├── AUTOML source code.ipynb ├── Anomaly Detection .ipynb ├── Auto regressor Time series.ipynb ├── Blackadam.ipynb ├── Cricket score clustering(KMeans Clustering).ipynb ├── Decision_Tree.ipynb ├── Digit recognizer using KNN ( Kaggle comp ).ipynb ├── ETL scriptrfm.ipynb ├── Ensemble learning.ipynb ├── Hyper parameter tuning.ipynb ├── KNN algorithm.ipynb ├── LICENSE ├── LP1.py ├── Logistic regression.ipynb ├── MovieRecommedation.ipynb ├── Multivariate LR project.ipynb ├── Ridge regression - Jigsaw kaggle competition.ipynb ├── Salary prediction ( Linear Regression ).ipynb ├── Salary_Data.csv ├── Sample scores.csv ├── Time series analysis.ipynb ├── Untitled4.ipynb ├── Weather prediction (NaiveBayes algorithm ).ipynb ├── adboost algorithm.ipynb ├── airline-passenger-traffic(1).csv ├── amex-prediction.ipynb ├── brain-stroke-prediction-with-less-visualizations.ipynb ├── car data.csv ├── food-demand.ipynb ├── hm-recommender.ipynb ├── overfitting-vs-underfitting-simple-explanation.ipynb ├── price-elasticity.ipynb └── walmart-sales-advanced-analysis-and-prediction.ipynb /AUTOML source code.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "id": "eight-refrigerator", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "id": "future-morrison", 15 | "metadata": {}, 16 | "outputs": [ 17 | { 18 | "data": { 19 | "application/vnd.jupyter.widget-view+json": { 20 | "model_id": "", 21 | "version_major": 2, 22 | "version_minor": 0 23 | }, 24 | "text/plain": [ 25 | "Optimization Progress: 0%| | 0/300 [00:00\n", 25 | "\n", 38 | "\n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | "
OversScores
0115
1210
2317
3410
4512
5620
67100
787
898
91011
1011100
111214
12133
1314100
141511
151613
1617100
171816
181926
192030
\n", 149 | "" 150 | ], 151 | "text/plain": [ 152 | " Overs Scores\n", 153 | "0 1 15\n", 154 | "1 2 10\n", 155 | "2 3 17\n", 156 | "3 4 10\n", 157 | "4 5 12\n", 158 | "5 6 20\n", 159 | "6 7 100\n", 160 | "7 8 7\n", 161 | "8 9 8\n", 162 | "9 10 11\n", 163 | "10 11 100\n", 164 | "11 12 14\n", 165 | "12 13 3\n", 166 | "13 14 100\n", 167 | "14 15 11\n", 168 | "15 16 13\n", 169 | "16 17 100\n", 170 | "17 18 16\n", 171 | "18 19 26\n", 172 | "19 20 30" 173 | ] 174 | }, 175 | "execution_count": 3, 176 | "metadata": {}, 177 | "output_type": "execute_result" 178 | } 179 | ], 180 | "source": [ 181 | "df = pd.read_csv('Sample scores.csv')\n", 182 | "df" 183 | ] 184 | }, 185 | { 186 | "cell_type": "code", 187 | "execution_count": 4, 188 | "id": "prerequisite-invasion", 189 | "metadata": {}, 190 | "outputs": [ 191 | { 192 | "data": { 193 | "text/plain": [ 194 | "IsolationForest(contamination=0.2, n_estimators=1000)" 195 | ] 196 | }, 197 | "execution_count": 4, 198 | "metadata": {}, 199 | "output_type": "execute_result" 200 | } 201 | ], 202 | "source": [ 203 | "model=IsolationForest(n_estimators=1000,max_samples='auto',contamination=float(0.2),max_features=1.0)\n", 204 | "model.fit(df[['Scores']])" 205 | ] 206 | }, 207 | { 208 | "cell_type": "code", 209 | "execution_count": 5, 210 | "id": "planned-wilson", 211 | "metadata": {}, 212 | "outputs": [ 213 | { 214 | "data": { 215 | "text/html": [ 216 | "
\n", 217 | "\n", 230 | "\n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | "
OversScoresscoresanomaly
01150.2170621
12100.2383351
23170.1829801
34100.2383351
45120.2346261
56200.1091751
67100-0.021292-1
7870.1444971
8980.1776661
910110.2489361
1011100-0.021292-1
1112140.2236621
121330.0053231
1314100-0.021292-1
1415110.2489361
1516130.2294161
1617100-0.021292-1
1718160.2066931
1819260.0582691
1920300.0084411
\n", 383 | "
" 384 | ], 385 | "text/plain": [ 386 | " Overs Scores scores anomaly\n", 387 | "0 1 15 0.217062 1\n", 388 | "1 2 10 0.238335 1\n", 389 | "2 3 17 0.182980 1\n", 390 | "3 4 10 0.238335 1\n", 391 | "4 5 12 0.234626 1\n", 392 | "5 6 20 0.109175 1\n", 393 | "6 7 100 -0.021292 -1\n", 394 | "7 8 7 0.144497 1\n", 395 | "8 9 8 0.177666 1\n", 396 | "9 10 11 0.248936 1\n", 397 | "10 11 100 -0.021292 -1\n", 398 | "11 12 14 0.223662 1\n", 399 | "12 13 3 0.005323 1\n", 400 | "13 14 100 -0.021292 -1\n", 401 | "14 15 11 0.248936 1\n", 402 | "15 16 13 0.229416 1\n", 403 | "16 17 100 -0.021292 -1\n", 404 | "17 18 16 0.206693 1\n", 405 | "18 19 26 0.058269 1\n", 406 | "19 20 30 0.008441 1" 407 | ] 408 | }, 409 | "execution_count": 5, 410 | "metadata": {}, 411 | "output_type": "execute_result" 412 | } 413 | ], 414 | "source": [ 415 | "df['scores']=model.decision_function(df[['Scores']])\n", 416 | "df['anomaly']=model.predict(df[['Scores']])\n", 417 | "df.head(20)" 418 | ] 419 | }, 420 | { 421 | "cell_type": "code", 422 | "execution_count": 6, 423 | "id": "posted-pencil", 424 | "metadata": {}, 425 | "outputs": [ 426 | { 427 | "data": { 428 | "text/plain": [ 429 | "4" 430 | ] 431 | }, 432 | "execution_count": 6, 433 | "metadata": {}, 434 | "output_type": "execute_result" 435 | } 436 | ], 437 | "source": [ 438 | "outliers_counter = len(df[df['Scores'] > 36])\n", 439 | "outliers_counter" 440 | ] 441 | }, 442 | { 443 | "cell_type": "code", 444 | "execution_count": null, 445 | "id": "developed-potato", 446 | "metadata": {}, 447 | "outputs": [], 448 | "source": [] 449 | } 450 | ], 451 | "metadata": { 452 | "kernelspec": { 453 | "display_name": "Python 3", 454 | "language": "python", 455 | "name": "python3" 456 | }, 457 | "language_info": { 458 | "codemirror_mode": { 459 | "name": "ipython", 460 | "version": 3 461 | }, 462 | "file_extension": ".py", 463 | "mimetype": "text/x-python", 464 | "name": "python", 465 | "nbconvert_exporter": "python", 466 | "pygments_lexer": "ipython3", 467 | "version": "3.8.8" 468 | } 469 | }, 470 | "nbformat": 4, 471 | "nbformat_minor": 5 472 | } 473 | -------------------------------------------------------------------------------- /Cricket score clustering(KMeans Clustering).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "sixth-membership", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "from pandas import pandas as pd\n", 11 | "from pandas import DataFrame\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "from sklearn.cluster import KMeans" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 2, 19 | "id": "color-shower", 20 | "metadata": {}, 21 | "outputs": [ 22 | { 23 | "data": { 24 | "text/html": [ 25 | "
\n", 26 | "\n", 39 | "\n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | "
OversScores
0115
1210
2317
3410
4512
5620
6710
787
898
91011
10114
111214
12133
13146
141511
151613
161720
171816
181926
192030
\n", 150 | "
" 151 | ], 152 | "text/plain": [ 153 | " Overs Scores\n", 154 | "0 1 15\n", 155 | "1 2 10\n", 156 | "2 3 17\n", 157 | "3 4 10\n", 158 | "4 5 12\n", 159 | "5 6 20\n", 160 | "6 7 10\n", 161 | "7 8 7\n", 162 | "8 9 8\n", 163 | "9 10 11\n", 164 | "10 11 4\n", 165 | "11 12 14\n", 166 | "12 13 3\n", 167 | "13 14 6\n", 168 | "14 15 11\n", 169 | "15 16 13\n", 170 | "16 17 20\n", 171 | "17 18 16\n", 172 | "18 19 26\n", 173 | "19 20 30" 174 | ] 175 | }, 176 | "execution_count": 2, 177 | "metadata": {}, 178 | "output_type": "execute_result" 179 | } 180 | ], 181 | "source": [ 182 | "data = pd.read_csv('Sample scores.csv')\n", 183 | "data" 184 | ] 185 | }, 186 | { 187 | "cell_type": "code", 188 | "execution_count": 3, 189 | "id": "seeing-collaboration", 190 | "metadata": {}, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8+yak3AAAACXBIWXMAAAsTAAALEwEAmpwYAAATQ0lEQVR4nO3df2xdd3nH8fezNKwWreaWWFnilqV0VSZGRdJ5VRkd6mAjpapoyCZENUEZiMBEJyqxTE2ZaP9AK5ABYtPEFNaKMBUog9StWFnoClLHJiqcpjSFkPWHUq1Ompi1pkXzRpo+++MeU9v1b/vcc32/75d05evvOdfn0fHJx/d+z3NOIjORJJXjl5ouQJLUXga/JBXG4Jekwhj8klQYg1+SCnNa0wXMx5o1a3LDhg1NlyFJK8r+/ft/kpl9U8dXRPBv2LCBoaGhpsuQpBUlIp6YbtypHkkqjMEvSYUx+CWpMAa/JBXG4JekwtTW1RMRpwP3Ab9cbedrmXljRJwHfAV4BbAfeGdm/ryuOiRpJRo8MMyufYc5OjrG+t4edmzZyNbN/cvys+t8x/9/wBsz87XAJuDyiLgE+ATwmcz8deAZ4L011iBJK87ggWF27j3I8OgYCQyPjrFz70EGDwwvy8+vLfiz5WfVt6urRwJvBL5Wje8BttZVgyStRLv2HWbs5KlJY2MnT7Fr3+Fl+fm1zvFHxKqIeBA4AdwDPAaMZubz1SpPAtN+domI7RExFBFDIyMjdZYpSR3l6OjYgsYXqtbgz8xTmbkJOAe4GPiNBbx2d2YOZOZAX99LrjiWpK61vrdnQeML1ZaunswcBb4DvA7ojYjxk8rnAMszaSVJXWLHlo30rF41aaxn9Sp2bNm4LD+/tuCPiL6I6K2e9wB/AByi9Qfgj6rVrgHurKsGSVqJtm7u5+ZtF9Lf20MA/b093LztwmXr6qnzJm3rgD0RsYrWH5ivZuY3IuJHwFci4mPAAeCWGmuQpBVp6+b+ZQv6qWoL/sx8CNg8zfjjtOb7JUkN8MpdSSqMwS9JhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXpMKc1nQBktSNBg8Ms2vfYY6OjrG+t4cdWzaydXN/02UBBr8kLbvBA8Ps3HuQsZOnABgeHWPn3oMAHRH+TvVI0jLbte/wL0J/3NjJU+zad7ihiiYz+CVpmR0dHVvQeLsZ/JK0zNb39ixovN0MfklaZju2bKRn9apJYz2rV7Fjy8aGKprMk7uStMzGT+AW19UTEecCXwTWAgnszszPRsRNwPuAkWrVGzLz7rrqkKQmbN3c3zFBP1Wd7/ifBz6cmQ9ExJnA/oi4p1r2mcz86xq3LUmaQW3Bn5nHgGPV8+ci4hDQmX/+JKkgbTm5GxEbgM3A/dXQtRHxUETcGhFnzfCa7RExFBFDIyMj060iSVqE2oM/Is4Avg5cl5nPAp8Dzgc20fpE8KnpXpeZuzNzIDMH+vr66i5TkopRa/BHxGpaoX9bZu4FyMzjmXkqM18APg9cXGcNkqTJagv+iAjgFuBQZn56wvi6Cau9DXi4rhokSS9VZ1fP64F3Agcj4sFq7Abg6ojYRKvF8wjw/hprkCRNUWdXz3eBmGaRPfuS1CBv2SBJhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFea0un5wRJwLfBFYCySwOzM/GxFnA7cDG4AjwNsz85m66tDiDB4YZte+wxwdHWN9bw87tmxk6+b+psuS5sXjd3Z1vuN/HvhwZr4auAT4YES8GrgeuDczLwDurb5XBxk8MMzOvQcZHh0jgeHRMXbuPcjggeGmS5Pm5PE7t9qCPzOPZeYD1fPngENAP3AVsKdabQ+wta4atDi79h1m7OSpSWNjJ0+xa9/hhiqS5s/jd25tmeOPiA3AZuB+YG1mHqsWPUVrKmi612yPiKGIGBoZGWlHmaocHR1b0LjUSTx+51Z78EfEGcDXgesy89mJyzIzac3/v0Rm7s7Mgcwc6Ovrq7tMTbC+t2dB41In8fidW63BHxGraYX+bZm5txo+HhHrquXrgBN11qCF27FlIz2rV00a61m9ih1bNjZUkTR/Hr9zqy34IyKAW4BDmfnpCYvuAq6pnl8D3FlXDVqcrZv7uXnbhfT39hBAf28PN2+70K4IrQgev3OL1mxLDT844lLg34CDwAvV8A205vm/CrwSeIJWO+fTs/2sgYGBHBoaqqVOSepWEbE/MwemjtfWx5+Z3wVihsVvqmu7kqTZeeWuJBXG4Jekwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYWq7O2fpBg8Ms2vfYY6OjrG+t4cdWzZ6P3BJHcHgr8HggWF27j34i//weXh0jJ17DwIY/pIa51RPDXbtO/yL0B83dvIUu/YdbqgiSXqRwV+Do6NjCxqXpHYy+GuwvrdnQeOS1E4Gfw12bNlIz+pVk8Z6Vq9ix5aNDVUkSS+aM/gj4s8i4qx2FNMttm7u5+ZtF9Lf20MA/b093LztQk/sSuoI8+nqWQt8PyIeAG4F9mVm1lvWyrd1c79BL6kjzfmOPzP/ErgAuAV4N/BIRPxVRJxfc22S1IjBA8O8/uPf5rzr/5nXf/zbDB4YbrqkZTWvOf7qHf5T1eN54CzgaxHxyRprk6S2G78OZ3h0jOTF63C6KfznM8f/oYjYD3wS+Hfgwsz8U+C3gD+suT5JaqsSrsOZzxz/2cC2zHxi4mBmvhARV9ZTliQ1o4TrcOYzx3/j1NCfsOzQ8pckSc0p4Toc+/glaYISrsPxJm2SNMF4G3Y33123tuCPiFuBK4ETmfmaauwm4H3ASLXaDZl5dx3b97bIkhar26/DqXOq5wvA5dOMfyYzN1WP2kK/29uxJGmxagv+zLwPeLqunz+bEtqxJGmxmji5e21EPBQRt852D6CI2B4RQxExNDIyMtNq0yqhHUuSFqvdwf854HxgE3AM+NRMK2bm7swcyMyBvr6+BW2khHYsSVqstgZ/Zh7PzFOZ+QLweeDiOrZTQjuWJC1WW9s5I2JdZh6rvn0b8HAd2ymhHUuSFqvOds4vA5cBayLiSeBG4LKI2AQkcAR4f13b7/Z2LHU325FVp9qCPzOvnmb4lrq2J3WL8Xbk8c608XZkwPDXsvCWDVKHsR1ZdTP4pQ5jO7LqZvBLHcZ2ZNXN4Jc6jO3Iqpt355Q6jO3IqpvBL3Ug25FVJ4NfUsfxOoZ6GfySOorXMdTPk7uSOorXMdTP4JfUUbyOoX4Gv6SO4nUM9TP4JXUUr2Oonyd3JXUUr2Oon8HfpWyH00rmdQz1Mvi7kO1wkmbjHH8Xsh1O0mwM/i5kO5yk2Rj8Xch2OEmzMfi7kO1wkmbjyd0uZDucpNkY/F3KdrilsR12adx/nc3gl6awHXZp3H+dzzl+aQrbYZfG/df5DH5pCtthl8b91/kMfmkK22GXxv3X+Qx+aQrbYZfG/df5PLkrTWE77NK4/zpfZGbTNcxpYGAgh4aGmi5DklaUiNifmQNTx2t7xx8RtwJXAicy8zXV2NnA7cAG4Ajw9sx8pq4alqLpPuSmt79UK71+qZvVOcf/BeDyKWPXA/dm5gXAvdX3HWe8D3l4dIzkxT7kwQPDRWx/qVZ6/VK3qy34M/M+4Okpw1cBe6rne4CtdW1/KZruQ256+0u10uuXul27u3rWZuax6vlTwNqZVoyI7RExFBFDIyMj7amu0nQfctPbX6qVXr/U7Rpr58zWWeUZzyxn5u7MHMjMgb6+vjZW1nwfctPbX6qVXr/U7dod/McjYh1A9fVEm7c/L033ITe9/aVa6fVL3a7dffx3AdcAH6++3tnm7c9L033ITW9/qVZ6/VK3q62PPyK+DFwGrAGOAzcCg8BXgVcCT9Bq55x6Avgl7OOXpIVrex9/Zl49w6I31bVNSdLcvFePJBXG4Jekwhj8klQYg1+SCmPwS1JhvB+/upJ3B5VmZvCr64zfHXT8RnHjdwcFDH8Jp3rUhbw7qDQ7g19dx7uDSrMz+NV1vDuoNDuDX13Hu4NKs/PkrrqOdweVZmfwqytt3dxv0EszMPjVkezDl+pj8Kvj2Icv1cuTu+o49uFL9TL41XHsw5fqZfCr49iHL9XL4FfHsQ9fqpcnd9Vx7MOX6mXwqyPZh98s22m7m8EvaRLbabufc/ySJrGdtvsZ/JImsZ22+xn8kiaxnbb7GfySJrGdtvt5clfSJLbTdr9Ggj8ijgDPAaeA5zNzoIk6JE3Pdtru1uQ7/t/LzJ80uH1JKpJz/JJUmKaCP4FvRcT+iNg+3QoRsT0ihiJiaGRkpM3lSVL3air4L83Mi4C3AB+MiDdMXSEzd2fmQGYO9PX1tb9CSepSjQR/Zg5XX08AdwAXN1GHJJWo7cEfES+PiDPHnwNvBh5udx2SVKomunrWAndExPj2v5SZ/9JAHZJUpLYHf2Y+Dry23duV2snbGquTeeWutMy8rbE6nX380jLztsbqdAa/tMy8rbE6ncEvLTNva6xOZ/BLy8zbGqvTeXJXWmbe1lidzuCXatD0bY1tJ9VsDH6py9hOqrk4xy91GdtJNReDX+oytpNqLga/1GVsJ9VcDH6py9hOqrl4clfqMraTai4Gv9SFmm4nVWdzqkeSCmPwS1JhDH5JKozBL0mFMfglqTCRmU3XMKeIGAGeaLqOGawBftJ0EbOwvqWxvqWxvqVbSo2/lpl9UwdXRPB3sogYysyBpuuYifUtjfUtjfUtXR01OtUjSYUx+CWpMAb/0u1uuoA5WN/SWN/SWN/SLXuNzvFLUmF8xy9JhTH4JakwBv88RMS5EfGdiPhRRPwwIj40zTqXRcRPI+LB6vHRNtd4JCIOVtsemmZ5RMTfRMSjEfFQRFzUxto2TtgvD0bEsxFx3ZR12rr/IuLWiDgREQ9PGDs7Iu6JiEeqr2fN8NprqnUeiYhr2ljfroj4cfX7uyMiemd47azHQo313RQRwxN+h1fM8NrLI+JwdSxe38b6bp9Q25GIeHCG17Zj/02bKW07BjPTxxwPYB1wUfX8TOA/gVdPWecy4BsN1ngEWDPL8iuAbwIBXALc31Cdq4CnaF1Y0tj+A94AXAQ8PGHsk8D11fPrgU9M87qzgcerr2dVz89qU31vBk6rnn9iuvrmcyzUWN9NwJ/P4/f/GPAq4GXAD6b+W6qrvinLPwV8tMH9N22mtOsY9B3/PGTmscx8oHr+HHAIWGk3O78K+GK2fA/ojYh1DdTxJuCxzGz0SuzMvA94esrwVcCe6vkeYOs0L90C3JOZT2fmM8A9wOXtqC8zv5WZz1fffg84Z7m3O18z7L/5uBh4NDMfz8yfA1+htd+X1Wz1RUQAbwe+vNzbna9ZMqUtx6DBv0ARsQHYDNw/zeLXRcQPIuKbEfGb7a2MBL4VEfsjYvs0y/uB/5rw/ZM088frHcz8D67J/QewNjOPVc+fAtZOs06n7Mf30PoEN525joU6XVtNRd06wzRFJ+y/3wWOZ+YjMyxv6/6bkiltOQYN/gWIiDOArwPXZeazUxY/QGv64rXA3wKDbS7v0sy8CHgL8MGIeEObtz+niHgZ8Fbgn6ZZ3PT+myRbn6k7stc5Ij4CPA/cNsMqTR0LnwPOBzYBx2hNp3Siq5n93X7b9t9smVLnMWjwz1NErKb1C7otM/dOXZ6Zz2bmz6rndwOrI2JNu+rLzOHq6wngDlofqScaBs6d8P051Vg7vQV4IDOPT13Q9P6rHB+f/qq+nphmnUb3Y0S8G7gS+OMqGF5iHsdCLTLzeGaeyswXgM/PsN2m999pwDbg9pnWadf+myFT2nIMGvzzUM0J3gIcysxPz7DOr1brEREX09q3/92m+l4eEWeOP6d1EvDhKavdBbwrWi4BfjrhI2W7zPhOq8n9N8FdwHiHxDXAndOssw94c0ScVU1lvLkaq11EXA78BfDWzPyfGdaZz7FQV30Tzxm9bYbtfh+4ICLOqz4BvoPWfm+X3wd+nJlPTrewXftvlkxpzzFY55nrbnkAl9L6yPUQ8GD1uAL4APCBap1rgR/S6lL4HvA7bazvVdV2f1DV8JFqfGJ9AfwdrY6Kg8BAm/fhy2kF+a9MGGts/9H6A3QMOElrjvS9wCuAe4FHgH8Fzq7WHQD+YcJr3wM8Wj3+pI31PUprbnf8GPz7at31wN2zHQttqu8fq2PrIVoBtm5qfdX3V9DqYnmsnfVV418YP+YmrNvE/pspU9pyDHrLBkkqjFM9klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXFiEifru6Gdnp1dWeP4yI1zRdlzQfXsAlLVJEfAw4HegBnszMmxsuSZoXg19apOpeM98H/pfWLSZONVySNC9O9UiL9wrgDFr/g9LpDdcizZvv+KVFioi7aP0PUufRuiHZtQ2XJM3LaU0XIK1EEfEu4GRmfikiVgH/ERFvzMxvN12bNBff8UtSYZzjl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMP8Pfv4FmII56ugAAAAASUVORK5CYII=\n", 195 | "text/plain": [ 196 | "
" 197 | ] 198 | }, 199 | "metadata": { 200 | "needs_background": "light" 201 | }, 202 | "output_type": "display_data" 203 | } 204 | ], 205 | "source": [ 206 | "plt.scatter(data['Overs'],data['Scores'])\n", 207 | "plt.xlabel('x')\n", 208 | "plt.ylabel('y')\n", 209 | "plt.show()" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": 4, 215 | "id": "confused-stuff", 216 | "metadata": {}, 217 | "outputs": [ 218 | { 219 | "data": { 220 | "text/html": [ 221 | "
\n", 222 | "\n", 235 | "\n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | "
ScoresOvers
0151
1102
2173
3104
4125
5206
6107
778
889
91110
10411
111412
12313
13614
141115
151316
162017
171618
182619
193020
\n", 346 | "
" 347 | ], 348 | "text/plain": [ 349 | " Scores Overs\n", 350 | "0 15 1\n", 351 | "1 10 2\n", 352 | "2 17 3\n", 353 | "3 10 4\n", 354 | "4 12 5\n", 355 | "5 20 6\n", 356 | "6 10 7\n", 357 | "7 7 8\n", 358 | "8 8 9\n", 359 | "9 11 10\n", 360 | "10 4 11\n", 361 | "11 14 12\n", 362 | "12 3 13\n", 363 | "13 6 14\n", 364 | "14 11 15\n", 365 | "15 13 16\n", 366 | "16 20 17\n", 367 | "17 16 18\n", 368 | "18 26 19\n", 369 | "19 30 20" 370 | ] 371 | }, 372 | "execution_count": 4, 373 | "metadata": {}, 374 | "output_type": "execute_result" 375 | } 376 | ], 377 | "source": [ 378 | "df = DataFrame(data,columns=['Scores','Overs'])\n", 379 | "df" 380 | ] 381 | }, 382 | { 383 | "cell_type": "code", 384 | "execution_count": 5, 385 | "id": "dependent-gibson", 386 | "metadata": {}, 387 | "outputs": [], 388 | "source": [ 389 | "kmeans = KMeans(n_clusters=3).fit(df)" 390 | ] 391 | }, 392 | { 393 | "cell_type": "code", 394 | "execution_count": 6, 395 | "id": "closing-jacksonville", 396 | "metadata": {}, 397 | "outputs": [ 398 | { 399 | "name": "stdout", 400 | "output_type": "stream", 401 | "text": [ 402 | "[[13.42857143 4. ]\n", 403 | " [23. 18.5 ]\n", 404 | " [ 8.55555556 12. ]]\n" 405 | ] 406 | } 407 | ], 408 | "source": [ 409 | "centroids = kmeans.cluster_centers_\n", 410 | "print(centroids)" 411 | ] 412 | }, 413 | { 414 | "cell_type": "code", 415 | "execution_count": 7, 416 | "id": "handy-proportion", 417 | "metadata": {}, 418 | "outputs": [ 419 | { 420 | "data": { 421 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8+yak3AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhoUlEQVR4nO3deZhcZZn38e9dW+9Ntg6EEAiQYIQoARtkiRJQAUEFHEkAF3QY4ygjMiLCoO/AMA7zzjCAvi5oGJCgAkFAQSYqDMsAKpqORJZkQoIEWULS2Xtfqu73j1OddNJVne6kq05Vn9/nuvrq6uepqnPnUPz69HOe8xxzd0REJDpiYRcgIiLFpeAXEYkYBb+ISMQo+EVEIkbBLyISMYmwCxiKCRMm+NSpU8MuQ0SkrCxdunSDuzfs2l4WwT916lSamprCLkNEpKyY2au52jXUIyISMQp+EZGIUfCLiESMgl9EJGLK4uSuiMhIaOnq4u4XnuPnK1fg7pw5/W18/J1HMqayKuzSiqpgwW9mlcCTQEV2O/e6+9VmdjBwNzAeWAp80t27C1WHiAjA5o4OPnL3j9nY0U5nby8Ar2zZzI+eW8YD532CfWtrQ66weAo51NMFnOLuRwKzgNPN7Djg34Cb3H0asBm4qIA1iIgAcP1vn2J9W+v20AfoSqfZ2NHOPz/5eIiVFV/Bgt8Drdkfk9kvB04B7s22LwTOLlQNIiJ9Hli5gp5MZkB72p1H/ryannQ6hKrCUdCTu2YWN7NlwHrgEeBlYIu79/3KfR2YnOe1882sycyampubC1mmiIxy7r7Tkf6uMu50K/hHhrun3X0WcABwLDBjGK9d4O6N7t7Y0DDgimMRkSEzM6aPG5+3f7/aOqqTySJWFK6iTOd09y3A48DxwBgz6zupfADwRjFqEJFou/yE91CZGDifpSqR4CvHn4iZhVBVOAoW/GbWYGZjso+rgA8AKwh+AXws+7QLgQcKVYOISJ/3HXIo15x0CrWp1Pav6mSSy094D2fNODzs8oqqkPP4JwELzSxO8AvmHnd/yMyWA3eb2TeAZ4FbC1iDiMh2c494B2fPOJxlb63F3Zm13yQqcvwVMNoV7F/s7s8BR+Vo/zPBeL+ISNGl4nGOnXxA2GWESks2iIhEjIJfRCRiFPwiIhGj4BcRiRgFv4hIxCj4RUQiRsEvIhIxCn4RkYhR8IuIRIyCX0QkYhT8IiIRo+AXEYkYBb+ISMQo+EVEIkbBLyISMQp+EZGIUfCLiESMgl9EJGIU/CIiERO9uwyLyKiwtqWFX65+ibaebo7Z/wDePfkAzCzsssqCgl9Eys7NS37P//vD7wDoTqepSiY5eMxYfnzOuexTWRlydaVPQz0iUlae+ssavrPkGbrSabrSaRxo7+nhpY0buOzhX4ZdXllQ8ItIWflB0x/o6O0d0N6TyfD0a6/S3N4WQlXlRcEvImXllS1b8vZVxOO8sW1b8YopUwp+ESkrB9TX5+3rTqeZVFtXxGrKk4JfRMrK/KOPoSqRHNCeiMVo3H8y+9bWhlBVeVHwi0hZed8hh/LJd86iMpEgEQsirCaZ5ID6em467cyQqysPms4pImXnytnvZe4RM3lw5f/S0t3FcZOncPLBh2z/RSCDK1jwm9kU4A5gX8CBBe7+LTO7Bvgs0Jx96lXuvrhQdYjI6HTI2HFcetwJYZdRlgp5xN8LXObufzSzOmCpmT2S7bvJ3f+jgNsWEZE8Chb87r4WWJt93GJmK4DJhdqeiIgMTVEGxMxsKnAU8Pts09+Z2XNmdpuZjc3zmvlm1mRmTc3NzbmeIiIie6DgwW9mtcB9wKXuvg24GTgUmEXwF8ENuV7n7gvcvdHdGxsaGgpdpohIZBQ0+M0sSRD6P3H3+wHcfZ27p909A9wCHFvIGkREZGcFC34L1ke9FVjh7jf2a5/U72nnAC8UqgYRERmokLN6TgQ+CTxvZsuybVcB55vZLIIpnmuAzxWwBhER2UUhZ/U8DeS6K4Lm7IuIhEiXuYmIRIyCX0QkYhT8IiIRo+AXEYkYBb+ISMQo+EVEIkbBLyISMQp+EZGIUfCLiESMgl9EJGIU/CIiEaPgFxGJGAW/iEjEKPhFRCJGwS8iEjEKfhGRiFHwi4hEjIJfRCRiFPwiIhGj4BcRiRgFv4hIxCj4RUQiRsEvIhIxCn4RkYhR8IuIRIyCX0QkYhJhFyDFs/4vzTxyx/+w4Y1NvO2Yacw570QqqyvCLktGia2dnfzsf5ezatNGDh4zlo++/XDGVVWHXZbkYO5emDc2mwLcAewLOLDA3b9lZuOARcBUYA0w1903D/ZejY2N3tTUVJA6o+KhHzzMzX9/O55xerp7qaypJFWZ4IYnrmXqEVPCLk/K3DOvv8bf/OJnZNzp7O2lMpHAgO+e8RHmTD047PIiy8yWunvjru2FHOrpBS5z98OB44CLzexw4ErgUXefDjya/VkKaM2Lr/H9Ly+ku7OHnu5eADrbOmnZ1MrXzryOQv3yl2ho6+7ms7/4Ge09PXT2Zj9fvb109PZy8eIH2dLZEXKFsquCBb+7r3X3P2YftwArgMnAWcDC7NMWAmcXqgYJPPjdX20P/P7coWVTK88/tSKEqmS0WLz6JfIdOjjwwP/q81VqinJy18ymAkcBvwf2dfe12a63CIaCcr1mvpk1mVlTc3NzMcoctV5/6U0y6Uze/nWvav/Knntj2zbae3py9nX29vLq1i3FLUh2q+DBb2a1wH3Ape6+rX+fB2MMOQ8W3H2Buze6e2NDQ0OhyxzVDn7nQSSS8Zx97s4Bh+1f5IpkNDl47FhqksmcfdWJJIeNn1DkimR3Chr8ZpYkCP2fuPv92eZ1ZjYp2z8JWF/IGgTOuvh04omBwR+LGRMPnMCMY6eFUJWMFqcfOp1kLPeBRSxmfOiwGUWuSHanYMFvZgbcCqxw9xv7dT0IXJh9fCHwQKFqkMD+h+7HFT+6hIqqFJU1FcRiRlVdJQ1TJnDd4q8R/KcS2TMViQR3nPMxxlRUUpNMEsOoSSapS1Vw+1l/RW0qFXaJsotCTuecDTwFPA/0DTBfRTDOfw9wIPAqwXTOTYO9l6Zzjoy2rW08ee8zbF63lUOPPIjG02cRj+c+UhMZrq7eXv77zy+zZusWDqiv57RDp1GZyD0EJMWRbzpnwYJ/JCn4RUSGL4x5/CIiUoK0ZIOISClqaYFFi2DVKpg+HebNg7q6EXlrBb+ISKl5+mk44wzIZKCtDWpq4MtfhsWLYfbsvX57DfWIiJSSlpYg9FtagtCH4Htfe2vrXm9CwS8iUkoWLQqO9HPJZIL+vaTgFxEpJatW7TjS31VbG6xevdebGFLwm9mhZlaRfTzHzC4xszF7vXUREdnZ9OnBmH4uNTUwbe+vtB/qEf99QNrMpgELgCnAnXu9dRER2dm8eRDLE82xWNC/l4Ya/Bl37wXOAb7t7pcDk/Z66yIisrO6umD2Tl3djiP/mpod7bW1e72JoU7n7DGz8wnW1vlwtk3XYouIFMLs2fDmm8GJ3NWrg+GdefNGJPRh6MH/GeBvgX9x91fM7GDgRyNSgYiIDFRbCxddVJC3HlLwu/tyM7uCYGE13P0V4N8KUpGIiBTUkILfzD4M/AeQAg42s1nAte7+kQLWVja6u3p4+v7fs+TXy6iuq+T9nziJGcdO03LHIlKShjrUcw1wLPAEgLsvM7NDClRTWdn01ma+dMLX2bphGx2tnVjM+PUPn+Ckc4/nK7d9QeEvIiVnqLN6etx96y5t+W/iGiH/fuF3aH59Ix2tnQB4xulq7+LJe3/HY3c+HXJ1IiIDDTX4XzSzC4C4mU03s28Dvy1gXWVh87otPPfkCtK96QF9nW1d3HvjL0KoSkRkcEMN/i8CRwBdBBdubQUuLVBNZWPTW1tIVuQfLdv45qA3FhMRCcVux/jNLA78l7ufDHyt8CWVj30PaqCnqzdv/5QZk4tYjYjI0Oz2iN/d00DGzPYpQj1lpXZMDSfNPZ5U5cBr2SqqKzj/Hz4aQlUiIoMb6qyeVuB5M3sE2L5snLtfUpCqysiXbp7Pxjc3s/x3K8mkM8QTcdK9GS68di6Npx4ZdnkiJc/dWbGhmea2NqaPH8/+dfVhlzTqDTX4789+yS4qqyv490f+kdXLXuH5J1dQUV3BCWc1MqZBfyCJ7M7KjRv4/EMPsL69jbgZ3ek0J045iG+efia1qVTY5Y1a5u5De6JZCjgs++NKd+8pWFW7aGxs9KampmJtTkSKYEtnB3MW3sq2rq6d2lPxOO+atD8/+ejckCobPcxsqbs37to+1PX45wCrgO8C3wNeMrP3jmSBIhIti158ge4cU6G702mefWstL23cEEJV0TDUoZ4bgFPdfSWAmR0G3AW8q1CFicjo9szrf6EznXtWXMyMP617i8PGTyhyVdEw1Hn8yb7QB3D3l9CyzCKyF8ZXVZNvQZOYGWMqKotaT5QMNfibzOw/s7ddnGNmtwAadBeRPTZv5juoTOQedHB33nvQ1OIWFCFDDf7PA8uBS7Jfy7NtIiJ7pHHSZM6ZcTjViR2DBzEzKhMJvnnamVTk+aUge29Is3rMrAbozF7M1Xc1b4W7txe4PmD4s3o2r9vCwqsX8fhdv6G7q4cZ757GRdd9nJknzihglSIyXO7OE6++wsI/Pcu61lbeue9+/M1RjUwfPz7s0kaFfLN6hhr8zwDvd/fW7M+1wMPufsIgr7kN+BCw3t1nZtuuAT4LNGefdpW7L97d9ocT/Ns2tjD/yMvY0ryNdM+OGQMVVSn+8d6vcOwHjxrS+4iIlLu9ms4JVPaFPkD2cfVuXnM7cHqO9pvcfVb2a7ehP1z33vgLtm1s2Sn0Abo6uvnm3/6AoV63ICIyWg01+NvM7Oi+H8ysEegY7AXu/iRQ9OUpH7vz6bwLp7VsauW1lW8WuSIRkdIy1LMnlwI/NbO+1JwEzNvDbf6dmX2KYFbQZe6+OdeTzGw+MB/gwAMPHPKb51obv997DtovIhIFgx7xm9kxZrafuy8BZgCLgB7gV8Are7C9m4FDgVnAWoILw3Jy9wXu3ujujQ0NDUPewPEfaSSejOfsS1YkOfDtWipZRKJtd0M9PwC6s4+PB64iWLZhM7BguBtz93Xunnb3DHALwX18R9R5V5xNZU3FgHvdVlSnmH/9J4nHc/9SEBGJit0Ff9zd+8bp5wEL3P0+d/8/wLThbszMJvX78RzgheG+x+5MPLCBb//uOo48+QgSyTiJVIKJB03gK7d+gdM+ffJIb04iynteIrP1n8ls/jyZ1h/gGd1tTcrH7sb442aWcPde4H1kx9yH8lozuwuYA0wws9eBq4E5ZjYLcGAN8Lk9K3twU942mev/+2o6Wjvo7uyhfnzdgL8ARPZUpnUBtH6HYNQzDV2/wdu+D2Nvx1K6B4OUvt0F/13A/5jZBoJZPE8BmNk0gvvu5uXu5+dovnVPitxTVbVVVNVWFXOTMsp5z/Js6Hf2a+0EB9/8OZj4G4LrG0VK16DB7+7/YmaPEsziedh3TIKPEdyAXSRSvP0n7Djttasu6H4GKk4sZkkiw7bb6Zzu/kyOtpcKU45IiUu/CWTydDpk1hezGpE9MtQLuEQEIPkOIN8tAR0S04tZjcgeUfCLDINVXwA5x/DjED8YS84sek0iw6XgFxkGi++Hjfk+WC1YDVAJVgWJadjYW8Iub8R472t458N49xKCy25kNNGC1yLDZBXHw8RnoOt/ILMREjMgeeSomDLsmTZ8y6XBSWpLAg5WDWO+g6W0su1ooeAX2QNmKaj8QNhljDjf8qUg9OkG78o2tuGbPwMTfoXF9wu1PhkZGuoREQC89y/Q/XtyTlf13uxUVhkNFPwiEuh9ESzfIEA3dC8pajlSOAp+EQnY2MH7YxOKU4cUnIJfRAKpY4CK3H1WhVXnWoVFypGCv4zpNpIykszi2NhvB9NTSfbrqILKD0Mq7y22pcxoVk+ZSafT3HvDL7jvpofYvG4rYybW81eXfohzv/IR4okyWxyspQUWLYJVq2D6dJg3D+rqwq4q0ix1DExYjLfdAd1/hPgErPrjkDpxVExXlYCVw1FjY2OjNzU1hV1GSfjGeTfxzENNdLXvmHlRUZ3imNOP4up7vxJiZcP09NNwxhmQyUBbG9TUQCwGixfD7NlhVycyKpjZUndv3LVdQz1l5OU/rRkQ+gBd7d0s+dUyVv3xzyFVNkwtLUHot7QEoQ/B97721tZw6xMZ5RT8ZeS3Dy6hp6s3Z19PZze/+fkfilzRHlq0KDjSzyWTCfpFpGAU/GXEMw55hubcy+hk76pVO470d9XWBqtXF7cekYhR8JeRd5/5LpKVuZcErqhOcdyHBgzllabp04Mx/VxqamDasG/nLCLDoOAvI29rPJRZJx9Bqmrn8E9VpZg5++3MOLZMAnPevOBEbi6xWNAvIgWj4C8z19x/OR/7+w9RXV9FPBGjuq6Kcy45g2sf+Gr5TLerqwtm79TV7Tjyr6nZ0V5bO+y39HQzmZZvk9n0GTJbrsC7nx3hosuPZ1rJtP2YzKaLyGz+It75uJZYFkDTOctWJpOhq72LiuoKYvmOnktda2twInf16mB4Z968PQv97mX45k+Dp4EuguOZCqi+gFj9FSNcdHnw9Jv4xnMh0wp0BI1WDclGbOz3sbxr8shokm86p/7rl6lYLEZVbVXYZeyd2lq46KK9egv3NL7lC+Dt/VozQAe034lXvh9LvWuvtlGOfMsVwb0C+t8f2Nuhewnefg9Wc0FotUn4yvRQUSSrewl4R57OzkguJezpDdDzLLlvCt8B7XcUuyQpMQp+KW+ZDYN0OqTfKlopJSOzOXv3rHz9m4pXi5QkBb+Ut+SM7Nh+LilIzSpmNaUhPnmQfUKwzyTSFPxS1iwxDZIz2Wk1ye2dcaz6E0WvKWwWq4bquUBljt5KrObiYpckJUYnd3fRsrmVZx99Hnc46n0zqR9X2NUiX13+GqufXcOYifXMOnlmSa6w2dXRxR//+3k6WjuZeeLbmHhgQ9gl7cTG3oxv/lvoeREsBhiQwMZ8G4vvH3Z5obC6K/DMZuh8GCwOxIK/Auq/jlW8O+zyJGQK/ix3545/+in3/PvPSSSD3dLb08vcr57Np64+d8TnyLdsbuWac65nZdNqYvEYhpGsSHDN/Zczc/bbR3Rbe+Pxu3/DjfO/TyxmuDu9PWlmn/NuLv/hF0imBhlHLiKL7YONvwvvWQm9yyE2DlInYIONc49yZklszA14+g3obgKrhNRsLJbnimmJlILN4zez24APAevdfWa2bRywCJgKrAHmuvvm3b1XMebx//K2R/nel35IZ1vXTu2V1RV84Vuf4YMXvW9Et3fZnKtZ/sxL9HbvvOhaZW0lP1zxTSZMHj+i29sTy595ia++/58GrAZaUZXiAxfO4Uvf+2xIlYnIUISxLPPtwOm7tF0JPOru04FHsz+XhB9fe++A0AfobO/iR9f+dES39ery11i5ZPWA0AdI96R58Hu/HtHt7ak7r7uf7o7uAe1dHd08fPvjtG1rz/EqESl1BQt+d38S2HXe2FnAwuzjhcDZhdr+cPT29NL8Wv5pgRve2ERPd8+Ibe/lZWuIJXLv+p6uHl787coR29beWLX0z/kWAyWRSvDm6ghOlRQZBYo9q2dfd1+bffwWsG++J5rZfDNrMrOm5ubmghYVT8RJ5Vn1EiBVkdw+7j8SxkzcByP3OQMzK4lhHoB9GvKf2O7t7mWfhvoiViMiIyW06ZwenFzIe4LB3Re4e6O7NzY0FHYWiZlx6qfnkEgNDPdkKsEHLjxpRE/uHnnyESQrc594TFWl+PDnTx2xbe2Nj15yJpU1FQPaLWYccuRUJk6ZEEJVIrK3ih3868xsEkD2+/oibz+vi667gMnT9tsp6CprKth/2n78zb9+fES3FY/Hueb+y6mqrSRZEfwCMDMqqiv4yBdOY+aJpXGBzQcuPIlZp7yDytod88ErqlPUj6vlH358SYiVicjeKOjqnGY2FXio36ye64GN7v5/zexKYJy7f3V371Os1Tm7u3p48qe/47E7n8LdOeWC93DS3BNIVRRmWuCGNzfx0M2/5oXfrGTC5HF8+POnccQJbyvItvZUJpNhyS+f5Ze3PUbblnbefebRnP7Xp1A7RtMCRUpdvlk9hZzOeRcwB5gArAOuBn4O3AMcCLxKMJ1ztwuHaFlmEZHhK/qyzO5+fp6ukZ0QLyIiw6K1ekREIkbBLyISMQp+EZGIUfCLiESMVueUkuKZLXj7PdD1BFg1Vv0xqPgAZqW3XLVIuVLwS8nw3r/gG8/N3jg9WDDPe5ogeReM/c9IL7MsMpI01CMlw7deDr6VvtAPGtuh+1m8fVFodYmMNgp+KQmeXhfcQYtMjt5OaP9xsUsSGbUU/FIaMlthsKEc31K0UkRGOwW/lIbEFPBcR/t9/UcUrxaRUU7BLyXBrAqqzwOqcvRWYrUXF7skkVFLs3qkYDy9AbqfBhxSJ2LxiYM+3+oux70FOh7MDvtY8Nr6b2Cpo4tRskgkKPhlxLk73nI9tN8Blv2IeS9e/XGs7sq8N7UxS2D7XIfXXgo9z4JVQeo4zPLfHU1Ehk/BLyPO2++B9p8A3eD9btbecTcen4LVfGLQ11t8IsRPK2yRIhGmMX4ZeW3fAzoGtnsHtN1MIW/+IyK7p+CXEeWehsza/E/IbAS68/eLSMEp+GWExcAGuy1jBaClF0TCpOCXEWVmUHUukOuEbAqqPoqZPnYiYdL/gTLirPZSSEwHq+7XWg2JQ7C6y8Iqq+x5pg3PtIZdhowCmtUjI85i1TD+p9D1KN7xEOBY1ZlQ8X6tsLkHvHsZvu1a6F0R/Jw4DKv/OpY6JuTKpFwp+KUgzBJQeRpWqWmZe8N7nsc3fQro3NHYuwLfdBGM+yGWeldotUn50lCPSAnzbf/GTqG/XSfe8q/FLkdGCQW/SIlyd+hpyv+Enhdw19RYGT4Fv0hJy728hcjeUPCLlCgzg9R7yBv+qWO0jpHsEQW/SAmz+iuy02L7h78FN6KvuyqssqTMKfhFSpglDsXG3wcV7ye4KC4JqTnYuHuw5NvDLk/KVCjTOc1sDdACpIFed28Mow6RcmCJQ7Cx3w27DBlFwpzHf7K7bwhx+yIikaShHhGRiAkr+B142MyWmtn8XE8ws/lm1mRmTc3NzUUuT0Rk9Aor+Ge7+9HAB4GLzey9uz7B3Re4e6O7NzY0NBS/QhGRUSqU4Hf3N7Lf1wM/A44Now4RkSgqevCbWY2Z1fU9Bk4FXih2HSIQ3DHMu57A2+7AOx/DvTfskkQKLoxZPfsCPzOzvu3f6e6/CqEOiTjvWYVv/jR4O3gPWBKogHG3YcnDi1tMSwssWgSrVsH06TBvHtTVFbcGiQwrhxtfNzY2elPTIItViQyTeze+/j3gmwd22j7YxCcxqypOMU8/DWecAZkMtLVBTQ3EYrB4McyeXZwaZFQys6W5rpPSdE6Jps6HyXvTd++Bzl8Wp46WliD0W1qC0Ifge197q+64JSNPwS+R5L2rwdvy9LbjPSuLU8iiRcGRfi6ZTNAvMsIU/BJJFt8P8g7lVEJ8/+IUsmrVjiP9XbW1werVxalDIkXBL9FUeUZwGWEeVvXh4tQxfXowpp9LTQ1Mm1acOiRSFPwSSRarx8Z8E6gkWPWS7PdK2Oc/sNi4gm3bM9vw9HrcM8HsnVie/w1jsaBfZITpZusSWVZ5MjQ8grffA+mXIX4IVj03GAYqAO99Gd/6j9CzDIhBrB6v/TKxxYvzz+qprS1ILRJtCn6JNIvvi9V9seDb8fRafONc8Fa2jzFlmmHbP5E56gpib74ZnMhdvToY3pk3T6EvBaPgFykCb70FvIOBJxY6ofVGfOJc7KKLwihNIkhj/CLF0PUYkG85iAz0ripmNRJxCn6RYrDB/rjOoD++pZgU/CLFUHkWO2YP7cLqITG9qOVItCn4RYrAai6EWAOQ3KWnEtvnG2QXLRQpCgW/SBFYrB6bcD9Unw82BqiE1HHYuIVYxUlhlycRo4FFkSKx2Fis/utQ//WwS5GI0xG/iEjEKPhFRCJGwS8iEjEKfhGRiFHwi4hETFncc9fMmoE2YEPYtZSgCWi/7Er7ZCDtk4GisE8OcveGXRvLIvgBzKwp102Do077ZSDtk4G0TwaK8j7RUI+ISMQo+EVEIqacgn9B2AWUKO2XgbRPBtI+GSiy+6RsxvhFRGRklNMRv4iIjAAFv4hIxJRF8JvZ6Wa20sxWm9mVYddTCsxsjZk9b2bLzKwp7HrCYGa3mdl6M3uhX9s4M3vEzFZlv48Ns8Yw5Nkv15jZG9nPyzIzOyPMGovJzKaY2eNmttzMXjSzL2XbI/tZKfngN7M48F3gg8DhwPlmdni4VZWMk919VlTnIgO3A6fv0nYl8Ki7Twcezf4cNbczcL8A3JT9vMxy98VFrilMvcBl7n44cBxwcTZDIvtZKfngB44FVrv7n929G7gbOCvkmqQEuPuTwKZdms8CFmYfLwTOLmZNpSDPfoksd1/r7n/MPm4BVgCTifBnpRyCfzLwWr+fX8+2RZ0DD5vZUjObH3YxJWRfd1+bffwWsG+YxZSYvzOz57JDQZEZ1ujPzKYCRwG/J8KflXIIfslttrsfTTAEdrGZvTfsgkqNB3OVNV85cDNwKDALWAvcEGo1ITCzWuA+4FJ339a/L2qflXII/jeAKf1+PiDbFmnu/kb2+3rgZwRDYgLrzGwSQPb7+pDrKQnuvs7d0+6eAW4hYp8XM0sShP5P3P3+bHNkPyvlEPxLgOlmdrCZpYDzgAdDrilUZlZjZnV9j4FTgRcGf1VkPAhcmH18IfBAiLWUjL6AyzqHCH1ezMyAW4EV7n5jv67IflbK4srd7NSzbwJx4DZ3/5dwKwqXmR1CcJQPkADujOI+MbO7gDkEy+uuA64Gfg7cAxwIvArMdfdInejMs1/mEAzzOLAG+Fy/8e1RzcxmA08BzwOZbPNVBOP8kfyslEXwi4jIyCmHoR4RERlBCn4RkYhR8IuIRIyCX0QkYhT8IiIRo+AXyTKzA8zsgexqjS+b2bey146IjCoKfhG2X+RzP/Dz7GqNhwG1wF5dH2FmiREoT2REKfhFAqcAne7+QwB3TwN/D/y1mf3BzI7oe6KZPWFmjdkrqG/L9j9rZmdl+z9tZg+a2WPAo2Y2ycyezK6D/4KZvSeMf6BIHwW/SOAIYGn/huxCXn8B/guYC9uXPpjk7k3A14DH3P1Y4GTg+uwSGgBHAx9z95OAC4Bfu/ss4EhgWcH/NSKDUPCL7N4TwMeyj+cC92YfnwpcaWbLss+pJLj8H+CRfpf/LwE+Y2bXAO/IrgkvEhoFv0hgOfCu/g1mVk8Q5EuAjWb2TmAesKjvKcBf9bur1YHuviLb19b3Ptkbo7yXYFXZ283sU4X9p4gMTsEvEngUqO4L5ewtP28Abnf3doKw/yqwj7s/l33Nr4EvZk8MY2ZH5XpjMzsIWOfutwD/STAMJBIaBb8I22/EcQ5wrpmtAl4COglWcYRgeOc8gtUc+/wzkASeM7MXsz/nMgf4k5k9S/AXw7dG/B8gMgxanVNEJGJ0xC8iEjEKfhGRiFHwi4hEjIJfRCRiFPwiIhGj4BcRiRgFv4hIxPx/GFp8h8IzitIAAAAASUVORK5CYII=\n", 422 | "text/plain": [ 423 | "
" 424 | ] 425 | }, 426 | "metadata": { 427 | "needs_background": "light" 428 | }, 429 | "output_type": "display_data" 430 | } 431 | ], 432 | "source": [ 433 | "plt.scatter(df['Overs'], df['Scores'],c= kmeans.labels_.astype(float), s=50, alpha=1)\n", 434 | "plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=50)\n", 435 | "plt.xlabel('Overs')\n", 436 | "plt.ylabel('Scores')\n", 437 | "plt.show()" 438 | ] 439 | }, 440 | { 441 | "cell_type": "code", 442 | "execution_count": null, 443 | "id": "attractive-national", 444 | "metadata": {}, 445 | "outputs": [], 446 | "source": [] 447 | } 448 | ], 449 | "metadata": { 450 | "kernelspec": { 451 | "display_name": "Python 3", 452 | "language": "python", 453 | "name": "python3" 454 | }, 455 | "language_info": { 456 | "codemirror_mode": { 457 | "name": "ipython", 458 | "version": 3 459 | }, 460 | "file_extension": ".py", 461 | "mimetype": "text/x-python", 462 | "name": "python", 463 | "nbconvert_exporter": "python", 464 | "pygments_lexer": "ipython3", 465 | "version": "3.8.8" 466 | } 467 | }, 468 | "nbformat": 4, 469 | "nbformat_minor": 5 470 | } 471 | -------------------------------------------------------------------------------- /Decision_Tree.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Decision Tree.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyOROAalO6i5bSeT2NjVmuLB", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 3, 33 | "metadata": { 34 | "colab": { 35 | "base_uri": "https://localhost:8080/" 36 | }, 37 | "id": "ex889e5uNZHJ", 38 | "outputId": "e3215fb7-e1db-40af-83de-f76ed01bca7f" 39 | }, 40 | "outputs": [ 41 | { 42 | "output_type": "execute_result", 43 | "data": { 44 | "text/plain": [ 45 | "0 203\n", 46 | "1 96\n", 47 | "Name: DEATH_EVENT, dtype: int64" 48 | ] 49 | }, 50 | "metadata": {}, 51 | "execution_count": 3 52 | } 53 | ], 54 | "source": [ 55 | "# importing libraries \n", 56 | "import numpy as nm \n", 57 | "import matplotlib.pyplot as mtp \n", 58 | "import pandas as pd \n", 59 | " \n", 60 | "#importing datasets \n", 61 | "data_set= pd.read_csv('/content/heart_failure_clinical_records_dataset.csv') \n", 62 | " \n", 63 | "#Extracting Independent and dependent Variable \n", 64 | "data_set.DEATH_EVENT.value_counts()\n", 65 | " \n" 66 | ] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "source": [ 71 | "#feature allocation\n", 72 | "X=data_set.drop([\"DEATH_EVENT\"],axis=1)\n", 73 | "y=data_set[\"DEATH_EVENT\"]" 74 | ], 75 | "metadata": { 76 | "id": "azj_jpjyO80e" 77 | }, 78 | "execution_count": 5, 79 | "outputs": [] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "source": [ 84 | "# Splitting the dataset into training and test set. \n", 85 | "from sklearn.model_selection import train_test_split \n", 86 | "x_train, x_test, y_train, y_test= train_test_split(X, y, test_size= 0.25, random_state=0) " 87 | ], 88 | "metadata": { 89 | "id": "rxi68tNYO9OE" 90 | }, 91 | "execution_count": 6, 92 | "outputs": [] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "source": [ 97 | "" 98 | ], 99 | "metadata": { 100 | "id": "DhHNpvlNP2sV" 101 | }, 102 | "execution_count": 3, 103 | "outputs": [] 104 | }, 105 | { 106 | "cell_type": "code", 107 | "source": [ 108 | "#Fitting Decision Tree classifier to the training set \n", 109 | "from sklearn.tree import DecisionTreeClassifier \n", 110 | "classifier= DecisionTreeClassifier(criterion='entropy', random_state=0) \n", 111 | "classifier.fit(x_train, y_train) " 112 | ], 113 | "metadata": { 114 | "colab": { 115 | "base_uri": "https://localhost:8080/" 116 | }, 117 | "id": "wRd1hpbkPiK8", 118 | "outputId": "0bb6e6b3-717c-48f7-ff64-8f98c5905488" 119 | }, 120 | "execution_count": 10, 121 | "outputs": [ 122 | { 123 | "output_type": "execute_result", 124 | "data": { 125 | "text/plain": [ 126 | "DecisionTreeClassifier(criterion='entropy', random_state=0)" 127 | ] 128 | }, 129 | "metadata": {}, 130 | "execution_count": 10 131 | } 132 | ] 133 | }, 134 | { 135 | "cell_type": "code", 136 | "source": [ 137 | "y_pred= classifier.predict(x_test)" 138 | ], 139 | "metadata": { 140 | "id": "GuUiw3NgPoz0" 141 | }, 142 | "execution_count": 11, 143 | "outputs": [] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "source": [ 148 | "print(y_pred)" 149 | ], 150 | "metadata": { 151 | "colab": { 152 | "base_uri": "https://localhost:8080/" 153 | }, 154 | "id": "ndKQQVzFPwed", 155 | "outputId": "bffd3833-a348-46ff-818d-a5c5462f09d4" 156 | }, 157 | "execution_count": 16, 158 | "outputs": [ 159 | { 160 | "output_type": "stream", 161 | "name": "stdout", 162 | "text": [ 163 | "[0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0\n", 164 | " 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1\n", 165 | " 0]\n" 166 | ] 167 | } 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "source": [ 173 | "" 174 | ], 175 | "metadata": { 176 | "id": "OM2JwcQ7Q9B7" 177 | }, 178 | "execution_count": 9, 179 | "outputs": [] 180 | }, 181 | { 182 | "cell_type": "code", 183 | "source": [ 184 | "from sklearn.metrics import confusion_matrix \n", 185 | "cm= confusion_matrix(y_test, y_pred) " 186 | ], 187 | "metadata": { 188 | "id": "YbVRNx-DPzAp" 189 | }, 190 | "execution_count": 12, 191 | "outputs": [] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "source": [ 196 | "print(cm)" 197 | ], 198 | "metadata": { 199 | "colab": { 200 | "base_uri": "https://localhost:8080/" 201 | }, 202 | "id": "sHFHRZimQJst", 203 | "outputId": "f8b62630-d901-439c-9245-eff9ae2a2271" 204 | }, 205 | "execution_count": 13, 206 | "outputs": [ 207 | { 208 | "output_type": "stream", 209 | "name": "stdout", 210 | "text": [ 211 | "[[40 8]\n", 212 | " [ 6 21]]\n" 213 | ] 214 | } 215 | ] 216 | }, 217 | { 218 | "cell_type": "code", 219 | "source": [ 220 | "from sklearn.metrics import accuracy_score\n", 221 | "accuracy_score(y_test, y_pred)" 222 | ], 223 | "metadata": { 224 | "colab": { 225 | "base_uri": "https://localhost:8080/" 226 | }, 227 | "id": "FlvctoxSQLQO", 228 | "outputId": "3f730a8a-f038-4436-d044-011561a957e6" 229 | }, 230 | "execution_count": 14, 231 | "outputs": [ 232 | { 233 | "output_type": "execute_result", 234 | "data": { 235 | "text/plain": [ 236 | "0.8133333333333334" 237 | ] 238 | }, 239 | "metadata": {}, 240 | "execution_count": 14 241 | } 242 | ] 243 | }, 244 | { 245 | "cell_type": "code", 246 | "source": [ 247 | "" 248 | ], 249 | "metadata": { 250 | "id": "kHL4j9jAQxPv" 251 | }, 252 | "execution_count": null, 253 | "outputs": [] 254 | } 255 | ] 256 | } -------------------------------------------------------------------------------- /Ensemble learning.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 80, 6 | "id": "proof-secretariat", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 81, 16 | "id": "frank-league", 17 | "metadata": {}, 18 | "outputs": [ 19 | { 20 | "data": { 21 | "text/html": [ 22 | "
\n", 23 | "\n", 36 | "\n", 37 | " \n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
..............................
76310101764818032.90.171630
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", 186 | "

768 rows × 9 columns

\n", 187 | "
" 188 | ], 189 | "text/plain": [ 190 | " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", 191 | "0 6 148 72 35 0 33.6 \n", 192 | "1 1 85 66 29 0 26.6 \n", 193 | "2 8 183 64 0 0 23.3 \n", 194 | "3 1 89 66 23 94 28.1 \n", 195 | "4 0 137 40 35 168 43.1 \n", 196 | ".. ... ... ... ... ... ... \n", 197 | "763 10 101 76 48 180 32.9 \n", 198 | "764 2 122 70 27 0 36.8 \n", 199 | "765 5 121 72 23 112 26.2 \n", 200 | "766 1 126 60 0 0 30.1 \n", 201 | "767 1 93 70 31 0 30.4 \n", 202 | "\n", 203 | " DiabetesPedigreeFunction Age Outcome \n", 204 | "0 0.627 50 1 \n", 205 | "1 0.351 31 0 \n", 206 | "2 0.672 32 1 \n", 207 | "3 0.167 21 0 \n", 208 | "4 2.288 33 1 \n", 209 | ".. ... ... ... \n", 210 | "763 0.171 63 0 \n", 211 | "764 0.340 27 0 \n", 212 | "765 0.245 30 0 \n", 213 | "766 0.349 47 1 \n", 214 | "767 0.315 23 0 \n", 215 | "\n", 216 | "[768 rows x 9 columns]" 217 | ] 218 | }, 219 | "execution_count": 81, 220 | "metadata": {}, 221 | "output_type": "execute_result" 222 | } 223 | ], 224 | "source": [ 225 | "df=pd.read_csv('diabetes.csv')\n", 226 | "df" 227 | ] 228 | }, 229 | { 230 | "cell_type": "code", 231 | "execution_count": 82, 232 | "id": "electronic-oakland", 233 | "metadata": {}, 234 | "outputs": [], 235 | "source": [ 236 | "feature_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']\n", 237 | "X = df[feature_cols] #features\n", 238 | "y = df.Outcome #outcomes or target" 239 | ] 240 | }, 241 | { 242 | "cell_type": "code", 243 | "execution_count": 83, 244 | "id": "available-boards", 245 | "metadata": {}, 246 | "outputs": [], 247 | "source": [ 248 | "from sklearn.model_selection import train_test_split\n", 249 | "X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)" 250 | ] 251 | }, 252 | { 253 | "cell_type": "code", 254 | "execution_count": 84, 255 | "id": "proud-remainder", 256 | "metadata": {}, 257 | "outputs": [], 258 | "source": [ 259 | "from sklearn.naive_bayes import GaussianNB\n", 260 | "from sklearn.tree import DecisionTreeClassifier\n", 261 | "from sklearn.linear_model import LogisticRegression\n", 262 | "from sklearn.metrics import accuracy_score\n", 263 | "from sklearn.metrics import classification_report" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": 85, 269 | "id": "burning-karma", 270 | "metadata": {}, 271 | "outputs": [], 272 | "source": [ 273 | "classifiers=[['Naive Bayes :', GaussianNB()],['LogisticRegression :', LogisticRegression(max_iter = 1000)], ['DecisionTree :',DecisionTreeClassifier()]]" 274 | ] 275 | }, 276 | { 277 | "cell_type": "code", 278 | "execution_count": 86, 279 | "id": "daily-conference", 280 | "metadata": {}, 281 | "outputs": [], 282 | "source": [ 283 | "predictions_df = pd.DataFrame()\n", 284 | "predictions_df['action'] = y_test" 285 | ] 286 | }, 287 | { 288 | "cell_type": "code", 289 | "execution_count": 87, 290 | "id": "reasonable-ideal", 291 | "metadata": {}, 292 | "outputs": [ 293 | { 294 | "name": "stdout", 295 | "output_type": "stream", 296 | "text": [ 297 | "Naive Bayes : 0.70995670995671\n", 298 | "LogisticRegression : 0.7445887445887446\n", 299 | "DecisionTree : 0.6103896103896104\n" 300 | ] 301 | } 302 | ], 303 | "source": [ 304 | "for name,classifier in classifiers:\n", 305 | " classifier = classifier\n", 306 | " classifier.fit(X_train, y_train.ravel())\n", 307 | " predictions = classifier.predict(X_test)\n", 308 | " predictions_df[name.strip(\":\")] = predictions\n", 309 | " print(name, accuracy_score(y_test, predictions))" 310 | ] 311 | }, 312 | { 313 | "cell_type": "code", 314 | "execution_count": 95, 315 | "id": "provincial-adventure", 316 | "metadata": {}, 317 | "outputs": [ 318 | { 319 | "data": { 320 | "text/html": [ 321 | "
\n", 322 | "\n", 335 | "\n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | "
actionNaive BayesLogisticRegressionDecisionTree
5740100
5391111
6130000
6121111
1220000
\n", 383 | "
" 384 | ], 385 | "text/plain": [ 386 | " action Naive Bayes LogisticRegression DecisionTree \n", 387 | "574 0 1 0 0\n", 388 | "539 1 1 1 1\n", 389 | "613 0 0 0 0\n", 390 | "612 1 1 1 1\n", 391 | "122 0 0 0 0" 392 | ] 393 | }, 394 | "execution_count": 95, 395 | "metadata": {}, 396 | "output_type": "execute_result" 397 | } 398 | ], 399 | "source": [ 400 | "predictions_df.head()" 401 | ] 402 | }, 403 | { 404 | "cell_type": "code", 405 | "execution_count": null, 406 | "id": "cutting-grade", 407 | "metadata": {}, 408 | "outputs": [], 409 | "source": [] 410 | }, 411 | { 412 | "cell_type": "code", 413 | "execution_count": 96, 414 | "id": "defensive-secretariat", 415 | "metadata": {}, 416 | "outputs": [ 417 | { 418 | "name": "stdout", 419 | "output_type": "stream", 420 | "text": [ 421 | "[0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0\n", 422 | " 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0\n", 423 | " 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1\n", 424 | " 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1\n", 425 | " 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0\n", 426 | " 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0\n", 427 | " 0 1 0 1 0 0 0 0 1]\n" 428 | ] 429 | }, 430 | { 431 | "name": "stderr", 432 | "output_type": "stream", 433 | "text": [ 434 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 435 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 436 | "\n", 437 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 438 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 439 | "Please also refer to the documentation for alternative solver options:\n", 440 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 441 | " n_iter_i = _check_optimize_result(\n" 442 | ] 443 | } 444 | ], 445 | "source": [ 446 | "from sklearn.ensemble import VotingClassifier\n", 447 | "clf1 = GaussianNB()\n", 448 | "clf2 = DecisionTreeClassifier()\n", 449 | "clf3 = LogisticRegression()\n", 450 | "\n", 451 | "\n", 452 | " \n", 453 | "eclf1 = VotingClassifier(estimators=[('Gaussian', clf1), ('DecisionTree', clf2), ('Logisitic', clf3)], voting='hard')\n", 454 | "eclf1.fit(X_train, y_train)\n", 455 | "predictions = eclf1.predict(X_test)\n", 456 | "print(predictions)" 457 | ] 458 | }, 459 | { 460 | "cell_type": "code", 461 | "execution_count": null, 462 | "id": "advisory-synthesis", 463 | "metadata": {}, 464 | "outputs": [], 465 | "source": [] 466 | }, 467 | { 468 | "cell_type": "code", 469 | "execution_count": null, 470 | "id": "stopped-bibliography", 471 | "metadata": {}, 472 | "outputs": [], 473 | "source": [] 474 | }, 475 | { 476 | "cell_type": "code", 477 | "execution_count": null, 478 | "id": "subjective-mainstream", 479 | "metadata": {}, 480 | "outputs": [], 481 | "source": [] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "execution_count": 90, 486 | "id": "bound-pastor", 487 | "metadata": {}, 488 | "outputs": [ 489 | { 490 | "name": "stdout", 491 | "output_type": "stream", 492 | "text": [ 493 | "Hard Voting Score 0\n" 494 | ] 495 | } 496 | ], 497 | "source": [ 498 | "# Voting Classifier with hard voting\n", 499 | "vot_hard = VotingClassifier(estimators = classifiers, voting ='hard')\n", 500 | "vot_hard.fit(X_train, y_train)\n", 501 | "y_pred = vot_hard.predict(X_test)\n", 502 | " \n", 503 | "# using accuracy_score metric to predict accuracy\n", 504 | "score = accuracy_score(y_test, y_pred)\n", 505 | "print(\"Hard Voting Score % d\" % score)" 506 | ] 507 | }, 508 | { 509 | "cell_type": "code", 510 | "execution_count": 91, 511 | "id": "separate-compiler", 512 | "metadata": {}, 513 | "outputs": [ 514 | { 515 | "name": "stdout", 516 | "output_type": "stream", 517 | "text": [ 518 | "Soft Voting Score 0\n" 519 | ] 520 | } 521 | ], 522 | "source": [ 523 | "# Voting Classifier with soft voting\n", 524 | "vot_soft = VotingClassifier(estimators = classifiers, voting ='soft')\n", 525 | "vot_soft.fit(X_train, y_train)\n", 526 | "y_pred = vot_soft.predict(X_test)\n", 527 | "\n", 528 | "score1 = accuracy_score(y_test, y_pred)\n", 529 | "print(\"Soft Voting Score % d\" % score1)" 530 | ] 531 | }, 532 | { 533 | "cell_type": "code", 534 | "execution_count": 98, 535 | "id": "african-athletics", 536 | "metadata": {}, 537 | "outputs": [ 538 | { 539 | "name": "stderr", 540 | "output_type": "stream", 541 | "text": [ 542 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 543 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 544 | "\n", 545 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 546 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 547 | "Please also refer to the documentation for alternative solver options:\n", 548 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 549 | " n_iter_i = _check_optimize_result(\n", 550 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 551 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 552 | "\n", 553 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 554 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 555 | "Please also refer to the documentation for alternative solver options:\n", 556 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 557 | " n_iter_i = _check_optimize_result(\n", 558 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 559 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 560 | "\n", 561 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 562 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 563 | "Please also refer to the documentation for alternative solver options:\n", 564 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 565 | " n_iter_i = _check_optimize_result(\n", 566 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 567 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 568 | "\n", 569 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 570 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 571 | "Please also refer to the documentation for alternative solver options:\n", 572 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 573 | " n_iter_i = _check_optimize_result(\n", 574 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 575 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 576 | "\n", 577 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 578 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 579 | "Please also refer to the documentation for alternative solver options:\n", 580 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 581 | " n_iter_i = _check_optimize_result(\n", 582 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 583 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 584 | "\n", 585 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 586 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 587 | "Please also refer to the documentation for alternative solver options:\n", 588 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 589 | " n_iter_i = _check_optimize_result(\n", 590 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 591 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 592 | "\n", 593 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 594 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 595 | "Please also refer to the documentation for alternative solver options:\n", 596 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 597 | " n_iter_i = _check_optimize_result(\n", 598 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 599 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 600 | "\n", 601 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 602 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 603 | "Please also refer to the documentation for alternative solver options:\n", 604 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 605 | " n_iter_i = _check_optimize_result(\n", 606 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 607 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 608 | "\n", 609 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 610 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 611 | "Please also refer to the documentation for alternative solver options:\n", 612 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 613 | " n_iter_i = _check_optimize_result(\n", 614 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 615 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 616 | "\n", 617 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 618 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 619 | "Please also refer to the documentation for alternative solver options:\n", 620 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 621 | " n_iter_i = _check_optimize_result(\n" 622 | ] 623 | }, 624 | { 625 | "name": "stdout", 626 | "output_type": "stream", 627 | "text": [ 628 | "[0.7597484276729559, 0.6983228511530398, 0.7729210342417889]\n" 629 | ] 630 | } 631 | ], 632 | "source": [ 633 | "\n", 634 | "from sklearn.model_selection import cross_val_score\n", 635 | "c = []\n", 636 | "c.append(cross_val_score(clf1,X_train,y_train,scoring='accuracy',cv=10).mean())\n", 637 | "c.append(cross_val_score(clf2,X_train,y_train,scoring='accuracy',cv=10).mean())\n", 638 | "c.append(cross_val_score(clf3,X_train,y_train,scoring='accuracy',cv=10).mean())\n", 639 | "print(c)" 640 | ] 641 | }, 642 | { 643 | "cell_type": "code", 644 | "execution_count": null, 645 | "id": "differential-energy", 646 | "metadata": {}, 647 | "outputs": [], 648 | "source": [] 649 | } 650 | ], 651 | "metadata": { 652 | "kernelspec": { 653 | "display_name": "Python 3", 654 | "language": "python", 655 | "name": "python3" 656 | }, 657 | "language_info": { 658 | "codemirror_mode": { 659 | "name": "ipython", 660 | "version": 3 661 | }, 662 | "file_extension": ".py", 663 | "mimetype": "text/x-python", 664 | "name": "python", 665 | "nbconvert_exporter": "python", 666 | "pygments_lexer": "ipython3", 667 | "version": "3.8.8" 668 | } 669 | }, 670 | "nbformat": 4, 671 | "nbformat_minor": 5 672 | } 673 | -------------------------------------------------------------------------------- /Hyper parameter tuning.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 69, 6 | "id": "97b98548", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "from sklearn.svm import SVC\n", 12 | "from sklearn.metrics import confusion_matrix, classification_report\n", 13 | "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", 14 | "import seaborn as sns" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 90, 20 | "id": "84729c58", 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "data": { 25 | "text/html": [ 26 | "
\n", 27 | "\n", 40 | "\n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.45
17.80.8800.002.60.09825.067.00.996803.200.689.85
27.80.7600.042.30.09215.054.00.997003.260.659.85
311.20.2800.561.90.07517.060.00.998003.160.589.86
47.40.7000.001.90.07611.034.00.997803.510.569.45
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.55
15955.90.5500.102.20.06239.051.00.995123.520.7611.26
15966.30.5100.132.30.07629.040.00.995743.420.7511.06
15975.90.6450.122.00.07532.044.00.995473.570.7110.25
15986.00.3100.473.60.06718.042.00.995493.390.6611.06
\n", 226 | "

1599 rows × 12 columns

\n", 227 | "
" 228 | ], 229 | "text/plain": [ 230 | " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n", 231 | "0 7.4 0.700 0.00 1.9 0.076 \n", 232 | "1 7.8 0.880 0.00 2.6 0.098 \n", 233 | "2 7.8 0.760 0.04 2.3 0.092 \n", 234 | "3 11.2 0.280 0.56 1.9 0.075 \n", 235 | "4 7.4 0.700 0.00 1.9 0.076 \n", 236 | "... ... ... ... ... ... \n", 237 | "1594 6.2 0.600 0.08 2.0 0.090 \n", 238 | "1595 5.9 0.550 0.10 2.2 0.062 \n", 239 | "1596 6.3 0.510 0.13 2.3 0.076 \n", 240 | "1597 5.9 0.645 0.12 2.0 0.075 \n", 241 | "1598 6.0 0.310 0.47 3.6 0.067 \n", 242 | "\n", 243 | " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n", 244 | "0 11.0 34.0 0.99780 3.51 0.56 \n", 245 | "1 25.0 67.0 0.99680 3.20 0.68 \n", 246 | "2 15.0 54.0 0.99700 3.26 0.65 \n", 247 | "3 17.0 60.0 0.99800 3.16 0.58 \n", 248 | "4 11.0 34.0 0.99780 3.51 0.56 \n", 249 | "... ... ... ... ... ... \n", 250 | "1594 32.0 44.0 0.99490 3.45 0.58 \n", 251 | "1595 39.0 51.0 0.99512 3.52 0.76 \n", 252 | "1596 29.0 40.0 0.99574 3.42 0.75 \n", 253 | "1597 32.0 44.0 0.99547 3.57 0.71 \n", 254 | "1598 18.0 42.0 0.99549 3.39 0.66 \n", 255 | "\n", 256 | " alcohol quality \n", 257 | "0 9.4 5 \n", 258 | "1 9.8 5 \n", 259 | "2 9.8 5 \n", 260 | "3 9.8 6 \n", 261 | "4 9.4 5 \n", 262 | "... ... ... \n", 263 | "1594 10.5 5 \n", 264 | "1595 11.2 6 \n", 265 | "1596 11.0 6 \n", 266 | "1597 10.2 5 \n", 267 | "1598 11.0 6 \n", 268 | "\n", 269 | "[1599 rows x 12 columns]" 270 | ] 271 | }, 272 | "execution_count": 90, 273 | "metadata": {}, 274 | "output_type": "execute_result" 275 | } 276 | ], 277 | "source": [ 278 | "wine=pd.read_csv('winequality-red.csv')\n", 279 | "wine" 280 | ] 281 | }, 282 | { 283 | "cell_type": "code", 284 | "execution_count": 73, 285 | "id": "9a898701", 286 | "metadata": {}, 287 | "outputs": [ 288 | { 289 | "data": { 290 | "text/plain": [ 291 | "5 681\n", 292 | "6 638\n", 293 | "7 199\n", 294 | "4 53\n", 295 | "8 18\n", 296 | "3 10\n", 297 | "Name: quality, dtype: int64" 298 | ] 299 | }, 300 | "execution_count": 73, 301 | "metadata": {}, 302 | "output_type": "execute_result" 303 | } 304 | ], 305 | "source": [ 306 | "wine['quality'].value_counts()" 307 | ] 308 | }, 309 | { 310 | "cell_type": "code", 311 | "execution_count": 74, 312 | "id": "b9dec75b", 313 | "metadata": {}, 314 | "outputs": [ 315 | { 316 | "name": "stdout", 317 | "output_type": "stream", 318 | "text": [ 319 | "\n", 320 | "RangeIndex: 1599 entries, 0 to 1598\n", 321 | "Data columns (total 12 columns):\n", 322 | " # Column Non-Null Count Dtype \n", 323 | "--- ------ -------------- ----- \n", 324 | " 0 fixed acidity 1599 non-null float64\n", 325 | " 1 volatile acidity 1599 non-null float64\n", 326 | " 2 citric acid 1599 non-null float64\n", 327 | " 3 residual sugar 1599 non-null float64\n", 328 | " 4 chlorides 1599 non-null float64\n", 329 | " 5 free sulfur dioxide 1599 non-null float64\n", 330 | " 6 total sulfur dioxide 1599 non-null float64\n", 331 | " 7 density 1599 non-null float64\n", 332 | " 8 pH 1599 non-null float64\n", 333 | " 9 sulphates 1599 non-null float64\n", 334 | " 10 alcohol 1599 non-null float64\n", 335 | " 11 quality 1599 non-null int64 \n", 336 | "dtypes: float64(11), int64(1)\n", 337 | "memory usage: 150.0 KB\n" 338 | ] 339 | } 340 | ], 341 | "source": [ 342 | "wine.info()" 343 | ] 344 | }, 345 | { 346 | "cell_type": "code", 347 | "execution_count": 92, 348 | "id": "687120f4", 349 | "metadata": {}, 350 | "outputs": [], 351 | "source": [ 352 | "#Making binary classificaion for the response variable.\n", 353 | "#Dividing wine as good and bad by giving the limit for the quality\n", 354 | "bins = (2, 6.5, 8)\n", 355 | "group_names = ['bad', 'good']\n", 356 | "wine['quality'] = pd.cut(wine['quality'], bins = bins, labels = group_names)" 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "execution_count": null, 362 | "id": "3b0d693c", 363 | "metadata": {}, 364 | "outputs": [], 365 | "source": [] 366 | }, 367 | { 368 | "cell_type": "code", 369 | "execution_count": 93, 370 | "id": "24b3198b", 371 | "metadata": {}, 372 | "outputs": [], 373 | "source": [ 374 | "#Now lets assign a labels to our quality variable\n", 375 | "label_quality = LabelEncoder()\n", 376 | "#Bad becomes 0 and good becomes 1 \n", 377 | "wine['quality'] = label_quality.fit_transform(wine['quality'])" 378 | ] 379 | }, 380 | { 381 | "cell_type": "code", 382 | "execution_count": 77, 383 | "id": "86f12402", 384 | "metadata": {}, 385 | "outputs": [], 386 | "source": [] 387 | }, 388 | { 389 | "cell_type": "code", 390 | "execution_count": 78, 391 | "id": "d677b6b7", 392 | "metadata": {}, 393 | "outputs": [ 394 | { 395 | "data": { 396 | "text/plain": [ 397 | "0 1382\n", 398 | "1 217\n", 399 | "Name: quality, dtype: int64" 400 | ] 401 | }, 402 | "execution_count": 78, 403 | "metadata": {}, 404 | "output_type": "execute_result" 405 | } 406 | ], 407 | "source": [ 408 | "wine['quality'].value_counts()" 409 | ] 410 | }, 411 | { 412 | "cell_type": "code", 413 | "execution_count": 79, 414 | "id": "29aeab91", 415 | "metadata": {}, 416 | "outputs": [ 417 | { 418 | "name": "stderr", 419 | "output_type": "stream", 420 | "text": [ 421 | "c:\\users\\arun\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", 422 | " warnings.warn(\n" 423 | ] 424 | }, 425 | { 426 | "data": { 427 | "text/plain": [ 428 | "" 429 | ] 430 | }, 431 | "execution_count": 79, 432 | "metadata": {}, 433 | "output_type": "execute_result" 434 | }, 435 | { 436 | "data": { 437 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAASA0lEQVR4nO3de7BdZ13/8feHhIIo0JYcKybREzWDU1EEzpSOjL/pUIW2KqkOdNpRCCUz8VK8oP74FZ2xDoqjY7UWL3UiDW0c7EUEG7WKnSLWC62clluhImdKIcm05EBCuXQqRr+/P/YT2aTn5DknnL33Sc/7NbMna32fZ6/9ZSbk02ettddOVSFJ0vE8YdINSJJWP8NCktRlWEiSugwLSVKXYSFJ6lo/6QZGYcOGDTU9PT3pNiTppHL33Xd/uqqmFhp7XIbF9PQ0s7Ozk25Dkk4qST6x2JinoSRJXYaFJKnLsJAkdY0sLJLsTnIwyb0LjP1Ckkqyoe0nyZuSzCX5YJLnDc3dnuRj7bV9VP1KkhY3ypXFdcB5xxaTbAZeDHxyqHw+sLW9dgLXtLmnA1cALwDOAq5IctoIe5YkLWBkYVFVdwCHFhi6CngdMPwEw23Anhq4Ezg1yTOBlwC3VdWhqjoM3MYCASRJGq2xXrNIsg04UFUfOGZoI7BvaH9/qy1WX+jYO5PMJpmdn59fwa4lSWMLiyRPAX4J+JVRHL+qdlXVTFXNTE0t+J0SSdIJGufK4luBLcAHkjwAbALuSfINwAFg89DcTa22WF2SNEZj+wZ3VX0I+Pqj+y0wZqrq00n2Aq9JciODi9kPV9WDSd4J/MbQRe0XA68fR7/P/797xvExOsnc/duvnHQL0kSM8tbZG4D3AM9Ksj/JjuNMvxW4H5gD/gT4KYCqOgT8GvDe9npDq0mSxmhkK4uquqQzPj20XcBli8zbDexe0eYkScviN7glSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1DWysEiyO8nBJPcO1X47yb8n+WCSdyQ5dWjs9Unmknw0yUuG6ue12lySy0fVryRpcaNcWVwHnHdM7Tbg2VX1XcB/AK8HSHImcDHwHe09f5RkXZJ1wB8C5wNnApe0uZKkMRpZWFTVHcChY2p/X1VH2u6dwKa2vQ24sar+s6o+DswBZ7XXXFXdX1VfAm5scyVJYzTJaxavBv62bW8E9g2N7W+1xeqPkWRnktkks/Pz8yNoV5LWromERZJfBo4Ab12pY1bVrqqaqaqZqamplTqsJAlYP+4PTPIq4AeBc6uqWvkAsHlo2qZW4zh1SdKYjHVlkeQ84HXAS6vqkaGhvcDFSZ6UZAuwFfg34L3A1iRbkpzC4CL43nH2LEka4coiyQ3AOcCGJPuBKxjc/fQk4LYkAHdW1U9U1YeT3Ax8hMHpqcuq6r/bcV4DvBNYB+yuqg+PqmdJ0sJGFhZVdckC5WuPM/+NwBsXqN8K3LqCrUmSlslvcEuSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpa2RhkWR3koNJ7h2qnZ7ktiQfa3+e1upJ8qYkc0k+mOR5Q+/Z3uZ/LMn2UfUrSVrcKFcW1wHnHVO7HLi9qrYCt7d9gPOBre21E7gGBuECXAG8ADgLuOJowEiSxmdkYVFVdwCHjilvA65v29cDFw7V99TAncCpSZ4JvAS4raoOVdVh4DYeG0CSpBEb9zWLM6rqwbb9EHBG294I7Buat7/VFqs/RpKdSWaTzM7Pz69s15K0xk3sAndVFVAreLxdVTVTVTNTU1MrdVhJEuMPi0+100u0Pw+2+gFg89C8Ta22WF2SNEbjDou9wNE7mrYDtwzVX9nuijobeLidrnon8OIkp7UL2y9uNUnSGK0f1YGT3ACcA2xIsp/BXU2/CdycZAfwCeCiNv1W4AJgDngEuBSgqg4l+TXgvW3eG6rq2IvmkqQRG1lYVNUliwydu8DcAi5b5Di7gd0r2JokaZn8BrckqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSuiYSFklem+TDSe5NckOSJyfZkuSuJHNJbkpySpv7pLY/18anJ9GzJK1lYw+LJBuBnwFmqurZwDrgYuC3gKuq6tuAw8CO9pYdwOFWv6rNkySN0aROQ60HvibJeuApwIPAi4C3tfHrgQvb9ra2Txs/N0nG16okaUlhkeT2pdSWoqoOAFcCn2QQEg8DdwOfraojbdp+YGPb3gjsa+890uY/Y4F+diaZTTI7Pz9/Iq1JkhZx3LBo1xJOBzYkOS3J6e01zZf/MV+WJKcxWC1sAb4R+FrgvBM51rCq2lVVM1U1MzU19dUeTpI0ZH1n/MeBn2Pwj/rdwNHTP58D/uAEP/P7gI9X1TxAkrcDLwROTbK+rR42AQfa/APAZmB/O231dOAzJ/jZkqQTcNyVRVVdXVVbgF+sqm+pqi3t9ZyqOtGw+CRwdpKntGsP5wIfAf4BeFmbsx24pW3vbfu08XdVVZ3gZ0uSTkBvZQFAVf1+ku8BpoffU1V7lvuBVXVXkrcB9wBHgPcBu4C/AW5M8uutdm17y7XAnyaZAw4xuHNKkjRGSwqLJH8KfCvwfuC/W7mAZYcFQFVdAVxxTPl+4KwF5j4KvPxEPkeStDKWFBbADHCmp38kaW1a6vcs7gW+YZSNSJJWr6WuLDYAH0nyb8B/Hi1W1UtH0pUkaVVZalj86iibkCStbku9G+ofR92IJGn1WurdUJ9ncPcTwCnAE4EvVtXTRtWYJGn1WOrK4qlHt9sX6bYBZ4+qKUnS6rLsp87WwF8CL1n5diRJq9FST0P9yNDuExh87+LRkXQkSVp1lno31A8NbR8BHmBwKkqStAYs9ZrFpaNuRJK0ei31x482JXlHkoPt9RdJNo26OUnS6rDUC9xvYfCo8G9sr79qNUnSGrDUsJiqqrdU1ZH2ug7w5+gkaY1Yalh8JsmPJVnXXj+Gv1YnSWvGUsPi1cBFwEPAgwx+se5VI+pJkrTKLPXW2TcA26vqMECS04ErGYSIJOlxbqkri+86GhQAVXUIeO5oWpIkrTZLDYsnJDnt6E5bWSx1VSJJOskt9R/83wHek+TP2/7LgTeOpiVJ0mqz1G9w70kyC7yolX6kqj4yurYkSavJkk8ltXBYkYBIcirwZuDZDH4n49XAR4GbgGkGz566qKoOt0eiXw1cADwCvKqq7lmJPiRJS7PsR5SvkKuBv6uqbweeA9wHXA7cXlVbgdvbPsD5wNb22glcM/52JWltG3tYJHk68H+AawGq6ktV9VkGT7G9vk27HriwbW8D9rTf0bgTODXJM8fatCStcZNYWWwB5oG3JHlfkjcn+VrgjKp6sM15CDijbW8E9g29f3+rfYUkO5PMJpmdn58fYfuStPZMIizWA88Drqmq5wJf5MunnIDBr/Hx5d/8XpKq2lVVM1U1MzXlY6skaSVNIiz2A/ur6q62/zYG4fGpo6eX2p8H2/gBYPPQ+ze1miRpTMYeFlX1ELAvybNa6VwGd1ntBba32nbglra9F3hlBs4GHh46XSVJGoNJfQv7p4G3JjkFuB+4lEFw3ZxkB/AJBg8uBLiVwW2zcwxunfVX+yRpzCYSFlX1fmBmgaFzF5hbwGWj7kmStLhJfc9CknQSMSwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqSuiYVFknVJ3pfkr9v+liR3JZlLclOSU1r9SW1/ro1PT6pnSVqrJrmy+FngvqH93wKuqqpvAw4DO1p9B3C41a9q8yRJYzSRsEiyCfgB4M1tP8CLgLe1KdcDF7btbW2fNn5umy9JGpNJrSx+D3gd8D9t/xnAZ6vqSNvfD2xs2xuBfQBt/OE2/ysk2ZlkNsns/Pz8CFuXpLVn7GGR5AeBg1V190oet6p2VdVMVc1MTU2t5KElac1bP4HPfCHw0iQXAE8GngZcDZyaZH1bPWwCDrT5B4DNwP4k64GnA58Zf9uStHaNfWVRVa+vqk1VNQ1cDLyrqn4U+AfgZW3aduCWtr237dPG31VVNcaWJWnNW03fs/h/wM8nmWNwTeLaVr8WeEar/zxw+YT6k6Q1axKnof5XVb0beHfbvh84a4E5jwIvH2tjkqSvsJpWFpKkVcqwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSutaP+wOTbAb2AGcABeyqqquTnA7cBEwDDwAXVdXhJAGuBi4AHgFeVVX3jLtvaTX55Bu+c9ItaBX6pl/50MiOPYmVxRHgF6rqTOBs4LIkZwKXA7dX1Vbg9rYPcD6wtb12AteMv2VJWtvGHhZV9eDRlUFVfR64D9gIbAOub9OuBy5s29uAPTVwJ3BqkmeOt2tJWtsmes0iyTTwXOAu4IyqerANPcTgNBUMgmTf0Nv2t9qxx9qZZDbJ7Pz8/OialqQ1aGJhkeTrgL8Afq6qPjc8VlXF4HrGklXVrqqaqaqZqampFexUkjSRsEjyRAZB8daqensrf+ro6aX258FWPwBsHnr7plaTJI3J2MOi3d10LXBfVf3u0NBeYHvb3g7cMlR/ZQbOBh4eOl0lSRqDsd86C7wQeAXwoSTvb7VfAn4TuDnJDuATwEVt7FYGt83OMbh19tKxditJGn9YVNU/A1lk+NwF5hdw2UibkiQdl9/gliR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVLXSRMWSc5L8tEkc0kun3Q/krSWnBRhkWQd8IfA+cCZwCVJzpxsV5K0dpwUYQGcBcxV1f1V9SXgRmDbhHuSpDVj/aQbWKKNwL6h/f3AC4YnJNkJ7Gy7X0jy0TH1thZsAD496SZWg1y5fdIt6LH8+3nUFflqj/DNiw2cLGHRVVW7gF2T7uPxKMlsVc1Mug9pIf79HI+T5TTUAWDz0P6mVpMkjcHJEhbvBbYm2ZLkFOBiYO+Ee5KkNeOkOA1VVUeSvAZ4J7AO2F1VH55wW2uJp/e0mvn3cwxSVZPuQZK0yp0sp6EkSRNkWEiSugwLHZePWdFqlGR3koNJ7p10L2uFYaFF+ZgVrWLXAedNuom1xLDQ8fiYFa1KVXUHcGjSfawlhoWOZ6HHrGycUC+SJsiwkCR1GRY6Hh+zIgkwLHR8PmZFEmBY6Diq6ghw9DEr9wE3+5gVrQZJbgDeAzwryf4kOybd0+Odj/uQJHW5spAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIU1AkumjT0xNMpPkTW37nCTfM9nupMc6KX5WVXo8q6pZYLbtngN8AfjXiTUkLcCVhbRMSX45yX8k+eckNyT5xSTvTjLTxjckeaBtTyf5pyT3tNdjVg1tNfHXSaaBnwBem+T9Sb43yceTPLHNe9rwvjROriykZUjyfAaPPfluBv//uQe4+zhvOQh8f1U9mmQrcAMws9DEqnogyR8DX6iqK9vnvRv4AeAv2+e+var+a0X+x0jL4MpCWp7vBd5RVY9U1efoPyvricCfJPkQ8OcMfkRqOd4MXNq2LwXessz3SyvClYW0Mo7w5f/4evJQ/bXAp4DntPFHl3PQqvqXdirrHGBdVfkzopoIVxbS8twBXJjka5I8FfihVn8AeH7bftnQ/KcDD1bV/wCvANZ1jv954KnH1PYAf4arCk2QYSEtQ1XdA9wEfAD4WwaPcQe4EvjJJO8DNgy95Y+A7Uk+AHw78MXOR/wV8MNHL3C32luB0xhc75AmwqfOSl+FJL/K0AXpEX3Gy4BtVfWKUX2G1OM1C2kVS/L7wPnABZPuRWubKwtJUpfXLCRJXYaFJKnLsJAkdRkWkqQuw0KS1PX/ASoTvN+6kVUJAAAAAElFTkSuQmCC\n", 438 | "text/plain": [ 439 | "
" 440 | ] 441 | }, 442 | "metadata": { 443 | "needs_background": "light" 444 | }, 445 | "output_type": "display_data" 446 | } 447 | ], 448 | "source": [ 449 | "sns.countplot(wine['quality'])" 450 | ] 451 | }, 452 | { 453 | "cell_type": "code", 454 | "execution_count": 80, 455 | "id": "09cc0e42", 456 | "metadata": {}, 457 | "outputs": [], 458 | "source": [ 459 | "#Now seperate the dataset as response variable and feature variabes\n", 460 | "X = wine.drop('quality', axis = 1)\n", 461 | "y = wine['quality']" 462 | ] 463 | }, 464 | { 465 | "cell_type": "code", 466 | "execution_count": 81, 467 | "id": "065ef448", 468 | "metadata": {}, 469 | "outputs": [], 470 | "source": [ 471 | "#Train and Test splitting of data \n", 472 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)" 473 | ] 474 | }, 475 | { 476 | "cell_type": "code", 477 | "execution_count": 82, 478 | "id": "45f610f3", 479 | "metadata": {}, 480 | "outputs": [], 481 | "source": [ 482 | "#Applying Standard scaling to get optimized result\n", 483 | "sc = StandardScaler()" 484 | ] 485 | }, 486 | { 487 | "cell_type": "code", 488 | "execution_count": 83, 489 | "id": "bac4bfee", 490 | "metadata": {}, 491 | "outputs": [], 492 | "source": [ 493 | "X_train = sc.fit_transform(X_train)\n", 494 | "X_test = sc.fit_transform(X_test)" 495 | ] 496 | }, 497 | { 498 | "cell_type": "code", 499 | "execution_count": 95, 500 | "id": "9809c6c7", 501 | "metadata": {}, 502 | "outputs": [ 503 | { 504 | "data": { 505 | "text/plain": [ 506 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n", 507 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 508 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 509 | " 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,\n", 510 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 511 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 512 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 513 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,\n", 514 | " 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 515 | " 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 516 | " 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 517 | " 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n", 518 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n", 519 | " 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 520 | " 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" 521 | ] 522 | }, 523 | "execution_count": 95, 524 | "metadata": {}, 525 | "output_type": "execute_result" 526 | } 527 | ], 528 | "source": [ 529 | "svc = SVC()\n", 530 | "svc.fit(X_train, y_train)\n", 531 | "pred_svc = svc.predict(X_test)\n", 532 | "pred_svc" 533 | ] 534 | }, 535 | { 536 | "cell_type": "code", 537 | "execution_count": 85, 538 | "id": "89aed9c5", 539 | "metadata": {}, 540 | "outputs": [ 541 | { 542 | "name": "stdout", 543 | "output_type": "stream", 544 | "text": [ 545 | " precision recall f1-score support\n", 546 | "\n", 547 | " 0 0.88 0.98 0.93 273\n", 548 | " 1 0.71 0.26 0.37 47\n", 549 | "\n", 550 | " accuracy 0.88 320\n", 551 | " macro avg 0.80 0.62 0.65 320\n", 552 | "weighted avg 0.86 0.88 0.85 320\n", 553 | "\n" 554 | ] 555 | } 556 | ], 557 | "source": [ 558 | "print(classification_report(y_test, pred_svc))" 559 | ] 560 | }, 561 | { 562 | "cell_type": "code", 563 | "execution_count": 86, 564 | "id": "c4c95e6e", 565 | "metadata": {}, 566 | "outputs": [], 567 | "source": [ 568 | "#Finding best parameters for our SVC model\n", 569 | "param = {\n", 570 | " 'C': [0.1,0.8,0.9,1,1.1,1.2,1.3,1.4],\n", 571 | " 'kernel':['linear', 'rbf'],\n", 572 | " 'gamma' :[0.1,0.8,0.9,1,1.1,1.2,1.3,1.4]\n", 573 | "}\n", 574 | "grid_svc = GridSearchCV(svc, param_grid=param, scoring='accuracy', cv=10)" 575 | ] 576 | }, 577 | { 578 | "cell_type": "code", 579 | "execution_count": 87, 580 | "id": "3a0d4b32", 581 | "metadata": {}, 582 | "outputs": [ 583 | { 584 | "data": { 585 | "text/plain": [ 586 | "GridSearchCV(cv=10, estimator=SVC(),\n", 587 | " param_grid={'C': [0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4],\n", 588 | " 'gamma': [0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4],\n", 589 | " 'kernel': ['linear', 'rbf']},\n", 590 | " scoring='accuracy')" 591 | ] 592 | }, 593 | "execution_count": 87, 594 | "metadata": {}, 595 | "output_type": "execute_result" 596 | } 597 | ], 598 | "source": [ 599 | "grid_svc.fit(X_train, y_train)" 600 | ] 601 | }, 602 | { 603 | "cell_type": "code", 604 | "execution_count": 88, 605 | "id": "4cd8c8d7", 606 | "metadata": {}, 607 | "outputs": [ 608 | { 609 | "data": { 610 | "text/plain": [ 611 | "{'C': 1.2, 'gamma': 0.9, 'kernel': 'rbf'}" 612 | ] 613 | }, 614 | "execution_count": 88, 615 | "metadata": {}, 616 | "output_type": "execute_result" 617 | } 618 | ], 619 | "source": [ 620 | "#Best parameters for our svc model\n", 621 | "grid_svc.best_params_" 622 | ] 623 | }, 624 | { 625 | "cell_type": "code", 626 | "execution_count": 89, 627 | "id": "932f2eef", 628 | "metadata": {}, 629 | "outputs": [ 630 | { 631 | "name": "stdout", 632 | "output_type": "stream", 633 | "text": [ 634 | " precision recall f1-score support\n", 635 | "\n", 636 | " 0 0.90 0.99 0.94 273\n", 637 | " 1 0.89 0.34 0.49 47\n", 638 | "\n", 639 | " accuracy 0.90 320\n", 640 | " macro avg 0.89 0.67 0.72 320\n", 641 | "weighted avg 0.90 0.90 0.88 320\n", 642 | "\n" 643 | ] 644 | } 645 | ], 646 | "source": [ 647 | "#Let's run our SVC again with the best parameters.\n", 648 | "svc2 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf')\n", 649 | "svc2.fit(X_train, y_train)\n", 650 | "pred_svc2 = svc2.predict(X_test)\n", 651 | "print(classification_report(y_test, pred_svc2))" 652 | ] 653 | }, 654 | { 655 | "cell_type": "code", 656 | "execution_count": null, 657 | "id": "cda0622f", 658 | "metadata": {}, 659 | "outputs": [], 660 | "source": [] 661 | }, 662 | { 663 | "cell_type": "code", 664 | "execution_count": null, 665 | "id": "e027a200", 666 | "metadata": {}, 667 | "outputs": [], 668 | "source": [] 669 | } 670 | ], 671 | "metadata": { 672 | "kernelspec": { 673 | "display_name": "Python 3 (ipykernel)", 674 | "language": "python", 675 | "name": "python3" 676 | }, 677 | "language_info": { 678 | "codemirror_mode": { 679 | "name": "ipython", 680 | "version": 3 681 | }, 682 | "file_extension": ".py", 683 | "mimetype": "text/x-python", 684 | "name": "python", 685 | "nbconvert_exporter": "python", 686 | "pygments_lexer": "ipython3", 687 | "version": "3.8.8" 688 | } 689 | }, 690 | "nbformat": 4, 691 | "nbformat_minor": 5 692 | } 693 | -------------------------------------------------------------------------------- /KNN algorithm.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "romance-interstate", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "#importing libraries\n", 11 | "import matplotlib.pyplot as plt\n", 12 | "from sklearn import datasets\n", 13 | "from sklearn.model_selection import train_test_split \n", 14 | "from sklearn.neighbors import KNeighborsClassifier" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 3, 20 | "id": "knowing-suffering", 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "# load the data\n", 25 | "digits = datasets.load_digits()" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 9, 31 | "id": "unauthorized-release", 32 | "metadata": {}, 33 | "outputs": [ 34 | { 35 | "data": { 36 | "text/plain": [ 37 | "5" 38 | ] 39 | }, 40 | "execution_count": 9, 41 | "metadata": {}, 42 | "output_type": "execute_result" 43 | } 44 | ], 45 | "source": [ 46 | "digits.target[1700]" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": 5, 52 | "id": "spoken-hepatitis", 53 | "metadata": {}, 54 | "outputs": [], 55 | "source": [ 56 | "#Features allocation\n", 57 | "Samplefeatures=digits.data\n", 58 | "labels=digits.target" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 10, 64 | "id": "nominated-edmonton", 65 | "metadata": {}, 66 | "outputs": [ 67 | { 68 | "data": { 69 | "text/plain": [ 70 | "" 71 | ] 72 | }, 73 | "execution_count": 10, 74 | "metadata": {}, 75 | "output_type": "execute_result" 76 | }, 77 | { 78 | "data": { 79 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8+yak3AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKoElEQVR4nO3d34tc9RnH8c+nq9JarQtNKDEbsrmQQCk0kSUgKWojlljF5KIXCShECrmpktCCaK82/4CkF0WQqBVMlTbqKmK1gq6t0FqTuG1NVksatmSDNgklmig0RJ9e7AlEWbtnZs6vfXy/ILgzO+z3GfTtmTk7OV9HhADk8ZW2BwBQLaIGkiFqIBmiBpIhaiCZS+r4oUuWLInR0dE6fnSrzpw50+h6p0+fbmytjz/+uLG1zp4929hay5Yta2wtSbr66qsbWWdmZkanTp3yfN+rJerR0VHt37+/jh/dqsnJyUbXm5iYaGytqampxtZ67bXXGltr+/btja0lSePj442sMzY29oXf4+U3kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZBMqahtb7T9ru0jtu+reygA/VswattDkn4p6RZJ35a01fa36x4MQH/KHKnXSToSEUcj4pykJyVtqncsAP0qE/VySccuuj1b3PcZtrfb3m97/8mTJ6uaD0CPKjtRFhEPRcRYRIwtXbq0qh8LoEdloj4uacVFt0eK+wB0UJmo35R0je1Vti+TtEXSc/WOBaBfC14kISLO275b0kuShiQ9EhGHap8MQF9KXfkkIl6Q9ELNswCoAJ8oA5IhaiAZogaSIWogGaIGkiFqIBmiBpKpZYeOrDZv3tz2CLXZuXNnY2vdeOONja21bdu2xtbqCo7UQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kU2aHjkdsn7D9dhMDARhMmSP1ryRtrHkOABVZMOqI+IOk/zQwC4AKVPaemm13gG5g2x0gGc5+A8kQNZBMmV9pPSHpT5JW2561/eP6xwLQrzJ7aW1tYhAA1eDlN5AMUQPJEDWQDFEDyRA1kAxRA8kQNZDMot92Z3JysrG1Pvjgg8bWkqRNmzY1tlaTW+GsWbOmsbWGh4cbW6srOFIDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZBMmWuUrbD9qu3Dtg/Z3tHEYAD6U+az3+cl/SwiDtq+UtIB2y9HxOGaZwPQhzLb7rwXEQeLr89Impa0vO7BAPSnp/fUtkclrZX0xjzfY9sdoANKR237CklPSdoZER9+/vtsuwN0Q6mobV+quaD3RsTT9Y4EYBBlzn5b0sOSpiPigfpHAjCIMkfq9ZLulLTB9lTx54c1zwWgT2W23XldkhuYBUAF+EQZkAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8mwl1aHPfvssynXWrlyZWNrzczMNLZWV3CkBpIhaiAZogaSIWogGaIGkiFqIBmiBpIhaiAZogaSKXPhwa/a/ovtvxbb7uxqYjAA/SnzMdH/StoQEWeLSwW/bvt3EfHnmmcD0IcyFx4MSWeLm5cWf6LOoQD0r+zF/IdsT0k6IenliGDbHaCjSkUdEZ9ExBpJI5LW2f7OPI9h2x2gA3o6+x0RpyW9KmljLdMAGFiZs99LbQ8XX39N0s2S3ql5LgB9KnP2e5mkx2wPae5/Ar+JiOfrHQtAv8qc/f6b5vakBrAI8IkyIBmiBpIhaiAZogaSIWogGaIGkiFqIBmiBpJZ9NvujI+PN7bW1NRUY2tJ0ujoaGNrDQ8PN7bWrl1cZ6NOHKmBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkimdNTFBf3fss1FB4EO6+VIvUPSdF2DAKhG2W13RiTdKmlPveMAGFTZI/VuSfdK+vSLHsBeWkA3lNmh4zZJJyLiwP97HHtpAd1Q5ki9XtLttmckPSlpg+3Ha50KQN8WjDoi7o+IkYgYlbRF0isRcUftkwHoC7+nBpLp6XJGETEpabKWSQBUgiM1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kMyi33anSRMTE22PUJvdu3e3PQIqwpEaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkSn1MtLiS6BlJn0g6HxFjdQ4FoH+9fPb7+xFxqrZJAFSCl99AMmWjDkm/t33A9vb5HsC2O0A3lI36exFxraRbJP3E9vWffwDb7gDdUCrqiDhe/POEpGckratzKAD9K7NB3tdtX3nha0k/kPR23YMB6E+Zs9/fkvSM7QuP/3VEvFjrVAD6tmDUEXFU0ncbmAVABfiVFpAMUQPJEDWQDFEDyRA1kAxRA8kQNZAM2+502Pj4eGNr7dq1q7G1brjhhsbW+jLiSA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDKlorY9bHuf7XdsT9u+ru7BAPSn7Ge/fyHpxYj4ke3LJF1e40wABrBg1LavknS9pG2SFBHnJJ2rdywA/Srz8nuVpJOSHrX9lu09xfW/P4Ntd4BuKBP1JZKulfRgRKyV9JGk+z7/ILbdAbqhTNSzkmYj4o3i9j7NRQ6ggxaMOiLel3TM9urirpskHa51KgB9K3v2+x5Je4sz30cl3VXfSAAGUSrqiJiSNFbvKACqwCfKgGSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGvbR6MDU11eh6ExMTja21Y8eOxtZqco+wLyOO1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMgtGbXu17amL/nxoe2cDswHow4IfE42IdyWtkSTbQ5KOS3qm3rEA9KvXl983SfpnRPyrjmEADK7XqLdIemK+b7DtDtANpaMurvl9u6Tfzvd9tt0BuqGXI/Utkg5GxL/rGgbA4HqJequ+4KU3gO4oFXWxde3Nkp6udxwAgyq77c5Hkr5Z8ywAKsAnyoBkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIxhFR/Q+1T0rq9a9nLpF0qvJhuiHrc+N5tWdlRMz7N6dqiboftvdHxFjbc9Qh63PjeXUTL7+BZIgaSKZLUT/U9gA1yvrceF4d1Jn31ACq0aUjNYAKEDWQTCeitr3R9ru2j9i+r+15qmB7he1XbR+2fcj2jrZnqpLtIdtv2X6+7VmqZHvY9j7b79ietn1d2zP1qvX31MUGAf/Q3OWSZiW9KWlrRBxudbAB2V4maVlEHLR9paQDkjYv9ud1ge2fShqT9I2IuK3teapi+zFJf4yIPcUVdC+PiNMtj9WTLhyp10k6EhFHI+KcpCclbWp5poFFxHsRcbD4+oykaUnL252qGrZHJN0qaU/bs1TJ9lWSrpf0sCRFxLnFFrTUjaiXSzp20e1ZJfmP/wLbo5LWSnqj5VGqslvSvZI+bXmOqq2SdFLSo8Vbiz3FRTcXlS5EnZrtKyQ9JWlnRHzY9jyDsn2bpBMRcaDtWWpwiaRrJT0YEWslfSRp0Z3j6ULUxyWtuOj2SHHfomf7Us0FvTcislxeeb2k223PaO6t0gbbj7c7UmVmJc1GxIVXVPs0F/mi0oWo35R0je1VxYmJLZKea3mmgdm25t6bTUfEA23PU5WIuD8iRiJiVHP/rl6JiDtaHqsSEfG+pGO2Vxd33SRp0Z3YLHXd7zpFxHnbd0t6SdKQpEci4lDLY1VhvaQ7Jf3d9lRx388j4oX2RkIJ90jaWxxgjkq6q+V5etb6r7QAVKsLL78BVIiogWSIGkiGqIFkiBpIhqiBZIgaSOZ/5tKswAB+iuUAAAAASUVORK5CYII=\n", 80 | "text/plain": [ 81 | "
" 82 | ] 83 | }, 84 | "metadata": { 85 | "needs_background": "light" 86 | }, 87 | "output_type": "display_data" 88 | } 89 | ], 90 | "source": [ 91 | "plt.imshow(digits.images[1700], cmap=plt.cm.gray_r, interpolation='nearest')" 92 | ] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": 17, 97 | "id": "exclusive-groove", 98 | "metadata": {}, 99 | "outputs": [], 100 | "source": [ 101 | "# Split into training and test set\n", 102 | "trainimg, testimg,trainlab,testlab = train_test_split(Samplefeatures, labels, test_size = 0.2, random_state=42)" 103 | ] 104 | }, 105 | { 106 | "cell_type": "code", 107 | "execution_count": 18, 108 | "id": "broken-pakistan", 109 | "metadata": {}, 110 | "outputs": [], 111 | "source": [ 112 | "knn = KNeighborsClassifier(n_neighbors=7)" 113 | ] 114 | }, 115 | { 116 | "cell_type": "code", 117 | "execution_count": 19, 118 | "id": "surprising-commodity", 119 | "metadata": {}, 120 | "outputs": [ 121 | { 122 | "data": { 123 | "text/plain": [ 124 | "KNeighborsClassifier(n_neighbors=7)" 125 | ] 126 | }, 127 | "execution_count": 19, 128 | "metadata": {}, 129 | "output_type": "execute_result" 130 | } 131 | ], 132 | "source": [ 133 | "knn.fit(trainimg, trainlab)" 134 | ] 135 | }, 136 | { 137 | "cell_type": "code", 138 | "execution_count": 34, 139 | "id": "contrary-moore", 140 | "metadata": {}, 141 | "outputs": [ 142 | { 143 | "data": { 144 | "text/plain": [ 145 | "360" 146 | ] 147 | }, 148 | "execution_count": 34, 149 | "metadata": {}, 150 | "output_type": "execute_result" 151 | } 152 | ], 153 | "source": [ 154 | "len(testimg)" 155 | ] 156 | }, 157 | { 158 | "cell_type": "code", 159 | "execution_count": 35, 160 | "id": "exterior-wallet", 161 | "metadata": {}, 162 | "outputs": [ 163 | { 164 | "data": { 165 | "text/plain": [ 166 | "array([5])" 167 | ] 168 | }, 169 | "execution_count": 35, 170 | "metadata": {}, 171 | "output_type": "execute_result" 172 | } 173 | ], 174 | "source": [ 175 | "knn.predict(testimg[[359]])" 176 | ] 177 | }, 178 | { 179 | "cell_type": "code", 180 | "execution_count": 37, 181 | "id": "hearing-event", 182 | "metadata": {}, 183 | "outputs": [ 184 | { 185 | "data": { 186 | "text/plain": [ 187 | "5" 188 | ] 189 | }, 190 | "execution_count": 37, 191 | "metadata": {}, 192 | "output_type": "execute_result" 193 | } 194 | ], 195 | "source": [ 196 | "#original\n", 197 | "testlab[359]" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": 39, 203 | "id": "critical-replica", 204 | "metadata": {}, 205 | "outputs": [ 206 | { 207 | "name": "stdout", 208 | "output_type": "stream", 209 | "text": [ 210 | "0.9888888888888889\n" 211 | ] 212 | } 213 | ], 214 | "source": [ 215 | "#accuracy\n", 216 | "print(knn.score(testimg,testlab))" 217 | ] 218 | }, 219 | { 220 | "cell_type": "code", 221 | "execution_count": null, 222 | "id": "surprised-migration", 223 | "metadata": {}, 224 | "outputs": [], 225 | "source": [] 226 | } 227 | ], 228 | "metadata": { 229 | "kernelspec": { 230 | "display_name": "Python 3", 231 | "language": "python", 232 | "name": "python3" 233 | }, 234 | "language_info": { 235 | "codemirror_mode": { 236 | "name": "ipython", 237 | "version": 3 238 | }, 239 | "file_extension": ".py", 240 | "mimetype": "text/x-python", 241 | "name": "python", 242 | "nbconvert_exporter": "python", 243 | "pygments_lexer": "ipython3", 244 | "version": "3.8.8" 245 | } 246 | }, 247 | "nbformat": 4, 248 | "nbformat_minor": 5 249 | } 250 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 AKpython 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /LP1.py: -------------------------------------------------------------------------------- 1 | from pulp import * 2 | # declare your variables 3 | A = LpVariable("A", 100, 200) # 100 <= A <= 200 4 | B = LpVariable("B", 80, 170) # 80 <= B <= 170 5 | # defines the problem: optimization - Maximization 6 | prob = LpProblem("problem", LpMaximize) 7 | 8 | 9 | # defines the constraints 10 | prob += A + B >=200 11 | prob += A<=200 12 | prob += A>=100 13 | prob += B>=80 14 | prob += B<=170 15 | 16 | 17 | # defines the objective function to maximize 18 | prob += 5000*B- 2000*A 19 | 20 | 21 | # solve the problem 22 | status = prob.solve() 23 | print('printing status of the LP problem: ', LpStatus[status]) 24 | 25 | 26 | # print the results A = 100, B = 170 27 | print('Value of model A car: ', value(A)) 28 | print('Value of model B car: ', value(B)) 29 | print('the optimal solution or say maximum profit: $', value(prob.objective)) -------------------------------------------------------------------------------- /Logistic regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "floral-reality", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "#Importing libraries\n", 11 | "import pandas as pd\n", 12 | "%matplotlib inline\n", 13 | "from sklearn.model_selection import train_test_split" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 2, 19 | "id": "undefined-submission", 20 | "metadata": {}, 21 | "outputs": [ 22 | { 23 | "data": { 24 | "text/html": [ 25 | "
\n", 26 | "\n", 39 | "\n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
\n", 117 | "
" 118 | ], 119 | "text/plain": [ 120 | " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", 121 | "0 6 148 72 35 0 33.6 \n", 122 | "1 1 85 66 29 0 26.6 \n", 123 | "2 8 183 64 0 0 23.3 \n", 124 | "3 1 89 66 23 94 28.1 \n", 125 | "4 0 137 40 35 168 43.1 \n", 126 | "\n", 127 | " DiabetesPedigreeFunction Age Outcome \n", 128 | "0 0.627 50 1 \n", 129 | "1 0.351 31 0 \n", 130 | "2 0.672 32 1 \n", 131 | "3 0.167 21 0 \n", 132 | "4 2.288 33 1 " 133 | ] 134 | }, 135 | "execution_count": 2, 136 | "metadata": {}, 137 | "output_type": "execute_result" 138 | } 139 | ], 140 | "source": [ 141 | "df = pd.read_csv(\"diabetes.csv\")\n", 142 | "df.head()" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": 3, 148 | "id": "continuing-royal", 149 | "metadata": {}, 150 | "outputs": [], 151 | "source": [ 152 | "feature_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']\n", 153 | "X = df[feature_cols] # Features\n", 154 | "y = df.Outcome # Target variable" 155 | ] 156 | }, 157 | { 158 | "cell_type": "code", 159 | "execution_count": null, 160 | "id": "supposed-latter", 161 | "metadata": {}, 162 | "outputs": [], 163 | "source": [] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": 5, 168 | "id": "administrative-aside", 169 | "metadata": {}, 170 | "outputs": [], 171 | "source": [ 172 | "X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.7)" 173 | ] 174 | }, 175 | { 176 | "cell_type": "code", 177 | "execution_count": 6, 178 | "id": "under-essence", 179 | "metadata": {}, 180 | "outputs": [ 181 | { 182 | "data": { 183 | "text/plain": [ 184 | "450 0\n", 185 | "742 0\n", 186 | "304 0\n", 187 | "667 1\n", 188 | "500 0\n", 189 | " ..\n", 190 | "164 1\n", 191 | "576 0\n", 192 | "315 0\n", 193 | "68 0\n", 194 | "631 0\n", 195 | "Name: Outcome, Length: 231, dtype: int64" 196 | ] 197 | }, 198 | "execution_count": 6, 199 | "metadata": {}, 200 | "output_type": "execute_result" 201 | } 202 | ], 203 | "source": [ 204 | "y_test" 205 | ] 206 | }, 207 | { 208 | "cell_type": "code", 209 | "execution_count": 7, 210 | "id": "fiscal-blake", 211 | "metadata": {}, 212 | "outputs": [], 213 | "source": [ 214 | "from sklearn.linear_model import LogisticRegression\n", 215 | "model = LogisticRegression()" 216 | ] 217 | }, 218 | { 219 | "cell_type": "code", 220 | "execution_count": 8, 221 | "id": "vulnerable-bradley", 222 | "metadata": {}, 223 | "outputs": [ 224 | { 225 | "name": "stderr", 226 | "output_type": "stream", 227 | "text": [ 228 | "c:\\users\\admin\\appdata\\local\\programs\\python\\python38\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 229 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 230 | "\n", 231 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 232 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 233 | "Please also refer to the documentation for alternative solver options:\n", 234 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 235 | " n_iter_i = _check_optimize_result(\n" 236 | ] 237 | }, 238 | { 239 | "data": { 240 | "text/plain": [ 241 | "LogisticRegression()" 242 | ] 243 | }, 244 | "execution_count": 8, 245 | "metadata": {}, 246 | "output_type": "execute_result" 247 | } 248 | ], 249 | "source": [ 250 | "\n", 251 | "model.fit(X_train, y_train)" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 11, 257 | "id": "handmade-highlight", 258 | "metadata": {}, 259 | "outputs": [], 260 | "source": [ 261 | "y_predicted = model.predict(X_test)#Random value" 262 | ] 263 | }, 264 | { 265 | "cell_type": "code", 266 | "execution_count": 12, 267 | "id": "steady-organization", 268 | "metadata": {}, 269 | "outputs": [ 270 | { 271 | "name": "stdout", 272 | "output_type": "stream", 273 | "text": [ 274 | "[0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0\n", 275 | " 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1\n", 276 | " 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0\n", 277 | " 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0\n", 278 | " 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0\n", 279 | " 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0\n", 280 | " 0 1 0 1 0 0 0 0 0]\n" 281 | ] 282 | } 283 | ], 284 | "source": [ 285 | "print(y_predicted)" 286 | ] 287 | }, 288 | { 289 | "cell_type": "code", 290 | "execution_count": null, 291 | "id": "excited-madison", 292 | "metadata": {}, 293 | "outputs": [], 294 | "source": [] 295 | }, 296 | { 297 | "cell_type": "code", 298 | "execution_count": 115, 299 | "id": "sunrise-feelings", 300 | "metadata": {}, 301 | "outputs": [ 302 | { 303 | "data": { 304 | "text/plain": [ 305 | "0.7965367965367965" 306 | ] 307 | }, 308 | "execution_count": 115, 309 | "metadata": {}, 310 | "output_type": "execute_result" 311 | } 312 | ], 313 | "source": [ 314 | "model.score(X_test,y_test)" 315 | ] 316 | }, 317 | { 318 | "cell_type": "code", 319 | "execution_count": null, 320 | "id": "literary-jesus", 321 | "metadata": {}, 322 | "outputs": [], 323 | "source": [] 324 | }, 325 | { 326 | "cell_type": "code", 327 | "execution_count": null, 328 | "id": "latin-stopping", 329 | "metadata": {}, 330 | "outputs": [], 331 | "source": [] 332 | } 333 | ], 334 | "metadata": { 335 | "kernelspec": { 336 | "display_name": "Python 3", 337 | "language": "python", 338 | "name": "python3" 339 | }, 340 | "language_info": { 341 | "codemirror_mode": { 342 | "name": "ipython", 343 | "version": 3 344 | }, 345 | "file_extension": ".py", 346 | "mimetype": "text/x-python", 347 | "name": "python", 348 | "nbconvert_exporter": "python", 349 | "pygments_lexer": "ipython3", 350 | "version": "3.8.8" 351 | } 352 | }, 353 | "nbformat": 4, 354 | "nbformat_minor": 5 355 | } 356 | -------------------------------------------------------------------------------- /Salary prediction ( Linear Regression ).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "id": "lined-aquatic", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np # linear algebra\n", 11 | "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 4, 17 | "id": "several-wagon", 18 | "metadata": {}, 19 | "outputs": [ 20 | { 21 | "data": { 22 | "text/html": [ 23 | "
\n", 24 | "\n", 37 | "\n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | "
YearsExperienceSalary
01.139343.0
11.346205.0
21.537731.0
32.043525.0
42.239891.0
52.956642.0
63.060150.0
73.254445.0
83.264445.0
93.757189.0
103.963218.0
114.055794.0
124.056957.0
134.157081.0
144.561111.0
154.967938.0
165.166029.0
175.383088.0
185.981363.0
196.093940.0
206.891738.0
217.198273.0
227.9101302.0
238.2113812.0
248.7109431.0
259.0105582.0
269.5116969.0
279.6112635.0
2810.3122391.0
2910.5121872.0
\n", 198 | "
" 199 | ], 200 | "text/plain": [ 201 | " YearsExperience Salary\n", 202 | "0 1.1 39343.0\n", 203 | "1 1.3 46205.0\n", 204 | "2 1.5 37731.0\n", 205 | "3 2.0 43525.0\n", 206 | "4 2.2 39891.0\n", 207 | "5 2.9 56642.0\n", 208 | "6 3.0 60150.0\n", 209 | "7 3.2 54445.0\n", 210 | "8 3.2 64445.0\n", 211 | "9 3.7 57189.0\n", 212 | "10 3.9 63218.0\n", 213 | "11 4.0 55794.0\n", 214 | "12 4.0 56957.0\n", 215 | "13 4.1 57081.0\n", 216 | "14 4.5 61111.0\n", 217 | "15 4.9 67938.0\n", 218 | "16 5.1 66029.0\n", 219 | "17 5.3 83088.0\n", 220 | "18 5.9 81363.0\n", 221 | "19 6.0 93940.0\n", 222 | "20 6.8 91738.0\n", 223 | "21 7.1 98273.0\n", 224 | "22 7.9 101302.0\n", 225 | "23 8.2 113812.0\n", 226 | "24 8.7 109431.0\n", 227 | "25 9.0 105582.0\n", 228 | "26 9.5 116969.0\n", 229 | "27 9.6 112635.0\n", 230 | "28 10.3 122391.0\n", 231 | "29 10.5 121872.0" 232 | ] 233 | }, 234 | "execution_count": 4, 235 | "metadata": {}, 236 | "output_type": "execute_result" 237 | } 238 | ], 239 | "source": [ 240 | "data = pd.read_csv('Salary_data.csv')\n", 241 | "data" 242 | ] 243 | }, 244 | { 245 | "cell_type": "code", 246 | "execution_count": 5, 247 | "id": "reduced-journalism", 248 | "metadata": {}, 249 | "outputs": [], 250 | "source": [ 251 | "x = data.YearsExperience.values.reshape(-1,1)\n", 252 | "y = data.Salary.values.reshape(-1,1)" 253 | ] 254 | }, 255 | { 256 | "cell_type": "code", 257 | "execution_count": 6, 258 | "id": "consistent-parent", 259 | "metadata": {}, 260 | "outputs": [], 261 | "source": [ 262 | "from sklearn.model_selection import train_test_split\n", 263 | "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0)" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": 7, 269 | "id": "handmade-rogers", 270 | "metadata": {}, 271 | "outputs": [], 272 | "source": [ 273 | "from sklearn.linear_model import LinearRegression" 274 | ] 275 | }, 276 | { 277 | "cell_type": "code", 278 | "execution_count": 9, 279 | "id": "invalid-natural", 280 | "metadata": {}, 281 | "outputs": [], 282 | "source": [ 283 | "model= LinearRegression()" 284 | ] 285 | }, 286 | { 287 | "cell_type": "code", 288 | "execution_count": 10, 289 | "id": "sealed-composition", 290 | "metadata": {}, 291 | "outputs": [ 292 | { 293 | "data": { 294 | "text/plain": [ 295 | "LinearRegression()" 296 | ] 297 | }, 298 | "execution_count": 10, 299 | "metadata": {}, 300 | "output_type": "execute_result" 301 | } 302 | ], 303 | "source": [ 304 | "model.fit(x,y)" 305 | ] 306 | }, 307 | { 308 | "cell_type": "code", 309 | "execution_count": 12, 310 | "id": "thorough-rabbit", 311 | "metadata": {}, 312 | "outputs": [ 313 | { 314 | "name": "stdout", 315 | "output_type": "stream", 316 | "text": [ 317 | "63592\n" 318 | ] 319 | } 320 | ], 321 | "source": [ 322 | "next_salary = model.predict([[4.0]])\n", 323 | "print(int(next_salary))\n" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": 13, 329 | "id": "decimal-effectiveness", 330 | "metadata": {}, 331 | "outputs": [ 332 | { 333 | "data": { 334 | "text/plain": [ 335 | "0.941799590058557" 336 | ] 337 | }, 338 | "execution_count": 13, 339 | "metadata": {}, 340 | "output_type": "execute_result" 341 | } 342 | ], 343 | "source": [ 344 | "model.score(X_train,y_train)" 345 | ] 346 | }, 347 | { 348 | "cell_type": "code", 349 | "execution_count": null, 350 | "id": "billion-portuguese", 351 | "metadata": {}, 352 | "outputs": [], 353 | "source": [] 354 | } 355 | ], 356 | "metadata": { 357 | "kernelspec": { 358 | "display_name": "Python 3", 359 | "language": "python", 360 | "name": "python3" 361 | }, 362 | "language_info": { 363 | "codemirror_mode": { 364 | "name": "ipython", 365 | "version": 3 366 | }, 367 | "file_extension": ".py", 368 | "mimetype": "text/x-python", 369 | "name": "python", 370 | "nbconvert_exporter": "python", 371 | "pygments_lexer": "ipython3", 372 | "version": "3.8.8" 373 | } 374 | }, 375 | "nbformat": 4, 376 | "nbformat_minor": 5 377 | } 378 | -------------------------------------------------------------------------------- /Salary_Data.csv: -------------------------------------------------------------------------------- 1 | YearsExperience,Salary 2 | 1.1,39343.00 3 | 1.3,46205.00 4 | 1.5,37731.00 5 | 2.0,43525.00 6 | 2.2,39891.00 7 | 2.9,56642.00 8 | 3.0,60150.00 9 | 3.2,54445.00 10 | 3.2,64445.00 11 | 3.7,57189.00 12 | 3.9,63218.00 13 | 4.0,55794.00 14 | 4.0,56957.00 15 | 4.1,57081.00 16 | 4.5,61111.00 17 | 4.9,67938.00 18 | 5.1,66029.00 19 | 5.3,83088.00 20 | 5.9,81363.00 21 | 6.0,93940.00 22 | 6.8,91738.00 23 | 7.1,98273.00 24 | 7.9,101302.00 25 | 8.2,113812.00 26 | 8.7,109431.00 27 | 9.0,105582.00 28 | 9.5,116969.00 29 | 9.6,112635.00 30 | 10.3,122391.00 31 | 10.5,121872.00 32 | -------------------------------------------------------------------------------- /Sample scores.csv: -------------------------------------------------------------------------------- 1 | Overs,Scores 2 | 1,15 3 | 2,10 4 | 3,17 5 | 4,10 6 | 5,12 7 | 6,20 8 | 7,100 9 | 8,7 10 | 9,8 11 | 10,11 12 | 11,100 13 | 12,14 14 | 13,3 15 | 14,100 16 | 15,11 17 | 16,13 18 | 17,100 19 | 18,16 20 | 19,26 21 | 20,30 22 | -------------------------------------------------------------------------------- /Weather prediction (NaiveBayes algorithm ).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "id": "public-horizontal", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 8, 16 | "id": "spread-fairy", 17 | "metadata": {}, 18 | "outputs": [ 19 | { 20 | "data": { 21 | "text/html": [ 22 | "
\n", 23 | "\n", 36 | "\n", 37 | " \n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | "
OutlookTempHumidityWindyPlay
0RainyHotHighfno
1RainyHotHightno
2OvercastHotHighfyes
3SunnyMildHighfyes
4SunnyCoolNormalfyes
5SunnyCoolNormaltno
6OvercastCoolNormaltyes
7RainyMildHighfno
8RainyCoolNormalfyes
9SunnyMildNormalfyes
10RainyMildNormaltyes
11OvercastMildHightyes
12OvercastHotNormalfyes
13SunnyMildHightno
\n", 162 | "
" 163 | ], 164 | "text/plain": [ 165 | " Outlook Temp Humidity Windy Play\n", 166 | "0 Rainy Hot High f no\n", 167 | "1 Rainy Hot High t no\n", 168 | "2 Overcast Hot High f yes\n", 169 | "3 Sunny Mild High f yes\n", 170 | "4 Sunny Cool Normal f yes\n", 171 | "5 Sunny Cool Normal t no\n", 172 | "6 Overcast Cool Normal t yes\n", 173 | "7 Rainy Mild High f no\n", 174 | "8 Rainy Cool Normal f yes\n", 175 | "9 Sunny Mild Normal f yes\n", 176 | "10 Rainy Mild Normal t yes\n", 177 | "11 Overcast Mild High t yes\n", 178 | "12 Overcast Hot Normal f yes\n", 179 | "13 Sunny Mild High t no" 180 | ] 181 | }, 182 | "execution_count": 8, 183 | "metadata": {}, 184 | "output_type": "execute_result" 185 | } 186 | ], 187 | "source": [ 188 | "df = pd.read_csv(\"new_dataset.csv\")\n", 189 | "df" 190 | ] 191 | }, 192 | { 193 | "cell_type": "code", 194 | "execution_count": 1, 195 | "id": "popular-kennedy", 196 | "metadata": {}, 197 | "outputs": [], 198 | "source": [ 199 | "#NaiveBayes project (Weather Prediction)\n", 200 | "#Required Modules\n", 201 | "import pandas as pd\n", 202 | "from sklearn.preprocessing import LabelEncoder\n", 203 | "from sklearn.naive_bayes import GaussianNB" 204 | ] 205 | }, 206 | { 207 | "cell_type": "code", 208 | "execution_count": 2, 209 | "id": "touched-packet", 210 | "metadata": {}, 211 | "outputs": [ 212 | { 213 | "data": { 214 | "text/html": [ 215 | "
\n", 216 | "\n", 229 | "\n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | "
OutlookTempHumidityWindyPlay
0RainyHotHighfno
1RainyHotHightno
2OvercastHotHighfyes
3SunnyMildHighfyes
4SunnyCoolNormalfyes
5SunnyCoolNormaltno
6OvercastCoolNormaltyes
7RainyMildHighfno
8RainyCoolNormalfyes
9SunnyMildNormalfyes
10RainyMildNormaltyes
11OvercastMildHightyes
12OvercastHotNormalfyes
13SunnyMildHightno
\n", 355 | "
" 356 | ], 357 | "text/plain": [ 358 | " Outlook Temp Humidity Windy Play\n", 359 | "0 Rainy Hot High f no\n", 360 | "1 Rainy Hot High t no\n", 361 | "2 Overcast Hot High f yes\n", 362 | "3 Sunny Mild High f yes\n", 363 | "4 Sunny Cool Normal f yes\n", 364 | "5 Sunny Cool Normal t no\n", 365 | "6 Overcast Cool Normal t yes\n", 366 | "7 Rainy Mild High f no\n", 367 | "8 Rainy Cool Normal f yes\n", 368 | "9 Sunny Mild Normal f yes\n", 369 | "10 Rainy Mild Normal t yes\n", 370 | "11 Overcast Mild High t yes\n", 371 | "12 Overcast Hot Normal f yes\n", 372 | "13 Sunny Mild High t no" 373 | ] 374 | }, 375 | "execution_count": 2, 376 | "metadata": {}, 377 | "output_type": "execute_result" 378 | } 379 | ], 380 | "source": [ 381 | "#Reading CSV files\n", 382 | "df = pd.read_csv(\"new_dataset.csv\")\n", 383 | "df" 384 | ] 385 | }, 386 | { 387 | "cell_type": "code", 388 | "execution_count": 3, 389 | "id": "forbidden-ottawa", 390 | "metadata": {}, 391 | "outputs": [], 392 | "source": [ 393 | "#Encoding the strings to Numericals\n", 394 | "outlook_at=LabelEncoder()\n", 395 | "Temp_at=LabelEncoder()\n", 396 | "Hum_at=LabelEncoder()\n", 397 | "win_at=LabelEncoder()" 398 | ] 399 | }, 400 | { 401 | "cell_type": "code", 402 | "execution_count": 5, 403 | "id": "supposed-radar", 404 | "metadata": {}, 405 | "outputs": [ 406 | { 407 | "data": { 408 | "text/plain": [ 409 | "0 no\n", 410 | "1 no\n", 411 | "2 yes\n", 412 | "3 yes\n", 413 | "4 yes\n", 414 | "5 no\n", 415 | "6 yes\n", 416 | "7 no\n", 417 | "8 yes\n", 418 | "9 yes\n", 419 | "10 yes\n", 420 | "11 yes\n", 421 | "12 yes\n", 422 | "13 no\n", 423 | "Name: Play, dtype: object" 424 | ] 425 | }, 426 | "execution_count": 5, 427 | "metadata": {}, 428 | "output_type": "execute_result" 429 | } 430 | ], 431 | "source": [ 432 | "#Dropping the target variable and make it is as newframe\n", 433 | "inputs=df.drop('Play',axis='columns')\n", 434 | "target=df['Play']\n", 435 | "target" 436 | ] 437 | }, 438 | { 439 | "cell_type": "code", 440 | "execution_count": 6, 441 | "id": "double-rwanda", 442 | "metadata": {}, 443 | "outputs": [ 444 | { 445 | "data": { 446 | "text/html": [ 447 | "
\n", 448 | "\n", 461 | "\n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | "
OutlookTempHumidityWindyoutlook_nTemp_nHum_nwin_n
0RainyHotHighf1100
1RainyHotHight1101
2OvercastHotHighf0100
3SunnyMildHighf2200
4SunnyCoolNormalf2010
5SunnyCoolNormalt2011
6OvercastCoolNormalt0011
7RainyMildHighf1200
8RainyCoolNormalf1010
9SunnyMildNormalf2210
10RainyMildNormalt1211
11OvercastMildHight0201
12OvercastHotNormalf0110
13SunnyMildHight2201
\n", 632 | "
" 633 | ], 634 | "text/plain": [ 635 | " Outlook Temp Humidity Windy outlook_n Temp_n Hum_n win_n\n", 636 | "0 Rainy Hot High f 1 1 0 0\n", 637 | "1 Rainy Hot High t 1 1 0 1\n", 638 | "2 Overcast Hot High f 0 1 0 0\n", 639 | "3 Sunny Mild High f 2 2 0 0\n", 640 | "4 Sunny Cool Normal f 2 0 1 0\n", 641 | "5 Sunny Cool Normal t 2 0 1 1\n", 642 | "6 Overcast Cool Normal t 0 0 1 1\n", 643 | "7 Rainy Mild High f 1 2 0 0\n", 644 | "8 Rainy Cool Normal f 1 0 1 0\n", 645 | "9 Sunny Mild Normal f 2 2 1 0\n", 646 | "10 Rainy Mild Normal t 1 2 1 1\n", 647 | "11 Overcast Mild High t 0 2 0 1\n", 648 | "12 Overcast Hot Normal f 0 1 1 0\n", 649 | "13 Sunny Mild High t 2 2 0 1" 650 | ] 651 | }, 652 | "execution_count": 6, 653 | "metadata": {}, 654 | "output_type": "execute_result" 655 | } 656 | ], 657 | "source": [ 658 | "#Creating the new dataframe\n", 659 | "inputs['outlook_n']= outlook_at.fit_transform(inputs['Outlook'])\n", 660 | "inputs['Temp_n']= outlook_at.fit_transform(inputs['Temp'])\n", 661 | "inputs['Hum_n']= outlook_at.fit_transform(inputs['Humidity'])\n", 662 | "inputs['win_n']= outlook_at.fit_transform(inputs['Windy'])\n", 663 | "inputs" 664 | ] 665 | }, 666 | { 667 | "cell_type": "code", 668 | "execution_count": 7, 669 | "id": "indoor-satellite", 670 | "metadata": {}, 671 | "outputs": [ 672 | { 673 | "data": { 674 | "text/html": [ 675 | "
\n", 676 | "\n", 689 | "\n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | "
outlook_nTemp_nHum_nwin_n
01100
11101
20100
32200
42010
52011
60011
71200
81010
92210
101211
110201
120110
132201
\n", 800 | "
" 801 | ], 802 | "text/plain": [ 803 | " outlook_n Temp_n Hum_n win_n\n", 804 | "0 1 1 0 0\n", 805 | "1 1 1 0 1\n", 806 | "2 0 1 0 0\n", 807 | "3 2 2 0 0\n", 808 | "4 2 0 1 0\n", 809 | "5 2 0 1 1\n", 810 | "6 0 0 1 1\n", 811 | "7 1 2 0 0\n", 812 | "8 1 0 1 0\n", 813 | "9 2 2 1 0\n", 814 | "10 1 2 1 1\n", 815 | "11 0 2 0 1\n", 816 | "12 0 1 1 0\n", 817 | "13 2 2 0 1" 818 | ] 819 | }, 820 | "execution_count": 7, 821 | "metadata": {}, 822 | "output_type": "execute_result" 823 | } 824 | ], 825 | "source": [ 826 | "#Dropping the string values\n", 827 | "inputs_n=inputs.drop(['Outlook','Temp','Humidity','Windy'],axis='columns')\n", 828 | "inputs_n" 829 | ] 830 | }, 831 | { 832 | "cell_type": "code", 833 | "execution_count": 8, 834 | "id": "functional-rebecca", 835 | "metadata": {}, 836 | "outputs": [ 837 | { 838 | "data": { 839 | "text/plain": [ 840 | "GaussianNB()" 841 | ] 842 | }, 843 | "execution_count": 8, 844 | "metadata": {}, 845 | "output_type": "execute_result" 846 | } 847 | ], 848 | "source": [ 849 | "#Applying the Gaussian naivebayes\n", 850 | "classifier = GaussianNB()\n", 851 | "classifier.fit(inputs_n,target)" 852 | ] 853 | }, 854 | { 855 | "cell_type": "code", 856 | "execution_count": 9, 857 | "id": "hybrid-program", 858 | "metadata": {}, 859 | "outputs": [ 860 | { 861 | "data": { 862 | "text/plain": [ 863 | "0.8571428571428571" 864 | ] 865 | }, 866 | "execution_count": 9, 867 | "metadata": {}, 868 | "output_type": "execute_result" 869 | } 870 | ], 871 | "source": [ 872 | "#85% accuracy \n", 873 | "classifier.score(inputs_n,target)" 874 | ] 875 | }, 876 | { 877 | "cell_type": "code", 878 | "execution_count": 10, 879 | "id": "coordinated-sector", 880 | "metadata": {}, 881 | "outputs": [ 882 | { 883 | "data": { 884 | "text/plain": [ 885 | "array(['yes'], dtype='\n", 145 | "\n", 158 | "\n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | "
SepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCm
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
\n", 206 | "" 207 | ], 208 | "text/plain": [ 209 | " SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm\n", 210 | "0 5.1 3.5 1.4 0.2\n", 211 | "1 4.9 3.0 1.4 0.2\n", 212 | "2 4.7 3.2 1.3 0.2\n", 213 | "3 4.6 3.1 1.5 0.2\n", 214 | "4 5.0 3.6 1.4 0.2" 215 | ] 216 | }, 217 | "execution_count": 8, 218 | "metadata": {}, 219 | "output_type": "execute_result" 220 | } 221 | ], 222 | "source": [ 223 | "X = iris[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]\n", 224 | "\n", 225 | "X.head()" 226 | ] 227 | }, 228 | { 229 | "cell_type": "code", 230 | "execution_count": 9, 231 | "id": "100396f2", 232 | "metadata": {}, 233 | "outputs": [ 234 | { 235 | "data": { 236 | "text/plain": [ 237 | "0 Iris-setosa\n", 238 | "1 Iris-setosa\n", 239 | "2 Iris-setosa\n", 240 | "3 Iris-setosa\n", 241 | "4 Iris-setosa\n", 242 | "Name: Species, dtype: object" 243 | ] 244 | }, 245 | "execution_count": 9, 246 | "metadata": {}, 247 | "output_type": "execute_result" 248 | } 249 | ], 250 | "source": [ 251 | "y = iris['Species']\n", 252 | "\n", 253 | "y.head()" 254 | ] 255 | }, 256 | { 257 | "cell_type": "code", 258 | "execution_count": 10, 259 | "id": "689d29bf", 260 | "metadata": {}, 261 | "outputs": [], 262 | "source": [ 263 | "from sklearn.preprocessing import LabelEncoder\n", 264 | "\n", 265 | "le=LabelEncoder()\n", 266 | "\n", 267 | "y=le.fit_transform(y)" 268 | ] 269 | }, 270 | { 271 | "cell_type": "code", 272 | "execution_count": 11, 273 | "id": "1e35285c", 274 | "metadata": {}, 275 | "outputs": [ 276 | { 277 | "data": { 278 | "text/plain": [ 279 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 280 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 281 | " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 282 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 283 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", 284 | " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", 285 | " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])" 286 | ] 287 | }, 288 | "execution_count": 11, 289 | "metadata": {}, 290 | "output_type": "execute_result" 291 | } 292 | ], 293 | "source": [ 294 | "y" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": 12, 300 | "id": "2e7751ff", 301 | "metadata": {}, 302 | "outputs": [], 303 | "source": [ 304 | "# Import train_test_split function\n", 305 | "from sklearn.model_selection import train_test_split\n", 306 | "\n", 307 | "# Split dataset into training set and test set\n", 308 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)" 309 | ] 310 | }, 311 | { 312 | "cell_type": "code", 313 | "execution_count": 14, 314 | "id": "2f35d717", 315 | "metadata": {}, 316 | "outputs": [], 317 | "source": [ 318 | "# Import the AdaBoost classifier\n", 319 | "from sklearn.ensemble import AdaBoostClassifier\n", 320 | "\n", 321 | "\n", 322 | "# Create adaboost classifer object\n", 323 | "abc = AdaBoostClassifier(n_estimators=50, learning_rate=1, random_state=0)\n", 324 | "\n", 325 | "# Train Adaboost Classifer\n", 326 | "model1 = abc.fit(X_train, y_train)\n", 327 | "\n", 328 | "\n", 329 | "#Predict the response for test dataset\n", 330 | "y_pred = model1.predict(X_test)" 331 | ] 332 | }, 333 | { 334 | "cell_type": "code", 335 | "execution_count": 16, 336 | "id": "2c447ea7", 337 | "metadata": {}, 338 | "outputs": [ 339 | { 340 | "name": "stdout", 341 | "output_type": "stream", 342 | "text": [ 343 | "AdaBoost Classifier Model Accuracy: 0.9333333333333333\n" 344 | ] 345 | } 346 | ], 347 | "source": [ 348 | "#import scikit-learn metrics module for accuracy calculation\n", 349 | "from sklearn.metrics import accuracy_score\n", 350 | "\n", 351 | "\n", 352 | "# calculate and print model accuracy\n", 353 | "print(\"AdaBoost Classifier Model Accuracy:\", accuracy_score(y_test, y_pred))" 354 | ] 355 | }, 356 | { 357 | "cell_type": "code", 358 | "execution_count": 15, 359 | "id": "e8ffad25", 360 | "metadata": {}, 361 | "outputs": [ 362 | { 363 | "data": { 364 | "text/plain": [ 365 | "array([1, 2, 1, 0, 2, 2, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 2, 1, 1, 1,\n", 366 | " 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 1, 1,\n", 367 | " 2])" 368 | ] 369 | }, 370 | "execution_count": 15, 371 | "metadata": {}, 372 | "output_type": "execute_result" 373 | } 374 | ], 375 | "source": [ 376 | "y_pred" 377 | ] 378 | }, 379 | { 380 | "cell_type": "code", 381 | "execution_count": null, 382 | "id": "fc852e82", 383 | "metadata": {}, 384 | "outputs": [], 385 | "source": [] 386 | } 387 | ], 388 | "metadata": { 389 | "kernelspec": { 390 | "display_name": "Python 3 (ipykernel)", 391 | "language": "python", 392 | "name": "python3" 393 | }, 394 | "language_info": { 395 | "codemirror_mode": { 396 | "name": "ipython", 397 | "version": 3 398 | }, 399 | "file_extension": ".py", 400 | "mimetype": "text/x-python", 401 | "name": "python", 402 | "nbconvert_exporter": "python", 403 | "pygments_lexer": "ipython3", 404 | "version": "3.8.8" 405 | } 406 | }, 407 | "nbformat": 4, 408 | "nbformat_minor": 5 409 | } 410 | -------------------------------------------------------------------------------- /airline-passenger-traffic(1).csv: -------------------------------------------------------------------------------- 1 | 1949-01,112 2 | 1949-02,118 3 | 1949-03,132 4 | 1949-04,129 5 | 1949-05,121 6 | 1949-06,135 7 | 1949-07,148 8 | 1949-08,148 9 | 1949-09,136 10 | 1949-10,119 11 | 1949-11,104 12 | 1949-12,118 13 | 1950-01,115 14 | 1950-02,126 15 | 1950-03,141 16 | 1950-04,135 17 | 1950-05,125 18 | 1950-06,149 19 | 1950-07,170 20 | 1950-08,170 21 | 1950-09,158 22 | 1950-10,133 23 | 1950-11,114 24 | 1950-12,140 25 | 1951-01,145 26 | 1951-02,150 27 | 1951-03,178 28 | 1951-04,163 29 | 1951-05,172 30 | 1951-06, 31 | 1951-07, 32 | 1951-08,199 33 | 1951-09,184 34 | 1951-10,162 35 | 1951-11,146 36 | 1951-12,166 37 | 1952-01,171 38 | 1952-02,180 39 | 1952-03,193 40 | 1952-04,181 41 | 1952-05,183 42 | 1952-06,218 43 | 1952-07,230 44 | 1952-08,242 45 | 1952-09,209 46 | 1952-10,191 47 | 1952-11,172 48 | 1952-12,194 49 | 1953-01,196 50 | 1953-02,196 51 | 1953-03,236 52 | 1953-04,235 53 | 1953-05,229 54 | 1953-06,243 55 | 1953-07,264 56 | 1953-08,272 57 | 1953-09,237 58 | 1953-10,211 59 | 1953-11,180 60 | 1953-12,201 61 | 1954-01,204 62 | 1954-02,188 63 | 1954-03,235 64 | 1954-04,227 65 | 1954-05,234 66 | 1954-06, 67 | 1954-07,302 68 | 1954-08,293 69 | 1954-09,259 70 | 1954-10,229 71 | 1954-11,203 72 | 1954-12,229 73 | 1955-01,242 74 | 1955-02,233 75 | 1955-03,267 76 | 1955-04,269 77 | 1955-05,270 78 | 1955-06,315 79 | 1955-07,364 80 | 1955-08,347 81 | 1955-09,312 82 | 1955-10,274 83 | 1955-11,237 84 | 1955-12,278 85 | 1956-01,284 86 | 1956-02,277 87 | 1956-03,317 88 | 1956-04,313 89 | 1956-05,318 90 | 1956-06,374 91 | 1956-07,413 92 | 1956-08,405 93 | 1956-09,355 94 | 1956-10,306 95 | 1956-11,271 96 | 1956-12,306 97 | 1957-01,315 98 | 1957-02,301 99 | 1957-03,356 100 | 1957-04,348 101 | 1957-05,355 102 | 1957-06,422 103 | 1957-07,465 104 | 1957-08,467 105 | 1957-09,404 106 | 1957-10,347 107 | 1957-11,305 108 | 1957-12,336 109 | 1958-01,340 110 | 1958-02,318 111 | 1958-03,362 112 | 1958-04,348 113 | 1958-05,363 114 | 1958-06,435 115 | 1958-07,491 116 | 1958-08,505 117 | 1958-09,404 118 | 1958-10,359 119 | 1958-11,310 120 | 1958-12,337 121 | 1959-01,360 122 | 1959-02,342 123 | 1959-03,406 124 | 1959-04,396 125 | 1959-05,420 126 | 1959-06,472 127 | 1959-07,548 128 | 1959-08,559 129 | 1959-09,463 130 | 1959-10,407 131 | 1959-11,362 132 | 1959-12,405 133 | 1960-01,417 134 | 1960-02,391 135 | 1960-03, 136 | 1960-04,461 137 | 1960-05,472 138 | 1960-06,535 139 | 1960-07,622 140 | 1960-08,606 141 | 1960-09,508 142 | 1960-10,461 143 | 1960-11,390 144 | 1960-12,432 145 | -------------------------------------------------------------------------------- /car data.csv: -------------------------------------------------------------------------------- 1 | Car_Name,Year,Selling_Price,Present_Price,Kms_Driven,Fuel_Type,Seller_Type,Transmission,Owner 2 | ritz,2014,3.35,5.59,27000,Petrol,Dealer,Manual,0 3 | sx4,2013,4.75,9.54,43000,Diesel,Dealer,Manual,0 4 | ciaz,2017,7.25,9.85,6900,Petrol,Dealer,Manual,0 5 | wagon r,2011,2.85,4.15,5200,Petrol,Dealer,Manual,0 6 | swift,2014,4.6,6.87,42450,Diesel,Dealer,Manual,0 7 | vitara brezza,2018,9.25,9.83,2071,Diesel,Dealer,Manual,0 8 | ciaz,2015,6.75,8.12,18796,Petrol,Dealer,Manual,0 9 | s cross,2015,6.5,8.61,33429,Diesel,Dealer,Manual,0 10 | ciaz,2016,8.75,8.89,20273,Diesel,Dealer,Manual,0 11 | ciaz,2015,7.45,8.92,42367,Diesel,Dealer,Manual,0 12 | alto 800,2017,2.85,3.6,2135,Petrol,Dealer,Manual,0 13 | ciaz,2015,6.85,10.38,51000,Diesel,Dealer,Manual,0 14 | ciaz,2015,7.5,9.94,15000,Petrol,Dealer,Automatic,0 15 | ertiga,2015,6.1,7.71,26000,Petrol,Dealer,Manual,0 16 | dzire,2009,2.25,7.21,77427,Petrol,Dealer,Manual,0 17 | ertiga,2016,7.75,10.79,43000,Diesel,Dealer,Manual,0 18 | ertiga,2015,7.25,10.79,41678,Diesel,Dealer,Manual,0 19 | ertiga,2016,7.75,10.79,43000,Diesel,Dealer,Manual,0 20 | wagon r,2015,3.25,5.09,35500,CNG,Dealer,Manual,0 21 | sx4,2010,2.65,7.98,41442,Petrol,Dealer,Manual,0 22 | alto k10,2016,2.85,3.95,25000,Petrol,Dealer,Manual,0 23 | ignis,2017,4.9,5.71,2400,Petrol,Dealer,Manual,0 24 | sx4,2011,4.4,8.01,50000,Petrol,Dealer,Automatic,0 25 | alto k10,2014,2.5,3.46,45280,Petrol,Dealer,Manual,0 26 | wagon r,2013,2.9,4.41,56879,Petrol,Dealer,Manual,0 27 | swift,2011,3,4.99,20000,Petrol,Dealer,Manual,0 28 | swift,2013,4.15,5.87,55138,Petrol,Dealer,Manual,0 29 | swift,2017,6,6.49,16200,Petrol,Individual,Manual,0 30 | alto k10,2010,1.95,3.95,44542,Petrol,Dealer,Manual,0 31 | ciaz,2015,7.45,10.38,45000,Diesel,Dealer,Manual,0 32 | ritz,2012,3.1,5.98,51439,Diesel,Dealer,Manual,0 33 | ritz,2011,2.35,4.89,54200,Petrol,Dealer,Manual,0 34 | swift,2014,4.95,7.49,39000,Diesel,Dealer,Manual,0 35 | ertiga,2014,6,9.95,45000,Diesel,Dealer,Manual,0 36 | dzire,2014,5.5,8.06,45000,Diesel,Dealer,Manual,0 37 | sx4,2011,2.95,7.74,49998,CNG,Dealer,Manual,0 38 | dzire,2015,4.65,7.2,48767,Petrol,Dealer,Manual,0 39 | 800,2003,0.35,2.28,127000,Petrol,Individual,Manual,0 40 | alto k10,2016,3,3.76,10079,Petrol,Dealer,Manual,0 41 | sx4,2003,2.25,7.98,62000,Petrol,Dealer,Manual,0 42 | baleno,2016,5.85,7.87,24524,Petrol,Dealer,Automatic,0 43 | alto k10,2014,2.55,3.98,46706,Petrol,Dealer,Manual,0 44 | sx4,2008,1.95,7.15,58000,Petrol,Dealer,Manual,0 45 | dzire,2014,5.5,8.06,45780,Diesel,Dealer,Manual,0 46 | omni,2012,1.25,2.69,50000,Petrol,Dealer,Manual,0 47 | ciaz,2014,7.5,12.04,15000,Petrol,Dealer,Automatic,0 48 | ritz,2013,2.65,4.89,64532,Petrol,Dealer,Manual,0 49 | wagon r,2006,1.05,4.15,65000,Petrol,Dealer,Manual,0 50 | ertiga,2015,5.8,7.71,25870,Petrol,Dealer,Manual,0 51 | ciaz,2017,7.75,9.29,37000,Petrol,Dealer,Automatic,0 52 | fortuner,2012,14.9,30.61,104707,Diesel,Dealer,Automatic,0 53 | fortuner,2015,23,30.61,40000,Diesel,Dealer,Automatic,0 54 | innova,2017,18,19.77,15000,Diesel,Dealer,Automatic,0 55 | fortuner,2013,16,30.61,135000,Diesel,Individual,Automatic,0 56 | innova,2005,2.75,10.21,90000,Petrol,Individual,Manual,0 57 | corolla altis,2009,3.6,15.04,70000,Petrol,Dealer,Automatic,0 58 | etios cross,2015,4.5,7.27,40534,Petrol,Dealer,Manual,0 59 | corolla altis,2010,4.75,18.54,50000,Petrol,Dealer,Manual,0 60 | etios g,2014,4.1,6.8,39485,Petrol,Dealer,Manual,1 61 | fortuner,2014,19.99,35.96,41000,Diesel,Dealer,Automatic,0 62 | corolla altis,2013,6.95,18.61,40001,Petrol,Dealer,Manual,0 63 | etios cross,2015,4.5,7.7,40588,Petrol,Dealer,Manual,0 64 | fortuner,2014,18.75,35.96,78000,Diesel,Dealer,Automatic,0 65 | fortuner,2015,23.5,35.96,47000,Diesel,Dealer,Automatic,0 66 | fortuner,2017,33,36.23,6000,Diesel,Dealer,Automatic,0 67 | etios liva,2014,4.75,6.95,45000,Diesel,Dealer,Manual,0 68 | innova,2017,19.75,23.15,11000,Petrol,Dealer,Automatic,0 69 | fortuner,2010,9.25,20.45,59000,Diesel,Dealer,Manual,0 70 | corolla altis,2011,4.35,13.74,88000,Petrol,Dealer,Manual,0 71 | corolla altis,2016,14.25,20.91,12000,Petrol,Dealer,Manual,0 72 | etios liva,2014,3.95,6.76,71000,Diesel,Dealer,Manual,0 73 | corolla altis,2011,4.5,12.48,45000,Diesel,Dealer,Manual,0 74 | corolla altis,2013,7.45,18.61,56001,Petrol,Dealer,Manual,0 75 | etios liva,2011,2.65,5.71,43000,Petrol,Dealer,Manual,0 76 | etios cross,2014,4.9,8.93,83000,Diesel,Dealer,Manual,0 77 | etios g,2015,3.95,6.8,36000,Petrol,Dealer,Manual,0 78 | corolla altis,2013,5.5,14.68,72000,Petrol,Dealer,Manual,0 79 | corolla,2004,1.5,12.35,135154,Petrol,Dealer,Automatic,0 80 | corolla altis,2010,5.25,22.83,80000,Petrol,Dealer,Automatic,0 81 | fortuner,2012,14.5,30.61,89000,Diesel,Dealer,Automatic,0 82 | corolla altis,2016,14.73,14.89,23000,Diesel,Dealer,Manual,0 83 | etios gd,2015,4.75,7.85,40000,Diesel,Dealer,Manual,0 84 | innova,2017,23,25.39,15000,Diesel,Dealer,Automatic,0 85 | innova,2015,12.5,13.46,38000,Diesel,Dealer,Manual,0 86 | innova,2005,3.49,13.46,197176,Diesel,Dealer,Manual,0 87 | camry,2006,2.5,23.73,142000,Petrol,Individual,Automatic,3 88 | land cruiser,2010,35,92.6,78000,Diesel,Dealer,Manual,0 89 | corolla altis,2012,5.9,13.74,56000,Petrol,Dealer,Manual,0 90 | etios liva,2013,3.45,6.05,47000,Petrol,Dealer,Manual,0 91 | etios g,2014,4.75,6.76,40000,Petrol,Dealer,Manual,0 92 | corolla altis,2009,3.8,18.61,62000,Petrol,Dealer,Manual,0 93 | innova,2014,11.25,16.09,58242,Diesel,Dealer,Manual,0 94 | innova,2005,3.51,13.7,75000,Petrol,Dealer,Manual,0 95 | fortuner,2015,23,30.61,40000,Diesel,Dealer,Automatic,0 96 | corolla altis,2008,4,22.78,89000,Petrol,Dealer,Automatic,0 97 | corolla altis,2012,5.85,18.61,72000,Petrol,Dealer,Manual,0 98 | innova,2016,20.75,25.39,29000,Diesel,Dealer,Automatic,0 99 | corolla altis,2017,17,18.64,8700,Petrol,Dealer,Manual,0 100 | corolla altis,2013,7.05,18.61,45000,Petrol,Dealer,Manual,0 101 | fortuner,2010,9.65,20.45,50024,Diesel,Dealer,Manual,0 102 | Royal Enfield Thunder 500,2016,1.75,1.9,3000,Petrol,Individual,Manual,0 103 | UM Renegade Mojave,2017,1.7,1.82,1400,Petrol,Individual,Manual,0 104 | KTM RC200,2017,1.65,1.78,4000,Petrol,Individual,Manual,0 105 | Bajaj Dominar 400,2017,1.45,1.6,1200,Petrol,Individual,Manual,0 106 | Royal Enfield Classic 350,2017,1.35,1.47,4100,Petrol,Individual,Manual,0 107 | KTM RC390,2015,1.35,2.37,21700,Petrol,Individual,Manual,0 108 | Hyosung GT250R,2014,1.35,3.45,16500,Petrol,Individual,Manual,1 109 | Royal Enfield Thunder 350,2013,1.25,1.5,15000,Petrol,Individual,Manual,0 110 | Royal Enfield Thunder 350,2016,1.2,1.5,18000,Petrol,Individual,Manual,0 111 | Royal Enfield Classic 350,2017,1.2,1.47,11000,Petrol,Individual,Manual,0 112 | KTM RC200,2016,1.2,1.78,6000,Petrol,Individual,Manual,0 113 | Royal Enfield Thunder 350,2016,1.15,1.5,8700,Petrol,Individual,Manual,0 114 | KTM 390 Duke ,2014,1.15,2.4,7000,Petrol,Individual,Manual,0 115 | Mahindra Mojo XT300,2016,1.15,1.4,35000,Petrol,Individual,Manual,0 116 | Royal Enfield Classic 350,2015,1.15,1.47,17000,Petrol,Individual,Manual,0 117 | Royal Enfield Classic 350,2015,1.11,1.47,17500,Petrol,Individual,Manual,0 118 | Royal Enfield Classic 350,2013,1.1,1.47,33000,Petrol,Individual,Manual,0 119 | Royal Enfield Thunder 500,2015,1.1,1.9,14000,Petrol,Individual,Manual,0 120 | Royal Enfield Classic 350,2015,1.1,1.47,26000,Petrol,Individual,Manual,0 121 | Royal Enfield Thunder 500,2013,1.05,1.9,5400,Petrol,Individual,Manual,0 122 | Bajaj Pulsar RS200,2016,1.05,1.26,5700,Petrol,Individual,Manual,0 123 | Royal Enfield Thunder 350,2011,1.05,1.5,6900,Petrol,Individual,Manual,0 124 | Royal Enfield Bullet 350,2016,1.05,1.17,6000,Petrol,Individual,Manual,0 125 | Royal Enfield Classic 350,2013,1,1.47,46500,Petrol,Individual,Manual,0 126 | Royal Enfield Classic 500,2012,0.95,1.75,11500,Petrol,Individual,Manual,0 127 | Royal Enfield Classic 500,2009,0.9,1.75,40000,Petrol,Individual,Manual,0 128 | Bajaj Avenger 220,2017,0.9,0.95,1300,Petrol,Individual,Manual,0 129 | Bajaj Avenger 150,2016,0.75,0.8,7000,Petrol,Individual,Manual,0 130 | Honda CB Hornet 160R,2017,0.8,0.87,3000,Petrol,Individual,Manual,0 131 | Yamaha FZ S V 2.0,2017,0.78,0.84,5000,Petrol,Individual,Manual,0 132 | Honda CB Hornet 160R,2017,0.75,0.87,11000,Petrol,Individual,Manual,0 133 | Yamaha FZ 16,2015,0.75,0.82,18000,Petrol,Individual,Manual,0 134 | Bajaj Avenger 220,2017,0.75,0.95,3500,Petrol,Individual,Manual,0 135 | Bajaj Avenger 220,2016,0.72,0.95,500,Petrol,Individual,Manual,0 136 | TVS Apache RTR 160,2017,0.65,0.81,11800,Petrol,Individual,Manual,0 137 | Bajaj Pulsar 150,2015,0.65,0.74,5000,Petrol,Individual,Manual,0 138 | Honda CBR 150,2014,0.65,1.2,23500,Petrol,Individual,Manual,0 139 | Hero Extreme,2013,0.65,0.787,16000,Petrol,Individual,Manual,0 140 | Honda CB Hornet 160R,2016,0.6,0.87,15000,Petrol,Individual,Manual,0 141 | Bajaj Avenger 220 dtsi,2015,0.6,0.95,16600,Petrol,Individual,Manual,0 142 | Honda CBR 150,2013,0.6,1.2,32000,Petrol,Individual,Manual,0 143 | Bajaj Avenger 150 street,2016,0.6,0.8,20000,Petrol,Individual,Manual,0 144 | Yamaha FZ v 2.0,2015,0.6,0.84,29000,Petrol,Individual,Manual,0 145 | Yamaha FZ v 2.0,2016,0.6,0.84,25000,Petrol,Individual,Manual,0 146 | Bajaj Pulsar NS 200,2014,0.6,0.99,25000,Petrol,Individual,Manual,0 147 | TVS Apache RTR 160,2012,0.6,0.81,19000,Petrol,Individual,Manual,0 148 | Hero Extreme,2014,0.55,0.787,15000,Petrol,Individual,Manual,0 149 | Yamaha FZ S V 2.0,2015,0.55,0.84,58000,Petrol,Individual,Manual,0 150 | Bajaj Pulsar 220 F,2010,0.52,0.94,45000,Petrol,Individual,Manual,0 151 | Bajaj Pulsar 220 F,2016,0.51,0.94,24000,Petrol,Individual,Manual,0 152 | TVS Apache RTR 180,2011,0.5,0.826,6000,Petrol,Individual,Manual,0 153 | Hero Passion X pro,2016,0.5,0.55,31000,Petrol,Individual,Manual,0 154 | Bajaj Pulsar NS 200,2012,0.5,0.99,13000,Petrol,Individual,Manual,0 155 | Bajaj Pulsar NS 200,2013,0.5,0.99,45000,Petrol,Individual,Manual,0 156 | Yamaha Fazer ,2014,0.5,0.88,8000,Petrol,Individual,Manual,0 157 | Honda Activa 4G,2017,0.48,0.51,4300,Petrol,Individual,Automatic,0 158 | TVS Sport ,2017,0.48,0.52,15000,Petrol,Individual,Manual,0 159 | Yamaha FZ S V 2.0,2015,0.48,0.84,23000,Petrol,Individual,Manual,0 160 | Honda Dream Yuga ,2017,0.48,0.54,8600,Petrol,Individual,Manual,0 161 | Honda Activa 4G,2017,0.45,0.51,4000,Petrol,Individual,Automatic,0 162 | Bajaj Avenger Street 220,2011,0.45,0.95,24000,Petrol,Individual,Manual,0 163 | TVS Apache RTR 180,2014,0.45,0.826,23000,Petrol,Individual,Manual,0 164 | Bajaj Pulsar NS 200,2012,0.45,0.99,14500,Petrol,Individual,Manual,0 165 | Bajaj Avenger 220 dtsi,2010,0.45,0.95,27000,Petrol,Individual,Manual,0 166 | Hero Splender iSmart,2016,0.45,0.54,14000,Petrol,Individual,Manual,0 167 | Activa 3g,2016,0.45,0.54,500,Petrol,Individual,Automatic,0 168 | Hero Passion Pro,2016,0.45,0.55,1000,Petrol,Individual,Manual,0 169 | TVS Apache RTR 160,2014,0.42,0.81,42000,Petrol,Individual,Manual,0 170 | Honda CB Trigger,2013,0.42,0.73,12000,Petrol,Individual,Manual,0 171 | Hero Splender iSmart,2015,0.4,0.54,14000,Petrol,Individual,Manual,0 172 | Yamaha FZ S ,2012,0.4,0.83,5500,Petrol,Individual,Manual,0 173 | Hero Passion Pro,2015,0.4,0.55,6700,Petrol,Individual,Manual,0 174 | Bajaj Pulsar 135 LS,2014,0.4,0.64,13700,Petrol,Individual,Manual,0 175 | Activa 4g,2017,0.4,0.51,1300,Petrol,Individual,Automatic,0 176 | Honda CB Unicorn,2015,0.38,0.72,38600,Petrol,Individual,Manual,0 177 | Hero Honda CBZ extreme,2011,0.38,0.787,75000,Petrol,Individual,Manual,0 178 | Honda Karizma,2011,0.35,1.05,30000,Petrol,Individual,Manual,0 179 | Honda Activa 125,2016,0.35,0.57,24000,Petrol,Individual,Automatic,0 180 | TVS Jupyter,2014,0.35,0.52,19000,Petrol,Individual,Automatic,0 181 | Honda Karizma,2010,0.31,1.05,213000,Petrol,Individual,Manual,0 182 | Hero Honda Passion Pro,2012,0.3,0.51,60000,Petrol,Individual,Manual,0 183 | Hero Splender Plus,2016,0.3,0.48,50000,Petrol,Individual,Manual,0 184 | Honda CB Shine,2013,0.3,0.58,30000,Petrol,Individual,Manual,0 185 | Bajaj Discover 100,2013,0.27,0.47,21000,Petrol,Individual,Manual,0 186 | Bajaj Pulsar 150,2008,0.25,0.75,26000,Petrol,Individual,Manual,1 187 | Suzuki Access 125,2008,0.25,0.58,1900,Petrol,Individual,Automatic,0 188 | TVS Wego,2010,0.25,0.52,22000,Petrol,Individual,Automatic,0 189 | Honda CB twister,2013,0.25,0.51,32000,Petrol,Individual,Manual,0 190 | Hero Glamour,2013,0.25,0.57,18000,Petrol,Individual,Manual,0 191 | Hero Super Splendor,2005,0.2,0.57,55000,Petrol,Individual,Manual,0 192 | Bajaj Pulsar 150,2008,0.2,0.75,60000,Petrol,Individual,Manual,0 193 | Bajaj Discover 125,2012,0.2,0.57,25000,Petrol,Individual,Manual,1 194 | Hero Hunk,2007,0.2,0.75,49000,Petrol,Individual,Manual,1 195 | Hero Ignitor Disc,2013,0.2,0.65,24000,Petrol,Individual,Manual,1 196 | Hero CBZ Xtreme,2008,0.2,0.787,50000,Petrol,Individual,Manual,0 197 | Bajaj ct 100,2015,0.18,0.32,35000,Petrol,Individual,Manual,0 198 | Activa 3g,2008,0.17,0.52,500000,Petrol,Individual,Automatic,0 199 | Honda CB twister,2010,0.16,0.51,33000,Petrol,Individual,Manual,0 200 | Bajaj Discover 125,2011,0.15,0.57,35000,Petrol,Individual,Manual,1 201 | Honda CB Shine,2007,0.12,0.58,53000,Petrol,Individual,Manual,0 202 | Bajaj Pulsar 150,2006,0.1,0.75,92233,Petrol,Individual,Manual,0 203 | i20,2010,3.25,6.79,58000,Diesel,Dealer,Manual,1 204 | grand i10,2015,4.4,5.7,28200,Petrol,Dealer,Manual,0 205 | i10,2011,2.95,4.6,53460,Petrol,Dealer,Manual,0 206 | eon,2015,2.75,4.43,28282,Petrol,Dealer,Manual,0 207 | grand i10,2016,5.25,5.7,3493,Petrol,Dealer,Manual,1 208 | xcent,2017,5.75,7.13,12479,Petrol,Dealer,Manual,0 209 | grand i10,2015,5.15,5.7,34797,Petrol,Dealer,Automatic,0 210 | i20,2017,7.9,8.1,3435,Petrol,Dealer,Manual,0 211 | grand i10,2015,4.85,5.7,21125,Diesel,Dealer,Manual,0 212 | i10,2012,3.1,4.6,35775,Petrol,Dealer,Manual,0 213 | elantra,2015,11.75,14.79,43535,Diesel,Dealer,Manual,0 214 | creta,2016,11.25,13.6,22671,Petrol,Dealer,Manual,0 215 | i20,2011,2.9,6.79,31604,Petrol,Dealer,Manual,0 216 | grand i10,2017,5.25,5.7,20114,Petrol,Dealer,Manual,0 217 | verna,2012,4.5,9.4,36100,Petrol,Dealer,Manual,0 218 | eon,2016,2.9,4.43,12500,Petrol,Dealer,Manual,0 219 | eon,2016,3.15,4.43,15000,Petrol,Dealer,Manual,0 220 | verna,2014,6.45,9.4,45078,Petrol,Dealer,Manual,0 221 | verna,2012,4.5,9.4,36000,Petrol,Dealer,Manual,0 222 | eon,2017,3.5,4.43,38488,Petrol,Dealer,Manual,0 223 | i20,2013,4.5,6.79,32000,Petrol,Dealer,Automatic,0 224 | i20,2014,6,7.6,77632,Diesel,Dealer,Manual,0 225 | verna,2015,8.25,9.4,61381,Diesel,Dealer,Manual,0 226 | verna,2013,5.11,9.4,36198,Petrol,Dealer,Automatic,0 227 | i10,2011,2.7,4.6,22517,Petrol,Dealer,Manual,0 228 | grand i10,2015,5.25,5.7,24678,Petrol,Dealer,Manual,0 229 | i10,2011,2.55,4.43,57000,Petrol,Dealer,Manual,0 230 | verna,2012,4.95,9.4,60000,Diesel,Dealer,Manual,0 231 | i20,2012,3.1,6.79,52132,Diesel,Dealer,Manual,0 232 | verna,2013,6.15,9.4,45000,Diesel,Dealer,Manual,0 233 | verna,2017,9.25,9.4,15001,Petrol,Dealer,Manual,0 234 | elantra,2015,11.45,14.79,12900,Petrol,Dealer,Automatic,0 235 | grand i10,2013,3.9,5.7,53000,Diesel,Dealer,Manual,0 236 | grand i10,2015,5.5,5.7,4492,Petrol,Dealer,Manual,0 237 | verna,2017,9.1,9.4,15141,Petrol,Dealer,Manual,0 238 | eon,2016,3.1,4.43,11849,Petrol,Dealer,Manual,0 239 | creta,2015,11.25,13.6,68000,Diesel,Dealer,Manual,0 240 | verna,2013,4.8,9.4,60241,Petrol,Dealer,Manual,0 241 | eon,2012,2,4.43,23709,Petrol,Dealer,Manual,0 242 | verna,2012,5.35,9.4,32322,Diesel,Dealer,Manual,0 243 | xcent,2015,4.75,7.13,35866,Petrol,Dealer,Manual,1 244 | xcent,2014,4.4,7.13,34000,Petrol,Dealer,Manual,0 245 | i20,2016,6.25,7.6,7000,Petrol,Dealer,Manual,0 246 | verna,2013,5.95,9.4,49000,Diesel,Dealer,Manual,0 247 | verna,2012,5.2,9.4,71000,Diesel,Dealer,Manual,0 248 | i20,2012,3.75,6.79,35000,Petrol,Dealer,Manual,0 249 | verna,2015,5.95,9.4,36000,Petrol,Dealer,Manual,0 250 | i10,2013,4,4.6,30000,Petrol,Dealer,Manual,0 251 | i20,2016,5.25,7.6,17000,Petrol,Dealer,Manual,0 252 | creta,2016,12.9,13.6,35934,Diesel,Dealer,Manual,0 253 | city,2013,5,9.9,56701,Petrol,Dealer,Manual,0 254 | brio,2015,5.4,6.82,31427,Petrol,Dealer,Automatic,0 255 | city,2014,7.2,9.9,48000,Diesel,Dealer,Manual,0 256 | city,2013,5.25,9.9,54242,Petrol,Dealer,Manual,0 257 | brio,2012,3,5.35,53675,Petrol,Dealer,Manual,0 258 | city,2016,10.25,13.6,49562,Petrol,Dealer,Manual,0 259 | city,2015,8.5,13.6,40324,Petrol,Dealer,Manual,0 260 | city,2015,8.4,13.6,25000,Petrol,Dealer,Manual,0 261 | amaze,2014,3.9,7,36054,Petrol,Dealer,Manual,0 262 | city,2016,9.15,13.6,29223,Petrol,Dealer,Manual,0 263 | brio,2016,5.5,5.97,5600,Petrol,Dealer,Manual,0 264 | amaze,2015,4,5.8,40023,Petrol,Dealer,Manual,0 265 | jazz,2016,6.6,7.7,16002,Petrol,Dealer,Manual,0 266 | amaze,2015,4,7,40026,Petrol,Dealer,Manual,0 267 | jazz,2017,6.5,8.7,21200,Petrol,Dealer,Manual,0 268 | amaze,2014,3.65,7,35000,Petrol,Dealer,Manual,0 269 | city,2016,8.35,9.4,19434,Diesel,Dealer,Manual,0 270 | brio,2017,4.8,5.8,19000,Petrol,Dealer,Manual,0 271 | city,2015,6.7,10,18828,Petrol,Dealer,Manual,0 272 | city,2011,4.1,10,69341,Petrol,Dealer,Manual,0 273 | city,2009,3,10,69562,Petrol,Dealer,Manual,0 274 | city,2015,7.5,10,27600,Petrol,Dealer,Manual,0 275 | jazz,2010,2.25,7.5,61203,Petrol,Dealer,Manual,0 276 | brio,2014,5.3,6.8,16500,Petrol,Dealer,Manual,0 277 | city,2016,10.9,13.6,30753,Petrol,Dealer,Automatic,0 278 | city,2015,8.65,13.6,24800,Petrol,Dealer,Manual,0 279 | city,2015,9.7,13.6,21780,Petrol,Dealer,Manual,0 280 | jazz,2016,6,8.4,4000,Petrol,Dealer,Manual,0 281 | city,2014,6.25,13.6,40126,Petrol,Dealer,Manual,0 282 | brio,2015,5.25,5.9,14465,Petrol,Dealer,Manual,0 283 | city,2006,2.1,7.6,50456,Petrol,Dealer,Manual,0 284 | city,2014,8.25,14,63000,Diesel,Dealer,Manual,0 285 | city,2016,8.99,11.8,9010,Petrol,Dealer,Manual,0 286 | brio,2013,3.5,5.9,9800,Petrol,Dealer,Manual,0 287 | jazz,2016,7.4,8.5,15059,Petrol,Dealer,Automatic,0 288 | jazz,2016,5.65,7.9,28569,Petrol,Dealer,Manual,0 289 | amaze,2015,5.75,7.5,44000,Petrol,Dealer,Automatic,0 290 | city,2015,8.4,13.6,34000,Petrol,Dealer,Manual,0 291 | city,2016,10.11,13.6,10980,Petrol,Dealer,Manual,0 292 | amaze,2014,4.5,6.4,19000,Petrol,Dealer,Manual,0 293 | brio,2015,5.4,6.1,31427,Petrol,Dealer,Manual,0 294 | jazz,2016,6.4,8.4,12000,Petrol,Dealer,Manual,0 295 | city,2010,3.25,9.9,38000,Petrol,Dealer,Manual,0 296 | amaze,2014,3.75,6.8,33019,Petrol,Dealer,Manual,0 297 | city,2015,8.55,13.09,60076,Diesel,Dealer,Manual,0 298 | city,2016,9.5,11.6,33988,Diesel,Dealer,Manual,0 299 | brio,2015,4,5.9,60000,Petrol,Dealer,Manual,0 300 | city,2009,3.35,11,87934,Petrol,Dealer,Manual,0 301 | city,2017,11.5,12.5,9000,Diesel,Dealer,Manual,0 302 | brio,2016,5.3,5.9,5464,Petrol,Dealer,Manual,0 303 | -------------------------------------------------------------------------------- /hm-recommender.ipynb: -------------------------------------------------------------------------------- 1 | {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"pygments_lexer":"ipython3","nbconvert_exporter":"python","version":"3.6.4","file_extension":".py","codemirror_mode":{"name":"ipython","version":3},"name":"python","mimetype":"text/x-python"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2022-04-13T11:59:47.200163Z","iopub.execute_input":"2022-04-13T11:59:47.200668Z","iopub.status.idle":"2022-04-13T11:59:47.230047Z","shell.execute_reply.started":"2022-04-13T11:59:47.200543Z","shell.execute_reply":"2022-04-13T11:59:47.229075Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"import pandas as pd\nimport os\nimport warnings\nwarnings.filterwarnings(\"ignore\")","metadata":{"execution":{"iopub.status.busy":"2022-04-13T11:59:47.231711Z","iopub.execute_input":"2022-04-13T11:59:47.232622Z","iopub.status.idle":"2022-04-13T11:59:47.236528Z","shell.execute_reply.started":"2022-04-13T11:59:47.232583Z","shell.execute_reply":"2022-04-13T11:59:47.235708Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"customers=pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv')\ncustomers.describe()","metadata":{"execution":{"iopub.status.busy":"2022-04-13T11:59:47.237707Z","iopub.execute_input":"2022-04-13T11:59:47.237947Z","iopub.status.idle":"2022-04-13T11:59:53.367629Z","shell.execute_reply.started":"2022-04-13T11:59:47.237919Z","shell.execute_reply":"2022-04-13T11:59:53.366776Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"transactions_train=pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv')\ntransactions_train['article_id']","metadata":{"execution":{"iopub.status.busy":"2022-04-13T11:59:53.369787Z","iopub.execute_input":"2022-04-13T11:59:53.370012Z","iopub.status.idle":"2022-04-13T12:01:02.469793Z","shell.execute_reply.started":"2022-04-13T11:59:53.369963Z","shell.execute_reply":"2022-04-13T12:01:02.468622Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"transactionsdata=pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv',dtype={'article_id': str})","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:02.471617Z","iopub.execute_input":"2022-04-13T12:01:02.471928Z","iopub.status.idle":"2022-04-13T12:01:45.90164Z","shell.execute_reply.started":"2022-04-13T12:01:02.471887Z","shell.execute_reply":"2022-04-13T12:01:45.90082Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"transactionsdata","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:45.903367Z","iopub.execute_input":"2022-04-13T12:01:45.904106Z","iopub.status.idle":"2022-04-13T12:01:45.926837Z","shell.execute_reply.started":"2022-04-13T12:01:45.904041Z","shell.execute_reply":"2022-04-13T12:01:45.925833Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"data=transactionsdata.drop(['t_dat', 'price','sales_channel_id'], axis=1)","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:45.928363Z","iopub.execute_input":"2022-04-13T12:01:45.928975Z","iopub.status.idle":"2022-04-13T12:01:46.653996Z","shell.execute_reply.started":"2022-04-13T12:01:45.928925Z","shell.execute_reply":"2022-04-13T12:01:46.653202Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"data","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:46.655546Z","iopub.execute_input":"2022-04-13T12:01:46.655839Z","iopub.status.idle":"2022-04-13T12:01:46.668097Z","shell.execute_reply.started":"2022-04-13T12:01:46.655802Z","shell.execute_reply":"2022-04-13T12:01:46.667195Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"import random","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:46.669817Z","iopub.execute_input":"2022-04-13T12:01:46.670243Z","iopub.status.idle":"2022-04-13T12:01:46.678833Z","shell.execute_reply.started":"2022-04-13T12:01:46.670201Z","shell.execute_reply":"2022-04-13T12:01:46.678284Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"top_12_items = transactionsdata.groupby('article_id')['customer_id'].nunique().sort_values(ascending=False).head(12).index.tolist()\ntop_12_items","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:01:46.680816Z","iopub.execute_input":"2022-04-13T12:01:46.681228Z","iopub.status.idle":"2022-04-13T12:02:13.344562Z","shell.execute_reply.started":"2022-04-13T12:01:46.681191Z","shell.execute_reply":"2022-04-13T12:02:13.34203Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"ss=pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/sample_submission.csv')","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:44:10.531825Z","iopub.execute_input":"2022-04-13T12:44:10.532274Z","iopub.status.idle":"2022-04-13T12:44:10.547507Z","shell.execute_reply.started":"2022-04-13T12:44:10.532239Z","shell.execute_reply":"2022-04-13T12:44:10.546212Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"ss","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:44:10.95877Z","iopub.execute_input":"2022-04-13T12:44:10.959718Z","iopub.status.idle":"2022-04-13T12:44:10.977886Z","shell.execute_reply.started":"2022-04-13T12:44:10.959665Z","shell.execute_reply":"2022-04-13T12:44:10.976699Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"ss['prediction'] = ' '.join(top_12_items)\n","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:03:19.844987Z","iopub.execute_input":"2022-04-13T12:03:19.845289Z","iopub.status.idle":"2022-04-13T12:03:19.862627Z","shell.execute_reply.started":"2022-04-13T12:03:19.845256Z","shell.execute_reply":"2022-04-13T12:03:19.861594Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"ss.to_csv('submission.csv', index=False)\nss.shape","metadata":{"execution":{"iopub.status.busy":"2022-04-13T12:43:55.805007Z","iopub.execute_input":"2022-04-13T12:43:55.805734Z","iopub.status.idle":"2022-04-13T12:43:55.818214Z","shell.execute_reply.started":"2022-04-13T12:43:55.805686Z","shell.execute_reply":"2022-04-13T12:43:55.817226Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]} -------------------------------------------------------------------------------- /overfitting-vs-underfitting-simple-explanation.ipynb: -------------------------------------------------------------------------------- 1 | {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"* > 1- Underfits, when the training loss is way more significant than the testing loss.\n* > 2- Overfits, when the training loss is way smaller than the testing loss.\n* > 3- Performs very well when the training loss and the testing loss are very close.**","metadata":{}},{"cell_type":"markdown","source":"# Packages","metadata":{}},{"cell_type":"code","source":"from keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import Sequential,load_model\nfrom keras.layers import Conv2D,MaxPooling2D,SpatialDropout2D,Flatten,Dropout,Dense\nfrom keras.preprocessing import image\nimport tensorflow as tf\nimport matplotlib.pyplot as plt\nimport cv2\nimport numpy as np\nimport os\n","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:43:46.152269Z","iopub.execute_input":"2022-07-27T13:43:46.152679Z","iopub.status.idle":"2022-07-27T13:43:46.158540Z","shell.execute_reply.started":"2022-07-27T13:43:46.152647Z","shell.execute_reply":"2022-07-27T13:43:46.157406Z"},"trusted":true},"execution_count":30,"outputs":[]},{"cell_type":"markdown","source":"# Data scaling ","metadata":{}},{"cell_type":"code","source":"#Normalization\ntrain=ImageDataGenerator(rescale=1/255)\ntest=ImageDataGenerator(rescale=1/255)","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:44:04.950608Z","iopub.execute_input":"2022-07-27T13:44:04.951018Z","iopub.status.idle":"2022-07-27T13:44:04.956784Z","shell.execute_reply.started":"2022-07-27T13:44:04.950986Z","shell.execute_reply":"2022-07-27T13:44:04.955450Z"},"trusted":true},"execution_count":31,"outputs":[]},{"cell_type":"markdown","source":"# Data preparation","metadata":{}},{"cell_type":"code","source":"traindataset=train.flow_from_directory('../input/pizza-dataset/pizza_not_pizza/Train',\n target_size=(224,224),\n batch_size=16,\n class_mode='binary')\ntestdataset=train.flow_from_directory('../input/pizza-dataset/pizza_not_pizza/Test',\n target_size=(224,224),\n batch_size=16,\n class_mode='binary')","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:44:51.279725Z","iopub.execute_input":"2022-07-27T13:44:51.280120Z","iopub.status.idle":"2022-07-27T13:44:51.602476Z","shell.execute_reply.started":"2022-07-27T13:44:51.280091Z","shell.execute_reply":"2022-07-27T13:44:51.601562Z"},"trusted":true},"execution_count":32,"outputs":[{"name":"stdout","text":"Found 1474 images belonging to 2 classes.\nFound 492 images belonging to 2 classes.\n","output_type":"stream"}]},{"cell_type":"markdown","source":"# CNN model","metadata":{}},{"cell_type":"code","source":"model=Sequential()\nmodel.add(Conv2D(32,(3,3),activation='relu',input_shape=(224,224,3)))#filters #Kernalsize #RELU\nmodel.add(MaxPooling2D() )\nmodel.add(Conv2D(32,(3,3),activation='relu'))\nmodel.add(MaxPooling2D() )\nmodel.add(Conv2D(32,(3,3),activation='relu'))\nmodel.add(MaxPooling2D() )\nmodel.add(Flatten())\nmodel.add(Dense(100,activation='relu'))\nmodel.add(Dense(1,activation='sigmoid'))","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:45:23.765242Z","iopub.execute_input":"2022-07-27T13:45:23.765623Z","iopub.status.idle":"2022-07-27T13:45:23.842837Z","shell.execute_reply.started":"2022-07-27T13:45:23.765591Z","shell.execute_reply":"2022-07-27T13:45:23.841917Z"},"trusted":true},"execution_count":33,"outputs":[]},{"cell_type":"code","source":"\nmodel.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:45:33.305982Z","iopub.execute_input":"2022-07-27T13:45:33.306375Z","iopub.status.idle":"2022-07-27T13:45:33.317316Z","shell.execute_reply.started":"2022-07-27T13:45:33.306344Z","shell.execute_reply":"2022-07-27T13:45:33.316450Z"},"trusted":true},"execution_count":34,"outputs":[]},{"cell_type":"markdown","source":"# Training","metadata":{}},{"cell_type":"code","source":"model_saved=model.fit_generator(\n traindataset,\n epochs=7)","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:45:43.757598Z","iopub.execute_input":"2022-07-27T13:45:43.757992Z","iopub.status.idle":"2022-07-27T13:48:41.975555Z","shell.execute_reply.started":"2022-07-27T13:45:43.757958Z","shell.execute_reply":"2022-07-27T13:48:41.974458Z"},"trusted":true},"execution_count":35,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.7/site-packages/keras/engine/training.py:1972: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.\n warnings.warn('`Model.fit_generator` is deprecated and '\n","output_type":"stream"},{"name":"stdout","text":"Epoch 1/7\n93/93 [==============================] - 28s 288ms/step - loss: 0.7196 - accuracy: 0.5543\nEpoch 2/7\n93/93 [==============================] - 25s 270ms/step - loss: 0.6220 - accuracy: 0.6682\nEpoch 3/7\n93/93 [==============================] - 25s 265ms/step - loss: 0.5642 - accuracy: 0.7103\nEpoch 4/7\n93/93 [==============================] - 25s 269ms/step - loss: 0.4936 - accuracy: 0.7673\nEpoch 5/7\n93/93 [==============================] - 25s 264ms/step - loss: 0.4625 - accuracy: 0.7788\nEpoch 6/7\n93/93 [==============================] - 25s 269ms/step - loss: 0.3812 - accuracy: 0.8304\nEpoch 7/7\n93/93 [==============================] - 25s 267ms/step - loss: 0.3009 - accuracy: 0.8752\n","output_type":"stream"}]},{"cell_type":"markdown","source":"# Evaluation","metadata":{}},{"cell_type":"code","source":"prediction=model.predict(testdataset)","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:53:43.872718Z","iopub.execute_input":"2022-07-27T13:53:43.873065Z","iopub.status.idle":"2022-07-27T13:53:48.207364Z","shell.execute_reply.started":"2022-07-27T13:53:43.873038Z","shell.execute_reply":"2022-07-27T13:53:48.206515Z"},"trusted":true},"execution_count":48,"outputs":[]},{"cell_type":"code","source":"result=prediction[0]\nprint(result)","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:49:51.927990Z","iopub.execute_input":"2022-07-27T13:49:51.928901Z","iopub.status.idle":"2022-07-27T13:49:51.936127Z","shell.execute_reply.started":"2022-07-27T13:49:51.928848Z","shell.execute_reply":"2022-07-27T13:49:51.934479Z"},"trusted":true},"execution_count":38,"outputs":[{"name":"stdout","text":"[0.9787929]\n","output_type":"stream"}]},{"cell_type":"code","source":"score = model.evaluate(testdataset,verbose=0)\nprint('Test loss:', score[0])\nprint('Test accuracy:', score[1])","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:54:11.083538Z","iopub.execute_input":"2022-07-27T13:54:11.083921Z","iopub.status.idle":"2022-07-27T13:54:15.488750Z","shell.execute_reply.started":"2022-07-27T13:54:11.083888Z","shell.execute_reply":"2022-07-27T13:54:15.487836Z"},"trusted":true},"execution_count":50,"outputs":[{"name":"stdout","text":"Test loss: 0.5352293848991394\nTest accuracy: 0.7560975551605225\n","output_type":"stream"}]},{"cell_type":"code","source":"score = model.evaluate(traindataset,verbose=0)\nprint('Train loss:', score[0])\nprint('Train accuracy:', score[1])","metadata":{"execution":{"iopub.status.busy":"2022-07-27T13:54:50.260134Z","iopub.execute_input":"2022-07-27T13:54:50.260489Z","iopub.status.idle":"2022-07-27T13:55:01.990069Z","shell.execute_reply.started":"2022-07-27T13:54:50.260460Z","shell.execute_reply":"2022-07-27T13:55:01.988902Z"},"trusted":true},"execution_count":52,"outputs":[{"name":"stdout","text":"Train loss: 0.1777476817369461\nTrain accuracy: 0.9423337578773499\n","output_type":"stream"}]},{"cell_type":"markdown","source":"**Here Train loss is smaller than testing loss,It means we got overfitting issues!For balancing this loss you should add more data variations on both sides**","metadata":{}},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]} -------------------------------------------------------------------------------- /price-elasticity.ipynb: -------------------------------------------------------------------------------- 1 | {"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2022-09-30T04:16:29.358192Z","iopub.execute_input":"2022-09-30T04:16:29.358836Z","iopub.status.idle":"2022-09-30T04:16:29.377678Z","shell.execute_reply.started":"2022-09-30T04:16:29.358775Z","shell.execute_reply":"2022-09-30T04:16:29.375892Z"},"trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"/kaggle/input/productsales/sales.csv\n","output_type":"stream"}]},{"cell_type":"code","source":"pip install pyspark","metadata":{"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"from pyspark.sql import SparkSession\n\nspark = SparkSession \\\n .builder \\\n .appName(\"Python Spark\") \\\n .config(\"spark.some.config.option\", \"some-value\") \\\n .getOrCreate()","metadata":{"execution":{"iopub.status.busy":"2022-09-30T04:17:23.806424Z","iopub.execute_input":"2022-09-30T04:17:23.807625Z","iopub.status.idle":"2022-09-30T04:17:24.788719Z","shell.execute_reply.started":"2022-09-30T04:17:23.807544Z","shell.execute_reply":"2022-09-30T04:17:24.787503Z"},"trusted":true},"execution_count":4,"outputs":[{"name":"stdout","text":"22/09/30 04:17:24 WARN SparkSession: Using an existing Spark session; only runtime SQL configurations will take effect.\n","output_type":"stream"}]},{"cell_type":"code","source":"from pyspark.sql.window import Window\nfrom pyspark.sql.functions import lag\nfrom pyspark.sql.functions import col\ndf = spark.read.csv(\"../input/productsales/sales.csv\", header=True, inferSchema=True)","metadata":{"execution":{"iopub.status.busy":"2022-09-30T04:17:58.073876Z","iopub.execute_input":"2022-09-30T04:17:58.074319Z","iopub.status.idle":"2022-09-30T04:17:58.453147Z","shell.execute_reply.started":"2022-09-30T04:17:58.074279Z","shell.execute_reply":"2022-09-30T04:17:58.452209Z"},"trusted":true},"execution_count":7,"outputs":[]},{"cell_type":"code","source":"win = Window.partitionBy('id').orderBy('Discount_price')\ndf1=df.withColumn('perc_price_change', (df.Discount_price - lag(df['Discount_price']).over(win))/100)\ndf1=df1.withColumn('perc_demand_change',(df.Impression-lag(df['Impression']).over(win))/100)","metadata":{"execution":{"iopub.status.busy":"2022-09-30T04:17:53.485363Z","iopub.execute_input":"2022-09-30T04:17:53.485734Z","iopub.status.idle":"2022-09-30T04:17:53.674901Z","shell.execute_reply.started":"2022-09-30T04:17:53.485703Z","shell.execute_reply":"2022-09-30T04:17:53.673857Z"},"trusted":true},"execution_count":6,"outputs":[]},{"cell_type":"code","source":"df1.select(\"Discount_price\",\"perc_price_change\",\"Impression\",\"perc_demand_change\").show()","metadata":{"execution":{"iopub.status.busy":"2022-09-30T04:18:12.192034Z","iopub.execute_input":"2022-09-30T04:18:12.192403Z","iopub.status.idle":"2022-09-30T04:18:13.388488Z","shell.execute_reply.started":"2022-09-30T04:18:12.192372Z","shell.execute_reply":"2022-09-30T04:18:13.387205Z"},"trusted":true},"execution_count":8,"outputs":[{"name":"stdout","text":"+--------------+-------------------+----------+------------------+\n|Discount_price| perc_price_change|Impression|perc_demand_change|\n+--------------+-------------------+----------+------------------+\n| 96.6| null| 1| null|\n| 106.99| 0.1039| 1| 0.0|\n| 174.99| 0.6800000000000002| 1| 0.0|\n| 179.99| 0.05| 5| 0.04|\n| 184.99| 0.05| 1| -0.04|\n| 189.0|0.04009999999999991| 1| 0.0|\n| 199.0| 0.1| 2| 0.01|\n| 219.0| 0.2| 1| -0.01|\n| 229.0| 0.1| 1| 0.0|\n+--------------+-------------------+----------+------------------+\n\n","output_type":"stream"}]},{"cell_type":"code","source":"df2=df1.withColumn(\"price_elasticiy\", df1.perc_demand_change /df1.perc_price_change)\ndf3=df2.select(\"Discount_price\",\"perc_price_change\",\"Impression\",\"perc_demand_change\",'price_elasticiy')\ndf3.show()\n","metadata":{"execution":{"iopub.status.busy":"2022-09-30T04:18:49.646406Z","iopub.execute_input":"2022-09-30T04:18:49.646805Z","iopub.status.idle":"2022-09-30T04:18:50.114716Z","shell.execute_reply.started":"2022-09-30T04:18:49.646771Z","shell.execute_reply":"2022-09-30T04:18:50.113517Z"},"trusted":true},"execution_count":11,"outputs":[{"name":"stdout","text":"+--------------+-------------------+----------+------------------+--------------------+\n|Discount_price| perc_price_change|Impression|perc_demand_change| price_elasticiy|\n+--------------+-------------------+----------+------------------+--------------------+\n| 96.6| null| 1| null| null|\n| 106.99| 0.1039| 1| 0.0| 0.0|\n| 174.99| 0.6800000000000002| 1| 0.0| 0.0|\n| 179.99| 0.05| 5| 0.04| 0.7999999999999999|\n| 184.99| 0.05| 1| -0.04| -0.7999999999999999|\n| 189.0|0.04009999999999991| 1| 0.0| 0.0|\n| 199.0| 0.1| 2| 0.01| 0.09999999999999999|\n| 219.0| 0.2| 1| -0.01|-0.04999999999999...|\n| 229.0| 0.1| 1| 0.0| 0.0|\n+--------------+-------------------+----------+------------------+--------------------+\n\n","output_type":"stream"}]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]} --------------------------------------------------------------------------------