├── .gitignore
├── LICENSE
├── README.md
├── cpp
├── .gitignore
└── how_to_build_cpp_static_lib
│ ├── README.md
│ └── test_staticlib
│ ├── .gitignore
│ ├── CMakeLists.txt
│ ├── liba
│ ├── func.cc
│ ├── func.h
│ ├── funca.cc
│ ├── funca.h
│ └── global.cc
│ ├── libb
│ ├── func.cc
│ ├── func.h
│ ├── funcb.cc
│ └── funcb.h
│ ├── libc
│ ├── funcc.cc
│ └── funcc.h
│ ├── test.cc
│ └── test_a_inst.cc
├── cuda-check
├── README.md
└── check.cu
├── cuda-simd
└── README.md
├── elementwise
└── README.md
├── gemm
└── README.md
├── gemv
└── README.md
├── nsight-compute
└── README.md
├── reduce
└── README.md
├── spmm
└── README.md
└── spmv
└── README.md
/.gitignore:
--------------------------------------------------------------------------------
1 | *.so
2 | *.a
3 | *.dylib
4 | *.dll
5 | *.lib
6 | .DS_Store
7 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CUDA高频面试题汇总/C++笔记/CUDA笔记 📔📕📗
2 |
3 |
12 |
13 | CUDA-Learn-Note: CUDA 笔记 / 高频面试题汇总 / C++笔记,个人笔记,更新随缘: sgemm、sgemv、warp reduce、block reduce、dot、elementwise、softmax、layernorm、rmsnorm、histogram、relu、sigmoid ...
14 |
15 | ## 0x00 前言
16 | 前段时间参加了一些`大模型`面试,大部分都要手撕CUDA,因此也整体复习了一遍CUDA优化相关的内容,整理了一些高频题的基本写法,保存在这里也便于日后自己复习。当然,有些代码不一定是最优化解,比如GEMM,想要在面试短短的30分钟内写一个好的`GEMM` Kernel,是有些难度的。印象比较深刻的是,其中有一场面试2个多小时,一个小时问项目,剩下一个小时在写GEMM,虽然写的kernel很一般,但是印象还挺深刻的。[代码文件](./cuda-check/check.cu)
17 | TIPS: 仓库整理的代码为方便自己复习回顾,不喜欢的请自动跳过哈。
18 |
19 | ## 0x01 高频面试题汇总简介
20 |
21 |
22 | 相关kernel如下。也就是不到1000行代码,建议背下来,我个人是喜欢背记,背的过程中基本就慢慢理解所有细节。当然,每个人的学习方法都不一样哈,自己觉得舒服就行。
23 |
24 | - [x] [sgemm naive, sgemm + block-tile + k-tile + vec4](#sgemm)
25 | - [x] [sgemv k32/k128/k16 kernel](#sgemv)
26 | - [x] [warp/block reduce sum/max](#warpreduce)
27 | - [x] [block all reduce + vec4](#blockallreduce)
28 | - [x] [dot product, dot product + vec4](#dot)
29 | - [x] [elementwise, elementwise + vec4](#elementwise)
30 | - [x] [histogram, histogram + vec4](#histogram)
31 | - [x] [softmax, softmax + vec4 (grid level memory fence)](#softmax)
32 | - [x] [safe softmax, safe softmax + vec4](#safesoftmax)
33 | - [x] [sigmoid, sigmoid + vec4](#sigmoid)
34 | - [x] [relu, relu + vec4](#relu)
35 | - [x] [layer_norm, layer_norm + vec4](#layernorm)
36 | - [x] [rms_norm, rms_norm + vec4](#rmsnorm)
37 | - [x] [nms](#NMS)
38 | - [ ] sgemm + double buffer
39 | - [ ] sgemm + fp16
40 | - [ ] ...
41 |
42 |
43 | 题内话,大模型相关的岗位,手撕CUDA的概率非常大,leetcode反而写的少,就前段时间个人的经验,基本是4:1的比例,还是建议好好复习下CUDA。当然,这些只是最简单的kernel实现,比如flash_attn,FMHA这些优化手段,就不在这里写了,面试中基本都会问到。后边有空再补档一些文章吧。
44 |
45 | ## 0x02 sgemm naive, sgemm + block-tile + k-tile + vec4 ([©️back👆🏻](#kernellist))
46 |
47 |
48 | ```c++
49 | #include
50 | #include
51 | #include
52 | #include
53 | #include
54 | #include
55 |
56 | #define WARP_SIZE 32
57 | #define INT4(value) (reinterpret_cast(&(value))[0])
58 | #define FLOAT4(value) (reinterpret_cast(&(value))[0])
59 |
60 | // SGEMM: Block Tile + K Tile, with smem
61 | // Block Tile (BM, BN) + K Tile (BK=32)
62 | // grid((N + BN - 1) / BN, (M + BM - 1) / BM), block(BN, BM)
63 | // a: MxK, b: KxN, c: MxN, compute: c = a * b, all row major
64 | __global__ void sgemm(float* a, float* b, float* c, int M, int N, int K) {
65 | // [1] Block Tile: 32x32的block处理c上一块32x32的元素计算
66 | // [2] K Tile: 使用共享内存,并将K分块为BK大小的块
67 | constexpr int BM = 32;
68 | constexpr int BN = 32;
69 | constexpr int BK = 32;
70 | __shared__ float s_a[BM][BK], s_b[BK][BN];
71 |
72 | int bx = blockIdx.x;
73 | int by = blockIdx.y;
74 | int tx = threadIdx.x;
75 | int ty = threadIdx.y;
76 | int tid = threadIdx.y * blockDim.x + tx; // tid within the block
77 | // load values to shared memory, 32x32 threads working together
78 | // to fetch data along the row direction of a and b both for s_a
79 | // and s_b 32x32x4x2=8KB, we use 32x32 threads within block to
80 | // load 32x32 elements from global memory to shared memory, namely,
81 | // each thread will load 1 element.
82 | int load_smem_a_m = tid / 32; // 0~31, tid / 32, tid / BM, threadIdx.y
83 | int load_smem_a_k = tid % 32; // 0~31, tid % 32, tid % BK, threadIdx.x
84 | int load_smem_b_k = tid / 32; // 0~31, tid / 32, tid / BK, threadIdx.y
85 | int load_smem_b_n = tid % 32; // 0~31, tid % 32, tid % BN, threadIdx.x
86 | int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
87 | int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
88 | // if (load_gmem_a_m >= M || load_gmem_b_n >= N) return;
89 |
90 | float sum = 0.f;
91 | for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
92 | int load_gmem_a_k = bk * BK + load_smem_a_k;
93 | int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
94 | s_a[load_smem_a_m][load_smem_a_k] = a[load_gmem_a_addr];
95 | int load_gmem_b_k = bk * BK + load_smem_b_k;
96 | int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
97 | s_b[load_smem_b_k][load_smem_b_n] = b[load_gmem_b_addr];
98 | __syncthreads();
99 | #pragma unroll
100 | for (int k = 0; k < BK; ++k) {
101 | int comp_smem_a_m = load_smem_a_m;
102 | int comp_smem_b_n = load_smem_b_n;
103 | sum += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
104 | }
105 | __syncthreads();
106 | }
107 | int store_gmem_c_m = load_gmem_a_m;
108 | int store_gmem_c_n = load_gmem_b_n;
109 | int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
110 | c[store_gmem_c_addr] = sum;
111 | }
112 |
113 | // SGEMM: Block Tile + Thread Tile + K Tile + Vec4, with smem
114 | // BK:TILE_K=8 BM=BN=128
115 | // TM=TN=8 增加计算密度 BM/TM=16 BN/TN=16
116 | // dim3 blockDim(BN/TN, BM/TM);
117 | // dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM)
118 | __global__ void sgemm_thread_tile_vec4(
119 | float* a, float* b, float* c, int M, int N, int K) {
120 | // [1] Block Tile: 一个16x16的block处理C上大小为128X128的一个目标块
121 | // [2] Thread Tile: 每个thread负责计算TM*TN(8*8)个元素,增加计算密度
122 | // [3] K Tile: 将K分块,每块BK大小,迭代(K+BK-1/BK)次,
123 | // 每次计算TM*TN个元素各自的部分乘累加
124 | // [4] Vectorize: 减少load和store指令,使用float4
125 | constexpr int BM = 128;
126 | constexpr int BN = 128;
127 | constexpr int BK = 8;
128 | constexpr int TM = 8;
129 | constexpr int TN = 8;
130 |
131 | int bx = blockIdx.x;
132 | int by = blockIdx.y;
133 | int tx = threadIdx.x;
134 | int ty = threadIdx.y;
135 | int tid = threadIdx.y * blockDim.x + tx; // tid within the block
136 | __shared__ float s_a[BM][BK], s_b[BK][BN]; // 2*128*8*4=8KB
137 |
138 | // 0. 先计算shared memory中的索引
139 | // tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=8 按行读取 A行主序
140 | // 对于s_a每行8个数据,每个线程读取4个,需要2个线程;总共128行,需要128x2刚好256线程
141 | int load_smem_a_m = tid / 2; // tid/2 (128/8)*(128/8)=256 threads per block, tid/2->[0,128), BM=128 0~127
142 | int load_smem_a_k = (tid % 2 == 0) ? 0 : 4; // (tid%2 == 0) ? 0 : 4, col of s_a 0,4
143 | // tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=8 BN=128 按行读取 B行主序
144 | // 对于s_b每行128个数据,每个线程读4个数据,需要32个线程;总共8行,需要32x8=256个线程
145 | int load_smem_b_k = tid / 32; // tid/32, row of s_b 256/32=8 行 0~7
146 | int load_smem_b_n = (tid % 32) * 4; // (tid % 32) * 4, col of s_b 0,4,...,124
147 | // 1. 再计算全局内存中的索引
148 | // 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块
149 | int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
150 | int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
151 |
152 | float r_c[TM][TN] = {0.0}; // 8x8
153 | // 2. 先对K进行分块,每块BK大小
154 | for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
155 | // 加载数据到共享内存smem s_a BM*BK 128*8 vectorize float4
156 | int load_gmem_a_k = bk * BK + load_smem_a_k; // global col of a
157 | int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
158 | FLOAT4(s_a[load_smem_a_m][load_smem_a_k]) = FLOAT4(a[load_gmem_a_addr]);
159 | // 加载数据到共享内存smem s_b BK*BN 8*128 vectorize float4
160 | int load_gmem_b_k = bk * BK + load_smem_b_k; // global row of b
161 | int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
162 | FLOAT4(s_b[load_smem_b_k][load_smem_b_n]) = FLOAT4(b[load_gmem_b_addr]);
163 | __syncthreads();
164 | #pragma unroll
165 | for (int k = 0; k < BK; k++) {
166 | // 3. 每个线程负责计算BM*BN(12x128)中的TM*TN(8x8)个元素
167 | #pragma unroll
168 | for (int m = 0; m < TM; m++) {
169 | #pragma unroll
170 | for (int n = 0; n < TN; n++) {
171 | // k from 0~7,0 ~ BK, ty and tx range from 0 to 15, 16x8=128
172 | int comp_smem_a_m = ty * TM + m; // 128*8 128/TM(8)=16 M方向 16线程
173 | int comp_smem_b_n = tx * TN + n; // 8*128 128/TN(8)=16 N方向 16线程
174 | r_c[m][n] += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
175 | }
176 | }
177 | }
178 | __syncthreads();
179 | }
180 |
181 | #pragma unroll
182 | for (int m = 0; m < TM; ++m) {
183 | int store_gmem_c_m = by * BM + ty * TM + m;
184 | #pragma unroll
185 | for (int n = 0; n < TN; n += 4) {
186 | int store_gmem_c_n = bx * BN + tx * TN + n;
187 | int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
188 | FLOAT4(c[store_gmem_c_addr]) = FLOAT4(r_c[m][n]);
189 | }
190 | }
191 | }
192 | ```
193 | 这里gemm的实现比较简单,只使用了CUDA Cores,并且只实现Block Tile + K Tile以及Block Tile + K Tile+Thread Tile+向量化的版本。主要在于如何加载gmem中的数据到smem,也就是把全局内存中的数据索引mapping到共享内存中的。核心思维:把一个block中的线程id按照线性来理解,然后把这个线性的id和全局内存索引以及共享内存索引进行匹配。比如Block Tile + K Tile的实现,block内一共32x32个Threads,需要加载到smem的数据也是32x32,那么,最简单的做法,只需要每个线程加载一个互不重复数据即可。NOTE,本文的gemm kernel修改自:[紫气东来:CUDA(三):通用矩阵乘法:从入门到熟练](https://zhuanlan.zhihu.com/p/657632577)
194 |
195 |
196 | ## 0x03 warp/block reduce sum/max ([©️back👆🏻](#kernellist))
197 |
198 |
199 | ```C++
200 | // Warp Reduce Sum
201 | template
202 | __device__ __forceinline__ float warp_reduce_sum(float val) {
203 | #pragma unroll
204 | for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
205 | val += __shfl_xor_sync(0xffffffff, val, mask);
206 | }
207 | return val;
208 | }
209 |
210 | // Warp Reduce Max
211 | template
212 | __device__ __forceinline__ float warp_reduce_max(float val) {
213 | #pragma unroll
214 | for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
215 | val = fmaxf(val, __shfl_xor_sync(0xffffffff, val, mask));
216 | }
217 | return val;
218 | }
219 |
220 | // Block reduce sum/max/min device helper for Layer/RMS Norm/Softmax etc.
221 | // grid 1D block 1D, grid(N/128), block(128)
222 | template
223 | __device__ __forceinline__ float block_reduce_sum(float val) {
224 | // always <= 32 warps per block (limited by 1024 threads per block)
225 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
226 | int warp = threadIdx.x / WARP_SIZE;
227 | int lane = threadIdx.x % WARP_SIZE;
228 | static __shared__ float shared[NUM_WARPS];
229 |
230 | val = warp_reduce_sum(val);
231 | if (lane == 0) shared[warp] = val;
232 | __syncthreads();
233 | val = (lane < NUM_WARPS) ? shared[lane] : 0.0f;
234 | val = warp_reduce_sum(val);
235 | return val;
236 | }
237 |
238 | template
239 | __device__ __forceinline__ float block_reduce_max(float val) {
240 | // always <= 32 warps per block (limited by 1024 threads per block)
241 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
242 | int warp = threadIdx.x / WARP_SIZE;
243 | int lane = threadIdx.x % WARP_SIZE;
244 | static __shared__ float shared[NUM_WARPS];
245 |
246 | val = warp_reduce_max(val);
247 | if (lane == 0) shared[warp] = val;
248 | __syncthreads();
249 | val = (lane < NUM_WARPS) ? shared[lane] : -FLT_MAX;
250 | val = warp_reduce_max(val);
251 | return val;
252 | }
253 | ```
254 | warp reduce几乎已经成为大部分reduce kernel的标准写法了,比如vLLM中,就是这种经典的写法。所以,先搞懂warp reduce(也就是搞懂各种warp functions的用法),再去写其他kernel,思路就会容易很多。需要注意的是,warp函数处理的是寄存器上的数据,也就是说,此时,没必要先加载数据到smem,再进行reduce,直接加载到寄存器即可(以前犯过这个小错误...)。Warp Functions建议参考:[jhang:CUDA编程入门之Warp-Level Primitives](https://zhuanlan.zhihu.com/p/572820783)
255 |
256 | ## 0x04 block all reduce + vec4 ([©️back👆🏻](#kernellist))
257 |
258 |
259 | ```c++
260 | // Block All Reduce Sum
261 | // grid(N/128), block(128)
262 | // a: Nx1, y=sum(a)
263 | template
264 | __global__ void block_all_reduce_sum(float* a, float* y, int N) {
265 | int tid = threadIdx.x;
266 | int idx = blockIdx.x * NUM_THREADS + tid;
267 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
268 | __shared__ float reduce_smem[NUM_WARPS];
269 | // keep the data in register is enougth for warp operaion.
270 | float sum = (idx < N) ? a[idx] : 0.0f;
271 | int warp = tid / WARP_SIZE;
272 | int lane = tid % WARP_SIZE;
273 | // perform warp sync reduce.
274 | sum = warp_reduce_sum(sum);
275 | // warp leaders store the data to shared memory.
276 | if (lane == 0) reduce_smem[warp] = sum;
277 | __syncthreads(); // make sure the data is in shared memory.
278 | // the first warp compute the final sum.
279 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
280 | if (warp == 0) sum = warp_reduce_sum(sum);
281 | if (tid == 0) atomicAdd(y, sum);
282 | }
283 |
284 | // Block All Reduce Sum + float4
285 | // grid(N/128), block(128/4)
286 | // a: Nx1, y=sum(a)
287 | template
288 | __global__ void block_all_reduce_sum_vec4(float* a, float* y, int N) {
289 | int tid = threadIdx.x;
290 | int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
291 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
292 | __shared__ float reduce_smem[NUM_WARPS];
293 |
294 | float4 reg_a = FLOAT4(a[idx]);
295 | // keep the data in register is enougth for warp operaion.
296 | float sum = (idx < N) ? (reg_a.x + reg_a.y + reg_a.z + reg_a.w) : 0.0f;
297 | int warp = tid / WARP_SIZE;
298 | int lane = tid % WARP_SIZE;
299 | // perform warp sync reduce.
300 | sum = warp_reduce_sum(sum);
301 | // warp leaders store the data to shared memory.
302 | if (lane == 0) reduce_smem[warp] = sum;
303 | __syncthreads(); // make sure the data is in shared memory.
304 | // the first warp compute the final sum.
305 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
306 | if (warp == 0) sum = warp_reduce_sum(sum);
307 | if (tid == 0) atomicAdd(y, sum);
308 | }
309 | ```
310 | block all reduce是在warp reduce的基础上进行的,reduce_smem这部分的共享内存申请无法避免,这是用来同步每个warp之间得到局部结果。注意,最后,还需要atomicAdd做一个block级别的原子操作,以得到全局的和。float4向量化优化访存,可以减缓WarpScheduler发送指令的压力。
311 |
312 | ## 0x05 sgemv k32/k128/k16 kernel ([©️back👆🏻](#kernellist))
313 |
314 |
315 | ```C++
316 | // SGEMV: Warp SGEMV K32
317 | // 假设K为32的倍数,每个warp负责一行
318 | // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
319 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
320 | __global__ void sgemv_k32(float* a, float* x, float* y, int M, int K) {
321 | int tx = threadIdx.x; // 0~31
322 | int ty = threadIdx.y; // 0~4
323 | int bx = blockIdx.x; // 0~M/4
324 | int lane = tx % WARP_SIZE; // 0~31
325 | int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3)
326 | if (m < M) {
327 | float sum = 0.0f;
328 | int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE;
329 | #pragma unroll
330 | for (int w = 0; w < NUM_WARPS; ++w) {
331 | // 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中
332 | int k = w * WARP_SIZE + lane;
333 | sum += a[m * K + k] * x[k];
334 | }
335 | sum = warp_reduce_sum(sum);
336 | if (lane == 0) y[m] = sum;
337 | }
338 | }
339 |
340 | // SGEMV: Warp SGEMV K128 + Vec4
341 | // 假设K为128的倍数 float4
342 | // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
343 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
344 | __global__ void sgemv_k128(float* a, float* x, float* y, int M, int K) {
345 | // 每个线程负责4个元素,一个warp覆盖128个元素
346 | int tx = threadIdx.x; // 0~31
347 | int ty = threadIdx.y; // 0~3
348 | int bx = blockIdx.x; // 0~M/4
349 | int lane = tx % WARP_SIZE; // 0~31
350 | int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3)
351 |
352 | if (m < M) {
353 | float sum = 0.0f;
354 | // process 4*WARP_SIZE elements per warp.
355 | int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4;
356 | #pragma unroll
357 | for (int w = 0; w < NUM_WARPS; ++w) {
358 | int k = (w * WARP_SIZE + lane) * 4;
359 | float4 reg_x = FLOAT4(x[k]);
360 | float4 reg_a = FLOAT4(a[m * K + k]);
361 | sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y
362 | + reg_a.z * reg_x.z + reg_a.w * reg_x.w);
363 | }
364 | sum = warp_reduce_sum(sum);
365 | if(lane == 0) y[m] = sum;
366 | }
367 | }
368 |
369 | // SGEMV: Warp SGEMV K16
370 | // 假设K为16 < 32,每个warp负责2行,每行有16个元素
371 | // NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE;
372 | // NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS)
373 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
374 | template
375 | __global__ void sgemv_k16(float* A, float* x, float* y, int M, int K) {
376 | constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP;
377 | int tx = threadIdx.x; // 0~31
378 | int ty = threadIdx.y; // 0~NUM_WARPS
379 | int bx = blockIdx.x; // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP)
380 | int lane = tx % WARP_SIZE; // 0~31
381 | int k = lane % K_WARP_SIZE; // 0~15
382 | // gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS
383 | int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE;
384 | if (m < M) {
385 | float sum = A[m * K + k] * x[k];
386 | sum = warp_reduce_sum(sum);
387 | // 注意是k == 0,而不是lane == 0
388 | if(k == 0) y[m] = sum;
389 | }
390 | }
391 | ```
392 | 估计有些大佬倒立都能写sgemv的各种优化版了,核心思路其实也是基于warp reduce,考虑K的不同情况进行优化。本文的sgemv kernel修改自:[有了琦琦的棍子:深入浅出GPU优化系列:gemv优化](https://zhuanlan.zhihu.com/p/494144694)
393 |
394 | ## 0x06 dot product, dot product + vec4 ([©️back👆🏻](#kernellist))
395 |
396 |
397 | ```c++
398 | // Dot Product
399 | // grid(N/128), block(128)
400 | // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
401 | template
402 | __global__ void dot(float* a, float* b, float* y, int N) {
403 | int tid = threadIdx.x;
404 | int idx = blockIdx.x * NUM_THREADS + tid;
405 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
406 | __shared__ float reduce_smem[NUM_WARPS];
407 |
408 | // keep the data in register is enougth for warp operaion.
409 | float prod = (idx < N) ? a[idx] * b[idx] : 0.0f;
410 | int warp = tid / WARP_SIZE;
411 | int lane = tid % WARP_SIZE;
412 | // perform warp sync reduce.
413 | prod = warp_reduce_sum(prod);
414 | // warp leaders store the data to shared memory.
415 | if (lane == 0) reduce_smem[warp] = prod;
416 | __syncthreads(); // make sure the data is in shared memory.
417 | // the first warp compute the final sum.
418 | prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
419 | if (warp == 0) prod = warp_reduce_sum(prod);
420 | if (tid == 0) atomicAdd(y, prod);
421 | }
422 |
423 | // Dot Product + Vec4
424 | // grid(N/128), block(128/4)
425 | // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
426 | template
427 | __global__ void dot_vec4(float* a, float* b, float* y, int N) {
428 | int tid = threadIdx.x;
429 | int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
430 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
431 | __shared__ float reduce_smem[NUM_WARPS];
432 |
433 | float4 reg_a = FLOAT4(a[idx]);
434 | float4 reg_b = FLOAT4(b[idx]);
435 | float prod = (idx < N) ? (reg_a.x * reg_b.x + reg_a.y * reg_b.y
436 | + reg_a.z * reg_b.z + reg_a.w * reg_b.w) : 0.0f;
437 | int warp = tid / WARP_SIZE;
438 | int lane = tid % WARP_SIZE;
439 | // perform warp sync reduce.
440 | prod = warp_reduce_sum(prod);
441 | // warp leaders store the data to shared memory.
442 | if (lane == 0) reduce_smem[warp] = prod;
443 | __syncthreads(); // make sure the data is in shared memory.
444 | // the first warp compute the final sum.
445 | prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
446 | if (warp == 0) prod = warp_reduce_sum(prod);
447 | if (tid == 0) atomicAdd(y, prod);
448 | }
449 | ```
450 | dot product kernel的核心就是block reduce,不多说了。
451 |
452 | ## 0x07 elementwise, elementwise + vec4 ([©️back👆🏻](#kernellist))
453 |
454 |
455 | ```c++
456 | // ElementWise Add
457 | // grid(N/128), block(128)
458 | // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
459 | __global__ void elementwise_add(float* a, float* b, float* c, int N) {
460 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
461 | if (idx < N) c[idx] = a[idx] + b[idx];
462 | }
463 |
464 | // ElementWise Add + Vec4
465 | // grid(N/128), block(128/4)
466 | // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
467 | __global__ void elementwise_add_vec4(float* a, float* b, float* c, int N) {
468 | int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
469 | if (idx < N) {
470 | float4 reg_a = FLOAT4(a[idx]);
471 | float4 reg_b = FLOAT4(b[idx]);
472 | float4 reg_c;
473 | reg_c.x = reg_a.x + reg_b.x;
474 | reg_c.y = reg_a.y + reg_b.y;
475 | reg_c.z = reg_a.z + reg_b.z;
476 | reg_c.w = reg_a.w + reg_b.w;
477 | FLOAT4(c[idx]) = reg_c;
478 | }
479 | }
480 | ```
481 | elementwise可以考虑加点向量化进行访存优化。
482 |
483 | ## 0x08 histogram, histogram + vec4
484 |
485 |
486 | ```c++
487 | // Histogram
488 | // grid(N/128), block(128)
489 | // a: Nx1, y: count histogram
490 | __global__ void histogram(int* a, int* y, int N) {
491 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
492 | if (idx < N) atomicAdd(&(y[a[idx]]), 1);
493 | }
494 |
495 | // Histogram + Vec4
496 | // grid(N/128), block(128/4)
497 | // a: Nx1, y: count histogram
498 | __global__ void histogram_vec4(int* a, int* y, int N) {
499 | int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
500 | if (idx < N) {
501 | int4 reg_a = INT4(a[idx]);
502 | atomicAdd(&(y[reg_a.x]), 1);
503 | atomicAdd(&(y[reg_a.y]), 1);
504 | atomicAdd(&(y[reg_a.z]), 1);
505 | atomicAdd(&(y[reg_a.w]), 1);
506 | }
507 | }
508 | ```
509 | 统计频数直方图,很简单,两行代码搞定。
510 |
511 | ## 0x09 softmax, softmax + vec4 (grid level memory fence) ([©️back👆🏻](#kernellist))
512 |
513 |
514 | ```c++
515 | // Softmax x: N, y: N
516 | // grid(N/128), block(K=128)
517 | template
518 | __global__ void softmax(float* x, float* y, float* total, int N) {
519 | const int tid = threadIdx.x;
520 | const int idx = blockIdx.x * blockDim.x + tid;
521 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
522 | __shared__ float reduce_smem[NUM_WARPS];
523 |
524 | float sum = (idx < N) ? expf(x[idx]) : 0.0f;
525 | int warp = tid / WARP_SIZE;
526 | int lane = tid % WARP_SIZE;
527 | sum = warp_reduce_sum(sum);
528 | if (lane == 0) reduce_smem[warp] = sum;
529 | __syncthreads();
530 | // compute the final sum in each warp
531 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
532 | sum = warp_reduce_sum(sum); // sum(e^x_0,...,e^x_n-1)
533 | // get the total sum of all blocks.
534 | if (tid == 0) atomicAdd(total, sum);
535 | __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步
536 | // e^x_i/sum(e^x_0,...,e^x_n-1)
537 | if (idx < N) y[idx] = block_smem[tid] / (*total);
538 | }
539 |
540 | // Softmax x: N, y: N
541 | // grid(N/128), block(K=128)
542 | template
543 | __global__ void softmax_v2(float* x, float* y, float* total, int N) {
544 | const int tid = threadIdx.x;
545 | const int idx = blockIdx.x * blockDim.x + tid;
546 |
547 | float exp_val = (idx < N) ? expf(x[idx]) : 0.0f;
548 | float sum = block_reduce_sum(exp_val);
549 | // get the total sum of all blocks.
550 | if (tid == 0) atomicAdd(total, sum);
551 | __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步
552 | // e^x_i/sum(e^x_0,...,e^x_n-1)
553 | if (idx < N) y[idx] = exp_val / (*total);
554 | }
555 |
556 | // Softmax Vec4 x: N, y: N
557 | // grid(N/128), block(128/4)
558 | template
559 | __global__ void softmax_v2_vec4(float* x, float* y, float* total, int N) {
560 | const int tid = threadIdx.x;
561 | const int idx = (blockIdx.x * blockDim.x + tid) * 4;
562 |
563 | float4 reg_x = FLOAT4(x[idx]);
564 | float4 reg_exp;
565 | reg_exp.x = (idx < N) ? expf(reg_x.x) : 0.0f;
566 | reg_exp.y = (idx < N) ? expf(reg_x.y) : 0.0f;
567 | reg_exp.z = (idx < N) ? expf(reg_x.z) : 0.0f;
568 | reg_exp.w = (idx < N) ? expf(reg_x.w) : 0.0f;
569 | float exp_val = (reg_exp.x + reg_exp.y + reg_exp.z + reg_exp.w);
570 | float sum = block_reduce_sum(exp_val);
571 | // get the total sum of all blocks.
572 | if (tid == 0) atomicAdd(total, sum);
573 | __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步
574 | // e^x_i/sum(e^x_0,...,e^x_n-1)
575 | if (idx < N) {
576 | float4 reg_y;
577 | reg_y.x = reg_exp.x / (*total);
578 | reg_y.y = reg_exp.y / (*total);
579 | reg_y.z = reg_exp.z / (*total);
580 | reg_y.w = reg_exp.w / (*total);
581 | FLOAT4(y[idx]) = reg_y;
582 | }
583 | }
584 | ```
585 | softmax稍微要注意的就是内存同步的问题,这里,你需要做一个网格级别的同步,而不能仅仅是block级别,否则拿不到全局的exp sum作为分母项。因此使用 __threadfence 这个网格及内存同步操作。不过效率我还没测过,实在要高效的话,可能得整成FA2那样的 1-pass + online softmax的实现。不过,如果是面试的话,就不要太为难自己了...,但是FA1/FA2的论文很经典,强烈建议多读几遍。
586 |
587 | ## 0x0a safe softmax, safe softmax + vec4 ([©️back👆🏻](#kernellist))
588 |
589 |
590 | ```c++
591 | // Safe Softmax x: N, y: N
592 | // grid(N/128), block(K=128)
593 | template
594 | __global__ void softmax_safe(float* x, float* y, float* total, int N) {
595 | const int tid = threadIdx.x;
596 | const int idx = blockIdx.x * blockDim.x + tid;
597 |
598 | float ori_val = (idx < N) ? x[idx] : -FLT_MAX;
599 | float max_val = block_reduce_max(ori_val);
600 | float exp_val = (idx < N) ? expf(ori_val - max_val) : 0.0f;
601 | float sum = block_reduce_sum(exp_val);
602 | // get the total sum of all blocks.
603 | if (tid == 0) atomicAdd(total, sum);
604 | __threadfence(); // grid level memory fence
605 | // e^x_i/sum(e^x_0,...,e^x_n-1)
606 | if (idx < N) y[idx] = exp_val / (*total);
607 | }
608 | ```
609 | 对比softmax减去一个max值防止数值溢出,比如float16。
610 |
611 | ## 0x0b sigmoid, sigmoid + vec4 ([©️back👆🏻](#kernellist))
612 |
613 |
614 | ```c++
615 | // Sigmoid x: N, y: N y=1/(1+exp(-x))
616 | // grid(N/128), block(K=128)
617 | __global__ void sigmoid(float* x, float* y, int N) {
618 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
619 | if (idx < N) y[idx] = 1.0f / (1.0f + expf(-x[idx]));
620 | }
621 |
622 | // Sigmoid x: N, y: N y=1/(1+exp(-x)) Vec4
623 | // grid(N/128), block(128/4)
624 | __global__ void sigmoid_vec4(float* x, float* y, int N) {
625 | int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
626 | if (idx < N) {
627 | float4 reg_x = FLOAT4(x[idx]);
628 | float4 reg_y;
629 | reg_y.x = 1.0f / (1.0f + expf(-reg_x.x));
630 | reg_y.y = 1.0f / (1.0f + expf(-reg_x.y));
631 | reg_y.z = 1.0f / (1.0f + expf(-reg_x.z));
632 | reg_y.w = 1.0f / (1.0f + expf(-reg_x.w));
633 | FLOAT4(y[idx]) = reg_y;
634 | }
635 | }
636 | ```
637 |
638 | ## 0x0c relu, relu + vec4 ([©️back👆🏻](#kernellist))
639 |
640 |
641 | ```c++
642 | // Relu x: N, y: N y=max(0,x)
643 | // grid(N/128), block(K=128)
644 | __global__ void relu(float* x, float* y, int N) {
645 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
646 | if (idx < N) y[idx] = fmaxf(0.0f, x[idx]);
647 | }
648 |
649 | // Relu x: N, y: N y=max(0,x) Vec4
650 | // grid(N/128/4), block(128/4)
651 | __global__ void relu_vec4(float* x, float* y, int N) {
652 | int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
653 | if (idx < N) {
654 | float4 reg_x = FLOAT4(x[idx]);
655 | float4 reg_y;
656 | reg_y.x = fmaxf(0.0f, reg_x.x);
657 | reg_y.y = fmaxf(0.0f, reg_x.y);
658 | reg_y.z = fmaxf(0.0f, reg_x.z);
659 | reg_y.w = fmaxf(0.0f, reg_x.w);
660 | FLOAT4(y[idx]) = reg_y;
661 | }
662 | }
663 | ```
664 |
665 | ## 0x0d layer_norm, layer_norm + vec4 ([©️back👆🏻](#kernellist))
666 |
667 |
668 | ```c++
669 | // Layer Norm: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
670 | // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
671 | // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
672 | // y=y'*g + b (g: scale, b: bias)
673 | template
674 | __global__ void layer_norm(float* x, float* y, float g, float b, int N, int K) {
675 | int tid = threadIdx.x; // 0..K-1
676 | int bid = blockIdx.x; // 0..N-1
677 | int idx = bid * blockDim.x + threadIdx.x;
678 | const float epsilon = 1e-5f;
679 |
680 | __shared__ float s_mean; // shared within block
681 | __shared__ float s_variance; // shared within block
682 | float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
683 | float sum = block_reduce_sum(value);
684 | if (tid == 0) s_mean = sum / (float) K;
685 | // wait for s_mean in shared memory to be ready for all threads
686 | __syncthreads();
687 | float variance = (value - s_mean) * (value - s_mean);
688 | variance = block_reduce_sum(variance);
689 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
690 | // wait for s_variance in shared memory to be ready for all threads
691 | __syncthreads();
692 | if (idx < N * K) y[idx] = ((value - s_mean) * s_variance) * g + b;
693 | }
694 |
695 | // Layer Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
696 | // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
697 | // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
698 | // y=y'*g + b (g: scale, b: bias)
699 | template
700 | __global__ void layer_norm_vec4(float* x, float* y, float g, float b, int N, int K) {
701 | int tid = threadIdx.x; // 0..K-1
702 | int bid = blockIdx.x; // 0..N-1
703 | int idx = (bid * blockDim.x + threadIdx.x) * 4;
704 | const float epsilon = 1e-5f;
705 |
706 | __shared__ float s_mean; // shared within block
707 | __shared__ float s_variance; // shared within block
708 | float4 reg_x = FLOAT4(x[idx])
709 | float value = (idx < N * K) ? (reg_x.x + reg_x.y
710 | + reg_x.z + reg_x.w) : 0.0f;
711 | float sum = block_reduce_sum(value);
712 | if (tid == 0) s_mean = sum / (float) K;
713 | // wait for s_mean in shared memory to be ready for all threads
714 | __syncthreads();
715 | float4 reg_x_hat;
716 | reg_x_hat.x = reg_x.x - s_mean;
717 | reg_x_hat.y = reg_x.y - s_mean;
718 | reg_x_hat.z = reg_x.z - s_mean;
719 | reg_x_hat.w = reg_x.w - s_mean;
720 | float variance = reg_x_hat.x * reg_x_hat.x + reg_x_hat.y * reg_x_hat.y
721 | + reg_x_hat.z * reg_x_hat.z + reg_x_hat.w * reg_x_hat.w;
722 | variance = block_reduce_sum(variance);
723 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
724 | // wait for s_variance in shared memory to be ready for all threads
725 | __syncthreads();
726 | float4 reg_y;
727 | reg_y.x = reg_x_hat.x * s_variance * g + b;
728 | reg_y.y = reg_x_hat.y * s_variance * g + b;
729 | reg_y.z = reg_x_hat.z * s_variance * g + b;
730 | reg_y.w = reg_x_hat.w * s_variance * g + b;
731 | if (idx < N * K) FLOAT4(y[idx]) = reg_y;
732 | }
733 | ```
734 | layer norm实现的核心同样也是block reduce和warp reduce,然后再整点向量化...
735 |
736 | ## 0x0e rms_norm, rms_norm + vec4 ([©️back👆🏻](#kernellist))
737 |
738 |
739 | ```c++
740 | // RMS Norm: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
741 | // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
742 | // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
743 | // y=y'*g (g: scale)
744 | template
745 | __global__ void rms_norm(float* x, float* y, float g, int N, int K) {
746 | int tid = threadIdx.x; // 0..K-1
747 | int bid = blockIdx.x; // 0..N-1
748 | int idx = bid * blockDim.x + threadIdx.x;
749 | const float epsilon = 1e-5f;
750 |
751 | __shared__ float s_variance; // shared within block
752 | float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
753 | float variance = value * value;
754 | variance = block_reduce_sum(variance);
755 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
756 | // wait for s_variance in shared memory to be ready for all threads
757 | __syncthreads();
758 | if (idx < N * K) y[idx] = (value * s_variance) * g;
759 | }
760 |
761 | // RMS Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
762 | // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
763 | // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
764 | // y=y'*g (g: scale)
765 | template
766 | __global__ void rms_norm_vec4(float* x, float* y, float g, int N, int K) {
767 | int tid = threadIdx.x; // 0..K-1
768 | int bid = blockIdx.x; // 0..N-1
769 | int idx = (bid * blockDim.x + threadIdx.x) * 4;
770 | const float epsilon = 1e-5f;
771 |
772 | __shared__ float s_variance; // shared within block
773 | float4 reg_x = FLOAT4(x[idx]);
774 | float variance = (idx < N * K) ? (reg_x.x * reg_x.x + reg_x.y * reg_x.y
775 | + reg_x.z * reg_x.z + reg_x.w * reg_x.w) : 0.0f;
776 | variance = block_reduce_sum(variance);
777 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
778 | // wait for s_variance in shared memory to be ready for all threads
779 | __syncthreads();
780 | float4 reg_y;
781 | reg_y.x = reg_x.x * s_variance * g;
782 | reg_y.y = reg_x.y * s_variance * g;
783 | reg_y.z = reg_x.z * s_variance * g;
784 | reg_y.w = reg_x.w * s_variance * g;
785 | if (idx < N * K) FLOAT4(y[idx]) = reg_y;
786 | }
787 | ```
788 | rms norm实现的核心同样也是block reduce和warp reduce...,然后再加点float4向量化什么的。
789 |
790 | ## 0x0d NMS ([©️back👆🏻](#kernellist))
791 |
792 |
793 | ```c++
794 | struct Box {
795 | float x1, y1, x2, y2, score;
796 | float area() const {return (std::abs(x2 - x1 + 1)) * std::abs(y2 - y1 + 1); }
797 | float iou_of(const Box& other) const{
798 | float inner_x1 = x1 > other.x1 ? x1 : other.x1;
799 | float inner_y1 = y1 > other.y1 ? y1 : other.y1;
800 | float inner_x2 = x2 < other.x2 ? x2 : other.x2;
801 | float inner_y2 = y2 < other.y2 ? y2 : other.y2;
802 | float inner_h = inner_y2 - inner_y1 + 1.0f;
803 | float inner_w = inner_x2 - inner_x1 + 1.0f;
804 | float inner_area = inner_h * inner_w;
805 | return (inner_area / (area() + tbox.area() - inner_area));
806 | }
807 | }
808 | void hard_nms(std::vector &input, std::vector &output, float iou_threshold){
809 | if (input.empty()) return;
810 | std::sort(input.begin(), input.end(),[](Box& a, Box& b) { return a.score > b.score; });
811 | int box_num = input.size();
812 | std::vector merged(box_num, 0);
813 | for (int i = 0; i < box_num; ++i) {
814 | if (merged[i]) continue;
815 | merged[i] = 1;
816 | for (int j = i + 1; j < box_num; ++j) {
817 | if (merged[j]) continue;
818 | float iou = input[i].iou_of(input[j]);
819 | if (iou > iou_threshold) merged[j] = 1;
820 | }
821 | output.push_back(input[i]);
822 | }
823 | }
824 | ```
825 | CV相关的经常会要手撕NMS,也记录下。
826 |
827 | ## 0x0f 总结 ([©️back👆🏻](#kernellist))
828 | 可以发现,大部分kernel的基本写法都是依赖warp reduce和block reduce的,基本上只要熟练应用warp functions各种场景的写法,应该问题不大;softmax需要考虑网格级同步的问题,或者online softmax以及FlashAttention;sgemm的优化是个很大的课题,不是案例中写的这么简单,但是入门的话,基本就是tiling的思想以及如何做索引之间的mapping;sgemv的优化则主要考虑K不同的值(因为M为1了),比如K=16,64,128等情况下,如何按照warp来处理;relu、sigmoid等都是elementwise的操作,很好实现,可以再考虑加点向量化优化访存;layer norm和rms norm在数学上其实也是挺清晰简单的,落实到cuda kernel时,只要按照逐个token来处理,headdim没有超过1024的情况下(一个block最多可以放1024个threads),可以放到一个block处理,这样并行化就很好写。当然,核心还是warp reduce和block reduce;NMS是乱入的,没有CUDA版本,别问了...
829 |
830 | ## ©️License
831 | GNU General Public License v3.0
832 |
833 | ## 🎉Contribute
834 | 🌟如果觉得有用,不妨给个🌟👆🏻Star支持一下吧~
835 |
--------------------------------------------------------------------------------
/cpp/.gitignore:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/cpp/.gitignore
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/README.md:
--------------------------------------------------------------------------------
1 | ## 编译命令
2 |
3 | ```bash
4 | git clone https://github.com/DefTruth/simd-notebook.git
5 | cd cpp/how_to_build_cpp_static_lib/test_staticlib
6 | mkdir build && cd build
7 | cmake ..
8 | make -j
9 | ```
10 |
11 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/.gitignore:
--------------------------------------------------------------------------------
1 | build
2 | test
3 | .DS_Store
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | PROJECT(staticlib_demo C CXX)
2 | CMAKE_MINIMUM_REQUIRED(VERSION 3.12)
3 |
4 | include_directories(${PROJECT_SOURCE_DIR})
5 |
6 | set(LIB_ADD_SRCS
7 | ${PROJECT_SOURCE_DIR}/liba/func.cc
8 | ${PROJECT_SOURCE_DIR}/liba/funca.cc
9 | ${PROJECT_SOURCE_DIR}/liba/global.cc
10 | ${PROJECT_SOURCE_DIR}/libb/func.cc
11 | ${PROJECT_SOURCE_DIR}/libb/funcb.cc)
12 |
13 | set(LIB_OTHER_ADD_SRCS
14 | ${PROJECT_SOURCE_DIR}/libc/funcc.cc)
15 |
16 | add_library(addfunc_static STATIC ${LIB_ADD_SRCS}) # 编译静态库
17 | add_library(addfunc_shared SHARED ${LIB_ADD_SRCS}) # 编译动态库
18 | add_library(other_addfunc_static_link_static STATIC ${LIB_OTHER_ADD_SRCS})
19 | add_library(other_addfunc_static_link_shared STATIC ${LIB_OTHER_ADD_SRCS})
20 | add_library(other_addfunc_shared_link_static SHARED ${LIB_OTHER_ADD_SRCS})
21 | add_library(other_addfunc_shared_link_shared SHARED ${LIB_OTHER_ADD_SRCS})
22 |
23 | target_link_libraries(other_addfunc_static_link_static addfunc_static) # 编译静态库链接静态库
24 | target_link_libraries(other_addfunc_static_link_shared addfunc_shared) # 编译静态库链接动态库
25 | target_link_libraries(other_addfunc_shared_link_static addfunc_static) # 编译动态库链接静态库
26 | target_link_libraries(other_addfunc_shared_link_shared addfunc_shared) # 编译动态库链接动态库
27 |
28 | add_executable(test_static ${PROJECT_SOURCE_DIR}/test.cc)
29 | add_executable(test_shared ${PROJECT_SOURCE_DIR}/test.cc)
30 | target_link_libraries(test_static addfunc_static)
31 | set_target_properties(test_static PROPERTIES LINK_FLAGS
32 | "-Wl,--whole-archive libaddfunc_static.a -Wl,-no-whole-archive")
33 |
34 | target_link_libraries(test_shared addfunc_shared)
35 |
36 | add_executable(test_a_inst_static ${PROJECT_SOURCE_DIR}/test_a_inst.cc)
37 | add_executable(test_a_inst_shared ${PROJECT_SOURCE_DIR}/test_a_inst.cc)
38 | target_link_libraries(test_a_inst_static addfunc_static)
39 | target_link_libraries(test_a_inst_shared addfunc_shared)
40 |
41 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/liba/func.cc:
--------------------------------------------------------------------------------
1 | #include "liba/func.h"
2 | int AddFuncA(int a, int b) {return a + b;}
3 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/liba/func.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | int AddFuncA(int a, int b);
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/liba/funca.cc:
--------------------------------------------------------------------------------
1 | #include "liba/funca.h"
2 | int AddFuncAV2(int a, int b) {return a + b;}
3 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/liba/funca.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | int AddFuncAV2(int a, int b);
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/liba/global.cc:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | class ACls {
4 | public:
5 | ACls() {
6 | std::cout << "Create an ACls instance and do some things!" << std::endl;
7 | }
8 | };
9 |
10 | // create a global instance.
11 | ACls* a_inst = new ACls();
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libb/func.cc:
--------------------------------------------------------------------------------
1 | #include "libb/func.h"
2 | float AddFuncB(float a, float b) {return a + b;}
3 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libb/func.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | float AddFuncB(float a, float b);
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libb/funcb.cc:
--------------------------------------------------------------------------------
1 | #include "libb/funcb.h"
2 | float AddFuncBV2(float a, float b) {return a + b;}
3 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libb/funcb.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | float AddFuncBV2(float a, float b);
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libc/funcc.cc:
--------------------------------------------------------------------------------
1 | #include "libc/funcc.h"
2 | #include "liba/func.h"
3 | int AddFuncC(int a, int b) {return AddFuncA(a, a) + AddFuncA(b, b);}
4 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/libc/funcc.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | int AddFuncC(int a, int b);
3 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/test.cc:
--------------------------------------------------------------------------------
1 | #include "liba/func.h"
2 | #include "libb/func.h"
3 | #include
4 |
5 | int main(int argc, char* argv[]) {
6 | std::cout << "AddFuncA(2, 3): " << AddFuncA(2, 3) << std::endl;
7 | std::cout << "AddFuncB(2.0f, 3.0f): " << AddFuncB(2.0f, 3.0f) << std::endl;
8 | }
9 |
--------------------------------------------------------------------------------
/cpp/how_to_build_cpp_static_lib/test_staticlib/test_a_inst.cc:
--------------------------------------------------------------------------------
1 | #include "liba/func.h"
2 | #include "libb/func.h"
3 | #include
4 |
5 | class ACls;
6 | extern ACls* a_inst;
7 |
8 | int main(int argc, char* argv[]) {
9 | std::cout << "a_inst: " << a_inst << std::endl;
10 | std::cout << "AddFuncA(2, 3): " << AddFuncA(2, 3) << std::endl;
11 | std::cout << "AddFuncB(2.0f, 3.0f): " << AddFuncB(2.0f, 3.0f) << std::endl;
12 | }
13 |
--------------------------------------------------------------------------------
/cuda-check/README.md:
--------------------------------------------------------------------------------
1 | ## CUDA 高频面试题汇总
2 |
3 | 前段时间参加了一些面试,大部分都要手撕CUDA,因此也整体复习了一遍CUDA优化相关的内容,整理了一些高频题的基本写法,保存在这里也便于日后自己复习,具体见[高频面试题汇总](./check.cu)。当然,有些代码不一定是最优化解,比如GEMM,想要在面试短短的30分钟内写一个好的GEMM Kernel,那实在是太难了,普通人能写个shared memory + block-tile + k-tile 的版本的很不错了。相关kernel如下:
4 |
5 | - sgemm naive, sgemm + block-tile + k-tile + vec4
6 | - sgemv k32/k128/k16 kernel
7 | - warp/block reduce sum/max, block all reduce + vec4
8 | - dot product, dot product + vec4
9 | - elementwise, elementwise + vec4
10 | - histogram, histogram + vec4
11 | - softmax, softmax + vec4 (grid level memory fence)
12 | - safe softmax, safe softmax + vec4
13 | - sigmoid, sigmoid + vec4
14 | - relu, relu + vec4
15 | - layer_norm, layer_norm + vec4
16 | - rms_norm, rms_norm + vec4
17 | - ....
18 |
19 | 不定期更新...
--------------------------------------------------------------------------------
/cuda-check/check.cu:
--------------------------------------------------------------------------------
1 | // sgemm
2 | // sgemv
3 | // warp/block reduce
4 | // dot product
5 | // elementwise
6 | // hist
7 | // softmax
8 | // safe softmax
9 | // sigmoid
10 | // relu
11 | // layer_norm
12 | // rms_norm
13 | // iou
14 | // nms
15 | #include
16 | #include
17 | #include
18 | #include
19 | #include
20 | #include
21 |
22 | #define WARP_SIZE 32
23 | #define INT4(value) (reinterpret_cast(&(value))[0])
24 | #define FLOAT4(value) (reinterpret_cast(&(value))[0])
25 |
26 | // SGEMM: Block Tile + K Tile, with smem
27 | // Block Tile (BM, BN) + K Tile (BK=32)
28 | // grid((N + BN - 1) / BN, (M + BM - 1) / BM), block(BN, BM)
29 | // a: MxK, b: KxN, c: MxN, compute: c = a * b, all row major
30 | __global__ void sgemm(float* a, float* b, float* c, int M, int N, int K) {
31 | // [1] Block Tile: 32x32的block处理c上一块32x32的元素计算
32 | // [2] K Tile: 使用共享内存,并将K分块为BK大小的块
33 | constexpr int BM = 32;
34 | constexpr int BN = 32;
35 | constexpr int BK = 32;
36 | __shared__ float s_a[BM][BK], s_b[BK][BN];
37 |
38 | int bx = blockIdx.x;
39 | int by = blockIdx.y;
40 | int tx = threadIdx.x;
41 | int ty = threadIdx.y;
42 | int tid = threadIdx.y * blockDim.x + tx; // tid within the block
43 | // load values to shared memory, 32x32 threads working together
44 | // to fetch data along the row direction of a and b both for s_a
45 | // and s_b 32x32x4x2=8KB, we use 32x32 threads within block to
46 | // load 32x32 elements from global memory to shared memory, namely,
47 | // each thread will load 1 element.
48 | int load_smem_a_m = tid / 32; // 0~31, tid / 32, tid / BM, threadIdx.y
49 | int load_smem_a_k = tid % 32; // 0~31, tid % 32, tid % BK, threadIdx.x
50 | int load_smem_b_k = tid / 32; // 0~31, tid / 32, tid / BK, threadIdx.y
51 | int load_smem_b_n = tid % 32; // 0~31, tid % 32, tid % BN, threadIdx.x
52 | int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
53 | int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
54 | // if (load_gmem_a_m >= M || load_gmem_b_n >= N) return;
55 |
56 | float sum = 0.f;
57 | for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
58 | int load_gmem_a_k = bk * BK + load_smem_a_k;
59 | int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
60 | s_a[load_smem_a_m][load_smem_a_k] = a[load_gmem_a_addr];
61 | int load_gmem_b_k = bk * BK + load_smem_b_k;
62 | int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
63 | s_b[load_smem_b_k][load_smem_b_n] = b[load_gmem_b_addr];
64 | __syncthreads();
65 | #pragma unroll
66 | for (int k = 0; k < BK; ++k) {
67 | int comp_smem_a_m = load_smem_a_m;
68 | int comp_smem_b_n = load_smem_b_n;
69 | sum += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
70 | }
71 | __syncthreads();
72 | }
73 | int store_gmem_c_m = load_gmem_a_m;
74 | int store_gmem_c_n = load_gmem_b_n;
75 | int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
76 | c[store_gmem_c_addr] = sum;
77 | }
78 |
79 | // SGEMM: Block Tile + Thread Tile + K Tile + Vec4, with smem
80 | // BK:TILE_K=8 BM=BN=128
81 | // TM=TN=8 增加计算密度 BM/TM=16 BN/TN=16
82 | // dim3 blockDim(BN/TN, BM/TM);
83 | // dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM)
84 | __global__ void sgemm_thread_tile_vec4(
85 | float* a, float* b, float* c, int M, int N, int K) {
86 | // [1] Block Tile: 一个16x16的block处理C上大小为128X128的一个目标块
87 | // [2] Thread Tile: 每个thread负责计算TM*TN(8*8)个元素,增加计算密度
88 | // [3] K Tile: 将K分块,每块BK大小,迭代(K+BK-1/BK)次,
89 | // 每次计算TM*TN个元素各自的部分乘累加
90 | // [4] Vectorize: 减少load和store指令,使用float4
91 | constexpr int BM = 128;
92 | constexpr int BN = 128;
93 | constexpr int BK = 8;
94 | constexpr int TM = 8;
95 | constexpr int TN = 8;
96 |
97 | int bx = blockIdx.x;
98 | int by = blockIdx.y;
99 | int tx = threadIdx.x;
100 | int ty = threadIdx.y;
101 | int tid = threadIdx.y * blockDim.x + tx; // tid within the block
102 | __shared__ float s_a[BM][BK], s_b[BK][BN]; // 2*128*8*4=8KB
103 |
104 | // 0. 先计算shared memory中的索引
105 | // tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=8 按行读取 A行主序
106 | // 对于s_a每行8个数据,每个线程读取4个,需要2个线程;总共128行,需要128x2刚好256线程
107 | int load_smem_a_m = tid / 2; // tid/2 (128/8)*(128/8)=256 threads per block, tid/2->[0,128), BM=128 0~127
108 | int load_smem_a_k = (tid % 2 == 0) ? 0 : 4; // (tid%2 == 0) ? 0 : 4, col of s_a 0,4
109 | // tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=8 BN=128 按行读取 B行主序
110 | // 对于s_b每行128个数据,每个线程读4个数据,需要32个线程;总共8行,需要32x8=256个线程
111 | int load_smem_b_k = tid / 32; // tid/32, row of s_b 256/32=8 行 0~7
112 | int load_smem_b_n = (tid % 32) * 4; // (tid % 32) * 4, col of s_b 0,4,...,124
113 | // 1. 再计算全局内存中的索引
114 | // 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块
115 | int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
116 | int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
117 |
118 | float r_c[TM][TN] = {0.0}; // 8x8
119 | // 2. 先对K进行分块,每块BK大小
120 | for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
121 | // 加载数据到共享内存smem s_a BM*BK 128*8 vectorize float4
122 | int load_gmem_a_k = bk * BK + load_smem_a_k; // global col of a
123 | int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
124 | FLOAT4(s_a[load_smem_a_m][load_smem_a_k]) = FLOAT4(a[load_gmem_a_addr]);
125 | // 加载数据到共享内存smem s_b BK*BN 8*128 vectorize float4
126 | int load_gmem_b_k = bk * BK + load_smem_b_k; // global row of b
127 | int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
128 | FLOAT4(s_b[load_smem_b_k][load_smem_b_n]) = FLOAT4(b[load_gmem_b_addr]);
129 | __syncthreads();
130 | #pragma unroll
131 | for (int k = 0; k < BK; k++) {
132 | // 3. 每个线程负责计算BM*BN(12x128)中的TM*TN(8x8)个元素
133 | #pragma unroll
134 | for (int m = 0; m < TM; m++) {
135 | #pragma unroll
136 | for (int n = 0; n < TN; n++) {
137 | // k from 0~7,0 ~ BK, ty and tx range from 0 to 15, 16x8=128
138 | int comp_smem_a_m = ty * TM + m; // 128*8 128/TM(8)=16 M方向 16线程
139 | int comp_smem_b_n = tx * TN + n; // 8*128 128/TN(8)=16 N方向 16线程
140 | r_c[m][n] += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
141 | }
142 | }
143 | }
144 | __syncthreads();
145 | }
146 |
147 | #pragma unroll
148 | for (int m = 0; m < TM; ++m) {
149 | int store_gmem_c_m = by * BM + ty * TM + m;
150 | #pragma unroll
151 | for (int n = 0; n < TN; n += 4) {
152 | int store_gmem_c_n = bx * BN + tx * TN + n;
153 | int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
154 | FLOAT4(c[store_gmem_c_addr]) = FLOAT4(r_c[m][n]);
155 | }
156 | }
157 | }
158 |
159 | // Warp Reduce Sum
160 | template
161 | __device__ __forceinline__ float warp_reduce_sum(float val) {
162 | #pragma unroll
163 | for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
164 | val += __shfl_xor_sync(0xffffffff, val, mask);
165 | }
166 | return val;
167 | }
168 |
169 | // Warp Reduce Max
170 | template
171 | __device__ __forceinline__ float warp_reduce_max(float val) {
172 | #pragma unroll
173 | for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
174 | val = fmaxf(val, __shfl_xor_sync(0xffffffff, val, mask));
175 | }
176 | return val;
177 | }
178 |
179 | // Block reduce sum/max/min device helper for Layer/RMS Norm/Softmax etc.
180 | // grid 1D block 1D, grid(N/128), block(128)
181 | template
182 | __device__ __forceinline__ float block_reduce_sum(float val) {
183 | // always <= 32 warps per block (limited by 1024 threads per block)
184 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
185 | int warp = threadIdx.x / WARP_SIZE;
186 | int lane = threadIdx.x % WARP_SIZE;
187 | static __shared__ float shared[NUM_WARPS];
188 |
189 | val = warp_reduce_sum(val);
190 | if (lane == 0) shared[warp] = val;
191 | __syncthreads();
192 | val = (lane < NUM_WARPS) ? shared[lane] : 0.0f;
193 | val = warp_reduce_sum(val);
194 | return val;
195 | }
196 |
197 | template
198 | __device__ __forceinline__ float block_reduce_max(float val) {
199 | // always <= 32 warps per block (limited by 1024 threads per block)
200 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
201 | int warp = threadIdx.x / WARP_SIZE;
202 | int lane = threadIdx.x % WARP_SIZE;
203 | static __shared__ float shared[NUM_WARPS];
204 |
205 | val = warp_reduce_max(val);
206 | if (lane == 0) shared[warp] = val;
207 | __syncthreads();
208 | val = (lane < NUM_WARPS) ? shared[lane] : -FLT_MAX;
209 | val = warp_reduce_max(val);
210 | return val;
211 | }
212 |
213 | // SGEMV: Warp SGEMV K32
214 | // 假设K为32的倍数,每个warp负责一行
215 | // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
216 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
217 | __global__ void sgemv_k32(float* a, float* x, float* y, int M, int K) {
218 | int tx = threadIdx.x; // 0~31
219 | int ty = threadIdx.y; // 0~4
220 | int bx = blockIdx.x; // 0~M/4
221 | int lane = tx % WARP_SIZE; // 0~31
222 | int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3)
223 | if (m < M) {
224 | float sum = 0.0f;
225 | int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE;
226 | #pragma unroll
227 | for (int w = 0; w < NUM_WARPS; ++w) {
228 | // 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中
229 | int k = w * WARP_SIZE + lane;
230 | sum += a[m * K + k] * x[k];
231 | }
232 | sum = warp_reduce_sum(sum);
233 | if (lane == 0) y[m] = sum;
234 | }
235 | }
236 |
237 | // SGEMV: Warp SGEMV K128 + Vec4
238 | // 假设K为128的倍数 float4
239 | // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
240 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
241 | __global__ void sgemv_k128(float* a, float* x, float* y, int M, int K) {
242 | // 每个线程负责4个元素,一个warp覆盖128个元素
243 | int tx = threadIdx.x; // 0~31
244 | int ty = threadIdx.y; // 0~3
245 | int bx = blockIdx.x; // 0~M/4
246 | int lane = tx % WARP_SIZE; // 0~31
247 | int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3)
248 |
249 | if (m < M) {
250 | float sum = 0.0f;
251 | // process 4*WARP_SIZE elements per warp.
252 | int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4;
253 | #pragma unroll
254 | for (int w = 0; w < NUM_WARPS; ++w) {
255 | int k = (w * WARP_SIZE + lane) * 4;
256 | float4 reg_x = FLOAT4(x[k]);
257 | float4 reg_a = FLOAT4(a[m * K + k]);
258 | sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y
259 | + reg_a.z * reg_x.z + reg_a.w * reg_x.w);
260 | }
261 | sum = warp_reduce_sum(sum);
262 | if(lane == 0) y[m] = sum;
263 | }
264 | }
265 |
266 | // SGEMV: Warp SGEMV K16
267 | // 假设K为16 < 32,每个warp负责2行,每行有16个元素
268 | // NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE;
269 | // NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS)
270 | // a: MxK, x: Kx1, y: Mx1, compute: y = a * x
271 | template
272 | __global__ void sgemv_k16(float* A, float* x, float* y, int M, int K) {
273 | constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP;
274 | int tx = threadIdx.x; // 0~31
275 | int ty = threadIdx.y; // 0~NUM_WARPS
276 | int bx = blockIdx.x; // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP)
277 | int lane = tx % WARP_SIZE; // 0~31
278 | int k = lane % K_WARP_SIZE; // 0~15
279 | // gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS
280 | int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE;
281 | if (m < M) {
282 | float sum = A[m * K + k] * x[k];
283 | sum = warp_reduce_sum(sum);
284 | // 注意是k == 0,而不是lane == 0
285 | if(k == 0) y[m] = sum;
286 | }
287 | }
288 |
289 | // Block All Reduce Sum
290 | // grid(N/128), block(128)
291 | // a: Nx1, y=sum(a)
292 | template
293 | __global__ void block_all_reduce_sum(float* a, float* y, int N) {
294 | int tid = threadIdx.x;
295 | int idx = blockIdx.x * NUM_THREADS + tid;
296 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
297 | __shared__ float reduce_smem[NUM_WARPS];
298 | // keep the data in register is enougth for warp operaion.
299 | float sum = (idx < N) ? a[idx] : 0.0f;
300 | int warp = tid / WARP_SIZE;
301 | int lane = tid % WARP_SIZE;
302 | // perform warp sync reduce.
303 | sum = warp_reduce_sum(sum);
304 | // warp leaders store the data to shared memory.
305 | if (lane == 0) reduce_smem[warp] = sum;
306 | __syncthreads(); // make sure the data is in shared memory.
307 | // the first warp compute the final sum.
308 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
309 | if (warp == 0) sum = warp_reduce_sum(sum);
310 | if (tid == 0) atomicAdd(y, sum);
311 | }
312 |
313 | // Block All Reduce Sum + float4
314 | // grid(N/128), block(128/4)
315 | // a: Nx1, y=sum(a)
316 | template
317 | __global__ void block_all_reduce_sum_vec4(float* a, float* y, int N) {
318 | int tid = threadIdx.x;
319 | int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
320 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
321 | __shared__ float reduce_smem[NUM_WARPS];
322 |
323 | float4 reg_a = FLOAT4(a[idx]);
324 | // keep the data in register is enougth for warp operaion.
325 | float sum = (idx < N) ? (reg_a.x + reg_a.y + reg_a.z + reg_a.w) : 0.0f;
326 | int warp = tid / WARP_SIZE;
327 | int lane = tid % WARP_SIZE;
328 | // perform warp sync reduce.
329 | sum = warp_reduce_sum(sum);
330 | // warp leaders store the data to shared memory.
331 | if (lane == 0) reduce_smem[warp] = sum;
332 | __syncthreads(); // make sure the data is in shared memory.
333 | // the first warp compute the final sum.
334 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
335 | if (warp == 0) sum = warp_reduce_sum(sum);
336 | if (tid == 0) atomicAdd(y, sum);
337 | }
338 |
339 | // Dot Product
340 | // grid(N/128), block(128)
341 | // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
342 | template
343 | __global__ void dot(float* a, float* b, float* y, int N) {
344 | int tid = threadIdx.x;
345 | int idx = blockIdx.x * NUM_THREADS + tid;
346 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
347 | __shared__ float reduce_smem[NUM_WARPS];
348 |
349 | // keep the data in register is enougth for warp operaion.
350 | float prod = (idx < N) ? a[idx] * b[idx] : 0.0f;
351 | int warp = tid / WARP_SIZE;
352 | int lane = tid % WARP_SIZE;
353 | // perform warp sync reduce.
354 | prod = warp_reduce_sum(prod);
355 | // warp leaders store the data to shared memory.
356 | if (lane == 0) reduce_smem[warp] = prod;
357 | __syncthreads(); // make sure the data is in shared memory.
358 | // the first warp compute the final sum.
359 | prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
360 | if (warp == 0) prod = warp_reduce_sum(prod);
361 | if (tid == 0) atomicAdd(y, prod);
362 | }
363 |
364 | // Dot Product + Vec4
365 | // grid(N/128), block(128/4)
366 | // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
367 | template
368 | __global__ void dot_vec4(float* a, float* b, float* y, int N) {
369 | int tid = threadIdx.x;
370 | int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
371 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
372 | __shared__ float reduce_smem[NUM_WARPS];
373 |
374 | float4 reg_a = FLOAT4(a[idx]);
375 | float4 reg_b = FLOAT4(b[idx]);
376 | float prod = (idx < N) ? (reg_a.x * reg_b.x + reg_a.y * reg_b.y
377 | + reg_a.z * reg_b.z + reg_a.w * reg_b.w) : 0.0f;
378 | int warp = tid / WARP_SIZE;
379 | int lane = tid % WARP_SIZE;
380 | // perform warp sync reduce.
381 | prod = warp_reduce_sum(prod);
382 | // warp leaders store the data to shared memory.
383 | if (lane == 0) reduce_smem[warp] = prod;
384 | __syncthreads(); // make sure the data is in shared memory.
385 | // the first warp compute the final sum.
386 | prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
387 | if (warp == 0) prod = warp_reduce_sum(prod);
388 | if (tid == 0) atomicAdd(y, prod);
389 | }
390 |
391 | // Histogram
392 | // grid(N/128), block(128)
393 | // a: Nx1, y: count histogram
394 | __global__ void histogram(int* a, int* y, int N) {
395 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
396 | if (idx < N) atomicAdd(&(y[a[idx]]), 1);
397 | }
398 |
399 | // Histogram + Vec4
400 | // grid(N/128), block(128/4)
401 | // a: Nx1, y: count histogram
402 | __global__ void histogram_vec4(int* a, int* y, int N) {
403 | int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
404 | if (idx < N) {
405 | int4 reg_a = INT4(a[idx]);
406 | atomicAdd(&(y[reg_a.x]), 1);
407 | atomicAdd(&(y[reg_a.y]), 1);
408 | atomicAdd(&(y[reg_a.z]), 1);
409 | atomicAdd(&(y[reg_a.w]), 1);
410 | }
411 | }
412 |
413 | // ElementWise Add
414 | // grid(N/128), block(128)
415 | // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
416 | __global__ void elementwise_add(float* a, float* b, float* c, int N) {
417 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
418 | if (idx < N) c[idx] = a[idx] + b[idx];
419 | }
420 |
421 | // ElementWise Add + Vec4
422 | // grid(N/128), block(128/4)
423 | // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
424 | __global__ void elementwise_add_vec4(float* a, float* b, float* c, int N) {
425 | int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
426 | if (idx < N) {
427 | float4 reg_a = FLOAT4(a[idx]);
428 | float4 reg_b = FLOAT4(b[idx]);
429 | float4 reg_c;
430 | reg_c.x = reg_a.x + reg_b.x;
431 | reg_c.y = reg_a.y + reg_b.y;
432 | reg_c.z = reg_a.z + reg_b.z;
433 | reg_c.w = reg_a.w + reg_b.w;
434 | FLOAT4(c[idx]) = reg_c;
435 | }
436 | }
437 |
438 | // Softmax x: N, y: N
439 | // grid(N/128), block(K=128)
440 | template
441 | __global__ void softmax(float* x, float* y, float* total, int N) {
442 | const int tid = threadIdx.x;
443 | const int idx = blockIdx.x * blockDim.x + tid;
444 | constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
445 | __shared__ float reduce_smem[NUM_WARPS];
446 |
447 | float sum = (idx < N) ? expf(x[idx]) : 0.0f;
448 | int warp = tid / WARP_SIZE;
449 | int lane = tid % WARP_SIZE;
450 | sum = warp_reduce_sum(sum);
451 | if (lane == 0) reduce_smem[warp] = sum;
452 | __syncthreads();
453 | // compute the final sum in each warp
454 | sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
455 | sum = warp_reduce_sum(sum); // sum(e^x_0,...,e^x_n-1)
456 | // get the total sum of all blocks.
457 | if (tid == 0) atomicAdd(total, sum);
458 | __threadfence(); // grid level memory fence
459 | // e^x_i/sum(e^x_0,...,e^x_n-1)
460 | if (idx < N) y[idx] = block_smem[tid] / (*total);
461 | }
462 |
463 | // Softmax x: N, y: N
464 | // grid(N/128), block(K=128)
465 | template
466 | __global__ void softmax_v2(float* x, float* y, float* total, int N) {
467 | const int tid = threadIdx.x;
468 | const int idx = blockIdx.x * blockDim.x + tid;
469 |
470 | float exp_val = (idx < N) ? expf(x[idx]) : 0.0f;
471 | float sum = block_reduce_sum(exp_val);
472 | // get the total sum of all blocks.
473 | if (tid == 0) atomicAdd(total, sum);
474 | __threadfence(); // grid level memory fence
475 | // e^x_i/sum(e^x_0,...,e^x_n-1)
476 | if (idx < N) y[idx] = exp_val / (*total);
477 | }
478 |
479 | // Softmax Vec4 x: N, y: N
480 | // grid(N/128), block(128/4)
481 | template
482 | __global__ void softmax_v2_vec4(float* x, float* y, float* total, int N) {
483 | const int tid = threadIdx.x;
484 | const int idx = (blockIdx.x * blockDim.x + tid) * 4;
485 |
486 | float4 reg_x = FLOAT4(x[idx]);
487 | float4 reg_exp;
488 | reg_exp.x = (idx < N) ? expf(reg_x.x) : 0.0f;
489 | reg_exp.y = (idx < N) ? expf(reg_x.y) : 0.0f;
490 | reg_exp.z = (idx < N) ? expf(reg_x.z) : 0.0f;
491 | reg_exp.w = (idx < N) ? expf(reg_x.w) : 0.0f;
492 | float exp_val = (reg_exp.x + reg_exp.y + reg_exp.z + reg_exp.w);
493 | float sum = block_reduce_sum(exp_val);
494 | // get the total sum of all blocks.
495 | if (tid == 0) atomicAdd(total, sum);
496 | __threadfence(); // grid level memory fence
497 | // e^x_i/sum(e^x_0,...,e^x_n-1)
498 | if (idx < N) {
499 | float4 reg_y;
500 | reg_y.x = reg_exp.x / (*total);
501 | reg_y.y = reg_exp.y / (*total);
502 | reg_y.z = reg_exp.z / (*total);
503 | reg_y.w = reg_exp.w / (*total);
504 | FLOAT4(y[idx]) = reg_y;
505 | }
506 | }
507 |
508 | // Safe Softmax x: N, y: N
509 | // grid(N/128), block(K=128)
510 | template
511 | __global__ void softmax_safe(float* x, float* y, float* total, int N) {
512 | const int tid = threadIdx.x;
513 | const int idx = blockIdx.x * blockDim.x + tid;
514 |
515 | float ori_val = (idx < N) ? x[idx] : -FLT_MAX;
516 | float max_val = block_reduce_max(ori_val);
517 | float exp_val = (idx < N) ? expf(ori_val - max_val) : 0.0f;
518 | float sum = block_reduce_sum(exp_val);
519 | // get the total sum of all blocks.
520 | if (tid == 0) atomicAdd(total, sum);
521 | __threadfence(); // grid level memory fence
522 | // e^x_i/sum(e^x_0,...,e^x_n-1)
523 | if (idx < N) y[idx] = exp_val / (*total);
524 | }
525 |
526 | // Sigmoid x: N, y: N y=1/(1+exp(-x))
527 | // grid(N/128), block(K=128)
528 | __global__ void sigmoid(float* x, float* y, int N) {
529 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
530 | if (idx < N) y[idx] = 1.0f / (1.0f + expf(-x[idx]));
531 | }
532 |
533 | // Sigmoid x: N, y: N y=1/(1+exp(-x)) Vec4
534 | // grid(N/128), block(128/4)
535 | __global__ void sigmoid_vec4(float* x, float* y, int N) {
536 | int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
537 | if (idx < N) {
538 | float4 reg_x = FLOAT4(x[idx]);
539 | float4 reg_y;
540 | reg_y.x = 1.0f / (1.0f + expf(-reg_x.x));
541 | reg_y.y = 1.0f / (1.0f + expf(-reg_x.y));
542 | reg_y.z = 1.0f / (1.0f + expf(-reg_x.z));
543 | reg_y.w = 1.0f / (1.0f + expf(-reg_x.w));
544 | FLOAT4(y[idx]) = reg_y;
545 | }
546 | }
547 |
548 | // Relu x: N, y: N y=max(0,x)
549 | // grid(N/128), block(K=128)
550 | __global__ void relu(float* x, float* y, int N) {
551 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
552 | if (idx < N) y[idx] = fmaxf(0.0f, x[idx]);
553 | }
554 |
555 | // Relu x: N, y: N y=max(0,x) Vec4
556 | // grid(N/128/4), block(128/4)
557 | __global__ void relu_vec4(float* x, float* y, int N) {
558 | int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
559 | if (idx < N) {
560 | float4 reg_x = FLOAT4(x[idx]);
561 | float4 reg_y;
562 | reg_y.x = fmaxf(0.0f, reg_x.x);
563 | reg_y.y = fmaxf(0.0f, reg_x.y);
564 | reg_y.z = fmaxf(0.0f, reg_x.z);
565 | reg_y.w = fmaxf(0.0f, reg_x.w);
566 | FLOAT4(y[idx]) = reg_y;
567 | }
568 | }
569 |
570 | // RMS Norm: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
571 | // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
572 | // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
573 | // y=y'*g (g: scale)
574 | template
575 | __global__ void rms_norm(float* x, float* y, float g, int N, int K) {
576 | int tid = threadIdx.x; // 0..K-1
577 | int bid = blockIdx.x; // 0..N-1
578 | int idx = bid * blockDim.x + threadIdx.x;
579 | const float epsilon = 1e-5f;
580 |
581 | __shared__ float s_variance; // shared within block
582 | float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
583 | float variance = value * value;
584 | variance = block_reduce_sum(variance);
585 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
586 | // wait for s_variance in shared memory to be ready for all threads
587 | __syncthreads();
588 | if (idx < N * K) y[idx] = (value * s_variance) * g;
589 | }
590 |
591 | // RMS Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
592 | // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
593 | // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
594 | // y=y'*g (g: scale)
595 | template
596 | __global__ void rms_norm_vec4(float* x, float* y, float g, int N, int K) {
597 | int tid = threadIdx.x; // 0..K-1
598 | int bid = blockIdx.x; // 0..N-1
599 | int idx = (bid * blockDim.x + threadIdx.x) * 4;
600 | const float epsilon = 1e-5f;
601 |
602 | __shared__ float s_variance; // shared within block
603 | float4 reg_x = FLOAT4(x[idx]);
604 | float variance = (idx < N * K) ? (reg_x.x * reg_x.x + reg_x.y * reg_x.y
605 | + reg_x.z * reg_x.z + reg_x.w * reg_x.w) : 0.0f;
606 | variance = block_reduce_sum(variance);
607 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
608 | // wait for s_variance in shared memory to be ready for all threads
609 | __syncthreads();
610 | float4 reg_y;
611 | reg_y.x = reg_x.x * s_variance * g;
612 | reg_y.y = reg_x.y * s_variance * g;
613 | reg_y.z = reg_x.z * s_variance * g;
614 | reg_y.w = reg_x.w * s_variance * g;
615 | if (idx < N * K) FLOAT4(y[idx]) = reg_y;
616 | }
617 |
618 | // Layer Norm: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
619 | // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
620 | // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
621 | // y=y'*g + b (g: scale, b: bias)
622 | template
623 | __global__ void layer_norm(float* x, float* y, float g, float b, int N, int K) {
624 | int tid = threadIdx.x; // 0..K-1
625 | int bid = blockIdx.x; // 0..N-1
626 | int idx = bid * blockDim.x + threadIdx.x;
627 | const float epsilon = 1e-5f;
628 |
629 | __shared__ float s_mean; // shared within block
630 | __shared__ float s_variance; // shared within block
631 | float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
632 | float sum = block_reduce_sum(value);
633 | if (tid == 0) s_mean = sum / (float) K;
634 | // wait for s_mean in shared memory to be ready for all threads
635 | __syncthreads();
636 | float variance = (value - s_mean) * (value - s_mean);
637 | variance = block_reduce_sum(variance);
638 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
639 | // wait for s_variance in shared memory to be ready for all threads
640 | __syncthreads();
641 | if (idx < N * K) y[idx] = ((value - s_mean) * s_variance) * g + b;
642 | }
643 |
644 | // Layer Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
645 | // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
646 | // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
647 | // y=y'*g + b (g: scale, b: bias)
648 | template
649 | __global__ void layer_norm_vec4(float* x, float* y, float g, float b, int N, int K) {
650 | int tid = threadIdx.x; // 0..K-1
651 | int bid = blockIdx.x; // 0..N-1
652 | int idx = (bid * blockDim.x + threadIdx.x) * 4;
653 | const float epsilon = 1e-5f;
654 |
655 | __shared__ float s_mean; // shared within block
656 | __shared__ float s_variance; // shared within block
657 | float4 reg_x = FLOAT4(x[idx])
658 | float value = (idx < N * K) ? (reg_x.x + reg_x.y
659 | + reg_x.z + reg_x.w) : 0.0f;
660 | float sum = block_reduce_sum(value);
661 | if (tid == 0) s_mean = sum / (float) K;
662 | // wait for s_mean in shared memory to be ready for all threads
663 | __syncthreads();
664 | float4 reg_x_hat;
665 | reg_x_hat.x = reg_x.x - s_mean;
666 | reg_x_hat.y = reg_x.y - s_mean;
667 | reg_x_hat.z = reg_x.z - s_mean;
668 | reg_x_hat.w = reg_x.w - s_mean;
669 | float variance = reg_x_hat.x * reg_x_hat.x + reg_x_hat.y * reg_x_hat.y
670 | + reg_x_hat.z * reg_x_hat.z + reg_x_hat.w * reg_x_hat.w;
671 | variance = block_reduce_sum(variance);
672 | if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
673 | // wait for s_variance in shared memory to be ready for all threads
674 | __syncthreads();
675 | float4 reg_y;
676 | reg_y.x = reg_x_hat.x * s_variance * g + b;
677 | reg_y.y = reg_x_hat.y * s_variance * g + b;
678 | reg_y.z = reg_x_hat.z * s_variance * g + b;
679 | reg_y.w = reg_x_hat.w * s_variance * g + b;
680 | if (idx < N * K) FLOAT4(y[idx]) = reg_y;
681 | }
682 |
--------------------------------------------------------------------------------
/cuda-simd/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/cuda-simd/README.md
--------------------------------------------------------------------------------
/elementwise/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/elementwise/README.md
--------------------------------------------------------------------------------
/gemm/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/gemm/README.md
--------------------------------------------------------------------------------
/gemv/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/gemv/README.md
--------------------------------------------------------------------------------
/nsight-compute/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/nsight-compute/README.md
--------------------------------------------------------------------------------
/reduce/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/reduce/README.md
--------------------------------------------------------------------------------
/spmm/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/spmm/README.md
--------------------------------------------------------------------------------
/spmv/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/alexngng/CUDA-Learn-Note/87e410107e837407ab1bafb95f71020e6b927d0c/spmv/README.md
--------------------------------------------------------------------------------