvision.models.resnet50(pretrained=True).eval()
212 | conv_module = nn.Sequential(*list(resnet50.children())[:-2])
213 | conv_module = conv_module.cuda()
214 | return conv_module
215 |
216 |
217 | @pytest.fixture(scope="session")
218 | def dense_module():
219 | resnet50 = torchvision.models.resnet50(pretrained=True).eval()
220 | dense_module = nn.Sequential(
221 | nn.AdaptiveMaxPool2d((1, 1)),
222 | nn.Flatten(),
223 | list(resnet50.children())[-1],
224 | )
225 | dense_module = dense_module.cuda()
226 | return dense_module
227 |
228 |
229 | @pytest.fixture(scope="session", params=["max", "none"])
230 | def local_pooling_module(request):
231 | if request.param == "max":
232 | local_pooling_module = nn.AdaptiveMaxPool2d((1, 1))
233 | else:
234 | local_pooling_module = None
235 | return local_pooling_module
236 |
237 |
238 | @pytest.fixture(scope="session", params=[3072, 4096])
239 | def hms2_model(conv_module, dense_module, local_pooling_module, request):
240 | tile_size = request.param
241 |
242 | hms2_model = Hms2Model(
243 | loader_module=PlainLoaderModule().cuda(),
244 | conv_module=conv_module,
245 | dense_module=dense_module,
246 | local_pooling_module=local_pooling_module,
247 | tile_size=tile_size,
248 | emb_crop_size=7,
249 | emb_stride_size=32,
250 | )
251 | return hms2_model
252 |
253 |
254 | @pytest.fixture(scope="session")
255 | def plain_model(conv_module, dense_module):
256 | class PlainModel(nn.Module):
257 | def __init__(self, conv_module, dense_module):
258 | super().__init__()
259 | self.conv_module = conv_module
260 | self.dense_module = dense_module
261 |
262 | def forward(self, image_batch):
263 | image_batch = image_batch.cuda()
264 | image_batch = image_batch.permute(0, 3, 1, 2).contiguous()
265 | image_batch = image_batch.float().div(255.0)
266 | image_batch = transforms.functional.normalize(
267 | tensor=image_batch,
268 | mean=[0.485, 0.456, 0.406],
269 | std=[0.229, 0.224, 0.225],
270 | )
271 | conv_output = self.conv_module(image_batch)
272 | output = self.dense_module(conv_output)
273 | return output
274 |
275 | plain_model = PlainModel(conv_module, dense_module)
276 | return plain_model
277 |
278 |
279 | def test_hms2_model_forward(hms2_model, plain_model, image_batch):
280 | hms2_output = hms2_model(image_batch)
281 | hms2_output = hms2_output.detach().cpu().numpy()
282 |
283 | plain_output = plain_model(image_batch)
284 | plain_output = plain_output.detach().cpu().numpy()
285 |
286 | assert hms2_output == pytest.approx(plain_output)
287 |
288 |
289 | def test_hms2_model_backward(hms2_model, plain_model, image_batch):
290 | target_batch = torch.tensor(np.array([100]), dtype=torch.long).cuda()
291 |
292 | hms2_output = hms2_model(image_batch)
293 | hms2_loss = nn.CrossEntropyLoss()(hms2_output, target_batch)
294 | hms2_model.zero_grad()
295 | hms2_loss.backward()
296 | hms2_grads = [parameter.grad.cpu().numpy() for parameter in hms2_model.parameters()]
297 |
298 | plain_output = plain_model(image_batch)
299 | plain_loss = nn.CrossEntropyLoss()(plain_output, target_batch)
300 | plain_model.zero_grad()
301 | plain_loss.backward()
302 | plain_grads = [
303 | parameter.grad.cpu().numpy() for parameter in plain_model.parameters()
304 | ]
305 |
306 | assert len(hms2_grads) == len(plain_grads)
307 | for idx, _ in enumerate(hms2_grads):
308 | assert hms2_grads[idx] == pytest.approx(plain_grads[idx], abs=1e-4)
309 |
310 |
311 | def test_hms2_model_backward_with_no_grad(hms2_model, image_batch):
312 | target_batch = torch.tensor(np.array([100]), dtype=torch.long).cuda()
313 |
314 | optimizer = torch.optim.SGD(hms2_model.parameters(), lr=0.01)
315 |
316 | optimizer.zero_grad()
317 | hms2_output = hms2_model(image_batch)
318 | hms2_output = torch.min(hms2_output, torch.tensor(-999.9).cuda())
319 | hms2_loss = nn.CrossEntropyLoss()(hms2_output, target_batch)
320 | hms2_loss.backward()
321 | hms2_grads = [parameter.grad for parameter in hms2_model.parameters()]
322 | optimizer.step()
323 |
324 | for grad in hms2_grads:
325 | assert grad is None or torch.count_nonzero(grad).item() == 0
326 |
327 |
328 | def test_hms2_model_with_cache_background_forward(
329 | conv_module,
330 | dense_module,
331 | local_pooling_module,
332 | ):
333 | # Create a huge white image
334 | height = 10000
335 | width = 10000
336 | image = np.full(shape=(height, width, 3), fill_value=255, dtype=np.uint8)
337 | image_batch = torch.tensor(image, dtype=torch.uint8)
338 | image_batch = image_batch[np.newaxis, :, :, :]
339 |
340 | # Create models
341 | tile_size = 3072
342 | hms2_model_use = Hms2Model(
343 | loader_module=PlainLoaderModule().cuda(),
344 | conv_module=conv_module,
345 | dense_module=dense_module,
346 | local_pooling_module=local_pooling_module,
347 | tile_size=tile_size,
348 | emb_crop_size=7,
349 | emb_stride_size=32,
350 | cache_background_forward=True,
351 | )
352 | hms2_model_nouse = Hms2Model(
353 | loader_module=PlainLoaderModule().cuda(),
354 | conv_module=conv_module,
355 | dense_module=dense_module,
356 | local_pooling_module=local_pooling_module,
357 | tile_size=tile_size,
358 | emb_crop_size=7,
359 | emb_stride_size=32,
360 | cache_background_forward=False,
361 | )
362 |
363 | # Test forward
364 | time_1 = time()
365 | use_output = hms2_model_use(image_batch)
366 | use_output = use_output.detach().cpu().numpy()
367 | time_2 = time()
368 | use_time = time_2 - time_1
369 |
370 | time_1 = time()
371 | nouse_output = hms2_model_nouse(image_batch)
372 | nouse_output = nouse_output.detach().cpu().numpy()
373 | time_2 = time()
374 | nouse_time = time_2 - time_1
375 |
376 | assert use_output == pytest.approx(nouse_output)
377 | assert use_time < nouse_time
378 |
379 |
380 | def test_hms2_model_with_cache_background_backward(
381 | conv_module,
382 | dense_module,
383 | local_pooling_module,
384 | ):
385 | # Create a huge white image
386 | height = 10000
387 | width = 10000
388 | image = np.full(shape=(height, width, 3), fill_value=255, dtype=np.uint8)
389 | image_batch = torch.tensor(image, dtype=torch.uint8)
390 | image_batch = image_batch[np.newaxis, :, :, :]
391 | target_batch = torch.tensor(np.array([100]), dtype=torch.long).cuda()
392 |
393 | # Create models
394 | tile_size = 3072
395 | hms2_model_use = Hms2Model(
396 | loader_module=PlainLoaderModule().cuda(),
397 | conv_module=conv_module,
398 | dense_module=dense_module,
399 | local_pooling_module=local_pooling_module,
400 | tile_size=tile_size,
401 | emb_crop_size=7,
402 | emb_stride_size=32,
403 | skip_no_grad=False,
404 | cache_background_backward=True,
405 | )
406 | hms2_model_nouse = Hms2Model(
407 | loader_module=PlainLoaderModule().cuda(),
408 | conv_module=conv_module,
409 | dense_module=dense_module,
410 | local_pooling_module=local_pooling_module,
411 | tile_size=tile_size,
412 | emb_crop_size=7,
413 | emb_stride_size=32,
414 | skip_no_grad=False,
415 | cache_background_backward=False,
416 | )
417 |
418 | # Test backward
419 | hms2_model_use.zero_grad()
420 | use_output = hms2_model_use(image_batch)
421 | loss = nn.CrossEntropyLoss()(use_output, target_batch)
422 | time_1 = time()
423 | loss.backward()
424 | time_2 = time()
425 | use_grads = [
426 | parameter.grad.cpu().numpy() for parameter in hms2_model_use.parameters()
427 | ]
428 | use_time = time_2 - time_1
429 |
430 | hms2_model_nouse.zero_grad()
431 | nouse_output = hms2_model_nouse(image_batch)
432 | loss = nn.CrossEntropyLoss()(nouse_output, target_batch)
433 | time_1 = time()
434 | loss.backward()
435 | time_2 = time()
436 | nouse_grads = [
437 | parameter.grad.cpu().numpy() for parameter in hms2_model_nouse.parameters()
438 | ]
439 | nouse_time = time_2 - time_1
440 |
441 | for use_grad, nouse_grad in zip(use_grads, nouse_grads):
442 | assert use_grad == pytest.approx(nouse_grad, abs=1e-4)
443 | assert use_time < nouse_time
444 |
--------------------------------------------------------------------------------