├── README.md └── sources └── images ├── Readme.md └── nlp.png /README.md: -------------------------------------------------------------------------------- 1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | **From Zero to Research Scientist full resources guide. ** 10 | 11 | 12 | ![Full Guide](https://img.shields.io/badge/FullAI-Guide-brightgreen.svg) 13 | ![Version 0.0.1](https://img.shields.io/badge/Version-0.0.1-blue.svg) 14 |
15 | 16 | ## Guide description 17 | This guide is designated to anybody with basic programming knowledge or a computer science background interested in becoming a Research Scientist with :dart: on Deep Learning and NLP. 18 | 19 | You can go Bottom-Up or Top-Down both works well and it is actually crucial to know which approach suites you the best. If you are okay with studying lots of mathematical concepts without application then use Bottom-Up. If you want to go hands-on first then use the Top-Down first. 20 | 21 | ## Contents: 22 | - [Mathematical Foundation](#Mathematical-Foundations) 23 | - [Linear Algebra](#Linear-Algebra) 24 | - [Probability](#Probability) 25 | - [Calculus](#Calculus) 26 | - [Optimization Theory](#Optimization-Theory) 27 | - [Machine Learning](#Machine-Learning) 28 | - [Deep Learning](#Deep-Learning) 29 | - [Reinforcement Learning](#Reinforcement-Learning) 30 | - [Natural Language Processing](#Natural-Language-Processing) 31 | 32 | ## Mathematical Foundations: 33 | The Mathematical Foundation part is for all Artificial Intelligence branches such as Machine Learning, Reinforcement Learning, Computer Vision and so on. AI is heavily math-theory based so a solid foundation is essential. 34 | 35 | ### Linear Algebra 36 | 37 |
38 | :infinity: 39 | 40 | 41 | 42 | This branch of Math is crucial for understanding the mechanism of Neural Networks which are the norm for NLP methodologies in nowadays State-of-The-Art. 43 | 44 | Resource | Difficulty | Relevance 45 | ------------------------- | --------------- | ------------------------------- 46 | [MIT Gilbert Strang 2005 Linear Algebra 🎥][gilbertStrang] |
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Computer+Vision&color=ff0101) 47 | [Linear Algebra 4th Edition by Friedberg 📘][Friedberg] |
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 48 | [Mathematics for Machine Learning Book: Chapter 2 📘][mmlbook] |
| ![50%](https://progress-bar.dev/50/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000) 49 | [James Hamblin Awesome Lecture Series 🎥][James_Hamblin] |
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 50 | [3Blue1Brown Essence of Linear Algebra 🎥][3blue] |
| ![25%](https://progress-bar.dev/25/?title=Machine+Learning+Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 51 | [Mathematics For Machine Learning Specialization: Linear Algebra 🎥][MMLLA] |
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 52 | [Matrix Methods for Linear Algebra for Gilber Strang UPDATED! 🎥][matrixmethods] |
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 53 | 54 | 55 |
56 | 57 | ### Probability 58 | 59 |
60 | :atom: 61 | 62 | 63 | 64 | Most of Natural Language Processing and Machine Learning Algorithms are based on Probability theory. So this branch is extremely important for grasping how old methods work. 65 | Resource | Difficulty | Relevance 66 | ------------------------- | --------------- | ------------------------------- 67 | [Joe Blitzstein Harvard Probability and Statistics Course 🎥][harvard] |
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4) 68 | [MIT Probability Course 2011 Lecture videos 🎥][mitprob11] |
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4) 69 | [MIT Probability Course 2018 short videos UPDATED! 🎥][mitprob18] |
| ![25%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4) 70 | [Mathematics for Machine Learning Book: Chapter 6 📘][mmlbook] |
| ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4) 71 | [Probabilistic Graphical Models CMU Advanced 🎥][cmuprob] |
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4) 72 | [Probabilistic Graphical Models Stanford Daphne Advanced 🎥][stanfordprobgraph] |
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Natural+Language+Processing&color=ff69b4) 73 | [A First Course In Probability Book by Ross 📘][probBook] |
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) 74 | [Joe Blitzstein Harvard Professor Probability Awesome Book 📘][harvBook] |
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) 75 | 76 | 77 |
78 | 79 | [harvBook]: https://drive.google.com/file/d/1VmkAAGOYCTORq1wxSQqy255qLJjTNvBI/view 80 | 81 | ### Calculus 82 | 83 |
84 | :triangular_ruler: 85 | 86 | 87 | 88 | 89 | Resource | Difficulty | Relevance 90 | ------------------------- | --------------- | -------------------------- 91 | [Essence of Calculus by 3Blue1Brown🎥][bluecal]|
|![75%](https://progress-bar.dev/75/?title=Deep+Learning) 92 | [Single Variable Calculus MIT 2007🎥][single07]|
|![75%](https://progress-bar.dev/75/?title=Deep+Learning) 93 | [Strang's Overview of Calculus🎥][strangcalc]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 94 | [MultiVariable Calculus MIT 2007🎥][multi07]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 95 | [Princeton University Multivariable Calculus 2013🎥][princeton]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 96 | [Calculus Book by Stewart 📘][calcbok]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) 97 | [Mathematics for Machine Learning Book: Chapter 5 📘][mmlbook] |
| ![75%](https://progress-bar.dev/75/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) 98 | 99 | 100 | 101 | 102 |
103 | 104 | ### Optimization Theory 105 | 106 |
107 | 📉 108 | 109 | 110 | 111 | -Resource | Difficulty | Relevance 112 | ------------------------- | --------------- | -------------------------- 113 | [CMU optimization course 2018🎥][cmuopti]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Machine-Learning-Algorithms&color=000000) 114 | [CMU Advanced optimization course🎥][cmuadvopti]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 115 | [Stanford Famous optimization course 🎥][stanfordopti]|
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 116 | [Boyd Convex Optimization Book 📕][boyd] |
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) 117 | 118 | 119 |
120 | 121 | -------------------------------------------------------------------------------- 122 | 123 | ## Machine Learning 124 | 125 | Considered a fancy name for Statistical models where its main goal is to learn from data for several usages. It is considered highly recommended to master these statistical techniques before Research as most of research is inspired by most of the Algorithms. 126 | 127 | Resource | Difficulty Level 128 | ------------------------- | --------------- 129 | [Mathematics for Machine Learning Part 2 📚][fullmmlbook] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 130 | [Pattern Recognition and Machine Leanring📚][patternML]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 131 | [Elements of Statistical Learning 📚][eesl]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 132 | [Introduction to Statistical Learning 📚][introSL]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 133 | [Machine Learning: A Probabilistic Perspective 📚][murphyml]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 134 | [Berkley CS188 Introduction to AI course 🎥][cs188]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 135 | [MIT Classic AI course taught by Prof. Patrick H. Winston 🎥][mitai]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 136 | [Stanford AI course 2018 🎥][stai18]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 137 | [California Institute of Technology Learning from Data course 🎥][caltldc]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 138 | [CMU Machine Learning 2015 10-601 🎥][cmuml2015]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 139 | [CMU Statistical Machine Learning 10-702 🎥][cmu702]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 140 | [Information Theory, Pattern Recognition ML course 2012 🎥][PR2012]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 141 | [Large Scale Machine Learning Toronto University 2015 🎥][toronto2015]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 142 | [Algorithmic Aspects of Machine Learning MIT 🎥][Mitaspects]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 143 | [MIT Course 9.520 - Statistical Learning Theory and Applications, Fall 2015 🎥][mitfallslt]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 144 | [Undergraduate Machine Learning Course University of British Columbia 2013 🎥][ubc2013]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 145 | 146 | 147 | -------------------------------------------------------------------------------- 148 | 149 | [murphyml]: http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf 150 | [introSL]: https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf 151 | [patternML]:http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf 152 | [eesl]: https://web.stanford.edu/~hastie/Papers/ESLII.pdf 153 | [fullmmlbook]: https://mml-book.com/ 154 | [ubc2013]:https://www.youtube.com/watch?v=w2OtwL5T1ow&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6 155 | [mitfallslt]: https://www.youtube.com/playlist?list=PLyGKBDfnk-iDj3FBd0Avr_dLbrU8VG73O 156 | [Mitaspects]: https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx 157 | [toronto2015]:https://video-archive.fields.utoronto.ca/view/2800 158 | [PR2012]: http://videolectures.net/course_information_theory_pattern_recognition/ 159 | [cmu702]: https://www.youtube.com/playlist?list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r 160 | [cmuml2015]: http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml 161 | [caltldc]: https://work.caltech.edu/lectures.html 162 | [cs188]: https://inst.eecs.berkeley.edu/~cs188/fa18/ 163 | [mitai]: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/ 164 | [stai18]: https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX 165 | 166 | ## Deep Learning 167 | 168 | One of the major breakthroughs in the field of intersection between Artificial Intelligence and Computer Science. It lead to countless advances in technology and considered the standard way to do Artificial Intelligence. 169 | 170 | Resource | Difficulty Level 171 | ------------------------- | --------------- 172 | [Deep Learning Book by Ian Goodfellow 📚][Ian] |![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 173 | [UCL DeepMind Deep Learning 🎥][ucl2020] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 174 | [Advanced Talks by Deep Learning Pioneers 🎥][talkie] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 175 | [Stanford Autumn 2018 Deep Learning Lectures 🎥][18standeep] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 176 | [FAU Deep Learning 2020 Series 🎥][fau] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 177 | [CMU Deep Learning course 2020 🎥][cmudeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 178 | [Stanford Convolutional Neural Network 2017 🎥][stanfcnn] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 179 | [Oxford Deep Learning Awesome Lectures 2015 🎥][oxforddeep] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 180 | [Stanford NLP with Deep Learning 2019 🎥][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 181 | [Deep Learning from Probability and Statistics POV 🎥][alideep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 182 | [Advanced Deep Learning UCL 2017 course + Reinforcement Learning 🎥][ucladvrein] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 183 | [Deep Learning UC Berkley 2020 Course 🎥][berkley2020] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 184 | [NYU Deep Learning with Pytorch hands on 🎥][DeepPy] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 185 | [Classic Jeoffrey Hinton Old course OUTDATED 🎥][jeoff] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 186 | [Pieter Abdeel Deep Unsupervised Learning 🎥][abdeeladv] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 187 | [Hugo Larochelle Deep Learning series 🎥][hugodeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 188 | [Deep Learning Book Explanation Series 🎥][deepbookexp] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 189 | [Deep Learning Introduction by Durham University 🎥][Durham] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 190 | [Fast.ai Practical Deep Learning 🎥][fast1] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 191 | [Fast.ai Deep Learning From Foundations 🎥][fast2] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 192 | [Deep Learning with Python (Keras Author) 📚][keras] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 193 | -------------------------------------------------------------------------------- 194 | 195 | ## Reinforcement Learning 196 | 197 | It is a sub-field of AI which focuses on learning by observation/rewards. 198 | 199 | Resource | Difficulty Level 200 | ------------------------- | --------------- 201 | [Introduction to Reinforcement Learning 📚][rlbook] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 202 | [David Silver Deep Mind Introductory Lectures 🎥][dsIntrodu] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 203 | [Stanford 2018 cs234 Reinforcement Learning🎥 ][cs234] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 204 | [Stanford 2019 cs330 Meta Learning advanced course 🎥][cs330] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 205 | [Sergie Levine 2018 UC Berkley Lecture Videos 🎥][ucb2018rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 206 | [Waterloo cs885 Reinforcement Learning 🎥][cs885] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 207 | [Sergie Levine 2020 Deep Reinforcement Learning 🎥][sergie2020rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 208 | [Reinforcement Learning Specialization Coursera GOLDEN courses🎥 (Though it is not free but you can apply for financial aid)][courseraRL] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 209 | 210 | -------------------------------------------------------------------------------- 211 | 212 | ## Natural Language Processing 213 | 214 | It is a sub-field of AI which focuses on the interpretation of Human Language. 215 | 216 | Resource | Difficulty Level 217 | ------------------------- | --------------- 218 | [Jurafsky Speech and Language Processing 📚][jurafskybook]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 219 | [Christopher Manning Foundations of Statistical NLP📚][fsnlp]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 220 | [Christopher Manning Introduction to Information Retrieval📚][manninginformationr]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg) 221 | [cs224n Natural Language Processing with Deep Learning GOLDEN 2019🎥][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 222 | [Oxford Natural Language Processing with Deep Learning 2017🎥][oxfordnlp] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 223 | [Michigan Introduction to NLP🎥][michigannlp] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 224 | [cs224u Natural Language Understanding 2019 🎥][stanfordnlu] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 225 | [cmu 2021 Neural Nets for NLP 2021🎥][cmunlp2021]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg) 226 | [Jurafsky and Manning Introduction to Natural Language Processing🎥][jurafskynlp]| ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg) 227 | 228 | ### Must Read NLP Papers: 229 | In this section, I am going to list the most influential papers that help people who want to dig deeper into the research world of NLP to catch up. 230 | Paper | Comment 231 | ------------------------- | --------------- 232 | # TODO 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | [manninginformationr]: https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf 243 | [fsnlp]: https://github.com/shivamms/books/blob/master/nlp/Foundations%20of%20Statistical%20Natural%20Language%20Processing%20-%20Christopher%20D.%20Manning.pdf 244 | [jurafskybook]: https://web.stanford.edu/~jurafsky/slp3/ 245 | [jurafskynlp]: https://www.youtube.com/watch?v=zQ6gzQ5YZ8o&list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ 246 | [cmunlp2021]: https://www.youtube.com/watch?v=vnx6M7N-ggs&list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV 247 | [stanfordnlu]: https://www.youtube.com/watch?v=tZ_Jrc_nRJY&list=PLoROMvodv4rObpMCir6rNNUlFAn56Js20 248 | [michigannlp]:https://www.youtube.com/watch?v=n25JjoixM3I&list=PLLssT5z_DsK8BdawOVCCaTCO99Ya58ryR 249 | [oxfordnlp]: https://www.youtube.com/watch?v=RP3tZFcC2e8&list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm 250 | [courseraRL]: https://www.coursera.org/specializations/reinforcement-learning 251 | [sergie2020rl]: https://www.youtube.com/watch?v=JHrlF10v2Og&list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc 252 | [cs885]: https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc 253 | [ucb2018rl]: https://www.youtube.com/watch?v=ue9aS17d5iI&list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37&index=2 254 | [cs330]: https://www.youtube.com/watch?v=0rZtSwNOTQo&list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5 255 | [cs234]: https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u 256 | [dsIntrodu]: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ 257 | [rlbook]: http://incompleteideas.net/book/RLbook2020.pdf 258 | [Ian]: https://github.com/janishar/mit-deep-learning-book-pdf/blob/master/complete-book-pdf/Ian%20Goodfellow%2C%20Yoshua%20Bengio%2C%20Aaron%20Courville%20-%20Deep%20Learning%20(2017%2C%20MIT).pdf 259 | [fast2]: https://course19.fast.ai/part2 260 | [fast1]: https://course.fast.ai/ 261 | [abdeeladv]: https://www.youtube.com/watch?v=V9Roouqfu-M&list=PLwRJQ4m4UJjPiJP3691u-qWwPGVKzSlNP 262 | [durham]: https://www.youtube.com/watch?v=s2uXPz3wyCk&list=PLMsTLcO6etti_SObSLvk9ZNvoS_0yia57 263 | [deepbookexp]: https://www.youtube.com/watch?v=vi7lACKOUao&list=PLsXu9MHQGs8df5A4PzQGw-kfviylC-R9b 264 | [hugodeep]: https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH 265 | [jeoff]: https://www.youtube.com/watch?v=cbeTc-Urqak&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9 266 | [DeepPy]: https://www.youtube.com/watch?v=0bMe_vCZo30&list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq 267 | [berkley2020]: https://www.youtube.com/watch?v=Va8WWRfw7Og&list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW 268 | [ucladvrein]: https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs 269 | [alideep]: https://www.youtube.com/watch?v=fyAZszlPphs&list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE 270 | [stanfordnlp2019]: https://www.youtube.com/watch?v=8rXD5-xhemo&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z 271 | [oxforddeep]: https://www.youtube.com/watch?v=PlhFWT7vAEw&list=RDQMa66mIb9tImc&start_radio=1 272 | [stanfcnn]: https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv 273 | [cmudeep]: https://www.youtube.com/watch?v=0Oqpax2Q2hc&list=PLp-0K3kfddPzCnS4CqKphh-zT3aDwybDe 274 | [fau]: https://www.youtube.com/watch?v=p-_Stl0t3kU&list=PLpOGQvPCDQzvgpD3S0vTy7bJe2pf_yJFj 275 | [18standeep]: https://www.youtube.com/watch?v=PySo_6S4ZAg&list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb 276 | [talkie]: https://www.youtube.com/watch?v=vFYkyk_GmWM&list=PLhb1t0L7sKy2q7on_7dpgOACs3qpNbfkR&index=2 277 | [ucl2020]: https://www.youtube.com/watch?v=7R52wiUgxZI&list=PLqYmG7hTraZCDxZ44o4p3N5Anz3lLRVZF 278 | [boyd]: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf 279 | [cmuopti]: https://www.youtube.com/watch?v=Di9f47LAzHQ&list=PLRPU00LaonXQ27RBcq6jFJnyIbGw5azOI 280 | [cmuadvopti]: https://www.youtube.com/watch?v=yBO4E1FARaA&list=PLjTcdlvIS6cjdA8WVXNIk56X_SjICxt0d 281 | [stanfordopti]: https://www.youtube.com/watch?v=McLq1hEq3UY&list=PL3940DD956CDF0622 282 | [calcbok]: http://index-of.co.uk/Mathematics/Calculus%20-%20J.%20Stewart.pdf 283 | [princeton]: https://www.youtube.com/watch?v=uDByROsGzuk&list=PLGqzsq0erqU7h6_bpE-CgJp4iX5aRju28 284 | [multi07]: https://www.youtube.com/watch?v=PxCxlsl_YwY&list=PL4C4C8A7D06566F38 285 | [strangcalc]: https://www.youtube.com/watch?v=X9t-u87df3o&list=PLBE9407EA64E2C318 286 | [single07]: https://www.youtube.com/watch?v=7K1sB05pE0A&list=PL590CCC2BC5AF3BC1 287 | [matrixmethods]: https://www.youtube.com/watch?v=Cx5Z-OslNWE&list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k 288 | [bluecal]: https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x 289 | [probBook]: http://www.seyedkalali.com/wp-content/uploads/2016/11/A-First-Course-in-Probability-8th-ed.-Sheldon-Ross.pdf 290 | [stanfordprobgraph]: https://www.youtube.com/watch?v=GqMzbbaN6T4&list=PLzERW_Obpmv-_TkPEmCyzaJUGHtl7S01i 291 | [cmuprob]: https://www.youtube.com/watch?v=oqvdH_8lmCA&list=PLoZgVqqHOumTqxIhcdcpOAJOOimrRCGZn 292 | [mitprob18]: https://www.youtube.com/watch?v=1uW3qMFA9Ho&list=PLUl4u3cNGP60hI9ATjSFgLZpbNJ7myAg6 293 | [mitprob11]: https://www.youtube.com/watch?v=j9WZyLZCBzs&list=PLUl4u3cNGP61MdtwGTqZA0MreSaDybji8 294 | [harvard]: https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo 295 | [MMLLA]: https://www.youtube.com/watch?v=T73ldK46JqE&list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3 296 | [3blue]: https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab 297 | [gilbertStrang]: https://www.youtube.com/watch?v=QVKj3LADCnA&list=PL49CF3715CB9EF31D 298 | [Friedberg]: https://www.academia.edu/43200796/Linear_Algebra 299 | [mmlbook]: https://mml-book.github.io/book/mml-book.pdf 300 | [James_Hamblin]: https://www.youtube.com/watch?v=HAoL5fPmgrw&list=PLNr8B4XHL5kGDHOrU4IeI6QNuZHur4F86 301 | [keras]: https://www.manning.com/books/deep-learning-with-python 302 | -------------------------------------------------------------------------------- /sources/images/Readme.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /sources/images/nlp.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide/eec9262f0fd744b72275dee5762b74bc0f8fe8b7/sources/images/nlp.png --------------------------------------------------------------------------------