├── 20_08_langchain.ipynb ├── AQI_india.ipynb ├── ActivePassive.py ├── Aspect_based_sentiment_analysis.ipynb ├── Automatic EDA.ipynb ├── BERTspamfilter.ipynb ├── BM25_ensemble_retriever.ipynb ├── Basic Chatbot.ipynb ├── Bertopic.ipynb ├── Building_an_auto_correct_in_python.ipynb ├── COVIDdetectionusingXray.py ├── Cartoonify using python.ipynb ├── CasualToFormalConverter.py ├── Clustering.ipynb ├── Comparing different language detector.ipynb ├── DataPrep.ipynb ├── Describe_alternative.ipynb ├── Detect Binod.ipynb ├── DiabetesClassificationUsingNeuralNetwork.py ├── Dummy_variable_trap.ipynb ├── EntityExtraction.py ├── Faker.ipynb ├── Fruit_detection_using_CNNs.ipynb ├── Gensim introduction hindi.ipynb ├── Grammarchecker.py ├── HaarCascade.py ├── IPLdataAnalysis.ipynb ├── Information_retrieval_Fact_extractors_python.ipynb ├── Kepler-delete.ipynb ├── LazyPredict.ipynb ├── Lux.ipynb ├── MLDC .ipynb ├── Multi class classification using Machine Learning.ipynb ├── OCR .ipynb ├── OCR.ipynb ├── Object_detection_using_detecto.ipynb ├── PaliGemma.ipynb ├── PassiveActive.py ├── Performance Analyzer.ipynb ├── Pivot table in pandas.ipynb ├── RAG_fusion.ipynb ├── README.md ├── Readability.ipynb ├── SMSSpamCollection ├── Semantic_search.ipynb ├── Sentiment Analysis using VADER.ipynb ├── Sentiment_Analysis_using_Distilbert.ipynb ├── Sigmoid_overflow_problem.ipynb ├── Speechtotext.ipynb ├── Stanza library.ipynb ├── Stopwords.ipynb ├── TSNE demo.ipynb ├── Topic modelling using Gensim.ipynb ├── Twitter API POC.ipynb ├── Whisper.pptx ├── WordCloud.ipynb ├── YouTube_recommendation_pinecone.ipynb ├── YoutubeComments.csv ├── cuisine_data.csv ├── d3blocks.ipynb ├── diabetes.csv ├── face-mask-detector-project.zip ├── langgraph_simple_chatbot.ipynb ├── medspacydemo.ipynb ├── segmind_ssd.ipynb ├── sentimentanalysis_usingbert.py ├── stable_diffusion_with_chatgpt_noteook.ipynb ├── test script.py ├── test.csv ├── text_summarization.py ├── titanic_processed_data.csv └── train.csv /ActivePassive.py: -------------------------------------------------------------------------------- 1 | import streamlit as st 2 | import pandas as pd 3 | from styleformer import Styleformer 4 | import torch 5 | sf = Styleformer(style = 2) 6 | st.title('Active Voice to Passive Voice Converter') 7 | st.write("Please enter your sentence in active voice") 8 | text = st.text_input('Entered Text') 9 | if st.button('Convert Active to Passive'): 10 | target_sentence = sf.transfer(text) 11 | st.write(target_sentence) 12 | else: 13 | pass 14 | 15 | 16 | -------------------------------------------------------------------------------- /Automatic EDA.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import numpy as np\n", 10 | "import pandas as pd\n", 11 | "from pandas_profiling import ProfileReport\n", 12 | "import sklearn" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "from sklearn.datasets import load_iris" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 3, 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "diab_data=load_iris()" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 4, 36 | "metadata": {}, 37 | "outputs": [], 38 | "source": [ 39 | "df=pd.DataFrame(data=diab_data.data,columns=diab_data.feature_names)" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": 5, 45 | "metadata": {}, 46 | "outputs": [ 47 | { 48 | "data": { 49 | "text/html": [ 50 | "
\n", 68 | " | sepal length (cm) | \n", 69 | "sepal width (cm) | \n", 70 | "petal length (cm) | \n", 71 | "petal width (cm) | \n", 72 | "
---|---|---|---|---|
0 | \n", 77 | "5.1 | \n", 78 | "3.5 | \n", 79 | "1.4 | \n", 80 | "0.2 | \n", 81 | "
1 | \n", 84 | "4.9 | \n", 85 | "3.0 | \n", 86 | "1.4 | \n", 87 | "0.2 | \n", 88 | "
2 | \n", 91 | "4.7 | \n", 92 | "3.2 | \n", 93 | "1.3 | \n", 94 | "0.2 | \n", 95 | "
3 | \n", 98 | "4.6 | \n", 99 | "3.1 | \n", 100 | "1.5 | \n", 101 | "0.2 | \n", 102 | "
4 | \n", 105 | "5.0 | \n", 106 | "3.6 | \n", 107 | "1.4 | \n", 108 | "0.2 | \n", 109 | "
\n", 339 | " | PassengerId | \n", 340 | "Survived | \n", 341 | "Pclass | \n", 342 | "Name | \n", 343 | "Sex | \n", 344 | "Age | \n", 345 | "SibSp | \n", 346 | "Parch | \n", 347 | "Ticket | \n", 348 | "Fare | \n", 349 | "Cabin | \n", 350 | "Embarked | \n", 351 | "
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 356 | "1 | \n", 357 | "0 | \n", 358 | "3 | \n", 359 | "Braund, Mr. Owen Harris | \n", 360 | "male | \n", 361 | "22.0 | \n", 362 | "1 | \n", 363 | "0 | \n", 364 | "A/5 21171 | \n", 365 | "7.2500 | \n", 366 | "NaN | \n", 367 | "S | \n", 368 | "
1 | \n", 371 | "2 | \n", 372 | "1 | \n", 373 | "1 | \n", 374 | "Cumings, Mrs. John Bradley (Florence Briggs Th... | \n", 375 | "female | \n", 376 | "38.0 | \n", 377 | "1 | \n", 378 | "0 | \n", 379 | "PC 17599 | \n", 380 | "71.2833 | \n", 381 | "C85 | \n", 382 | "C | \n", 383 | "
2 | \n", 386 | "3 | \n", 387 | "1 | \n", 388 | "3 | \n", 389 | "Heikkinen, Miss. Laina | \n", 390 | "female | \n", 391 | "26.0 | \n", 392 | "0 | \n", 393 | "0 | \n", 394 | "STON/O2. 3101282 | \n", 395 | "7.9250 | \n", 396 | "NaN | \n", 397 | "S | \n", 398 | "
3 | \n", 401 | "4 | \n", 402 | "1 | \n", 403 | "1 | \n", 404 | "Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n", 405 | "female | \n", 406 | "35.0 | \n", 407 | "1 | \n", 408 | "0 | \n", 409 | "113803 | \n", 410 | "53.1000 | \n", 411 | "C123 | \n", 412 | "S | \n", 413 | "
4 | \n", 416 | "5 | \n", 417 | "0 | \n", 418 | "3 | \n", 419 | "Allen, Mr. William Henry | \n", 420 | "male | \n", 421 | "35.0 | \n", 422 | "0 | \n", 423 | "0 | \n", 424 | "373450 | \n", 425 | "8.0500 | \n", 426 | "NaN | \n", 427 | "S | \n", 428 | "
... | \n", 431 | "... | \n", 432 | "... | \n", 433 | "... | \n", 434 | "... | \n", 435 | "... | \n", 436 | "... | \n", 437 | "... | \n", 438 | "... | \n", 439 | "... | \n", 440 | "... | \n", 441 | "... | \n", 442 | "... | \n", 443 | "
151 | \n", 446 | "152 | \n", 447 | "1 | \n", 448 | "1 | \n", 449 | "Pears, Mrs. Thomas (Edith Wearne) | \n", 450 | "female | \n", 451 | "22.0 | \n", 452 | "1 | \n", 453 | "0 | \n", 454 | "113776 | \n", 455 | "66.6000 | \n", 456 | "C2 | \n", 457 | "S | \n", 458 | "
152 | \n", 461 | "153 | \n", 462 | "0 | \n", 463 | "3 | \n", 464 | "Meo, Mr. Alfonzo | \n", 465 | "male | \n", 466 | "55.5 | \n", 467 | "0 | \n", 468 | "0 | \n", 469 | "A.5. 11206 | \n", 470 | "8.0500 | \n", 471 | "NaN | \n", 472 | "S | \n", 473 | "
153 | \n", 476 | "154 | \n", 477 | "0 | \n", 478 | "3 | \n", 479 | "van Billiard, Mr. Austin Blyler | \n", 480 | "male | \n", 481 | "40.5 | \n", 482 | "0 | \n", 483 | "2 | \n", 484 | "A/5. 851 | \n", 485 | "14.5000 | \n", 486 | "NaN | \n", 487 | "S | \n", 488 | "
154 | \n", 491 | "155 | \n", 492 | "0 | \n", 493 | "3 | \n", 494 | "Olsen, Mr. Ole Martin | \n", 495 | "male | \n", 496 | "NaN | \n", 497 | "0 | \n", 498 | "0 | \n", 499 | "Fa 265302 | \n", 500 | "7.3125 | \n", 501 | "NaN | \n", 502 | "S | \n", 503 | "
155 | \n", 506 | "156 | \n", 507 | "0 | \n", 508 | "1 | \n", 509 | "Williams, Mr. Charles Duane | \n", 510 | "male | \n", 511 | "51.0 | \n", 512 | "0 | \n", 513 | "1 | \n", 514 | "PC 17597 | \n", 515 | "61.3792 | \n", 516 | "NaN | \n", 517 | "C | \n", 518 | "
156 rows × 12 columns
\n", 522 | "\n", 131 | " | label | \n", 132 | "sms | \n", 133 | "
---|---|---|
0 | \n", 138 | "ham | \n", 139 | "Go until jurong point, crazy.. Available only ... | \n", 140 | "
1 | \n", 143 | "ham | \n", 144 | "Ok lar... Joking wif u oni... | \n", 145 | "
2 | \n", 148 | "spam | \n", 149 | "Free entry in 2 a wkly comp to win FA Cup fina... | \n", 150 | "
3 | \n", 153 | "ham | \n", 154 | "U dun say so early hor... U c already then say... | \n", 155 | "
4 | \n", 158 | "ham | \n", 159 | "Nah I don't think he goes to usf, he lives aro... | \n", 160 | "
\n", 200 | " | 0 | \n", 201 | "
---|---|
0 | \n", 206 | "5,8 | \n", 207 | "
1 | \n", 210 | "5,9 | \n", 211 | "